-
Notifications
You must be signed in to change notification settings - Fork 0
/
style.py
215 lines (151 loc) · 6.11 KB
/
style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision.models as models
import copy
from pathlib import Path
####################
# code that just needs to be here for now, because the functions manipulate variables in global scope.
####################
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
imsize = 720 if torch.cuda.is_available() else 128
loader = transforms.Compose([
transforms.Resize(imsize), # scale imported image
transforms.ToTensor() # transform it into torch tensor
])
unloader = transforms.ToPILImage() # reconvert into PIL image
# define cnn
cnn = models.vgg19(pretrained=True).features.to(device).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
# desired depth layers to compute style/content losses:
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
#####################
# functions
#####################
def image_loader(image_name):
image = Image.open(image_name)
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
class ContentLoss(nn.Module):
def __init__(self, target):
super(ContentLoss, self).__init__()
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
def gram_matrix(input):
a, b, c, d = input.size()
features = input.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
return (img - self.mean) / self.std
def get_style_model_and_losses(cnn, normalization_mean,
normalization_std, style_img, content_img,
content_layers = content_layers_default,
style_layers = style_layers_default):
cnn = copy.deepcopy(cnn)
normalization = Normalization(normalization_mean, normalization_std).to(device)
content_losses = []
style_losses = []
model = nn.Sequential(normalization)
i = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = f'conv_{i}'
elif isinstance(layer, nn.ReLU):
name = f'relu_{i}'
layer = nn.ReLU(inplace = False)
elif isinstance(layer, nn.MaxPool2d):
name = f'pool_{i}'
elif isinstance(layer, nn.BatchNorm2d):
name = f'bn_{i}'
else:
raise RuntimeError(f'unrecognized layer: {layer.__class__.__name__}')
model.add_module(name, layer)
if name in content_layers:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module(f"content_loss_{i}", content_loss)
content_losses.append(content_loss)
if name in style_layers:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module(f"style_loss_{i}", style_loss)
style_losses.append(style_loss)
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i+1)]
return model, style_losses, content_losses
def get_input_optimizer(input_img):
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
def run_style_transfer(cnn, normalization_mean, normalization_std, content_img, style_img, input_img, num_steps = 300, style_weight = 1000000, content_weight = 1):
"""run the style transfer"""
print('building style transfer model...')
model, style_losses, content_losses = get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img)
optimizer = get_input_optimizer(input_img)
print('optimizing...')
run = [0]
while run[0] <= num_steps:
def closure():
# correct values of updated input image
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print(f"run {run}")
print(f"style loss: {style_score.item()}")
print(f"content loss: {content_score.item()}")
print()
return style_score + content_score
optimizer.step(closure)
input_img.data.clamp_(0, 1)
return input_img
def imsave(tensor, filename):
image = tensor.cpu().clone()
image = image.squeeze(0)
image = unloader(image)
image.save(filename)
if __name__ == '__main__':
style_img = image_loader("style_images/nausicaa.jpg")
input_dir = Path('./input_images')
for imagefile in input_dir.glob('*.jpg'):
print(imagefile.name)
content_img = image_loader(imagefile)
assert style_img.size() == content_img.size(), "images must be same size"
input_img = content_img.clone()
output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std, content_img, style_img, input_img)
imsave(output, f'output_images/{imagefile.name}')