forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
93 lines (81 loc) · 3.83 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.recall_k = envs.get_global_env("hyper_parameters.recall_k")
self.vocab_size = envs.get_global_env("hyper_parameters.vocab_size")
self.hid_size = envs.get_global_env("hyper_parameters.hid_size")
self.init_low_bound = envs.get_global_env(
"hyper_parameters.init_low_bound")
self.init_high_bound = envs.get_global_env(
"hyper_parameters.init_high_bound")
self.emb_lr_x = envs.get_global_env("hyper_parameters.emb_lr_x")
self.gru_lr_x = envs.get_global_env("hyper_parameters.gru_lr_x")
self.fc_lr_x = envs.get_global_env("hyper_parameters.fc_lr_x")
def input_data(self, is_infer=False, **kwargs):
# Input data
src_wordseq = fluid.data(
name="src_wordseq", shape=[None, 1], dtype="int64", lod_level=1)
dst_wordseq = fluid.data(
name="dst_wordseq", shape=[None, 1], dtype="int64", lod_level=1)
return [src_wordseq, dst_wordseq]
def net(self, inputs, is_infer=False):
src_wordseq = inputs[0]
dst_wordseq = inputs[1]
emb = fluid.embedding(
input=src_wordseq,
size=[self.vocab_size, self.hid_size],
param_attr=fluid.ParamAttr(
name="emb",
initializer=fluid.initializer.Uniform(
low=self.init_low_bound, high=self.init_high_bound),
learning_rate=self.emb_lr_x),
is_sparse=True)
fc0 = fluid.layers.fc(input=emb,
size=self.hid_size * 3,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(
low=self.init_low_bound,
high=self.init_high_bound),
learning_rate=self.gru_lr_x))
gru_h0 = fluid.layers.dynamic_gru(
input=fc0,
size=self.hid_size,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(
low=self.init_low_bound, high=self.init_high_bound),
learning_rate=self.gru_lr_x))
fc = fluid.layers.fc(input=gru_h0,
size=self.vocab_size,
act='softmax',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(
low=self.init_low_bound,
high=self.init_high_bound),
learning_rate=self.fc_lr_x))
cost = fluid.layers.cross_entropy(input=fc, label=dst_wordseq)
acc = fluid.layers.accuracy(
input=fc, label=dst_wordseq, k=self.recall_k)
if is_infer:
self._infer_results['recall20'] = acc
return
avg_cost = fluid.layers.mean(x=cost)
self._cost = avg_cost
self._metrics["cost"] = avg_cost
self._metrics["acc"] = acc