forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
env_utils.py
211 lines (178 loc) · 8.55 KB
/
env_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gym
import numpy as np
import pandas as pd
import json
from pathlib import Path
gym.logger.set_level(40)
class VectoredGymEnvironment():
"""
Envrioment class to run multiple similations and collect rollout data
"""
def __init__(self, registered_gym_env, num_of_envs=1):
self.envs_initialized = False
self.initialized_envs = {}
self.env_states = {}
self.env_reset_counter = {}
self.num_of_envs = num_of_envs
self.data_rows = []
self.initialize_envs(num_of_envs, registered_gym_env)
def is_initialized(self):
return self.envs_initialized
def initialize_envs(
self,
num_of_envs,
registered_gym_env):
"""Initialize multiple Openai gym environments.
Each envrionment will start with a different random seed.
Arguments:
num_of_envs {int} -- Number of environments/simulations to initiate
registered_gym_env {str} -- Environment name of the registered gym environment
"""
print("Initializing {} environments of {}".format(num_of_envs, registered_gym_env))
for i in range(0, num_of_envs):
environment_id = "environment_" + str(i)
environment = gym.make(registered_gym_env)
environment = environment.unwrapped
environment.seed(i)
self.env_states[environment_id] = environment.reset()
self.env_reset_counter[environment_id] = 0
self.initialized_envs[environment_id] = environment
self.envs_initialized = True
self.state_dims = len(self.env_states[environment_id])
def get_environment_states(self):
return self.env_states
def dump_environment_states(self, dir_path, file_name):
"""Dumping current states of all the envrionments into file
Arguments:
dir_path {str} -- Directory path of the target file
file_name {str} -- File name of the target file
"""
data_folder = Path(dir_path)
file_path = data_folder / file_name
with open(file_path, 'w') as outfile:
for state in self.env_states.values():
json.dump(list(state), outfile)
outfile.write('\n')
def get_environment_ids(self):
return list(self.initialized_envs.keys())
def step(self, environment_id, action):
local_env = self.initialized_envs[environment_id]
observation, reward, done, info = local_env.step(action)
self.env_states[environment_id] = observation
return observation, reward, done, info
def reset(self, environment_id):
self.env_states[environment_id] = \
self.initialized_envs[environment_id].reset()
return self.env_states[environment_id]
def reset_all_envs(self):
print("Resetting all the environments...")
for i in range(0, self.num_of_envs):
environment_id = "environment_" + str(i)
self.reset(environment_id)
def close(self, environment_id):
self.initialized_envs[environment_id].close()
return
def render(self, environment_id):
self.initialized_envs[environment_id].render()
return
def collect_rollouts_for_single_env_with_given_episodes(self, environment_id, action_prob, num_episodes):
"""Collect rollouts with given steps from one environment
Arguments:
environment_id {str} -- Environment id for the environment
action_prob {list} -- Action probabilities of the simulated policy
num_episodes {int} -- Number of episodes to run rollouts
"""
# normalization if sum of probs is not exact equal to 1
action_prob = np.array(action_prob)
if action_prob.sum() != 1:
action_prob /= action_prob.sum()
action_prob = list(action_prob)
for _ in range(num_episodes):
done = False
cumulative_rewards = 0
while not done:
data_item = []
action = np.random.choice(len(action_prob), p=action_prob)
cur_state_features = self.env_states[environment_id]
_, reward, done, _ = self.step(environment_id, action)
cumulative_rewards += reward
episode_id = int(environment_id.split('_')[-1]) + \
self.num_of_envs * self.env_reset_counter[environment_id]
if not done:
data_item.extend([action, action_prob, episode_id, reward, 0.0])
else:
data_item.extend([action, action_prob, episode_id, reward, cumulative_rewards])
for j in range(len(cur_state_features)):
data_item.append(cur_state_features[j])
self.data_rows.append(data_item)
self.reset(environment_id)
self.env_reset_counter[environment_id] += 1
def collect_rollouts_for_single_env_with_given_steps(self, environment_id, action_prob, num_steps):
"""Collect rollouts with given steps from one environment
Arguments:
environment_id {str} -- Environment id for the environment
action_prob {list} -- Action probabilities of the simulated policy
num_episodes {int} -- Number of steps to run rollouts
"""
# normalization if sum of probs is not exact equal to 1
action_prob = np.array(action_prob)
if action_prob.sum() != 1:
action_prob /= action_prob.sum()
action_prob = list(action_prob)
for _ in range(num_steps):
data_item = []
action = np.random.choice(len(action_prob), p=action_prob)
cur_state_features = self.env_states[environment_id]
_, reward, done, _ = self.step(environment_id, action)
episode_id = int(environment_id.split('_')[-1]) + \
self.num_of_envs * self.env_reset_counter[environment_id]
data_item.extend([action, action_prob, episode_id, reward])
for j in range(len(cur_state_features)):
data_item.append(cur_state_features[j])
self.data_rows.append(data_item)
if done:
self.reset(environment_id)
self.env_reset_counter[environment_id] += 1
def collect_rollouts_with_given_action_probs(self, num_steps=None, num_episodes=None, action_probs=None, file_name=None):
"""Collect rollouts from all the initiated environments with given action probs
Keyword Arguments:
num_steps {int} -- Number of steps to run rollouts (default: {None})
num_episodes {int} -- Number of episodes to run rollouts (default: {None})
action_probs {list} -- Action probs for the policy (default: {None})
file_name {str} -- Batch transform output that contain predictions of probs (default: {None})
Returns:
[Dataframe] -- Dataframe that contains the rollout data from all envs
"""
if file_name is not None:
assert action_probs is None
json_lines = [json.loads(line.rstrip('\n')) for line in open(file_name) if line is not '']
action_probs = []
for line in json_lines:
if line.get('SageMakerOutput') is not None:
action_probs.append(line['SageMakerOutput'].get("predictions")[0])
else:
action_probs.append(line.get("predictions")[0])
assert len(action_probs) == self.num_of_envs
for index, environment_id in enumerate(self.get_environment_ids()):
if num_steps is not None:
assert num_episodes is None
self.collect_rollouts_for_single_env_with_given_steps(
environment_id, action_probs[index], num_steps
)
else:
assert num_episodes is not None
self.collect_rollouts_for_single_env_with_given_episodes(
environment_id, action_probs[index], num_episodes
)
col_names = self._create_col_names()
df = pd.DataFrame(self.data_rows, columns = col_names)
return df
def _create_col_names(self):
"""Create column names of dataframe that can be consumed by Coach
Returns:
[list] -- List of column names
"""
col_names = ['action', 'all_action_probabilities', 'episode_id', 'reward', 'cumulative_rewards']
for i in range(self.state_dims):
col_names.append('state_feature_' + str(i))
return col_names