-
Notifications
You must be signed in to change notification settings - Fork 0
/
Centroids-and-Scatterplot.py
executable file
·700 lines (618 loc) · 30.6 KB
/
Centroids-and-Scatterplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#!/usr/bin/env python
'''File name: Centroids-and-Scatterplot.py
Author: Andreas Prein
E-mail: [email protected]
Date created: 16.04.2018
Date last modified: 16.04.2018
##############################################################
Purpos:
Apply the optimal settings for the region of interest that was
determined with:
~/papers/Extreme-WTs-US/programs/Extreme-WTs/SearchOptimum_ExtremeEvent-WeatherTyping.py
1) Read the PRISM and ERA-Interim data
2) Calculate the WT centroids
3) Plot the Centroids
3) Calculate Eucledian Distances for each day
4) Plot ED vs. PR accumulation
'''
from dateutil import rrule
import datetime
import glob
from netCDF4 import Dataset
import sys, traceback
import dateutil.parser as dparser
import string
from pdb import set_trace as stop
import numpy as np
import numpy.ma as ma
import os
from mpl_toolkits import basemap
import pickle
import subprocess
import pandas as pd
from scipy import stats
import copy
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib as mpl
import pylab as plt
import random
import scipy.ndimage as ndimage
import scipy
import shapefile
import matplotlib.path as mplPath
from matplotlib.patches import Polygon as Polygon2
# Cluster specific modules
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import fcluster
from scipy.cluster.vq import kmeans2, vq, whiten
from scipy.ndimage import gaussian_filter
import seaborn as sns
# import metpy.calc as mpcalc
import shapefile as shp
import matplotlib.gridspec as gridspec
from mpl_toolkits.basemap import Basemap
from calendar import monthrange
import math
from Functions_Extreme_WTs import XWT
from Functions_Extreme_WTs import MRR, MRD, perkins_skill
from Functions_Extreme_WTs import PreprocessWTdata
from Functions_Extreme_WTs import Centroids_to_NetCDF
def read_shapefile(sf):
"""
Read a shapefile into a Pandas dataframe with a 'coords'
column holding the geometry information. This uses the pyshp
package
"""
fields = [x[0] for x in sf.fields][1:]
records = sf.records()
shps = [s.points for s in sf.shapes()]
df = pd.DataFrame(columns=fields, data=records)
df = df.assign(coords=shps)
return df
# ###################################################
# Get the setup for the XWTing
from SCS_XWT_apply_settings import rgdTime, iMonths, sPlotDir, sDataDir, Region, sSubregionSCS, rgsWTvars, VarsFullName, rgsWTfolders, rgrNrOfExtremes, WT_Domains, DomDegreeAdd, Annual_Cycle, SpatialSmoothing, Metrics, Dimensions, ClusterMeth, ClusterBreakup
MinDistDD=7 # two extremes should be at least X days appart
#MinDistDD=0 # KRF: try zero, two extremes should be at least X days appart
ss = "-"
Season=ss.join([str(iMonths[ii]) for ii in range(len(iMonths))])
YYYY_stamp=str(rgdTime.year[0])+'-'+str(rgdTime.year[-1])
ss='-'
VarsJoint=ss.join(VarsFullName)
sMonths=ss.join([str(iMonths[ii]) for ii in range(len(iMonths))])
rgiSeasonWT=np.isin(rgdTime.month, iMonths)
rgiYears=np.unique(rgdTime.year)
rgdTime=rgdTime[rgiSeasonWT]
SPLIT=np.where(rgdTime.year <= rgiYears[int(len(rgiYears)/2)])[0][-1]
sPlotDir=sPlotDir+Region+'/'
if not os.path.exists(sPlotDir):
os.makedirs(sPlotDir)
## KRF comment out: print str(rgrNrOfExtremes)+' EXTREMES'
iNrOfExtremes=rgrNrOfExtremes # we consider the N highest rainfall extremes
# ###################################################
# READ IN SHAPEFILE
#ncid=Dataset('/glade/work/fossell/preevents/grid_obs/monthly/reports_201604.nc', mode='r') # open the netcdf file
ncid=Dataset('/glade/work/fossell/preevents/grid_obs/monthly_sig/reports_201604.nc', mode='r') # open the netcdf file
rgrLatSCS=np.squeeze(ncid.variables['Lats'][:])[0,:,:]
rgrLonSCS=np.squeeze(ncid.variables['Lons'][:])[0,:,:]
ncid.close()
rgrGridCells=[(rgrLatSCS.ravel()[ii], rgrLonSCS.ravel()[ii]) for ii in range(len(rgrLonSCS.ravel()))]
rgrSRactP=np.zeros((rgrLonSCS.shape[0]*rgrLonSCS.shape[1]))
# read in mask ploygon for subregion selection
Subregion=np.array(pd.read_csv(sSubregionSCS).values)
Subregion=np.array([Subregion[ii][0].split(' ') for ii in range(len(Subregion))])
Subregion=Subregion.astype('float')
ctr = np.copy(Subregion)
grSCSregion=mplPath.Path(Subregion)
TMP=np.array(grSCSregion.contains_points(rgrGridCells))
rgrSRactP[TMP == 1]=1
rgrSRactP=np.reshape(rgrSRactP, (rgrLatSCS.shape[0], rgrLatSCS.shape[1]))
DomainSizes=['S', 'M', 'L', 'XXL']
DomDegreeAdd=[2, 5, 10, 20]
DomDelta=DomDegreeAdd[DomainSizes.index(WT_Domains)]
rgiSrSCS=np.array(np.where(rgrSRactP == True))
Wlon=Subregion[:, 0].min()
Elon=Subregion[:, 0].max()
Nlat=Subregion[:, 1].max()
Slat=Subregion[:, 1].min()
DomainWT=np.array([[Elon+DomDelta, Slat-DomDelta],
[Wlon-DomDelta, Slat-DomDelta],
[Wlon-DomDelta, Nlat+DomDelta],
[Elon+DomDelta, Nlat+DomDelta],
[Elon+DomDelta, Slat-DomDelta]])
grWTregion=mplPath.Path(DomainWT)
# ###################################################
# Read the SCS grid and data
rgiSrSCS=np.array(np.where(rgrSRactP == True))
iLatMaxP=rgiSrSCS[0,:].max()+1
iLatMinP=rgiSrSCS[0,:].min()
iLonMaxP=rgiSrSCS[1,:].max()+1
iLonMinP=rgiSrSCS[1,:].min()
rgrSCSdata=np.zeros((sum(rgiSeasonWT), iLatMaxP-iLatMinP, iLonMaxP-iLonMinP))
for yy in range(len(rgiYears)):
for mo in range(len(iMonths)):
iDays=((rgdTime.year == rgiYears[yy]) & (rgdTime.month == iMonths[mo]))
#ncid=Dataset('/glade/work/fossell/preevents/grid_obs/monthly/reports_'+str(rgiYears[0]+yy)+str("%02d" % iMonths[mo])+'.nc', mode='r')
ncid=Dataset('/glade/work/fossell/preevents/grid_obs/monthly_sig/reports_'+str(rgiYears[0]+yy)+str("%02d" % iMonths[mo])+'.nc', mode='r')
DATA=np.squeeze(ncid.variables['OSR'][:, iLatMinP:iLatMaxP, iLonMinP:iLonMaxP])
try:
rgrSCSdata[iDays,:,:]=DATA
except:
#print('/glade/work/fossell/preevents/grid_obs/monthly/reports_'+str(rgiYears[0]+yy)+str("%02d" % iMonths[mo])+'.nc')
print(('/glade/work/fossell/preevents/grid_obs/monthly_sig/reports_'+str(rgiYears[0]+yy)+str("%02d" % iMonths[mo])+'.nc'))
ncid.close()
rgrSCSdata[rgrSCSdata<0] = np.nan
from Functions_Extreme_WTs import ExtremeDays
rgiSRgridcells=rgrSRactP[iLatMinP:iLatMaxP, iLonMinP:iLonMaxP].astype('int')
rgrPRrecords=np.sum(rgrSCSdata[:, (rgiSRgridcells==1)], axis=(1))
#KRF
# Comment out following 4 lines if want to use default 6,10,30,etc top extreme days.
# Else this block overrides the defaul to set no of extreme days to be no reports/day, hard coded for each case.
#iNrOfExtremes=len(rgrPRrecords[rgrPRrecords>10]) # HARD CODED 6 for sig reports, 20 for all reports
#print(("iNrOfExtremes for Records: " +str(iNrOfExtremes)))
#print(("Length of Records: "+str(len(rgrPRrecords))))
#rgrNrOfExtremes=iNrOfExtremes
#endKRF
rgiExtrTrain=ExtremeDays(rgrPRrecords, iNrOfExtremes, MinDistDD)
ExtrTrainDays=rgdTime[rgiExtrTrain]
rgrPReval=np.sum(rgrSCSdata[:, (rgiSRgridcells == 1)], axis=(1))
rgiExtrEval=ExtremeDays(rgrPRrecords, iNrOfExtremes, MinDistDD)
rgiExtremeDays=rgdTime[rgiExtrEval]
# ###################################################
# ###################################################
# PERFORM CLUSTER ANALYSIS
sClusterSave=sDataDir+'Clusters'+str(iNrOfExtremes)+'_'+Region+'_'+YYYY_stamp+'_'+VarsJoint+'_'+Season
if os.path.isfile(sClusterSave) == 0:
# ###################################################
# Read the ERA-Interim grid and data
from Functions_Extreme_WTs import ReadERAI
DailyVarsOrig, LonWT, LatWT=ReadERAI(grWTregion, # shapefile with WTing region
rgdTime, # time period for WTing
iMonths, # list of months that should be considered
rgsWTfolders, # directories containing WT files
rgsWTvars) # netcdf variable names of WT variables
# run split sample thest and derive centroids of full dataset
Samples=['SS1', "SS2", "Full"]
grClustersFin={}
grEucledianDist={}
grCorrelation={}
for ss in range(len(Samples)):
print((' Split Sample '+Samples[ss]))
if ss == 0:
DailyVarsTrain=DailyVarsOrig[:SPLIT,:]
DailyVarsEval=DailyVarsOrig[-SPLIT:,:]
Ptrain=rgrPRrecords[:SPLIT]
Peval=rgrPRrecords[-SPLIT:]
TimeTrain=rgdTime[:SPLIT]
TimeEval=rgdTime[-SPLIT:]
elif ss == 1:
DailyVarsTrain=DailyVarsOrig[-SPLIT:,:]
DailyVarsEval=DailyVarsOrig[:SPLIT,:]
Ptrain=rgrPRrecords[-SPLIT:]
Peval=rgrPRrecords[:SPLIT]
TimeTrain=rgdTime[-SPLIT:]
TimeEval=rgdTime[:SPLIT]
elif ss == 2:
DailyVarsTrain=DailyVarsOrig
DailyVarsEval=DailyVarsOrig
Ptrain=rgrPRrecords
Peval=rgrPRrecords
TimeTrain=rgdTime
TimeEval=rgdTime
XWT_output=XWT(DailyVarsTrain,
DailyVarsEval,
Ptrain,
Peval,
TimeTrain,
TimeEval,
iNrOfExtremes,
SpatialSmoothing,
ClusterMeth=ClusterMeth,
ClusterBreakup=ClusterBreakup)
# ################################################
# ###### EUCLEDIAN DISTANCES
EucledianDist=XWT_output['EucledianDistAllWTs']
Correlation =XWT_output['grCorrelatioAllWTs']
rgrClustersFin=XWT_output['grClustersFin']
NetCDFname=sDataDir+Region+'_XWT-centroids_train-'+str(TimeTrain.year[0])+'-'+str(TimeTrain.year[-1])+ '_eval-'+str(TimeEval.year[0])+'-'+str(TimeEval.year[-1])+'_E'+str("%03d" % iNrOfExtremes)+ '_XWTs'+str(rgrClustersFin[1].max()+1)+'_Vars-'+VarsJoint+'_M-'+sMonths+'.nc'
print(' save: '+NetCDFname)
Centroids_to_NetCDF(NetCDFname,
XWT_output,
LonWT,
LatWT,
DailyVarsTrain,
rgdTime,
TimeEval,
VarsJoint,
rgiExtremeDays)
from Functions_Extreme_WTs import Scatter_ED_PR
MinDistance=np.min(EucledianDist, axis=1)
ClosestWT=np.argmin(EucledianDist, axis=1)
MaxCorr=np.max(Correlation, axis=1)
Scatter_ED_PR(MinDistance,
ClosestWT,
Peval,
rgrNrOfExtremes,
PlotLoc=sPlotDir,
PlotName='Scatter_'+Region+'_NrExt-'+str(rgrNrOfExtremes)+'_Smooth-'+str(SpatialSmoothing)+'_AnnCy-'+Annual_Cycle+'_'+VarsJoint+'_'+sMonths+'_'+Samples[ss]+'.pdf')
# save the data
grClustersFin[Samples[ss]]=rgrClustersFin
grEucledianDist[Samples[ss]]=EucledianDist
grCorrelation[Samples[ss]]=Correlation
DATAcollection={'grClustersFin':grClustersFin,
'grEucledianDist':grEucledianDist,
'grCorrelatio':grCorrelation,
'LonWT':LonWT,
'LatWT':LatWT}
with open(sClusterSave, 'wb') as handle:
pickle.dump(DATAcollection, handle)
with open(sClusterSave, 'rb') as handle:
npzfile = pickle.load(handle)
else:
print(' Restore: '+sClusterSave)
with open(sClusterSave, 'rb') as handle:
npzfile = pickle.load(handle)
grClustersFin=npzfile['grClustersFin']
grEucledianDist=npzfile['grEucledianDist']
grCorrelation=npzfile['grCorrelatio']
rgrClustersFin=grClustersFin['Full']
EucledianDist=grEucledianDist['Full']
Correlation=grCorrelation['Full']
# sort the clusters according to the number of days to ensure that the
# same pattern is at the same location for different event sample sizes
rgiClustSize=[sum(rgrClustersFin[1] == cc) for cc in range(rgrClustersFin[1].max()+1)]
rgiSorted=np.argsort(rgiClustSize)
rgiSorted=list(range(len(rgiSorted)))
#KRF
print(rgrClustersFin[1].max()+1)
# #############################################################################
# ###### PLOT THE CENTROIDS
import matplotlib.gridspec as gridspec
from mpl_toolkits.basemap import Basemap, cm
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.gridspec as gridspec
from pylab import *
import string
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
import shapefile
from Functions_Extreme_WTs import add_subplot_axes
rgsWTvarsA=['z', 'u', 'v', 'cape']
rgsWTfolders=['/glade/scratch/prein/ERA-Interim/Z500/Z500_daymean_',\
'/glade/scratch/prein/ERA-Interim/UV850/fin_UV850-sfc_ERA-Interim__',\
'/glade/scratch/prein/ERA-Interim/UV850/fin_UV850-sfc_ERA-Interim__',\
'/glade/scratch/prein/ERA-Interim/CAPE_ECMWF/fin_CAPE-ECMWF-sfc_ERA-Interim_12-9_']
# start reading in the precipitation from PRISM for a larger region
iRegionPlus=30 # grid cell added around shape rectangle
ncid=Dataset('/glade/scratch/prein/ERA-Interim/PSL/fin_PSL-sfc_ERA-Interim_12-0_2014.nc', mode='r') # open the netcdf file
rgrLatWT1D=np.squeeze(ncid.variables['lat'][:])
rgrLonWT1D=np.squeeze(ncid.variables['lon'][:])
ncid.close()
rgrLonWT=np.asarray(([rgrLonWT1D,]*rgrLatWT1D.shape[0]))
rgrLonWT[rgrLonWT > 180]=rgrLonWT[rgrLonWT > 180]-360
rgrLatWT=np.asarray(([rgrLatWT1D,]*rgrLonWT1D.shape[0])).transpose()
rgrGridCells=[(rgrLatWT.ravel()[ii], rgrLonWT.ravel()[ii]) for ii in range(len(rgrLonWT.ravel()))]
rgrSRact=np.array(grWTregion.contains_points(rgrGridCells)); rgrSRact=np.reshape(rgrSRact, (rgrLatWT.shape[0], rgrLatWT.shape[1]))
rgiSrWT=np.array(np.where(rgrSRact == True))
iLatMax=rgiSrWT[0,:].max()+iRegionPlus
iLatMin=rgiSrWT[0,:].min()-iRegionPlus
iLonMax=rgiSrWT[1,:].max()+iRegionPlus
iLonMin=rgiSrWT[1,:].min()-iRegionPlus
rgrLatWT_SR=rgrLatWT[iLatMin:iLatMax, iLonMin:iLonMax]
rgrLonWT_SR=rgrLonWT[iLatMin:iLatMax, iLonMin:iLonMax]
rgrWTdata=np.zeros((len(rgiExtremeDays), iLatMax-iLatMin, iLonMax-iLonMin, len(rgsWTvarsA))); rgrWTdata[:]=np.nan
for dd in range(len(rgiExtremeDays)):
rgdTimeYY = pd.date_range(datetime.datetime(rgiExtremeDays[dd].year, 0o1, 0o1, 0), end=datetime.datetime(rgiExtremeDays[dd].year, 12, 31, 23), freq='d')
rgiDD=np.where(((rgdTimeYY.year == rgiExtremeDays[dd].year) & (rgdTimeYY.month ==rgiExtremeDays[dd].month ) & (rgdTimeYY.day == rgiExtremeDays[dd].day)))[0]
for va in range(len(rgsWTvarsA)):
ncid=Dataset(rgsWTfolders[va]+str(rgiExtremeDays[dd].year)+'.nc', mode='r')
rgrWTdata[dd,:,:, va]=np.squeeze(ncid.variables[rgsWTvarsA[va]][rgiDD[0], iLatMin:iLatMax, iLonMin:iLonMax])
ncid.close()
# average over the WTs
rgrWTcentroids=np.zeros((rgrClustersFin[1].max()+1, rgrWTdata.shape[1], rgrWTdata.shape[2], rgrWTdata.shape[3])); rgrWTcentroids[:]=np.nan
for cc in range(rgrClustersFin[1].max()+1):
rgiClAct=(rgrClustersFin[1] == (cc))
rgrWTcentroids[cc,:]=np.mean(rgrWTdata[rgiClAct,:,:,:], axis=0)
plt.rcParams.update({'font.size': 18})
rgsLableABC=list(string.ascii_lowercase)
# Calculate the geometry of the plot dependent on how many panels there are
PanWidth=4 # cm
PanHeight=2.5 # cm
xdist=0.5
ydist=0.5
Panels=rgrClustersFin[1].max()+1
iColums=np.min([4,Panels])
iRows=np.max([1,int((math.ceil(Panels/4.)))])
iXX=[0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3]
iYY=[0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3]
X_Fig=PanWidth*iColums+xdist*(iColums+1)
Y_Fig=PanHeight*iRows+(iRows+1)
plt.rcParams.update({'font.size': 18})
rgsLableABC=list(string.ascii_lowercase)
fig = plt.figure(figsize=(X_Fig,Y_Fig*1.5))
gs1 = gridspec.GridSpec(iRows,iColums)
gs1.update(left=0.01, right=0.99,
bottom=0.47, top=0.94,
wspace=0.05, hspace=0.20)
dLat=((52-25)/2.)*1.5
dLon=(130-75)/2.
rllcrnrlat=np.mean((rgrLatWT_SR.min(),rgrLatWT_SR.max()))-dLat # 25 #rllcrnrlat-(urcrnrlat-rllcrnrlat)*0.03
urcrnrlat=np.mean((rgrLatWT_SR.min(),rgrLatWT_SR.max()))+dLat #52 #urcrnrlat+(urcrnrlat-rllcrnrlat)*0.01
llcrnrlon=np.mean((rgrLonWT_SR.min(),rgrLonWT_SR.max()))-dLon # -130 #llcrnrlon-abs(llcrnrlon-urcrnrlon)*0.01
urcrnrlon=np.mean((rgrLonWT_SR.min(),rgrLonWT_SR.max()))+dLon # -75 #urcrnrlon+abs(llcrnrlon-urcrnrlon)*0.01
# # rllcrnrlat,urcrnrlat,llcrnrlon,urcrnrlon=np.min(rgrLatPR_SR),np.max(rgrLatPR_SR),np.min(rgrLatPR_SR),np.max(rgrLatPR_SR)
# rllcrnrlat=25 #rllcrnrlat-(urcrnrlat-rllcrnrlat)*0.03
# urcrnrlat=52 #urcrnrlat+(urcrnrlat-rllcrnrlat)*0.01
# llcrnrlon=-130 #llcrnrlon-abs(llcrnrlon-urcrnrlon)*0.01
# urcrnrlon=-75 #urcrnrlon+abs(llcrnrlon-urcrnrlon)*0.01
for pa in range(Panels):
# define margins of subplot (see http://matplotlib.org/users/gridspec.html)
iSampleSize=np.sum(rgrClustersFin[1] == pa)
ax = plt.subplot(gs1[iYY[pa],iXX[pa]])
try:
m = Basemap(projection='cea', llcrnrlat= rllcrnrlat ,urcrnrlat=urcrnrlat, llcrnrlon=llcrnrlon,urcrnrlon=urcrnrlon,resolution='l', fix_aspect=False)
except:
stop()
plt.axis('off')
xi, yi = m(rgrLonWT_SR, rgrLatWT_SR)
#Load ColorMap
rgrColorTable=['#a50026', '#d73027', '#f46d43', '#fdae61', '#fee090', '#ffffff', '#e0f3f8', '#abd9e9', '#74add1', '#4575b4', '#313695'][::-1]
# plot CAPE
clevs=np.arange(0, 4400, 400); clevs[0]=50
rgrDataAct=rgrWTcentroids[rgiSorted[pa],:,:, 3]
rgrDataAct[rgrDataAct < 400] = np.nan
# biasContDist=4
# iContNr=len(rgrColorTable)+1
# clevs=np.arange(0, iContNr*biasContDist,biasContDist)+994
# rgrDataAct=rgrWTcentroids[rgiSorted[yy*4+xx], :,:,0]/100.
cs = m.contourf(xi, yi, rgrDataAct, clevs, cmap='YlOrRd', extend='both')
# plot wind field
iLev=1; iDist=3
Q = plt.quiver(xi[::iDist, ::iDist], yi[::iDist, ::iDist], rgrWTcentroids[rgiSorted[pa], ::iDist, ::iDist, 1], rgrWTcentroids[rgiSorted[pa], ::iDist, ::iDist, 2], units='width', zorder = 2, pivot='middle', width=0.004, scale=150)
if pa == 0:
qk = ax.quiverkey(Q, 0.95, 1.05, 10, r'$10 \frac{m}{s}$', labelpos='E') #,coordinates='figure')
# plot ZG500
CS=m.contour(xi[:,:], yi[:,:], rgrWTcentroids[rgiSorted[pa],:,:, 0]/9.81, levels=np.arange(4000, 6000, 100).astype('int'), linewidths=2, colors='k') #['#d9f0a3','#addd8e','#78c679','#41ab5d','#238443','#005a32'])
plt.clabel(CS, inline=1, fontsize=12, fmt='%d')
# plot cluster region
iLatMax=rgrLatWT1D[rgiSrWT[0,:].max()]
iLatMin=rgrLatWT1D[rgiSrWT[0,:].min()]
iLonMax=rgrLonWT1D[rgiSrWT[1,:].max()]
iLonMin=rgrLonWT1D[rgiSrWT[1,:].min()]
lats = [iLatMin, iLatMax, iLatMax, iLatMin, iLatMin]
lons = np.array([iLonMin, iLonMin, iLonMax, iLonMax, iLonMin])-360
x, y = m(lons, lats)
m.plot(x, y, lw=3, ls='--', c='r')
# Lable the map
plt.title(rgsLableABC[pa]+') WT'+str(pa+1)+', '+str(iSampleSize)+' days', fontsize=16)
m.drawcoastlines(color='#525252')
m.drawcountries(color='#525252')
m.drawstates(color='#525252')
# add shapefile of catchment
XX, YY=m(Subregion[:, 1], Subregion[:, 0])
m.plot(XX, YY, c='r', lw=2)
# Add Histogram in the lower left corner
rect = [0.1, 0.1, 0.4, 0.25]
ax1 = add_subplot_axes(ax, rect)
# plt.axis('off')
rgiMonths=np.array([rgiExtremeDays[rgrClustersFin[1] == (pa)][nn].month for nn in range(len(rgiExtremeDays[rgrClustersFin[1] == (pa)]))])
#ax1.hist(rgiMonths, np.array(list(range(1, 13, 1)))+0.5, normed=1, facecolor='k', alpha=0.75, rwidth=0.6)
ax1.hist(rgiMonths, np.array(list(range(1, 13, 1)))+0.5, density=True, facecolor='k', alpha=0.75, rwidth=0.6) # KRF edit after phy3 convert
ax1.set_xticks(np.array(list(range(1, 13, 1))))
ax1.set_xticklabels(['J', 'F', 'M', 'A', 'M', 'J', 'J', 'A', 'S', 'O', 'N', 'D'])
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax1.spines['top'].set_visible(False)
ax1.xaxis.set_ticks_position('bottom')
ax1.set_xlim([0.5, 12.5])
# ax2.yaxis.set_ticks_position('left')
ax1.tick_params(
axis='y', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
left='off', # ticks along the bottom edge are off
right='off', # ticks along the top edge are off
labelleft='off') # labels along the bottom edge are off
ax1.patch.set_alpha(0.0)
# ==========================================================================================
# ==========================================================================================
# plot the actual centroids for each WT
LonWT=npzfile['LonWT']
LatWT=npzfile['LatWT']
pos1 = np.array(ax.get_position())
gs2 = gridspec.GridSpec(1,len(rgsWTvars))
gs2.update(left=pos1[0][0], right=pos1[1][0],
bottom=0.10, top=0.30,
wspace=0.05, hspace=0.20)
for va in range(len(rgsWTvars)):
ax = plt.subplot(gs2[0,va])
CentroidsAct=rgrClustersFin[0][pa]
CentroidsAct=np.reshape(CentroidsAct,(LonWT.shape[0],LonWT.shape[1],len(rgsWTvars)))
m = Basemap(projection='cea', llcrnrlat= np.min(LatWT) ,urcrnrlat=np.max(LatWT), llcrnrlon=np.min(LonWT),urcrnrlon=np.max(LonWT),resolution='l', fix_aspect=False)
xi, yi = m(LonWT, LatWT)
cs1= plt.contourf(xi, yi, CentroidsAct[:,:,va], cmap='coolwarm',levels=np.linspace(-2,2,11),extend='both')
plt.axis('off')
# add shapefile of catchment
XX,YY=m(ctr[:,0], ctr[:,1])
m.plot(XX,YY, c='r', lw=2)
m.drawcoastlines(color='k')
m.drawcountries(color='k')
m.drawstates(color='k')
plt.title(rgsLableABC[pa]+str(int(va+1))+') '+VarsFullName[va], fontsize=14)
# add colorbar for centroids
CbarAx = axes([0.025, 0.04, 0.95, 0.02])
cb = colorbar(cs1, cax = CbarAx, orientation='horizontal', extend='both') #, ticks=np.arange(300,1600,200))
cb.ax.tick_params(labelsize=14)
cb.ax.set_title('normalized centroids []', fontsize=14)
# # add individual days beneath the plot
# POSSITION=np.array(ax.get_position().bounds)
# iSamples=np.sum((rgrClustersFin[1] == (yy*4+xx)))
# gs2 = gridspec.GridSpec(1, iSamples)
# gs2.update(left=POSSITION[0], right=POSSITION[0]+POSSITION[2],
# bottom=POSSITION[1]-0.15, top=POSSITION[1]-0.015,
# wspace=0.05, hspace=0.20)
# for cc in range(iSamples):
# DATA=rgrWTdata[(rgrClustersFin[1] == (yy*4+xx)),:,:,:][cc,:,:,:]
# axs=plt.subplot(gs2[0, cc])
# m = Basemap(projection='cea',\
# llcrnrlat= rllcrnrlat, urcrnrlat=urcrnrlat,\
# llcrnrlon=llcrnrlon, urcrnrlon=urcrnrlon, resolution='l', fix_aspect=False)
# plt.axis('off')
# xi, yi = m(rgrLonWT_SR, rgrLatWT_SR)
# # plot CAPE
# clevs=np.arange(0, 4400, 400); clevs[0]=50
# rgrDataAct=DATA[:,:, 3]
# rgrDataAct[rgrDataAct < 400] = np.nan
# cs = m.contourf(xi, yi, rgrDataAct, clevs, cmap='YlOrRd', extend='both')
# iLev=1; iDist=3
# Q = plt.quiver(xi[::iDist, ::iDist], yi[::iDist, ::iDist], rgrWTcentroids[rgiSorted[yy*4+xx], ::iDist, ::iDist, 1], rgrWTcentroids[rgiSorted[yy*4+xx], ::iDist, ::iDist, 2], units='width', zorder = 2, pivot='middle', width=0.004, scale=150)
# # plot geopotential heigth
# CS=m.contour(xi[:,:], yi[:,:], DATA[:,:, 0]/9.81, levels=np.arange(4000, 6000, 100).astype('int'), linewidths=2, colors='k')
# plt.clabel(CS, inline=1, fontsize=12, fmt='%d')
# # plot cluster region
# iLatMax=rgrLatWT1D[rgiSrWT[0,:].max()]
# iLatMin=rgrLatWT1D[rgiSrWT[0,:].min()]
# iLonMax=rgrLonWT1D[rgiSrWT[1,:].max()]
# iLonMin=rgrLonWT1D[rgiSrWT[1,:].min()]
# lats = [iLatMin, iLatMax, iLatMax, iLatMin, iLatMin]
# lons = np.array([iLonMin, iLonMin, iLonMax, iLonMax, iLonMin])-360
# x, y = m(lons, lats)
# m.plot(x, y, lw=3, ls='--', c='r')
# m.drawcoastlines(color='#525252')
# m.drawcountries(color='#525252')
# m.drawstates(color='#525252')
# # add shapefile of catchment
# XX, YY=m(Subregion[:, 1], Subregion[:, 0])
# m.plot(XX, YY, c='r', lw=2)
# add colorbar
CbarAx = axes([0.025, 0.38, 0.95, 0.02])
cb = colorbar(cs, cax = CbarAx, orientation='horizontal', extend='both', ticks=clevs)
cb.ax.set_title('CAPE [J kg$^{-1}$]')
# Save the plot
# plt.show()
sPlotFile=sPlotDir
# sPlotName= 'BottomUp-'+str(rgrClustersFin[1].max()+1)+'WT_Centroids.pdf'
sPlotName= 'BottomUp_'+str("%03d" % iNrOfExtremes)+'_Events_'+str(rgrClustersFin[1].max()+1)+'WT_Centroids_'+YYYY_stamp+'_'+VarsJoint+'_'+sMonths+'.pdf'
if os.path.isdir(sPlotFile) != 1:
subprocess.call(["mkdir", "-p", sPlotFile])
print(' Plot map to: '+sPlotFile+sPlotName)
fig.savefig(sPlotFile+sPlotName)
# # #############################################################################
# # ###### PLOT SCS average in WTs
# start reading in the precipitation from PRISM for a larger region
iRegionPlus=2 # grid cell added around shape rectangle
ncid=Dataset('/glade/work/fossell/preevents/grid_obs/monthly_sig/reports_201411.nc', mode='r') # open the netcdf file
rgrLatPR=np.squeeze(ncid.variables['Lats'][0,:])
rgrLonPR=np.squeeze(ncid.variables['Lons'][0,:])
ncid.close()
rgrGridCells=[(rgrLatPR.ravel()[ii],rgrLonPR.ravel()[ii]) for ii in range(len(rgrLonPR.ravel()))]
rgrSRact=np.array(grSCSregion.contains_points(rgrGridCells)); rgrSRact=np.reshape(rgrSRact, (rgrLatPR.shape[0], rgrLatPR.shape[1]))
rgiSrPR=np.array(np.where(rgrSRact == True))
iLatMax=np.min([rgiSrPR[0,:].max()+100, rgrLatPR.shape[0]-1])
iLatMin=np.max([rgiSrPR[0,:].min()-100, 0])
iLonMax=np.min([rgiSrPR[1,:].max()+100, rgrLatPR.shape[1]-1])
iLonMin=np.max([rgiSrPR[1,:].min()-100, 0])
rgrLatPR_SR=rgrLatPR[iLatMin:iLatMax,iLonMin:iLonMax]
rgrLonPR_SR=rgrLonPR[iLatMin:iLatMax,iLonMin:iLonMax]
rgrPRdata=np.zeros((rgrNrOfExtremes,iLatMax-iLatMin,iLonMax-iLonMin)); rgrPRdata[:]=np.nan
jj=0
for dd in range(len(rgiExtremeDays)):
MonDays = monthrange(rgiExtremeDays[dd].year, rgiExtremeDays[dd].month)[1]
rgdTimeYY = pd.date_range(datetime.datetime(rgiExtremeDays[dd].year, rgiExtremeDays[dd].month, 1,0), end=datetime.datetime(rgiExtremeDays[dd].year, rgiExtremeDays[dd].month, MonDays,23), freq='d')
rgiDD=np.where(((rgdTimeYY.year == rgiExtremeDays[dd].year) & (rgdTimeYY.month ==rgiExtremeDays[dd].month ) & (rgdTimeYY.day == rgiExtremeDays[dd].day)))[0]
ncid=Dataset('/glade/work/fossell/preevents/grid_obs/monthly_sig/reports_'+str(rgiExtremeDays[dd].year)+str(rgiExtremeDays[dd].month).zfill(2)+'.nc', mode='r')
try:
rgrPRdata[dd,:,:]=np.squeeze(ncid.variables['OSR'][rgiDD[0],iLatMin:iLatMax,iLonMin:iLonMax])
except:
stop()
ncid.close()
jj=jj+len(rgiDD)
rgrPRdata[rgrPRdata < 0]=np.nan
# precipitation in WTs
rgrPR_WTs=np.zeros((rgrClustersFin[1].max()+1,rgrPRdata.shape[1],rgrPRdata.shape[2])); rgrPR_WTs[:]=np.nan
for cc in range(rgrClustersFin[1].max()+1):
rgiClAct=(rgrClustersFin[1] == (cc))
try:
rgrPR_WTs[cc,:]=np.nanmean(rgrPRdata[rgiClAct,:], axis=0)
except:
stop()
plt.rcParams.update({'font.size': 18})
rgsLableABC=list(string.ascii_lowercase)
PanWidth=4 # cm
PanHeight=2.5 # cm
xdist=0.5
ydist=0.5
Panels=rgrClustersFin[1].max()+1
iColums=np.min([4,Panels])
iRows=np.max([1,int((math.ceil(Panels/4.)))])
iXX=[0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3]
iYY=[0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3]
X_Fig=PanWidth*iColums+xdist*(iColums+1)
Y_Fig=PanHeight*iRows+(iRows+1)
plt.rcParams.update({'font.size': 18})
rgsLableABC=list(string.ascii_lowercase)
fig = plt.figure(figsize=(X_Fig,Y_Fig*1.1))
gs1 = gridspec.GridSpec(iRows,iColums)
gs1.update(left=0.01, right=0.99,
bottom=0.20, top=0.90,
wspace=0.05, hspace=0.20)
dLat=((52-25)/2.)*1.1
dLon=(130-75)/2.
rllcrnrlat=np.mean((rgrLatWT_SR.min(),rgrLatWT_SR.max()))-dLat # 25 #rllcrnrlat-(urcrnrlat-rllcrnrlat)*0.03
urcrnrlat=np.mean((rgrLatWT_SR.min(),rgrLatWT_SR.max()))+dLat #52 #urcrnrlat+(urcrnrlat-rllcrnrlat)*0.01
llcrnrlon=np.mean((rgrLonWT_SR.min(),rgrLonWT_SR.max()))-dLon # -130 #llcrnrlon-abs(llcrnrlon-urcrnrlon)*0.01
urcrnrlon=np.mean((rgrLonWT_SR.min(),rgrLonWT_SR.max()))+dLon # -75 #urcrnrlon+abs(llcrnrlon-urcrnrlon)*0.01
for pa in range(Panels):
iSampleSize=np.sum(rgrClustersFin[1] == ([pa]))
# rAvPR=np.mean(rgrPRrecords[rgiExtremePR][rgrClustersFin[1] == (rgiSorted[pa])])
ax = plt.subplot(gs1[iYY[pa],iXX[pa]])
m = Basemap(projection='cea',\
llcrnrlat= rllcrnrlat ,urcrnrlat=urcrnrlat,\
llcrnrlon=llcrnrlon,urcrnrlon=urcrnrlon,resolution='i', fix_aspect=False)
plt.axis('off')
xi, yi = m(rgrLonPR_SR, rgrLatPR_SR)
#Load ColorMap
rgrColorTable=['#ffffe5','#fff7bc','#fee391','#fec44f','#fe9929','#ec7014','#cc4c02','#993404','#662506']
rgrColorTable=np.append(['#ffffff'],rgrColorTable)
clevs=np.array(np.arange(0,1,0.05))[:len(rgrColorTable)]
rgrDataAct=rgrPR_WTs[rgiSorted[pa], :,:]
# rgrDataAct[rgrDataAct < 0.1] = np.nan
cs = m.contourf(xi,yi,rgrDataAct,clevs,colors=rgrColorTable, extend='max')
# Lable the map
plt.title(rgsLableABC[pa]+') WT'+str(pa+1)+', '+str(iSampleSize)+' days, ') #+str(int(rAvPR))+' mm d$^{-1}$') #, fontsize=16)
# plot cluster region
iLatMax=rgrLatWT1D[rgiSrWT[0,:].max()]
iLatMin=rgrLatWT1D[rgiSrWT[0,:].min()]
iLonMax=rgrLonWT1D[rgiSrWT[1,:].max()]
iLonMin=rgrLonWT1D[rgiSrWT[1,:].min()]
lats = [iLatMin, iLatMax, iLatMax, iLatMin, iLatMin]
lons = np.array([iLonMin, iLonMin, iLonMax, iLonMax, iLonMin])-360
x, y = m(lons, lats)
m.plot(x, y, lw=3, ls='--', c='r')
m.drawcoastlines(color='#525252')
m.drawcountries(color='#525252')
m.drawstates(color='#525252')
# add shapefile of catchment
XX, YY=m(Subregion[:, 1], Subregion[:, 0])
m.plot(XX, YY, c='r', lw=2)
# add shapefile of catchment
XX,YY=m(ctr[:,0], ctr[:,1])
m.plot(XX,YY, c='k', lw=2)
# add colorbar
CbarAx = axes([0.10, 0.07, 0.80, 0.02])
cb = colorbar(cs, cax = CbarAx, orientation='horizontal', extend='both', ticks=clevs)
cb.ax.set_title('average SCS reports [-]')
# Save the plot
# plt.show()
sPlotFile=sPlotDir
# sPlotName= 'BottomUp-'+str(rgrClustersFin[1].max()+1)+'WT_precipitation.pdf'
sPlotName= 'BottomUp_'+str("%03d" % iNrOfExtremes)+'_Events'+'_'+str(rgrClustersFin[1].max()+1)+'WT_SCS-events'+'_'+YYYY_stamp+'_'+VarsJoint+'_'+sMonths+'.pdf'
if os.path.isdir(sPlotFile) != 1:
subprocess.call(["mkdir","-p",sPlotFile])
print( ' Plot map to: '+sPlotFile+sPlotName)
fig.savefig(sPlotFile+sPlotName)
stop()