-
Notifications
You must be signed in to change notification settings - Fork 2
/
index.aux
1616 lines (1616 loc) · 233 KB
/
index.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand\BKM@entry[2]{}
\aioptions{0|{vv }{ll}{, f.}{, jj}|5|5|pages}
\aifilename{index.ain}
\BKM@entry{id=1,dest={636861707465722A2E32},srcline={381}}{5C3337365C3337375C303030505C303030725C303030655C303030665C303030615C303030635C30303065}
\BKM@entry{id=2,dest={73656374696F6E2A2E33},srcline={411}}{5C3337365C3337375C3030304F5C3030304E5C303030455C3030302C5C3030305C3034305C303030545C303030575C3030304F5C3030302C5C3030305C3034305C3030304D5C303030415C3030304E5C30303059}
\newlabel{preface}{{}{vii}{Preface}{chapter*.2}{}}
\@writefile{toc}{\contentsline {chapter}{Preface}{vii}{chapter*.2}\protected@file@percent }
\newlabel{one-two-many}{{}{vii}{ONE, TWO, MANY}{section*.3}{}}
\@writefile{toc}{\contentsline {section}{ONE, TWO, MANY}{vii}{section*.3}\protected@file@percent }
\BKM@entry{id=3,dest={73656374696F6E2A2E34},srcline={466}}{5C3337365C3337375C303030465C3030306C5C303030615C303030745C3030306C5C303030615C3030306E5C30303064}
\citation{ref-Abbott:1884}
\citation{ref-Abbott:1884}
\newlabel{flatland}{{}{viii}{Flatland}{section*.4}{}}
\@writefile{toc}{\contentsline {section}{Flatland}{viii}{section*.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces A 2D Flatlander seeing a sphere as it passes through Flatland. The line, labeled `My Eye' indicates what the Flatlander would see. Source: Abbott (\citeproc {ref-Abbott:1884}{1884})}}{viii}{figure.caption.5}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig-flatland-spheres}{{1}{viii}{A 2D Flatlander seeing a sphere as it passes through Flatland. The line, labeled `My Eye' indicates what the Flatlander would see. Source: Abbott (\citeproc {ref-Abbott:1884}{1884})}{figure.caption.5}{}}
\citation{ref-Cajori:1926}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Geometrical objects in 1 to 4 dimensions. One more dimension can be thought of as the trace of movement over time.}}{ix}{figure.caption.6}\protected@file@percent }
\newlabel{fig-1D-4D}{{2}{ix}{Geometrical objects in 1 to 4 dimensions. One more dimension can be thought of as the trace of movement over time}{figure.caption.6}{}}
\BKM@entry{id=4,dest={73656374696F6E2A2E37},srcline={601}}{5C3337365C3337375C303030455C303030555C303030525C303030455C3030304B5C303030415C30303021}
\citation{ref-R-rgl}
\citation{ref-R-animation}
\BKM@entry{id=5,dest={73656374696F6E2A2E39},srcline={651}}{5C3337365C3337375C3030304D5C303030755C3030306C5C303030745C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C303030735C303030635C303030695C303030655C3030306E5C303030745C303030695C303030665C303030695C303030635C3030305C3034305C303030645C303030695C303030735C303030635C3030306F5C303030765C303030655C303030725C303030695C303030655C30303073}
\citation{ref-Galton:1863}
\citation{ref-FriendlyWainer:2021:TOGS}
\citation{ref-ReavenMiller:79}
\citation{ref-Fishkeller-etal:1974b}
\citation{ref-ReavenMiller:68}
\newlabel{eureka}{{}{x}{EUREKA!}{section*.7}{}}
\@writefile{toc}{\contentsline {section}{EUREKA!}{x}{section*.7}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Four views of the \texttt {pollen} data, zooming in, clockwise from the upper left to discover the word ``EUREKA''.}}{x}{figure.caption.8}\protected@file@percent }
\newlabel{fig-pollen-eureka}{{3}{x}{Four views of the \texttt {pollen} data, zooming in, clockwise from the upper left to discover the word ``EUREKA''}{figure.caption.8}{}}
\newlabel{sec-discoveries}{{}{x}{Multivariate scientific discoveries}{section*.9}{}}
\@writefile{toc}{\contentsline {subsection}{Multivariate scientific discoveries}{x}{section*.9}\protected@file@percent }
\citation{ref-ReavenMiller:68}
\citation{ref-ReavenMiller:79}
\citation{ref-ReavenMiller:79}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Reproduction of a graph similar to that from Reaven \& Miller (\citeproc {ref-ReavenMiller:68}{1968}) on the relationship between glucose and insulin response to being given an oral dose of glucose.}}{xi}{figure.caption.10}\protected@file@percent }
\newlabel{fig-diabetes1}{{4}{xi}{Reproduction of a graph similar to that from Reaven \& Miller (\citeproc {ref-ReavenMiller:68}{1968}) on the relationship between glucose and insulin response to being given an oral dose of glucose}{figure.caption.10}{}}
\BKM@entry{id=6,dest={73656374696F6E2A2E3132},srcline={764}}{5C3337365C3337375C303030575C303030685C303030615C303030745C3030305C3034305C303030495C3030305C3034305C303030615C303030735C303030735C303030755C3030306D5C30303065}
\citation{ref-Fox2021}
\citation{ref-R-matlib}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Artist's rendition of data from Reaven \& Miller (\citeproc {ref-ReavenMiller:79}{1979}) as seen in three dimensions using the PRIM-9 system. Labels for the clusters have been added, identifying the three groups of patients. \emph {Source}: Reaven \& Miller (\citeproc {ref-ReavenMiller:79}{1979}).}}{xii}{figure.caption.11}\protected@file@percent }
\newlabel{fig-ReavenMiller-3d}{{5}{xii}{Artist's rendition of data from Reaven \& Miller (\citeproc {ref-ReavenMiller:79}{1979}) as seen in three dimensions using the PRIM-9 system. Labels for the clusters have been added, identifying the three groups of patients. \emph {Source}: Reaven \& Miller (\citeproc {ref-ReavenMiller:79}{1979})}{figure.caption.11}{}}
\newlabel{what-i-assume}{{}{xii}{What I assume}{section*.12}{}}
\@writefile{toc}{\contentsline {section}{What I assume}{xii}{section*.12}\protected@file@percent }
\citation{ref-Matloff-2011}
\citation{ref-Wickham2014}
\citation{ref-Cotton-2013}
\citation{ref-FoxWeisberg:2018}
\citation{ref-Teetor2011}
\BKM@entry{id=7,dest={73656374696F6E2A2E3133},srcline={802}}{5C3337365C3337375C303030435C3030306F5C3030306E5C303030765C303030655C3030306E5C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030755C303030735C303030655C303030645C3030305C3034305C303030695C3030306E5C3030305C3034305C303030745C303030685C303030695C303030735C3030305C3034305C303030625C3030306F5C3030306F5C3030306B}
\citation{ref-R-lattice}
\newlabel{conventions-used-in-this-book}{{}{xiii}{Conventions used in this book}{section*.13}{}}
\@writefile{toc}{\contentsline {section}{Conventions used in this book}{xiii}{section*.13}\protected@file@percent }
\BKM@entry{id=8,dest={706172742E31},srcline={843}}{5C3337365C3337375C303030495C3030305C3034305C3030304F5C303030725C303030695C303030655C3030306E5C303030745C303030695C3030306E5C303030675C3030305C3034305C303030495C303030645C303030655C303030615C30303073}
\@writefile{toc}{\contentsline {part}{I\hspace {1em}Orienting Ideas}{1}{part.1}\protected@file@percent }
\BKM@entry{id=9,dest={636861707465722E31},srcline={845}}{5C3337365C3337375C303030495C3030306E5C303030745C303030725C3030306F5C303030645C303030755C303030635C303030745C303030695C3030306F5C3030306E}
\BKM@entry{id=10,dest={73656374696F6E2E312E31},srcline={851}}{5C3337365C3337375C3030304D5C303030755C3030306C5C303030745C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C303030765C303030735C3030302E5C3030305C3034305C3030306D5C303030755C3030306C5C303030745C303030695C303030765C303030615C303030725C303030695C303030615C303030625C3030306C5C303030655C3030305C3034305C3030306D5C303030655C303030745C303030685C3030306F5C303030645C30303073}
\BKM@entry{id=11,dest={73656374696F6E2E312E32},srcline={875}}{5C3337365C3337375C303030575C303030685C303030795C3030305C3034305C303030755C303030735C303030655C3030305C3034305C303030615C3030305C3034305C3030306D5C303030755C3030306C5C303030745C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C303030645C303030655C303030735C303030695C303030675C3030306E}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{3}{chapter.1}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec-introduction}{{1}{3}{Introduction}{chapter.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Multivariate vs.~multivariable methods}{3}{section.1.1}\protected@file@percent }
\newlabel{multivariate-vs.-multivariable-methods}{{1.1}{3}{Multivariate vs.~multivariable methods}{section.1.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Why use a multivariate design}{3}{section.1.2}\protected@file@percent }
\newlabel{why-use-a-multivariate-design}{{1.2}{3}{Why use a multivariate design}{section.1.2}{}}
\BKM@entry{id=12,dest={73656374696F6E2E312E33},srcline={939}}{5C3337365C3337375C3030304C5C303030695C3030306E5C303030655C303030615C303030725C3030305C3034305C3030306D5C3030306F5C303030645C303030655C3030306C5C303030735C3030303A5C3030305C3034305C303030555C3030306E5C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C303030745C3030306F5C3030305C3034305C3030306D5C303030755C3030306C5C303030745C303030695C303030765C303030615C303030725C303030695C303030615C303030745C30303065}
\BKM@entry{id=13,dest={73656374696F6E2E312E34},srcline={967}}{5C3337365C3337375C303030565C303030695C303030735C303030755C303030615C3030306C5C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030695C303030735C3030305C3034305C303030685C303030615C303030725C303030645C303030655C30303072}
\citation{ref-Friendly-07-manova}
\citation{ref-FriendlyMeyer:2016:DDAR}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Linear models: Univariate to multivariate}{4}{section.1.3}\protected@file@percent }
\newlabel{linear-models-univariate-to-multivariate}{{1.3}{4}{Linear models: Univariate to multivariate}{section.1.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.4}Visualization is harder}{4}{section.1.4}\protected@file@percent }
\newlabel{visualization-is-harder}{{1.4}{4}{Visualization is harder}{section.1.4}{}}
\BKM@entry{id=14,dest={73656374696F6E2E312E35},srcline={1011}}{5C3337365C3337375C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D5C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C303030755C3030306E5C303030645C303030655C303030725C303030735C303030745C303030615C3030306E5C303030645C303030695C3030306E5C303030675C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030635C3030306F5C3030306D5C3030306D5C303030755C3030306E5C303030695C303030635C303030615C303030745C303030695C3030306E5C303030675C3030305C3034305C3030304D5C3030304C5C3030304D5C3030305C3034305C303030725C303030655C303030735C303030755C3030306C5C303030745C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces \textbf {Projection}: The cover image from Hofstadter's \emph {Gödel, Bach and Escher} illustrates projection of 3D solids onto each 2D plane.}}{6}{figure.caption.14}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Problems in understanding and communicating MLM results}{6}{section.1.5}\protected@file@percent }
\newlabel{sec-problems}{{1.5}{6}{Problems in understanding and communicating MLM results}{section.1.5}{}}
\BKM@entry{id=15,dest={636861707465722E32},srcline={1066}}{5C3337365C3337375C303030475C303030655C303030745C303030745C303030695C3030306E5C303030675C3030305C3034305C303030535C303030745C303030615C303030725C303030745C303030655C30303064}
\BKM@entry{id=16,dest={73656374696F6E2E322E31},srcline={1068}}{5C3337365C3337375C303030575C303030685C303030795C3030305C3034305C303030705C3030306C5C3030306F5C303030745C3030305C3034305C303030795C3030306F5C303030755C303030725C3030305C3034305C303030645C303030615C303030745C303030615C3030303F}
\citation{ref-FarquharFarquhar:91}
\citation{ref-Playfair:1786}
\citation{ref-Playfair:1801}
\citation{ref-Herschel:1833}
\citation{ref-Guerry:1833}
\citation{ref-Galton:1886}
\citation{ref-Pearson:1896}
\citation{ref-Funkhouser:1937}
\citation{ref-Friendly:2008:golden}
\citation{ref-FriendlyWainer:2021:TOGS}
\BKM@entry{id=17,dest={73756273656374696F6E2E322E312E31},srcline={1105}}{5C3337365C3337375C303030415C3030306E5C303030735C303030635C3030306F5C3030306D5C303030625C303030655C303030275C303030735C3030305C3034305C303030515C303030755C303030615C303030725C303030745C303030655C30303074}
\citation{ref-Anscombe:73}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Getting Started}{9}{chapter.2}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec-getting_started}{{2}{9}{Getting Started}{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Why plot your data?}{9}{section.2.1}\protected@file@percent }
\newlabel{sec-why_plot}{{2.1}{9}{Why plot your data?}{section.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1.1}Anscombe's Quartet}{9}{subsection.2.1.1}\protected@file@percent }
\newlabel{sec-anscombe}{{2.1.1}{9}{Anscombe's Quartet}{subsection.2.1.1}{}}
\citation{ref-R-datasauRus}
\citation{ref-MatejkaFitzmaurice2017}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Scatterplots of Anscombe's Quartet. Each plot shows the fitted regression line and a 68\% data ellipse representing the correlation between \(x\) and \(y\).}}{11}{figure.caption.15}\protected@file@percent }
\newlabel{fig-ch02-anscombe1}{{2.1}{11}{Scatterplots of Anscombe's Quartet. Each plot shows the fitted regression line and a 68\% data ellipse representing the correlation between \(x\) and \(y\)}{figure.caption.15}{}}
\citation{ref-Gelman-etal:2023}
\citation{ref-McGowan2023}
\citation{ref-Biecek-etal:2023}
\BKM@entry{id=18,dest={73756273656374696F6E2E322E312E32},srcline={1313}}{5C3337365C3337375C303030415C3030305C3034305C303030725C303030655C303030615C3030306C5C3030305C3034305C303030655C303030785C303030615C3030306D5C303030705C3030306C5C30303065}
\citation{ref-Davis:1990}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1.2}A real example}{12}{subsection.2.1.2}\protected@file@percent }
\newlabel{sec-davis}{{2.1.2}{12}{A real example}{subsection.2.1.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Regression for Davis' data on reported weight and measures weight for men and women. Separate regression lines, predicting reported weight from measured weight are shown for males and females. One highly unusual point is highlighted.}}{14}{figure.caption.16}\protected@file@percent }
\newlabel{fig-ch02-davis-reg1}{{2.2}{14}{Regression for Davis' data on reported weight and measures weight for men and women. Separate regression lines, predicting reported weight from measured weight are shown for males and females. One highly unusual point is highlighted}{figure.caption.16}{}}
\BKM@entry{id=19,dest={73656374696F6E2E322E32},srcline={1457}}{5C3337365C3337375C303030505C3030306C5C3030306F5C303030745C303030735C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C303030645C303030615C303030745C303030615C3030305C3034305C303030615C3030306E5C303030615C3030306C5C303030795C303030735C303030695C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Regression for Davis' data on reported weight and measures weight for men and women. Separate regression lines, predicting measured weight from reported weight are shown for males and females. The highly unusual point no longer has an effect on the fitted lines.}}{15}{figure.caption.17}\protected@file@percent }
\newlabel{fig-ch02-davis-reg2}{{2.3}{15}{Regression for Davis' data on reported weight and measures weight for men and women. Separate regression lines, predicting measured weight from reported weight are shown for males and females. The highly unusual point no longer has an effect on the fitted lines}{figure.caption.17}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Plots for data analysis}{15}{section.2.2}\protected@file@percent }
\newlabel{plots-for-data-analysis}{{2.2}{15}{Plots for data analysis}{section.2.2}{}}
\BKM@entry{id=20,dest={73656374696F6E2E322E33},srcline={1502}}{5C3337365C3337375C303030445C303030615C303030745C303030615C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\BKM@entry{id=21,dest={73656374696F6E2E322E34},srcline={1516}}{5C3337365C3337375C3030304D5C3030306F5C303030645C303030655C3030306C5C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\BKM@entry{id=22,dest={73656374696F6E2E322E35},srcline={1521}}{5C3337365C3337375C303030445C303030695C303030615C303030675C3030306E5C3030306F5C303030735C303030745C303030695C303030635C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\BKM@entry{id=23,dest={73656374696F6E2E322E36},srcline={1524}}{5C3337365C3337375C303030505C303030725C303030695C3030306E5C303030635C303030695C303030705C3030306C5C303030655C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030675C303030725C303030615C303030705C303030685C303030695C303030635C303030615C3030306C5C3030305C3034305C303030645C303030695C303030735C303030705C3030306C5C303030615C30303079}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Data plots}{16}{section.2.3}\protected@file@percent }
\newlabel{data-plots}{{2.3}{16}{Data plots}{section.2.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Model plots}{16}{section.2.4}\protected@file@percent }
\newlabel{model-plots}{{2.4}{16}{Model plots}{section.2.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.5}Diagnostic plots}{16}{section.2.5}\protected@file@percent }
\newlabel{diagnostic-plots}{{2.5}{16}{Diagnostic plots}{section.2.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.6}Principles of graphical display}{16}{section.2.6}\protected@file@percent }
\newlabel{principles-of-graphical-display}{{2.6}{16}{Principles of graphical display}{section.2.6}{}}
\BKM@entry{id=24,dest={706172742E32},srcline={1555}}{5C3337365C3337375C303030495C303030495C3030305C3034305C303030455C303030785C303030705C3030306C5C3030306F5C303030725C303030615C303030745C3030306F5C303030725C303030795C3030305C3034305C3030304D5C303030655C303030745C303030685C3030306F5C303030645C30303073}
\@writefile{toc}{\contentsline {part}{II\hspace {1em}Exploratory Methods}{19}{part.2}\protected@file@percent }
\BKM@entry{id=25,dest={636861707465722E33},srcline={1557}}{5C3337365C3337375C303030505C3030306C5C3030306F5C303030745C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304D5C303030755C3030306C5C303030745C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C303030445C303030615C303030745C30303061}
\BKM@entry{id=26,dest={73656374696F6E2E332E31},srcline={1612}}{5C3337365C3337375C303030425C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C303030735C303030755C3030306D5C3030306D5C303030615C303030725C303030695C303030655C30303073}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Plots of Multivariate Data}{21}{chapter.3}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec-multivariate_plots}{{3}{21}{Plots of Multivariate Data}{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Bivariate summaries}{21}{section.3.1}\protected@file@percent }
\newlabel{sec-bivariate_summaries}{{3.1}{21}{Bivariate summaries}{section.3.1}{}}
\BKM@entry{id=27,dest={73756273656374696F6E2E332E312E31},srcline={1719}}{5C3337365C3337375C303030535C3030306D5C3030306F5C3030306F5C303030745C303030685C303030655C303030725C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Naive scatterplot of Salary vs.~years since PhD, ignoring other variables, and without graphical annotations.}}{23}{figure.caption.18}\protected@file@percent }
\newlabel{fig-Salaries-scat}{{3.1}{23}{Naive scatterplot of Salary vs.~years since PhD, ignoring other variables, and without graphical annotations}{figure.caption.18}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Smoothers}{23}{subsection.3.1.1}\protected@file@percent }
\newlabel{smoothers}{{3.1.1}{23}{Smoothers}{subsection.3.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Scatterplot of Salary vs.~years since PhD, showing \textcolor {red}{linear} and \textcolor {darkgreen}{quadratic} smooths with 95\% confidence bands.}}{24}{figure.caption.19}\protected@file@percent }
\newlabel{fig-Salaries-lm}{{3.2}{24}{Scatterplot of Salary vs.~years since PhD, showing \textcolor {red}{linear} and \textcolor {darkgreen}{quadratic} smooths with 95\% confidence bands}{figure.caption.19}{}}
\citation{ref-Cleveland:79}
\citation{ref-ClevelandDevlin:88}
\citation{ref-Fox:2016:ARA}
\citation{ref-Wood:2006}
\newlabel{non-parametric-smoothers}{{3.1.1}{25}{Non-parametric smoothers}{section*.20}{}}
\@writefile{toc}{\contentsline {subsubsection}{Non-parametric smoothers}{25}{section*.20}\protected@file@percent }
\BKM@entry{id=28,dest={73756273656374696F6E2E332E312E32},srcline={1875}}{5C3337365C3337375C303030535C303030745C303030725C303030615C303030745C303030695C303030665C303030695C303030655C303030725C30303073}
\citation{ref-ChambersHastie1991}
\citation{ref-Becker:1996:VDC}
\citation{ref-Cleveland:85}
\citation{ref-R-lattice}
\citation{ref-R-car}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Scatterplot of Salary vs.~years since PhD, adding the loess smooth. The loess smooth curve and confidence band in \textcolor {green}{green} is nearly indistinguishable from a quadratic fit in \textcolor {blue}{blue}.}}{26}{figure.caption.21}\protected@file@percent }
\newlabel{fig-Salaries-loess}{{3.3}{26}{Scatterplot of Salary vs.~years since PhD, adding the loess smooth. The loess smooth curve and confidence band in \textcolor {green}{green} is nearly indistinguishable from a quadratic fit in \textcolor {blue}{blue}}{figure.caption.21}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Stratifiers}{26}{subsection.3.1.2}\protected@file@percent }
\newlabel{stratifiers}{{3.1.2}{26}{Stratifiers}{subsection.3.1.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Scatterplot of Salary vs.~years since PhD, grouped by rank.}}{28}{figure.caption.22}\protected@file@percent }
\newlabel{fig-Salaries-rank}{{3.4}{28}{Scatterplot of Salary vs.~years since PhD, grouped by rank}{figure.caption.22}{}}
\BKM@entry{id=29,dest={73756273656374696F6E2E332E312E33},srcline={2082}}{5C3337365C3337375C303030435C3030306F5C3030306E5C303030645C303030695C303030745C303030695C3030306F5C3030306E5C303030695C3030306E5C30303067}
\citation{ref-ClevelandMcGill:84b}
\citation{ref-ClevelandMcGill:85}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Scatterplot of Salary vs.~years since PhD, grouped by discipline.}}{29}{figure.caption.23}\protected@file@percent }
\newlabel{fig-Salaries-discipline}{{3.5}{29}{Scatterplot of Salary vs.~years since PhD, grouped by discipline}{figure.caption.23}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}Conditioning}{29}{subsection.3.1.3}\protected@file@percent }
\newlabel{conditioning}{{3.1.3}{29}{Conditioning}{subsection.3.1.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Scatterplot of Salary vs.~years since PhD, grouped by rank, with separate panels for discipline.}}{30}{figure.caption.24}\protected@file@percent }
\newlabel{fig-Salaries-faceted}{{3.6}{30}{Scatterplot of Salary vs.~years since PhD, grouped by rank, with separate panels for discipline}{figure.caption.24}{}}
\BKM@entry{id=30,dest={73656374696F6E2E332E32},srcline={2184}}{5C3337365C3337375C303030445C303030615C303030745C303030615C3030305C3034305C303030455C3030306C5C3030306C5C303030695C303030705C303030735C303030655C30303073}
\citation{ref-Monette:90}
\citation{ref-Dempster:69}
\citation{ref-Friendly-etal:ellipses:2013}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Scatterplot of Salary vs.~years since PhD, grouped by sex, faceted by discipline and rank.}}{32}{figure.caption.25}\protected@file@percent }
\newlabel{fig-Salaries-facet-sex}{{3.7}{32}{Scatterplot of Salary vs.~years since PhD, grouped by sex, faceted by discipline and rank}{figure.caption.25}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Data Ellipses}{32}{section.3.2}\protected@file@percent }
\newlabel{sec-data-ellipse}{{3.2}{32}{Data Ellipses}{section.3.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces 2D data with curves of constant distance from the centroid. The blue solid ellipse shows a contour of constant Mahalanobis distance, taking the correlation into account; the dashed red circle is a contour of equal Euclidean distance. Given the data points, Which of the points \textbf {A} and \textbf {B} is further from the mean (X)? \emph {Source}: Re-drawn from \href {https://ouzhang.rbind.io/2020/11/16/outliers-part4/}{Ou Zhang}}}{33}{figure.caption.26}\protected@file@percent }
\newlabel{fig-mahalanobis}{{3.8}{33}{2D data with curves of constant distance from the centroid. The blue solid ellipse shows a contour of constant Mahalanobis distance, taking the correlation into account; the dashed red circle is a contour of equal Euclidean distance. Given the data points, Which of the points \textbf {A} and \textbf {B} is further from the mean (X)? \emph {Source}: Re-drawn from \href {https://ouzhang.rbind.io/2020/11/16/outliers-part4/}{Ou Zhang}}{figure.caption.26}{}}
\newlabel{eq-Dsq}{{3.1}{33}{Data Ellipses}{section*.27}{}}
\BKM@entry{id=31,dest={73756273656374696F6E2E332E322E31},srcline={2287}}{5C3337365C3337375C303030455C3030306C5C3030306C5C303030695C303030705C303030735C303030655C3030305C3034305C303030705C303030725C3030306F5C303030705C303030655C303030725C303030745C303030695C303030655C30303073}
\citation{ref-Galton:1886}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Ellipse properties}{34}{subsection.3.2.1}\protected@file@percent }
\newlabel{ellipse-properties}{{3.2.1}{34}{Ellipse properties}{subsection.3.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces Galton's 1886 diagram, showing the relationship of height of children to the average of their parents' height. The diagram is essentially an overlay of a geometrical interpretation on a bivariate grouped frequency distribution, shown as numbers.}}{34}{figure.caption.28}\protected@file@percent }
\newlabel{fig-galton-corr}{{3.9}{34}{Galton's 1886 diagram, showing the relationship of height of children to the average of their parents' height. The diagram is essentially an overlay of a geometrical interpretation on a bivariate grouped frequency distribution, shown as numbers}{figure.caption.28}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces Sunflower plot of Galton's data on heights of parents and their children (in.), with 40\%, 68\% and 95\% data ellipses and the regression lines of \(y\) on \(x\) (black) and \(x\) on \(y\) (grey).}}{35}{figure.caption.29}\protected@file@percent }
\newlabel{fig-galton-ellipse-r}{{3.10}{35}{Sunflower plot of Galton's data on heights of parents and their children (in.), with 40\%, 68\% and 95\% data ellipses and the regression lines of \(y\) on \(x\) (black) and \(x\) on \(y\) (grey)}{figure.caption.29}{}}
\citation{ref-Pearson:1901}
\BKM@entry{id=32,dest={73756273656374696F6E2E332E322E32},srcline={2422}}{5C3337365C3337375C303030525C3030305C3034305C303030665C303030755C3030306E5C303030635C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C303030645C303030615C303030745C303030615C3030305C3034305C303030655C3030306C5C3030306C5C303030695C303030705C303030735C303030655C30303073}
\BKM@entry{id=33,dest={73756273656374696F6E2E332E322E33},srcline={2457}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C3030303A5C3030305C3034305C303030435C303030615C3030306E5C303030615C303030645C303030695C303030615C3030306E5C3030305C3034305C3030306F5C303030635C303030635C303030755C303030705C303030615C303030745C303030695C3030306F5C3030306E5C303030615C3030306C5C3030305C3034305C303030705C303030725C303030655C303030735C303030745C303030695C303030675C30303065}
\citation{ref-Blishen-etal-1987}
\citation{ref-PineoPorter2008}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}R functions for data ellipses}{36}{subsection.3.2.2}\protected@file@percent }
\newlabel{r-functions-for-data-ellipses}{{3.2.2}{36}{R functions for data ellipses}{subsection.3.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Example: Canadian occupational prestige}{36}{subsection.3.2.3}\protected@file@percent }
\newlabel{sec-prestige}{{3.2.3}{36}{Example: Canadian occupational prestige}{subsection.3.2.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces Scatterplot of prestige vs.~income, showing the linear regression line (\textcolor {red}{red}), the loess smooth with a confidence envelope (\textcolor {darkgreen}{darkgreen}) and a 68\% data ellipse. Points with the 4 largest \(D^2\) values are labeled.}}{38}{figure.caption.30}\protected@file@percent }
\newlabel{fig-Prestige-scatterplot-income1}{{3.11}{38}{Scatterplot of prestige vs.~income, showing the linear regression line (\textcolor {red}{red}), the loess smooth with a confidence envelope (\textcolor {darkgreen}{darkgreen}) and a 68\% data ellipse. Points with the 4 largest \(D^2\) values are labeled}{figure.caption.30}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces Scatterplot of prestige vs.~education, showing the linear regression line (\textcolor {red}{red}), the loess smooth with a confidence envelope (\textcolor {darkgreen}{darkgreen}) and a 68\% data ellipse.}}{39}{figure.caption.31}\protected@file@percent }
\newlabel{fig-Prestige-scatterplot-educ1}{{3.12}{39}{Scatterplot of prestige vs.~education, showing the linear regression line (\textcolor {red}{red}), the loess smooth with a confidence envelope (\textcolor {darkgreen}{darkgreen}) and a 68\% data ellipse}{figure.caption.31}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.3.1}Plotting on a log scale}{39}{subsubsection.3.2.3.1}\protected@file@percent }
\newlabel{sec-log-scale}{{3.2.3.1}{39}{Plotting on a log scale}{subsubsection.3.2.3.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Scatterplot of prestige vs.~education, labeling points whose absolute standardized residual is \textgreater {} 2.}}{40}{figure.caption.32}\protected@file@percent }
\newlabel{fig-Prestige-scatterplot-educ2}{{3.13}{40}{Scatterplot of prestige vs.~education, labeling points whose absolute standardized residual is \textgreater {} 2}{figure.caption.32}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.3.2}Stratifying}{40}{subsubsection.3.2.3.2}\protected@file@percent }
\newlabel{sec-stratifying}{{3.2.3.2}{40}{Stratifying}{subsubsection.3.2.3.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Scatterplot of prestige vs.~log(income).}}{41}{figure.caption.33}\protected@file@percent }
\newlabel{fig-Prestige-scatterplot2}{{3.14}{41}{Scatterplot of prestige vs.~log(income)}{figure.caption.33}{}}
\BKM@entry{id=34,dest={73756273656374696F6E2E332E322E34},srcline={2747}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C3030303A5C3030305C3034305C303030505C303030655C3030306E5C303030675C303030755C303030695C3030306E5C303030735C3030305C3034305C303030645C303030615C303030745C30303061}
\citation{ref-R-palmerpenguins}
\citation{ref-Gorman2014}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Scatterplot of prestige vs.~income, stratified by occupational type. This implies a different interpretation, where occupation type is a moderator variable.}}{42}{figure.caption.34}\protected@file@percent }
\newlabel{fig-Prestige-scatterplot3}{{3.15}{42}{Scatterplot of prestige vs.~income, stratified by occupational type. This implies a different interpretation, where occupation type is a moderator variable}{figure.caption.34}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.4}Example: Penguins data}{42}{subsection.3.2.4}\protected@file@percent }
\newlabel{sec-penguins}{{3.2.4}{42}{Example: Penguins data}{subsection.3.2.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces Penguin species observed in the Palmer Archipelago. This is a cartoon, but it illustrates some features of penguin body size measurements, and the colors typically used for species. Image: Allison Horst}}{43}{figure.caption.35}\protected@file@percent }
\newlabel{fig-penguin-species}{{3.16}{43}{Penguin species observed in the Palmer Archipelago. This is a cartoon, but it illustrates some features of penguin body size measurements, and the colors typically used for species. Image: Allison Horst}{figure.caption.35}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Color palettes used for penguin species.}}{44}{figure.caption.36}\protected@file@percent }
\newlabel{fig-peng-colors}{{3.17}{44}{Color palettes used for penguin species}{figure.caption.36}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Penguin bill length and bill depth according to species.}}{46}{figure.caption.37}\protected@file@percent }
\newlabel{fig-peng-ggplot1}{{3.18}{46}{Penguin bill length and bill depth according to species}{figure.caption.37}{}}
\citation{ref-Silverman:86}
\citation{ref-Scott1992}
\citation{ref-R-ggdensity}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces \textbf {Visual thinning}: Suppressing the data points gives a visual summary of the relation between bill length and bill depth using the regression line and data ellipses.}}{47}{figure.caption.38}\protected@file@percent }
\newlabel{fig-peng-ggplot2}{{3.19}{47}{\textbf {Visual thinning}: Suppressing the data points gives a visual summary of the relation between bill length and bill depth using the regression line and data ellipses}{figure.caption.38}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.4.1}Nonparamtric bivariate density plots}{47}{subsubsection.3.2.4.1}\protected@file@percent }
\newlabel{nonparamtric-bivariate-density-plots}{{3.2.4.1}{47}{Nonparamtric bivariate density plots}{subsubsection.3.2.4.1}{}}
\BKM@entry{id=35,dest={73756273656374696F6E2E332E322E35},srcline={3057}}{5C3337365C3337375C303030535C303030695C3030306D5C303030705C303030735C3030306F5C3030306E5C303030275C303030735C3030305C3034305C303030705C303030615C303030725C303030615C303030645C3030306F5C303030785C3030303A5C3030305C3034305C3030306D5C303030615C303030725C303030675C303030695C3030306E5C303030615C3030306C5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030635C3030306F5C3030306E5C303030645C303030695C303030745C303030695C3030306F5C3030306E5C303030615C3030306C5C3030305C3034305C303030725C303030655C3030306C5C303030615C303030745C303030695C3030306F5C3030306E5C303030735C303030685C303030695C303030705C30303073}
\citation{ref-Simpson:51}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces \textbf {Bivariate densities} show the contours of the 3D surface representing the frequency in the joint distribution of bill length and bill depth.}}{48}{figure.caption.39}\protected@file@percent }
\newlabel{fig-peng-ggdensity}{{3.20}{48}{\textbf {Bivariate densities} show the contours of the 3D surface representing the frequency in the joint distribution of bill length and bill depth}{figure.caption.39}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.5}Simpson's paradox: marginal and conditional relationships}{48}{subsection.3.2.5}\protected@file@percent }
\newlabel{simpsons-paradox-marginal-and-conditional-relationships}{{3.2.5}{48}{Simpson's paradox: marginal and conditional relationships}{subsection.3.2.5}{}}
\BKM@entry{id=36,dest={73656374696F6E2E332E33},srcline={3130}}{5C3337365C3337375C3030305C3035305C303030615C3030305C3035315C3030305C3034305C303030495C303030675C3030306E5C3030306F5C303030725C303030695C3030306E5C303030675C3030305C3034305C303030735C303030705C303030655C303030635C303030695C303030655C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces Marginal (a), conditional (b), and pooled within-sample (c) relationships of bill length and depth in the Penguins data. Each plot shows the 68\% data ellipse and regression line(s) with 95\% confidence bands.}}{49}{figure.caption.40}\protected@file@percent }
\newlabel{fig-peng-simpsons}{{3.21}{49}{Marginal (a), conditional (b), and pooled within-sample (c) relationships of bill length and depth in the Penguins data. Each plot shows the 68\% data ellipse and regression line(s) with 95\% confidence bands}{figure.caption.40}{}}
\BKM@entry{id=37,dest={73656374696F6E2E332E34},srcline={3155}}{5C3337365C3337375C3030305C3035305C303030625C3030305C3035315C3030305C3034305C303030425C303030795C3030305C3034305C303030735C303030705C303030655C303030635C303030695C303030655C30303073}
\BKM@entry{id=38,dest={73656374696F6E2E332E35},srcline={3183}}{5C3337365C3337375C3030305C3035305C303030635C3030305C3035315C3030305C3034305C303030575C303030695C303030745C303030685C303030695C3030306E5C3030305C3034305C303030735C303030705C303030655C303030635C303030695C303030655C30303073}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}(a) Ignoring species}{50}{section.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.4}(b) By species}{50}{section.3.4}\protected@file@percent }
\BKM@entry{id=39,dest={73656374696F6E2E332E36},srcline={3214}}{5C3337365C3337375C303030535C303030635C303030615C303030745C303030745C303030655C303030725C303030705C3030306C5C3030306F5C303030745C3030305C3034305C3030306D5C303030615C303030745C303030725C303030695C303030635C303030655C30303073}
\citation{ref-Hartigan:75b}
\@writefile{toc}{\contentsline {section}{\numberline {3.5}(c) Within species}{51}{section.3.5}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.6}Scatterplot matrices}{51}{section.3.6}\protected@file@percent }
\newlabel{sec-scatmat}{{3.6}{51}{Scatterplot matrices}{section.3.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Scatterplot matrix of the variables in the Prestige dataset produced by \texttt {pairs()}}}{52}{figure.caption.41}\protected@file@percent }
\newlabel{fig-prestige-pairs}{{3.22}{52}{Scatterplot matrix of the variables in the Prestige dataset produced by \texttt {pairs()}}{figure.caption.41}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Scatterplot matrix of the variables in the Prestige dataset from \texttt {car::scatterplotMatrix()}.}}{54}{figure.caption.42}\protected@file@percent }
\newlabel{fig-prestige-spm1}{{3.23}{54}{Scatterplot matrix of the variables in the Prestige dataset from \texttt {car::scatterplotMatrix()}}{figure.caption.42}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Scatterplot matrix of the variables in the Prestige dataset from \texttt {car::scatterplotMatrix()}, stratified by type of occupation.}}{55}{figure.caption.43}\protected@file@percent }
\newlabel{fig-prestige-spm2}{{3.24}{55}{Scatterplot matrix of the variables in the Prestige dataset from \texttt {car::scatterplotMatrix()}, stratified by type of occupation}{figure.caption.43}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Scatterplot matrix of the variables in the penguins dataset, stratified by species.}}{57}{figure.caption.44}\protected@file@percent }
\newlabel{fig-peng-spm}{{3.25}{57}{Scatterplot matrix of the variables in the penguins dataset, stratified by species}{figure.caption.44}{}}
\BKM@entry{id=40,dest={73756273656374696F6E2E332E362E31},srcline={3434}}{5C3337365C3337375C303030565C303030695C303030735C303030755C303030615C3030306C5C3030305C3034305C303030745C303030685C303030695C3030306E5C3030306E5C303030695C3030306E5C30303067}
\citation{ref-Hartigan:75}
\citation{ref-Friendly:91}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.1}Visual thinning}{58}{subsection.3.6.1}\protected@file@percent }
\newlabel{visual-thinning}{{3.6.1}{58}{Visual thinning}{subsection.3.6.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces \textbf {Visual thinning}: Scatterplot matrix of the crime data, showing only high-level summaries of the linear and nonlinear relations betgween each pair of variables.}}{59}{figure.caption.45}\protected@file@percent }
\newlabel{fig-crime-spm}{{3.26}{59}{\textbf {Visual thinning}: Scatterplot matrix of the crime data, showing only high-level summaries of the linear and nonlinear relations betgween each pair of variables}{figure.caption.45}{}}
\BKM@entry{id=41,dest={73756273656374696F6E2E332E362E32},srcline={3507}}{5C3337365C3337375C303030435C3030306F5C303030725C303030725C303030675C303030725C303030615C3030306D5C30303073}
\citation{ref-Friendly:02:corrgram}
\citation{ref-FriendlyKwan:03:effect}
\citation{ref-R-corrgram}
\citation{ref-R-corrplot}
\citation{ref-Friendly:02:corrgram}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.2}Corrgrams}{60}{subsection.3.6.2}\protected@file@percent }
\newlabel{sec-corrgram}{{3.6.2}{60}{Corrgrams}{subsection.3.6.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces \textbf {Corrgrams}: Some renderings for the value of a correlation in a corrgram display, conveying sign and magnitude in different ways.}}{60}{figure.caption.46}\protected@file@percent }
\newlabel{fig-corrgram-renderings}{{3.27}{60}{\textbf {Corrgrams}: Some renderings for the value of a correlation in a corrgram display, conveying sign and magnitude in different ways}{figure.caption.46}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.28}{\ignorespaces Corrplot of the \texttt {crime} data, showing the correlation between each pair of variables with an ellipse (lower) and a pie chart symbol (upper), all shaded in proportion to the correlation value, also shown numerically.}}{61}{figure.caption.47}\protected@file@percent }
\newlabel{fig-crime-corrplot}{{3.28}{61}{Corrplot of the \texttt {crime} data, showing the correlation between each pair of variables with an ellipse (lower) and a pie chart symbol (upper), all shaded in proportion to the correlation value, also shown numerically}{figure.caption.47}{}}
\BKM@entry{id=42,dest={73656374696F6E2E332E37},srcline={3613}}{5C3337365C3337375C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C303030695C3030307A5C303030655C303030645C3030305C3034305C303030705C303030615C303030695C303030725C303030735C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\citation{ref-Friendly:94a}
\citation{ref-R-vcd}
\citation{ref-FriendlyMeyer:2016:DDAR}
\citation{ref-R-vcdExtra}
\@writefile{toc}{\contentsline {section}{\numberline {3.7}Generalized pairs plots}{62}{section.3.7}\protected@file@percent }
\newlabel{sec-ggpairs}{{3.7}{62}{Generalized pairs plots}{section.3.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.29}{\ignorespaces Mosaic pairs plot for the combinations of species, sex and island. Diagnonal plots show the marginal frequency of each variable by the width of each rectangle. Off-diagonal mosaic plots subdivide by the conditional frequency of the second variable, shown numerically in the tiles.}}{63}{figure.caption.48}\protected@file@percent }
\newlabel{fig-peng-mosaic}{{3.29}{63}{Mosaic pairs plot for the combinations of species, sex and island. Diagnonal plots show the marginal frequency of each variable by the width of each rectangle. Off-diagonal mosaic plots subdivide by the conditional frequency of the second variable, shown numerically in the tiles}{figure.caption.48}{}}
\citation{ref-Emerson-etal:2013}
\citation{ref-R-GGally}
\@writefile{lof}{\contentsline {figure}{\numberline {3.30}{\ignorespaces Basic \texttt {ggpairs()} plot of penguin size variables and sex, stratified by species.}}{65}{figure.caption.49}\protected@file@percent }
\newlabel{fig-peng-ggpairs1}{{3.30}{65}{Basic \texttt {ggpairs()} plot of penguin size variables and sex, stratified by species}{figure.caption.49}{}}
\BKM@entry{id=43,dest={73656374696F6E2E332E38},srcline={3919}}{5C3337365C3337375C303030505C303030615C303030725C303030615C3030306C5C3030306C5C303030655C3030306C5C3030305C3034305C303030635C3030306F5C3030306F5C303030725C303030645C303030695C3030306E5C303030615C303030745C303030655C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {3.31}{\ignorespaces Customized \texttt {ggpairs()} plot of penguin size variables, together with species, island and sex.}}{68}{figure.caption.50}\protected@file@percent }
\newlabel{fig-peng-ggpairs7}{{3.31}{68}{Customized \texttt {ggpairs()} plot of penguin size variables, together with species, island and sex}{figure.caption.50}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.8}Parallel coordinate plots}{68}{section.3.8}\protected@file@percent }
\newlabel{sec-parcoord}{{3.8}{68}{Parallel coordinate plots}{section.3.8}{}}
\citation{ref-Ocagne:1885}
\citation{ref-Gannett:1898}
\citation{ref-Guerry:1833}
\citation{ref-Friendly2022}
\citation{ref-Inselberg:1985}
\citation{ref-Wegman:1990}
\citation{ref-Andrews:72}
\citation{ref-Friendly:91}
\citation{ref-R-ggpcp}
\citation{ref-VanderPlas2023}
\citation{ref-VanderPlas2023}
\BKM@entry{id=44,dest={73656374696F6E2E332E39},srcline={4079}}{5C3337365C3337375C303030415C3030306E5C303030695C3030306D5C303030615C303030745C303030655C303030645C3030305C3034305C303030745C3030306F5C303030755C303030725C30303073}
\citation{ref-Asimov:85}
\BKM@entry{id=45,dest={73756273656374696F6E2E332E392E31},srcline={4124}}{5C3337365C3337375C303030505C303030725C3030306F5C3030306A5C303030655C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
\citation{ref-Hofstadter1979}
\citation{ref-Hofstadter1979}
\citation{ref-Cook-etal-2008}
\@writefile{toc}{\contentsline {section}{\numberline {3.9}Animated tours}{74}{section.3.9}\protected@file@percent }
\newlabel{animated-tours}{{3.9}{74}{Animated tours}{section.3.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.9.1}Projections}{74}{subsection.3.9.1}\protected@file@percent }
\newlabel{projections}{{3.9.1}{74}{Projections}{subsection.3.9.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.32}{\ignorespaces The cover image from Hofstadter (\citeproc {ref-Hofstadter1979}{1979}) illustrates how projections are shadows of an object cast by a light from a given direction.}}{75}{figure.caption.51}\protected@file@percent }
\newlabel{fig-cover-GBE}{{3.32}{75}{The cover image from Hofstadter (\citeproc {ref-Hofstadter1979}{1979}) illustrates how projections are shadows of an object cast by a light from a given direction}{figure.caption.51}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.33}{\ignorespaces Projection of a point \textbf {x} onto a direction or axis \textbf {p}.}}{75}{figure.caption.52}\protected@file@percent }
\newlabel{fig-projection}{{3.33}{75}{Projection of a point \textbf {x} onto a direction or axis \textbf {p}}{figure.caption.52}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.34}{\ignorespaces \textbf {Projection example}: (a) The 8 points in \textbf {X} form a cube of size 10; (b) the projection by \textbf {P1} is the view ignoring \textbf {x3} (two points coincide at each vertex); (c) the projection by \textbf {P2} is an oblique view.}}{77}{figure.caption.53}\protected@file@percent }
\newlabel{fig-proj-combined}{{3.34}{77}{\textbf {Projection example}: (a) The 8 points in \textbf {X} form a cube of size 10; (b) the projection by \textbf {P1} is the view ignoring \textbf {x3} (two points coincide at each vertex); (c) the projection by \textbf {P2} is an oblique view}{figure.caption.53}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.9.1.1}Vector lengths}{77}{subsubsection.3.9.1.1}\protected@file@percent }
\newlabel{vector-lengths}{{3.9.1.1}{77}{Vector lengths}{subsubsection.3.9.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.35}{\ignorespaces \textbf {Variable vectors}: Data variables viewed as vectors in the space of their projections. The angles of the \textbf {x} vectors with respect to the \textbf {y} coordinate axes show their relative contributions to each. The lengths of the \textbf {x} vectors show the relative degree to which they are represented in the space of \textbf {y}s. Left: the \textbf {P1} projection; right: the \textbf {P2} projection.}}{78}{figure.caption.55}\protected@file@percent }
\newlabel{fig-proj-vectors}{{3.35}{78}{\textbf {Variable vectors}: Data variables viewed as vectors in the space of their projections. The angles of the \textbf {x} vectors with respect to the \textbf {y} coordinate axes show their relative contributions to each. The lengths of the \textbf {x} vectors show the relative degree to which they are represented in the space of \textbf {y}s. Left: the \textbf {P1} projection; right: the \textbf {P2} projection}{figure.caption.55}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.9.1.2}Joint-views}{78}{subsubsection.3.9.1.2}\protected@file@percent }
\newlabel{joint-views}{{3.9.1.2}{78}{Joint-views}{subsubsection.3.9.1.2}{}}
\BKM@entry{id=46,dest={73756273656374696F6E2E332E392E32},srcline={4458}}{5C3337365C3337375C303030545C3030306F5C303030755C303030725C303030695C3030306E5C303030675C3030305C3034305C3030306D5C303030655C303030745C303030685C3030306F5C303030645C30303073}
\citation{ref-Asimov:85}
\citation{ref-Buja-etal-2005}
\citation{ref-Cook-etal-2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.36}{\ignorespaces The \textbf {P2} projection of the data showing vectors for the original variables in the space of \textbf {Y}.}}{79}{figure.caption.56}\protected@file@percent }
\newlabel{fig-proj-P2-vec}{{3.36}{79}{The \textbf {P2} projection of the data showing vectors for the original variables in the space of \textbf {Y}}{figure.caption.56}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.9.2}Touring methods}{79}{subsection.3.9.2}\protected@file@percent }
\newlabel{touring-methods}{{3.9.2}{79}{Touring methods}{subsection.3.9.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.37}{\ignorespaces \textbf {Interpolations}: Illustration of a grand tour of interpolations of projection planes showing 2D scatterplots of the Penguin dataset. The seqeunce of views moves smoothly from an initial frame \textbf {P(1)} to a final frame \textbf {P(T)} where the penguin species are widely separated.}}{79}{figure.caption.57}\protected@file@percent }
\newlabel{fig-peng-tourr-diagram}{{3.37}{79}{\textbf {Interpolations}: Illustration of a grand tour of interpolations of projection planes showing 2D scatterplots of the Penguin dataset. The seqeunce of views moves smoothly from an initial frame \textbf {P(1)} to a final frame \textbf {P(T)} where the penguin species are widely separated}{figure.caption.57}{}}
\citation{ref-Cook-etal-1995}
\citation{ref-Asimov:85}
\citation{ref-Swayne-etal-1998}
\citation{ref-CookSwayne:2007}
\citation{ref-Swayne-etal-2003}
\citation{ref-Wickham-etal-2011}
\citation{ref-R-tourr}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.9.2.1}Guided tours}{80}{subsubsection.3.9.2.1}\protected@file@percent }
\newlabel{guided-tours}{{3.9.2.1}{80}{Guided tours}{subsubsection.3.9.2.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.9.2.2}\texttt {tourr} package}{80}{subsubsection.3.9.2.2}\protected@file@percent }
\newlabel{tourr-package}{{3.9.2.2}{80}{\texorpdfstring {\texttt {tourr} package}{tourr package}}{subsubsection.3.9.2.2}{}}
\citation{ref-LeeCook-2009}
\citation{ref-Black-etal-2018}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.9.2.3}Penguin tours}{81}{subsubsection.3.9.2.3}\protected@file@percent }
\newlabel{penguin-tours}{{3.9.2.3}{81}{Penguin tours}{subsubsection.3.9.2.3}{}}
\citation{ref-CookLaa-mulgar}
\citation{ref-CookSwayne:2007}
\newlabel{fig-peng-tour-demo-1}{{3.38a}{82}{2D, scatterplot}{figure.caption.58}{}}
\newlabel{sub@fig-peng-tour-demo-1}{{a}{82}{2D, scatterplot}{figure.caption.58}{}}
\newlabel{fig-peng-tour-demo-2}{{3.38b}{82}{3D, simulated depth}{figure.caption.58}{}}
\newlabel{sub@fig-peng-tour-demo-2}{{b}{82}{3D, simulated depth}{figure.caption.58}{}}
\newlabel{fig-peng-tour-demo-3}{{3.38c}{82}{4D, parallel coordinates plot}{figure.caption.58}{}}
\newlabel{sub@fig-peng-tour-demo-3}{{c}{82}{4D, parallel coordinates plot}{figure.caption.58}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.38}{\ignorespaces Grand tours of the penguin dataset in 2, 3, and 4 dimensions using different \texttt {display\_*()} methods.}}{82}{figure.caption.58}\protected@file@percent }
\newlabel{fig-peng-tour-demo}{{3.38}{82}{Grand tours of the penguin dataset in 2, 3, and 4 dimensions using different \texttt {display\_*()} methods}{figure.caption.58}{}}
\newlabel{fig-peng-tour-grand-frames-1}{{3.39a}{83}{Initial frame}{figure.caption.59}{}}
\newlabel{sub@fig-peng-tour-grand-frames-1}{{a}{83}{Initial frame}{figure.caption.59}{}}
\newlabel{fig-peng-tour-grand-frames-2}{{3.39b}{83}{Clusters}{figure.caption.59}{}}
\newlabel{sub@fig-peng-tour-grand-frames-2}{{b}{83}{Clusters}{figure.caption.59}{}}
\newlabel{fig-peng-tour-grand-frames-3}{{3.39c}{83}{Outliers}{figure.caption.59}{}}
\newlabel{sub@fig-peng-tour-grand-frames-3}{{c}{83}{Outliers}{figure.caption.59}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.39}{\ignorespaces Three frames from the grand tour of the Penguin data. (a) The initial frame is the projection showing only BD and BL, where bill length conveniently separates Adelie from the other two species. (b) A frame that shows the three species more widely separated. (c) A frame that shows two outliers with very large bills.}}{83}{figure.caption.59}\protected@file@percent }
\newlabel{fig-peng-tour-grand-frames}{{3.39}{83}{Three frames from the grand tour of the Penguin data. (a) The initial frame is the projection showing only BD and BL, where bill length conveniently separates Adelie from the other two species. (b) A frame that shows the three species more widely separated. (c) A frame that shows two outliers with very large bills}{figure.caption.59}{}}
\newlabel{fig-peng-tour-guided-1}{{3.40a}{83}{Optimizing \texttt {lda\_pp()}}{figure.caption.60}{}}
\newlabel{sub@fig-peng-tour-guided-1}{{a}{83}{Optimizing \texttt {lda\_pp()}}{figure.caption.60}{}}
\newlabel{fig-peng-tour-guided-2}{{3.40b}{83}{Optimizing \texttt {anomaly\_index()}}{figure.caption.60}{}}
\newlabel{sub@fig-peng-tour-guided-2}{{b}{83}{Optimizing \texttt {anomaly\_index()}}{figure.caption.60}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.40}{\ignorespaces \textbf {Guided tours}: These figures show the final frame in the animations of guided tours designed to find the projection that optimize an index. (a) The \texttt {lda\_pp()} criterion optimizes the separation of the means for species relative to within-group variation. (b) The \texttt {anomalies\_index()} optimizes the average Mahalanobis distance of points from the centroid}}{83}{figure.caption.60}\protected@file@percent }
\newlabel{fig-peng-tour-guided}{{3.40}{83}{\textbf {Guided tours}: These figures show the final frame in the animations of guided tours designed to find the projection that optimize an index. (a) The \texttt {lda\_pp()} criterion optimizes the separation of the means for species relative to within-group variation. (b) The \texttt {anomalies\_index()} optimizes the average Mahalanobis distance of points from the centroid}{figure.caption.60}{}}
\citation{ref-R-detourr}
\citation{ref-R-liminal}
\citation{ref-Harrison2023}
\citation{ref-R-langevitour}
\citation{ref-R-loon}
\citation{ref-R-loon-tour}
\BKM@entry{id=47,dest={636861707465722E34},srcline={4882}}{5C3337365C3337375C303030445C303030695C3030306D5C303030655C3030306E5C303030735C303030695C3030306F5C3030306E5C3030305C3034305C303030525C303030655C303030645C303030755C303030635C303030745C303030695C3030306F5C3030306E}
\BKM@entry{id=48,dest={73656374696F6E2E342E31},srcline={4885}}{5C3337365C3337375C303030465C3030306C5C303030615C303030745C3030306C5C303030615C3030306E5C303030645C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030535C303030705C303030615C303030635C303030655C3030306C5C303030615C3030306E5C30303064}
\citation{ref-Euler:1758}
\citation{ref-Friendly-etal:ellipses:2013}
\BKM@entry{id=49,dest={73756273656374696F6E2E342E312E31},srcline={4947}}{5C3337365C3337375C3030304D5C303030755C3030306C5C303030745C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C3030306A5C303030755C303030695C303030635C303030655C303030725C30303073}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dimension Reduction}{85}{chapter.4}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec-pca-biplot}{{4}{85}{Dimension Reduction}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}\emph {Flatland} and \emph {Spaceland}}{85}{section.4.1}\protected@file@percent }
\newlabel{sec-spaceland}{{4.1}{85}{\texorpdfstring {\emph {Flatland} and \emph {Spaceland}}{Flatland and Spaceland}}{section.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Multivariate juicers}{85}{subsection.4.1.1}\protected@file@percent }
\newlabel{multivariate-juicers}{{4.1.1}{85}{Multivariate juicers}{subsection.4.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces A multivariate juicer takes data from possibly high-dimensional data space and transforms it to a lower-dimenional space in which important effects can be more easily seen.}}{86}{figure.caption.61}\protected@file@percent }
\newlabel{fig-MV-juicer}{{4.1}{86}{A multivariate juicer takes data from possibly high-dimensional data space and transforms it to a lower-dimenional space in which important effects can be more easily seen}{figure.caption.61}{}}
\BKM@entry{id=50,dest={73656374696F6E2E342E32},srcline={5040}}{5C3337365C3337375C303030505C303030725C303030695C3030306E5C303030635C303030695C303030705C303030615C3030306C5C3030305C3034305C303030635C3030306F5C3030306D5C303030705C3030306F5C3030306E5C303030655C3030306E5C303030745C303030735C3030305C3034305C303030615C3030306E5C303030615C3030306C5C303030795C303030735C303030695C303030735C3030305C3034305C3030305C3035305C303030505C303030435C303030415C3030305C303531}
\citation{ref-Galton:1886}
\citation{ref-Pearson:1896}
\citation{ref-Pearson:1901}
\citation{ref-FriendlyWainer:2021:TOGS}
\citation{ref-Galton:1886}
\citation{ref-Pearson:1901}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Principal components analysis (PCA)}{87}{section.4.2}\protected@file@percent }
\newlabel{sec-pca}{{4.2}{87}{Principal components analysis (PCA)}{section.4.2}{}}
\BKM@entry{id=51,dest={73756273656374696F6E2E342E322E31},srcline={5160}}{5C3337365C3337375C303030505C303030435C303030415C3030305C3034305C303030625C303030795C3030305C3034305C303030735C303030705C303030725C303030695C3030306E5C303030675C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Karl Pearson's (1901) geometric, visual argument for finding the line or plane of closest fit to a collection of points, P1, P2, P3, \ldots {}}}{88}{figure.caption.62}\protected@file@percent }
\newlabel{fig-Pearson1901}{{4.2}{88}{Karl Pearson's (1901) geometric, visual argument for finding the line or plane of closest fit to a collection of points, P1, P2, P3, \ldots {}}{figure.caption.62}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}PCA by springs}{88}{subsection.4.2.1}\protected@file@percent }
\newlabel{pca-by-springs}{{4.2.1}{88}{PCA by springs}{subsection.4.2.1}{}}
\BKM@entry{id=52,dest={73756273656374696F6E2E342E322E32},srcline={5215}}{5C3337365C3337375C3030304D5C303030615C303030745C303030685C303030655C3030306D5C303030615C303030745C303030695C303030635C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030675C303030655C3030306F5C3030306D5C303030655C303030745C303030725C303030795C3030305C3034305C3030306F5C303030665C3030305C3034305C303030505C303030435C30303041}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Karl Pearson's diagram showing the elliptical geometry of regression and principal components analysis \ldots {} \emph {Source}: Pearson (1901), p.~566.}}{89}{figure.caption.63}\protected@file@percent }
\newlabel{fig-Pearson1901-2}{{4.3}{89}{Karl Pearson's diagram showing the elliptical geometry of regression and principal components analysis \ldots {} \emph {Source}: Pearson (1901), p.~566}{figure.caption.63}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Animation of PCA fitted by springs. The \textcolor {blue}{blue} data points are connected to their projections on the \textcolor {red}{red} line by springs perpendicular to that line. From an initial position, the springs pull that line in proportion to their squared distances, until the line finally settles down to the position where the forces are balanced and the minimum is achieved. \emph {Source}: Amoeba, \url {https://bit.ly/46tAicu}.}}{89}{figure.caption.64}\protected@file@percent }
\newlabel{fig-pca-springs}{{4.4}{89}{Animation of PCA fitted by springs. The \textcolor {blue}{blue} data points are connected to their projections on the \textcolor {red}{red} line by springs perpendicular to that line. From an initial position, the springs pull that line in proportion to their squared distances, until the line finally settles down to the position where the forces are balanced and the minimum is achieved. \emph {Source}: Amoeba, \url {https://bit.ly/46tAicu}}{figure.caption.64}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Mathematics and geometry of PCA}{90}{subsection.4.2.2}\protected@file@percent }
\newlabel{mathematics-and-geometry-of-pca}{{4.2.2}{90}{Mathematics and geometry of PCA}{subsection.4.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Geometry of PCA as a rotation from data space to principal component space, defined by the eigenvectors v1 and v2 of a covariance matrix}}{91}{figure.caption.65}\protected@file@percent }
\newlabel{fig-pca-rotation}{{4.5}{91}{Geometry of PCA as a rotation from data space to principal component space, defined by the eigenvectors v1 and v2 of a covariance matrix}{figure.caption.65}{}}
\newlabel{example-workers-experience-and-income}{{4.2.2}{91}{Example: Workers' experience and income}{section*.66}{}}
\@writefile{toc}{\contentsline {subsubsection}{Example: Workers' experience and income}{91}{section*.66}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Scatterplot of Income vs.~Experience for the \texttt {workers} data.}}{92}{figure.caption.67}\protected@file@percent }
\newlabel{fig-workers-scat}{{4.6}{92}{Scatterplot of Income vs.~Experience for the \texttt {workers} data}{figure.caption.67}{}}
\citation{ref-R-matlib}
\BKM@entry{id=53,dest={73756273656374696F6E2E342E322E33},srcline={5585}}{5C3337365C3337375C303030465C303030695C3030306E5C303030645C303030695C3030306E5C303030675C3030305C3034305C303030705C303030725C303030695C3030306E5C303030635C303030695C303030705C303030615C3030306C5C3030305C3034305C303030635C3030306F5C3030306D5C303030705C3030306F5C3030306E5C303030655C3030306E5C303030745C30303073}
\citation{ref-Husson-etal-2017}
\citation{ref-R-FactoMineR}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Finding principal components}{94}{subsection.4.2.3}\protected@file@percent }
\newlabel{finding-principal-components}{{4.2.3}{94}{Finding principal components}{subsection.4.2.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Geometry of the PCA for the \texttt {workers} data, showing the data ellipse, the eigenvectors of \(\mathbf {S}\), whose half-lengths are the square roots \(\sqrt {\lambda _i}\) of the eigenvalues, and the bounding box of the ellipse.}}{95}{figure.caption.68}\protected@file@percent }
\newlabel{fig-workers-pca}{{4.7}{95}{Geometry of the PCA for the \texttt {workers} data, showing the data ellipse, the eigenvectors of \(\mathbf {S}\), whose half-lengths are the square roots \(\sqrt {\lambda _i}\) of the eigenvalues, and the bounding box of the ellipse}{figure.caption.68}{}}
\newlabel{example-crime-data}{{4.2.3}{96}{Example: Crime data}{section*.69}{}}
\@writefile{toc}{\contentsline {subsubsection}{Example: Crime data}{96}{section*.69}\protected@file@percent }
\BKM@entry{id=54,dest={73756273656374696F6E2E342E322E34},srcline={5779}}{5C3337365C3337375C303030565C303030695C303030735C303030755C303030615C3030306C5C303030695C3030307A5C303030695C3030306E5C303030675C3030305C3034305C303030765C303030615C303030725C303030695C303030615C3030306E5C303030635C303030655C3030305C3034305C303030705C303030725C3030306F5C303030705C3030306F5C303030725C303030745C303030695C3030306F5C3030306E5C303030735C3030303A5C3030305C3034305C303030735C303030635C303030725C303030655C303030655C303030705C3030306C5C3030306F5C303030745C30303073}
\citation{ref-Cattell1966}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.4}Visualizing variance proportions: screeplots}{97}{subsection.4.2.4}\protected@file@percent }
\newlabel{visualizing-variance-proportions-screeplots}{{4.2.4}{97}{Visualizing variance proportions: screeplots}{subsection.4.2.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Screeplots for the PCA of the crime data. The left panel shows the traditional version, plotting variance proportions against component number, with linear guideline for the scree rule of thumb. The right panel plots cumulative proportions, showing cutoffs of 80\%, 90\%.}}{98}{figure.caption.70}\protected@file@percent }
\newlabel{fig-crime-ggscreeplot}{{4.8}{98}{Screeplots for the PCA of the crime data. The left panel shows the traditional version, plotting variance proportions against component number, with linear guideline for the scree rule of thumb. The right panel plots cumulative proportions, showing cutoffs of 80\%, 90\%}{figure.caption.70}{}}
\BKM@entry{id=55,dest={73756273656374696F6E2E342E322E35},srcline={5866}}{5C3337365C3337375C303030565C303030695C303030735C303030755C303030615C3030306C5C303030695C3030307A5C303030695C3030306E5C303030675C3030305C3034305C303030505C303030435C303030415C3030305C3034305C303030735C303030635C3030306F5C303030725C303030655C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030765C303030615C303030725C303030695C303030615C303030625C3030306C5C303030655C3030305C3034305C303030765C303030655C303030635C303030745C3030306F5C303030725C30303073}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.5}Visualizing PCA scores and variable vectors}{99}{subsection.4.2.5}\protected@file@percent }
\newlabel{visualizing-pca-scores-and-variable-vectors}{{4.2.5}{99}{Visualizing PCA scores and variable vectors}{subsection.4.2.5}{}}
\newlabel{scores}{{4.2.5}{99}{Scores}{section*.71}{}}
\@writefile{toc}{\contentsline {subsubsection}{Scores}{99}{section*.71}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Plot of component scores on the first two principal components for the \texttt {crime} data. States are colored by \texttt {region}.}}{100}{figure.caption.72}\protected@file@percent }
\newlabel{fig-crime-scores-plot12}{{4.9}{100}{Plot of component scores on the first two principal components for the \texttt {crime} data. States are colored by \texttt {region}}{figure.caption.72}{}}
\newlabel{variable-vectors}{{4.2.5}{101}{Variable vectors}{section*.73}{}}
\@writefile{toc}{\contentsline {subsubsection}{Variable vectors}{101}{section*.73}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Plot of component loadings the first two principal components for the \texttt {crime} data. These are interpreted as the contributions of the variables to the components.}}{103}{figure.caption.74}\protected@file@percent }
\newlabel{fig-crime-vectors}{{4.10}{103}{Plot of component loadings the first two principal components for the \texttt {crime} data. These are interpreted as the contributions of the variables to the components}{figure.caption.74}{}}
\BKM@entry{id=56,dest={73656374696F6E2E342E33},srcline={6175}}{5C3337365C3337375C303030425C303030695C303030705C3030306C5C3030306F5C303030745C30303073}
\citation{ref-Gabriel:71}
\citation{ref-Gabriel:81}
\citation{ref-GowerHand:96}
\citation{ref-Greenacre:2010:biplots}
\citation{ref-Gower-etal:2011}
\citation{ref-FriendlyMeyer:2016:DDAR}
\citation{ref-Greenacre:84}
\BKM@entry{id=57,dest={73756273656374696F6E2E342E332E31},srcline={6208}}{5C3337365C3337375C303030435C3030306F5C3030306E5C303030735C303030745C303030725C303030755C303030635C303030745C303030695C3030306E5C303030675C3030305C3034305C303030615C3030305C3034305C303030625C303030695C303030705C3030306C5C3030306F5C30303074}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Biplots}{104}{section.4.3}\protected@file@percent }
\newlabel{sec-biplot}{{4.3}{104}{Biplots}{section.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Constructing a biplot}{104}{subsection.4.3.1}\protected@file@percent }
\newlabel{constructing-a-biplot}{{4.3.1}{104}{Constructing a biplot}{subsection.4.3.1}{}}
\newlabel{eq-svd1}{{4.4}{104}{Constructing a biplot}{section*.76}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces The singular value decomposition expresses a data matrix \textbf {X} as the product of a matrix \textbf {U} of observation scores, a diagonal matrix \(\Lambda \) of singular values and a matrix \textbf {V} of variable weights.}}{105}{figure.caption.75}\protected@file@percent }
\newlabel{fig-svd-diagram}{{4.11}{105}{The singular value decomposition expresses a data matrix \textbf {X} as the product of a matrix \textbf {U} of observation scores, a diagonal matrix \(\Lambda \) of singular values and a matrix \textbf {V} of variable weights}{figure.caption.75}{}}
\BKM@entry{id=58,dest={73756273656374696F6E2E342E332E32},srcline={6303}}{5C3337365C3337375C303030425C303030695C303030705C3030306C5C3030306F5C303030745C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C30303052}
\citation{ref-R-factoextra}
\citation{ref-R-FactoMineR}
\BKM@entry{id=59,dest={73756273656374696F6E2E342E332E33},srcline={6324}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C3030303A5C3030305C3034305C303030435C303030725C303030695C3030306D5C303030655C3030305C3034305C303030645C303030615C303030745C30303061}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Biplots in R}{106}{subsection.4.3.2}\protected@file@percent }
\newlabel{biplots-in-r}{{4.3.2}{106}{Biplots in R}{subsection.4.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Example: Crime data}{106}{subsection.4.3.3}\protected@file@percent }
\newlabel{example-crime-data-1}{{4.3.3}{106}{Example: Crime data}{subsection.4.3.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Basic biplot of the crime data. State abbreviations are shown at their standardized scores on the first two dimensions. The variable vectors reflect the correlations of the variables with the biplot dimensions.}}{107}{figure.caption.77}\protected@file@percent }
\newlabel{fig-crime-biplot1}{{4.12}{107}{Basic biplot of the crime data. State abbreviations are shown at their standardized scores on the first two dimensions. The variable vectors reflect the correlations of the variables with the biplot dimensions}{figure.caption.77}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Enhanced biplot of the crime data, grouping the states by region and adding data ellipses.}}{108}{figure.caption.78}\protected@file@percent }
\newlabel{fig-crime-biplot2}{{4.13}{108}{Enhanced biplot of the crime data, grouping the states by region and adding data ellipses}{figure.caption.78}{}}
\BKM@entry{id=60,dest={73756273656374696F6E2E342E332E34},srcline={6481}}{5C3337365C3337375C303030425C303030695C303030705C3030306C5C3030306F5C303030745C3030305C3034305C303030635C3030306F5C3030306E5C303030745C303030725C303030695C303030625C303030755C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030715C303030755C303030615C3030306C5C303030695C303030745C30303079}
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Biplot of dimensions 1 \& 3 of the crime data, with data ellipses for the regions.}}{109}{figure.caption.79}\protected@file@percent }
\newlabel{fig-crime-biplot3}{{4.14}{109}{Biplot of dimensions 1 \& 3 of the crime data, with data ellipses for the regions}{figure.caption.79}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Biplot contributions and quality}{109}{subsection.4.3.4}\protected@file@percent }
\newlabel{biplot-contributions-and-quality}{{4.3.4}{109}{Biplot contributions and quality}{subsection.4.3.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Contributions of the crime variables to dimensions 1 (left) \& 2 (right) of the PCA solution}}{111}{figure.caption.80}\protected@file@percent }
\newlabel{fig-fviz-contrib}{{4.15}{111}{Contributions of the crime variables to dimensions 1 (left) \& 2 (right) of the PCA solution}{figure.caption.80}{}}
\BKM@entry{id=61,dest={73756273656374696F6E2E342E332E35},srcline={6591}}{5C3337365C3337375C303030535C303030755C303030705C303030705C3030306C5C303030655C3030306D5C303030655C3030306E5C303030745C303030615C303030725C303030795C3030305C3034305C303030765C303030615C303030725C303030695C303030615C303030625C3030306C5C303030655C30303073}
\citation{ref-Aluja-etal-2018}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Supplementary variables}{112}{subsection.4.3.5}\protected@file@percent }
\newlabel{sec-supp-vars}{{4.3.5}{112}{Supplementary variables}{subsection.4.3.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Fitting supplementary variables in a biplot is analogous (right) to regression on the principal component dimensions (left). \emph {Source}: Aluja et al. (\citeproc {ref-Aluja-etal-2018}{2018}), Figure 2.11}}{112}{figure.caption.81}\protected@file@percent }
\newlabel{fig-supp-regession}{{4.16}{112}{Fitting supplementary variables in a biplot is analogous (right) to regression on the principal component dimensions (left). \emph {Source}: Aluja et al. (\citeproc {ref-Aluja-etal-2018}{2018}), Figure 2.11}{figure.caption.81}{}}
\BKM@entry{id=62,dest={73756273656374696F6E2E342E332E36},srcline={6810}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C3030303A5C3030305C3034305C303030445C303030695C303030615C303030625C303030655C303030745C303030655C303030735C3030305C3034305C303030645C303030615C303030745C30303061}
\citation{ref-ReavenMiller:79}
\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces PCA plot of variables for the crime data, with vectors for the supplementary variables showing their association with the principal component dimensions.}}{115}{figure.caption.82}\protected@file@percent }
\newlabel{fig-crime-factominer}{{4.17}{115}{PCA plot of variables for the crime data, with vectors for the supplementary variables showing their association with the principal component dimensions}{figure.caption.82}{}}
\citation{ref-R-rgl}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Example: Diabetes data}{116}{subsection.4.3.6}\protected@file@percent }
\newlabel{example-diabetes-data}{{4.3.6}{116}{Example: Diabetes data}{subsection.4.3.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Two views of a 3D scatterplot of three main diagnostic variables in the \texttt {Diabetes} dataset. The left panel shows an orientation similar to that of Figure~\ref {fig-ReavenMiller-3d}; the right panel shows a view from the back.}}{116}{figure.caption.83}\protected@file@percent }
\newlabel{fig-diabetes-3d}{{4.18}{116}{Two views of a 3D scatterplot of three main diagnostic variables in the \texttt {Diabetes} dataset. The left panel shows an orientation similar to that of Figure~\ref {fig-ReavenMiller-3d}; the right panel shows a view from the back}{figure.caption.83}{}}
\BKM@entry{id=63,dest={73656374696F6E2E342E34},srcline={6979}}{5C3337365C3337375C3030304E5C3030306F5C3030306E5C3030306C5C303030695C3030306E5C303030655C303030615C303030725C3030305C3034305C303030645C303030695C3030306D5C303030655C3030306E5C303030735C303030695C3030306F5C3030306E5C3030305C3034305C303030725C303030655C303030645C303030755C303030635C303030745C303030695C3030306F5C3030306E}
\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces 2D biplot of the Diabetes data}}{118}{figure.caption.84}\protected@file@percent }
\newlabel{fig-diabetes-ggbiplot}{{4.19}{118}{2D biplot of the Diabetes data}{figure.caption.84}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Nonlinear dimension reduction}{118}{section.4.4}\protected@file@percent }
\newlabel{sec-nonlinear}{{4.4}{118}{Nonlinear dimension reduction}{section.4.4}{}}
\BKM@entry{id=64,dest={73756273656374696F6E2E342E342E31},srcline={7017}}{5C3337365C3337375C3030304D5C303030755C3030306C5C303030745C303030695C303030645C303030695C3030306D5C303030655C3030306E5C303030735C303030695C3030306F5C3030306E5C303030615C3030306C5C3030305C3034305C303030735C303030635C303030615C3030306C5C303030695C3030306E5C30303067}
\citation{ref-Torgerson1952}
\citation{ref-Kruskal1964}
\citation{ref-Shepard1962a}
\citation{ref-Shepard1962b}
\citation{ref-BorgGroenen2005}
\citation{ref-Borg2018}
\citation{ref-Shepard-etal-1972a}
\citation{ref-Shepard-etal-1972b}
\citation{ref-Shoben1983}
\citation{ref-R-vegan}
\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces *Nonlinear patterns**: Two representations of the same data are shown. In the plot at the left, the clusters are clear to the eye, but there is no linear relation that separates them. Transforming the data nonlinearly, to polar coordinates in the plot at the right, makes the two groups distinct.}}{119}{figure.caption.85}\protected@file@percent }
\newlabel{fig-nonlin-demo}{{4.20}{119}{*Nonlinear patterns**: Two representations of the same data are shown. In the plot at the left, the clusters are clear to the eye, but there is no linear relation that separates them. Transforming the data nonlinearly, to polar coordinates in the plot at the right, makes the two groups distinct}{figure.caption.85}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Multidimensional scaling}{119}{subsection.4.4.1}\protected@file@percent }
\newlabel{multidimensional-scaling}{{4.4.1}{119}{Multidimensional scaling}{subsection.4.4.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Badness of fit (Stress) of the MDS solution in relation to number of dimensions.}}{121}{figure.caption.86}\protected@file@percent }
\newlabel{fig-diabetes-stress}{{4.21}{121}{Badness of fit (Stress) of the MDS solution in relation to number of dimensions}{figure.caption.86}{}}
\BKM@entry{id=65,dest={73756273656374696F6E2E342E342E32},srcline={7204}}{5C3337365C3337375C303030745C3030302D5C303030535C3030304E5C30303045}
\citation{ref-MaatenHinton2008}
\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Nonmetric MDS representation of the Diabetes data. The vectors reflect the correlations of the variables with the MDS dimensions.}}{122}{figure.caption.87}\protected@file@percent }
\newlabel{fig-diabetes-mds}{{4.22}{122}{Nonmetric MDS representation of the Diabetes data. The vectors reflect the correlations of the variables with the MDS dimensions}{figure.caption.87}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}t-SNE}{122}{subsection.4.4.2}\protected@file@percent }
\newlabel{t-sne}{{4.4.2}{122}{t-SNE}{subsection.4.4.2}{}}
\citation{ref-R-Rtsne}
\citation{ref-R-gganimate}
\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces t-SNE representation of the Diabetes data.}}{124}{figure.caption.88}\protected@file@percent }
\newlabel{fig-diabetes-tsne}{{4.23}{124}{t-SNE representation of the Diabetes data}{figure.caption.88}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.2.1}Comparing solutions}{124}{subsubsection.4.4.2.1}\protected@file@percent }
\newlabel{compare-solutions}{{4.4.2.1}{124}{Comparing solutions}{subsubsection.4.4.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Comparison of the PCA and t-SNE 2D representations of the Diabetes data.}}{125}{figure.caption.89}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne}{{4.24}{125}{Comparison of the PCA and t-SNE 2D representations of the Diabetes data}{figure.caption.89}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{126}{figure.caption.90}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-1}{{4.25}{126}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.90}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{127}{figure.caption.91}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-2}{{4.26}{127}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.91}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{128}{figure.caption.92}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-3}{{4.27}{128}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.92}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{129}{figure.caption.93}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-4}{{4.28}{129}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.93}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{130}{figure.caption.94}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-5}{{4.29}{130}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.94}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{131}{figure.caption.95}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-6}{{4.30}{131}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.95}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{132}{figure.caption.96}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-7}{{4.31}{132}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.96}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{133}{figure.caption.97}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-8}{{4.32}{133}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.97}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{134}{figure.caption.98}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-9}{{4.33}{134}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.98}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{135}{figure.caption.99}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-10}{{4.34}{135}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.99}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{136}{figure.caption.100}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-11}{{4.35}{136}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.100}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{137}{figure.caption.101}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-12}{{4.36}{137}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.101}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{138}{figure.caption.102}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-13}{{4.37}{138}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.102}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.38}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{139}{figure.caption.103}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-14}{{4.38}{139}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.103}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.39}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{140}{figure.caption.104}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-15}{{4.39}{140}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.104}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.40}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{141}{figure.caption.105}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-16}{{4.40}{141}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.105}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.41}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{142}{figure.caption.106}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-17}{{4.41}{142}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.106}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.42}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{143}{figure.caption.107}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-18}{{4.42}{143}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.107}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.43}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{144}{figure.caption.108}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-19}{{4.43}{144}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.108}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.44}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{145}{figure.caption.109}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-20}{{4.44}{145}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.109}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.45}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{146}{figure.caption.110}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-21}{{4.45}{146}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.110}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.46}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{147}{figure.caption.111}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-22}{{4.46}{147}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.111}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.47}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{148}{figure.caption.112}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-23}{{4.47}{148}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.112}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.48}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{149}{figure.caption.113}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-24}{{4.48}{149}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.113}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.49}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{150}{figure.caption.114}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-25}{{4.49}{150}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.114}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.50}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{151}{figure.caption.115}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-26}{{4.50}{151}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.115}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.51}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{152}{figure.caption.116}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-27}{{4.51}{152}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.116}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.52}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{153}{figure.caption.117}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-28}{{4.52}{153}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.117}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.53}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{154}{figure.caption.118}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-29}{{4.53}{154}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.118}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.54}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{155}{figure.caption.119}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-30}{{4.54}{155}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.119}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.55}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{156}{figure.caption.120}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-31}{{4.55}{156}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.120}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.56}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{157}{figure.caption.121}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-32}{{4.56}{157}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.121}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.57}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{158}{figure.caption.122}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-33}{{4.57}{158}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.122}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.58}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{159}{figure.caption.123}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-34}{{4.58}{159}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.123}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.59}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{160}{figure.caption.124}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-35}{{4.59}{160}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.124}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.60}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{161}{figure.caption.125}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-36}{{4.60}{161}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.125}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.61}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{162}{figure.caption.126}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-37}{{4.61}{162}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.126}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.62}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{163}{figure.caption.127}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-38}{{4.62}{163}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.127}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.63}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{164}{figure.caption.128}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-39}{{4.63}{164}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.128}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.64}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{165}{figure.caption.129}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-40}{{4.64}{165}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.129}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.65}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{166}{figure.caption.130}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-41}{{4.65}{166}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.130}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.66}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{167}{figure.caption.131}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-42}{{4.66}{167}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.131}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.67}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{168}{figure.caption.132}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-43}{{4.67}{168}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.132}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.68}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{169}{figure.caption.133}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-44}{{4.68}{169}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.133}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.69}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{170}{figure.caption.134}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-45}{{4.69}{170}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.134}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.70}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{171}{figure.caption.135}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-46}{{4.70}{171}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.135}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.71}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{172}{figure.caption.136}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-47}{{4.71}{172}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.136}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.72}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{173}{figure.caption.137}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-48}{{4.72}{173}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.137}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.73}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{174}{figure.caption.138}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-49}{{4.73}{174}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.138}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.74}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{175}{figure.caption.139}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-50}{{4.74}{175}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.139}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.75}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{176}{figure.caption.140}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-51}{{4.75}{176}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.140}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.76}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{177}{figure.caption.141}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-52}{{4.76}{177}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.141}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.77}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{178}{figure.caption.142}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-53}{{4.77}{178}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.142}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.78}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{179}{figure.caption.143}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-54}{{4.78}{179}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.143}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.79}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{180}{figure.caption.144}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-55}{{4.79}{180}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.144}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.80}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{181}{figure.caption.145}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-56}{{4.80}{181}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.145}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.81}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{182}{figure.caption.146}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-57}{{4.81}{182}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.146}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.82}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{183}{figure.caption.147}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-58}{{4.82}{183}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.147}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.83}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{184}{figure.caption.148}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-59}{{4.83}{184}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.148}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.84}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{185}{figure.caption.149}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-60}{{4.84}{185}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.149}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.85}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{186}{figure.caption.150}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-61}{{4.85}{186}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.150}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.86}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{187}{figure.caption.151}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-62}{{4.86}{187}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.151}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.87}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{188}{figure.caption.152}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-63}{{4.87}{188}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.152}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.88}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{189}{figure.caption.153}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-64}{{4.88}{189}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.153}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.89}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{190}{figure.caption.154}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-65}{{4.89}{190}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.154}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.90}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{191}{figure.caption.155}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-66}{{4.90}{191}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.155}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.91}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{192}{figure.caption.156}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-67}{{4.91}{192}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.156}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.92}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{193}{figure.caption.157}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-68}{{4.92}{193}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.157}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.93}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{194}{figure.caption.158}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-69}{{4.93}{194}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.158}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.94}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{195}{figure.caption.159}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-70}{{4.94}{195}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.159}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.95}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{196}{figure.caption.160}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-71}{{4.95}{196}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.160}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.96}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{197}{figure.caption.161}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-72}{{4.96}{197}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.161}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.97}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{198}{figure.caption.162}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-73}{{4.97}{198}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.162}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.98}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{199}{figure.caption.163}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-74}{{4.98}{199}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.163}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.99}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{200}{figure.caption.164}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-75}{{4.99}{200}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.164}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.100}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{201}{figure.caption.165}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-76}{{4.100}{201}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.165}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.101}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{202}{figure.caption.166}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-77}{{4.101}{202}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.166}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.102}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{203}{figure.caption.167}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-78}{{4.102}{203}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.167}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.103}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{204}{figure.caption.168}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-79}{{4.103}{204}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.168}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.104}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{205}{figure.caption.169}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-80}{{4.104}{205}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.169}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.105}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{206}{figure.caption.170}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-81}{{4.105}{206}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.170}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.106}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{207}{figure.caption.171}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-82}{{4.106}{207}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.171}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.107}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{208}{figure.caption.172}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-83}{{4.107}{208}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.172}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.108}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{209}{figure.caption.173}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-84}{{4.108}{209}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.173}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.109}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{210}{figure.caption.174}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-85}{{4.109}{210}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.174}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.110}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{211}{figure.caption.175}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-86}{{4.110}{211}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.175}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.111}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{212}{figure.caption.176}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-87}{{4.111}{212}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.176}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.112}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{213}{figure.caption.177}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-88}{{4.112}{213}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.177}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.113}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{214}{figure.caption.178}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-89}{{4.113}{214}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.178}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.114}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{215}{figure.caption.179}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-90}{{4.114}{215}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.179}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.115}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{216}{figure.caption.180}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-91}{{4.115}{216}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.180}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.116}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{217}{figure.caption.181}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-92}{{4.116}{217}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.181}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.117}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{218}{figure.caption.182}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-93}{{4.117}{218}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.182}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.118}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{219}{figure.caption.183}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-94}{{4.118}{219}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.183}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.119}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{220}{figure.caption.184}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-95}{{4.119}{220}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.184}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.120}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{221}{figure.caption.185}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-96}{{4.120}{221}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.185}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.121}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{222}{figure.caption.186}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-97}{{4.121}{222}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.186}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.122}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{223}{figure.caption.187}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-98}{{4.122}{223}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.187}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.123}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{224}{figure.caption.188}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-99}{{4.123}{224}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.188}{}}
\BKM@entry{id=66,dest={73656374696F6E2E342E35},srcline={8746}}{5C3337365C3337375C303030415C303030705C303030705C3030306C5C303030695C303030635C303030615C303030745C303030695C3030306F5C3030306E5C3030303A5C3030305C3034305C303030565C303030615C303030725C303030695C303030615C303030625C3030306C5C303030655C3030305C3034305C3030306F5C303030725C303030645C303030655C303030725C303030695C3030306E5C303030675C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C303030645C303030615C303030745C303030615C3030305C3034305C303030645C303030695C303030735C303030705C3030306C5C303030615C303030795C30303073}
\citation{ref-FriendlyKwan:03:effect}
\citation{ref-R-seriation}
\@writefile{lof}{\contentsline {figure}{\numberline {4.124}{\ignorespaces Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data.}}{225}{figure.caption.189}\protected@file@percent }
\newlabel{fig-diabetes-pca-tsne-anim-100}{{4.124}{225}{Animation of the relationship of PCA to the t-SNE embedding for the Diabetes data}{figure.caption.189}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Application: Variable ordering for data displays}{225}{section.4.5}\protected@file@percent }
\newlabel{sec-var-order}{{4.5}{225}{Application: Variable ordering for data displays}{section.4.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.125}{\ignorespaces Corrplot of \texttt {mtcars} data, with the variables in the order they appear in the dataset.}}{227}{figure.caption.190}\protected@file@percent }
\newlabel{fig-mtcars-corrplot-varorder}{{4.125}{227}{Corrplot of \texttt {mtcars} data, with the variables in the order they appear in the dataset}{figure.caption.190}{}}
\citation{ref-FriendlyKwan:03:effect}
\@writefile{lof}{\contentsline {figure}{\numberline {4.126}{\ignorespaces Biplot of the \texttt {mtcars} data. The order of the variables around the circle, starting from ``gear'' (say) arranges them so that the most similar variables are adjacent in graphical displays.}}{229}{figure.caption.191}\protected@file@percent }
\newlabel{fig-mtcars-biplot}{{4.126}{229}{Biplot of the \texttt {mtcars} data. The order of the variables around the circle, starting from ``gear'' (say) arranges them so that the most similar variables are adjacent in graphical displays}{figure.caption.191}{}}
\BKM@entry{id=67,dest={73656374696F6E2E342E36},srcline={8929}}{5C3337365C3337375C303030415C303030705C303030705C3030306C5C303030695C303030635C303030615C303030745C303030695C3030306F5C3030306E5C3030303A5C3030305C3034305C303030455C303030695C303030675C303030655C3030306E5C303030665C303030615C303030635C303030655C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {4.127}{\ignorespaces Corrplot of \texttt {mtcars} data, with the variables ordered according to the variable vectors in the biplot.}}{230}{figure.caption.192}\protected@file@percent }
\newlabel{fig-mtcars-corrplot-pcaorder}{{4.127}{230}{Corrplot of \texttt {mtcars} data, with the variables ordered according to the variable vectors in the biplot}{figure.caption.192}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.6}Application: Eigenfaces}{231}{section.4.6}\protected@file@percent }
\newlabel{application-eigenfaces}{{4.6}{231}{Application: Eigenfaces}{section.4.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.128}{\ignorespaces 640 x 954 black and white image of the \emph {Mona Lisa}. Source: \href {https://bit.ly/3Rgo41f}{Wikipedia}}}{232}{figure.caption.193}\protected@file@percent }
\newlabel{fig-MonaLisa}{{4.128}{232}{640 x 954 black and white image of the \emph {Mona Lisa}. Source: \href {https://bit.ly/3Rgo41f}{Wikipedia}}{figure.caption.193}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.129}{\ignorespaces Screeplot of the variance proportions in the Mona Lisa PCA.}}{234}{figure.caption.194}\protected@file@percent }
\newlabel{fig-mona-screeplot}{{4.129}{234}{Screeplot of the variance proportions in the Mona Lisa PCA}{figure.caption.194}{}}
\BKM@entry{id=68,dest={73656374696F6E2E342E37},srcline={9247}}{5C3337365C3337375C303030455C3030306C5C3030306C5C303030695C303030705C303030745C303030695C303030635C303030615C3030306C5C3030305C3034305C303030695C3030306E5C303030735C303030695C303030675C303030685C303030745C303030735C3030303A5C3030305C3034305C3030304F5C303030755C303030745C3030306C5C303030695C303030655C303030725C3030305C3034305C303030645C303030655C303030745C303030655C303030635C303030745C303030695C3030306F5C3030306E}
\@writefile{lof}{\contentsline {figure}{\numberline {4.130}{\ignorespaces Re-construction of the Mona Lisa using 2, 3 , 4, 5, 10, 15, 20, 50, and 100 principal components.}}{236}{figure.caption.195}\protected@file@percent }
\newlabel{fig-mona-pca}{{4.130}{236}{Re-construction of the Mona Lisa using 2, 3 , 4, 5, 10, 15, 20, 50, and 100 principal components}{figure.caption.195}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.7}Elliptical insights: Outlier detection}{237}{section.4.7}\protected@file@percent }
\newlabel{elliptical-insights-outlier-detection}{{4.7}{237}{Elliptical insights: Outlier detection}{section.4.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.131}{\ignorespaces \textbf {Outlier demonstration}: The left panel shows the original data and highlights the two discrepant points, which do not appear to be unusual on either x or y. The right panel shows the data rotated to principal components, where the labeled points stand out on the smallest PCA dimension.}}{237}{figure.caption.196}\protected@file@percent }
\newlabel{fig-outlier-demo}{{4.131}{237}{\textbf {Outlier demonstration}: The left panel shows the original data and highlights the two discrepant points, which do not appear to be unusual on either x or y. The right panel shows the data rotated to principal components, where the labeled points stand out on the smallest PCA dimension}{figure.caption.196}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.132}{\ignorespaces Animation of rotation from data space to PCA space.}}{237}{figure.caption.197}\protected@file@percent }
\newlabel{fig-outlier-animation}{{4.132}{237}{Animation of rotation from data space to PCA space}{figure.caption.197}{}}
\BKM@entry{id=69,dest={706172742E33},srcline={9316}}{5C3337365C3337375C303030495C303030495C303030495C3030305C3034305C303030555C3030306E5C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C3030304C5C303030695C3030306E5C303030655C303030615C303030725C3030305C3034305C3030304D5C3030306F5C303030645C303030655C3030306C5C30303073}
\@writefile{toc}{\contentsline {part}{III\hspace {1em}Univariate Linear Models}{239}{part.3}\protected@file@percent }
\BKM@entry{id=70,dest={636861707465722E35},srcline={9318}}{5C3337365C3337375C3030304F5C303030765C303030655C303030725C303030765C303030695C303030655C303030775C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304C5C303030695C3030306E5C303030655C303030615C303030725C3030305C3034305C3030306D5C3030306F5C303030645C303030655C3030306C5C30303073}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Overview of Linear models}{241}{chapter.5}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec-linear-models}{{5}{241}{Overview of Linear models}{chapter.5}{}}
\citation{ref-Galton:1886}
\citation{ref-Galton:1889}
\citation{ref-Pearson:1896}
\citation{ref-Fisher1923}
\citation{ref-Fisher:25}
\citation{ref-Scheffe1960}
\citation{ref-Graybill1961}
\citation{ref-Winer1962}
\citation{ref-IBM1965}
\citation{ref-Bock1963}
\citation{ref-Bock1964}
\citation{ref-Finn1967}
\citation{ref-Clyde-etal-1966}
\citation{ref-Dixon1965}
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Techniques for linear models classified by number of predictors and number of response variables, and whether these are quantitative vs.~discrete}}{242}{figure.caption.198}\protected@file@percent }
\newlabel{fig-techniques}{{5.1}{242}{Techniques for linear models classified by number of predictors and number of response variables, and whether these are quantitative vs.~discrete}{figure.caption.198}{}}
\BKM@entry{id=71,dest={73656374696F6E2E352E31},srcline={9497}}{5C3337365C3337375C3030304C5C303030695C3030306E5C303030655C303030615C303030725C3030305C3034305C303030635C3030306F5C3030306D5C303030625C303030695C3030306E5C303030615C303030745C303030695C3030306F5C3030306E5C30303073}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Linear combinations}{243}{section.5.1}\protected@file@percent }
\newlabel{linear-combinations}{{5.1}{243}{Linear combinations}{section.5.1}{}}
\newlabel{pca}{{5.1}{243}{PCA}{section*.199}{}}
\@writefile{toc}{\contentsline {subsubsection}{PCA}{243}{section*.199}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Principal components analysis as linear combinations to maximize variance accounted for. Left: diagram of PCA showing two uncorrelated linear combinations, v1 and v2. Right: Geometry of PCA.}}{244}{figure.caption.200}\protected@file@percent }
\newlabel{fig-lin-comb-pca}{{5.2}{244}{Principal components analysis as linear combinations to maximize variance accounted for. Left: diagram of PCA showing two uncorrelated linear combinations, v1 and v2. Right: Geometry of PCA}{figure.caption.200}{}}
\newlabel{multiple-regression}{{5.1}{244}{Multiple regression}{section*.201}{}}
\@writefile{toc}{\contentsline {subsubsection}{Multiple regression}{244}{section*.201}\protected@file@percent }
\newlabel{multivariate-regression}{{5.1}{244}{Multivariate regression}{section*.203}{}}
\@writefile{toc}{\contentsline {subsubsection}{Multivariate regression}{244}{section*.203}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces Multiple regression as a linear combination to maximize the squared correlation with the predicted values \(\hat {\mathbf {y}}\). Right: vector geometry of multiple regression for two predictors.}}{245}{figure.caption.202}\protected@file@percent }
\newlabel{fig-lin-comb-mra}{{5.3}{245}{Multiple regression as a linear combination to maximize the squared correlation with the predicted values \(\hat {\mathbf {y}}\). Right: vector geometry of multiple regression for two predictors}{figure.caption.202}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces Multivariate multiple regression as linear combinations to maximize the R squared for each response variable separately.}}{245}{figure.caption.204}\protected@file@percent }
\newlabel{fig-lin-comb3}{{5.4}{245}{Multivariate multiple regression as linear combinations to maximize the R squared for each response variable separately}{figure.caption.204}{}}
\BKM@entry{id=72,dest={73656374696F6E2E352E32},srcline={9645}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030475C303030655C3030306E5C303030655C303030725C303030615C3030306C5C3030305C3034305C3030304C5C303030695C3030306E5C303030655C303030615C303030725C3030305C3034305C3030304D5C3030306F5C303030645C303030655C3030306C}
\newlabel{canonical-correlation-analysis}{{5.1}{246}{Canonical correlation analysis}{section*.205}{}}
\@writefile{toc}{\contentsline {subsubsection}{Canonical correlation analysis}{246}{section*.205}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces Canonical correlation analyis finds uncorrelated linear combinations of the responses which maximize the R squared with linear combinations of the predictors.}}{246}{figure.caption.206}\protected@file@percent }
\newlabel{fig-lin-comb4}{{5.5}{246}{Canonical correlation analyis finds uncorrelated linear combinations of the responses which maximize the R squared with linear combinations of the predictors}{figure.caption.206}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}The General Linear Model}{246}{section.5.2}\protected@file@percent }
\newlabel{sec-GLM}{{5.2}{246}{The General Linear Model}{section.5.2}{}}
\BKM@entry{id=73,dest={73756273656374696F6E2E352E322E31},srcline={9717}}{5C3337365C3337375C3030304D5C3030306F5C303030645C303030655C3030306C5C3030305C3034305C303030665C3030306F5C303030725C3030306D5C303030755C3030306C5C303030615C30303073}
\citation{ref-WilkinsonRogers1973}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.1}Model formulas}{247}{subsection.5.2.1}\protected@file@percent }
\newlabel{sec-model-formulas}{{5.2.1}{247}{Model formulas}{subsection.5.2.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.1.1}Crossing}{248}{subsubsection.5.2.1.1}\protected@file@percent }
\newlabel{crossing}{{5.2.1.1}{248}{Crossing}{subsubsection.5.2.1.1}{}}
\BKM@entry{id=74,dest={73756273656374696F6E2E352E322E32},srcline={9924}}{5C3337365C3337375C3030304D5C3030306F5C303030645C303030655C3030306C5C3030305C3034305C3030306D5C303030615C303030745C303030725C303030695C303030635C303030655C30303073}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.1.2}Powers}{249}{subsubsection.5.2.1.2}\protected@file@percent }
\newlabel{powers}{{5.2.1.2}{249}{Powers}{subsubsection.5.2.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.2}Model matrices}{249}{subsection.5.2.2}\protected@file@percent }
\newlabel{model-matrices}{{5.2.2}{249}{Model matrices}{subsection.5.2.2}{}}
\BKM@entry{id=75,dest={73756273656374696F6E2E352E322E33},srcline={9995}}{5C3337365C3337375C303030435C3030306F5C3030306E5C303030745C303030725C303030615C303030735C303030745C30303073}
\BKM@entry{id=76,dest={73656374696F6E2E352E33},srcline={9997}}{5C3337365C3337375C303030525C303030655C303030675C303030725C303030655C303030735C303030735C303030695C3030306F5C3030306E}
\BKM@entry{id=77,dest={73656374696F6E2E352E34},srcline={9999}}{5C3337365C3337375C303030415C3030304E5C3030304F5C303030565C30303041}
\BKM@entry{id=78,dest={73656374696F6E2E352E35},srcline={10001}}{5C3337365C3337375C303030415C3030304E5C303030435C3030304F5C303030565C30303041}
\BKM@entry{id=79,dest={73656374696F6E2E352E36},srcline={10003}}{5C3337365C3337375C303030525C303030655C303030675C303030725C303030655C303030735C303030735C303030695C3030306F5C3030306E5C3030305C3034305C303030745C303030725C303030655C303030655C30303073}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.3}Contrasts}{251}{subsection.5.2.3}\protected@file@percent }
\newlabel{sec-contrasts}{{5.2.3}{251}{Contrasts}{subsection.5.2.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.3}Regression}{251}{section.5.3}\protected@file@percent }
\newlabel{regression}{{5.3}{251}{Regression}{section.5.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.4}ANOVA}{251}{section.5.4}\protected@file@percent }
\newlabel{anova}{{5.4}{251}{ANOVA}{section.5.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.5}ANCOVA}{251}{section.5.5}\protected@file@percent }
\newlabel{ancova}{{5.5}{251}{ANCOVA}{section.5.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.6}Regression trees}{251}{section.5.6}\protected@file@percent }
\newlabel{regression-trees}{{5.6}{251}{Regression trees}{section.5.6}{}}
\BKM@entry{id=80,dest={636861707465722E36},srcline={10012}}{5C3337365C3337375C303030505C3030306C5C3030306F5C303030745C303030735C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C303030755C3030306E5C303030695C303030765C303030615C303030725C303030695C303030615C303030745C303030655C3030305C3034305C303030725C303030655C303030735C303030705C3030306F5C3030306E5C303030735C303030655C3030305C3034305C3030306D5C3030306F5C303030645C303030655C3030306C5C30303073}
\citation{ref-Belsley-etal:80}
\citation{ref-Fox2020}
\citation{ref-FoxWeisberg:2018}
\citation{ref-R-car}
\citation{ref-FoxWeisberg:2018}
\BKM@entry{id=81,dest={73656374696F6E2E362E31},srcline={10073}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030605C303030605C303030725C303030655C303030675C303030725C303030655C303030735C303030735C303030695C3030306F5C3030306E5C3030305C3034305C303030715C303030755C303030615C303030725C303030745C303030655C303030745C303030275C30303027}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Plots for univariate response models}{253}{chapter.6}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec-linear-models-plots}{{6}{253}{Plots for univariate response models}{chapter.6}{}}
\citation{ref-R-car}
\citation{ref-Ludecke-etal-performance}
\citation{ref-R-easystats}
\BKM@entry{id=82,dest={73756273656374696F6E2E362E312E31},srcline={10123}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C3030303A5C3030305C3034305C303030445C303030755C3030306E5C303030635C303030615C3030306E5C303030275C303030735C3030305C3034305C3030306F5C303030635C303030635C303030755C303030705C303030615C303030745C303030695C3030306F5C3030306E5C303030615C3030306C5C3030305C3034305C303030705C303030725C303030655C303030735C303030745C303030695C303030675C30303065}
\citation{ref-Duncan:61}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}The ``regression quartet''}{254}{section.6.1}\protected@file@percent }
\newlabel{the-regression-quartet}{{6.1}{254}{The ``regression quartet''}{section.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.1}Example: Duncan's occupational prestige}{254}{subsection.6.1.1}\protected@file@percent }
\newlabel{sec-example-duncan}{{6.1.1}{254}{Example: Duncan's occupational prestige}{subsection.6.1.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.1.1.1}Diagnostic plots}{257}{subsubsection.6.1.1.1}\protected@file@percent }
\newlabel{diagnostic-plots-1}{{6.1.1.1}{257}{Diagnostic plots}{subsubsection.6.1.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Joint 95\% confidence ellipse for \((\beta _{\text {Inc}}, \beta _{\text {Educ}})\), together with their 1D shadows, which give 95\% confidence intervals for the separate coefficients and the linear hypothesis that the coefficients are equal. Projecting the confidence ellipse along the line with unit slope gives a confidence interval for the difference between coefficients, shown by the dark red line.}}{258}{figure.caption.207}\protected@file@percent }
\newlabel{fig-duncan-beta-diff}{{6.1}{258}{Joint 95\% confidence ellipse for \((\beta _{\text {Inc}}, \beta _{\text {Educ}})\), together with their 1D shadows, which give 95\% confidence intervals for the separate coefficients and the linear hypothesis that the coefficients are equal. Projecting the confidence ellipse along the line with unit slope gives a confidence interval for the difference between coefficients, shown by the dark red line}{figure.caption.207}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.2}{\ignorespaces Regression quartet of diagnostic plots for the \texttt {Duncan} data. Several possibly unusual observations are labeled.}}{258}{figure.caption.208}\protected@file@percent }
\newlabel{fig-duncan-plot-model}{{6.2}{258}{Regression quartet of diagnostic plots for the \texttt {Duncan} data. Several possibly unusual observations are labeled}{figure.caption.208}{}}
\BKM@entry{id=83,dest={73756273656374696F6E2E362E312E32},srcline={10439}}{5C3337365C3337375C303030455C303030785C303030615C3030306D5C303030705C3030306C5C303030655C3030303A5C3030305C3034305C303030435C303030615C3030306E5C303030615C303030645C303030695C303030615C3030306E5C3030305C3034305C3030306F5C303030635C303030635C303030755C303030705C303030615C303030745C303030695C3030306F5C3030306E5C303030615C3030306C5C3030305C3034305C303030705C303030725C303030655C303030735C303030745C303030695C303030675C30303065}
\citation{ref-Duncan:61}
\citation{ref-Pineo-Porter-1967}
\@writefile{lof}{\contentsline {figure}{\numberline {6.3}{\ignorespaces Diagnostic plots for the \texttt {Duncan} data, using \texttt {check\_model()}.}}{259}{figure.caption.209}\protected@file@percent }
\newlabel{fig-duncan-check-model}{{6.3}{259}{Diagnostic plots for the \texttt {Duncan} data, using \texttt {check\_model()}}{figure.caption.209}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.2}Example: Canadian occupational prestige}{259}{subsection.6.1.2}\protected@file@percent }
\newlabel{sec-example-prestige}{{6.1.2}{259}{Example: Canadian occupational prestige}{subsection.6.1.2}{}}
\BKM@entry{id=84,dest={73656374696F6E2E362E32},srcline={10533}}{5C3337365C3337375C3030304F5C303030745C303030685C303030655C303030725C3030305C3034305C3030304D5C3030306F5C303030645C303030655C3030306C5C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\BKM@entry{id=85,dest={73656374696F6E2E362E33},srcline={10537}}{5C3337365C3337375C303030435C3030306F5C303030655C303030665C303030665C303030695C303030635C303030695C303030655C3030306E5C303030745C3030305C3034305C303030645C303030695C303030735C303030705C3030306C5C303030615C303030795C30303073}
\citation{ref-KastellecLeoni:2007}
\@writefile{lof}{\contentsline {figure}{\numberline {6.4}{\ignorespaces Regression quartet of diagnostic plots for the \texttt {Prestige} data. Several possibly unusual observations are labeled in each plot.}}{261}{figure.caption.210}\protected@file@percent }
\newlabel{fig-plot-prestige-mod}{{6.4}{261}{Regression quartet of diagnostic plots for the \texttt {Prestige} data. Several possibly unusual observations are labeled in each plot}{figure.caption.210}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.2}Other Model plots}{261}{section.6.2}\protected@file@percent }
\newlabel{other-model-plots}{{6.2}{261}{Other Model plots}{section.6.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.3}Coefficient displays}{261}{section.6.3}\protected@file@percent }
\newlabel{coefficient-displays}{{6.3}{261}{Coefficient displays}{section.6.3}{}}
\BKM@entry{id=86,dest={73756273656374696F6E2E362E332E31},srcline={10587}}{5C3337365C3337375C303030445C303030695C303030735C303030705C3030306C5C303030615C303030795C303030695C3030306E5C303030675C3030305C3034305C303030635C3030306F5C303030655C303030665C303030665C303030695C303030635C303030695C303030655C3030306E5C303030745C30303073}
\citation{ref-R-modelsummary}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3.1}Displaying coefficients}{262}{subsection.6.3.1}\protected@file@percent }
\newlabel{displaying-coefficients}{{6.3.1}{262}{Displaying coefficients}{subsection.6.3.1}{}}
\BKM@entry{id=87,dest={73756273656374696F6E2E362E332E32},srcline={10680}}{5C3337365C3337375C303030565C303030695C303030735C303030755C303030615C3030306C5C303030695C3030307A5C303030695C3030306E5C303030675C3030305C3034305C303030635C3030306F5C303030655C303030665C303030665C303030695C303030635C303030695C303030655C3030306E5C303030745C30303073}
\@writefile{lot}{\contentsline {table}{\numberline {6.1}{\ignorespaces Table of coefficients for the main effects model.}}{263}{table.caption.211}\protected@file@percent }
\newlabel{tbl-modelsummary1}{{6.1}{263}{Table of coefficients for the main effects model}{table.caption.211}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3.2}Visualizing coefficients}{263}{subsection.6.3.2}\protected@file@percent }
\newlabel{visualizing-coefficients}{{6.3.2}{263}{Visualizing coefficients}{subsection.6.3.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.5}{\ignorespaces Plot of coefficients and their standard error bar for the simple main effects model}}{264}{figure.caption.212}\protected@file@percent }
\newlabel{fig-modelplot1}{{6.5}{264}{Plot of coefficients and their standard error bar for the simple main effects model}{figure.caption.212}{}}
\@writefile{lot}{\contentsline {table}{\numberline {6.2}{\ignorespaces Table of coefficients for three models.}}{265}{table.caption.213}\protected@file@percent }
\newlabel{tbl-modelsummary2}{{6.2}{265}{Table of coefficients for three models}{table.caption.213}{}}
\BKM@entry{id=88,dest={73756273656374696F6E2E362E332E33},srcline={10815}}{5C3337365C3337375C3030304D5C3030306F5C303030725C303030655C3030305C3034305C303030755C303030735C303030655C303030665C303030755C3030306C5C3030305C3034305C303030635C3030306F5C303030655C303030665C303030665C303030695C303030635C303030695C303030655C3030306E5C303030745C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {6.6}{\ignorespaces Plot of raw coefficients and their confidence intervals for all three models}}{266}{figure.caption.214}\protected@file@percent }
\newlabel{fig-modelplot2}{{6.6}{266}{Plot of raw coefficients and their confidence intervals for all three models}{figure.caption.214}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3.3}More useful coefficient plots}{266}{subsection.6.3.3}\protected@file@percent }
\newlabel{more-useful-coefficient-plots}{{6.3.3}{266}{More useful coefficient plots}{subsection.6.3.3}{}}
\newlabel{standardized-coefficients}{{6.3.3}{266}{Standardized coefficients}{section*.215}{}}
\@writefile{toc}{\contentsline {subsubsection}{Standardized coefficients}{266}{section*.215}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {6.7}{\ignorespaces Plot of standardized coefficients and their confidence intervals for all three models}}{267}{figure.caption.216}\protected@file@percent }
\newlabel{fig-modelplot3}{{6.7}{267}{Plot of standardized coefficients and their confidence intervals for all three models}{figure.caption.216}{}}
\citation{ref-R-ggstats}
\@writefile{lof}{\contentsline {figure}{\numberline {6.8}{\ignorespaces Model comparison plot from \texttt {ggcoef\_compare()}}}{268}{figure.caption.217}\protected@file@percent }
\newlabel{fig-ggcoef-compare}{{6.8}{268}{Model comparison plot from \texttt {ggcoef\_compare()}}{figure.caption.217}{}}
\newlabel{more-meaningful-units}{{6.3.3}{269}{More meaningful units}{section*.218}{}}
\@writefile{toc}{\contentsline {subsubsection}{More meaningful units}{269}{section*.218}\protected@file@percent }
\BKM@entry{id=89,dest={73656374696F6E2E362E34},srcline={11008}}{5C3337365C3337375C303030415C303030645C303030645C303030655C303030645C3030302D5C303030765C303030615C303030725C303030695C303030615C303030625C3030306C5C303030655C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030725C303030655C3030306C5C303030615C303030745C303030655C303030645C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {6.9}{\ignorespaces Plot of coefficients for prestige with scaled predictors for Model 1.}}{270}{figure.caption.219}\protected@file@percent }
\newlabel{fig-ggcoef-compare2}{{6.9}{270}{Plot of coefficients for prestige with scaled predictors for Model 1}{figure.caption.219}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.4}Added-variable and related plots}{270}{section.6.4}\protected@file@percent }
\newlabel{sec-avplots}{{6.4}{270}{Added-variable and related plots}{section.6.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.10}{\ignorespaces Scatterplot matrix showing pairwise relations among \texttt {Heart} (\(y\)), \texttt {Coffee} consumption (\(x_1\)) and \texttt {Stress} (\(x_2\)), with linear regression lines and 68\% data ellipses for the bivariate relations}}{271}{figure.caption.220}\protected@file@percent }
\newlabel{fig-coffee-spm}{{6.10}{271}{Scatterplot matrix showing pairwise relations among \texttt {Heart} (\(y\)), \texttt {Coffee} consumption (\(x_1\)) and \texttt {Stress} (\(x_2\)), with linear regression lines and 68\% data ellipses for the bivariate relations}{figure.caption.220}{}}
\citation{ref-VellemanWelsh:81}
\BKM@entry{id=90,dest={73756273656374696F6E2E362E342E31},srcline={11188}}{5C3337365C3337375C303030505C303030725C3030306F5C303030705C303030655C303030725C303030745C303030695C303030655C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030415C303030565C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {6.11}{\ignorespaces Added-variable plots for Coffee and Stress in the multiple regression model}}{273}{figure.caption.221}\protected@file@percent }
\newlabel{fig-coffee-avPlots}{{6.11}{273}{Added-variable plots for Coffee and Stress in the multiple regression model}{figure.caption.221}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.4.1}Properties of AV plots}{273}{subsection.6.4.1}\protected@file@percent }
\newlabel{properties-of-av-plots}{{6.4.1}{273}{Properties of AV plots}{subsection.6.4.1}{}}
\BKM@entry{id=91,dest={73756273656374696F6E2E362E342E32},srcline={11226}}{5C3337365C3337375C3030304D5C303030615C303030725C303030675C303030695C3030306E5C303030615C3030306C5C3030305C3034305C3030302D5C3030305C3034305C303030635C3030306F5C3030306E5C303030645C303030695C303030745C303030695C3030306F5C3030306E5C303030615C3030306C5C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.4.2}Marginal - conditional plots}{274}{subsection.6.4.2}\protected@file@percent }
\newlabel{marginal---conditional-plots}{{6.4.2}{274}{Marginal - conditional plots}{subsection.6.4.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.12}{\ignorespaces Marginal \(+\) conditional (added-variable) plots for Coffee and Stress in the multiple regression predicting Heart disease. Each panel shows the 68\% conditional data ellipse for \(x_i^\star , y^\star \) residuals (shaded, blue) as well as the marginal 68\% data ellipse for the \((x_i, y)\) variables, shifted to the origin. Arrows connect the mean-centered marginal points (red) to the residual points (blue).}}{274}{figure.caption.222}\protected@file@percent }
\newlabel{fig-coffee-mcplot}{{6.12}{274}{Marginal \(+\) conditional (added-variable) plots for Coffee and Stress in the multiple regression predicting Heart disease. Each panel shows the 68\% conditional data ellipse for \(x_i^\star , y^\star \) residuals (shaded, blue) as well as the marginal 68\% data ellipse for the \((x_i, y)\) variables, shifted to the origin. Arrows connect the mean-centered marginal points (red) to the residual points (blue)}{figure.caption.222}{}}
\citation{ref-CookWeisberg-1994}
\BKM@entry{id=92,dest={73756273656374696F6E2E362E342E33},srcline={11312}}{5C3337365C3337375C303030505C303030725C303030655C303030735C303030745C303030695C303030675C303030655C3030305C3034305C303030645C303030615C303030745C30303061}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.4.3}Prestige data}{275}{subsection.6.4.3}\protected@file@percent }
\newlabel{prestige-data}{{6.4.3}{275}{Prestige data}{subsection.6.4.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.13}{\ignorespaces Added-variable plot for the quantitative predictors in the \texttt {Prestige} data.}}{276}{figure.caption.223}\protected@file@percent }
\newlabel{fig-prestige-avplot}{{6.13}{276}{Added-variable plot for the quantitative predictors in the \texttt {Prestige} data}{figure.caption.223}{}}
\citation{ref-Cook-1996}
\BKM@entry{id=93,dest={73756273656374696F6E2E362E342E34},srcline={11386}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030705C3030306F5C3030306E5C303030655C3030306E5C303030745C3030305C3034305C3030302B5C3030305C3034305C303030525C303030655C303030735C303030695C303030645C303030755C303030615C3030306C5C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\citation{ref-LarsenMcCleary:72}
\citation{ref-Cook:93}
\@writefile{lof}{\contentsline {figure}{\numberline {6.14}{\ignorespaces Added-variable plot for income, with a loess smooth.}}{277}{figure.caption.224}\protected@file@percent }
\newlabel{fig-prestige-av-income}{{6.14}{277}{Added-variable plot for income, with a loess smooth}{figure.caption.224}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.4.4}Component + Residual plots}{277}{subsection.6.4.4}\protected@file@percent }
\newlabel{component-residual-plots}{{6.4.4}{277}{Component + Residual plots}{subsection.6.4.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.15}{\ignorespaces Component + residual plot for income in the model for the quantitative predictors of prestige. The dashed \textcolor {blue}{blue} line is the partial linear fit for income. The solid \textcolor {red}{red} curve is the loess smooth.}}{278}{figure.caption.225}\protected@file@percent }
\newlabel{fig-prestige-crplot}{{6.15}{278}{Component + residual plot for income in the model for the quantitative predictors of prestige. The dashed \textcolor {blue}{blue} line is the partial linear fit for income. The solid \textcolor {red}{red} curve is the loess smooth}{figure.caption.225}{}}
\BKM@entry{id=94,dest={73656374696F6E2E362E35},srcline={11505}}{5C3337365C3337375C303030455C303030665C303030665C303030655C303030635C303030745C3030305C3034305C303030645C303030695C303030735C303030705C3030306C5C303030615C303030795C30303073}
\citation{ref-Fox:87}
\citation{ref-Fox:03:effects}
\citation{ref-FoxWeisberg2018}
\citation{ref-Fisher-1936}
\citation{ref-Searle-etal:80}
\@writefile{lof}{\contentsline {figure}{\numberline {6.16}{\ignorespaces Component + residual plot for women in the model for the quantitative predictors of prestige.}}{279}{figure.caption.226}\protected@file@percent }
\newlabel{fig-prestige-crplot-women}{{6.16}{279}{Component + residual plot for women in the model for the quantitative predictors of prestige}{figure.caption.226}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.5}Effect displays}{279}{section.6.5}\protected@file@percent }
\newlabel{effect-displays}{{6.5}{279}{Effect displays}{section.6.5}{}}
\citation{ref-FoxWeisberg2018}
\citation{ref-R-ggeffects}
\citation{ref-R-marginaleffects}
\citation{ref-R-effects}
\BKM@entry{id=95,dest={73756273656374696F6E2E362E352E31},srcline={11647}}{5C3337365C3337375C303030505C303030725C303030655C303030735C303030745C303030695C303030675C303030655C3030305C3034305C303030645C303030615C303030745C30303061}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.5.1}Prestige data}{281}{subsection.6.5.1}\protected@file@percent }
\newlabel{prestige-data-1}{{6.5.1}{281}{Prestige data}{subsection.6.5.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.17}{\ignorespaces Predictor effect plot for all terms in the model with 95\% confidence bands.}}{283}{figure.caption.227}\protected@file@percent }
\newlabel{fig-prestige-allEffects}{{6.17}{283}{Predictor effect plot for all terms in the model with 95\% confidence bands}{figure.caption.227}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.18}{\ignorespaces Predictor effect plot for education displaying partial residuals. The \textcolor {blue}{blue} line shows the slice of the fitted regression surface where other variables are held fixed. The \textcolor {red}{red} curve shows a loess smooth of the partial residuals.}}{284}{figure.caption.228}\protected@file@percent }
\newlabel{fig-prestige-effplot-educ}{{6.18}{284}{Predictor effect plot for education displaying partial residuals. The \textcolor {blue}{blue} line shows the slice of the fitted regression surface where other variables are held fixed. The \textcolor {red}{red} curve shows a loess smooth of the partial residuals}{figure.caption.228}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.19}{\ignorespaces Predictor effect plot for women with partial residuals}}{285}{figure.caption.229}\protected@file@percent }
\newlabel{fig-prestige-effplot-women}{{6.19}{285}{Predictor effect plot for women with partial residuals}{figure.caption.229}{}}
\BKM@entry{id=96,dest={73656374696F6E2E362E36},srcline={11863}}{5C3337365C3337375C3030304F5C303030755C303030745C3030306C5C303030695C303030655C303030725C303030735C3030302C5C3030305C3034305C3030306C5C303030655C303030765C303030655C303030725C303030615C303030675C303030655C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030695C3030306E5C303030665C3030306C5C303030755C303030655C3030306E5C303030635C30303065}
\@writefile{lof}{\contentsline {figure}{\numberline {6.20}{\ignorespaces Predictor effect plot for income, plotted on a log scale.}}{286}{figure.caption.230}\protected@file@percent }
\newlabel{fig-prestige-effplot-inc-log}{{6.20}{286}{Predictor effect plot for income, plotted on a log scale}{figure.caption.230}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.6}Outliers, leverage and influence}{286}{section.6.6}\protected@file@percent }
\newlabel{sec-leverage}{{6.6}{286}{Outliers, leverage and influence}{section.6.6}{}}
\BKM@entry{id=97,dest={73756273656374696F6E2E362E362E31},srcline={11915}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C3030306C5C303030655C303030765C303030655C303030725C303030615C303030675C303030655C3030302D5C303030695C3030306E5C303030665C3030306C5C303030755C303030655C3030306E5C303030635C303030655C3030305C3034305C303030715C303030755C303030615C303030725C303030745C303030655C30303074}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.6.1}The leverage-influence quartet}{287}{subsection.6.6.1}\protected@file@percent }
\newlabel{sec-lev-inf-quartet}{{6.6.1}{287}{The leverage-influence quartet}{subsection.6.6.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.21}{\ignorespaces Leverage influence quartet with data 50\% ellipses. Case (1) original data; (2) adding one low-leverage outlier, ``O''; (3) adding one ``good'' leverage point, ``L''; (4) adding one ``bad'' leverage point, ``OL''. The dashed \textcolor {blue}{blue} line is the fitted line for the original data, while the solid \textcolor {red}{red} line reflects the additional point. The data ellipses show the effect of the additional point on precision.}}{289}{figure.caption.231}\protected@file@percent }
\newlabel{fig-levdemo}{{6.21}{289}{Leverage influence quartet with data 50\% ellipses. Case (1) original data; (2) adding one low-leverage outlier, ``O''; (3) adding one ``good'' leverage point, ``L''; (4) adding one ``bad'' leverage point, ``OL''. The dashed \textcolor {blue}{blue} line is the fitted line for the original data, while the solid \textcolor {red}{red} line reflects the additional point. The data ellipses show the effect of the additional point on precision}{figure.caption.231}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.22}{\ignorespaces Data ellipses in the Leverage-influence quartet. This graph overlays the data ellipses and additional points from the four panels of Figure~\ref {fig-levdemo2}. It can be seen that only the OL point affects the slope, while the O and L points affect precision of the estimates in opposite directions.}}{290}{figure.caption.232}\protected@file@percent }
\newlabel{fig-levdemo2}{{6.22}{290}{Data ellipses in the Leverage-influence quartet. This graph overlays the data ellipses and additional points from the four panels of Figure~\ref {fig-levdemo2}. It can be seen that only the OL point affects the slope, while the O and L points affect precision of the estimates in opposite directions}{figure.caption.232}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.6.1.1}Measuring leverage}{290}{subsubsection.6.6.1.1}\protected@file@percent }
\newlabel{measuring-leverage}{{6.6.1.1}{290}{Measuring leverage}{subsubsection.6.6.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.23}{\ignorespaces Data ellipses for a bivariate normal sample with correlation 0.7, and two additional noteworthy points. The \textcolor {blue}{blue} point looks to be farther from the mean, but the \textcolor {red}{red} point is actually more than 5 times further by Mahalanobis squared distance, and thus has much greater leverage.}}{292}{figure.caption.233}\protected@file@percent }
\newlabel{fig-hatvalues-demo1}{{6.23}{292}{Data ellipses for a bivariate normal sample with correlation 0.7, and two additional noteworthy points. The \textcolor {blue}{blue} point looks to be farther from the mean, but the \textcolor {red}{red} point is actually more than 5 times further by Mahalanobis squared distance, and thus has much greater leverage}{figure.caption.233}{}}
\citation{ref-CookWeisberg:82}
\citation{ref-HoaglinWelsch1978}
\citation{ref-VellemanWelsh:81}
\@writefile{lof}{\contentsline {figure}{\numberline {6.24}{\ignorespaces Hat values are proportional to squared Mahalanobis distances from the mean.}}{293}{figure.caption.234}\protected@file@percent }
\newlabel{fig-hatvalues-demo2}{{6.24}{293}{Hat values are proportional to squared Mahalanobis distances from the mean}{figure.caption.234}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.6.1.2}Outliers: Measuring residuals}{293}{subsubsection.6.6.1.2}\protected@file@percent }
\newlabel{outliers-measuring-residuals}{{6.6.1.2}{293}{Outliers: Measuring residuals}{subsubsection.6.6.1.2}{}}
\citation{ref-Belsley-etal:80}
\citation{ref-Cook:77}
\BKM@entry{id=98,dest={73756273656374696F6E2E362E362E32},srcline={12337}}{5C3337365C3337375C303030495C3030306E5C303030665C3030306C5C303030755C303030655C3030306E5C303030635C303030655C3030305C3034305C303030705C3030306C5C3030306F5C303030745C30303073}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.6.1.3}Measuring influence}{294}{subsubsection.6.6.1.3}\protected@file@percent }
\newlabel{measuring-influence}{{6.6.1.3}{294}{Measuring influence}{subsubsection.6.6.1.3}{}}