From 1c400c33811b96173d9da9ffe3e3578cf4fb8220 Mon Sep 17 00:00:00 2001 From: Michael Friendly Date: Sat, 2 Nov 2024 18:48:12 -0400 Subject: [PATCH] pvPlot now uses car::dataEllipse --- R/pvPlot.R | 184 ++++++++++++++++++++++++++++++++----------- child/03-network.qmd | 5 -- 2 files changed, 138 insertions(+), 51 deletions(-) diff --git a/R/pvPlot.R b/R/pvPlot.R index 1c51cd9..517a62c 100644 --- a/R/pvPlot.R +++ b/R/pvPlot.R @@ -3,23 +3,89 @@ # To understand the partial correlations, make scatterplots of the residuals from the # models where each x_i, x_j are predicted by all others. -# see also: pairs version +# see also: stuff relevant to a pairs version # https://stackoverflow.com/questions/35591033/plot-scatterplot-matrix-with-partial-correlation-coefficients-in-r -# TODO: make show.partial take a list(loc = c(x,y), cex = ) -# TODO: make id take a list of options - +# DONE: make show.partial take a list(loc = c(x,y), cex = ) +# DONE: make id take a list of options +# DONE: use dataEllipse() instead of scatterplot() + +# TODO: be able to use ellipse = FALSE +# BUG: passing either ellipse or cex to dataEllipse() -> error +# Error in text.default(x, y, label, pos = pos, xpd = xpd, col = col, ...) : +# formal argument "cex" matched by multiple actual arguments +# Trying to pass + +#' Partial variables plot +#' +#' @description +#' A partial variable plot is a visualization of a partial correlation of two variables in the context +#' of other variables in a dataset. For two variables \eqn{x_i} and \eqn{x_j}, +#' it is simply an enhanced scatterplot of the \emph{partial residuals}, +#' \eqn{e_i = (x_i - \hat{x}_i)} from a regression of \eqn{x_i} on all other variables \eqn{Z} +#' against those \eqn{e_j = (x_j - \hat{x}_j)} for another variable $x_j$. +#' The basic scatterplot of these residuals can be enhanced by also showing the data ellipse +#' of these residuals and point labels to identify unusual data. +#' (These plots are produced by SAS \code{PROC CORR}, with the \code{PARTIAL} and \code{SCATTER} +#' statements.) +#' +#' Partial variable plots are intimately related to an \emph{added-variable plot}, +#' such as produced by \code{\link[car]{avPlots}}. However, that implementation +#' is designed for a linear model, rather than a data.frame. +#' +#' +#' @param X a data.frame of numeric variables +#' @param vars either the character names of two variables in \code{X} or their indices +#' @param labels id labels for the points. If not supplied, rownames of the dataset are used. +#' @param id controls point identification; if \code{FALSE} (the default), no points are identified; +#' can be a list of named arguments to the \code{\link[car]{showLabels} function +#' @param ellipse logical; whether to draw the data ellipse. Not presently used +#' @param ellipse.args a list of other arguments for the ellipse +#' @param draw logical; if \code{TRUE} produce graphical output; if \code{FALSE}, only invisibly return +#' coordinates of ellipse(s). +#' @param col color used for points, ... +#' @param pch the plotting character +#' @param cex Character expansion for points and labels. Not presently used +#' @param axes logical; if \code{TRUE} (the default), grey axes lines are drawn at 0 on both coordinates +#' @param regline logical; if \code{TRUE} (the default), draws the regression line for the partial residuals +#' of \code{vars[2]} on those for \code{vars[1]}. +#' @param show.partial controls whether the partial correlation value is displayed in the plot. If \code{FALSE} +#' the value is not shown. Otherwise, can be a list containing the location (\code{loc}) and +#' character size (\code{cex}) of the label. +#' @param ... other arguments passed to \code{\link[car]{dataEllipse}} +#' +#' @return This functions is mainly used for their side effect of producing plots. For greater +#' flexibility (e.g., adding plot annotations), it returns invisibly the coordinates of the residuals +#' plotted. +#' @export +#' @author Michael Friendly +#' @importFrom car dataEllipse +#' @examples +#' data(crime, package = "ggbiplot") +#' crime.num <- crime |> +#' tibble::column_to_rownames("st") |> +#' dplyr::select(where(is.numeric)) +#' +#' pvPlot(crime.num, vars = c("burglary", "larceny")) +#' pvPlot(crime.num, vars = c("auto", "robbery")) +#' +#' # bugged: +#' pvPlot(crime.num, vars = c("burglary", "larceny"), ellipse=FALSE) +#' pvPlot <- function( X, vars = 1:2, labels, id = FALSE, - ellipse=FALSE, + ellipse=TRUE, + ellipse.args = list(levels = 0.68, fill = TRUE, fill.alpha = 0.05, robust=FALSE, col="black"), + draw = TRUE, col = "black", pch = 16, cex = par("cex"), axes = TRUE, - show.partial = TRUE, + regline = TRUE, + show.partial = list(loc = c(0.025, 0.95), cex = 1.2), ...) { nv <- ncol(X) @@ -28,6 +94,7 @@ pvPlot <- function( # variables, as names, even if vars is numeric all <- names(X) vars <- if(is.numeric(vars)) names(X)[vars] else vars + # TODO: make others an argument, so it's not necessary to partial _all_ others others <- setdiff(all, vars) # variables for this plot @@ -36,52 +103,53 @@ pvPlot <- function( # get the partial residuals fitting each var from all the others res <- X[, vars] + rownames(res) <- rownames(X) res[, 1] <- lsfit(X[, others], X[, v1])$residuals res[, 2] <- lsfit(X[, others], X[, v2])$residuals - # plot(res, - # col = col, pch = pch, cex = cex, ...) - xlab <- paste(vars[1], "residual") - ylab <- paste(vars[2], "residual") + xlab <- paste(vars[1], "| others") + ylab <- paste(vars[2], "| others") labels <- if (missing(labels)) rownames(X) else labels applyDefaults <- car:::applyDefaults - id <- applyDefaults(id, defaults=list(method="mahal", - n=5, cex=1, - col="black", - location="lr"), type="id") - if (isFALSE(id)){ - id.n <- 0 - id.method <- "mahal" - labels <- id.cex <- id.col <- id.location <- NULL - } - else{ - labels <- id$labels - id.method <- id$method - id.n <- if ("identify" %in% id.method) Inf else id$n - id.cex <- id$cex - # id.col <- if (by.groups) id$col else id$col[1] - id.location <- id$location - } + id <- applyDefaults(id, + defaults=list(method="mahal", + n=5, cex=1, + col="black", + location="lr"), type="id") + + if (draw) { + + # handle ellipse args + levels <- ellipse.args$levels %||% 0.68 + fill <- ellipse.args$fill %||% TRUE + fill.alpha <- ellipse.args$alpha %||% 0.05 + robust <- ellipse.args$robust %||% FALSE + + dataEllipse(res[, 2] ~ res[, 1], data = res, + xlab = xlab, ylab = ylab, + pch = pch, col = col, + # cex = cex, + # ellipse = ellipse, # ellipse.label = "", + levels = levels, fill = fill, fill.alpha = fill.alpha, robust=robust, + grid = FALSE, + id = id, + ...) + + if (axes) abline(h = 0, v = 0, col = "gray") + if (regline) abline(lm(res[, 2] ~ res[, 1], data = res), lwd = 2) - car::scatterplot(res[, 1], res[, 2], - xlab = xlab, ylab = ylab, - pch = pch, col = col, cex = cex, - ellipse = ellipse, - smooth = FALSE, boxplots = FALSE, - grid = FALSE, - id = list(n=5, labels = labels), # make it id = id, using our defaults - ...) - - if (axes) - abline(h = 0, v = 0, col = "gray") - - if (show.partial) { - pcor <- round(cor(res[,1], res[,2]), 3) - usr <- par("usr") # save old user/default/system coordinates - par(usr = c(0, 1, 0, 1)) # new relative user coordinates - text(0.025, 0.95, label = paste("partial r =", pcor), pos = 4, cex = 1.25) - par(usr = usr) # restore original user coordinates + if (!isFALSE(show.partial)) { + loc <- show.partial$loc %||% c(0.025, 0.95) + cex <- show.partial$cex %||% 1.2 + pos <- show.partial$pos %||% 4 + + pcor <- round(cor(res[,1], res[,2]), 3) + usr <- par("usr") # save old user/default/system coordinates + par(usr = c(0, 1, 0, 1)) # new relative user coordinates + text(loc[1], loc[2], label = paste("partial r =", pcor), pos = pos, cex = cex) + par(usr = usr) # restore original user coordinates + } } invisible(res) @@ -123,5 +191,29 @@ p2 <- image_read("images/crime-pvPlot2.png") p12 <- image_append(c(p1, p2), stack = FALSE) image_write(p12, path="images/crime-pvPlot-1-2.png", format="png") - +# try using dataEllipse instead + +res <- pvPlot(crime.num, vars = c("burglary", "larceny"), draw = FALSE) +dataEllipse(larceny ~ burglary, data = res, + levels = 0.68, fill = TRUE, fill.alpha = 0.05, robust=FALSE, + grid = FALSE, + pch = 16, + id = list(n=5)) +abline(h = 0, v = 0, col = "gray") +abline(lm(larceny ~ burglary, data = res), lwd=2) + +# now, using dataEllipse +pvPlot(crime.num, vars = c("burglary", "larceny"), + id = list(n=5), + cex.lab = 1.5) + +# now, combine side by side +op <- par(mar = c(5, 5, 1, 0)+.5, + mfrow = c(1, 2)) +pvPlot(crime.num, vars = c("burglary", "larceny"), + id = list(n=5), cex.lab = 1.5) +pvPlot(crime.num, vars = c("robbery", "auto"), + id = list(n=5), cex.lab = 1.5) +par(op) + } \ No newline at end of file diff --git a/child/03-network.qmd b/child/03-network.qmd index 21c5682..caf5739 100644 --- a/child/03-network.qmd +++ b/child/03-network.qmd @@ -261,15 +261,10 @@ crime.num <- crime |> tibble::column_to_rownames("st") |> dplyr::select(where(is.numeric)) -ellipse.args <- list(levels = 0.68, - fill.alpha = 0.1, - robust = FALSE) pvPlot(crime.num, vars = c("burglary", "larceny"), - ellipse = ellipse.args, id = list(n=5), cex.lab = 1.5) pvPlot(crime.num, vars = c("robbery", "auto"), - ellipse = list(levels = 0.68, fill.alpha = 0.1, robust = FALSE), id = list(n=5), cex.lab = 1.5) ```