-
Notifications
You must be signed in to change notification settings - Fork 25
/
post-training_tests.py
428 lines (376 loc) · 19.2 KB
/
post-training_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
"""
This script run a simple agent in a BabyAI GoTo-Local environment.
"""
import os
import sys
import csv
import json
import logging
import time
import numpy as np
import torch
import gym
import babyai.utils as utils
import babyai_text
import hydra
from babyai.paral_env_simple import ParallelEnv
from colorama import Fore
from lamorel import Caller, lamorel_init
from lamorel import BaseUpdater, BaseModuleFunction
from accelerate import Accelerator
from train_language_agent import ValueHeadModuleFn, LogScoringModuleFn, ActionHeadsModuleFn
from agents.drrn.drrn import DRRNAgent
from agents.random_agent.random_agent import Random_agent
from agents.bot.bot import BotAgent
from agents.ppo.llm_ppo_agent import LLMPPOAgent
from train_language_agent import reward_function, reward_function_shapped
lamorel_init()
logger = logging.getLogger(__name__)
accelerator = Accelerator()
"""dict_modifier_french = [{},
{
'clef': 'chaise',
'balle': 'table',
'boîte': 'voiture'
},
{
'rouge': 'vermilion',
'verte': 'jade',
'bleue': 'cyan',
'violette': 'mauve',
'jaune': 'dorée',
'gris': 'argent'
},
{
'clef': 'dax',
'balle': 'xolo',
'boîte': 'afze'
},
{
'rouge': 'faze',
'verte': 'jatu',
'bleue': 'croh',
'violette': 'vurst',
'jaune': 'gakul',
'grise': 'sil'
},
{
'clef': 'dax',
'balle': 'xolo',
'boîte': 'afze',
'rouge': 'faze',
'verte': 'jatu',
'bleue': 'croh',
'violette': 'vurst',
'jaune': 'gakul',
'grise': 'sil'
}]
dict_dict_modifier = {'english': dict_modifier_english, 'french': dict_modifier_french}
dict_modifier_name = ['no_modifications', 'other_name_same_categories', 'adj_synonym', 'no_meaning_nouns',
'no_meaning_adj', 'no_meaning_words', 'important_words_suppress']"""
dict_modifier_french = [{},
{
'clef': 'chaise',
'balle': 'table',
'boîte': 'voiture'
},
{
'rouge': 'vermilion',
'verte': 'jade',
'bleue': 'cyan',
'violette': 'mauve',
'jaune': 'dorée',
'gris': 'argent'
},
{
'clef': 'dax',
'balle': 'xolo',
'boîte': 'afze'
},
{
'rouge': 'faze',
'verte': 'jatu',
'bleue': 'croh',
'violette': 'vurst',
'jaune': 'gakul',
'grise': 'sil'
},
{
'clef': 'dax',
'balle': 'xolo',
'boîte': 'afze',
'rouge': 'faze',
'verte': 'jatu',
'bleue': 'croh',
'violette': 'vurst',
'jaune': 'gakul',
'grise': 'sil'
},
{"But de l'agent": "Je veux que l'agent fasse"},
{"But de l'agent": 'Tu dois faire'}]
dict_modifier_english = [{},
{
'key': 'chair',
'ball': 'table',
'box': 'car'
},
{
'red': 'vermilion',
'green': 'jade',
'blue': 'cyan',
'purple': 'violet',
'yellow': 'golden',
'grey': 'silver'
},
{
'key': 'dax',
'ball': 'xolo',
'box': 'afze'
},
{
'red': 'faze',
'green': 'jatu',
'blue': 'croh',
'purple': 'vurst',
'yellow': 'gakul',
'grey': 'sil'
},
{
'key': 'dax',
'ball': 'xolo',
'box': 'afze',
'red': 'faze',
'green': 'jatu',
'blue': 'croh',
'purple': 'vurst',
'yellow': 'gakul',
'grey': 'sil'
},
{'Goal of the agent': 'I would like the agent to'},
{'Goal of the agent': 'You have to'}]
dict_modifier_name = ['no_modification_test', 'other_name_same_categories', 'adj_synonym', 'no_meaning_nouns',
'no_meaning_adj', 'no_meaning_words', 'change_intro_first_personne_speaker',
'change_intro_first_personne_agent']
"""dict_modifier_english = [{}]
dict_modifier_french = [{}]
dict_modifier_name = ['no_modification_test']"""
dict_dict_modifier = {'english': dict_modifier_english, 'french': dict_modifier_french}
class LoadSpecificWeightsUpdater(BaseUpdater):
def perform_update(self, contexts, candidates, _current_batch_ids, **kwargs):
if not hasattr(self, "is_loaded"):
if "im_learning" in kwargs:
self._llm_module.module._LLM_model.load_state_dict(torch.load(kwargs["saving_path_model"] + "/model.checkpoint"))
self.is_loaded = True
print("im")
else:
try:
self._llm_module.load_state_dict(torch.load(kwargs["saving_path_model"] +
"/" + kwargs["id_expe"] + "/last/model.checkpoint"))
self.is_loaded = True
print("Last")
except:
self._llm_module.load_state_dict(torch.load(kwargs["saving_path_model"] +
"/" + kwargs["id_expe"] + "/backup/model.checkpoint"))
self.is_loaded = True
print("Backup")
def run_agent(args, algo, saving_path_logs, id_expe, n_tests):
if args.random_agent:
format_str = ("Language: {} | Name dict: {} | Episodes Done: {} | Reward: {: .2f} +- {: .2f} (Min: {: .2f} Max: {: .2f}) |\
Success Rate: {: .2f} |")
else:
format_str = ("Language: {} | Name dict: {} | Episodes Done: {} | Reward: {: .2f} +- {: .2f} (Min: {: .2f} Max: {: .2f}) |\
Success Rate: {: .2f} | \nReshaped: {: .2f} +- {: .2f} (Min: {: .2f} Max: {: .2f}) | Bonus: {: .2f} +- {: .2f}\
(Min: {: .2f} Max: {: .2f})")
dm = dict_dict_modifier[args.language]
for d, d_name in zip(dm, dict_modifier_name):
if args.modified_action_space:
d_name += '_'
for a in args.new_action_space:
d_name += a + '_'
d_name = d_name[:-1]
if args.zero_shot:
d_name += '_zero_shot'
if args.im_learning:
d_name += '_im'
test_path = os.path.join(os.path.join(saving_path_logs, id_expe), 'test')
experiment_path = os.path.join(test_path, args.name_environment)
path_test_folder = os.path.join(experiment_path, 'return_per_episode')
if args.get_example_trajectories:
if d_name == 'no_modification_test':
nbr_frames = 0
k = 0
if args.bot:
# trajectories generated by the bot given in BabyAI
np_path = os.path.join(path_test_folder, 'bot_trajectories')
else:
# trajectories generated by the agent after its training
np_path = os.path.join(path_test_folder, 'trajectories')
status_path = os.path.join(path_test_folder, 'status.json')
if os.path.exists(status_path):
with open(status_path, 'r') as src:
status = json.load(src)
else:
status = {'k': 0,
'nbr_frames': 0}
while status['nbr_frames'] < args.num_steps:
exps, logs = algo.generate_trajectories(d, n_tests, args.language)
np.save(np_path+'_prompts_{}'.format(status['k']), exps.prompts)
np.save(np_path+'_actions_{}'.format(status['k']), exps.actions)
# np.save(np_path+'_values_{}'.format(status['k']), exps.vals)
status['nbr_frames'] += logs['nbr_frames']
status['k'] += 1
with open(status_path, 'w') as dst:
json.dump(status, dst)
else:
if args.im_learning:
exps, logs = algo.generate_trajectories(d, n_tests, args.language, args.im_learning)
else:
exps, logs = algo.generate_trajectories(d, n_tests, args.language)
return_per_episode = utils.synthesize(logs["return_per_episode"])
success_per_episode = utils.synthesize(
[1 if r > 0 else 0 for r in logs["return_per_episode"]])
if not args.random_agent:
reshaped_return_per_episode = utils.synthesize(logs["reshaped_return_per_episode"])
reshaped_return_bonus_per_episode = utils.synthesize(logs["reshaped_return_bonus_per_episode"])
# num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"])
if args.random_agent:
data = [args.language, d_name, logs['episodes_done'], *return_per_episode.values(),
success_per_episode['mean']]
else:
data = [args.language, d_name, logs['episodes_done'], *return_per_episode.values(),
success_per_episode['mean'],
*reshaped_return_per_episode.values(),
*reshaped_return_bonus_per_episode.values()]
logger.info(Fore.YELLOW + format_str.format(*data) + Fore.RESET)
np_path = os.path.join(path_test_folder, d_name)
np.save(np_path, np.array(logs["return_per_episode"]))
# This will be overriden by lamorel's launcher if used
@hydra.main(config_path='config', config_name='config')
def main(config_args):
"""name_env = config_args.rl_script_args.name_environment
for i in range(1000):
env = gym.make(name_env)
env.seed(int(i))
obs, info = env.reset()
print(obs['mission'])"""
# lm server
if config_args.lamorel_args.distributed_setup_args.n_llm_processes > 0:
if config_args.rl_script_args.im_learning:
lm_server = Caller(config_args.lamorel_args, custom_updater_class=LoadSpecificWeightsUpdater)
else:
custom_lamorel_module_functions = {
'value': ValueHeadModuleFn(config_args.lamorel_args.llm_args.model_type)
}
if config_args.rl_script_args.use_action_heads:
custom_lamorel_module_functions['policy_head'] = ActionHeadsModuleFn(
config_args.lamorel_args.llm_args.model_type,
len(config_args.rl_script_args.action_space)
)
lamorel_scoring_module_key = "policy_head"
else:
custom_lamorel_module_functions['score'] = LogScoringModuleFn(
config_args.lamorel_args.llm_args.model_type
)
lamorel_scoring_module_key = "score"
lm_server = Caller(config_args.lamorel_args, custom_updater=LoadSpecificWeightsUpdater(),
custom_module_functions=custom_lamorel_module_functions
)
id_expe = config_args.rl_script_args.name_experiment + \
'_nbr_env_{}_'.format(config_args.rl_script_args.number_envs) + \
'{}_'.format(config_args.rl_script_args.name_model) + \
'pretrained_{}_'.format(config_args.lamorel_args.llm_args.pretrained)
if not config_args.lamorel_args.llm_args.pretrained:
id_expe += 'load_embedding_{}_'.format(config_args.rl_script_args.load_embedding) + \
'use_action_heads_{}_'.format(config_args.rl_script_args.use_action_heads)
if config_args.rl_script_args.nbr_obs != 3:
id_expe += 'nbr_obs_{}_'.format(config_args.rl_script_args.nbr_obs)
id_expe += 'nbr_actions_{}_'.format(len(config_args.rl_script_args.action_space))
# if config_args.rl_script_args.modified_action_space is not False we keep the same id_expe
# we just create a file with test_name containing the modified action in
# name_experiment/test/return_per_episode/test_name.npy
for a in config_args.rl_script_args.action_space:
id_expe += a + '_'
id_expe += 'shape_reward_beta_{}_'.format(config_args.rl_script_args.reward_shaping_beta) + \
'seed_{}'.format(config_args.rl_script_args.seed)
# Env
name_env = config_args.rl_script_args.name_environment
seed = config_args.rl_script_args.seed
envs = []
subgoals = []
number_envs = config_args.rl_script_args.number_envs
if config_args.rl_script_args.modified_action_space:
list_actions = [a.replace("_", " ") for a in config_args.rl_script_args.new_action_space]
else:
list_actions = [a.replace("_", " ") for a in config_args.rl_script_args.action_space]
for i in range(number_envs):
env = gym.make(name_env)
env.seed(
int(1e9 * seed + i)) # to be sure to not have the same seeds as in the train (100h max ~ 100000 episodes done in our settings)
envs.append(env)
subgoals.append(list_actions)
envs = ParallelEnv(envs)
if config_args.rl_script_args.reward_shaping_beta == 0:
reshape_reward = reward_function
else:
reshape_reward = reward_function_shapped # TODO ad the beta
# create the folder for the agent
model_path = os.path.join(config_args.rl_script_args.saving_path_model, id_expe)
if not os.path.exists(model_path):
os.makedirs(model_path)
log_path = os.path.join(config_args.rl_script_args.saving_path_logs, id_expe)
# create the folder for the tests results and return_per_episode
test_path = os.path.join(log_path, 'test')
if not os.path.exists(test_path):
os.makedirs(test_path)
test_path_env = os.path.join(test_path, config_args.rl_script_args.name_environment)
if not os.path.exists(test_path_env):
os.makedirs(test_path_env)
os.makedirs(os.path.join(test_path_env, 'return_per_episode'))
if config_args.lamorel_args.distributed_setup_args.n_llm_processes > 0:
if not config_args.rl_script_args.zero_shot:
if config_args.rl_script_args.im_learning:
saving_path_model = config_args.rl_script_args.im_path + '_seed_{}'
saving_path_model = saving_path_model.format(config_args.rl_script_args.seed)
lm_server.update([None for _ in range(config_args.lamorel_args.distributed_setup_args.n_llm_processes)],
[[None] for _ in range(config_args.lamorel_args.distributed_setup_args.n_llm_processes)],
im_learning=True, saving_path_model=saving_path_model)
else:
lm_server.update([None for _ in range(config_args.lamorel_args.distributed_setup_args.n_llm_processes)],
[[None] for _ in range(config_args.lamorel_args.distributed_setup_args.n_llm_processes)],
id_expe=id_expe, saving_path_model=config_args.rl_script_args.saving_path_model)
algo = LLMPPOAgent(envs, lm_server, lamorel_scoring_module_key,
config_args.lamorel_args.distributed_setup_args.n_llm_processes,
config_args.rl_script_args.frames_per_proc,
config_args.rl_script_args.discount, config_args.rl_script_args.lr,
config_args.rl_script_args.beta1, config_args.rl_script_args.beta2,
config_args.rl_script_args.gae_lambda, config_args.rl_script_args.entropy_coef,
config_args.rl_script_args.value_loss_coef, config_args.rl_script_args.max_grad_norm,
config_args.rl_script_args.adam_eps, config_args.rl_script_args.clip_eps,
config_args.rl_script_args.epochs, config_args.rl_script_args.batch_size,
reshape_reward,
config_args.rl_script_args.name_experiment,
config_args.rl_script_args.saving_path_model,
config_args.rl_script_args.saving_path_logs, number_envs, subgoals,
config_args.rl_script_args.nbr_obs, id_expe,
config_args.rl_script_args.template_test)
else:
if config_args.rl_script_args.random_agent:
algo = Random_agent(envs=envs, subgoals=subgoals)
elif config_args.rl_script_args.bot:
algo = BotAgent(envs=envs, subgoals=subgoals)
else:
if not config_args.rl_script_args.zero_shot:
algo = DRRNAgent(envs, subgoals, reshape_reward, config_args.rl_script_args.spm_path,
max_steps=number_envs * 4,
saving_path=config_args.rl_script_args.saving_path_model + "/" + id_expe)
algo.load()
else:
algo = DRRNAgent(envs, subgoals, reshape_reward, config_args.rl_script_args.spm_path,
max_steps=number_envs * 4,
saving_path=config_args.rl_script_args.saving_path_model + "/" + id_expe)
run_agent(config_args.rl_script_args, algo, config_args.rl_script_args.saving_path_logs, id_expe,
config_args.rl_script_args.number_episodes)
if config_args.lamorel_args.distributed_setup_args.n_llm_processes > 0:
lm_server.close()
if __name__ == '__main__':
main()