Skip to content

Latest commit

 

History

History
257 lines (189 loc) · 9.61 KB

Running_Notebooks_on_DKRZ_JupyterHub.md

File metadata and controls

257 lines (189 loc) · 9.61 KB

Using Cloud Classification Tools on JuypterHub

This description is developed for the application of our cloud classification tool on DKRZ JupyterHub. However, it should be applicable for other jupyterhub serivces with minor changes.

Login into JupyterHub

  • First, you need to log into JupyterHub following the link https://jupyterhub.dkrz.de and enter your account details.

  • Second, you select a preset. I like the 5 GB, prepost setting.

  • Third, you open a terminal in your JuypterHub session (alternatively, you could login via ssh and use the ssh-terminal session)

Installation of Cloud Classification Software and Its Dependencies

  • Select a project location <cloud_type_project_directory>. You might need to create a new one!

    > cd <cloud_type_project_directory>
    
  • Get the git repository (using git clone)

    > git clone https://github.com/fsenf/CTyPyTool.git
    Cloning into 'CTyPyTool'...
    remote: Enumerating objects: 587, done.
    remote: Counting objects: 100% (587/587), done.
    remote: Compressing objects: 100% (270/270), done.
    remote: Total 587 (delta 296), reused 581 (delta 294), pack-reused 0
    Receiving objects: 100% (587/587), 12.80 MiB | 19.00 MiB/s, done.
    Resolving deltas: 100% (296/296), done.
    

    Perfect! The source is there!

  • Look at dependencies

    • The PipFile only names numpy & request as dependencies, see

      > cd CTyPyTool
      > cat Pipfile
      ...
      
      [packages]
      requests = "*"
      numpy = "*"
      
      [dev-packages]
      
      [requires]
      python_version = "3.8"
      

      Both might be part of the standard anaconda env. We ignore the dependencies, here. You might need to install the packages an other platforms.

      The list of dependencies also looks a bit incomplete (TODO: check all loaded modules!)

Application 1: Run Example Cases with a Pretrained Tree Classifier

Download Data and Classifier

  • make a download folder (we assume that you are already in the CTyPyTool directory)

    mkdir download
    cd download
    
  • start the download of zips with (currently located on swiftbrowser; later this will move on zenodo)

    link="https://swiftbrowser.dkrz.de/tcl_objects/2023-10-14T14:41:05Z/r_7d20b33512e14d8b56ea40e25aa35978bfc3921f/w_/dkrz_d7550ef1-c227-4463-a6a7-29c14dc05fde/cloud_typing_project/11/classifier/"
    wget -r -H -N --cut-dirs=3 --content-disposition --no-directories -I "/v1/" "${link}/?show_all"

    The *zip Files contain pretrained classifiers. The index.html?show_all also comes along but is not needed.

  • let us extract the tree classifier

    > unzip -d ../classifiers TreeClassifier.zip
    Archive:  TreeClassifier.zip
       creating: ../classifiers/TreeClassifier/
       creating: ../classifiers/TreeClassifier/data/
      inflating: ../classifiers/TreeClassifier/data/classifier
      inflating: ../classifiers/TreeClassifier/data/label_reference.nc
      inflating: ../classifiers/TreeClassifier/data/training_data
       creating: ../classifiers/TreeClassifier/filelists/
      inflating: ../classifiers/TreeClassifier/filelists/evaluation_sets.json
      inflating: ../classifiers/TreeClassifier/filelists/input_files.json
      inflating: ../classifiers/TreeClassifier/filelists/label_files.json
      inflating: ../classifiers/TreeClassifier/filelists/training_sets.json
       creating: ../classifiers/TreeClassifier/labels/
      inflating: ../classifiers/TreeClassifier/labels/nwcsaf_msevi-medi-20190317_1800_predicted.nc
      inflating: ../classifiers/TreeClassifier/labels/nwcsaf_msevi-medi-20190318_1100_predicted.nc
       creating: ../classifiers/TreeClassifier/settings/
      inflating: ../classifiers/TreeClassifier/settings/config.json
      inflating: ../classifiers/TreeClassifier/settings/data_structure.json
    

    Nice!

  • Get NWCSAF & Meteosat Data & Georef for Running the Examples

    • Extract the data:

      > unzip -d .. data.zip
      Archive:  data.zip
         creating: ../data/
         creating: ../data/auxilary_files/
        inflating: ../data/auxilary_files/lsm_mask_medi.nc
        inflating: ../data/auxilary_files/msevi-medi-georef.nc
        inflating: ../data/auxilary_files/msevi_georef.nc
         creating: ../data/example_data/
        inflating: ../data/example_data/msevi-medi-20190317_1800.nc
        inflating: ../data/example_data/msevi-medi-20190318_1100.nc
        inflating: ../data/example_data/nwcsaf_msevi-medi-20190317_1800.nc
        inflating: ../data/example_data/nwcsaf_msevi-medi-20190318_1100.nc
      
    • On the content:

      > cd ../data
      > tree
      .
      |-- auxilary_files
      |   |-- lsm_mask_medi.nc
      |   |-- msevi-medi-georef.nc
      |   `-- msevi_georef.nc
      `-- example_data
          |-- msevi-medi-20190317_1800.nc
          |-- msevi-medi-20190318_1100.nc
          |-- nwcsaf_msevi-medi-20190317_1800.nc
          `-- nwcsaf_msevi-medi-20190318_1100.nc
      
      2 directories, 7 files
      

      OK, the downloaded data contains a land-sea mask and a georeference in auxilary_files/ plus two Meteosat and NWCSAF cloud typing files for the Mediterranean region in example_data/.

Run The Tests on JupyterHub

For the application 1 we will work with the notebook Application_of_a_pretrained_classifier.ipynb which shows how a pre-trained classifier is loaded and applied to example data.

Go through the following steps:

  1. go to the JupyterHub browser tab and navigate to the notebooks directory

  2. open the notebook Application_of_a_pretrained_classifier.ipynb and chosen a Python kernel (the default would be python3/unstable)

  3. finally run the notebook and watch out for errors!

Application 2: Change to a Forest Classifier and Run the Examples Again

Get the Forest Classifier Data

We assume that executed all steps mentioned above and that you

  • already downloaded the forest classifier
  • like to apply the forest classifier on the same example data
  • and now went back to your download directory with the content:
> tree
.
|-- ForestClassifier.zip
|-- TreeClassifier.zip
`-- data.zip

0 directories, 3 files
  • For extracting the Forest Classifier, run:

    > unzip -d ../classifiers ForestClassifier.zip
    Archive:  ForestClassifier.zip
       creating: ../classifiers/ForestClassifier/
       creating: ../classifiers/ForestClassifier/data/
      inflating: ../classifiers/ForestClassifier/data/classifier
      inflating: ../classifiers/ForestClassifier/data/label_reference.nc
      inflating: ../classifiers/ForestClassifier/data/training_data
       creating: ../classifiers/ForestClassifier/filelists/
      inflating: ../classifiers/ForestClassifier/filelists/evaluation_sets.json
      inflating: ../classifiers/ForestClassifier/filelists/input_files.json
      inflating: ../classifiers/ForestClassifier/filelists/label_files.json
      inflating: ../classifiers/ForestClassifier/filelists/training_sets.json
       creating: ../classifiers/ForestClassifier/labels/
      inflating: ../classifiers/ForestClassifier/labels/nwcsaf_msevi-medi-20190317_1800_predicted.nc
      inflating: ../classifiers/ForestClassifier/labels/nwcsaf_msevi-medi-20190318_1100_predicted.nc
       creating: ../classifiers/ForestClassifier/settings/
      inflating: ../classifiers/ForestClassifier/settings/config.json
      inflating: ../classifiers/ForestClassifier/settings/data_structure.json
    
  • Prepations on JupyterHub:

    • Goto to your JuypterHub browser tab and select the checkbox of the notebook Application_of_a_pretrained_classifier.ipynb
    • Press the "Duplicate" button - you get a copy of this notebook
    • Click on the copy - it will open in a new browser tab
    • Rename the notebook e.g. to "Test_the_Forest_Classifier_Example" - click on the title on the top row, just right to the DKRZ logo
  • Testing the forest classifier notebook:

    • apply the following modifications:

      1. Replace line in "In [3]:"

      from

      path = "../classifiers/TreeClassifier"

      to

      path = "../classifiers/ForestClassifier"
      1. Replace line in "In [9]:"

      from

      ls ../classifiers/TreeClassifier/labels
      

      to

      ls ../classifiers/ForestClassifier/labels
      
    • press the run button and watch out for errors.

This takes slightly longer. I might change the descriptive text in markdown for your own reference.

Application 3: Examples for Plotting Classifier Labels

Plotting of labels and some rudimetary statistics is performed in the notebook Plotting_of_example_data.ipynb

If both prior application examples on the application of a pre-trained tree and forest classifier went well, then you just need to start the notebook Plotting_of_example_data.ipynb in your JupyterHub (selecting the default kernel) and run it. That`s it ...