-
-
Notifications
You must be signed in to change notification settings - Fork 6
/
index.js
495 lines (434 loc) · 16.5 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
'use strict'
// Precision used to check determinant in quad and cubic solvers,
// any number lower than this is considered to be zero.
// `8.67e-19` is an example of real error occurring in tests.
var epsilon = 1e-16
function Point (x, y) {
this.x = x
this.y = y
}
Point.prototype.add = function (point) {
return new Point(this.x + point.x, this.y + point.y)
}
Point.prototype.sub = function (point) {
return new Point(this.x - point.x, this.y - point.y)
}
Point.prototype.mul = function (value) {
return new Point(this.x * value, this.y * value)
}
Point.prototype.div = function (value) {
return new Point(this.x / value, this.y / value)
}
/*Point.prototype.dist = function () {
return Math.sqrt(this.x * this.x + this.y * this.y)
}*/
Point.prototype.sqr = function () {
return this.x * this.x + this.y * this.y
}
Point.prototype.dot = function (point) {
return this.x * point.x + this.y * point.y
}
function calcPowerCoefficients (p1, c1, c2, p2) {
// point(t) = p1*(1-t)^3 + c1*t*(1-t)^2 + c2*t^2*(1-t) + p2*t^3 = a*t^3 + b*t^2 + c*t + d
// for each t value, so
// a = (p2 - p1) + 3 * (c1 - c2)
// b = 3 * (p1 + c2) - 6 * c1
// c = 3 * (c1 - p1)
// d = p1
var a = p2.sub(p1).add(c1.sub(c2).mul(3))
var b = p1.add(c2).mul(3).sub(c1.mul(6))
var c = c1.sub(p1).mul(3)
var d = p1
return [a, b, c, d]
}
function calcPowerCoefficientsQuad (p1, c1, p2) {
// point(t) = p1*(1-t)^2 + c1*t*(1-t) + p2*t^2 = a*t^2 + b*t + c
// for each t value, so
// a = p1 + p2 - 2 * c1
// b = 2 * (c1 - p1)
// c = p1
var a = c1.mul(-2).add(p1).add(p2)
var b = c1.sub(p1).mul(2)
var c = p1
return [a, b, c]
}
function calcPoint (a, b, c, d, t) {
// a*t^3 + b*t^2 + c*t + d = ((a*t + b)*t + c)*t + d
return a.mul(t).add(b).mul(t).add(c).mul(t).add(d)
}
function calcPointQuad (a, b, c, t) {
// a*t^2 + b*t + c = (a*t + b)*t + c
return a.mul(t).add(b).mul(t).add(c)
}
function calcPointDerivative (a, b, c, d, t) {
// d/dt[a*t^3 + b*t^2 + c*t + d] = 3*a*t^2 + 2*b*t + c = (3*a*t + 2*b)*t + c
return a.mul(3 * t).add(b.mul(2)).mul(t).add(c)
}
function quadSolve (a, b, c) {
// a*x^2 + b*x + c = 0
if (a === 0) {
return (b === 0) ? [] : [-c / b]
}
var D = b * b - 4 * a * c
if (Math.abs(D) < epsilon) {
return [-b / (2 * a)]
} else if (D < 0) {
return []
}
var DSqrt = Math.sqrt(D)
return [(-b - DSqrt) / (2 * a), (-b + DSqrt) / (2 * a)]
}
/*function cubicRoot(x) {
return (x < 0) ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3)
}
function cubicSolve(a, b, c, d) {
// a*x^3 + b*x^2 + c*x + d = 0
if (a === 0) {
return quadSolve(b, c, d)
}
// solve using Cardan's method, which is described in paper of R.W.D. Nickals
// http://www.nickalls.org/dick/papers/maths/cubic1993.pdf (doi:10.2307/3619777)
var xn = -b / (3*a) // point of symmetry x coordinate
var yn = ((a * xn + b) * xn + c) * xn + d // point of symmetry y coordinate
var deltaSq = (b*b - 3*a*c) / (9*a*a) // delta^2
var hSq = 4*a*a * Math.pow(deltaSq, 3) // h^2
var D3 = yn*yn - hSq
if (Math.abs(D3) < epsilon) { // 2 real roots
var delta1 = cubicRoot(yn/(2*a))
return [ xn - 2 * delta1, xn + delta1 ]
} else if (D3 > 0) { // 1 real root
var D3Sqrt = Math.sqrt(D3)
return [ xn + cubicRoot((-yn + D3Sqrt)/(2*a)) + cubicRoot((-yn - D3Sqrt)/(2*a)) ]
}
// 3 real roots
var theta = Math.acos(-yn / Math.sqrt(hSq)) / 3
var delta = Math.sqrt(deltaSq)
return [
xn + 2 * delta * Math.cos(theta),
xn + 2 * delta * Math.cos(theta + Math.PI * 2 / 3),
xn + 2 * delta * Math.cos(theta + Math.PI * 4 / 3)
]
}*/
/*
* Calculate a distance between a `point` and a line segment `p1, p2`
* (result is squared for performance reasons), see details here:
* https://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
*/
function minDistanceToLineSq (point, p1, p2) {
var p1p2 = p2.sub(p1)
var dot = point.sub(p1).dot(p1p2)
var lenSq = p1p2.sqr()
var param = 0
var diff
if (lenSq !== 0) param = dot / lenSq
if (param <= 0) {
diff = point.sub(p1)
} else if (param >= 1) {
diff = point.sub(p2)
} else {
diff = point.sub(p1.add(p1p2.mul(param)))
}
return diff.sqr()
}
/*function minDistanceToQuad(point, p1, c1, p2) {
// f(t) = (1-t)^2 * p1 + 2*t*(1 - t) * c1 + t^2 * p2 = a*t^2 + b*t + c, t in [0, 1],
// a = p1 + p2 - 2 * c1
// b = 2 * (c1 - p1)
// c = p1; a, b, c are vectors because p1, c1, p2 are vectors too
// The distance between given point and quadratic curve is equal to
// sqrt((f(t) - point)^2), so these expression has zero derivative by t at points where
// (f'(t), (f(t) - point)) = 0.
// Substituting quadratic curve as f(t) one could obtain a cubic equation
// e3*t^3 + e2*t^2 + e1*t + e0 = 0 with following coefficients:
// e3 = 2 * a^2
// e2 = 3 * a*b
// e1 = (b^2 + 2 * a*(c - point))
// e0 = (c - point)*b
// One of the roots of the equation from [0, 1], or t = 0 or t = 1 is a value of t
// at which the distance between given point and quadratic Bezier curve has minimum.
// So to find the minimal distance one have to just pick the minimum value of
// the distance on set {t = 0 | t = 1 | t is root of the equation from [0, 1] }.
var a = p1.add(p2).sub(c1.mul(2))
var b = c1.sub(p1).mul(2)
var c = p1
var e3 = 2 * a.sqr()
var e2 = 3 * a.dot(b)
var e1 = (b.sqr() + 2 * a.dot(c.sub(point)))
var e0 = c.sub(point).dot(b)
var candidates = cubicSolve(e3, e2, e1, e0).filter(function (t) { return t > 0 && t < 1 }).concat([ 0, 1 ])
var minDistance = 1e9
for (var i = 0; i < candidates.length; i++) {
var distance = calcPointQuad(a, b, c, candidates[i]).sub(point).dist()
if (distance < minDistance) {
minDistance = distance
}
}
return minDistance
}*/
function processSegment (a, b, c, d, t1, t2) {
// Find a single control point for given segment of cubic Bezier curve
// These control point is an interception of tangent lines to the boundary points
// Let's denote that f(t) is a vector function of parameter t that defines the cubic Bezier curve,
// f(t1) + f'(t1)*z1 is a parametric equation of tangent line to f(t1) with parameter z1
// f(t2) + f'(t2)*z2 is the same for point f(t2) and the vector equation
// f(t1) + f'(t1)*z1 = f(t2) + f'(t2)*z2 defines the values of parameters z1 and z2.
// Defining fx(t) and fy(t) as the x and y components of vector function f(t) respectively
// and solving the given system for z1 one could obtain that
//
// -(fx(t2) - fx(t1))*fy'(t2) + (fy(t2) - fy(t1))*fx'(t2)
// z1 = ------------------------------------------------------.
// -fx'(t1)*fy'(t2) + fx'(t2)*fy'(t1)
//
// Let's assign letter D to the denominator and note that if D = 0 it means that the curve actually
// is a line. Substituting z1 to the equation of tangent line to the point f(t1), one could obtain that
// cx = [fx'(t1)*(fy(t2)*fx'(t2) - fx(t2)*fy'(t2)) + fx'(t2)*(fx(t1)*fy'(t1) - fy(t1)*fx'(t1))]/D
// cy = [fy'(t1)*(fy(t2)*fx'(t2) - fx(t2)*fy'(t2)) + fy'(t2)*(fx(t1)*fy'(t1) - fy(t1)*fx'(t1))]/D
// where c = (cx, cy) is the control point of quadratic Bezier curve.
var f1 = calcPoint(a, b, c, d, t1)
var f2 = calcPoint(a, b, c, d, t2)
var f1_ = calcPointDerivative(a, b, c, d, t1)
var f2_ = calcPointDerivative(a, b, c, d, t2)
var D = -f1_.x * f2_.y + f2_.x * f1_.y
if (Math.abs(D) < 1e-8) {
return [f1, f1.add(f2).div(2), f2] // straight line segment
}
var cx = (f1_.x * (f2.y * f2_.x - f2.x * f2_.y) + f2_.x * (f1.x * f1_.y - f1.y * f1_.x)) / D
var cy = (f1_.y * (f2.y * f2_.x - f2.x * f2_.y) + f2_.y * (f1.x * f1_.y - f1.y * f1_.x)) / D
return [f1, new Point(cx, cy), f2]
}
/*function isSegmentApproximationClose(a, b, c, d, tmin, tmax, p1, c1, p2, errorBound) {
// a,b,c,d define cubic curve
// tmin, tmax are boundary points on cubic curve
// p1, c1, p2 define quadratic curve
// errorBound is maximum allowed distance
// Try to find maximum distance between one of N points segment of given cubic
// and corresponding quadratic curve that estimates the cubic one, assuming
// that the boundary points of cubic and quadratic points are equal.
//
// The distance calculation method comes from Hausdorff distance defenition
// (https://en.wikipedia.org/wiki/Hausdorff_distance), but with following simplifications
// * it looks for maximum distance only for finite number of points of cubic curve
// * it doesn't perform reverse check that means selecting set of fixed points on
// the quadratic curve and looking for the closest points on the cubic curve
// But this method allows easy estimation of approximation error, so it is enough
// for practical purposes.
var n = 10 // number of points + 1
var dt = (tmax - tmin) / n
for (var t = tmin + dt; t < tmax - dt; t += dt) { // don't check distance on boundary points
// because they should be the same
var point = calcPoint(a, b, c, d, t)
if (minDistanceToQuad(point, p1, c1, p2) > errorBound) {
return false
}
}
return true
}*/
/*
* Divide cubic and quadratic curves into 10 points and 9 line segments.
* Calculate distances between each point on cubic and nearest line segment
* on quadratic (and vice versa), and make sure all distances are less
* than `errorBound`.
*
* We need to calculate BOTH distance from all points on quadratic to any cubic,
* and all points on cubic to any quadratic.
*
* If we do it only one way, it may lead to an error if the entire original curve
* falls within errorBound (then **any** quad will erroneously treated as good):
* https://github.com/fontello/svg2ttf/issues/105#issuecomment-842558027
*
* - a,b,c,d define cubic curve (power coefficients)
* - tmin, tmax are boundary points on cubic curve (in 0-1 range)
* - p1, c1, p2 define quadratic curve (control points)
* - errorBound is maximum allowed distance
*/
function isSegmentApproximationClose (a, b, c, d, tmin, tmax, p1, c1, p2, errorBound) {
var n = 10 // number of points
var t, dt
var p = calcPowerCoefficientsQuad(p1, c1, p2)
var qa = p[0], qb = p[1], qc = p[2]
var i, j, distSq
var errorBoundSq = errorBound * errorBound
var cubicPoints = []
var quadPoints = []
var minDistSq
dt = (tmax - tmin) / n
for (i = 0, t = tmin; i <= n; i++, t += dt) {
cubicPoints.push(calcPoint(a, b, c, d, t))
}
dt = 1 / n
for (i = 0, t = 0; i <= n; i++, t += dt) {
quadPoints.push(calcPointQuad(qa, qb, qc, t))
}
for (i = 1; i < cubicPoints.length - 1; i++) {
minDistSq = Infinity
for (j = 0; j < quadPoints.length - 1; j++) {
distSq = minDistanceToLineSq(cubicPoints[i], quadPoints[j], quadPoints[j + 1])
minDistSq = Math.min(minDistSq, distSq)
}
if (minDistSq > errorBoundSq) return false
}
for (i = 1; i < quadPoints.length - 1; i++) {
minDistSq = Infinity
for (j = 0; j < cubicPoints.length - 1; j++) {
distSq = minDistanceToLineSq(quadPoints[i], cubicPoints[j], cubicPoints[j + 1])
minDistSq = Math.min(minDistSq, distSq)
}
if (minDistSq > errorBoundSq) return false
}
return true
}
function _isApproximationClose (a, b, c, d, quadCurves, errorBound) {
var dt = 1 / quadCurves.length
for (var i = 0; i < quadCurves.length; i++) {
var p1 = quadCurves[i][0]
var c1 = quadCurves[i][1]
var p2 = quadCurves[i][2]
if (!isSegmentApproximationClose(a, b, c, d, i * dt, (i + 1) * dt, p1, c1, p2, errorBound)) {
return false
}
}
return true
}
function fromFlatArray (points) {
var result = []
var segmentsNumber = (points.length - 2) / 4
for (var i = 0; i < segmentsNumber; i++) {
result.push([
new Point(points[4 * i], points[4 * i + 1]),
new Point(points[4 * i + 2], points[4 * i + 3]),
new Point(points[4 * i + 4], points[4 * i + 5])
])
}
return result
}
function toFlatArray (quadsList) {
var result = []
result.push(quadsList[0][0].x)
result.push(quadsList[0][0].y)
for (var i = 0; i < quadsList.length; i++) {
result.push(quadsList[i][1].x)
result.push(quadsList[i][1].y)
result.push(quadsList[i][2].x)
result.push(quadsList[i][2].y)
}
return result
}
function isApproximationClose (p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, quads, errorBound) {
// TODO: rewrite it in C-style and remove _isApproximationClose
var pc = calcPowerCoefficients(
new Point(p1x, p1y),
new Point(c1x, c1y),
new Point(c2x, c2y),
new Point(p2x, p2y)
)
return _isApproximationClose(pc[0], pc[1], pc[2], pc[3], fromFlatArray(quads), errorBound)
}
/*
* Split cubic bézier curve into two cubic curves, see details here:
* https://math.stackexchange.com/questions/877725
*/
function subdivideCubic (x1, y1, x2, y2, x3, y3, x4, y4, t) {
var u = 1 - t
var v = t
var bx = x1 * u + x2 * v
var sx = x2 * u + x3 * v
var fx = x3 * u + x4 * v
var cx = bx * u + sx * v
var ex = sx * u + fx * v
var dx = cx * u + ex * v
var by = y1 * u + y2 * v
var sy = y2 * u + y3 * v
var fy = y3 * u + y4 * v
var cy = by * u + sy * v
var ey = sy * u + fy * v
var dy = cy * u + ey * v
return [
[x1, y1, bx, by, cx, cy, dx, dy],
[dx, dy, ex, ey, fx, fy, x4, y4]
]
}
function byNumber (x, y) { return x - y }
/*
* Find inflection points on a cubic curve, algorithm is similar to this one:
* http://www.caffeineowl.com/graphics/2d/vectorial/cubic-inflexion.html
*/
function solveInflections (x1, y1, x2, y2, x3, y3, x4, y4) {
var p = -(x4 * (y1 - 2 * y2 + y3)) + x3 * (2 * y1 - 3 * y2 + y4) +
x1 * (y2 - 2 * y3 + y4) - x2 * (y1 - 3 * y3 + 2 * y4)
var q = x4 * (y1 - y2) + 3 * x3 * (-y1 + y2) + x2 * (2 * y1 - 3 * y3 + y4) - x1 * (2 * y2 - 3 * y3 + y4)
var r = x3 * (y1 - y2) + x1 * (y2 - y3) + x2 * (-y1 + y3)
return quadSolve(p, q, r).filter(function (t) { return t > 1e-8 && t < 1 - 1e-8 }).sort(byNumber)
}
/*
* Approximate cubic Bezier curve defined with base points p1, p2 and control points c1, c2 with
* with a few quadratic Bezier curves.
* The function uses tangent method to find quadratic approximation of cubic curve segment and
* simplified Hausdorff distance to determine number of segments that is enough to make error small.
* In general the method is the same as described here: https://fontforge.github.io/bezier.html.
*/
function _cubicToQuad (p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound) {
var p1 = new Point(p1x, p1y)
var c1 = new Point(c1x, c1y)
var c2 = new Point(c2x, c2y)
var p2 = new Point(p2x, p2y)
var pc = calcPowerCoefficients(p1, c1, c2, p2)
var a = pc[0], b = pc[1], c = pc[2], d = pc[3]
var approximation
for (var segmentsCount = 1; segmentsCount <= 8; segmentsCount++) {
approximation = []
for (var t = 0; t < 1; t += (1 / segmentsCount)) {
approximation.push(processSegment(a, b, c, d, t, t + (1 / segmentsCount)))
}
if (segmentsCount === 1 &&
(approximation[0][1].sub(p1).dot(c1.sub(p1)) < 0 ||
approximation[0][1].sub(p2).dot(c2.sub(p2)) < 0)) {
// approximation concave, while the curve is convex (or vice versa)
continue
}
if (_isApproximationClose(a, b, c, d, approximation, errorBound)) {
break
}
}
return toFlatArray(approximation)
}
/*
* If this curve has any inflection points, split the curve and call
* _cubicToQuad function on each resulting curve.
*/
function cubicToQuad (p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound) {
var inflections = solveInflections(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y)
if (!inflections.length) {
return _cubicToQuad(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound)
}
var result = []
var curve = [p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y]
var prevPoint = 0
var quad, split
for (var inflectionIdx = 0; inflectionIdx < inflections.length; inflectionIdx++) {
split = subdivideCubic(
curve[0], curve[1], curve[2], curve[3],
curve[4], curve[5], curve[6], curve[7],
// we make a new curve, so adjust inflection point accordingly
1 - (1 - inflections[inflectionIdx]) / (1 - prevPoint)
)
quad = _cubicToQuad(
split[0][0], split[0][1], split[0][2], split[0][3],
split[0][4], split[0][5], split[0][6], split[0][7],
errorBound
)
result = result.concat(quad.slice(0, -2))
curve = split[1]
prevPoint = inflections[inflectionIdx]
}
quad = _cubicToQuad(
curve[0], curve[1], curve[2], curve[3],
curve[4], curve[5], curve[6], curve[7],
errorBound
)
return result.concat(quad)
}
module.exports = cubicToQuad
// following exports are for testing purposes
module.exports.isApproximationClose = isApproximationClose
//module.exports.cubicSolve = cubicSolve
module.exports.quadSolve = quadSolve