-
Notifications
You must be signed in to change notification settings - Fork 57
/
Solution.py
48 lines (35 loc) · 1.21 KB
/
Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Given an array of n integers nums, a 132 pattern is a subsequence of three integers nums[i], nums[j] and nums[k] such that i < j < k and nums[i] < nums[k] < nums[j].
Return true if there is a 132 pattern in nums, otherwise, return false.
Follow up: The O(n^2) is trivial, could you come up with the O(n logn) or the O(n) solution?
Example 1:
Input: nums = [1,2,3,4]
Output: false
Explanation: There is no 132 pattern in the sequence.
Example 2:
Input: nums = [3,1,4,2]
Output: true
Explanation: There is a 132 pattern in the sequence: [1, 4, 2].
Example 3:
Input: nums = [-1,3,2,0]
Output: true
Explanation: There are three 132 patterns in the sequence: [-1, 3, 2], [-1, 3, 0] and [-1, 2, 0].
Constraints:
n == nums.length
1 <= n <= 104
-109 <= nums[i] <= 109
"""
class Solution:
def find132pattern(self, nums):
min_list = list(accumulate(nums, min))
stack, n = [], len(nums)
for j in range(n-1, -1, -1):
if nums[j] > min_list[j]:
while stack and stack[-1] <= min_list[j]:
stack.pop()
if stack and stack[-1] < nums[j]:
return True
stack.append(nums[j])
return False