forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·215 lines (182 loc) · 7.39 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class BowEncoder(object):
""" bow-encoder """
def __init__(self):
self.param_name = ""
def forward(self, emb):
return fluid.layers.sequence_pool(input=emb, pool_type='sum')
class CNNEncoder(object):
""" cnn-encoder"""
def __init__(self,
param_name="cnn",
win_size=3,
ksize=128,
act='tanh',
pool_type='max'):
self.param_name = param_name
self.win_size = win_size
self.ksize = ksize
self.act = act
self.pool_type = pool_type
def forward(self, emb):
return fluid.nets.sequence_conv_pool(
input=emb,
num_filters=self.ksize,
filter_size=self.win_size,
act=self.act,
pool_type=self.pool_type,
param_attr=self.param_name + ".param",
bias_attr=self.param_name + ".bias")
class GrnnEncoder(object):
""" grnn-encoder """
def __init__(self, param_name="grnn", hidden_size=128):
self.param_name = param_name
self.hidden_size = hidden_size
def forward(self, emb):
fc0 = fluid.layers.fc(input=emb,
size=self.hidden_size * 3,
param_attr=self.param_name + "_fc.w",
bias_attr=False)
gru_h = fluid.layers.dynamic_gru(
input=fc0,
size=self.hidden_size,
is_reverse=False,
param_attr=self.param_name + ".param",
bias_attr=self.param_name + ".bias")
return fluid.layers.sequence_pool(input=gru_h, pool_type='max')
class SimpleEncoderFactory(object):
def __init__(self):
pass
''' create an encoder through create function '''
def create(self, enc_type, enc_hid_size):
if enc_type == "bow":
bow_encode = BowEncoder()
return bow_encode
elif enc_type == "cnn":
cnn_encode = CNNEncoder(ksize=enc_hid_size)
return cnn_encode
elif enc_type == "gru":
rnn_encode = GrnnEncoder(hidden_size=enc_hid_size)
return rnn_encode
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.query_encoder = envs.get_global_env(
"hyper_parameters.query_encoder")
self.title_encoder = envs.get_global_env(
"hyper_parameters.title_encoder")
self.query_encode_dim = envs.get_global_env(
"hyper_parameters.query_encode_dim")
self.title_encode_dim = envs.get_global_env(
"hyper_parameters.title_encode_dim")
self.emb_size = envs.get_global_env(
"hyper_parameters.sparse_feature_dim")
self.emb_dim = envs.get_global_env("hyper_parameters.embedding_dim")
self.emb_shape = [self.emb_size, self.emb_dim]
self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size")
self.margin = envs.get_global_env("hyper_parameters.margin")
def net(self, input, is_infer=False):
factory = SimpleEncoderFactory()
self.q_slots = self._sparse_data_var[0:1]
self.query_encoders = [
factory.create(self.query_encoder, self.query_encode_dim)
for _ in self.q_slots
]
q_embs = [
fluid.embedding(
input=query, size=self.emb_shape, param_attr="emb")
for query in self.q_slots
]
# encode each embedding field with encoder
q_encodes = [
self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
]
# concat multi view for query, pos_title, neg_title
q_concat = fluid.layers.concat(q_encodes)
# projection of hidden layer
q_hid = fluid.layers.fc(q_concat,
size=self.hidden_size,
param_attr='q_fc.w',
bias_attr='q_fc.b')
self.pt_slots = self._sparse_data_var[1:2]
self.title_encoders = [
factory.create(self.title_encoder, self.title_encode_dim)
]
pt_embs = [
fluid.embedding(
input=title, size=self.emb_shape, param_attr="emb")
for title in self.pt_slots
]
pt_encodes = [
self.title_encoders[i].forward(emb)
for i, emb in enumerate(pt_embs)
]
pt_concat = fluid.layers.concat(pt_encodes)
pt_hid = fluid.layers.fc(pt_concat,
size=self.hidden_size,
param_attr='t_fc.w',
bias_attr='t_fc.b')
# cosine of hidden layers
cos_pos = fluid.layers.cos_sim(q_hid, pt_hid)
if is_infer:
self._infer_results['query_pt_sim'] = cos_pos
return
self.nt_slots = self._sparse_data_var[2:3]
nt_embs = [
fluid.embedding(
input=title, size=self.emb_shape, param_attr="emb")
for title in self.nt_slots
]
nt_encodes = [
self.title_encoders[i].forward(emb)
for i, emb in enumerate(nt_embs)
]
nt_concat = fluid.layers.concat(nt_encodes)
nt_hid = fluid.layers.fc(nt_concat,
size=self.hidden_size,
param_attr='t_fc.w',
bias_attr='t_fc.b')
cos_neg = fluid.layers.cos_sim(q_hid, nt_hid)
# pairwise hinge_loss
loss_part1 = fluid.layers.elementwise_sub(
tensor.fill_constant_batch_size_like(
input=cos_pos,
shape=[-1, 1],
value=self.margin,
dtype='float32'),
cos_pos)
loss_part2 = fluid.layers.elementwise_add(loss_part1, cos_neg)
loss_part3 = fluid.layers.elementwise_max(
tensor.fill_constant_batch_size_like(
input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
loss_part2)
self._cost = fluid.layers.mean(loss_part3)
self.acc = self.get_acc(cos_neg, cos_pos)
self._metrics["loss"] = self._cost
self._metrics["acc"] = self.acc
def get_acc(self, x, y):
less = tensor.cast(cf.less_than(x, y), dtype='float32')
label_ones = fluid.layers.fill_constant_batch_size_like(
input=x, dtype='float32', shape=[-1, 1], value=1.0)
correct = fluid.layers.reduce_sum(less)
total = fluid.layers.reduce_sum(label_ones)
acc = fluid.layers.elementwise_div(correct, total)
return acc