-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstate_representation.py
39 lines (34 loc) · 1.42 KB
/
state_representation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import googlemaps
from datetime import datetime
import matplotlib.pyplot as plt
import mlflow
class StateRepresentation:
"""
Represents the current state in the reinforcement learning environment.
"""
def __init__(self, current_location, current_direction, nearby_streets):
"""
Initialize the state representation.
Parameters:
current_location (tuple): Current GPS coordinates.
current_direction (tuple): Current direction vector.
nearby_streets (list): List of nearby street information.
"""
self.current_location = current_location
self.current_direction = current_direction
self.nearby_streets = nearby_streets
def get_state_vector(self):
"""
Convert the state into a feature vector.
Returns:
np.ndarray: Feature vector representing the state.
"""
location_vector = np.array([self.current_location[0], self.current_location[1]])
direction_vector = np.array([self.current_direction[0], self.current_direction[1]])
nearby_streets_vector = np.array(self.nearby_streets)
state_vector = np.concatenate((location_vector, direction_vector, nearby_streets_vector))
return state_vector