-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathBAFregress.c
523 lines (483 loc) · 23.1 KB
/
BAFregress.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/* The MIT License
Copyright (C) 2024 Giulio Genovese
Author: Giulio Genovese <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <unistd.h>
#include <getopt.h>
#include <errno.h>
#include <htslib/vcf.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcfutils.h>
#include <htslib/ksort.h>
#include "bcftools.h"
#define BAFREGRESS_VERSION "2024-07-09"
#define GT_NC 0
#define GT_AA 1
#define GT_AB 2
#define GT_BB 3
KSORT_INIT_GENERIC(float)
/******************************************
* PLUGIN *
******************************************/
inline static double sqr(double x) { return x * x; }
const char *about(void) { return "Detects and estimates sample contamination using BAF intensity data.\n"; }
static const char *usage_text(void) {
return "\n"
"About: Detects and estimates sample contamination. (version " BAFREGRESS_VERSION
" http://github.com/freeseek/gtc2vcf)\n"
"[ Jun, G. et al. Detecting and Estimating Contamination of Human DNA Samples in Sequencing\n"
"and Array-Based Genotype Data. AJHG 91, 839-848 (2012) http://doi.org/10.1016/j.ajhg.2012.09.004 ]\n"
"\n"
"Usage: bcftools +BAFregress [options] <in.vcf.gz>\n"
"\n"
"Plugin options:\n"
" --threshold <float> minimum allele frequency for BAF regression [0.1]\n"
" -a, --af <file> file with allele frequency information\n"
" --tag <string> allele frequency INFO tag [AC/AN]\n"
" --adjust-BAF minimum number of genotypes for a cluster to median adjust BAF (-1 for "
"no adjustment) [5]\n"
" --truncate-BAF truncates BAF values between 0 and 1 and turns off adjustment to "
"recover original behavior\n"
" --use-MAF uses minor allele frequency rather than A/B allele frequency to "
"recover original behavior\n"
" -e, --estimates <file> write BAF regression estimates to a file [standard output]\n"
" -o, --output <file> write VCF output to a file\n"
" -O, --output-type u|b|v|z[0-9] u/b: un/compressed BCF, v/z: un/compressed VCF, 0-9: compression level "
"[v]\n"
" -r, --regions <region> restrict to comma-separated list of regions\n"
" -R, --regions-file <file> restrict to regions listed in a file\n"
" --regions-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant "
"overlaps (2) [1]\n"
" -t, --targets [^]<region> similar to -r but streams rather than index-jumps. Exclude regions "
"with \"^\" prefix\n"
" -T, --targets-file [^]<file> similar to -R but streams rather than index-jumps. Exclude regions "
"with \"^\" prefix\n"
" --targets-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant "
"overlaps (2) [0]\n"
" --threads <int> number of extra output compression threads [0]\n"
" -s, --samples [^]<list> comma separated list of samples to include (or exclude with \"^\" "
"prefix)\n"
" -S, --samples-file [^]<file> file of samples to include (or exclude with \"^\" prefix)\n"
" --force-samples only warn about unknown subset samples\n"
" -W, --write-index[=FMT] Automatically index the output files [off]\n"
"\n"
"Example:\n"
" bcftools +BAFregress file.bcf\n"
" bcftools +BAFregress --tag AF file.bcf\n"
" bcftools +BAFregress --af 1kGP_high_coverage_Illumina.sites.bcf file.bcf\n"
" bcftools +BAFregress --af 1kGP_high_coverage_Illumina.sites.bcf --truncate-BAF --use-MAF file.bcf\n"
"\n";
}
int run(int argc, char **argv) {
float af_threshold = 0.1;
char *af_fname = NULL;
char *af_tag = NULL;
int adj_baf = 5;
int truncate_baf = 0;
int use_maf = 0;
char *estimate_fname = "-";
char *output_fname = NULL;
int output_type = FT_VCF;
int clevel = -1;
int regions_overlap = 1;
int targets_overlap = 0;
int n_threads = 0;
char *targets_list = NULL;
int targets_is_file = 0;
char *regions_list = NULL;
int regions_is_file = 0;
char *sample_names = NULL;
int sample_is_file = 0;
int force_samples = 0;
int write_index = 0;
char *index_fname;
htsFile *out_fh = NULL;
static struct option loptions[] = {{"threshold", required_argument, NULL, 1},
{"af", required_argument, NULL, 'a'},
{"tag", required_argument, NULL, 2},
{"adjust-BAF", required_argument, NULL, 3},
{"truncate-BAF", no_argument, NULL, 4},
{"use-MAF", no_argument, NULL, 5},
{"estimates", required_argument, NULL, 'e'},
{"output", required_argument, NULL, 'o'},
{"output-type", required_argument, NULL, 'O'},
{"threads", required_argument, NULL, 6},
{"regions", required_argument, NULL, 'r'},
{"regions-file", required_argument, NULL, 'R'},
{"regions-overlap", required_argument, NULL, 7},
{"targets", required_argument, NULL, 't'},
{"targets-file", required_argument, NULL, 'T'},
{"targets-overlap", required_argument, NULL, 8},
{"samples", required_argument, NULL, 's'},
{"samples-file", required_argument, NULL, 'S'},
{"force-samples", no_argument, NULL, 9},
{"write-index", optional_argument, NULL, 'W'},
{0, 0, 0, 0}};
int c;
char *tmp;
while ((c = getopt_long(argc, argv, "h?a:e:o:O:r:R:t:T:s:S:", loptions, NULL)) >= 0) {
switch (c) {
case 1:
af_threshold = strtof(optarg, &tmp);
if (*tmp) error("Could not parse: --threshold %s\n", optarg);
if (af_threshold <= 0.0 || af_threshold >= 1.0) error("--threshold must input a value between 0 and 1\n");
break;
case 'a':
af_fname = optarg;
break;
case 2:
af_tag = optarg;
break;
case 3:
adj_baf = (int)strtol(optarg, &tmp, 0);
if (*tmp) error("Could not parse: --adjust-BAF %s\n", optarg);
break;
case 4:
truncate_baf = 1;
break;
case 5:
use_maf = 1;
break;
case 'e':
estimate_fname = optarg;
break;
case 'o':
output_fname = optarg;
break;
case 'O':
switch (optarg[0]) {
case 'b':
output_type = FT_BCF_GZ;
break;
case 'u':
output_type = FT_BCF;
break;
case 'z':
output_type = FT_VCF_GZ;
break;
case 'v':
output_type = FT_VCF;
break;
default: {
clevel = strtol(optarg, &tmp, 10);
if (*tmp || clevel < 0 || clevel > 9) error("The output type \"%s\" not recognised\n", optarg);
}
};
if (optarg[1]) {
clevel = strtol(optarg + 1, &tmp, 10);
if (*tmp || clevel < 0 || clevel > 9)
error("Could not parse argument: --compression-level %s\n", optarg + 1);
}
break;
case 6:
n_threads = strtol(optarg, &tmp, 0);
if (*tmp) error("Could not parse argument: --threads %s\n", optarg);
break;
case 'r':
regions_list = optarg;
break;
case 'R':
regions_list = optarg;
regions_is_file = 1;
break;
case 7:
if (!strcasecmp(optarg, "0"))
regions_overlap = 0;
else if (!strcasecmp(optarg, "1"))
regions_overlap = 1;
else if (!strcasecmp(optarg, "2"))
regions_overlap = 2;
else
error("Could not parse: --regions-overlap %s\n", optarg);
break;
case 't':
targets_list = optarg;
break;
case 'T':
targets_list = optarg;
targets_is_file = 1;
break;
case 8:
if (!strcasecmp(optarg, "0"))
targets_overlap = 0;
else if (!strcasecmp(optarg, "1"))
targets_overlap = 1;
else if (!strcasecmp(optarg, "2"))
targets_overlap = 2;
else
error("Could not parse: --targets-overlap %s\n", optarg);
break;
case 's':
sample_names = optarg;
break;
case 'S':
sample_names = optarg;
sample_is_file = 1;
break;
case 9:
force_samples = 1;
break;
case 'W':
if (!(write_index = write_index_parse(optarg))) error("Unsupported index format '%s'\n", optarg);
break;
case 'h':
case '?':
default:
error("%s", usage_text());
break;
}
}
if (truncate_baf) adj_baf = -1;
char *input_fname = NULL;
if (optind == argc) {
if (!isatty(fileno((FILE *)stdin))) {
input_fname = "-"; // reading from stdin
} else {
error("%s", usage_text());
}
} else if (optind + 1 != argc) {
error("%s", usage_text());
} else {
input_fname = argv[optind];
}
bcf_srs_t *srs = bcf_sr_init();
if (af_fname) {
bcf_sr_set_opt(srs, BCF_SR_REQUIRE_IDX);
bcf_sr_set_opt(srs, BCF_SR_PAIR_LOGIC, BCF_SR_PAIR_EXACT);
}
if (regions_list) {
bcf_sr_set_opt(srs, BCF_SR_REGIONS_OVERLAP, regions_overlap);
if (bcf_sr_set_regions(srs, regions_list, regions_is_file) < 0)
error("Failed to read the regions: %s\n", regions_list);
}
if (targets_list) {
bcf_sr_set_opt(srs, BCF_SR_TARGETS_OVERLAP, targets_overlap);
if (bcf_sr_set_targets(srs, targets_list, targets_is_file, 0) < 0)
error("Failed to read the targets: %s\n", targets_list);
}
if (bcf_sr_set_threads(srs, n_threads) < 0) error("Failed to create threads\n");
if (!bcf_sr_add_reader(srs, input_fname))
error("Failed to open %s: %s\n", input_fname, bcf_sr_strerror(srs->errnum));
if (af_fname && !bcf_sr_add_reader(srs, af_fname))
error("Failed to open %s: %s\n", af_fname, bcf_sr_strerror(srs->errnum));
bcf_hdr_t *hdr = bcf_sr_get_header(srs, 0);
bcf_hdr_t *af_hdr = af_fname ? bcf_sr_get_header(srs, 1) : NULL;
if (sample_names) {
int ret = bcf_hdr_set_samples(hdr, sample_names, sample_is_file);
if (ret < 0)
error("Error parsing the list of samples: %s\n", sample_names);
else if (force_samples && ret > 0)
error("Sample name mismatch: sample #%d not found in the header\n", ret);
}
// get IDs for all VCF formats
int gt_id = bcf_hdr_id2int(hdr, BCF_DT_ID, "GT");
if (gt_id < 0) error("Format GT was not found in the input header\n");
int baf_id = bcf_hdr_id2int(hdr, BCF_DT_ID, "BAF");
if (baf_id < 0) error("Format BAF was not found in the input header\n");
int allele_a_id = bcf_hdr_id2int(hdr, BCF_DT_ID, "ALLELE_A");
if (allele_a_id < 0) error("Format ALLELE_A was not found in the input header\n");
int allele_b_id = bcf_hdr_id2int(hdr, BCF_DT_ID, "ALLELE_B");
if (allele_b_id < 0) error("Format ALLELE_B was not found in the input header\n");
int af_id = -1;
if (af_tag) {
af_id = bcf_hdr_id2int(af_hdr ? af_hdr : hdr, BCF_DT_ID, af_tag);
if (af_id < 0) error("Format %s was not found in the allele frequency header\n", af_tag);
}
FILE *est_fh = strcmp("-", estimate_fname) ? fopen(estimate_fname, "w") : stdout;
if (!est_fh) error("Error: cannot write to %s\n", estimate_fname);
// output VCF
if (output_fname) {
char wmode[8];
set_wmode(wmode, output_type, output_fname, clevel);
out_fh = hts_open(output_fname, wmode);
if (out_fh == NULL) error("[%s] Error: cannot write to \"%s\": %s\n", __func__, output_fname, strerror(errno));
if (n_threads) hts_set_opt(out_fh, HTS_OPT_THREAD_POOL, srs->p);
if (bcf_hdr_write(out_fh, hdr) < 0) error("Unable to write to output VCF file\n");
if (init_index2(out_fh, hdr, output_fname, &index_fname, write_index) < 0)
error("Error: failed to initialise index for %s\n", output_fname);
}
int n_smpls = bcf_hdr_nsamples(hdr);
if (!af_hdr && !af_tag && n_smpls < 30)
fprintf(
stderr,
"Input VCF only includes %d samples. We recommend using a separate VCF to infer marker allele frequency\n",
n_smpls);
int *arr = NULL;
int marr = 0;
float *baf_arr = NULL;
int nbaf_arr = 0;
int8_t *gts = (int8_t *)calloc(n_smpls, sizeof(int8_t));
float *tmp_arr = (float *)calloc(n_smpls, sizeof(float));
float *sumx2 = (float *)calloc(n_smpls, sizeof(float));
float *sumxy = (float *)calloc(n_smpls, sizeof(float));
float *sumx = (float *)calloc(n_smpls, sizeof(float));
float *sumy = (float *)calloc(n_smpls, sizeof(float));
int *n = (int *)calloc(n_smpls, sizeof(int));
// run through each record present in both VCFs
int i, j;
while (bcf_sr_next_line(srs)) {
bcf1_t *line = bcf_sr_get_line(srs, 0);
if (!line) continue;
if (out_fh && bcf_write1(out_fh, hdr, line) != 0)
error("[%s] Error: cannot write to %s\n", __func__, output_fname);
bcf1_t *af_line = af_hdr ? bcf_sr_get_line(srs, 1) : line;
if (line->n_allele != 2 || !af_line || af_line->n_allele != 2) continue;
// skip lines where the allele frequency is less than 0.01 (or greater than 0.99)
double af;
if (af_tag) {
bcf_info_t *af_info = bcf_get_info_id(af_line, af_id);
af = af_info ? (double)af_info->v1.f : NAN;
} else {
hts_expand(int, af_line->n_allele, marr, arr);
int ret = bcf_calc_ac(af_hdr ? af_hdr : hdr, af_line, arr, BCF_UN_INFO | BCF_UN_FMT);
if (ret <= 0) continue;
int an = 0;
for (i = 0; i < af_line->n_allele; i++) an += arr[i];
af = (double)arr[1] / (double)an;
}
if (isnan(af) || af < af_threshold || af > 1.0 - af_threshold) continue;
if (use_maf && af > 0.5) af = 1.0 - af; // uses MAF instead of AF to avoid problems with flipped Illumina probes
// skip lines where ALLELE_A and ALLELE_B refer to alleles missing from the record (it should not happen)
bcf_info_t *allele_a_info = bcf_get_info_id(line, allele_a_id);
int8_t allele_a = allele_a_info ? (int8_t)allele_a_info->v1.i : bcf_int8_missing;
bcf_info_t *allele_b_info = bcf_get_info_id(line, allele_b_id);
int8_t allele_b = allele_b_info ? (int8_t)allele_b_info->v1.i : bcf_int8_missing;
if (allele_a < 0 || allele_a >= line->n_allele || allele_b < 0 || allele_b >= line->n_allele) continue;
if (allele_b == 0) af = 1.0 - af; // flip the allele frequency if ALLELE_B is the reference
// skip lines missing genotypes (e.g. intensity only sites) or with ploidy other than 2
int n_aa = 0, n_ab = 0, n_bb = 0;
bcf_fmt_t *gt_fmt = bcf_get_fmt_id(line, gt_id);
if (!gt_fmt || gt_fmt->n != 2) continue;
#define BRANCH(type_t, bcf_type_vector_end) \
{ \
type_t *p = (type_t *)gt_fmt->p; \
for (i = 0; i < n_smpls; i++, p += 2) { \
gts[i] = GT_NC; \
if (p[0] == bcf_type_vector_end || bcf_gt_is_missing(p[0]) || p[1] == bcf_type_vector_end \
|| bcf_gt_is_missing(p[1])) \
continue; \
type_t allele_0 = bcf_gt_allele(p[0]); \
type_t allele_1 = bcf_gt_allele(p[1]); \
if (allele_0 == allele_a && allele_1 == allele_a) { \
gts[i] = GT_AA; \
n_aa++; \
} else if ((allele_0 == allele_a && allele_1 == allele_b) \
|| (allele_0 == allele_b && allele_1 == allele_a)) { \
gts[i] = GT_AB; \
n_ab++; \
} else if (allele_0 == allele_b && allele_1 == allele_b) { \
gts[i] = GT_BB; \
n_bb++; \
} \
} \
}
switch (gt_fmt->type) {
case BCF_BT_INT8:
BRANCH(int8_t, bcf_int8_vector_end);
break;
case BCF_BT_INT16:
BRANCH(int16_t, bcf_int16_vector_end);
break;
case BCF_BT_INT32:
BRANCH(int32_t, bcf_int32_vector_end);
break;
default:
error("Unexpected type %d\n", gt_fmt->type);
}
#undef BRANCH
int nbaf = bcf_get_format_float(hdr, line, "BAF", &baf_arr, &nbaf_arr);
if (nbaf != n_smpls) continue; // wrong number of BAF values
// adjust BAF
float adj_baf_aa = 0.0;
float adj_baf_bb = 0.0;
if (adj_baf != -1) {
j = 0;
if (n_aa >= adj_baf) {
for (i = 0; i < n_smpls; i++)
if (gts[i] == GT_AA) tmp_arr[j++] = baf_arr[i];
adj_baf_aa = ks_ksmall_float((size_t)j, tmp_arr, (size_t)j / 2);
if (j % 2 == 0) adj_baf_aa = (adj_baf_aa + tmp_arr[j / 2 - 1]) * 0.5f;
}
j = 0;
if (n_bb >= adj_baf) {
for (i = 0; i < n_smpls; i++)
if (gts[i] == GT_BB) tmp_arr[j++] = baf_arr[i];
adj_baf_bb = ks_ksmall_float((size_t)j, tmp_arr, (size_t)j / 2);
if (j % 2 == 0) adj_baf_bb = (adj_baf_bb + tmp_arr[j / 2 - 1]) * 0.5f;
adj_baf_bb -= 1.0;
}
} else if (truncate_baf) { // truncates the BAF between 0.0 and 1.0 like Illumina does
for (i = 0; i < n_smpls; i++) {
if (baf_arr[i] < 0.0)
baf_arr[i] = 0.0;
else if (baf_arr[i] > 1.0)
baf_arr[i] = 1.0;
}
}
for (i = 0; i < n_smpls; i++) {
double baf;
if (gts[i] == GT_AA) {
baf = (double)(baf_arr[i] - adj_baf_aa);
sumx2[i] += sqr(af);
sumxy[i] += af * baf;
sumx[i] += af;
sumy[i] += baf;
} else if (gts[i] == GT_BB) {
baf = (double)(baf_arr[i] - adj_baf_bb);
sumx2[i] += sqr(1.0 - af);
sumxy[i] += (1.0 - af) * (1.0 - baf);
sumx[i] += 1.0 - af;
sumy[i] += 1.0 - baf;
} else
continue;
n[i]++;
}
}
fprintf(est_fh, "sample_id\tbaf_regress\tNhom\n");
for (i = 0; i < n_smpls; i++) {
double denom = (double)n[i] * sumx2[i] - sqr(sumx[i]);
double m = denom ? (n[i] * sumxy[i] - sumx[i] * sumy[i]) / denom : NAN;
// double b = denom ? (sumy[i] * sumx2[i] - sumx[i] * sumxy[i]) / denom : NAN;
fprintf(est_fh, "%s\t%.4f\t%d\n", hdr->samples[i], m, n[i]);
}
if (est_fh != stdout && est_fh != stderr) fclose(est_fh);
// close output VCF
if (output_fname) {
if (write_index) {
if (bcf_idx_save(out_fh) < 0) {
if (hts_close(out_fh) != 0)
error("Close failed %s\n", strcmp(output_fname, "-") ? output_fname : "stdout");
error("Error: cannot write to index %s\n", index_fname);
}
free(index_fname);
}
hts_close(out_fh);
}
free(arr);
free(baf_arr);
free(gts);
free(tmp_arr);
free(sumx2);
free(sumxy);
free(sumx);
free(sumy);
free(n);
bcf_sr_destroy(srs);
return 0;
}