-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathsvp_challenge.py
executable file
·156 lines (127 loc) · 4.44 KB
/
svp_challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python
# -*- coding: utf-8 -*-
####
#
# Copyright (C) 2018-2021 Team G6K
#
# This file is part of G6K. G6K is free software:
# you can redistribute it and/or modify it under the terms of the
# GNU General Public License as published by the Free Software Foundation,
# either version 2 of the License, or (at your option) any later version.
#
# G6K is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with G6K. If not, see <http://www.gnu.org/licenses/>.
#
####
"""
SVP Challenge Solver Command Line Client
"""
from __future__ import absolute_import
from __future__ import print_function
import copy
import logging
import pickle as pickler
from collections import OrderedDict
from fpylll.util import gaussian_heuristic
from g6k.algorithms.workout import workout
from g6k.siever import Siever
from g6k.utils.cli import parse_args, run_all, pop_prefixed_params
from g6k.utils.stats import SieveTreeTracer
from g6k.utils.util import load_svpchallenge_and_randomize, load_matrix_file, db_stats
from g6k.utils.util import sanitize_params_names, print_stats, output_profiles
import six
from six.moves import range
def asvp_kernel(arg0, params=None, seed=None):
logger = logging.getLogger("asvp")
# Pool.map only supports a single parameter
if params is None and seed is None:
n, params, seed = arg0
else:
n = arg0
params = copy.copy(params)
load_matrix = params.pop("load_matrix")
pump_params = pop_prefixed_params("pump", params)
workout_params = pop_prefixed_params("workout", params)
verbose = params.pop("verbose")
if verbose:
workout_params["verbose"] = True
challenge_seed = params.pop("challenge_seed")
if load_matrix is None:
A, _ = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed)
if verbose:
print(("Loaded challenge dim %d" % n))
else:
A, _ = load_matrix_file(load_matrix)
if verbose:
print(("Loaded file '%s'" % load_matrix))
g6k = Siever(A, params, seed=seed)
tracer = SieveTreeTracer(g6k, root_label=("svp-challenge", n), start_clocks=True)
gh = gaussian_heuristic([g6k.M.get_r(i, i) for i in range(n)])
goal_r0 = (1.05 ** 2) * gh
if verbose:
print(
(
"gh = %f, goal_r0/gh = %f, r0/gh = %f"
% (gh, goal_r0 / gh, sum([x * x for x in A[0]]) / gh)
)
)
flast = workout(
g6k, tracer, 0, n, goal_r0=goal_r0, pump_params=pump_params, **workout_params
)
tracer.exit()
stat = tracer.trace
stat.data["flast"] = flast
if verbose:
logger.info("sol %d, %s" % (n, A[0]))
norm = sum([x * x for x in A[0]])
if verbose:
logger.info("norm %.1f ,hf %.5f" % (norm ** 0.5, (norm / gh) ** 0.5))
return tracer.trace
def asvp():
"""
Run a Workout until 1.05-approx-SVP on matrices with dimensions in ``range(lower_bound, upper_bound, step_size)``.
"""
description = asvp.__doc__
args, all_params = parse_args(
description,
load_matrix=None,
verbose=True,
challenge_seed=0,
workout__dim4free_dec=3,
)
stats = run_all(
asvp_kernel,
list(all_params.values()),
lower_bound=args.lower_bound,
upper_bound=args.upper_bound,
step_size=args.step_size,
trials=args.trials,
workers=args.workers,
seed=args.seed,
)
inverse_all_params = OrderedDict([(v, k) for (k, v) in six.iteritems(all_params)])
stats = sanitize_params_names(stats, inverse_all_params)
fmt = "{name:50s} :: n: {n:2d}, cputime {cputime:7.4f}s, walltime: {walltime:7.4f}s, flast: {flast:3.2f}, |db|: 2^{avg_max:.2f}"
profiles = print_stats(
fmt,
stats,
("cputime", "walltime", "flast", "avg_max"),
extractf={"avg_max": lambda n, params, stat: db_stats(stat)[0]},
)
output_profiles(args.profile, profiles)
if args.pickle:
pickler.dump(
stats,
open(
"svp-challenge-%d-%d-%d-%d.sobj"
% (args.lower_bound, args.upper_bound, args.step_size, args.trials),
"wb",
),
)
if __name__ == "__main__":
asvp()