-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpsprof
executable file
·1197 lines (1011 loc) · 39.6 KB
/
gpsprof
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
#
'''
Collect and plot latency-profiling data from a running gpsd.
Requires gnuplot, but gnuplot can be on another host.
'''
# This file is Copyright (c) 2010 by the GPSD project
# SPDX-License-Identifier: BSD-2-clause
#
# Updated to conform with RCC-219-00, RCC/IRIG Standard 261-00
# "STANDARD REPORT FORMAT FOR GLOBAL POSITIONING SYSTEM (GPS) RECEIVERS AND
# SYSTEMS ACCURACY TESTS AND EVALUATIONS"
#
# TODO: put date from data on plot, not time of replot.
# TODO: add lat/lon to polar plots
#
# This code runs compatibly under Python 2 and 3.x for x >= 2.
# Preserve this property!
from __future__ import absolute_import, print_function, division
import copy
import getopt
import math
import os
import signal
import socket
import sys
import time
# pylint wants local modules last
try:
import gps
except ImportError as e:
sys.stderr.write(
"gpsprof: can't load Python gps libraries -- check PYTHONPATH.\n")
sys.stderr.write("%s\n" % e)
sys.exit(1)
gps_version = '3.19-dev'
if gps.__version__ != gps_version:
sys.stderr.write("gpsprof: ERROR: need gps module version %s, got %s\n" %
(gps_version, gps.__version__))
sys.exit(1)
debug = False
def dist_2d(a, b):
"calculate distance between a[x,y] and b[x,y]"
# x and y are orthogonal, probably lat/lon in meters
# ignore altitude change.
return math.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
def dist_3d(a, b):
"calculate distance between a[x,y,z] and b[x,y,z]"
# x, y, and z are othogonal, probably ECEF, probably in meters
return math.sqrt((a[0] - b[0]) ** 2 +
(a[1] - b[1]) ** 2 +
(a[2] - b[2]) ** 2)
def wgs84_to_ecef(wgs84):
"Convert wgs84 coordinates to ECEF ones"
# unpack args
(lat, lon, alt) = wgs84
# convert lat/lon/altitude in degrees and altitude in meters
# to ecef x, y, z in meters
# see
# http://www.mathworks.de/help/toolbox/aeroblks/llatoecefposition.html
lat = math.radians(lat)
lon = math.radians(lon)
rad = 6378137.0 # Radius of the Earth (in meters)
f = 1.0 / 298.257223563 # Flattening factor WGS84 Model
cosLat = math.cos(lat)
sinLat = math.sin(lat)
FF = (1.0 - f) ** 2
C = 1 / math.sqrt((cosLat ** 2) + (FF * sinLat ** 2))
S = C * FF
x = (rad * C + alt) * cosLat * math.cos(lon)
y = (rad * C + alt) * cosLat * math.sin(lon)
z = (rad * S + alt) * sinLat
return (x, y, z)
class Baton(object):
"Ship progress indication to stderr."
def __init__(self, prompt, endmsg=None):
self.stream = sys.stderr
self.stream.write(prompt + "...")
if os.isatty(self.stream.fileno()):
self.stream.write(" \b")
self.stream.flush()
self.count = 0
self.endmsg = endmsg
self.time = time.time()
return
def twirl(self, ch=None):
"Twirl the baton"
if self.stream is None:
return
if ch:
self.stream.write(ch)
elif os.isatty(self.stream.fileno()):
self.stream.write("-/|\\"[self.count % 4])
self.stream.write("\b")
self.count = self.count + 1
self.stream.flush()
return
def end(self, msg=None):
"Write the end message"
if msg is None:
msg = self.endmsg
if self.stream:
self.stream.write("...(%2.2f sec) %s.\n"
% (time.time() - self.time, msg))
return
class stats(object):
"Class for 1D stats: min, max, mean, sigma, skewness, kurtosis"
def __init__(self):
self.min = 0.0
self.max = 0.0
self.mean = 0.0
self.median = 0.0
self.sigma = 0.0
self.skewness = 0.0
self.kurtosis = 0.0
def __str__(self):
"return a nice string, for debug"
return ("min %f, max %f, mean %f, median %f, sigma %f, skewedness %f, "
"kurtosis %f" %
(self.min, self.max, self.mean, self.median,
self.sigma, self.skewness, self.kurtosis))
def min_max_mean(self, fixes, index):
"Find min, max, and mean of fixes[index]"
if not fixes:
return
# might be fast to go through list once?
if isinstance(fixes[0], tuple):
self.mean = (sum([x[index] for x in fixes]) / len(fixes))
self.min = min([x[index] for x in fixes])
self.max = max([x[index] for x in fixes])
else:
# must be float
self.mean = (sum([x for x in fixes]) / len(fixes))
self.min = min([x for x in fixes])
self.max = max([x for x in fixes])
return
def moments(self, fixes, index):
"Find and set the (sigma, skewness, kurtosis) of fixes[index]"
# The skewness of a random variable X is the third standardized
# moment and is a dimension-less ratio. ntpviz uses the Pearson's
# moment coefficient of skewness. Wikipedia describes it
# best: "The qualitative interpretation of the skew is complicated
# and unintuitive." A normal distribution has a skewness of zero.
self.skewness = float('nan')
# The kurtosis of a random variable X is the fourth standardized
# moment and is a dimension-less ratio. Here we use the Pearson's
# moment coefficient of kurtosis. A normal distribution has a
# kurtosis of three. NIST describes a kurtosis over three as
# "heavy tailed" and one under three as "light tailed".
self.kurtosis = float('nan')
if not fixes:
return
m3 = 0.0
m4 = 0.0
if isinstance(fixes[0], tuple):
sum_squares = [(x[index] - self.mean) ** 2 for x in fixes]
sigma = math.sqrt(sum(sum_squares) / (len(fixes) - 1))
for fix in fixes:
m3 += pow(fix[index] - sigma, 3)
m4 += pow(fix[index] - sigma, 4)
else:
# must be float
sum_squares = [(x - self.mean) ** 2 for x in fixes]
sigma = math.sqrt(sum(sum_squares) / (len(fixes) - 1))
for fix in fixes:
m3 += pow(fix - sigma, 3)
m4 += pow(fix - sigma, 4)
self.sigma = sigma
if sigma > 0.0001:
self.skewness = m3 / (len(fixes) * pow(sigma, 3))
self.kurtosis = m4 / (len(fixes) * pow(sigma, 4))
return
class plotter(object):
"Generic class for gathering and plotting sensor statistics."
def __init__(self):
self.device = None
self.fixes = []
self.in_replot = False
self.session = None
self.start_time = int(time.time())
self.watch = set(['TPV'])
def whatami(self):
"How do we identify this plotting run?"
desc = "%s, %s, " % \
(gps.misc.isotime(self.start_time),
self.device.get('driver', "unknown"))
if 'bps' in self.device:
desc += "%d %dN%d, cycle %.3gs" % \
(self.device['bps'], 9 - self.device['stopbits'],
self.device['stopbits'], self.device['cycle'])
else:
desc += self.device['path']
if 'subtype' in self.device:
desc += "\\n%s" % self.device['subtype']
return desc
def collect(self, verb, log_fp=None):
"Collect data from the GPS."
try:
self.session = gps.gps(host=host, port=port, verbose=verb)
except socket.error:
sys.stderr.write("gpsprof: gpsd unreachable.\n")
sys.exit(1)
# Initialize
self.session.read()
if self.session.version is None:
sys.stderr.write("gpsprof: requires gpsd to speak new protocol.\n")
sys.exit(1)
# Set parameters
flags = gps.WATCH_ENABLE | gps.WATCH_JSON
if self.requires_time:
flags |= gps.WATCH_TIMING
if device:
flags |= gps.WATCH_DEVICE
try:
signal.signal(signal.SIGUSR1,
lambda empty, unused: sys.stderr.write(
"%d of %d (%d%%)..."
% (wait - countdown, wait,
((wait - countdown) * 100.0 / wait))))
signal.siginterrupt(signal.SIGUSR1, False)
self.session.stream(flags, device)
baton = Baton("gpsprof: %d looking for fix" % os.getpid(), "done")
countdown = wait
basetime = time.time()
while countdown > 0:
if self.session.read() == -1:
sys.stderr.write("gpsprof: gpsd has vanished.\n")
sys.exit(1)
baton.twirl()
if self.session.data["class"] == "ERROR":
sys.stderr.write(" ERROR: %s.\n"
% self.session.data["message"])
sys.exit(1)
if self.session.data["class"] == "DEVICES":
if len(self.session.data["devices"]) != 1 and not device:
sys.stderr.write("ERROR: multiple devices connected, "
"you must explicitly specify the "
"device.\n")
sys.exit(1)
for i in range(len(self.session.data["devices"])):
self.device = copy.copy(
self.session.data["devices"][i])
if self.device['path'] == device:
break
if self.session.data["class"] == "WATCH":
if ((self.requires_time and
not self.session.data.get("timing"))):
sys.stderr.write("timing is not enabled.\n")
sys.exit(1)
# Log before filtering - might be good for post-analysis.
if log_fp:
log_fp.write(self.session.response)
# Ignore everything but what we're told to
if self.session.data["class"] not in self.watch:
continue
# We can get some funky artifacts at start of self.session
# apparently due to RS232 buffering effects. Ignore
# them.
if ((threshold and
time.time() - basetime < self.session.cycle * threshold)):
continue
if self.session.fix.mode <= gps.MODE_NO_FIX:
continue
if self.sample():
if countdown == wait:
sys.stderr.write("first fix in %.2fsec, gathering %d "
"samples..."
% (time.time() - basetime, wait))
countdown -= 1
baton.end()
finally:
self.session.stream(gps.WATCH_DISABLE | gps.WATCH_TIMING)
signal.signal(signal.SIGUSR1, signal.SIG_DFL)
def replot(self, infp):
"Replot from a JSON log file."
self.in_replot = True
baton = Baton("gpsprof: replotting", "done")
self.session = gps.gps(host=None)
for line in infp:
baton.twirl()
self.session.unpack(line)
if self.session.data["class"] == "DEVICES":
self.device = copy.copy(self.session.data["devices"][0])
elif self.session.data["class"] not in self.watch:
continue
self.sample()
baton.end()
def dump(self):
"Dump the raw data for post-analysis."
return self.header() + self.data()
class spaceplot(plotter):
"Spatial scattergram of fixes."
name = "space"
requires_time = False
def __init__(self):
"Initialize class spaceplot"
plotter.__init__(self)
self.centroid = None
self.centroid_ecef = None
self.recentered = []
def sample(self):
"Grab samples"
# Watch out for the NaN value from gps.py.
if (((self.in_replot or self.session.valid) and
self.session.data["class"] == "TPV")):
# get sat used count
sats_used = 0
for sat in self.session.satellites:
if sat.used:
sats_used += 1
if 'alt' not in self.session.data:
self.session.data['alt'] = gps.NaN
self.fixes.append((self.session.data['lat'],
self.session.data['lon'],
self.session.data['alt'], sats_used))
return True
def header(self):
"Return header"
return "\n# Position uncertainty, %s\n" % self.whatami()
def postprocess(self):
"Postprocess the sample data"
pass
def data(self):
"Format data for dump"
res = ""
for i in range(len(self.recentered)):
(lat, lon) = self.recentered[i][:2]
(raw1, raw2, alt) = self.fixes[i]
res += "%.9f\t%.9f\t%.9f\t%.9f\t%.9f\n" \
% (lat, lon, raw1, raw2, alt)
return res
def plot(self):
"Plot the data"
stat_lat = stats()
stat_lon = stats()
stat_alt = stats()
stat_used = stats()
sats_used = []
for x in self.fixes:
# skip missing sats, if any, often missing at start
if x[3] != 0:
sats_used.append(x[3])
# calc sats used data: mean, min, max, sigma
stat_used.min_max_mean(sats_used, 0)
stat_lat.moments(sats_used, 0)
# find min, max and mean of lat/lon
stat_lat.min_max_mean(self.fixes, 0)
stat_lon.min_max_mean(self.fixes, 1)
# centroid is just arithmetic avg of lat,lon
self.centroid = (stat_lat.mean, stat_lon.mean)
# Sort fixes by distance from centroid
# sorted to make getting CEP() easy
self.fixes.sort(key=lambda p: dist_2d(self.centroid, p[:2]))
# compute min/max as meters, ignoring altitude
# EarthDistance always returns a positve value
lat_min_o = -gps.EarthDistance((stat_lat.min, self.centroid[1]),
self.centroid[:2])
lat_max_o = gps.EarthDistance((stat_lat.max, self.centroid[1]),
self.centroid[:2])
lon_min_o = -gps.EarthDistance((self.centroid[0], stat_lon.min),
self.centroid[:2])
lon_max_o = gps.EarthDistance((self.centroid[0], stat_lon.max),
self.centroid[:2])
# Convert fixes to offsets from centroid in meters
self.recentered = [
gps.MeterOffset(fix[:2], self.centroid) for fix in self.fixes]
# compute sigma, skewness and kurtosis of lat/lon
stat_lat.moments(self.recentered, 0)
stat_lon.moments(self.recentered, 1)
# CEP(50) calculated per RCC 261-00, Section 3.1.1
calc_cep = 0.5887 * (stat_lat.sigma + stat_lon.sigma)
# 2DRMS calculated per RCC 261-00, Section 3.1.4
calc_2drms = 2 * math.sqrt(stat_lat.sigma ** 2 + stat_lon.sigma ** 2)
# Compute measured CEP(50%)
# same as median distance from centroid, 50% closer, 50% further
cep_meters = gps.misc.EarthDistance(
self.centroid[:2], self.fixes[int(len(self.fixes) * 0.50)][:2])
# Compute measured CEP(95%)
# distance from centroid, 95% closer, 5% further
cep95_meters = gps.misc.EarthDistance(
self.centroid[:2], self.fixes[int(len(self.fixes) * 0.95)][:2])
# Compute measured CEP(99%)
# distance from centroid, 99% closer, 1% further
cep99_meters = gps.misc.EarthDistance(
self.centroid[:2], self.fixes[int(len(self.fixes) * 0.99)][:2])
# Compute CEP(100%)
# max distance from centroid, 100% closer, 0% further
cep100_meters = gps.misc.EarthDistance(
self.centroid[:2], self.fixes[len(self.fixes) - 1][:2])
# init altitude data
alt_ep = gps.NaN
alt_ep95 = gps.NaN
alt_ep99 = gps.NaN
dist_3d_max = 0.0
alt_fixes = []
latlon_data = ""
alt_data = ""
# grab and format the fixes as gnuplot will use them
for i in range(len(self.recentered)):
# grab valid lat/lon data, recentered and raw
(lat, lon) = self.recentered[i][:2]
alt = self.fixes[i][2]
latlon_data += "%.9f\t%.9f\n" % (lat, lon)
if not math.isnan(alt):
# only keep good fixes
alt_fixes.append(alt)
# micro meters should be good enough
alt_data += "%.6f\n" % (alt)
if alt_fixes:
# got altitude data
# find min, max and mean of altitude
stat_alt.min_max_mean(alt_fixes, 0)
# centroid in ECEF
self.centroid_ecef = wgs84_to_ecef([stat_lat.mean,
stat_lon.mean,
stat_alt.mean])
# once more through the data, looking for 3D max
for i in range(len(self.fixes)):
fix_lla = self.fixes[i][:3]
if not math.isnan(fix_lla[2]):
fix_ecef = wgs84_to_ecef(fix_lla[:3])
dist3d = dist_3d(self.centroid_ecef, fix_ecef)
if dist_3d_max < dist3d:
dist_3d_max = dist3d
# Convert fixes to offsets from avg in meters
alt_centered = []
alt_data_centered = ""
alt_fixes.sort(key=lambda a: abs(a))
for i in alt_fixes:
alt_centered.append(i - stat_alt.mean)
alt_data_centered += "%.6f\n" % (i - stat_alt.mean)
# Sort fixes by distance from average altitude
alt_centered.sort(key=lambda a: abs(a))
# so we can rank fixes for EPs
alt_ep = abs(alt_centered[int(len(alt_centered) * 0.50)])
alt_ep95 = abs(alt_centered[int(len(alt_centered) * 0.95)])
alt_ep99 = abs(alt_centered[int(len(alt_centered) * 0.99)])
stat_alt.moments(alt_centered, 0)
# HEP(50) calculated per RCC 261-00, Section 3.1.2
calc_hep = 0.6745 * stat_alt.sigma
# SEP(50) calculated per RCC 261-00, Section 3.1.3 (3)
calc_sep = 0.51 * (stat_lat.sigma +
stat_lon.sigma +
stat_alt.sigma)
# MRSE calculated per RCC 261-00, Section 3.1.5
calc_mrse = math.sqrt(stat_lat.sigma ** 2 +
stat_lon.sigma ** 2 +
stat_alt.sigma ** 2)
fmt_lab11a = ('hep = %.3f meters\\n'
'sep = %.3f meters\\n'
'mrse = %.3f meters\\n'
) % (calc_hep, calc_sep, calc_mrse)
if stat_lat.mean < 0.0:
latstring = "%.9fS" % -stat_lat.mean
elif stat_lat.mean > 0.0:
latstring = "%.9fN" % stat_lat.mean
else:
latstring = "0.0"
if stat_lon.mean < 0.0:
lonstring = "%.9fW" % -stat_lon.mean
elif stat_lon.mean > 0.0:
lonstring = "%.9fE" % stat_lon.mean
else:
lonstring = "0.0"
# oh, this is fun, mixing gnuplot and python string formatting
# Grrr, python implements %s max width or precision incorrectly...
# and the old and new styles also disagree...
fmt = ('set xlabel "Meters east from %s"\n'
'set ylabel "Meters north from %s"\n'
'cep=%.9f\n'
'cep95=%.9f\n'
'cep99=%.9f\n'
) % (lonstring, latstring,
cep_meters, cep95_meters, cep99_meters)
fmt += ('set autoscale\n'
'set multiplot\n'
# plot to use 95% of width
# set x and y scales to same distance
'set size ratio -1 0.95,0.7\n'
# leave room at bottom for computed variables
'set origin 0.025,0.30\n'
'set format x "%.3f"\n'
'set format y "%.3f"\n'
'set key left at screen 0.6,0.30 vertical\n'
'set key noautotitle\n'
'set style line 2 pt 1\n'
'set style line 3 pt 2\n'
'set style line 5 pt 7 ps 1\n'
'set xtic rotate by -45\n'
'set border 15\n'
# now the CEP stuff
'set parametric\n'
'set trange [0:2*pi]\n'
'cx(t, r) = sin(t)*r\n'
'cy(t, r) = cos(t)*r\n'
'chlen = cep/20\n'
# what do the next two lines do??
'set arrow from -chlen,0 to chlen,0 nohead\n'
'set arrow from 0,-chlen to 0,chlen nohead\n')
fmt += ('set label 11 at screen 0.01, screen 0.30 '
'"RCC 261-00\\n'
'cep = %.3f meters\\n'
'2drms = %.3f meters\\n%s'
'2d max = %.3f meters\\n'
'3d max = %.3f meters"\n'
) % (calc_cep, calc_2drms, fmt_lab11a, cep100_meters,
dist_3d_max)
# row labels
fmt += ('set label 12 at screen 0.01, screen 0.12 '
'"RCC 261-00\\n'
'\\n'
'Lat\\n'
'Lon\\n'
'Alt\\n'
'Used"\n')
# mean
fmt += ('set label 13 at screen 0.06, screen 0.12 '
'"\\n'
' mean\\n'
'%s\\n'
'%s\\n'
'%s\\n'
'%s"\n'
) % ('{:>15}'.format(latstring),
'{:>15}'.format(lonstring),
'{:>15.3f}'.format(stat_alt.mean),
'{:>15.1f}'.format(stat_used.mean))
fmt += ('set label 14 at screen 0.23, screen 0.12 '
'"\\n'
' min max sigma '
'skewness kurtosis\\n'
'%s %s %s meters %s %s\\n'
'%s %s %s meters %s %s\\n'
'%s %s %s meters %s %s\\n'
'%12d %12d %s sats"\n'
) % ('{:>10.3f}'.format(lat_min_o),
'{:>10.3f}'.format(lat_max_o),
'{:>10.3f}'.format(stat_lat.sigma),
'{:>10.1f}'.format(stat_lat.skewness),
'{:>10.1f}'.format(stat_lat.kurtosis),
'{:>10.3f}'.format(lon_min_o),
'{:>10.3f}'.format(lon_max_o),
'{:>10.3f}'.format(stat_lon.sigma),
'{:>10.1f}'.format(stat_lon.skewness),
'{:>10.1f}'.format(stat_lon.kurtosis),
'{:>10.3f}'.format(stat_alt.min - stat_alt.mean),
'{:>10.3f}'.format(stat_alt.max - stat_alt.mean),
'{:>10.3f}'.format(stat_alt.sigma),
'{:>10.1f}'.format(stat_alt.skewness),
'{:>10.1f}'.format(stat_alt.kurtosis),
stat_used.min,
stat_used.max,
'{:>10.1f}'.format(stat_used.sigma))
if debug:
fmt += ('set label 15 at screen 0.6, screen 0.12 '
'"\\n'
' min\\n'
'%s\\n'
'%s\\n'
'%s"\n'
) % ('{:>15.9f}'.format(stat_lat.min),
'{:>15.9f}'.format(stat_lon.min),
'{:>15.3f}'.format(stat_alt.min))
fmt += ('set label 16 at screen 0.75, screen 0.12 '
'"\\n'
' max\\n'
'%s\\n'
'%s\\n'
'%s"\n'
) % ('{:>15.9f}'.format(stat_lat.max),
'{:>15.9f}'.format(stat_lon.max),
'{:>15.3f}'.format(stat_alt.max))
if len(self.fixes) > 1000:
plot_style = 'dots'
else:
plot_style = 'points'
# got altitude data?
if not math.isnan(stat_alt.mean):
fmt += ('set ytics nomirror\n'
'set y2tics\n'
'set format y2 "%.3f"\n')
fmt += (('set y2label "Altitude from %.3f meters"\n') %
(stat_alt.mean))
# add ep(50)s
altitude_x = cep100_meters * 1.2
fmt += ('$EPData << EOD\n'
'%.3f %.3f\n'
'%.3f %.3f\n'
'EOD\n'
) % (altitude_x, alt_ep,
altitude_x, -alt_ep)
fmt += ('$EP95Data << EOD\n'
'%.3f %.3f\n'
'%.3f %.3f\n'
'EOD\n'
) % (altitude_x, alt_ep95,
altitude_x, -alt_ep95)
fmt += ('$EP99Data << EOD\n'
'%.3f %.3f\n'
'%.3f %.3f\n'
'EOD\n'
) % (altitude_x, alt_ep99,
altitude_x, -alt_ep99)
# setup now done, plot it!
fmt += ('plot "-" using 1:2 with %s ls 3 title "%d GPS fixes" '
', cx(t,cep),cy(t,cep) ls 1 title "CEP (50%%) = %.3f meters"'
', cx(t,cep95),cy(t,cep95) title "CEP (95%%) = %.3f meters"'
', cx(t,cep99),cy(t,cep99) title "CEP (99%%) = %.3f meters"'
) % (plot_style, len(self.fixes),
cep_meters, cep95_meters, cep99_meters)
if not math.isnan(stat_alt.mean):
# add plot of altitude
fmt += (', "-" using ( %.3f ):( $1 - %.3f ) '
'axes x1y2 with points ls 2 lc "green"'
' title " %d Altitude fixes"'
) % (cep100_meters * 1.1, stat_alt.mean, len(alt_fixes))
# altitude EPs
fmt += (', $EPData using 1:2 '
'axes x1y2 with points ls 5 lc "dark-green"'
' title " EP(50%%) = %.3f meters"'
) % (alt_ep)
fmt += (', $EP95Data using 1:2 '
'axes x1y2 with points ls 5 lc "blue"'
' title " EP(95%%) = %.3f meters"'
) % (alt_ep95)
fmt += (', $EP99Data using 1:2 '
'axes x1y2 with points ls 5 lc "red"'
' title " EP(99%%) = %.3f meters"'
) % (alt_ep99)
fmt += self.header() + latlon_data
if not math.isnan(stat_alt.mean):
# add altitude samples
fmt += 'e\n' + alt_data
return fmt
class polarplot(plotter):
"Polar plot of signal strength"
name = "polar"
requires_time = False
seen_used = [] # count of seen and used in each SKY
def __init__(self):
plotter.__init__(self)
self.watch = set(['SKY'])
def sample(self):
"Grab samples"
if self.session.data["class"] == "SKY":
sats = self.session.data['satellites']
seen = 0
used = 0
for sat in sats:
seen += 1
# u'ss': 42, u'el': 15, u'PRN': 18, u'az': 80, u'used': True
if sat['used'] is True:
used += 1
if 'polarunused' == self.name:
continue
if (('polarused' == self.name) and (sat['used'] is False)):
continue
self.fixes.append((sat['PRN'], sat['ss'], sat['az'],
sat['el'], sat['used']))
self.seen_used.append((seen, used))
return True
def header(self):
"Return header"
return "# Polar plot of signal strengths, %s\n" % self.whatami()
def postprocess(self):
"Postprocess the sample data"
pass
def data(self):
"Format data for dump"
res = ""
for (prn, ss, az, el, used) in self.fixes:
res += "%d\t%d\t%d\t%d\t%s\n" % (prn, ss, az, el, used)
return res
def plot(self):
"Format data for dump"
# calc SNR: mean, min, max, sigma
stat_ss = stats()
stat_ss.min_max_mean(self.fixes, 1)
stat_ss.moments(self.fixes, 1)
# calc sats seen data: mean, min, max, sigma
stat_seen = stats()
stat_seen.min_max_mean(self.seen_used, 0)
stat_seen.moments(self.seen_used, 0)
# calc sats used data: mean, min, max, sigma
stat_used = stats()
stat_used.min_max_mean(self.seen_used, 1)
stat_used.moments(self.seen_used, 1)
fmt = '''\
unset border
set polar
set angles degrees # set gnuplot on degrees instead of radians
set style line 10 lt 1 lc 0 lw 0.3 #redefine a new line style for the grid
set grid polar 45 #set the grid to be displayed every 45 degrees
set grid ls 10
# x is angle, go from 0 to 360 degrees
# y is radius, go from 90 at middle to 0 at edge
set xrange [0:360]
set rrange [90:0] # 90 at center
set yrange [-90:90]
# set xtics axis #display the xtics on the axis instead of on the border
# set ytics axis
set xtics axis nomirror; set ytics axis nomirror
# "remove" the tics so that only the y tics are displayed
set xtics scale 0
# set the xtics only go from 0 to 90 with increment of 30
# but do not display anything. This has to be done otherwise the grid
# will not be displayed correctly.
set xtics ("" 90, "" 60, "" 30,)
# make the ytics go from the center (0) to 360 with incrment of 90
# set ytics 0, 45, 360
set ytics scale 0
# set the ytics only go from 0 to 90 with increment of 30
# but do not display anything. This has to be done otherwise the grid
# will not be displayed correctly.
set ytics ("" 90, "" 60, "" 30,)
set size square
set key lmargin
# this places a compass label on the outside
set_label(x, text) = sprintf("set label '%s' at (93*cos(%f)), (93*sin(%f)) center", text, x, x)
# here all labels are created
# we compute North (0) at top, East (90) at right
# bug gnuplot puts 0 at right, 90 at top
eval set_label(0, "E")
eval set_label(90, "N")
eval set_label(180, "W")
eval set_label(270, "S")
set style line 11 pt 2 ps 2 #set the line style for the plot
set style fill transparent solid 0.8 noborder
set cbrange [10:60]
set palette defined (100 "blue", 200 "green", 300 "red")
'''
count = len(self.fixes)
fmt += '''\
set label 10 at screen 0.01, screen 0.15 "%s plot, samples %d"
''' % (self.name, count)
fmt += '''\
set label 11 at screen 0.01, screen 0.10 "\\nSS\\nSeen\\nUsed"
'''
fmt += '''\
set label 12 at screen 0.11, screen 0.10 "min\\n%d\\n%d\\n%d" right
''' % (stat_ss.min, stat_seen.min, stat_used.min)
fmt += '''\
set label 13 at screen 0.21, screen 0.10 "max\\n%d\\n%d\\n%d" right
''' % (stat_ss.max, stat_seen.max, stat_used.max)
fmt += '''\
set label 14 at screen 0.31, screen 0.10 "mean\\n%.1f\\n%.1f\\n%.1f" right
''' % (stat_ss.mean, stat_seen.mean, stat_used.mean)
fmt += '''\
set label 15 at screen 0.41, screen 0.10 "sigma\\n%.1f\\n%.1f\\n%.1f" right
''' % (stat_ss.sigma, stat_seen.sigma, stat_used.sigma)
fmt += '''\
# and finally the plot
# flip azimuth to plot north up, east right
# plot "-" u (90 - $3):4 t "Sat" with points ls 11
plot "-" u (90 - $3):4:(1):($2) t "Sat" w circles lc palette
'''
# return fmt + self.header() + self.data()
return self.header() + fmt + self.data()
class polarplotunused(polarplot):
"Polar plot of unused sats signal strength"
name = "polarunused"
class polarplotused(polarplot):
"Polar plot of used sats signal strength"
name = "polarused"
class timeplot(plotter):
"Time drift against PPS."
name = "time"
requires_time = True
def __init__(self):
plotter.__init__(self)
self.watch = set(['PPS'])
def sample(self):
"Grab samples"
if self.session.data["class"] == "PPS":
self.fixes.append((self.session.data['real_sec'],
self.session.data['real_nsec'],
self.session.data['clock_sec'],
self.session.data['clock_nsec']))
return True
def header(self):
"Return header"
return "# Time drift against PPS, %s\n" % self.whatami()
def postprocess(self):
"Postprocess the sample data"
pass
def data(self):
"Format data for dump"
res = ""
for (real_sec, real_nsec, clock_sec, clock_nsec) in self.fixes:
res += "%d\t%d\t%d\t%d\n" % (real_sec, real_nsec, clock_sec,
clock_nsec)
return res
def plot(self):
"Format data for dump"
fmt = '''\
set autoscale
set key below
set ylabel "System clock delta from GPS time (nsec)"
plot "-" using 0:((column(1)-column(3))*1e9 + (column(2)-column(4))) \
title "Delta" with impulses
'''
return fmt + self.header() + self.data()
class uninstrumented(plotter):
"Total times without instrumentation."
name = "uninstrumented"
requires_time = False
def __init__(self):
plotter.__init__(self)
def sample(self):
"Grab samples"
if self.session.fix.time:
seconds = time.time() - gps.misc.isotime(self.session.data.time)
self.fixes.append(seconds)
return True
return False
def header(self):
"Return header"
return "# Uninstrumented total latency, " + self.whatami() + "\n"
def postprocess(self):
"Postprocess the sample data"
pass
def data(self):
"Format data for dump"
res = ""
for seconds in self.fixes:
res += "%2.6lf\n" % seconds
return res
def plot(self):
"Plot the data"
fmt = '''\
set autoscale
set key below
set key title "Uninstrumented total latency"
plot "-" using 0:1 title "Total time" with impulses
'''
return fmt + self.header() + self.data()