-
Notifications
You must be signed in to change notification settings - Fork 0
/
33-SearchInRotatedSortedArray.cpp
86 lines (68 loc) · 1.66 KB
/
33-SearchInRotatedSortedArray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/*
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
*/
#include <stdio.h>
#include <vector>
using namespace std;
class Solution {
public:
int binarysearch(vector<int> &nums, int target, int low, int high) {
if (nums.empty()) {
return -1;
}
if (target < nums[low] || target > nums[high]) {
return -1;
}
int middle = (low + high) / 2;
while (low <= high) {
if (target > nums[middle]) {
low = middle + 1;
middle = (low + high) / 2;
} else if (target < nums[middle]) {
high = middle - 1;
middle = (low + high) / 2;
} else {
return middle;
}
}
return -1;
}
int search(vector<int>& nums, int target) {
if (nums.empty()) {
return -1;
}
int divide = -1;
for (size_t i = 0; i < nums.size() - 1; i++) {
if (nums[i] > nums[i + 1]) {
divide = i;
break;
}
}
if (divide == -1) {
return binarysearch(nums, target, 0, nums.size() - 1);
}
int ret1 = binarysearch(nums, target, 0, divide);
int ret2 = binarysearch(nums, target, divide + 1, nums.size() - 1);
if (ret1 == -1 && ret2 == -1) {
return -1;
}
return (ret1 != -1) ? ret1 : ret2;
}
};
int main() {
// 0 1 2 3 4 5 6 7 8 9
int array[10] = {8, 9, 10, 11, 1, 2, 3, 4, 5, 6};
vector<int> source;
for (int i = 0; i < 10; i++) {
source.push_back(array[i]);
printf("%d ", array[i]);
}
printf("\n");
Solution s;
int ret = s.search(source, 1);
printf("Return value is %d\n", ret);
return 0;
}