-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHW6.hs
147 lines (118 loc) · 3.74 KB
/
HW6.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
module HW8 where
-- Countdown example from chapter 9 of Programming in Haskell,
-- Graham Hutton, Cambridge University Press, 2016.
-- Arithmetic operators
data Op = Add | Sub | Mul | Div | Exp
instance Show Op where
show Add = "+"
show Sub = "-"
show Mul = "*"
show Div = "/"
show Exp = "^"
{-
valid :: Op -> Int -> Int -> Bool
valid Add _ _ = True
valid Sub x y = x > y
valid Mul _ _ = True
valid Div x y = x `mod` y == 0
-}
apply :: Op -> Int -> Int -> Int
apply Add x y = x + y
apply Sub x y = x - y
apply Mul x y = x * y
apply Div x y = x `div` y
apply Exp x y = x ^ y
-- Numeric expressions
data Expr = Val Int | App Op Expr Expr
instance Show Expr where
show (Val n) = show n
show (App o l r) = brak l ++ show o ++ brak r
where
brak (Val n) = show n
brak e = "(" ++ show e ++ ")"
{-
values :: Expr -> [Int]
values (Val n) = [n]
values (App _ l r) = values l ++ values r
eval :: Expr -> [Int]
eval (Val n) = [n | n > 0]
eval (App o l r) = [apply o x y | x <- eval l,
y <- eval r,
valid o x y]
-}
-- Combinatorial functions
subs :: [a] -> [[a]]
subs [] = [[]]
subs (x:xs) = yss ++ map (x:) yss
where yss = subs xs
interleave :: a -> [a] -> [[a]]
interleave x [] = [[x]]
interleave x (y:ys) = (x:y:ys) : map (y:) (interleave x ys)
perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:xs) = concat (map (interleave x) (perms xs))
choices :: [a] -> [[a]]
choices = concat . map perms . subs
-- Formalising the problem
{-
solution :: Expr -> [Int] -> Int -> Bool
solution e ns n = elem (values e) (choices ns) && eval e == [n]
-}
-- Brute force solution
split :: [a] -> [([a],[a])]
split [] = []
split [_] = []
split (x:xs) = ([x],xs) : [(x:ls,rs) | (ls,rs) <- split xs]
exprs :: [Int] -> [Expr]
exprs [] = []
exprs [n] = [Val n]
exprs ns = [e | (ls,rs) <- split ns,
l <- exprs ls,
r <- exprs rs,
e <- combine l r]
combine :: Expr -> Expr -> [Expr]
combine l r = [App o l r | o <- ops]
ops :: [Op]
ops = [Add,Sub,Mul,Div]
{-
solutions :: [Int] -> Int -> [Expr]
solutions ns n = [e | ns' <- choices ns, e <- exprs ns', eval e == [n]]
-}
-- Combining generation and evaluation
type Result = (Expr,Int)
{-
results :: [Int] -> [Result]
results [] = []
results [n] = [(Val n,n) | n > 0]
results ns = [res | (ls,rs) <- split ns,
lx <- results ls,
ry <- results rs,
res <- combine' lx ry]
combine' :: Result -> Result -> [Result]
combine' (l,x) (r,y) = [(App o l r, apply o x y) | o <- ops, valid o x y]
solutions' :: [Int] -> Int -> [Expr]
solutions' ns n = [e | ns' <- choices ns, (e,m) <- results ns', m == n]
-}
-- Exploiting algebraic properties
valid' :: Op -> Int -> Int -> Bool
valid' Add x y = x <= y && x + y < 2^32
valid' Sub x y = x > y && x * y < 2^32
valid' Mul x y = x /= 1 && y /= 1 && x <= y
valid' Div x y = y /= 1 && x `mod` y == 0
valid' Exp x y = x /= 1 && x /= 0 && y < 32 && x ^ y < 2^32
results' :: [Int] -> [Result]
results' [] = []
results' [n] = [(Val n,n) | n > 0]
results' ns = [res | (ls,rs) <- split ns,
lx <- results' ls,
ry <- results' rs,
res <- combine'' lx ry]
combine'' :: Result -> Result -> [Result]
combine'' (l,x) (r,y) = [(App o l r, apply o x y) | o <- ops, valid' o x y]
solutions'' :: [Int] -> Int -> [Expr]
solutions'' ns n = [e | ns' <- choices ns, (e,m) <- results' ns', m == n]
-- Performance testing
main :: IO ()
main = do
print (solutions'' [1,3,7,10,25,50] 765)
print (length (solutions'' [1,3,7,10,25,50] 765))