-
Notifications
You must be signed in to change notification settings - Fork 57
/
Solution.py
74 lines (62 loc) · 1.75 KB
/
Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
"""
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def kthSmallest(self, root: TreeNode, k: int) -> int:
def inorder2(node, k):
stack = [node]
visited = set()
while stack:
curr = stack[-1]
while curr.left is not None and curr.left not in visited:
stack.append(curr.left)
curr = curr.left
curr = stack.pop()
visited.add(curr)
if k == 1:
return curr.val
k -= 1
if curr.right is not None:
stack.append(curr.right)
return None
return inorder2(root, k)
class Solution2:
def kthSmallest(self, root: TreeNode, k: int) -> int:
def inorder(node):
if node is None:
return
yield from inorder(node.left)
yield node.val
yield from inorder(node.right)
for i, val in enumerate(inorder(root)):
if i == k - 1:
return val
return None