diff --git a/DogeCV/.gitignore b/DogeCV/.gitignore new file mode 100644 index 00000000000..796b96d1c40 --- /dev/null +++ b/DogeCV/.gitignore @@ -0,0 +1 @@ +/build diff --git a/DogeCV/build.gradle b/DogeCV/build.gradle new file mode 100644 index 00000000000..5a8c7fb41e0 --- /dev/null +++ b/DogeCV/build.gradle @@ -0,0 +1,31 @@ +apply plugin: 'com.android.library' + +android { + compileSdkVersion 23 + buildToolsVersion '28.0.3' + + defaultConfig { + minSdkVersion 19 + targetSdkVersion 27 + versionCode 1 + versionName "1.0" + + + } + buildTypes { + release { + minifyEnabled false + proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro' + } + } +} +repositories { + flatDir { + dirs '../libs' + } +} +dependencies { + implementation fileTree(include: ['*.jar'], dir: 'libs') + implementation project(path: ':openCVLibrary3') + implementation (name: 'RobotCore-release', ext: 'aar') +} diff --git a/DogeCV/proguard-rules.pro b/DogeCV/proguard-rules.pro new file mode 100644 index 00000000000..523e77cd022 --- /dev/null +++ b/DogeCV/proguard-rules.pro @@ -0,0 +1,25 @@ +# Add project specific ProGuard rules here. +# By default, the flags in this file are appended to flags specified +# in /home/guinea/Android/Sdk/tools/proguard/proguard-android.txt +# You can edit the include path and order by changing the proguardFiles +# directive in build.gradle. +# +# For more details, see +# http://developer.android.com/guide/developing/tools/proguard.html + +# Add any project specific keep options here: + +# If your project uses WebView with JS, uncomment the following +# and specify the fully qualified class name to the JavaScript interface +# class: +#-keepclassmembers class fqcn.of.javascript.interface.for.webview { +# public *; +#} + +# Uncomment this to preserve the line number information for +# debugging stack traces. +#-keepattributes SourceFile,LineNumberTable + +# If you keep the line number information, uncomment this to +# hide the original source file name. +#-renamesourcefileattribute SourceFile diff --git a/DogeCV/src/main/AndroidManifest.xml b/DogeCV/src/main/AndroidManifest.xml new file mode 100644 index 00000000000..7c8a4f3454d --- /dev/null +++ b/DogeCV/src/main/AndroidManifest.xml @@ -0,0 +1,10 @@ + + + + + + + diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/ActivityViewDisplay.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/ActivityViewDisplay.java new file mode 100644 index 00000000000..d5cfd5dc586 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/ActivityViewDisplay.java @@ -0,0 +1,79 @@ +package com.disnodeteam.dogecv; + +import android.app.Activity; +import android.content.Context; +import android.view.View; + +/** + * Created by guinea on 6/23/17. + * ------------------------------------------------------------------------------------- + * Copyright (c) 2018 FTC Team 5484 Enderbots + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + * + * By downloading, copying, installing or using the software you agree to this license. + * If you do not agree to this license, do not download, install, + * copy or use the software. + * ------------------------------------------------------------------------------------- + * This ViewDisplay displays a View over the entire screen. + * As a singleton, you'll want to pass ActivityViewDisplay.getInstance() instead of directly instantiating it. + */ + +public class ActivityViewDisplay implements ViewDisplay { + + //There should only be one instance of this class, so make a static reference to it + private static ActivityViewDisplay instance; + private static View main = null; + + private ActivityViewDisplay() { + } + + public static ActivityViewDisplay getInstance() { + if (instance == null) instance = new ActivityViewDisplay(); + return instance; + } + + /** + * Sets this display to be the current one in use, and starts it on the UI thread (as opposed to the robot controller thread) + * @param context The context of the OpMode, can be obtained via hardwaremap.appContext; + * @param view The view upon which this activity is to be displayed + */ + public void setCurrentView(final Context context, final View view) { + final Activity activity = (Activity) context; + activity.runOnUiThread(new Runnable() { + @Override + public void run() { + if (main == null) + main = activity.getCurrentFocus(); + activity.setContentView(view); + } + }); + } + + public void removeCurrentView(final Context context) { + final Activity activity = (Activity) context; + activity.runOnUiThread(new Runnable() { + @Override + public void run() { + activity.setContentView(main.getRootView()); + } + }); + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/CameraViewDisplay.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/CameraViewDisplay.java new file mode 100644 index 00000000000..1f7eb40a4d5 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/CameraViewDisplay.java @@ -0,0 +1,89 @@ +package com.disnodeteam.dogecv; + +import android.app.Activity; +import android.content.Context; +import android.view.View; +import android.view.ViewGroup; +import android.widget.HorizontalScrollView; +import android.widget.ScrollView; + + +/** + * Created by guinea on 6/23/17. + * ------------------------------------------------------------------------------------- + * Copyright (c) 2018 FTC Team 5484 Enderbots + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + * + * By downloading, copying, installing or using the software you agree to this license. + * If you do not agree to this license, do not download, install, + * copy or use the software. + * ------------------------------------------------------------------------------------- + * Nicely adds/removes a View from the main body of the robot controller app screen. + * As a singleton, you'll want to pass CameraViewDisplay.getInstance() instead of directly instantiating it. + */ + +public class CameraViewDisplay implements ViewDisplay { + private static CameraViewDisplay instance; + + View view; + private CameraViewDisplay() { + } + + public static CameraViewDisplay getInstance() { + if (instance == null) instance = new CameraViewDisplay(); + return instance; + } + + public void setCurrentView(final Context context, View newView) { + // finding the resID dynamically allows this class to exist outside of the TeamCode module + final int resID = context.getResources().getIdentifier("RelativeLayout", "id", context.getPackageName()); + final Activity activity = (Activity) context; + final View queuedView = newView; + activity.runOnUiThread(new Runnable() { + @Override + public void run() { + ViewGroup l = (ViewGroup) activity.findViewById(resID); //R.id.RelativeLayout); + if (view != null) { + l.removeView(view); + } + l.addView(new ScrollView(context)); + l.addView(queuedView); + view = queuedView; + } + }); + } + + public void removeCurrentView(Context context) { + final int resID = context.getResources().getIdentifier("RelativeLayout", "id", context.getPackageName()); + final Activity activity = (Activity) context; + activity.runOnUiThread(new Runnable() { + @Override + public void run() { + //cameraMonitorViewId + ViewGroup l = (ViewGroup) activity.findViewById(resID); // .id.RelativeLayout); + if (view != null) { + l.removeView(view); + } + view = null; + } + }); + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/CustomCameraView.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/CustomCameraView.java new file mode 100644 index 00000000000..6a52d4e756e --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/CustomCameraView.java @@ -0,0 +1,129 @@ +package com.disnodeteam.dogecv; + +import android.content.Context; +import android.content.res.Configuration; +import android.graphics.Bitmap; +import android.graphics.Canvas; +import android.graphics.Rect; +import android.util.Log; + +import org.opencv.BuildConfig; +import org.opencv.android.JavaCameraView; +import org.opencv.android.Utils; +import org.opencv.core.Core; +import org.opencv.core.Mat; + +/** + * Created by daniel on 11/11/17. + * + * Used to make screen rotate work. + * ------------------------------------------------------------------------------------- + * Copyright (c) 2018 FTC Team 5484 Enderbots + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + * + * By downloading, copying, installing or using the software you agree to this license. + * If you do not agree to this license, do not download, install, + * copy or use the software. + * ------------------------------------------------------------------------------------- + */ + +public class CustomCameraView extends JavaCameraView { + private static final String TAG = "CustomCameraView"; + + public CustomCameraView(Context context, int cameraId) { + super(context, cameraId); + enableFpsMeter(); + } + + @Override + protected void deliverAndDrawFrame(CvCameraViewFrame frame) { + Mat modified; + + int deviceOrientation = getContext().getResources().getConfiguration().orientation; + + if (mListener != null) { + modified = mListener.onCameraFrame(frame); + } else { + modified = frame.rgba(); + } + + boolean bmpValid = true; + if (modified != null) { + try { + // fix bitmap size + if (mCacheBitmap.getWidth() != modified.cols() || mCacheBitmap.getHeight() != modified.rows()) { + mCacheBitmap = Bitmap.createBitmap(modified.cols(), modified.rows(), Bitmap.Config.ARGB_8888); + } + Utils.matToBitmap(modified, mCacheBitmap); + } catch(Exception e) { + Log.e(TAG, "Mat type: " + modified.cols() + "*" + modified.rows()); + Log.e(TAG, "Bitmap type: " + mCacheBitmap.getWidth() + "*" + mCacheBitmap.getHeight()); + Log.e(TAG, "Utils.matToBitmap() throws an exception: " + e.getMessage()); + bmpValid = false; + } + } + + if (bmpValid && mCacheBitmap != null) { + Canvas canvas = getHolder().lockCanvas(); + if (canvas != null) { + canvas.drawColor(0, android.graphics.PorterDuff.Mode.CLEAR); + if (BuildConfig.DEBUG) + Log.d(TAG, "mStretch value: " + mScale); + + // commented out bc this can add distortion to the image + // maximize size of the bitmap to remove black borders in portrait orientation + //mCacheBitmap = Bitmap.createScaledBitmap(mCacheBitmap, canvas.getWidth(), canvas.getHeight()*(canvas.getWidth()/mCacheBitmap.getWidth()), true); + + if (mScale != 0) { + canvas.drawBitmap(mCacheBitmap, new Rect(0,0,mCacheBitmap.getWidth(), mCacheBitmap.getHeight()), + new Rect((int)((canvas.getWidth() - mScale*mCacheBitmap.getWidth()) / 2), + (int)((canvas.getHeight() - mScale*mCacheBitmap.getHeight()) / 2), + (int)((canvas.getWidth() - mScale*mCacheBitmap.getWidth()) / 2 + mScale*mCacheBitmap.getWidth()), + (int)((canvas.getHeight() - mScale*mCacheBitmap.getHeight()) / 2 + mScale*mCacheBitmap.getHeight())), null); + } else { + canvas.drawBitmap(mCacheBitmap, new Rect(0,0,mCacheBitmap.getWidth(), mCacheBitmap.getHeight()), + new Rect((canvas.getWidth() - mCacheBitmap.getWidth()) / 2, + (canvas.getHeight() - mCacheBitmap.getHeight()) / 2, + (canvas.getWidth() - mCacheBitmap.getWidth()) / 2 + mCacheBitmap.getWidth(), + (canvas.getHeight() - mCacheBitmap.getHeight()) / 2 + mCacheBitmap.getHeight()), null); + } + + // temporarily rotate canvas to draw FPS meter in correct orientation in portrait + if(deviceOrientation == Configuration.ORIENTATION_PORTRAIT) { + canvas.save(); + + canvas.rotate(-90, getWidth() / 2, getHeight() / 2); + + if (mFpsMeter != null) { + mFpsMeter.measure(); + mFpsMeter.draw(canvas, 20, 30); + } + + canvas.restore(); + } + + getHolder().unlockCanvasAndPost(canvas); + } + } + } + + +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/DogeCV.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/DogeCV.java new file mode 100644 index 00000000000..1d9a5440014 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/DogeCV.java @@ -0,0 +1,34 @@ +package com.disnodeteam.dogecv; + +/** + * Contains global values and types + */ +public class DogeCV { + public enum DetectionSpeed { + VERY_FAST, + FAST, + BALANCED, + SLOW, + VERY_SLOW + } + + public enum AreaScoringMethod { + MAX_AREA, + PERFECT_AREA, + COLOR_DEVIATION + } + + public enum CameraMode { + BACK, + FRONT, + WEBCAM + } + + public enum VuMark { + NONE, + BLUE_ROVER, + RED_FOOTPRINT, + FRONT_CRATERS, + BACK_SPACE + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/Dogeforia.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/Dogeforia.java new file mode 100644 index 00000000000..4280be8ba24 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/Dogeforia.java @@ -0,0 +1,147 @@ +package com.disnodeteam.dogecv; + +import android.app.Activity; +import android.content.Context; +import android.graphics.Bitmap; +import android.util.Log; + +import com.disnodeteam.dogecv.detectors.DogeCVDetector; +import com.disnodeteam.dogecv.math.MathFTC; +import com.vuforia.Frame; + +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackable; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackableDefaultListener; +import org.firstinspires.ftc.robotcore.internal.vuforia.VuforiaLocalizerImpl; +import org.firstinspires.ftc.robotcore.internal.vuforia.VuforiaTrackablesImpl; +import org.opencv.android.Utils; +import org.opencv.core.Core; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.Point; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.concurrent.BlockingQueue; + +/** + * An implementation of Vuforia intended to be cross-compatible with DogeCV + */ + +public abstract class Dogeforia extends VuforiaLocalizerImpl { + + DrawViewSource rawView; + + Thread workerThread; + Bitmap outputImage; + Bitmap rotatedImage; + Bitmap bitmap; + Mat inputMat; + Mat outMat; + Mat rotatedMat; + Mat displayMat; + public Dogeforia(Parameters parameters) { + super(parameters); + } + + /** + * Sets the raw view. Make sure to run this before start()! + * @param rawView The raw view to which we should display the camera frame + */ + public void setRawView(DrawViewSource rawView){ + this.rawView = rawView; + setFrameQueueCapacity(1); + } + + /** + * Starts Dogeforia + */ + public synchronized void start(){ + + workerThread = new Thread(new Runnable() { + @Override + public void run() { + while(!workerThread.isInterrupted()){ + render(); + } + } + }); + workerThread.setName("Dogeforia Thread"); + workerThread.start(); + Log.d("DogeCV", workerThread.getState().toString()); + } + + public abstract Mat analyzeFrame(Mat rgba, Mat gray); + + /** + * Analyzes the frame passed to this class using DogeCV + * @param frame The processed frame to be displayed + */ + public void anaylzeFrame(Frame frame){ + if(frame != null ){ + bitmap = convertFrameToBitmap(frame); + inputMat = new Mat(bitmap.getWidth(), bitmap.getHeight(), CvType.CV_8UC1); + Utils.bitmapToMat(bitmap,inputMat); + rotatedMat = new Mat(); + Core.flip(inputMat.t(), rotatedMat, 1); //Adjust this line to change the image rotation + outMat = analyzeFrame(rotatedMat, null); + + if(!outMat.empty() ){ + + displayMat = new Mat(); + outMat.copyTo(displayMat); + rotatedImage = Bitmap.createBitmap(displayMat.width(), displayMat.height(), bitmap.getConfig()); + Utils.matToBitmap(displayMat, rotatedImage); + + //height = * original height / original width + Size newSize = MathFTC.fullscreen(displayMat.size(), new Size(rawView.getWidth(), rawView.getHeight())); + outputImage = Bitmap.createScaledBitmap(rotatedImage, (int) newSize.width, (int) newSize.height, false); + + ((Activity) rawView.getContext()).runOnUiThread(new Runnable() { + @Override + public void run() { + rawView.onFrame(outputImage); + rawView.invalidate(); + } + }); + }else{ + Log.w("DogeCV", "MAT BITMAP MISMATCH OR EMPTY ERROR"); + } + inputMat.release(); + rotatedMat.release(); + outMat.release(); + displayMat.release(); + } else{ + Log.d("DogeCV", "No Frame!"); + } + } + + /** + * Renders the frame passed to this class through Vuforia + */ + public void render() { + if(!getFrameQueue().isEmpty()){ + try { + anaylzeFrame(getFrameQueue().take()); + } catch (InterruptedException e) { + e.printStackTrace(); + } + } else{ + Log.v("DogeCV", "Frame is empty. Que Size: " + getFrameQueueCapacity()); + } + + } + + /** + * Terminates Dogeforia + */ + public synchronized void stop(){ + close(); + ((Activity) rawView.getContext()).runOnUiThread(new Runnable() { + @Override + public void run() { + workerThread.interrupt(); + } + }); + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/DrawViewSource.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/DrawViewSource.java new file mode 100644 index 00000000000..afdd01be052 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/DrawViewSource.java @@ -0,0 +1,94 @@ +package com.disnodeteam.dogecv; + +import android.annotation.SuppressLint; +import android.content.Context; +import android.content.res.Configuration; +import android.content.res.Resources; +import android.graphics.Bitmap; +import android.graphics.BitmapFactory; +import android.graphics.Canvas; +import android.graphics.Color; +import android.graphics.Paint; +import android.graphics.Rect; +import android.util.AttributeSet; +import android.util.Log; +import android.view.View; +import android.widget.LinearLayout; +import android.widget.RelativeLayout; + +import org.opencv.BuildConfig; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 9/15/2018. + */ + +public class DrawViewSource extends View { + + private Paint mPaint; + private Resources resources; + private Bitmap bitmap; + + public DrawViewSource(Context context) { + super(context); + init(context, null, 0); + } + + public DrawViewSource(Context context, AttributeSet attrs) { + super(context, attrs); + init(context, attrs, 0); + } + + public DrawViewSource(Context context, AttributeSet attrs, int defStyleAttr) { + super(context, attrs, defStyleAttr); + init(context, attrs, defStyleAttr); + } + + private void init(Context context, AttributeSet attrs, int defStyleAttr) { + mPaint = new Paint(Paint.ANTI_ALIAS_FLAG); + + + resources = context.getResources(); + + + + setLayoutParams(new LinearLayout.LayoutParams(LinearLayout.LayoutParams.MATCH_PARENT,LinearLayout.LayoutParams.MATCH_PARENT)); + } + + @SuppressLint("NewApi") + public DrawViewSource(Context context, AttributeSet attrs, + int defStyleAttr, int defStyleRes) { + super(context, attrs, defStyleAttr, defStyleRes); + } + + /* + * (non-Javadoc) + * + * @see android.view.View#onDraw(android.graphics.Canvas) + */ + public void onFrame(Bitmap map){ + bitmap = map; + } + + @Override + protected void onDraw(Canvas canvas) { + super.onDraw(canvas); + + canvas.drawColor(0, android.graphics.PorterDuff.Mode.CLEAR); + + + // commented out bc this can add distortion to the image + // maximize size of the bitmap to remove black borders in portrait orientation + //mCacheBitmap = Bitmap.createScaledBitmap(mCacheBitmap, canvas.getHeight(), canvas.getWidth(), true); + + int deviceOrientation = getContext().getResources().getConfiguration().orientation; + + + if(bitmap != null){ + canvas.drawBitmap(bitmap, 0, 0,null); + } + + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/OpenCVLoader.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/OpenCVLoader.java new file mode 100644 index 00000000000..ceaf90fd47d --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/OpenCVLoader.java @@ -0,0 +1,83 @@ +package com.disnodeteam.dogecv; + +import android.os.Environment; +import android.util.Log; + +import java.io.File; +import java.io.FileInputStream; +import java.io.FileOutputStream; +import java.io.InputStream; +import java.io.OutputStream; + +/** + * Created by guinea on 2/21/18. + * ------------------------------------------------------------------------------------- + * Copyright (c) 2018 FTC Team 5484 Enderbots + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + * + * By downloading, copying, installing or using the software you agree to this license. + * If you do not agree to this license, do not download, install, + * copy or use the software. + * ------------------------------------------------------------------------------------- + * Credit to the OpenRC team for coming up with this general solution. + */ + +public class OpenCVLoader { + // This path may need to be changed for Samsung S5 phones; + // its hardcoded because idk how else to get the path without a Context. + // Feel free to change the value to fit the phone you are using. + + private static String filesDir = "/data/user/0/com.qualcomm.ftcrobotcontroller/files"; + public static void setFilesDir(String path) { + filesDir = path; + } + public static void loadOpenCV() { + + File protectedStorageLib = new File(filesDir + "/extra/libopencv_java3.so"); + File protectedExtraFolder = new File(filesDir + "/extra/"); + File internalStorageLib = new File(Environment.getExternalStorageDirectory() + "/EnderCV/libopencv_java3.so"); + if (!protectedStorageLib.exists() && internalStorageLib.exists()) { + if (!protectedExtraFolder.exists()) + protectedExtraFolder.mkdir(); + + } + + try { + /* + * Copy the file with a 1MiB buffer + */ + InputStream is = new FileInputStream(internalStorageLib); + OutputStream os = new FileOutputStream(protectedStorageLib); + byte[] buff = new byte[1024]; + int len; + while ((len = is.read(buff)) > 0) { + os.write(buff, 0, len); + } + is.close(); + os.close(); + + System.load(protectedStorageLib.getAbsolutePath()); + } catch (Exception e) { + Log.e("EnderCV", "OpenCV Load Error: ", e); + } + + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/OpenCVPipeline.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/OpenCVPipeline.java new file mode 100644 index 00000000000..3570591da04 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/OpenCVPipeline.java @@ -0,0 +1,408 @@ +package com.disnodeteam.dogecv; + +import android.app.Activity; +import android.content.Context; +import android.view.Surface; +import android.view.View; +import android.view.ViewGroup; + +import com.disnodeteam.dogecv.math.MathFTC; + +import org.firstinspires.ftc.robotcore.external.hardware.camera.CameraName; +import org.firstinspires.ftc.robotcore.external.matrices.OpenGLMatrix; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackable; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackableDefaultListener; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackables; +import org.opencv.android.CameraBridgeViewBase; +import org.opencv.android.JavaCameraView; +import org.opencv.core.Core; +import org.opencv.core.Mat; + +import java.util.ArrayList; +import java.util.List; + +import static org.firstinspires.ftc.robotcore.external.navigation.AngleUnit.DEGREES; +import static org.firstinspires.ftc.robotcore.external.navigation.AxesOrder.XYZ; +import static org.firstinspires.ftc.robotcore.external.navigation.AxesOrder.YZX; +import static org.firstinspires.ftc.robotcore.external.navigation.AxesReference.EXTRINSIC; +import static org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer.CameraDirection.BACK; +import static org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer.CameraDirection.FRONT; + +/** + * Created by guinea on 6/19/17. + * ------------------------------------------------------------------------------------- + * Copyright (c) 2018 FTC Team 5484 Enderbots + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + * + * By downloading, copying, installing or using the software you agree to this license. + * If you do not agree to this license, do not download, install, + * copy or use the software. + * ------------------------------------------------------------------------------------- + * This is a base class for an OpenCV pipeline loop. In most cases, one would want to override processFrame() with their own function. + */ + +public abstract class OpenCVPipeline implements CameraBridgeViewBase.CvCameraViewListener2 { + + //Loads the OpenCV library + static { + try { + System.loadLibrary("opencv_java3"); + } catch (UnsatisfiedLinkError e) { + OpenCVLoader.loadOpenCV(); + // pass + } + } + + //Configurables. You probably don't need to change these. + public static final int backCameraID = 0; + public static final int frontCameraID = 1; + + //Set camera displacement. Use the setter methods to adjust these. + private volatile int CAMERA_FORWARD_DISPLACEMENT = 0; // eg: Camera is 0 mm in front of robot center + private volatile int CAMERA_VERTICAL_DISPLACEMENT = 0; // eg: Camera is 0 mm above ground + private volatile int CAMERA_LEFT_DISPLACEMENT = 0; // eg: Camera is ON the robot's center line + + //OpenCV-related + protected JavaCameraView cameraView; + protected DrawViewSource rawView; + private volatile ViewDisplay viewDisplay; + protected Context context; + private boolean initStarted = false; + private boolean inited = false; + + //DogeCV logic + private DogeCV.CameraMode cameraMode = DogeCV.CameraMode.BACK; + private boolean isVuforia = false; + private boolean isVuMark = false; + private volatile boolean isDogeCVEnabled = true; + private volatile int cameraIndex = 0; + private volatile boolean isEnabled = false; + + //Vuforia-related + protected VuforiaLocalizer.Parameters parameters; + private volatile Dogeforia dogeforia = null; + private volatile VuforiaTrackables targetsRoverRuckus = null; + private volatile List allTrackables = new ArrayList(); + private VuforiaLocalizer.CameraDirection CAMERA_CHOICE = BACK; + + /** + * VUFORIA LICENSE. MUST BE SET BY USER! + */ + public String VUFORIA_KEY = "ARuvZIj/////AAABmVkUSkLsEkjjhzixTaJVlaFNlxHEjVM47c6y7GtSCjJmsGR3bNdALVunnoGjmIog/AUoVdmCsQmzWc2WS0R1Qh+EVA5/H+39wEZ1sohFZ9UGpyWT/1da4Mm0sUbB4/atlnNbCs9PzFCnd0cFDpbzWRSmQjkaxdBlDY9rFnOGrqdEzdT9hWK2NznebhyCFWITMTu94TYY1vbuiyD+08KBIgsMPypNZ8tVSrB405WNTN3ZEqU1a+tQd7ppLUOIYfcYLKuXHRIsmiybps87PkhD84d+/NiE1pinNwBhtxhMPYgqGf1HrE7H+AzKYJpgla1DyG8AMLL1pwJKsA3penrUGwGENWr6EkVHkMLfsQoe6Jym"; //SET THIS BEFORE CALLING INIT! + + /** + * Initializes the OpenCVPipeline, but implicitly uses the rear camera, without Vuforia or VuMarks + * @param context the application context, usually hardwareMap.appContext + * @param viewDisplay the ViewDisplay that will display the underlying JavaCameraView to the screen; + * in most cases, using CameraViewDisplay.getInstance() as the argument is just fine. + */ + public void init(Context context, ViewDisplay viewDisplay) { + init(context, viewDisplay, DogeCV.CameraMode.BACK, false, null); + } + + /** + * Initializes the OpenCVPipeline, assuming no webcam used. Will throw a IllegalArgumentException if one is used + * @param context the application context, usually hardwareMap.appContext + * @param viewDisplay the ViewDisplay that will display the underlying JavaCameraView to the screen; + * in most cases, using CameraViewDisplay.getInstance() as the argument is just fine. + * @param cameraMode Which camera is to be used, will be a DogeCV.CameraMode + * @param findVuMarks A boolean. True to scan for vumarks, false to ignore them + */ + public void init(Context context, ViewDisplay viewDisplay, DogeCV.CameraMode cameraMode, boolean findVuMarks) { + init(context, viewDisplay, cameraMode, findVuMarks, null); + } + + + + /** + * Initializes the OpenCVPipeline. + * @param context the application context, usually hardwareMap.appContext + * @param viewDisplay the ViewDisplay that will display the underlying JavaCameraView to the screen; + * in most cases, using CameraViewDisplay.getInstance() as the argument is just fine. + * @param cameraMode Which camera is to be used, will be a DogeCV.CameraMode + * @param findVuMarks A boolean. True to scan for vumarks, false to ignore them + * @param webcamName The CameraName representing the webcam to be used + */ + public void init(Context context, ViewDisplay viewDisplay, DogeCV.CameraMode cameraMode, boolean findVuMarks, CameraName webcamName) { + this.initStarted = true; + this.viewDisplay = viewDisplay; + this.context = context; + this.cameraMode = cameraMode; + this.isVuMark = findVuMarks; + //Sets up camera + switch (this.cameraMode) { + case BACK: + this.cameraIndex = backCameraID; + break; + case FRONT: + this.cameraIndex = frontCameraID; + this.CAMERA_CHOICE = FRONT; + break; + case WEBCAM: + this.isVuforia = true; + this.cameraIndex = -1; + if(webcamName == null) throw new IllegalArgumentException("To use the webcam, a webcame name is needed!"); + break; + } + if(this.isVuMark) this.isVuforia = true; + if(isVuforia && this.VUFORIA_KEY == null) { //Checks that a license is provided. + throw new IllegalArgumentException("No Vuforia license provided. Use detector.VUFORIA_KEY to provide one - they're freely available"); + } else if(isVuforia) { + //Preps Vuforia, if necessary + parameters = new VuforiaLocalizer.Parameters(context.getResources().getIdentifier("cameraMonitorViewId", "id", context.getPackageName())); + parameters.vuforiaLicenseKey = VUFORIA_KEY; + parameters.cameraMonitorViewIdParent = context.getResources().getIdentifier("cameraMonitorViewId", "id", context.getPackageName()); + switch (cameraMode) { //Sets the Vuforia CameraMode + case FRONT: + CAMERA_CHOICE = FRONT; + parameters.cameraDirection = VuforiaLocalizer.CameraDirection.FRONT; + break; + case BACK: + CAMERA_CHOICE = BACK; + parameters.cameraDirection = VuforiaLocalizer.CameraDirection.BACK; + break; + case WEBCAM: + parameters.cameraName = webcamName; + break; + } + //Instantiates Dogeforia, and gives it access to this detector's analyzeFrame method + dogeforia = new Dogeforia(parameters) { + @Override + public Mat analyzeFrame(Mat rgba, Mat gray) { + return processFrame(rgba, gray); + } + }; + dogeforia.enableConvertFrameToBitmap(); + if(isVuMark) { //Loads VuMarks, if necessary + loadVuMarks(); + } + } + + //Starts CV on separate thread + final Activity activity = (Activity) context; + final Context finalContext = context; + final CameraBridgeViewBase.CvCameraViewListener2 self = this; + final int cameraMoniterViewID = context.getResources().getIdentifier("cameraMonitorViewId", "id", context.getPackageName()); + //final int cameraMoniterViewID = context.getResources().getIdentifier("RelativeLayout", "id", context.getPackageName()); + + activity.runOnUiThread(new Runnable() { + @Override + public void run() { + // JavaCameraViews must be instantiated on a UI thread + if(getIsVuforia()){ + rawView = new DrawViewSource(finalContext); + View l = activity.findViewById(cameraMoniterViewID); + if(l != null) l.setVisibility(View.INVISIBLE); + }else{ + cameraView = new CustomCameraView(finalContext, getCameraIndex()); + cameraView.setCameraIndex(getCameraIndex()); + cameraView.setCvCameraViewListener(self); + cameraView.enableFpsMeter(); + } + inited = true; + } + }); + } + + /** + * Enables the detector. + * This function must be called AFTER init(). + * @throws IllegalStateException if enable() is called before init() + */ + public void enable() { + if (!initStarted) throw new IllegalStateException("init() needs to be called before an OpenCVPipeline can be enabled!"); + // this is an absolute hack + try { + while (!inited) Thread.sleep(10); + } catch (InterruptedException e) { return; } + //Runs enabling sequence for Dogeforia + if(isVuforia){ + final Activity activity = (Activity) context; + final int cameraMoniterViewID = context.getResources().getIdentifier("cameraMonitorViewId", "id", context.getPackageName()); + //Updates displayed view + viewDisplay.setCurrentView(context, rawView); + //Gives dogeforia access to the correct View + dogeforia.setRawView(rawView); + //Starts dogeforia + dogeforia.start(); + //Hides the vuforia camera feed + activity.runOnUiThread(new Runnable() { + @Override + public void run() { + ViewGroup g = (ViewGroup) activity.findViewById(cameraMoniterViewID); + View sl = g.getChildAt(0); + if(sl != null) sl.setVisibility(View.GONE); + if(g != null) g.setVisibility(View.GONE); + + } + }); + }else{ //Runs if simple DogeCV + cameraView.enableView(); + viewDisplay.setCurrentView(context, getCameraView()); + } + this.isEnabled = true; + } + + /** + * Detaches the JavaCameraView from the camera and the screen, stopping OpenCV processing. + * Be careful not to: + * - disable twice + * - disable before enabling + * because dean kamen help you if something bad happens from that + */ + public void disable() { + this.isEnabled = false; + if(isVuforia) { + dogeforia.stop(); + } else { + cameraView.disableView(); + } + viewDisplay.removeCurrentView(context); + } + + /** + * Exposes the underlying JavaCameraView used. Before init() is called, this is null. + * @return the JavaCameraView. + */ + public JavaCameraView getCameraView() { + return cameraView; + } + + /** + * Returns a boolean corresponding to whether this detector wil use vuforia + * @return + */ + public synchronized boolean getIsVuforia() {return isVuforia;} + + /** + * Exposes the index of the camera used + * @return + */ + protected synchronized int getCameraIndex() {return cameraIndex;} + + /** + * This function is called when the camera is started; overriding this may be useful to set the + * maximum width and height parameters of an image processing pipeline. + * @param width - the width of the frames that will be delivered + * @param height - the height of the frames that will be delivered + */ + @Override + public void onCameraViewStarted(int width, int height) {} + + /** + * Override this function if there should be logic on camera close. + */ + @Override + public void onCameraViewStopped() {} + + /** + * The method that calls {@link #processFrame(Mat, Mat)}; there's little reason to override this, if ever. + * @param inputFrame the input frame given by the internal JavaCameraView + * @return the result of {@link #processFrame(Mat, Mat)} + */ + @Override + public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) { + Mat rgba = new Mat(); + Mat gray = new Mat(); + + switch (((Activity) context).getWindowManager().getDefaultDisplay().getRotation()) { + case Surface.ROTATION_0: + // These methods don't work. Please tell Levi if you ever find yourself needing to use them! + Core.rotate(inputFrame.rgba(), rgba, Core.ROTATE_90_CLOCKWISE); + Core.rotate(inputFrame.gray(), gray, Core.ROTATE_90_CLOCKWISE); + break; + case Surface.ROTATION_90: + rgba = inputFrame.rgba(); + gray = inputFrame.gray(); + break; + case Surface.ROTATION_270: + // These methods don't work. Please tell Levi if you ever find yourself needing to use them! + Core.rotate(inputFrame.rgba(), rgba, Core.ROTATE_180); + Core.rotate(inputFrame.gray(), gray, Core.ROTATE_180); + break; + } + if(isDogeCVEnabled) return processFrame(rgba, gray); + else return rgba; + } + + /** + * Override this with the main image processing logic. This is run every time the camera receives a frame. + * @param rgba a {@link Mat} that is in RGBA format + * @param gray a {@link Mat} that is already grayscale + * @return the Mat that should be displayed to the screen; in most cases one would probably just want to return rgba + */ + public abstract Mat processFrame(Mat rgba, Mat gray); + + /** + * Loads VuMarks from file and configures their positions on the field. There should never be a reason to mess with this. + */ + private void loadVuMarks() { + targetsRoverRuckus = this.dogeforia.loadTrackablesFromAsset("RoverRuckus"); + VuforiaTrackable blueRover = targetsRoverRuckus.get(0); + blueRover.setName("Blue-Rover"); + VuforiaTrackable redFootprint = targetsRoverRuckus.get(1); + redFootprint.setName("Red-Footprint"); + VuforiaTrackable frontCraters = targetsRoverRuckus.get(2); + frontCraters.setName("Front-Craters"); + VuforiaTrackable backSpace = targetsRoverRuckus.get(3); + backSpace.setName("Back-Space"); + + // For convenience, gather together all the trackable objects in one easily-iterable collection */ + allTrackables.addAll(targetsRoverRuckus); + + // Set trackables' location on field + OpenGLMatrix blueRoverLocationOnField = OpenGLMatrix + .translation(0, MathFTC.mmFTCFieldWidth, MathFTC.mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 0)); + blueRover.setLocation(blueRoverLocationOnField); + + OpenGLMatrix redFootprintLocationOnField = OpenGLMatrix + .translation(0, -MathFTC.mmFTCFieldWidth, MathFTC.mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 180)); + redFootprint.setLocation(redFootprintLocationOnField); + + OpenGLMatrix frontCratersLocationOnField = OpenGLMatrix + .translation(-MathFTC.mmFTCFieldWidth, 0, MathFTC.mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0 , 90)); + frontCraters.setLocation(frontCratersLocationOnField); + + OpenGLMatrix backSpaceLocationOnField = OpenGLMatrix + .translation(MathFTC.mmFTCFieldWidth, 0, MathFTC.mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, -90)); + backSpace.setLocation(backSpaceLocationOnField); + + // Set phone location on robot + OpenGLMatrix phoneLocationOnRobot = OpenGLMatrix + .translation(CAMERA_FORWARD_DISPLACEMENT, CAMERA_LEFT_DISPLACEMENT, CAMERA_VERTICAL_DISPLACEMENT) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, YZX, DEGREES, + CAMERA_CHOICE == FRONT ? 90 : -90, 0, 0)); + + //Set info for the trackables + for (VuforiaTrackable trackable : allTrackables) { + ((VuforiaTrackableDefaultListener)trackable.getListener()).setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); + } + + targetsRoverRuckus.activate(); + } + +} \ No newline at end of file diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/ViewDisplay.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/ViewDisplay.java new file mode 100644 index 00000000000..757de1f27c6 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/ViewDisplay.java @@ -0,0 +1,40 @@ +package com.disnodeteam.dogecv; + +import android.content.Context; +import android.view.View; + +/** + * Created by guinea on 6/26/17. + * ------------------------------------------------------------------------------------- + * Copyright (c) 2018 FTC Team 5484 Enderbots + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + * + * By downloading, copying, installing or using the software you agree to this license. + * If you do not agree to this license, do not download, install, + * copy or use the software. + * ------------------------------------------------------------------------------------- + * Provides methods to display and remove a View from the screen. + */ + +public interface ViewDisplay { + void setCurrentView(Context context, View view); + void removeCurrentView(Context context); +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/BlankDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/BlankDetector.java new file mode 100644 index 00000000000..d2e8b3cdc54 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/BlankDetector.java @@ -0,0 +1,24 @@ +package com.disnodeteam.dogecv.detectors; + +import com.disnodeteam.dogecv.OpenCVPipeline; +import com.disnodeteam.dogecv.filters.DogeCVColorFilter; +import com.disnodeteam.dogecv.filters.LeviColorFilter; + +import org.opencv.core.Mat; + +/** + * Created by Victo on 12/17/2017. + */ + +public class BlankDetector extends DogeCVDetector { + @Override + public Mat process(Mat input) { + // Process frame + return input; + } + + @Override + public void useDefaults() { + // Add in your scorers here. + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/DogeCVDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/DogeCVDetector.java new file mode 100644 index 00000000000..d76aeed27b4 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/DogeCVDetector.java @@ -0,0 +1,105 @@ +package com.disnodeteam.dogecv.detectors; + +import com.disnodeteam.dogecv.DogeCV; +import com.disnodeteam.dogecv.OpenCVPipeline; +import com.disnodeteam.dogecv.math.MathFTC; +import com.disnodeteam.dogecv.scoring.DogeCVScorer; + +import org.opencv.core.Core; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Point; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgcodecs.Imgcodecs; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 9/10/2018. + */ + +public abstract class DogeCVDetector extends OpenCVPipeline{ + + public abstract Mat process(Mat input); + public abstract void useDefaults(); + + private Size initSize; + private Size adjustedSize; + private Mat workingMat = new Mat(); + public double maxDifference = 10; + + public Point cropTLCorner = null; //The top left corner of the image used for processing + public Point cropBRCorner = null; //The bottom right corner of the image used for processing + + public DogeCV.DetectionSpeed speed = DogeCV.DetectionSpeed.BALANCED; + public double downscale = 0.5; + public Size downscaleResolution = new Size(640, 480); + public boolean useFixedDownscale = true; + protected String detectorName = "DogeCV Detector"; + + public DogeCVDetector(){ + + } + + public void setSpeed(DogeCV.DetectionSpeed speed){ + this.speed = speed; + } + + public void addScorer(DogeCVScorer newScorer){ + //scorers.add(newScorer); + } + + public double calculateScore(Mat input){ + double totalScore = 0; + +// for(DogeCVScorer scorer : scorers){ +// totalScore += scorer.calculateScore(input); +// } + + return totalScore; + } + + + + @Override + public Mat processFrame(Mat rgba, Mat gray) { + initSize = rgba.size(); + + rgba.copyTo(workingMat); + + //process + Core.rotate(workingMat, workingMat, Core.ROTATE_90_COUNTERCLOCKWISE); + Core.flip(workingMat,workingMat,0); + Core.flip(workingMat,workingMat,1); + + workingMat = process(workingMat); + + Core.rotate(workingMat, workingMat, Core.ROTATE_90_CLOCKWISE); + Core.flip(workingMat,workingMat,1); + Core.flip(workingMat,workingMat,0); + //resize if not empty + +// if(!processOutput.empty()&!workingMat.empty()) { +// // Process and scale back to original size for viewing +// Imgproc.resize(processOutput, workingMat, getInitSize()); +// } + + + return workingMat; + } + + public Size getInitSize() { + return initSize; + } + + public Size getAdjustedSize() { + return adjustedSize; + } + + public void setAdjustedSize(Size size) { this.adjustedSize = size; } + +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/GenericDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/GenericDetector.java new file mode 100644 index 00000000000..79da6e3abed --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/GenericDetector.java @@ -0,0 +1,153 @@ +package com.disnodeteam.dogecv.detectors; + +import com.disnodeteam.dogecv.DogeCV; +import com.disnodeteam.dogecv.filters.DogeCVColorFilter; +import com.disnodeteam.dogecv.filters.LeviColorFilter; +import com.disnodeteam.dogecv.scoring.MaxAreaScorer; +import com.disnodeteam.dogecv.scoring.PerfectAreaScorer; +import com.disnodeteam.dogecv.scoring.RatioScorer; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 9/10/2018. + */ + +public class GenericDetector extends DogeCVDetector { + + // Defining Mats to be used. + private Mat displayMat = new Mat(); // Display debug info to the screen (this is what is returned) + private Mat workingMat = new Mat(); // Used for preprocessing and working with (blurring as an example) + private Mat mask = new Mat(); // Mask returned by color filter + private Mat hierarchy = new Mat(); // hierarchy used by coutnours + + // Results of the detector + private boolean found = false; // Is the gold mineral found + private Point screenPosition = new Point(); // Screen position of the mineral + private Rect foundRect = new Rect(); // Found rect + + public DogeCV.AreaScoringMethod areaScoringMethod = DogeCV.AreaScoringMethod.MAX_AREA; // Setting to decide to use MaxAreaScorer or PerfectAreaScorer + + //Create the default filters and scorers + public DogeCVColorFilter colorFilter = new LeviColorFilter(LeviColorFilter.ColorPreset.RED); //Default Yellow filter + + public RatioScorer ratioScorer = new RatioScorer(1.0, 3); // Used to find perfect squares + public MaxAreaScorer maxAreaScorer = new MaxAreaScorer( 0.01); // Used to find largest objects + public PerfectAreaScorer perfectAreaScorer = new PerfectAreaScorer(5000,0.05); // Used to find objects near a tuned area value + + /** + * Simple constructor + */ + public GenericDetector() { + super(); + detectorName = "Generic Detector"; // Set the detector name + } + + + @Override + public Mat process(Mat input) { + + // Copy the input mat to our working mats, then release it for memory + input.copyTo(displayMat); + input.copyTo(workingMat); + input.release(); + + + //Preprocess the working Mat (blur it then apply a color filter) + Imgproc.GaussianBlur(workingMat,workingMat,new Size(5,5),0); + colorFilter.process(workingMat.clone(),mask ); + + //Find contours of the yellow mask and draw them to the display mat for viewing + + List contoursYellow = new ArrayList<>(); + Imgproc.findContours(mask , contoursYellow, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + Imgproc.drawContours(displayMat,contoursYellow,-1,new Scalar(230,70,70),2); + + // Current result + Rect bestRect = null; + double bestDiffrence = Double.MAX_VALUE; // MAX_VALUE since less diffrence = better + + // Loop through the contours and score them, searching for the best result + for(MatOfPoint cont : contoursYellow){ + double score = calculateScore(cont); // Get the diffrence score using the scoring API + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(cont); + Imgproc.rectangle(displayMat, rect.tl(), rect.br(), new Scalar(0,0,255),2); // Draw rect + + // If the result is better then the previously tracked one, set this rect as the new best + if(score < bestDiffrence){ + bestDiffrence = score; + bestRect = rect; + } + } + + if(bestRect != null){ + // Show chosen result + Imgproc.rectangle(displayMat, bestRect.tl(), bestRect.br(), new Scalar(255,0,0),4); + Imgproc.putText(displayMat, "Chosen", bestRect.tl(),0,1,new Scalar(255,255,255)); + + screenPosition = new Point(bestRect.x, bestRect.y); + foundRect = bestRect; + found = true; + }else{ + found = false; + } + + + //Print result + Imgproc.putText(displayMat,"Result: " + screenPosition.x +"/"+screenPosition.y,new Point(10,getAdjustedSize().height - 30),0,1, new Scalar(255,255,0),1); + + + return displayMat; + + } + + @Override + public void useDefaults() { + addScorer(ratioScorer); + + // Add diffrent scoreres depending on the selected mode + if(areaScoringMethod == DogeCV.AreaScoringMethod.MAX_AREA){ + addScorer(maxAreaScorer); + } + + if (areaScoringMethod == DogeCV.AreaScoringMethod.PERFECT_AREA){ + addScorer(perfectAreaScorer); + } + + } + + /** + * Returns the element's last position in screen pixels + * @return position in screen pixels + */ + public Point getScreenPosition(){ + return screenPosition; + } + + /** + * Returns the element's found rectangle + * @return gold element rect + */ + public Rect getFoundRect() { + return foundRect; + } + + /** + * Returns if a mineral is being tracked/detected + * @return if a mineral is being tracked/detected + */ + public boolean isFound() { + return found; + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/relicrecovery/CryptoboxDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/relicrecovery/CryptoboxDetector.java new file mode 100644 index 00000000000..ea75ad74e78 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/relicrecovery/CryptoboxDetector.java @@ -0,0 +1,373 @@ +package com.disnodeteam.dogecv.detectors.relicrecovery; + +import android.util.Log; + + +import com.disnodeteam.dogecv.OpenCVPipeline; +import com.disnodeteam.dogecv.filters.DogeCVColorFilter; +import com.disnodeteam.dogecv.filters.LeviColorFilter; +import com.disnodeteam.dogecv.math.Line; +import com.disnodeteam.dogecv.math.Lines; +import com.disnodeteam.dogecv.math.MathFTC; +import com.disnodeteam.dogecv.math.Points; +import org.opencv.core.Core; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.Collections; +import java.util.Comparator; +import java.util.List; + + +public class CryptoboxDetector extends OpenCVPipeline { + + public enum CryptoboxDetectionMode { + RED, BLUE + } + + public enum CryptoboxSpeed { + VERY_FAST, FAST, BALANCED, SLOW, VERY_SLOW + } + + public CryptoboxDetectionMode detectionMode = CryptoboxDetectionMode.RED; + public double downScaleFactor = 0.5; + public boolean rotateMat = false; + public CryptoboxSpeed speed = CryptoboxSpeed.BALANCED; + public int centerOffset = 0; + public boolean debugShowMask = true; + public int trackableMemory = 5; + public DogeCVColorFilter colorFilterRed = new LeviColorFilter(LeviColorFilter.ColorPreset.RED); + public DogeCVColorFilter colorFilterBlue = new LeviColorFilter(LeviColorFilter.ColorPreset.BLUE); + + + private boolean CryptoBoxDetected = false; + private boolean ColumnDetected = false; + private int[] CryptoBoxPositions = new int[3]; + + private Mat workingMat = new Mat(); + private Mat mask = new Mat(); + private Size newSize = new Size(); + + + private List> trackables = new ArrayList<>(3); + List avgPoints = new ArrayList<>(); + Point fullAvgPoint = new Point(); + + @Override + public Mat processFrame(Mat rgba, Mat gray) { + downScaleFactor = 0.5; + Size initSize= rgba.size(); + newSize = new Size(initSize.width * downScaleFactor, initSize.height * downScaleFactor); + rgba.copyTo(workingMat); + + avgPoints = new ArrayList<>(); + + Imgproc.resize(workingMat, workingMat,newSize); + if(rotateMat) { + Mat tempBefore = workingMat.t(); + Core.flip(tempBefore, workingMat, 1); //mRgba.t() is the transpose + tempBefore.release(); + } + + switch(detectionMode){ + case RED: + Mat redMask = workingMat.clone(); + colorFilterRed.process(redMask, mask); + redMask.release(); + break; + case BLUE: + Mat blueMask = workingMat.clone(); + colorFilterBlue.process(blueMask, mask); + blueMask.release(); + break; + } + + //display = new Mat(mask.height(), mask.width(), CvType.CV_8UC1); + ArrayList lines = (ArrayList) Lines.getOpenCvLines(mask, 1, 55); + lines = (ArrayList) Lines.linearExtend(lines, 4, newSize); + //lines = Lines.mergeLines(lines, 13, 300, 6); + //lines = Lines.mergeLines(lines, 6, 2000, 4); + List linesVertical = new ArrayList(); + for (Line line : lines) { + if(Lines.getAngularDistance(line, new Line(new Point(0,0), new Point(100,0))) > 45) { + linesVertical.add(line); + } + } + + Collections.sort(linesVertical, new Comparator() { + @Override + public int compare(Line line1, Line line2) { + if(line1.center().x > line2.center().x){ + return 1; + }else if(line1.center().x < line2.center().x){ + return -1; + }else{ + return 0; + } + } + }); + + if(linesVertical.size() == 0){ + + CryptoBoxDetected = false; + ColumnDetected = false; + + return rgba; + } + + Line left = linesVertical.get(0); + Line right = linesVertical.get(linesVertical.size()-1); + + double perpDistance = Lines.getPerpindicularDistance(left, right); + double collumnLength =Lines.getPerpindicularDistance(left, right)/6; + + List> groupings = new ArrayList>(); + int j = 0; + while (j < linesVertical.size()) { + List group = new ArrayList(); + group.add(linesVertical.get(j)); + int i = j+1; + while ( i < linesVertical.size() && Lines.getPerpindicularDistance(linesVertical.get(j), linesVertical.get(i)) < collumnLength) { + group.add(linesVertical.get(i)); + i++; + } + groupings.add(group); + j = i; + } + + for (int i = 0; i < groupings.size()-1; i++) { + Point center = new Line(Lines.getMeanPoint(groupings.get(i)), Lines.getMeanPoint(groupings.get(i+1))).center(); + int y = (int) MathFTC.clip(0.6*center.y, 0, mask.height()); + double max = 1.4*center.y; + if (center.y < 125) { + y = 1; + max = 250; + } + int count = 0; + while (y < mask.height() && y < max && count < 10) { + if(mask.get(y, (int) center.x)[0] > 0) { + count++; + //Imgproc.circle(original, new Point(2*center.x, 2*y), 10, new Scalar(255,255,255), 6); + } else { + //Imgproc.circle(original, new Point(2*center.x, 2*y), 10, new Scalar(30,30,200), 6); + } + y += 10; + } + if(count >= 10) { + List appendee = groupings.get(i); + appendee.addAll(groupings.get(i+1)); + groupings.set(i, appendee); + groupings.remove(i+1); + i -= 1; + } + } + + for (int i = 0; i < groupings.size(); i++) { + Point center = Lines.getMeanPoint(groupings.get(i)); + int y = (int) MathFTC.clip(0.2*center.y, 0, mask.height()); + double max = 1.8*center.y; + if (center.y < 50) { + y = 1; + max = (int) 0.8*mask.height(); + } + int minX = (int) MathFTC.clip(center.x-5, 0, mask.width()); + int maxX = (int) MathFTC.clip(center.x+5, 0, mask.width()); + int count = 0; + while (y < mask.height() && y < max && count < 10) { + if(mask.get(y, (int) center.x)[0] > 0 || mask.get(y, minX)[0] > 0 || mask.get(y, maxX)[0] > 0) { + count++; + // Imgproc.circle(rgba, new Point(2*center.x, 2*y), 10, new Scalar(255,255,255), 6); + } else { + //Imgproc.circle(rgba, new Point(2*center.x, 2*y), 10, new Scalar(30,30,200), 6); + } + y += 4; + } + if(count <= 9) { + groupings.remove(i); + i -= 1; + } + } + + if(groupings.size() > 4) { + Collections.sort(groupings, new Comparator>() { + @Override + public int compare(List g1, List g2) { + if(Lines.stdDevX(g1) > Lines.stdDevX(g2)){ + return 1; + }else if(Lines.stdDevX(g1) < Lines.stdDevX(g2)){ + return -1; + }else{ + return 0; + } + } + }); + groupings = groupings.subList(0, 4); + } + List columns = new ArrayList(); + for (int i = 0; i < groupings.size(); i++) { + Point center = Lines.getMeanPoint(groupings.get(i)); + double angle = Lines.getMeanAngle(groupings.get(i)); + columns.add(Lines.constructLine(Lines.getMeanPoint(groupings.get(i)), Lines.getMeanAngle(groupings.get(i)), 400)); + } + + for(int i = 0; i < groupings.size(); i++) { + groupings.set(i, Lines.resize(groupings.get(i), 1/downScaleFactor)); + } + + for(int i = 0; i < groupings.size(); i++) { + //Imgproc.circle(original, Lines.getMeanPoint(groupings.get(i)), 50, new Scalar(40,200,70), 4); + for (Line line : groupings.get(i)) { + //Imgproc.line(rgba, line.point1, line.point2, new Scalar(50,200,55), 4); + //Imgproc.circle(rgba, line.center(), 20, new Scalar(80,60,190),4); + //Imgproc.putText(rgba, Integer.toString(i), line.center(), Core.FONT_HERSHEY_PLAIN, 7, new Scalar(10,240,230),3); + } + } + + for (Line line : columns) { + line.resize(1/downScaleFactor); + Imgproc.line(rgba, line.point1, line.point2, new Scalar(20,165,240), 20); + } + if(columns.size() < 3){ + trackables = new ArrayList<>(); + CryptoBoxDetected = false; + ColumnDetected = false; + + return rgba; + } + + + + for(int i=0;i()); + } + } + if(trackables.size() <= i ){ + trackables.add(new ArrayList()); + } + + if(trackables.get(i).size() < trackableMemory){ + trackables.get(i).add(centerPoint); + }else{ + Collections.rotate(trackables.get(i), -1); + trackables.get(i).set(trackableMemory -1 ,centerPoint); + } + + for(int k =0;k< trackables.get(i).size();k++){ + //Imgproc.circle(rgba, trackables.get(i).get(k),4,new Scalar(255,255,255),3); + } + } + + Point avgPoint = Points.getMeanPoint(trackables.get(i)); + Imgproc.putText(rgba,"Col #" + i, new Point(avgPoint.x, avgPoint.y - 15), 0, 1.5, new Scalar(0,255,255), 2); + //DogeLogger.LogVar("Col-"+i, avgPoint.toString()); + Imgproc.circle(rgba,avgPoint, 15,new Scalar(0,255,0),6); + avgPoints.add(avgPoint); + + CryptoBoxPositions[i] = (int)avgPoint.x; + + } + if(avgPoints.size() == 3){ + CryptoBoxDetected = true; + } + + ColumnDetected = true; + Point newFull = Points.getMeanPoint(avgPoints); + Line newFullLine = new Line(newFull, fullAvgPoint); + if(newFullLine.length() > 75){ + trackables = new ArrayList<>(); + Log.d("DogeCV", "RESETTING TRACKABLE!"); + } + fullAvgPoint = newFull; + // Imgproc.cvtColor(white, white, Imgproc.COLOR_RGB2HSV); + + + Imgproc.putText(rgba,"DogeCV 1.1 Crypto: " + newSize.toString() + " - " + speed.toString() + " - " + detectionMode.toString() ,new Point(5,30),0,1.2,new Scalar(0,255,255),2); + + + + return rgba; + + + + } + + + + public Point drawSlot(int slot, List boxes){ + Rect leftColumn = boxes.get(slot); //Get the pillar to the left + Rect rightColumn = boxes.get(slot + 1); //Get the pillar to the right + + int leftX = leftColumn.x; //Get the X Coord + int rightX = rightColumn.x; //Get the X Coord + + int drawX = ((rightX - leftX) / 2) + leftX; //Calculate the point between the two + int drawY = leftColumn.height + leftColumn.y; //Calculate Y Coord. We wont use this in our bot's opetation, buts its nice for drawing + + return new Point(drawX, drawY); + } + + + public static double[] getPosition(Line left, Line right, Size size, double f, double x0, double y0) { + Line connector = Lines.getPerpindicularConnector(left, right, size); + double u1 = connector.x1-x0; + double u2 = connector.x2-x0; + double v1 = y0-connector.y1; + double v2 = y0-connector.y2; + + double y1 = 7.63*f*Math.sqrt(1/( (Math.pow(u1, 2)+1) - (2*v1*(u1*u2+1)/v2) + (Math.pow(v1/v2, 2)*(Math.pow(u2, 2)+1)) )); + double y2 = 7.63*f*Math.sqrt(1/( (Math.pow(u2, 2)+1) - (2*v2*(u1*u2+1)/v1) + (Math.pow(v2/v1, 2)*(Math.pow(u1, 2)+1)) )); + + double x1 = y1*u1/f; + double x2 = y2*u2/f; + + return new double[] {x1,y1,x2,y2}; + } + + public int[] getCryptoBoxPositions() { + return CryptoBoxPositions; + } + + public int getCryptoBoxLeftPosition() { + return CryptoBoxPositions[0]; + } + + public int getCryptoBoxCenterPosition() { + return CryptoBoxPositions[1]; + } + + public int getCryptoBoxRightPosition() { + return CryptoBoxPositions[2]; + } + + public boolean isCryptoBoxDetected() { + return CryptoBoxDetected; + } + + public boolean isColumnDetected() { + return ColumnDetected; + } + + + public Size getFrameSize() { + return newSize; + } + + +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/relicrecovery/GlyphDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/relicrecovery/GlyphDetector.java new file mode 100644 index 00000000000..333caf8b569 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/relicrecovery/GlyphDetector.java @@ -0,0 +1,300 @@ +package com.disnodeteam.dogecv.detectors.relicrecovery; + +import com.disnodeteam.dogecv.OpenCVPipeline; + +import org.opencv.android.Utils; +import org.opencv.core.Core; +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.io.IOException; +import java.util.ArrayList; +import java.util.Collections; +import java.util.Comparator; +import java.util.List; + +/** + * Created by Victo on 11/25/2017. + */ + +public class GlyphDetector extends OpenCVPipeline { + + + public enum GlyphDetectionMode { + EDGE + } + + public enum GlyphDetectionSpeed { + VERY_FAST, FAST, BALANCED, SLOW, VERY_SLOW + } + + //Settings + + public GlyphDetectionMode detectionMode = GlyphDetectionMode.EDGE; + public double downScaleFactor = 0.6; + public boolean rotateMat = false; + public double minScore = 0.5; + public double scoreRatioWeight = 0.5; + public double scoreDistanceXWeight = 0.8; + public double scoreDistanceYWeight = 1.1; + public double scoreAreaWeight = 0.5; + public GlyphDetectionSpeed speed = GlyphDetectionSpeed.BALANCED; + public boolean debugDrawStats = false; + public boolean debugDrawRects = true; + + + //results + private Point chosenGlyphPosition = null; + private double size = 0; + private double chosenGlyphOffset = 0; + private boolean foundRect = false; + + private Mat workingMat = new Mat(); + private Mat edges = new Mat(); + private Mat processed = new Mat(); + private Mat structure = new Mat(); + private Size newSize = new Size(); + @Override + public Mat processFrame(Mat rgba, Mat gray) { + + Size initSize = rgba.size(); + newSize = new Size(initSize.width * downScaleFactor, initSize.height * downScaleFactor); + + rgba.copyTo(workingMat); + Imgproc.resize(workingMat,workingMat, newSize); + + if(rotateMat){ + Mat tempBefore = workingMat.t(); + Core.flip(tempBefore, workingMat, 1); //mRgba.t() is the transpose + tempBefore.release(); + } + + + Imgproc.putText(workingMat,newSize.toString() + " - " + speed.toString(),new Point(5,15),0,0.5,new Scalar(0,255,0),1); + + Imgproc.cvtColor(workingMat,processed,Imgproc.COLOR_RGB2GRAY); + + switch (speed){ + case VERY_FAST: + + Imgproc.blur(processed,processed,new Size(2,2)); + + Imgproc.bilateralFilter(processed.clone(),processed,11,17,17); + + Imgproc.Canny(processed,edges,15,45.0); + + structure = Imgproc.getStructuringElement(Imgproc.CV_SHAPE_RECT, new Size(3,3)); + Imgproc.morphologyEx(edges,edges,Imgproc.MORPH_CLOSE,structure); + break; + case FAST: + Imgproc.blur(processed,processed,new Size(3,3)); + + Imgproc.bilateralFilter(processed.clone(),processed,11,17,17); + + Imgproc.Canny(processed,edges,15,45.0); + + structure = Imgproc.getStructuringElement(Imgproc.CV_SHAPE_RECT, new Size(6,6)); + Imgproc.morphologyEx(edges,edges,Imgproc.MORPH_CLOSE,structure); + break; + + case BALANCED: + Imgproc.blur(processed,processed,new Size(4,4)); + + Imgproc.bilateralFilter(processed.clone(),processed,11,17,17); + + Imgproc.Canny(processed,edges,15,45.0); + + structure = Imgproc.getStructuringElement(Imgproc.CV_SHAPE_RECT, new Size(7,7)); + Imgproc.morphologyEx(edges,edges,Imgproc.MORPH_CLOSE,structure); + break; + + + case SLOW: + + Imgproc.blur(processed,processed,new Size(6,6)); + + Imgproc.bilateralFilter(processed.clone(),processed,11,17,17); + + Imgproc.Canny(processed,edges,15,45.0); + + + structure = Imgproc.getStructuringElement(Imgproc.CV_SHAPE_RECT, new Size(10,10)); + Imgproc.morphologyEx(edges,edges,Imgproc.MORPH_CLOSE,structure); + break; + + case VERY_SLOW: + + Imgproc.blur(processed,processed,new Size(7,7)); + + Imgproc.bilateralFilter(processed.clone(),processed,11,17,17); + + Imgproc.Canny(processed,edges,15,45.0); + + structure = Imgproc.getStructuringElement(Imgproc.CV_SHAPE_RECT, new Size(15,15)); + Imgproc.morphologyEx(edges,edges,Imgproc.MORPH_CLOSE,structure); + break; + } + + List contours = new ArrayList<>(); + Mat hierarchy = new Mat(); + + Imgproc.findContours(edges, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + hierarchy.release(); + + double chosenScore = 0; + Rect chosenRect = null; + + Collections.sort(contours, new Comparator() { + @Override + public int compare(MatOfPoint matOfPoint, MatOfPoint t1) { + if(Imgproc.contourArea(matOfPoint) > Imgproc.contourArea(t1)){ + return -1; + }else if(Imgproc.contourArea(matOfPoint) < Imgproc.contourArea(t1)){ + return 1; + } else{ + return 0; + } + } + }); + + contours.remove(0); // Remove First Index which is usually a large square filling the entire screen, + + for(MatOfPoint c : contours) { + + if(Imgproc.contourArea(c) > 1000){ + Rect rect = Imgproc.boundingRect(c); + + double x = rect.x; + double y = rect.y; + double w = rect.width; + double h = rect.height; + + Point centerPoint = new Point(x + ( w/2), y + (h/2)); + double cubeRatio = Math.max(Math.abs(h/w), Math.abs(w/h)); + + double score = 100; + + double diffrenceFromPerfect = Math.abs(1 - cubeRatio); + double scoreRatioPunishment = 1 - diffrenceFromPerfect; + double scoreRatio = scoreRatioPunishment * scoreRatioWeight; + score *= scoreRatio; + + double distanceFromCenterX = (newSize.width / 2) - centerPoint.x; + double distanceFromCenterY = newSize.height - centerPoint.y; + distanceFromCenterX = Math.abs(distanceFromCenterX / newSize.width); + distanceFromCenterY = Math.abs(distanceFromCenterY / newSize.height); + + double scoreDistanceFromCenterXPunishment = 1 - distanceFromCenterX; + double scoreDistanceFromCenterYPunishment = 1 - distanceFromCenterY; + + double scoreDistanceFromCenterX = scoreDistanceFromCenterXPunishment * scoreDistanceXWeight; + double scoreDistanceFromCenterY = scoreDistanceFromCenterYPunishment * scoreDistanceYWeight; + + score *= scoreDistanceFromCenterX; + score *= scoreDistanceFromCenterY; + + double minArea = GetMinArea(contours); + double maxArea = GetMaxArea(contours); + double area = Imgproc.contourArea(c); + double normalizedArea = (area - minArea) / (maxArea - minArea); + double scoreAreaPunishment = normalizedArea; + double scoreArea =scoreAreaPunishment * scoreAreaWeight; + score *= scoreArea; + + if(chosenRect == null){ + chosenRect = rect; + chosenScore = score; + } + + if(score > chosenScore){ + chosenRect = rect; + chosenScore = score; + } + + if(debugDrawRects){ + Imgproc.rectangle(workingMat,new Point(x,y), new Point((x+w),(y+h)),new Scalar(0,255,255),1); + } + + if(debugDrawRects){ + String toPrint = String.format("Score: %.2f",score); + Imgproc.putText(workingMat,toPrint , new Point(x+5,y+5),0,0.5, new Scalar(0,255,255)); + } + } + + + + + } + if(chosenRect != null && chosenScore > minScore){ + double x = chosenRect.x; + double y = chosenRect.y; + double w = chosenRect.width; + double h = chosenRect.height; + Imgproc.rectangle(workingMat,new Point(x,y), new Point((x+w),(y+h)),new Scalar(0,255,0),3); + + + chosenGlyphPosition = new Point((x+(w/2)), (y+(h/2))); + chosenGlyphOffset = newSize.width - (x+(w/2)) ; + size = (w + h)/2; + + foundRect = false; + }else{ + foundRect = true; + } + + Imgproc.resize(workingMat,workingMat,initSize); + + return workingMat; + } + + + private double GetMaxArea(List allConturs){ + double currentMax = 0; + + for (MatOfPoint c: allConturs){ + double area= Imgproc.contourArea(c); + if(area>currentMax){ + currentMax = area; + } + } + + return currentMax; + } + + private double GetMinArea(List allConturs){ + double currentMax = Double.MAX_VALUE; + + for (MatOfPoint c: allConturs){ + double area= Imgproc.contourArea(c); + if(area contoursRed = new ArrayList<>(); + + Imgproc.findContours(maskRed, contoursRed, hiarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + Imgproc.drawContours(workingMat,contoursRed,-1,new Scalar(230,70,70),2); + Rect chosenRedRect = null; + double chosenRedScore = Integer.MAX_VALUE; + + MatOfPoint2f approxCurve = new MatOfPoint2f(); + + for(MatOfPoint c : contoursRed) { + MatOfPoint2f contour2f = new MatOfPoint2f(c.toArray()); + + //Processing on mMOP2f1 which is in type MatOfPoint2f + double approxDistance = Imgproc.arcLength(contour2f, true) * 0.02; + Imgproc.approxPolyDP(contour2f, approxCurve, approxDistance, true); + + //Convert back to MatOfPoint + MatOfPoint points = new MatOfPoint(approxCurve.toArray()); + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(points); + + // You can find this by printing the area of each found rect, then looking and finding what u deem to be perfect. + // Run this with the bot, on a balance board, with jewels in their desired location. Since jewels should mostly be + // in the same position, this hack could work nicely. + + + double area = Imgproc.contourArea(c); + double areaDiffrence = 0; + + switch(detectionMode){ + case MAX_AREA: + areaDiffrence = -area * areaWeight; + break; + case PERFECT_AREA: + areaDiffrence = Math.abs(perfectArea - area); + break; + } + + // Just declaring vars to make my life eassy + double x = rect.x; + double y = rect.y; + double w = rect.width; + double h = rect.height; + Point centerPoint = new Point(x + ( w/2), y + (h/2)); + + + + double cubeRatio = Math.max(Math.abs(h/w), Math.abs(w/h)); // Get the ratio. We use max in case h and w get swapped??? it happens when u account for rotation + double ratioDiffrence = Math.abs(cubeRatio - perfectRatio); + + + double finalDiffrence = (ratioDiffrence * ratioWeight) + (areaDiffrence * areaWeight); + + + // Optional to ALWAYS return a result. + + // Update the chosen rect if the diffrence is lower then the curreny chosen + // Also can add a condition for min diffrence to filter out VERY wrong answers + // Think of diffrence as score. 0 = perfect + if(finalDiffrence < chosenRedScore && finalDiffrence < maxDiffrence && area > minArea){ + chosenRedScore = finalDiffrence; + chosenRedRect = rect; + } + + if(debugContours && area > 100){ + Imgproc.circle(workingMat,centerPoint,3,new Scalar(0,255,255),3); + Imgproc.putText(workingMat,"Area: " + area,centerPoint,0,0.5,new Scalar(0,255,255)); + } + + } + + List contoursBlue = new ArrayList<>(); + + Imgproc.findContours(maskBlue, contoursBlue,hiarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + Imgproc.drawContours(workingMat,contoursBlue,-1,new Scalar(70,130,230),2); + Rect chosenBlueRect = null; + double chosenBlueScore = Integer.MAX_VALUE; + + for(MatOfPoint c : contoursBlue) { + MatOfPoint2f contour2f = new MatOfPoint2f(c.toArray()); + + //Processing on mMOP2f1 which is in type MatOfPoint2f + double approxDistance = Imgproc.arcLength(contour2f, true) * 0.02; + Imgproc.approxPolyDP(contour2f, approxCurve, approxDistance, true); + + //Convert back to MatOfPoint + MatOfPoint points = new MatOfPoint(approxCurve.toArray()); + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(points); + + // You can find this by printing the area of each found rect, then looking and finding what u deem to be perfect. + // Run this with the bot, on a balance board, with jewels in their desired location. Since jewels should mostly be + // in the same position, this hack could work nicely. + + + double area = Imgproc.contourArea(c); + double areaDiffrence = 0; + + switch(detectionMode){ + case MAX_AREA: + areaDiffrence = -area * areaWeight; + break; + case PERFECT_AREA: + areaDiffrence = Math.abs(perfectArea - area); + break; + } + + + // Just declaring vars to make my life eassy + double x = rect.x; + double y = rect.y; + double w = rect.width; + double h = rect.height; + Point centerPoint = new Point(x + ( w/2), y + (h/2)); + + double cubeRatio = Math.max(Math.abs(h/w), Math.abs(w/h)); // Get the ratio. We use max in case h and w get swapped??? it happens when u account for rotation + double ratioDiffrence = Math.abs(cubeRatio - 1); + + double finalDiffrence = (ratioDiffrence * ratioWeight) + (areaDiffrence * areaWeight); + + + + // Update the chosen rect if the diffrence is lower then the curreny chosen + // Also can add a condition for min diffrence to filter out VERY wrong answers + // Think of diffrence as score. 0 = perfect + if(finalDiffrence < chosenBlueScore && finalDiffrence < maxDiffrence && area > minArea){ + chosenBlueScore = finalDiffrence; + chosenBlueRect = rect; + } + + if(debugContours && area > 100){ + Imgproc.circle(workingMat,centerPoint,3,new Scalar(0,255,255),3); + Imgproc.putText(workingMat,"Area: " + area,centerPoint,0,0.5,new Scalar(0,255,255)); + } + + } + + if(chosenRedRect != null){ + Imgproc.rectangle(workingMat, + new Point(chosenRedRect.x, chosenRedRect.y), + new Point(chosenRedRect.x + chosenRedRect.width, chosenRedRect.y + chosenRedRect.height), + new Scalar(255, 0, 0), 2); + + Imgproc.putText(workingMat, + "Red: " + String.format("%.2f", chosenRedScore), + new Point(chosenRedRect.x - 5, chosenRedRect.y - 10), + Core.FONT_HERSHEY_PLAIN, + 1.3, + new Scalar(255, 0, 0), + 2); + } + + if(chosenBlueRect != null){ + Imgproc.rectangle(workingMat, + new Point(chosenBlueRect.x, chosenBlueRect.y), + new Point(chosenBlueRect.x + chosenBlueRect.width, chosenBlueRect.y + chosenBlueRect.height), + new Scalar(0, 0, 255), 2); + + Imgproc.putText(workingMat, + "Blue: " + String.format("%.2f", chosenBlueScore), + new Point(chosenBlueRect.x - 5, chosenBlueRect.y - 10), + Core.FONT_HERSHEY_PLAIN, + 1.3, + new Scalar(0, 0, 255), + 2); + } + + if(chosenBlueRect != null && chosenRedRect != null){ + if(chosenBlueRect.x < chosenRedRect.x){ + currentOrder = JewelOrder.BLUE_RED; + lastOrder = currentOrder; + }else{ + currentOrder = JewelOrder.RED_BLUE; + lastOrder = currentOrder; + } + }else{ + currentOrder = JewelOrder.UNKNOWN; + } + + Imgproc.putText(workingMat,"Result: " + lastOrder.toString(),new Point(10,newSize.height - 30),0,1, new Scalar(255,255,0),1); + Imgproc.putText(workingMat,"Current Track: " + currentOrder.toString(),new Point(10,newSize.height - 10),0,0.5, new Scalar(255,255,255),1); + + Imgproc.resize(workingMat,workingMat,initSize); + + redConvert.release(); + blueConvert.release(); + Imgproc.putText(workingMat,"DogeCV 1.1 Jewel: " + newSize.toString() + " - " + speed.toString() + " - " + detectionMode.toString() ,new Point(5,30),0,1.2,new Scalar(0,255,255),2); + + return workingMat; + } + + + public JewelOrder getCurrentOrder() { + return currentOrder; + } + + public JewelOrder getLastOrder() { + return lastOrder; + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/GoldAlignDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/GoldAlignDetector.java new file mode 100644 index 00000000000..ad215580781 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/GoldAlignDetector.java @@ -0,0 +1,213 @@ +package com.disnodeteam.dogecv.detectors.roverrukus; + +import com.disnodeteam.dogecv.DogeCV; +import com.disnodeteam.dogecv.detectors.DogeCVDetector; +import com.disnodeteam.dogecv.filters.DogeCVColorFilter; +import com.disnodeteam.dogecv.filters.LeviColorFilter; +import com.disnodeteam.dogecv.scoring.MaxAreaScorer; +import com.disnodeteam.dogecv.scoring.PerfectAreaScorer; +import com.disnodeteam.dogecv.scoring.RatioScorer; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 9/17/2018. + */ + +public class GoldAlignDetector extends DogeCVDetector { + + // Defining Mats to be used. + private Mat displayMat = new Mat(); // Display debug info to the screen (this is what is returned) + private Mat workingMat = new Mat(); // Used for pre-processing and working with (blurring as an example) + private Mat maskYellow = new Mat(); // Yellow Mask returned by color filter + private Mat hierarchy = new Mat(); // hierarchy used by contours + + // Results of the detector + private boolean found = false; // Is the gold mineral found + private boolean aligned = false; // Is the gold mineral aligned + private double goldXPos = 0; // X Position (in pixels) of the gold element + private double goldYPos = 0; // Y Position (in pixels) of the gold element + + // Detector settings + public boolean debugAlignment = true; // Show debug lines to show alignment settings + public double alignPosOffset = 0; // How far from center frame is aligned + public double alignSize = 100; // How wide is the margin of error for alignment + + public DogeCV.AreaScoringMethod areaScoringMethod = DogeCV.AreaScoringMethod.MAX_AREA; // Setting to decide to use MaxAreaScorer or PerfectAreaScorer + + + //Create the default filters and scorers + public DogeCVColorFilter yellowFilter = new LeviColorFilter(LeviColorFilter.ColorPreset.YELLOW); //Default Yellow filter + + public RatioScorer ratioScorer = new RatioScorer(1.0, 3); // Used to find perfect squares + public MaxAreaScorer maxAreaScorer = new MaxAreaScorer( 0.01); // Used to find largest objects + public PerfectAreaScorer perfectAreaScorer = new PerfectAreaScorer(5000,0.05); // Used to find objects near a tuned area value + + /** + * Simple constructor + */ + public GoldAlignDetector() { + super(); + detectorName = "Gold Align Detector"; // Set the detector name + } + + + @Override + public Mat process(Mat input) { + + // Copy the input mat to our working mats, then release it for memory + input.copyTo(displayMat); + input.copyTo(workingMat); + input.release(); + + + //Preprocess the working Mat (blur it then apply a yellow filter) + Imgproc.GaussianBlur(workingMat,workingMat,new Size(5,5),0); + yellowFilter.process(workingMat.clone(),maskYellow); + + //Find contours of the yellow mask and draw them to the display mat for viewing + + List contoursYellow = new ArrayList<>(); + Imgproc.findContours(maskYellow, contoursYellow, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + Imgproc.drawContours(displayMat,contoursYellow,-1,new Scalar(230,70,70),2); + + // Current result + Rect bestRect = null; + double bestDiffrence = Double.MAX_VALUE; // MAX_VALUE since less diffrence = better + + // Loop through the contours and score them, searching for the best result + for(MatOfPoint cont : contoursYellow){ + double score = calculateScore(cont); // Get the diffrence score using the scoring API + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(cont); + Imgproc.rectangle(displayMat, rect.tl(), rect.br(), new Scalar(0,0,255),2); // Draw rect + + // If the result is better then the previously tracked one, set this rect as the new best + if(score < bestDiffrence){ + bestDiffrence = score; + bestRect = rect; + } + } + + // Vars to calculate the alignment logic. + double alignX = (getAdjustedSize().width / 2) + alignPosOffset; // Center point in X Pixels + double alignXMin = alignX - (alignSize / 2); // Min X Pos in pixels + double alignXMax = alignX +(alignSize / 2); // Max X pos in pixels + double xPos; // Current Gold X Pos + double yPos; // Current Gold X Pos + + if(bestRect != null){ + // Show chosen result + Imgproc.rectangle(displayMat, bestRect.tl(), bestRect.br(), new Scalar(255,0,0),4); + Imgproc.putText(displayMat, "Chosen", bestRect.tl(),0,1,new Scalar(255,255,255)); + + // Set align X pos + xPos = bestRect.x + (bestRect.width / 2); + yPos = bestRect.y + (bestRect.height / 2); + goldXPos = xPos; + goldYPos = yPos; + + // Draw center point + Imgproc.circle(displayMat, new Point( xPos, bestRect.y + (bestRect.height / 2)), 5, new Scalar(0,255,0),2); + + // Check if the mineral is aligned + if(xPos < alignXMax && xPos > alignXMin){ + aligned = true; + }else{ + aligned = false; + } + + // Draw Current X + Imgproc.putText(displayMat,"Current X: " + bestRect.x,new Point(10,getAdjustedSize().height - 10),0,0.5, new Scalar(255,255,255),1); + found = true; + }else{ + found = false; + aligned = false; + } + if(debugAlignment){ + + //Draw debug alignment info + if(isFound()){ + Imgproc.line(displayMat,new Point(goldXPos, getAdjustedSize().height), new Point(goldXPos, getAdjustedSize().height - 30),new Scalar(255,255,0), 2); + } + + Imgproc.line(displayMat,new Point(alignXMin, getAdjustedSize().height), new Point(alignXMin, getAdjustedSize().height - 40),new Scalar(0,255,0), 2); + Imgproc.line(displayMat,new Point(alignXMax, getAdjustedSize().height), new Point(alignXMax,getAdjustedSize().height - 40),new Scalar(0,255,0), 2); + } + + //Print result + Imgproc.putText(displayMat,"Result: " + aligned,new Point(10,getAdjustedSize().height - 30),0,1, new Scalar(255,255,0),1); + + + return displayMat; + + } + + @Override + public void useDefaults() { + addScorer(ratioScorer); + + // Add diffrent scoreres depending on the selected mode + if(areaScoringMethod == DogeCV.AreaScoringMethod.MAX_AREA){ + addScorer(maxAreaScorer); + } + + if (areaScoringMethod == DogeCV.AreaScoringMethod.PERFECT_AREA){ + addScorer(perfectAreaScorer); + } + + } + + /** + * Set the alignment settings for GoldAlign + * @param offset - How far from center frame (in pixels) + * @param width - How wide the margin is (in pixels, on each side of offset) + */ + public void setAlignSettings(int offset, int width){ + alignPosOffset = offset; + alignSize = width; + } + + /** + * Returns if the gold element is aligned + * @return if the gold element is alined + */ + public boolean getAligned(){ + return aligned; + } + + /** + * Returns gold element last x-position + * @return last x-position in screen pixels of gold element + */ + public double getXPosition(){ + return goldXPos; + } + + + /** + * Returns gold element last y-position + * @return last y-position in screen pixels of gold element + */ + public double getYPosition(){ + return goldYPos; + } + + /** + * Returns if a gold mineral is being tracked/detected + * @return if a gold mineral is being tracked/detected + */ + public boolean isFound() { + return found; + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/GoldDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/GoldDetector.java new file mode 100644 index 00000000000..5efb3594879 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/GoldDetector.java @@ -0,0 +1,157 @@ +package com.disnodeteam.dogecv.detectors.roverrukus; + +import android.util.Log; + +import com.disnodeteam.dogecv.DogeCV; +import com.disnodeteam.dogecv.detectors.DogeCVDetector; +import com.disnodeteam.dogecv.filters.DogeCVColorFilter; +import com.disnodeteam.dogecv.filters.LeviColorFilter; +import com.disnodeteam.dogecv.scoring.MaxAreaScorer; +import com.disnodeteam.dogecv.scoring.PerfectAreaScorer; +import com.disnodeteam.dogecv.scoring.RatioScorer; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 9/10/2018. + */ + +public class GoldDetector extends DogeCVDetector { + + // Defining Mats to be used. + private Mat displayMat = new Mat(); // Display debug info to the screen (this is what is returned) + private Mat workingMat = new Mat(); // Used for pre-processing and working with (blurring as an example) + private Mat maskYellow = new Mat(); // Yellow Mask returned by color filter + private Mat hierarchy = new Mat(); // hierarchy used by contours + + // Results of the detector + private boolean found = false; // Is the gold mineral found + private Point screenPosition = new Point(); // Screen position of the mineral + private Rect foundRect = new Rect(); // Found rect + + public DogeCV.AreaScoringMethod areaScoringMethod = DogeCV.AreaScoringMethod.MAX_AREA; // Setting to decide to use MaxAreaScorer or PerfectAreaScorer + + //Create the default filters and scorers + public DogeCVColorFilter yellowFilter = new LeviColorFilter(LeviColorFilter.ColorPreset.YELLOW); //Default Yellow filter + + public RatioScorer ratioScorer = new RatioScorer(1.0, 3); // Used to find perfect squares + public MaxAreaScorer maxAreaScorer = new MaxAreaScorer( 0.01); // Used to find largest objects + public PerfectAreaScorer perfectAreaScorer = new PerfectAreaScorer(5000,0.05); // Used to find objects near a tuned area value + + /** + * Simple constructor + */ + public GoldDetector() { + super(); + detectorName = "Gold Detector"; // Set the detector name + } + + + @Override + public Mat process(Mat input) { + + // Copy the input mat to our working mats, then release it for memory + input.copyTo(displayMat); + input.copyTo(workingMat); + input.release(); + + + //Preprocess the working Mat (blur it then apply a yellow filter) + Imgproc.GaussianBlur(workingMat,workingMat,new Size(5,5),0); + yellowFilter.process(workingMat.clone(),maskYellow); + + //Find contours of the yellow mask and draw them to the display mat for viewing + + List contoursYellow = new ArrayList<>(); + Imgproc.findContours(maskYellow, contoursYellow, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + Imgproc.drawContours(displayMat,contoursYellow,-1,new Scalar(230,70,70),2); + + // Current result + Rect bestRect = null; + double bestDifference = Double.MAX_VALUE; // MAX_VALUE since less difference = better + + // Loop through the contours and score them, searching for the best result + for(MatOfPoint cont : contoursYellow){ + double score = calculateScore(cont); // Get the difference score using the scoring API + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(cont); + Imgproc.rectangle(displayMat, rect.tl(), rect.br(), new Scalar(0,0,255),2); // Draw rect + + // If the result is better then the previously tracked one, set this rect as the new best + if(score < bestDifference){ + bestDifference = score; + bestRect = rect; + } + } + + if(bestRect != null){ + // Show chosen result + Imgproc.rectangle(displayMat, bestRect.tl(), bestRect.br(), new Scalar(255,0,0),4); + Imgproc.putText(displayMat, "Chosen", bestRect.tl(),0,1,new Scalar(255,255,255)); + + screenPosition = new Point(bestRect.x, bestRect.y); + foundRect = bestRect; + found = true; + }else{ + found = false; + } + + + //Print result + Imgproc.putText(displayMat,"Result: " + screenPosition.x +"/"+screenPosition.y,new Point(10,getAdjustedSize().height - 30),0,1, new Scalar(255,255,0),1); + + + return displayMat; + + } + + @Override + public void useDefaults() { + addScorer(ratioScorer); + + // Add diffrent scoreres depending on the selected mode + if(areaScoringMethod == DogeCV.AreaScoringMethod.MAX_AREA){ + addScorer(maxAreaScorer); + } + + if (areaScoringMethod == DogeCV.AreaScoringMethod.PERFECT_AREA){ + addScorer(perfectAreaScorer); + } + + } + + /** + * Returns the gold element's last position in screen pixels + * @return position in screen pixels + */ + public Point getScreenPosition(){ + return screenPosition; + } + + /** + * Returns the gold element's found rectangle + * @return gold element rect + */ + public Rect getFoundRect() { + return foundRect; + } + + /** + * Returns if a gold mineral is being tracked/detected + * @return if a gold mineral is being tracked/detected + */ + public boolean isFound() { + return found; + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/HoughSilverDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/HoughSilverDetector.java new file mode 100644 index 00000000000..fa57d184613 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/HoughSilverDetector.java @@ -0,0 +1,126 @@ +package com.disnodeteam.dogecv.detectors.roverrukus; + +import android.util.Log; + +import com.disnodeteam.dogecv.DogeCV; +import com.disnodeteam.dogecv.detectors.DogeCVDetector; +import com.disnodeteam.dogecv.math.Circle; +import com.disnodeteam.dogecv.scoring.ColorDevScorer; +import com.disnodeteam.dogecv.scoring.DogeCVScorer; + +import org.opencv.core.Core; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.Point; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 9/10/2018. + */ + +public class HoughSilverDetector extends DogeCVDetector { + + //The scorer used for this class. Based upon minimizing the standard deviation of color within each mineral, + //I.e, if the region is actually a mineral it should be fairly flat. (Levi is op AF - Alex) + public DogeCVScorer stdDevScorer = new ColorDevScorer(); + + public double sensitivity = 1.4; //Sensitivity of circle detector; between about 1.2 and 2.1; + public double minDistance = 60; //Adjust with frame size! This is the minimum distance between circles + + private Mat workingMat = new Mat(); //The working mat used for internal calculations, single object to avoid memory leak + private Mat displayMat = new Mat(); //The matrix to be displayed + private int results; //How many potential minerals were detected + private Circle foundCircle; //The best detection found, if any + private boolean isFound = false; //Whether a circle has been found at all + + /** + * Simple constructor. + */ + public HoughSilverDetector() { + super(); + this.detectorName = "Hough Silver Detector"; + } + + @Override + public Mat process(Mat input) { + if(input.channels() < 0 || input.cols() <= 0){ + Log.e("DogeCV", "Bad INPUT MAT!"); + } + input.copyTo(workingMat); //Copies input to working matrix + Imgproc.cvtColor(workingMat, workingMat, Imgproc.COLOR_RGBA2RGB); //Converts from RGBA to simply RGB + displayMat = new Mat(); //Creates the display matrix + Imgproc.bilateralFilter(workingMat, displayMat, 5, 175, 175); //Similar to a Gaussian blur, but preserves edges far better. + displayMat.copyTo(workingMat); //Copies blurred image onto working matrix + Imgproc.cvtColor(workingMat, workingMat, Imgproc.COLOR_RGB2Lab); //Converts image to Lab color space for better mineral differentiation + + Imgproc.erode(workingMat, workingMat, Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, new Size(3,3))); //Removes noise + Imgproc.GaussianBlur(workingMat, workingMat, new Size(3,3), 0); //Blurs image + List channels = new ArrayList(); + Core.split(workingMat, channels); //Splits the three channels of the Lab image into a List + + Mat circles = new Mat(); //A matrix of circles; each entry is an array of doubles, first coordinate is the x of the circle, second is y, third is the radius. + Imgproc.HoughCircles(channels.get(0), circles, Imgproc.CV_HOUGH_GRADIENT, sensitivity, minDistance); //Applies the Hough Circular transformation to find circles in the image + + results = 0; //The number of detected circles + Circle bestCircle = null; //Resets the best detected circle + double bestDifference = Double.MAX_VALUE; //The worst possible image variance + + //Iterates over each circle, scoring it in and checking if its better than the previous + for (int i = 0; i < circles.width(); i++) { + Circle circle = new Circle(circles.get(0,i)[0],circles.get(0,i)[1],circles.get(0,i)[2]); //Retrieves circle object from matrix + Mat mask = Mat.zeros(workingMat.size(), CvType.CV_8UC1); //Creates an empty image to contain the mask of the circle + Imgproc.circle(mask, new Point((int) circle.x, (int) circle.y), (int) circle.radius, new Scalar(255), -1); //Draws a filled-in circle on the mask + Mat masked = new Mat((int) getAdjustedSize().height, (int) getAdjustedSize().width, CvType.CV_8UC3); //Creates a blank matrix of the appropriate type to receive the sections of the input image + workingMat.copyTo(masked, mask); //Copies only the regions of the input image contained in the mask, and therefore the circle drawn in the mask + double score = calculateScore(masked); //Calculates the score of the circle + //Releases undeeded matrices to avoid memory leak + mask.release(); + masked.release(); + results++; //Increments circle count by one + + Imgproc.circle(displayMat, new Point(circle.x, circle.y), (int) circle.radius, new Scalar(0,0,255),2); //Draws the detected circle + //If the current circle has a better score than the prior best, then it is now the current best circle + if(score < bestDifference){ + bestDifference = score; + bestCircle = circle; + } + } + //Draws a red circle around the best circle, if one is detected at all + if(bestCircle != null){ + Imgproc.circle(displayMat, new Point(bestCircle.x, bestCircle.y), (int) bestCircle.radius, new Scalar(255,0,0),4); + Imgproc.putText(displayMat, "Chosen", new Point(bestCircle.x, bestCircle.y),0,.8,new Scalar(255,255,255)); + foundCircle = bestCircle; + isFound = true; + }else{ + isFound = false; + foundCircle = null; + } + //The ActivityViewDisplay accepts RGBA images, so converts to that format + Imgproc.cvtColor(displayMat, displayMat, Imgproc.COLOR_RGB2RGBA); + return displayMat; + } + + @Override + public void useDefaults() { + addScorer(stdDevScorer); + } + + public boolean isFound() { + return isFound; + } + + /** + * Returns the best circle detected + * @return A circle object + */ + public Circle getFoundCircle() { + return foundCircle; + } + + +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/SamplingOrderDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/SamplingOrderDetector.java new file mode 100644 index 00000000000..58ca961d2df --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/SamplingOrderDetector.java @@ -0,0 +1,297 @@ +package com.disnodeteam.dogecv.detectors.roverrukus; + +import android.util.Log; + +import com.disnodeteam.dogecv.DogeCV; +import com.disnodeteam.dogecv.detectors.DogeCVDetector; +import com.disnodeteam.dogecv.filters.DogeCVColorFilter; +import com.disnodeteam.dogecv.filters.HSVRangeFilter; +import com.disnodeteam.dogecv.filters.LeviColorFilter; +import com.disnodeteam.dogecv.scoring.MaxAreaScorer; +import com.disnodeteam.dogecv.scoring.PerfectAreaScorer; +import com.disnodeteam.dogecv.scoring.RatioScorer; + +import org.opencv.core.Core; +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 9/10/2018. + * + * Basic sampling order detector - users are encouraged to tune it to their own needs. + */ + +public class SamplingOrderDetector extends DogeCVDetector { + + // Enum to describe gold location + public enum GoldLocation { + UNKNOWN, + LEFT, + CENTER, + RIGHT + } + + // Which area scoring method to use + public DogeCV.AreaScoringMethod areaScoringMethod = DogeCV.AreaScoringMethod.MAX_AREA; + + //Create the scorers used for the detector + public RatioScorer ratioScorer = new RatioScorer(1.0,5); + public MaxAreaScorer maxAreaScorer = new MaxAreaScorer(0.01); + public PerfectAreaScorer perfectAreaScorer = new PerfectAreaScorer(5000,0.05); + + //Create the filters used + public DogeCVColorFilter yellowFilter = new LeviColorFilter(LeviColorFilter.ColorPreset.YELLOW,100); + public DogeCVColorFilter whiteFilter = new HSVRangeFilter(new Scalar(0,0,200), new Scalar(50,40,255)); + + + // Results for the detector + private GoldLocation currentOrder = GoldLocation.UNKNOWN; + private GoldLocation lastOrder = GoldLocation.UNKNOWN; + private boolean isFound = false; + + // Create the mats used + private Mat workingMat = new Mat(); + private Mat displayMat = new Mat(); + private Mat yellowMask = new Mat(); + private Mat whiteMask = new Mat(); + private Mat hiarchy = new Mat(); + + public SamplingOrderDetector() { + super(); + this.detectorName = "Sampling Order Detector"; + } + + @Override + public Mat process(Mat input) { + + // Copy input mat to working/display mats + input.copyTo(displayMat); + input.copyTo(workingMat); + input.release(); + + // Generate Masks + yellowFilter.process(workingMat.clone(), yellowMask); + whiteFilter.process(workingMat.clone(), whiteMask); + + + // Blur and find the countours in the masks + List contoursYellow = new ArrayList<>(); + List contoursWhite = new ArrayList<>(); + + Imgproc.blur(whiteMask,whiteMask,new Size(2,2)); + Imgproc.blur(yellowMask,yellowMask,new Size(2,2)); + + Imgproc.findContours(yellowMask, contoursYellow, hiarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + Imgproc.drawContours(displayMat,contoursYellow,-1,new Scalar(230,70,70),2); + + Imgproc.findContours(whiteMask, contoursWhite, hiarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + Imgproc.drawContours(displayMat,contoursWhite,-1,new Scalar(230,70,70),2); + + + // Prepare to find best yellow (gold) results + Rect chosenYellowRect = null; + double chosenYellowScore = Integer.MAX_VALUE; + + MatOfPoint2f approxCurve = new MatOfPoint2f(); + + for(MatOfPoint c : contoursYellow){ + MatOfPoint2f contour2f = new MatOfPoint2f(c.toArray()); + + //Processing on mMOP2f1 which is in type MatOfPoint2f + double approxDistance = Imgproc.arcLength(contour2f, true) * 0.02; + Imgproc.approxPolyDP(contour2f, approxCurve, approxDistance, true); + + //Convert back to MatOfPoint + MatOfPoint points = new MatOfPoint(approxCurve.toArray()); + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(points); + + double diffrenceScore = calculateScore(points); + + if(diffrenceScore < chosenYellowScore && diffrenceScore < maxDifference){ + chosenYellowScore = diffrenceScore; + chosenYellowRect = rect; + } + + double area = Imgproc.contourArea(c); + double x = rect.x; + double y = rect.y; + double w = rect.width; + double h = rect.height; + Point centerPoint = new Point(x + ( w/2), y + (h/2)); + if( area > 500){ + Imgproc.circle(displayMat,centerPoint,3,new Scalar(0,255,255),3); + Imgproc.putText(displayMat,"Area: " + area,centerPoint,0,0.5,new Scalar(0,255,255)); + } + } + + // Prepare to find best white (silver) results + List choosenWhiteRect = new ArrayList<>(2); + List chosenWhiteScore = new ArrayList<>(2); + chosenWhiteScore.add(0, Double.MAX_VALUE); + chosenWhiteScore.add(1, Double.MAX_VALUE); + choosenWhiteRect.add(0, null); + choosenWhiteRect.add(1, null); + + + for(MatOfPoint c : contoursWhite){ + MatOfPoint2f contour2f = new MatOfPoint2f(c.toArray()); + + //Processing on mMOP2f1 which is in type MatOfPoint2f + double approxDistance = Imgproc.arcLength(contour2f, true) * 0.02; + Imgproc.approxPolyDP(contour2f, approxCurve, approxDistance, true); + + //Convert back to MatOfPoint + MatOfPoint points = new MatOfPoint(approxCurve.toArray()); + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(points); + + double diffrenceScore = calculateScore(points); + + double area = Imgproc.contourArea(c); + double x = rect.x; + double y = rect.y; + double w = rect.width; + double h = rect.height; + Point centerPoint = new Point(x + ( w/2), y + (h/2)); + if( area > 1000){ + Imgproc.circle(displayMat,centerPoint,3,new Scalar(0,255,255),3); + Imgproc.putText(displayMat,"Area: " + area,centerPoint,0,0.5,new Scalar(0,255,255)); + Imgproc.putText(displayMat,"Diff: " + diffrenceScore,new Point(centerPoint.x, centerPoint.y + 20),0,0.5,new Scalar(0,255,255)); + } + + boolean good = true; + if(diffrenceScore < maxDifference && area > 1000){ + + if(diffrenceScore < chosenWhiteScore.get(0)){ + choosenWhiteRect.set(0,rect); + chosenWhiteScore.set(0,diffrenceScore); + } + else if(diffrenceScore < chosenWhiteScore.get(1) && diffrenceScore > chosenWhiteScore.get(0)){ + choosenWhiteRect.set(1,rect); + chosenWhiteScore.set(1, diffrenceScore); + } + } + + + } + + //Draw found gold element + if(chosenYellowRect != null){ + Imgproc.rectangle(displayMat, + new Point(chosenYellowRect.x, chosenYellowRect.y), + new Point(chosenYellowRect.x + chosenYellowRect.width, chosenYellowRect.y + chosenYellowRect.height), + new Scalar(255, 0, 0), 2); + + Imgproc.putText(displayMat, + "Gold: " + String.format("%.2f X=%.2f", chosenYellowScore, (double)chosenYellowRect.x), + new Point(chosenYellowRect.x - 5, chosenYellowRect.y - 10), + Core.FONT_HERSHEY_PLAIN, + 1.3, + new Scalar(0, 255, 255), + 2); + + } + //Draw found white elements + for(int i=0;i rect.x){ + leftCount++; + } + } + if(leftCount == 0){ + currentOrder = SamplingOrderDetector.GoldLocation.LEFT; + } + + if(leftCount == 1){ + currentOrder = SamplingOrderDetector.GoldLocation.CENTER; + } + + if(leftCount >= 2){ + currentOrder = SamplingOrderDetector.GoldLocation.RIGHT; + } + isFound = true; + lastOrder = currentOrder; + + }else{ + currentOrder = SamplingOrderDetector.GoldLocation.UNKNOWN; + isFound = false; + } + + //Display Debug Information + Imgproc.putText(displayMat,"Gold Position: " + lastOrder.toString(),new Point(10,getAdjustedSize().height - 30),0,1, new Scalar(255,255,0),1); + Imgproc.putText(displayMat,"Current Track: " + currentOrder.toString(),new Point(10,getAdjustedSize().height - 10),0,0.5, new Scalar(255,255,255),1); + + return displayMat; + } + + @Override + public void useDefaults() { + if(areaScoringMethod == DogeCV.AreaScoringMethod.MAX_AREA){ + addScorer(maxAreaScorer); + } + + if (areaScoringMethod == DogeCV.AreaScoringMethod.PERFECT_AREA){ + addScorer(perfectAreaScorer); + } + addScorer(ratioScorer); + } + + /** + * Is both elements found? + * @return if the elements are found + */ + public boolean isFound() { + return isFound; + } + + /** + * Returns the current gold pos + * @return current gold pos (UNKNOWN, LEFT, CENTER, RIGHT) + */ + public GoldLocation getCurrentOrder() { + return currentOrder; + } + + /** + * Returns the last known gold pos + * @return last known gold pos (UNKNOWN, LEFT, CENTER, RIGHT) + */ + public GoldLocation getLastOrder() { + return lastOrder; + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/SilverDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/SilverDetector.java new file mode 100644 index 00000000000..4170271cdc7 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/SilverDetector.java @@ -0,0 +1,158 @@ +package com.disnodeteam.dogecv.detectors.roverrukus; + +import android.util.Log; + +import com.disnodeteam.dogecv.DogeCV; +import com.disnodeteam.dogecv.detectors.DogeCVDetector; +import com.disnodeteam.dogecv.filters.DogeCVColorFilter; +import com.disnodeteam.dogecv.filters.HSVRangeFilter; +import com.disnodeteam.dogecv.filters.LeviColorFilter; +import com.disnodeteam.dogecv.scoring.MaxAreaScorer; +import com.disnodeteam.dogecv.scoring.PerfectAreaScorer; +import com.disnodeteam.dogecv.scoring.RatioScorer; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 9/10/2018. + */ + +public class SilverDetector extends DogeCVDetector { + + // Defining Mats to be used. + private Mat displayMat = new Mat(); // Display debug info to the screen (this is what is returned) + private Mat workingMat = new Mat(); // Used for preprocessing and working with (blurring as an example) + private Mat maskWhite = new Mat(); // White Mask returned by color filter + private Mat hierarchy = new Mat(); // hierarchy used by coutnours + + // Results of the detector + private boolean found = false; // Is the gold mineral found + private Point screenPosition = new Point(); // Screen position of the mineral + private Rect foundRect = new Rect(); // Found rect + + public DogeCV.AreaScoringMethod areaScoringMethod = DogeCV.AreaScoringMethod.MAX_AREA; // Setting to decide to use MaxAreaScorer or PerfectAreaScorer + + //Create the default filters and scorers + public DogeCVColorFilter whiteFilter = new HSVRangeFilter(new Scalar(0,0,200), new Scalar(50,40,255)); + + public RatioScorer ratioScorer = new RatioScorer(1.0, 3); // Used to find perfect squares + public MaxAreaScorer maxAreaScorer = new MaxAreaScorer( 0.01); // Used to find largest objects + public PerfectAreaScorer perfectAreaScorer = new PerfectAreaScorer(5000,0.05); // Used to find objects near a tuned area value + + /** + * Simple constructor + */ + public SilverDetector() { + super(); + detectorName = "Silver Detector"; // Set the detector name + } + + + @Override + public Mat process(Mat input) { + + // Copy the input mat to our working mats, then release it for memory + input.copyTo(displayMat); + input.copyTo(workingMat); + input.release(); + + + //Preprocess the working Mat (blur it then apply a white filter) + Imgproc.GaussianBlur(workingMat,workingMat,new Size(5,5),0); + whiteFilter.process(workingMat.clone(),maskWhite); + + //Find contours of the yellow mask and draw them to the display mat for viewing + + List contoursYellow = new ArrayList<>(); + Imgproc.findContours(maskWhite, contoursYellow, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); + Imgproc.drawContours(displayMat,contoursYellow,-1,new Scalar(230,70,70),2); + + // Current result + Rect bestRect = null; + double bestDiffrence = Double.MAX_VALUE; // MAX_VALUE since less diffrence = better + + // Loop through the contours and score them, searching for the best result + for(MatOfPoint cont : contoursYellow){ + double score = calculateScore(cont); // Get the diffrence score using the scoring API + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(cont); + Imgproc.rectangle(displayMat, rect.tl(), rect.br(), new Scalar(0,0,255),2); // Draw rect + + // If the result is better then the previously tracked one, set this rect as the new best + if(score < bestDiffrence){ + bestDiffrence = score; + bestRect = rect; + } + } + + if(bestRect != null){ + // Show chosen result + Imgproc.rectangle(displayMat, bestRect.tl(), bestRect.br(), new Scalar(255,0,0),4); + Imgproc.putText(displayMat, "Chosen", bestRect.tl(),0,1,new Scalar(255,255,255)); + + screenPosition = new Point(bestRect.x, bestRect.y); + foundRect = bestRect; + found = true; + }else{ + found = false; + } + + + //Print result + Imgproc.putText(displayMat,"Result: " + screenPosition.x +"/"+screenPosition.y,new Point(10,getAdjustedSize().height - 30),0,1, new Scalar(255,255,0),1); + + + return displayMat; + + } + + @Override + public void useDefaults() { + addScorer(ratioScorer); + + // Add diffrent scoreres depending on the selected mode + if(areaScoringMethod == DogeCV.AreaScoringMethod.MAX_AREA){ + addScorer(maxAreaScorer); + } + + if (areaScoringMethod == DogeCV.AreaScoringMethod.PERFECT_AREA){ + addScorer(perfectAreaScorer); + } + + } + + /** + * Returns the silver element's last position in screen pixels + * @return position in screen pixels + */ + public Point getScreenPosition(){ + return screenPosition; + } + + /** + * Returns the silver element's found rectangle + * @return silver element rect + */ + public Rect getFoundRect() { + return foundRect; + } + + /** + * Returns if a silver mineral is being tracked/detected + * @return if a silver mineral is being tracked/detected + */ + public boolean isFound() { + return found; + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/VuMarkDetector.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/VuMarkDetector.java new file mode 100644 index 00000000000..db88ae9e10b --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/detectors/roverrukus/VuMarkDetector.java @@ -0,0 +1,19 @@ +package com.disnodeteam.dogecv.detectors.roverrukus; + +import com.disnodeteam.dogecv.detectors.DogeCVDetector; + +import org.opencv.core.Mat; + +/** + * Created by LeviG on 1/20/2019. + */ + +public class VuMarkDetector extends DogeCVDetector { + + @Override + public Mat process(Mat rgba) { + return rgba; + } + @Override + public void useDefaults() {} +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/DogeCVColorFilter.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/DogeCVColorFilter.java new file mode 100644 index 00000000000..b6c2fd79c1a --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/DogeCVColorFilter.java @@ -0,0 +1,12 @@ +package com.disnodeteam.dogecv.filters; + +import org.opencv.core.Mat; + +/** + * Created by Victo on 1/1/2018. + */ + +public abstract class DogeCVColorFilter { + public abstract void process(Mat input, Mat mask); + +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/HSVColorFilter.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/HSVColorFilter.java new file mode 100644 index 00000000000..d8dd6abb0a1 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/HSVColorFilter.java @@ -0,0 +1,60 @@ +package com.disnodeteam.dogecv.filters; + +import org.opencv.core.Core; +import org.opencv.core.Mat; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +/** + * Created by Victo on 1/1/2018. + */ + +public class HSVColorFilter extends DogeCVColorFilter{ + + private Scalar perfect = new Scalar(255,255,255); // Prefect color + private Scalar range = new Scalar(0,0,0); // Range around perfect color + + private Mat workingMat = new Mat(); // Mat used for processing + + /** + * Constructor + * @param color - Perfect Color + * @param range - Range of color around the perfect (margin of error) + */ + public HSVColorFilter(Scalar color, Scalar range){ + updateSettings(color, range); + } + + + /** + * Update settings + * @param color - Perfect Color + * @param range - Range of color around the perfect (margin of error) + */ + public void updateSettings(Scalar color, Scalar range){ + this.perfect = color; + this.range = range; + } + + /** + * Process a image and return a mask + * @param input - Input image to process + * @param mask - Output mask + */ + @Override + public void process(Mat input, Mat mask) { + // Copy the input to working mat + workingMat = input.clone(); + // Convert the input to HSV color space + Imgproc.cvtColor(workingMat,workingMat,Imgproc.COLOR_RGB2HSV_FULL); + + // Blur the imgae + Imgproc.GaussianBlur(workingMat,workingMat,new Size(5,5),0); + + // Run a inRange mask using the color and range + Scalar lower = new Scalar(perfect.val[0] - (range.val[0]/2), perfect.val[1] - (range.val[1]/2),perfect.val[2] - (range.val[2]/2)); + Scalar upper = new Scalar(perfect.val[0] + (range.val[0]/2), perfect.val[1] + (range.val[1]/2),perfect.val[2] + (range.val[2]/2)); + Core.inRange(workingMat,lower,upper,mask); + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/HSVRangeFilter.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/HSVRangeFilter.java new file mode 100644 index 00000000000..2119c621fc7 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/HSVRangeFilter.java @@ -0,0 +1,52 @@ +package com.disnodeteam.dogecv.filters; + +import org.opencv.core.Core; +import org.opencv.core.Mat; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +/** + * Created by Victo on 1/1/2018. + */ + +public class HSVRangeFilter extends DogeCVColorFilter{ + + private Scalar lower = new Scalar(255,255,255); // Lower HSV Color + private Scalar upper = new Scalar(0,0,0); // Upper HSV Color + + /** + * Constructor + * @param lower - Lower Color + * @param upper - Upper Color + */ + public HSVRangeFilter(Scalar lower, Scalar upper){ + updateSettings(lower, upper); + } + + /** + * Update the filter settings + * @param lower - Lower Color + * @param upper - Upper Color + */ + public void updateSettings(Scalar lower, Scalar upper){ + this.lower = lower; + this.upper = upper; + } + /** + * Process a image and return a mask + * @param input - Input image to process + * @param mask - Output mask + */ + @Override + public void process(Mat input, Mat mask) { + // Convert the input to HSV + Imgproc.cvtColor(input,input,Imgproc.COLOR_RGB2HSV_FULL); + + // Blur it + Imgproc.GaussianBlur(input,input,new Size(5,5),0); + // Run in range check + Core.inRange(input,lower,upper,mask); + input.release(); + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/LeviColorFilter.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/LeviColorFilter.java new file mode 100644 index 00000000000..fa9e4ac586d --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/filters/LeviColorFilter.java @@ -0,0 +1,121 @@ +package com.disnodeteam.dogecv.filters; + +import android.graphics.Color; +import android.util.Log; + +import org.opencv.core.Core; +import org.opencv.core.Mat; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +/** + * Created by Victo on 1/1/2018. + */ + +public class LeviColorFilter extends DogeCVColorFilter { + // Color presets + public enum ColorPreset{ + RED, + BLUE, + YELLOW, + WHITE + } + + // Default settings + private ColorPreset color = ColorPreset.RED; + private double threshold = -1; // if -1 the color mode will use its own defaults + + // Channels placeholder + private List channels = new ArrayList<>(); + + /** + * Constructor + * @param filterColor - Color Preset to use (RED,BLUE,YELLOW,WHITE) + */ + public LeviColorFilter(ColorPreset filterColor){ + updateSettings(filterColor, -1); + } + /** + * Constructor + * @param filterColor - Color Preset to use (RED,BLUE,YELLOW,WHITE) + * @param filterThreshold - Threshold value + */ + public LeviColorFilter(ColorPreset filterColor, double filterThreshold){ + updateSettings(filterColor, filterThreshold); + } + + private void updateSettings(ColorPreset filterColor, double filterThreshold){ + color = filterColor; + threshold = filterThreshold; + } + + /** + * Process a image and return a mask + * @param input - Input image to process + * @param mask - Output mask + */ + @Override + public void process(Mat input, Mat mask) { + channels = new ArrayList<>(); + + switch(color){ + case RED: + if(threshold == -1){ + threshold = 164; + } + + Imgproc.cvtColor(input, input, Imgproc.COLOR_RGB2Lab); + Imgproc.GaussianBlur(input,input,new Size(3,3),0); + Core.split(input, channels); + Imgproc.threshold(channels.get(1), mask, threshold, 255, Imgproc.THRESH_BINARY); + break; + case BLUE: + if(threshold == -1){ + threshold = 145; + } + + Imgproc.cvtColor(input, input, Imgproc.COLOR_RGB2YUV); + Imgproc.GaussianBlur(input,input,new Size(3,3),0); + Core.split(input, channels); + Imgproc.threshold(channels.get(1), mask, threshold, 255, Imgproc.THRESH_BINARY); + break; + case WHITE: + if(threshold == -1) { + threshold = 150; + } + + Imgproc.cvtColor(input, input, Imgproc.COLOR_RGB2Lab); + Imgproc.GaussianBlur(input,input,new Size(3,3),0); + Core.split(input, channels); + Core.inRange(channels.get(0), new Scalar(threshold, 150, 40), new Scalar(255, 150, 150), mask); + break; + case YELLOW: + if(threshold == -1){ + threshold = 70; + } + + Imgproc.cvtColor(input, input, Imgproc.COLOR_RGB2YUV); + Imgproc.GaussianBlur(input,input,new Size(3,3),0); + Core.split(input, channels); + if(channels.size() > 0){ + Imgproc.threshold(channels.get(1), mask, threshold, 255, Imgproc.THRESH_BINARY_INV); + } + + break; + } + + for(int i=0;i { + + public Point point1; + public Point point2; + + public double x1,y1,x2,y2; + + /** + * Creates a new line given two points + * @param point1 + * @param point2 + */ + public Line(Point point1, Point point2) { + this.point1 = point1; + this.point2 = point2; + x1 = point1.x; + x2 = point2.x; + y1 = point1.y; + y2 = point2.y; + } + + /** + * Returns the Euclidean length of the line + * @return A double in pixel length + */ + public double length() { + return Math.sqrt(Math.pow(x1-x2, 2) + Math.pow(y1-y2, 2)); + } + + /** + * Claculates the center point of the line + * @return A Point representing the center of the line + */ + public Point center() { + return new Point((int) (0.5*(x1 + x2)),(int) (0.5*(y1 + y2))); + } + + /** + * Returns the angle of the line in the plane + * @return The angle in radians + */ + public double angle() { + return Math.atan2(y2-y1,x2-x1); + } + + /** + * Scales a line by a given factor + * @param scale + */ + public void resize(double scale) { + this.x1 = scale*x1; + this.y1 = scale*y1; + this.x2 = scale*x2; + this.y2 = scale*y2; + this.point1 = new Point(x1,y1); + this.point2 = new Point(x2,y2); + } + + /** + * Comparable implementation for lines so as to make them sortable + * @param other The other line being compared to the current one + * @return + */ + @Override + public int compareTo(Line other) { + return Double.compare(this.length(), other.length()); + } + + /** + * Prints a line as a formatted string + * @return + */ + @Override + public String toString() { + return "{" + Double.toString(x1) + "," + Double.toString(y1) + "} to {" + Double.toString(x2) + "," + Double.toString(y2) + "}"; + } + +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/math/Lines.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/math/Lines.java new file mode 100644 index 00000000000..2c602eabefd --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/math/Lines.java @@ -0,0 +1,372 @@ +package com.disnodeteam.dogecv.math; + +import com.disnodeteam.dogecv.math.Line; + +import java.util.ArrayList; +import java.util.Collections; +import java.util.List; + +import org.opencv.core.Core; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.Point; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.CLAHE; +import org.opencv.imgproc.Imgproc; +import org.opencv.imgproc.LineSegmentDetector; + + +public class Lines { + + //Individual Lines + /** + * Returns the angular distance, in degrees, between lines 1 and 2. + * @param line1 + * @param line2 + * @return + */ + public static double getAngularDistance(Line line1, Line line2) { + double ang1 = line1.angle(); + double ang2 = line2.angle(); + double ang_diff = 57.296*(ang1 - ang2); + ArrayList list = new ArrayList(); + list.add(Math.abs(ang_diff)); + list.add(Math.abs(180-Math.abs(ang_diff))); + list.add(Math.abs(360-Math.abs(ang_diff))); + return Collections.min(list); + } + /** + * Returns whether three points are clockwise or counter-clockwise + * @param A + * @param B + * @param C + * @return + */ + private static boolean ccw(Point A, Point B, Point C) { + return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x); + } + /** + * Returns a boolean corresponding to whether the two lines intersect + * @param line1 + * @param line2 + * @return + */ + public static boolean intersect(Line line1, Line line2) { + return ccw(line1.point1,line2.point1,line2.point2) != ccw(line1.point2,line2.point1,line2.point2) && ccw(line1.point1,line1.point2,line2.point1) != ccw(line1.point1,line1.point2,line2.point2); + } + /** + * Returns the signed cross product of a line and a point, such that the relative position of a point to a line can be determined. + * @param line The line forming the first vector, taken from Point 1 to Point 2 + * @param point The point to form the second vector, taken from line1.point1 to this point. + * @return 1 if the point is on one side, -1 if on the other, 0 if exactly on the line. + */ + public static double crossSign(Line line, Point point) { + double ABx = line.x2 - line.x1; + double ACx = point.x - line.x1; + double ABy = line.y2 - line.y1; + double ACy = point.y - line.y1; + return Math.signum((ABx*ACy - ABy*ACx)); + } + /** + * Extends a line as a vector, increasing the Euclidean distance of point 2 from point 1 by moving only point 2. + * @param line The line to be modified. + * @param lengthFinal The final desired Euclidean length of the line + * @param size The size of the working image + * @return A new Line object of the appropriate length + */ + public static Line vectorExtend(Line line, double lengthFinal, Size size) { + double scalar = lengthFinal/line.length(); + line.x2 = (int) (MathFTC.clip(scalar*(line.x2 - line.x1) + line.x1, 0, size.width - 1)); + line.y2 = (int) (MathFTC.clip(scalar*(line.y2 - line.y1) + line.y1, 0, size.height - 1)); + line.point2 = new Point(line.x2,line.y2); + return line; + } + + /** + * Extends a list of lines as vector, increasing the Euclidean distance of point 2 from point 1 by moving only point 2. + * @param lines The lines to be modified + * @param lengthFinal The final desired Euclidean length of the line + * @param size The size of the working image + * @return A new list of lines object of the appropriate length + */ + public static List vectorExtend(List lines, double lengthFinal, Size size) { + List newLines = new ArrayList(); + for (Line line : lines) { + newLines.add(vectorExtend(line, lengthFinal, size)); + } + return newLines; + } + + /** + * Linearly extends a line in both directions by the given portion of its length + * @param line The line to be modified + * @param scale The length of the line will be extended by the line's length divided by twice this value + * @param size The size of the image + * @return + */ + public static Line linearExtend(Line line, double scale, Size size) { + scale *= 2; + double xN1 = line.x1 + (line.x1 - line.x2)/scale; + double yN1 = line.y1 + (line.y1 - line.y2)/scale; + double xN2 = line.x2 + (line.x2 - line.x1)/scale; + double yN2 = line.y2 + (line.y2 - line.y1)/scale; + Point p1 = new Point(MathFTC.clip((int)xN1, 0, size.width -1),MathFTC.clip((int)yN1, 0, size.height-1)); + Point p2 = new Point(MathFTC.clip((int)xN2, 0, size.width -1),MathFTC.clip((int)yN2, 0, size.height-1)); + return new Line(p1, p2); + } + + /** + * Linearly extends a lines in both directions by the given portion of its length + * @param lines The lines to be modified + * @param scale The length of the lines will be extended by the line's length divided by twice this value + * @param size The size of the image + * @return + */ + public static List linearExtend(List lines, double scale, Size size) { + List newLines = new ArrayList(); + for (Line line : lines) { + newLines.add(linearExtend(line, scale, size)); + } + return newLines; + } + + /** + * Constructs a line given a center point, an angle in the plane, and a length + * @param point The center point of the line + * @param angle The desired angle of the line, in degrees + * @param length The desired length of the line, in pixels + * @return The constructed line + */ + public static Line constructLine(Point point, double angle, double length) { + double dx = Math.cos(angle*Math.PI/180); + double dy = Math.sin(angle*Math.PI/180); + Point p1 = new Point(point.x + 0.5*length*dx, point.y + 0.5*length*dy); + Point p2 = new Point(point.x - 0.5*length*dx, point.y - 0.5*length*dy); + return new Line(p1,p2); + } + + //Multiple Lines + static LineSegmentDetector detector = Imgproc.createLineSegmentDetector(Imgproc.LSD_REFINE_STD, 0.8, 0.6,2.0, 22.5, 0, 0.7, 32); + + /** + * Modern OpenCV line segment detection - far better than Canny, but must be carefully adjusted. + * @param original The original image to be scanned, as an RGB image + * @param scale The factor by which the image is to be downscaled + * @param minLength The minimum line segment length to be returned + * @return A List of Lines found + */ + public static List getOpenCvLines(Mat original, int scale, double minLength) { + Mat raw = new Mat(); + Imgproc.resize(original.clone(), raw, new Size((int) (original.size().width/scale), (int) (original.size().height/scale))); + if(raw.channels() > 1) { + Imgproc.cvtColor(raw, raw, Imgproc.COLOR_RGB2GRAY); + } + Imgproc.equalizeHist(raw, raw); + Imgproc.blur(raw, raw, new Size(3,3)); + //Line Segment Detection 2 + Mat linesM1 = new Mat(); + + detector.detect(raw, linesM1); + ArrayList lines = new ArrayList(); + for (int x = 0; x < linesM1.rows(); x++) { + double[] vec = linesM1.get(x, 0); + Point start = new Point(vec[0],vec[1]); + Point end = new Point(vec[2], vec[3]); + Line line = new Line(start, end); + line = new Line(new Point((int)line.x1*scale, (int) line.y1*scale), new Point((int)line.x2*scale, (int)line.y2*scale)); + if(line.length() > minLength) lines.add(line); + } + + raw.release(); + linesM1.release(); + + return lines; + } + + public static List resize(List lines, double scale) { + List linesN = new ArrayList(); + for (Line line : lines) { + line.resize(scale); + linesN.add(line); + } + return linesN; + } + + public static Line findRightMost(List lines, Size size) { + double maxX = 0; + int maxXi = -1; + for (int i = 0; i < lines.size(); i++) { + if(lines.get(i).center().x > maxX && Points.inBounds(lines.get(i).point1, size) && Points.inBounds(lines.get(i).point2, size)) { + maxX = lines.get(i).center().x; + maxXi = i; + } + } + return lines.get(maxXi); + } + + public static Line findLeftMost(List lines, Size size) { + double minX = 1000000; + int minXi = -1; + for (int i = 0; i < lines.size(); i++) { + if(lines.get(i).center().x < minX) { + minX = lines.get(i).center().x; + minXi = i; + } + } + return lines.get(minXi); + } + + public static Line getPerpindicular(Line line, double sign) { + double angle = Lines.getAngularDistance(line, new Line(new Point(0,0), new Point(100,0))); + angle += 90; + double x = line.center().x + 50*Math.cos(angle*Math.PI/180); + double y = line.center().y + 50*Math.sin(angle*Math.PI/180); + if(Lines.crossSign(line, new Point(x,y)) != sign) { + x = line.center().x - 50*Math.cos(angle*Math.PI/180); + y = line.center().y - 50*Math.sin(angle*Math.PI/180); + } + Line perp = new Line(line.center(), new Point(x,y)); + return perp; + } + + public static double getPerpindicularDistance(Line line1, Line line2) { + Line perp = Lines.getPerpindicular(line1, Lines.crossSign(line1, line2.center())); + Line joint = new Line(line1.center(), line2.center()); + return Math.cos(Lines.getAngularDistance(perp, joint)*Math.PI/180)*joint.length(); + } + + public static double getPerpindicularDistance(Line line1, Point point) { + Line perp = Lines.getPerpindicular(line1, Lines.crossSign(line1, point)); + Line joint = new Line(line1.center(), point); + return Math.cos(Lines.getAngularDistance(perp, joint)*Math.PI/180)*joint.length(); + } + + public static Line getPerpindicularConnector(Line left, Line right, Size size) { + double angle = Lines.getAngularDistance(left, new Line(new Point(0,0), new Point(100,0))); + angle += 90; + double dx = 3*Math.cos(angle*Math.PI/180); + double dy = 3*Math.sin(angle*Math.PI/180); + double x = left.center().x + dx; + double y = left.center().y + dy; + if(Lines.crossSign(left, new Point(x,y)) != Lines.crossSign(left, right.center())) { + dx = -dx; + dy = -dy; + x -= 2*dx; + y -= 2*dy; + } + while(Points.inBounds(new Point(x,y), size) && !Lines.intersect(new Line(left.center(),new Point(x,y)), right)) { + x += dx; + y += dy; + } + return new Line(left.center(), new Point(x,y)); + } + + public static List> groupLines(ArrayList lines, double seperation) { + //Merge close and parallel lines + //Find parallel lines and create list of joints to be merged + ArrayList joints = new ArrayList(); + for (List b : MathFTC.combinations(lines, 2)) { + Line jointLine = new Line(b.get(0).center(), b.get(1).center()); + if (Lines.getPerpindicularDistance(b.get(0),b.get(1)) < seperation) { + joints.add(new Joint(b.get(0),b.get(1),jointLine.center())); + } + } + //Create a dictionary of mergers close together (i.e. same edge) + ArrayList mergeCollections = new ArrayList(); + for (Joint joint : joints) { + int close = -1; + for (int i = 0; i < mergeCollections.size(); i++) { + if(Lines.getPerpindicularDistance(joint.line1, mergeCollections.get(i).center) < seperation) { + close = i; + break; + } + } + if (close >= 0) { + MergeFocus focus = mergeCollections.get(close); + if(!focus.lines.contains(joint.line1)) { + focus.lines.add(joint.line1); + } + if(!focus.lines.contains(joint.line2)) { + focus.lines.add(joint.line2); + } + } else { + ArrayList jointLines = new ArrayList(); + jointLines.add(joint.line1); + jointLines.add(joint.line2); + mergeCollections.add(new MergeFocus(joint.center,jointLines)); + } + } + List> mergeCollectionsList= new ArrayList>(); + for (MergeFocus focus : mergeCollections) { + List list = new ArrayList(); + for (Line line : focus.lines) { + lines.remove(line); + list.add(line); + } + mergeCollectionsList.add(list); + } + return mergeCollectionsList; + } + + private static class Joint { + + Line line1, line2; + Point center; + + Joint(Line line1, Line line2, Point center) { + this.center = center; + this.line1 = line1; + this.line2 = line2; + } + } + + private static class MergeFocus { + + List lines; + Point center; + + MergeFocus(Point center, List lines) { + this.center = center; + this.lines = lines; + } + } + + public static Point getMeanPoint(List lines) { + if (lines.size() == 0) return null; + double x = 0; + double y = 0; + for(Line line : lines) { + x += line.center().x; + y += line.center().y; + } + return new Point(x/lines.size(), y/lines.size()); + } + + public static double getMeanAngle(List lines) { + if(lines.size() == 0) return Double.NaN; + double angle = 0; + for (Line line : lines) { + angle += MathFTC.normalizeAngle(line.angle()*180/Math.PI); + } + return angle/lines.size(); + } + + public static double stdDevX(List lines) { + if (lines.size() == 0) return Double.NaN; + List data = new ArrayList(); + for(Line line : lines) { + data.add(line.center().x); + } + return MathFTC.getStdDev(data); + } + + public static double stdDevY(List lines) { + List data = new ArrayList(); + for(Line line : lines) { + data.add(line.center().y); + } + return MathFTC.getStdDev(data); + } + +} \ No newline at end of file diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/math/MathFTC.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/math/MathFTC.java new file mode 100644 index 00000000000..166fdae368c --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/math/MathFTC.java @@ -0,0 +1,154 @@ +package com.disnodeteam.dogecv.math; + +import android.graphics.Bitmap; +import android.graphics.Canvas; +import android.graphics.Matrix; + +import org.opencv.core.Mat; +import org.opencv.core.Point; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.List; + +public class MathFTC { + + public static final float mmPerInch = 25.4f; + public static final float mmFTCFieldWidth = (12*6) * mmPerInch; // the width of the FTC field (from the center point to the outer panels) + public static final float mmTargetHeight = (6) * mmPerInch; // the height of the center of the target image above the floor + + /** + * A simple clamp function, which assumes a valid range. + * @param value The double being clamped + * @param min The minimum value of the range (inclusive) + * @param max The maximum value of the range (inclusive) + * @return + */ + public static double clip(double value, double min, double max) { + if (value > max) return max; + else if (value < min) return min; + else return value; + } + + /** + * Returns the arithmetic mean (average) of a list + * @param list A list of doubles + * @return The mean + */ + public static double mean(double[] list) { + if(list.length == 0) { + return 0; + } + double sum = 0; + for (int i = 0; i < list.length; i++) { + sum += list[i]; + } + return sum / list.length; + } + + /** + * Returns the arithmetic mean (average) of a list + * @param list A list of doubles + * @return The mean + */ + public static double mean(Double[] list) { + if(list.length == 0) { + return 0; + } + double sum = 0; + for (int i = 0; i < list.length; i++) { + sum += list[i]; + } + return sum / list.length; + } + + /** + * A recursive function which return a list of lists, where each list is a combination of length k. + * @param list The input list to be chosen from + * @param k The sample size + * @return + */ + public static List> combinations(List list, int k) { + int n = list.size(); + List> combos = new ArrayList>(); + if (k == 0 ) { + combos.add(new ArrayList()); + return combos; + } + if ( n < k || n == 0) { + return combos; + } + T last = list.get(n-1); + combos.addAll(combinations(list.subList(0, n-1),k)); + for (List subCombo : combinations(list.subList(0, n-1), k-1)) { + subCombo.add(last); + combos.add(subCombo); + } + return combos; + } + + /** + * Returns the standard deviation of a sample set + * @param samples A list of Doubles + * @return Sigma (i.e. the standard deviation) + */ + public static double getStdDev(List samples) { + if(samples.size() == 0) return 0; + double mean = 0; + for (Double point : samples) { + mean += point; + } + mean = mean/samples.size(); + double sigma = 0; + for (Double point : samples) { + sigma += Math.pow(point-mean, 2); + } + return Math.sqrt(sigma/(samples.size() - 1)); + } + + /** + * Normalizes an angle to always return between 0 and 180 degrees + * @param angle Input angle, in degrees + * @return Noramlized angle, in degrees + */ + public static double normalizeAngle(double angle) { + angle = angle % 180; + if (angle > 0) return angle; + else return angle+180; + } + + /** + * Crops an image to two specified corners + * @param image The image to be cropped + * @param topLeftCorner The top-left corner of the desired final image, in pixel coordinates + * @param bottomRightCorner The bottom-right corner of the desired final image, in pixel coordinates + * @return The cropped image + */ + public static Mat crop(Mat image, Point topLeftCorner, Point bottomRightCorner) { + if (topLeftCorner != null) { + if(topLeftCorner.y > 0 && topLeftCorner.y < image.height()-1 && topLeftCorner.x > 0 && topLeftCorner.x < image.width()) { + Imgproc.rectangle(image, new Point(0,0), new Point(image.width(),topLeftCorner.y), new Scalar(0), -1); + Imgproc.rectangle(image, new Point(0,0), new Point(topLeftCorner.x, image.height()), new Scalar(0), -1); + } + } + if(bottomRightCorner != null) { + if(bottomRightCorner.y > 0 && bottomRightCorner.y < image.height()-1 && bottomRightCorner.x > 0 && bottomRightCorner.x < image.width()) { + Imgproc.rectangle(image, new Point(image.width(),image.height()), new Point(bottomRightCorner.x,0), new Scalar(0), -1); + Imgproc.rectangle(image, new Point(image.width(),image.height()), new Point(0, bottomRightCorner.y), new Scalar(0), -1); + } + } + return image; + } + + public static Size fullscreen(Size originalSize, Size maxSize) { + double adjustedHeight = maxSize.width*originalSize.height/originalSize.width; + if(adjustedHeight > maxSize.height) { + double adjustedWidth= maxSize.height*originalSize.width/originalSize.height; + return new Size(adjustedWidth, maxSize.height); + } else { + return new Size(maxSize.width, adjustedHeight); + } + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/math/Points.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/math/Points.java new file mode 100644 index 00000000000..ecdde3c292c --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/math/Points.java @@ -0,0 +1,40 @@ +package com.disnodeteam.dogecv.math; + +import org.opencv.core.Mat; +import org.opencv.core.Point; +import org.opencv.core.Size; + +import java.util.List; + +public class Points { + /** + * Checks if a given point is within the bounds (size) of an image + * @param point The point to be tested + * @param size The size of the boundary + * @return True if in bounds, false otherwise + */ + public static boolean inBounds(Point point, Size size) { + if(point.x < size.width - 1 && point.x >= 0 && point.y < size.height-1 && point.y >= 0) { + return true; + } + else { + return false; + } + } + + /** + * Returns the mean position of a collection of points + * @param points A List of Points + * @return A Point representing the average coordinates of the list + */ + public static Point getMeanPoint(List points) { + if (points.size() == 0) return null; + double x = 0; + double y = 0; + for(Point point : points) { + x += Math.pow(point.x, 2); + y += Math.pow(point.y, 2); + } + return new Point(Math.sqrt(x/points.size()), Math.sqrt(y/points.size())); + } +} \ No newline at end of file diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/ColorDevScorer.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/ColorDevScorer.java new file mode 100644 index 00000000000..57c1c67903f --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/ColorDevScorer.java @@ -0,0 +1,28 @@ +package com.disnodeteam.dogecv.scoring; + +import com.disnodeteam.dogecv.math.MathFTC; + +import org.opencv.core.Core; +import org.opencv.core.Mat; +import org.opencv.core.MatOfDouble; +import org.opencv.core.MatOfPoint; + +/** + * Created by LeviG on 10/7/2018. + */ + +public class ColorDevScorer extends DogeCVScorer{ + + private MatOfDouble std = new MatOfDouble(); + private MatOfDouble mean = new MatOfDouble(); + + /** + * @param input - Input mat + * @return - Difference from perfect score + */ + @Override + public double calculateScore(Mat input) { + Core.meanStdDev(input, mean, std); + return MathFTC.mean(std.get(0,0)); + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/DogeCVScorer.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/DogeCVScorer.java new file mode 100644 index 00000000000..01591982aaf --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/DogeCVScorer.java @@ -0,0 +1,15 @@ +package com.disnodeteam.dogecv.scoring; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Rect; + +import java.util.List; + +/** + * Created by Victo on 9/10/2018. + */ + +public abstract class DogeCVScorer { + public abstract double calculateScore(Mat input); +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/MaxAreaScorer.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/MaxAreaScorer.java new file mode 100644 index 00000000000..b6311640fc3 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/MaxAreaScorer.java @@ -0,0 +1,38 @@ +package com.disnodeteam.dogecv.scoring; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Rect; +import org.opencv.imgproc.Imgproc; + +/** + * Created by Victo on 9/10/2018. + */ + +public class MaxAreaScorer extends DogeCVScorer{ + public double weight = 1.0; + /** + * Constructor + * @param weight - How much to weight the final score (1-10 is usually good) + */ + public MaxAreaScorer( double weight){ + this.weight = weight; + + } + + /** + * Calculate the score + * @param input - Input mat (Can be MatOfPoint for contours) + * @return - Difference from perfect score + */ + @Override + public double calculateScore(Mat input) { + if(!(input instanceof MatOfPoint)) return Double.MAX_VALUE; + MatOfPoint contour = (MatOfPoint) input; + double area = Imgproc.contourArea(contour); + + return -area * weight; + } + +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/PerfectAreaScorer.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/PerfectAreaScorer.java new file mode 100644 index 00000000000..f260484a686 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/PerfectAreaScorer.java @@ -0,0 +1,36 @@ +package com.disnodeteam.dogecv.scoring; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.imgproc.Imgproc; + +/** + * Created by Victo on 9/10/2018. + */ + +public class PerfectAreaScorer extends DogeCVScorer { + public double weight = 1.0; + public double perfectArea = 5000; + /** + * Constructor + * @param perfectArea - Perfect area in pixels + * @param weight - How much to weight the final score (0.001 - 0.1 is usually good) + */ + public PerfectAreaScorer(double perfectArea, double weight){ + this.weight = weight; + this.perfectArea = perfectArea; + + } + /** + * @param input - Input mat (Can be MatOfPoint for contours) + * @return - Difference from perfect score + */ + @Override + public double calculateScore(Mat input) { + if(!(input instanceof MatOfPoint)) return Double.MAX_VALUE; + MatOfPoint contour = (MatOfPoint) input; + double area = Imgproc.contourArea(contour); + double areaDiffrence = Math.abs(perfectArea - area); + return areaDiffrence * weight; + } +} diff --git a/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/RatioScorer.java b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/RatioScorer.java new file mode 100644 index 00000000000..e6aacb62fb3 --- /dev/null +++ b/DogeCV/src/main/java/com/disnodeteam/dogecv/scoring/RatioScorer.java @@ -0,0 +1,54 @@ +package com.disnodeteam.dogecv.scoring; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.imgproc.Imgproc; + +import java.util.List; + +/** + * Created by Victo on 9/10/2018. + */ + +public class RatioScorer extends DogeCVScorer{ + + public double weight = 1.0; + public double perfectRatio = 1.0; + public RatioScorer(){ + + } + + /** + * Constructor + * @param perfectRatio - Perfect ratio of height / width (abs value) + * @param weight - How much to weight the final score (1-10 is usually good) + */ + public RatioScorer(double perfectRatio, double weight){ + this.weight = weight; + this.perfectRatio = perfectRatio; + } + /** + * @param input - Input mat (Can be MatOfPoint for contours) + * @return - Difference from perfect score + */ + @Override + public double calculateScore(Mat input) { + if(!(input instanceof MatOfPoint)) return Double.MAX_VALUE; + MatOfPoint contour = (MatOfPoint) input; + double score = Double.MAX_VALUE; + + // Get bounding rect of contour + Rect rect = Imgproc.boundingRect(contour); + double x = rect.x; + double y = rect.y; + double w = rect.width; + double h = rect.height; + + double cubeRatio = Math.max(Math.abs(h/w), Math.abs(w/h)); // Get the ratio. We use max in case h and w get swapped??? it happens when u account for rotation + double ratioDiffrence = Math.abs(cubeRatio - perfectRatio); + return ratioDiffrence * weight; + } +} diff --git a/DogeCV/src/main/jniLibs/armeabi-v7a/libopencv_java3.so b/DogeCV/src/main/jniLibs/armeabi-v7a/libopencv_java3.so new file mode 100644 index 00000000000..38f1ba4f995 Binary files /dev/null and b/DogeCV/src/main/jniLibs/armeabi-v7a/libopencv_java3.so differ diff --git a/DogeCV/src/main/res/values/strings.xml b/DogeCV/src/main/res/values/strings.xml new file mode 100644 index 00000000000..72fdbe9e185 --- /dev/null +++ b/DogeCV/src/main/res/values/strings.xml @@ -0,0 +1,3 @@ + + CVFTC + diff --git a/FtcRobotController/build.gradle b/FtcRobotController/build.gradle index daf4ee2d48a..e3e0f743713 100644 --- a/FtcRobotController/build.gradle +++ b/FtcRobotController/build.gradle @@ -18,6 +18,7 @@ android { } } + repositories { flatDir { dirs '../libs' diff --git a/FtcRobotController/src/main/AndroidManifest.xml b/FtcRobotController/src/main/AndroidManifest.xml index 8774c501fed..79c6e0b8573 100644 --- a/FtcRobotController/src/main/AndroidManifest.xml +++ b/FtcRobotController/src/main/AndroidManifest.xml @@ -6,6 +6,10 @@ android:versionName="5.0"> + + + + + + + \ No newline at end of file diff --git a/TeamCode/build.gradle b/TeamCode/build.gradle index 301ff649463..62bf6418417 100644 --- a/TeamCode/build.gradle +++ b/TeamCode/build.gradle @@ -13,3 +13,16 @@ // Include common definitions from above. apply from: '../build.common.gradle' + +android { + compileOptions { + sourceCompatibility 1.8 + targetCompatibility 1.8 + } +} + +dependencies { + implementation project(path: ':bluejay') + implementation project(path: ':openCVLibrary3') + implementation project(path: ':DogeCV') +} diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/AlignFind.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/AlignFind.java new file mode 100644 index 00000000000..9ac86344d02 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/AlignFind.java @@ -0,0 +1,224 @@ +/* Copyright (c) 2019 FIRST. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted (subject to the limitations in the disclaimer below) provided that + * the following conditions are met: + * + * Redistributions of source code must retain the above copyright notice, this list + * of conditions and the following disclaimer. + * + * Redistributions in binary form must reproduce the above copyright notice, this + * list of conditions and the following disclaimer in the documentation and/or + * other materials provided with the distribution. + * + * Neither the name of FIRST nor the names of its contributors may be used to endorse or + * promote products derived from this software without specific prior written permission. + * + * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS + * LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, + * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +package org.firstinspires.ftc.team6417; + +import com.qualcomm.hardware.bosch.BNO055IMU; +import com.qualcomm.robotcore.util.ElapsedTime; +import com.qualcomm.robotcore.util.Range; +import org.firstinspires.ftc.robotcore.external.ClassFactory; +import org.firstinspires.ftc.robotcore.external.matrices.OpenGLMatrix; +import org.firstinspires.ftc.robotcore.external.matrices.VectorF; +import org.firstinspires.ftc.robotcore.external.navigation.Acceleration; +import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit; +import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder; +import org.firstinspires.ftc.robotcore.external.navigation.AxesReference; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackable; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackableDefaultListener; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackables; +import org.firstinspires.ftc.robotcore.internal.vuforia.VuforiaException; +import org.firstinspires.ftc.team6417.Hardware6417; + +import detectors.ClosableVuforiaLocalizer; + +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; +import com.qualcomm.robotcore.util.RobotLog; + +import static org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer.CameraDirection.BACK; + + +@Autonomous(name="VueBoi", group ="Linear Opmode") + +public class AlignFind extends LinearOpMode { + + private ElapsedTime searchTime = new ElapsedTime(0); + + /* vuforia key */ + private static final String VUFORIA_KEY = + "ARuvZIj/////AAABmVkUSkLsEkjjhzixTaJVlaFNlxHEjVM47c6y7GtSCjJmsGR3bNdALVunnoGjmIog/AUoVdmCsQmzWc2WS0R1Qh+EVA5/H+39wEZ1sohFZ9UGpyWT/1da4Mm0sUbB4/atlnNbCs9PzFCnd0cFDpbzWRSmQjkaxdBlDY9rFnOGrqdEzdT9hWK2NznebhyCFWITMTu94TYY1vbuiyD+08KBIgsMPypNZ8tVSrB405WNTN3ZEqU1a+tQd7ppLUOIYfcYLKuXHRIsmiybps87PkhD84d+/NiE1pinNwBhtxhMPYgqGf1HrE7H+AzKYJpgla1DyG8AMLL1pwJKsA3penrUGwGENWr6EkVHkMLfsQoe6Jym"; + + private static final int skystoneMid = -100; //X positions of skystone positions + private static final int skystoneCenter = 100; + + // Class Members + private OpenGLMatrix skystonePositionCoords = null; + public VuforiaLocalizer vuforia = null; + + private static final VuforiaLocalizer.CameraDirection CAMERA_CHOICE = BACK; + private static final boolean PHONE_IS_PORTRAIT = true; + + /** + * This is the webcam we are to use. As with other hardware devices such as motors and + * servos, this device is identified using the robot configuration tool in the FTC application. + */ + + private boolean targetVisible = false; + + private int skystonePosition = 4; + + Hardware6417 robot = new Hardware6417(); + BNO055IMU imu; + Orientation angles; + Acceleration gravity; + + //private WebcamName webcamName = null; + + + /** + * This method initiates vuforia. Make sure to pass a webcam object + *

+ * // * @param awebcamName The webcam object + */ + + public void runOpMode() { + + int cameraMonitorViewId = hardwareMap.appContext.getResources().getIdentifier("cameraMonitorViewId", "id", hardwareMap.appContext.getPackageName()); + VuforiaLocalizer.Parameters parameters = new VuforiaLocalizer.Parameters(cameraMonitorViewId); + + telemetry.addLine("initialized camera"); + telemetry.update(); + + //robot.drivetoPosition(20, 0.5); + + blueInit(); + telemetry.addLine("blueInit"); + telemetry.update(); + + try { + skystonePosition = visionTest(); + telemetry.addData("SkyStone position:", skystonePosition); + telemetry.update(); + + } catch (Exception e) { + telemetry.addLine(e.getMessage()); + telemetry.update(); + } + + + /*** + + if(skystonePosition == 0){ + robot.strafeToPosition(-8, 0.5); + + } else if(skystonePosition == 2){ + robot.strafeToPosition(8, 0.5); + } + ***/ + + + } + + public void blueInit() { + + /* + * Configure Vuforia by creating a Parameter object, and passing it to the Vuforia engine. + * We can pass Vuforia the handle to a camera preview resource (on the RC phone); + * If no camera monitor is desired, use the parameter-less constructor instead (commented out below). + */ + + VuforiaLocalizer.Parameters parameters = new VuforiaLocalizer.Parameters(); + + parameters.vuforiaLicenseKey = VUFORIA_KEY; + parameters.cameraDirection = CAMERA_CHOICE; + + /* + * We also indicate which camera on the RC we wish to use. + */ + + // Instantiate the Vuforia engine + vuforia = new ClosableVuforiaLocalizer(parameters); + + float mmPerInch = 25.4f; + float mmBotWidth = 18 * mmPerInch; + float mmFTCFieldWidth = (12 * 12 - 2) * mmPerInch; + + OpenGLMatrix phoneLocationOnRobot = OpenGLMatrix + .translation(mmBotWidth / 2, 0, 0) + .multiplied(Orientation.getRotationMatrix( + AxesReference.EXTRINSIC, AxesOrder.YZY, + AngleUnit.DEGREES, -90, 0, 0)); + + } + + public int visionTest() { + + VuforiaTrackables targetsSkyStone = this.vuforia.loadTrackablesFromAsset("Skystone"); + VuforiaTrackable stoneTarget = targetsSkyStone.get(0); + stoneTarget.setName("Skystone"); + + targetsSkyStone.activate(); + + boolean noFoundSkystone = true; + + searchTime.reset(); + while (!isStopRequested()) { + //Just a refresh timer, don't actually need this + //if(timer.milliseconds() == 3) continue; + boolean stoneVisible = false; + + // check to see if the skystone is visible. + if (((VuforiaTrackableDefaultListener) stoneTarget.getListener()).isVisible()) { + telemetry.addData("Visible Target", stoneTarget.getName()); //just returns "Stone Target" + /*In these coordinates, the X axis goes from the left (negative) to the right (positive). + The Y axis goes up and down on the middle of the screen, and the Z axis goes from the camera outward. */ + + //command to get the relative position as provided by vuforia + OpenGLMatrix location = ((VuforiaTrackableDefaultListener) stoneTarget.getListener()).getVuforiaCameraFromTarget(); + if (location != null) { + // Get the positional part of the coordinates + VectorF translation = location.getTranslation(); + //clip the actual X to see if it is closer to the left or right + float closestX = Range.clip(translation.get(0), -20f, 20f); + /*"center" because we (my team) only looks at the right two in the farthest set of three in the quarry, + so the leftmost image would be the center of the three stones concerned */ + if (closestX == -20) telemetry.addData("Skystone Target:", "Center"); + //Right most stone of the two + if (closestX == 20) telemetry.addData("Skystone Target:", "Right"); + //Also express the relative pose (for info purposes) + telemetry.addData("Pos (in)", "{X, Y, Z} = %.1f, %.1f, %.1f", + translation.get(0), translation.get(1), translation.get(2)); + } + } else { + telemetry.addData( "Visible Target", "none"); + } + telemetry.update(); + //timer.reset(); + + if (skystonePosition != 1 && skystonePosition != 2) skystonePosition = 0; + + // Disable Tracking when we are done; + targetsSkyStone.deactivate(); + + } + return skystonePosition; + } +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/AutoTest.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/AutoTest.java new file mode 100644 index 00000000000..5f22d52cbb3 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/AutoTest.java @@ -0,0 +1,121 @@ +package org.firstinspires.ftc.team6417; + +import com.qualcomm.hardware.modernrobotics.ModernRoboticsI2cGyro; +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; +import com.qualcomm.robotcore.hardware.ColorSensor; +import com.qualcomm.robotcore.hardware.IntegratingGyroscope; +import com.qualcomm.robotcore.util.ElapsedTime; + +import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit; +import org.firstinspires.ftc.robotcore.external.navigation.AngularVelocity; +import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder; +import org.firstinspires.ftc.robotcore.external.navigation.AxesReference; + +@Autonomous(name="AutoTest", group="Autonomous") +public class AutoTest extends LinearOpMode { + + IntegratingGyroscope gyro; + ModernRoboticsI2cGyro modernRoboticsI2cGyro; + + Hardware6417 robot = new Hardware6417(); + private ElapsedTime runtime = new ElapsedTime(); + + public void runOpMode() { + + boolean lastResetState = false; + boolean curResetState = false; + + // Get a reference to a Modern Robotics gyro object. We use several interfaces + // on this object to illustrate which interfaces support which functionality. + modernRoboticsI2cGyro = hardwareMap.get(ModernRoboticsI2cGyro.class, "gyro"); + gyro = (IntegratingGyroscope)modernRoboticsI2cGyro; + // If you're only interested int the IntegratingGyroscope interface, the following will suffice. + // gyro = hardwareMap.get(IntegratingGyroscope.class, "gyro"); + // A similar approach will work for the Gyroscope interface, if that's all you need. + + // Start calibrating the gyro. This takes a few seconds and is worth performing + // during the initialization phase at the start of each opMode. + telemetry.log().add("Gyro Calibrating. Do Not Move!"); + modernRoboticsI2cGyro.calibrate(); + + // Wait until the gyro calibration is complete + runtime.reset(); + while (!isStopRequested() && modernRoboticsI2cGyro.isCalibrating()) { + telemetry.addData("calibrating", "%s", Math.round(runtime.seconds())%2==0 ? "|.." : "..|"); + telemetry.update(); + sleep(50); + } + + telemetry.log().clear(); telemetry.log().add("Gyro Calibrated. Press Start."); + telemetry.clear(); telemetry.update(); + + // Wait for the start button to be pressed + waitForStart(); + telemetry.log().clear(); + telemetry.log().add("Press A & B to reset heading"); + + robot.strafe(0.2); + if (robot.colorSensor.blue() > robot.colorSensor.green() + robot.colorSensor.red()) { + robot.stop(); + } + + // Loop until we're asked to stop + while (opModeIsActive()) { + + // If the A and B buttons are pressed just now, reset Z heading. + curResetState = (gamepad1.a && gamepad1.b); + if (curResetState && !lastResetState) { + modernRoboticsI2cGyro.resetZAxisIntegrator(); + } + lastResetState = curResetState; + + // The raw() methods report the angular rate of change about each of the + // three axes directly as reported by the underlying sensor IC. + int rawX = modernRoboticsI2cGyro.rawX(); + int rawY = modernRoboticsI2cGyro.rawY(); + int rawZ = modernRoboticsI2cGyro.rawZ(); + int heading = modernRoboticsI2cGyro.getHeading(); + int integratedZ = modernRoboticsI2cGyro.getIntegratedZValue(); + + // Read dimensionalized data from the gyro. This gyro can report angular velocities + // about all three axes. Additionally, it internally integrates the Z axis to + // be able to report an absolute angular Z orientation. + AngularVelocity rates = gyro.getAngularVelocity(AngleUnit.DEGREES); + float zAngle = gyro.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES).firstAngle; + + // Read administrative information from the gyro + int zAxisOffset = modernRoboticsI2cGyro.getZAxisOffset(); + int zAxisScalingCoefficient = modernRoboticsI2cGyro.getZAxisScalingCoefficient(); + + telemetry.addLine() + .addData("dx", formatRate(rates.xRotationRate)) + .addData("dy", formatRate(rates.yRotationRate)) + .addData("dz", "%s deg/s", formatRate(rates.zRotationRate)); + telemetry.addData("angle", "%s deg", formatFloat(zAngle)); + telemetry.addData("heading", "%3d deg", heading); + telemetry.addData("integrated Z", "%3d", integratedZ); + telemetry.addLine() + .addData("rawX", formatRaw(rawX)) + .addData("rawY", formatRaw(rawY)) + .addData("rawZ", formatRaw(rawZ)); + telemetry.addLine().addData("z offset", zAxisOffset).addData("z coeff", zAxisScalingCoefficient); + telemetry.update(); + + } + + } + + String formatRaw(int rawValue) { + return String.format("%d", rawValue); + } + + String formatRate(float rate) { + return String.format("%.3f", rate); + } + + String formatFloat(float rate) { + return String.format("%.3f", rate); + } + +} diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/CVDisplay.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/CVDisplay.java new file mode 100644 index 00000000000..692037c9fd5 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/CVDisplay.java @@ -0,0 +1,94 @@ +package org.firstinspires.ftc.team6417; + +import com.disnodeteam.dogecv.CameraViewDisplay; +import com.disnodeteam.dogecv.detectors.DogeCVDetector; +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.OpMode; +import com.qualcomm.robotcore.eventloop.opmode.TeleOp; + +import org.opencv.core.Mat; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import detectors.FoundationPipeline.Pipeline; + +/* + If you're using this library, THANKS! I spent a lot of time on it. + However, stuff isn't as well-documented as I like...still working on that + So if you have questions, email me at xchenbox@gmail.com and I will get back to you in about a day (usually) + Enjoy! + Below is the code to display to the RC; thanks DogeCV! I tried easyOpenCV, but it was lagging and stuttering. (??) + If it crashes after about a minute, it's probably becaugit reflog expire --expire=now --all && git gc --prune=now --aggressivese OpenCV is using too much native memory. My solution + is to call System.gc() whenever it reaches 70% (works on my g4 play) , but if someone knows more please contact me. + */ + +@Autonomous(name = "CV Simulator", group = "Autonomous") +public class CVDisplay extends OpMode { + + private DogeCVDetector detector = new DogeCVDetector() { + @Override + public Mat process(Mat rgba) { + + /* + Here you can specify which elements are being detected. + At the moment, SkyStones are super-reliable, Individual stones can be detected if you set up + the camera right, and Foundations...need work. + */ + Pipeline.doFoundations=false; + Pipeline.doStones=false; + Pipeline.doSkyStones=true; + + + Mat m = Pipeline.process(rgba); + + telemetry.update(); + + Imgproc.resize(m, m, new Size(640*1.3, 480*1.3 )); + return m; + } + @Override + public void useDefaults() {} + }; + + @Override + public void init() { + telemetry.setAutoClear(true); + // Set up detector + detector.init(hardwareMap.appContext, CameraViewDisplay.getInstance()); // Initialize it with the app context and camera + detector.enable(); + } + /* + * Code to run REPEATEDLY when the driver hits INIT + */ + @Override + public void init_loop() { + } + + /* + * Code to run ONCE when the driver hits PLAY + */ + @Override + public void start() { + + } + + /* + * Code to run REPEATEDLY when the driver hits PLAY + */ + @Override + public void loop() { + telemetry.update(); + } + + /* + * Code to run ONCE after the driver hits STOP + */ + @Override + public void stop() { + if(detector != null) detector.disable(); //Make sure to run this on stop! + } + + public static void clean(){ + System.gc(); + } +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Calibrate.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Calibrate.java new file mode 100644 index 00000000000..bbd9b306ea3 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Calibrate.java @@ -0,0 +1,166 @@ +package org.firstinspires.ftc.team6417; + +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; +import com.qualcomm.robotcore.hardware.DcMotor; +import com.qualcomm.robotcore.hardware.DcMotorSimple; + +@Autonomous(name="Calibrate", group="6417") +public class Calibrate extends LinearOpMode { + Integer cpr = 28; + Integer gearratio = 26; + Double diameter = 3.93701; + Double cpi = (cpr * gearratio) / (Math.PI * diameter); + Double bias = 0.5; + Boolean exit = false; + + Hardware6417 robot = new Hardware6417(); + + // + Double conversion = cpi * bias; + // + public void runOpMode() { + // + /*** + frontleft = hardwareMap.dcMotor.get("FrontLeft"); + frontright = hardwareMap.dcMotor.get("FrontRight"); + backleft = hardwareMap.dcMotor.get("BackLeft"); + backright = hardwareMap.dcMotor.get("BackRight"); + frontleft.setDirection(DcMotorSimple.Direction.REVERSE);//If your robot goes backward, switch this from right to left + backleft.setDirection(DcMotorSimple.Direction.REVERSE);//If your robot goes backward, switch this from right to left + // + ***/ + + robot.init(hardwareMap); + + waitForStartify(); + // + moveToPosition(20, .2);//Don't change this line, unless you want to calibrate with different speeds + // + } + // + /* + This function's purpose is simply to drive forward or backward. + To drive backward, simply make the inches input negative. + */ + + public void moveToPosition(double inches, double speed){ + // + int move = (int)(Math.round(inches*conversion)); + // + robot.leftBack.setTargetPosition(robot.leftBack.getCurrentPosition() + move); + robot.leftFront.setTargetPosition(robot.leftFront.getCurrentPosition() + move); + robot.rightBack.setTargetPosition(robot.rightBack.getCurrentPosition() + move); + robot.rightFront.setTargetPosition(robot.rightFront.getCurrentPosition() + move); + // + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + robot.leftBack.setPower(speed); + robot.leftFront.setPower(speed); + robot.rightBack.setPower(speed); + robot.rightFront.setPower(speed); + // + while (robot.leftFront.isBusy() && robot.rightFront.isBusy() && robot.leftBack.isBusy() && robot.rightBack.isBusy()){ + + if (exit){ + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + return; + } + + } + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0); + return; + + } + + /*** + public void moveToPosition(double inches, double speed) { + // + if (inches < 5) { + int move = (int) (Math.round(inches * conversion)); + // + frontleft.setTargetPosition(frontleft.getCurrentPosition() + move); + frontright.setTargetPosition(frontright.getCurrentPosition() + move); + backleft.setTargetPosition(backleft.getCurrentPosition() + move); + backright.setTargetPosition(backright.getCurrentPosition() + move); + // + frontleft.setMode(DcMotor.RunMode.RUN_TO_POSITION); + frontright.setMode(DcMotor.RunMode.RUN_TO_POSITION); + backleft.setMode(DcMotor.RunMode.RUN_TO_POSITION); + backright.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + frontleft.setPower(speed); + frontright.setPower(speed); + backleft.setPower(speed); + backright.setPower(speed); + // + while (frontleft.isBusy() && frontright.isBusy() && backleft.isBusy() && backright.isBusy()) { + } + frontleft.setPower(0); + frontright.setPower(0); + backleft.setPower(0); + backright.setPower(0); + } else { + int move1 = (int) (Math.round((inches - 5) * conversion)); + int movefl2 = frontleft.getCurrentPosition() + (int) (Math.round(inches * conversion)); + int movefr2 = frontright.getCurrentPosition() + (int) (Math.round(inches * conversion)); + int movebl2 = backleft.getCurrentPosition() + (int) (Math.round(inches * conversion)); + int movebr2 = backright.getCurrentPosition() + (int) (Math.round(inches * conversion)); + // + frontleft.setTargetPosition(frontleft.getCurrentPosition() + move1); + frontright.setTargetPosition(frontright.getCurrentPosition() + move1); + backleft.setTargetPosition(backleft.getCurrentPosition() + move1); + backright.setTargetPosition(backright.getCurrentPosition() + move1); + // + frontleft.setMode(DcMotor.RunMode.RUN_TO_POSITION); + frontright.setMode(DcMotor.RunMode.RUN_TO_POSITION); + backleft.setMode(DcMotor.RunMode.RUN_TO_POSITION); + backright.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + frontleft.setPower(speed); + frontright.setPower(speed); + backleft.setPower(speed); + backright.setPower(speed); + // + while (frontleft.isBusy() && frontright.isBusy() && backleft.isBusy() && backright.isBusy()) { + } + // + frontleft.setTargetPosition(movefl2); + frontright.setTargetPosition(movefr2); + backleft.setTargetPosition(movebl2); + backright.setTargetPosition(movebr2); + // + frontleft.setPower(.1); + frontright.setPower(.1); + backleft.setPower(.1); + backright.setPower(.1); + // + while (frontleft.isBusy() && frontright.isBusy() && backleft.isBusy() && backright.isBusy()) { + } + frontleft.setPower(0); + frontright.setPower(0); + backleft.setPower(0); + backright.setPower(0); + } + return; + } + ***/ + /* + A tradition within the Thunder Pengwins code, we always start programs with waitForStartify, + our way of adding personality to our programs. + */ + public void waitForStartify() { + waitForStart(); + } +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/ConceptEventOp.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/ConceptEventOp.java new file mode 100644 index 00000000000..f536f27784b --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/ConceptEventOp.java @@ -0,0 +1,98 @@ +package org.firstinspires.ftc.team6417; + +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.Disabled; +import com.qualcomm.robotcore.eventloop.opmode.OpMode; +import com.qualcomm.robotcore.util.ElapsedTime; + +import org.firstinspires.ftc.robotcore.external.ClassFactory; +import org.firstinspires.ftc.robotcore.external.matrices.OpenGLMatrix; +import org.firstinspires.ftc.robotcore.external.matrices.VectorF; +import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit; +import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder; +import org.firstinspires.ftc.robotcore.external.navigation.AxesReference; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; +import org.firstinspires.ftc.robotcore.external.navigation.RelicRecoveryVuMark; +import org.firstinspires.ftc.robotcore.external.navigation.VuMarkInstanceId; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackable; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackableDefaultListener; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackables; + +@Autonomous(name = "Concept: NullOp", group = "Concept") +@Disabled +public class ConceptEventOp extends OpMode { + + private ElapsedTime runtime = new ElapsedTime(); + + //vuforia initialization + VuforiaLocalizer vuforia; + + VuforiaTrackables relicTrackables; + VuforiaTrackable relicTemplate; + + @Override + public void init() { + + telemetry.addData("Status", "Initialized"); + + int cameraMonitorViewId = hardwareMap.appContext.getResources().getIdentifier("cameraMonitorViewId", "id", hardwareMap.appContext.getPackageName()); + VuforiaLocalizer.Parameters parameters = new VuforiaLocalizer.Parameters(cameraMonitorViewId); + + parameters.vuforiaLicenseKey = "AcWxpI//////AAABmSTUqOAeSU6ch+3XHmV8XvMbVbpRCaYwby/IOcqjvubbwTl3h6QgRRr5Sq8xDIqb44SiaO40EwykSMPj8lExZdBYpKxDIed6HDzF0bnyn8EOMvMwtw8y7qlfdoogz+XZ0QBLuYQJOtM6LoCNPVFikbunJRj72Pfty7C8WzzjaGmlZKjHWZamkhck6OvK6E1tlhRzwnPhFMDGfLFq/6clnV2RIo1CM8QJ0SJln+d28b4IjHp4FR6Ihl1PZz995tXGZE+cssZdTnIO3mX62f16wkSXVaQUxiPRIAJCGHExH1WkBge7d6r1pKLKmNOwwdrXLTP5WbOR2Mi5Qw9Lq6ATDBrseIVVnHXbgHbR9TaQXg8R"; + + parameters.cameraDirection = VuforiaLocalizer.CameraDirection.FRONT; + this.vuforia = ClassFactory.createVuforiaLocalizer(parameters); + + relicTrackables = this.vuforia.loadTrackablesFromAsset("RelicVuMark"); + relicTemplate = relicTrackables.get(0); + relicTemplate.setName("relicVuMarkTemplate"); // can help in debugging; otherwise not necessary + + } + + @Override + public void start() { + + runtime.reset(); + + relicTrackables.activate(); + + } + + @Override + public void loop() { + + RelicRecoveryVuMark vuMark = RelicRecoveryVuMark.from(relicTemplate); + if (vuMark != RelicRecoveryVuMark.UNKNOWN) { + + OpenGLMatrix pose = ((VuforiaTrackableDefaultListener) relicTemplate.getListener()).getPose(); + if (vuMark == RelicRecoveryVuMark.RIGHT) + telemetry.addData("VuMark", "Right"); + else if (vuMark == RelicRecoveryVuMark.CENTER) + telemetry.addData("VuMark", "Center"); + else if (vuMark == RelicRecoveryVuMark.LEFT) + telemetry.addData("VuMark", "Left"); + else if (vuMark == RelicRecoveryVuMark.UNKNOWN) + telemetry.addData("VuMark", "Unknown"); + + if (pose != null) { + VectorF trans = pose.getTranslation(); + Orientation rot = Orientation.getOrientation(pose, AxesReference.EXTRINSIC, AxesOrder.XYZ, AngleUnit.DEGREES); + + // Extract the X, Y, and Z components of the offset of the target relative to the robot + double tX = trans.get(0); + double tY = trans.get(1); + double tZ = trans.get(2); + + // Extract the rotational components of the target relative to the robot + double rX = rot.firstAngle; + double rY = rot.secondAngle; + double rZ = rot.thirdAngle; + } + } else { + telemetry.addData("VuMark", "not visible"); + } + + telemetry.update(); + } +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/DuoDou.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/DuoDou.java new file mode 100644 index 00000000000..00bc271eb48 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/DuoDou.java @@ -0,0 +1,146 @@ +/* Copyright (c) 2019 FIRST. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted (subject to the limitations in the disclaimer below) provided that + * the following conditions are met: + * + * Redistributions of source code must retain the above copyright notice, this list + * of conditions and the following disclaimer. + * + * Redistributions in binary form must reproduce the above copyright notice, this + * list of conditions and the following disclaimer in the documentation and/or + * other materials provided with the distribution. + * + * Neither the name of FIRST nor the names of its contributors may be used to endorse or + * promote products derived from this software without specific prior written permission. + * + * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS + * LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, + * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +package org.firstinspires.ftc.team6417; + + +import android.util.Log; + +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; +import com.qualcomm.robotcore.eventloop.opmode.TeleOp; + +import org.firstinspires.ftc.robotcore.external.Telemetry; +import org.opencv.core.Mat; + +import detectors.FoundationPipeline.SkyStone; +import detectors.ImageDetector; + +import java.util.Iterator; +import java.util.List; + +import detectors.ImageDetector; +import detectors.OpenCvDetector; + +import detectors.StoneDetector; + +/* + If you're using this library, THANKS! I spent a lot of time on it. + However, stuff isn't as well-documented as I like...still working on that + So if you have questions, email me at xchenbox@gmail.com and I will get back to you in about a day (usually) + Enjoy! + Below is the Opmode example, which shows all the features of the library. 99% of my time has + been spent on the OpenCVDetector, so don't criticize the 10 minutes I spent on the other stuff... + */ + +@Autonomous(name = "DuoDou", group = "Autonomous") +public class DuoDou extends LinearOpMode { + + public void runOpMode() throws InterruptedException { + + telemetry.setAutoClear(true); + + telemetry.addData("Booting Up", " . . ."); + telemetry.update(); + + OpenCvDetector fieldDetector = new OpenCvDetector(this); + //ImageDetector detector = new ImageDetector(this, false); + //StoneDetector stone = new StoneDetector(this, false); + + //stone.start(); + //detector.start(); + fieldDetector.start(); + //imu.start();tr + + while (!isStopRequested()) { + //detector.printposition(detector.getPosition()); + + //fieldDetector.print(fieldDetector.getObjectsFoundations()); + //Log.d("GO TO MO","go"); + + SkyStone[] skyStone = fieldDetector.getObjectsSkyStones(); + + telemetry.addData("Skystones Found",skyStone.length); + int i = 0; + for(SkyStone s : skyStone){ + i++; + telemetry.addLine(""+s); + } + + Mat m = new Mat(); + m = null; + + //also, enabling/disabling detection for individual field elements: + /* + Pipeline.doFoundations=false; + Pipeline.doStones=false; + Pipeline.doSkyStones=false; + */ + + + //getting positions of each element. Will return Objects for each element that all contain + // Phone camera coordinates for each element's center. + /* + List foundations = Pipeline.foundations; + List stones = Pipeline.stones; + List skystones = Pipeline.skyStones; + */ + + + + //stone.print(stone.getObjectsFoundations()); + + //imu.printposition(imu.getDeltaPosition()); + + telemetry.addData("==========", "Loop delimiter"); + + telemetry.update(); + } + + // Disable Tracking when we are done + //detector.stop(); + //stone.stop(); + fieldDetector.stop(); + //imu.stop(); + } + + public void listhardware() { + telemetry.setAutoClear(false); + + Iterator t = hardwareMap.iterator(); + while (t.hasNext()) { + + telemetry.addData("device found", (t.next().getDeviceName())); + telemetry.update(); + } + + telemetry.setAutoClear(true); + + } +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Hardware6417.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Hardware6417.java new file mode 100644 index 00000000000..575b45a21f1 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Hardware6417.java @@ -0,0 +1,282 @@ +/* Copyright (c) 2017 FIRST. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted (subject to the limitations in the disclaimer below) provided that + * the following conditions are met: + * + * Redistributions of source code must retain the above copyright notice, this list + * of conditions and the following disclaimer. + * + * Redistributions in binary form must reproduce the above copyright notice, this + * list of conditions and the following disclaimer in the documentation and/or + * other materials provided with the distribution. + * + * Neither the name of FIRST nor the names of its contributors may be used to endorse or + * promote products derived from this software without specific prior written permission. + * + * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS + * LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, + * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +package org.firstinspires.ftc.team6417; + +import com.qualcomm.hardware.bosch.BNO055IMU; +import com.qualcomm.hardware.lynx.LynxEmbeddedIMU; +import com.qualcomm.hardware.modernrobotics.ModernRoboticsI2cGyro; +import com.qualcomm.robotcore.hardware.CRServo; +import com.qualcomm.robotcore.hardware.ColorSensor; +import com.qualcomm.robotcore.hardware.DcMotor; +import com.qualcomm.robotcore.hardware.GyroSensor; +import com.qualcomm.robotcore.hardware.HardwareMap; +import com.qualcomm.robotcore.hardware.IntegratingGyroscope; +import com.qualcomm.robotcore.hardware.Servo; +import com.qualcomm.robotcore.hardware.configuration.typecontainers.ServoConfigurationType; +import com.qualcomm.robotcore.util.ElapsedTime; + +import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder; +import org.firstinspires.ftc.robotcore.external.navigation.AxesReference; + +import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; + + +/** + * This is NOT an opmode. + * + * This class can be used to define all the specific hardware for a single robot. + * In this case that robot is a Pushbot. + * See PushbotTeleopTank_Iterative and others classes starting with "Pushbot" for usage examples. + * + * This hardware class assumes the following device names have been configured on the robot: + * Note: All names are lower case and some have single spaces between words. + * + * Motor channel: Left drive motor: "left_drive" + * Motor channel: Right drive motor: "right_drive" + * Motor channel: Manipulator drive motor: "left_arm" + * Servo channel: Servo to open left claw: "left_hand" + * Servo channel: Servo to open right claw: "right_hand" + */ +// Based on HardwarePushbot +public class Hardware6417 +{ + /* Public OpMode members. */ + public DcMotor leftFront = null, rightFront = null, leftBack = null, rightBack = null, + armMotor = null, extendMotor = null; + + public Servo grabServo = null, alignServo = null, leftDragServo = null, rightDragServo = null; + + ColorSensor colorSensor; + + ModernRoboticsI2cGyro alignGyro; + IntegratingGyroscope gyro; + + public static final double TURN_POWER_LIFT = 0.5 ; + public static final int CPR = 1440; + public static final double DIAMETER = 3.93701; //inches + //public static final int BLOCK_HEIGHT = 127; //millimeters + + public LynxEmbeddedIMU imu; + + /* local OpMode members. */ + HardwareMap hwMap = null; + private ElapsedTime period = new ElapsedTime(); + + /* Constructor */ + public Hardware6417(){ + } + + private void checkOrientation() { + // read the orientation of the robot + Orientation angles = this.imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + this.imu.getPosition(); + // and save the heading + double curHeading = angles.firstAngle; + } + + /* Initialize standard Hardware interfaces */ + public void init(HardwareMap ahwMap) { + // Save reference to Hardware map + hwMap = ahwMap; + + // Define and initialize motors + leftFront = hwMap.get(DcMotor.class, "FrontLeft"); + leftBack = hwMap.get(DcMotor.class, "BackLeft"); + rightFront = hwMap.get(DcMotor.class, "FrontRight"); + rightBack = hwMap.get(DcMotor.class, "BackRight"); + armMotor = hwMap.get(DcMotor.class, "ArmMotor"); + extendMotor = hwMap.get(DcMotor.class, "ExtendMotor"); + + // Define and initialize servos + alignServo = hwMap.get(Servo.class, "AlignServo"); + leftDragServo = hwMap.get(Servo.class, "leftDragServo"); + rightDragServo = hwMap.get(Servo.class, "rightDragServo"); + grabServo = hwMap.get(Servo.class, "GrabServo"); + + colorSensor = hwMap.get(ColorSensor.class, "color"); + + alignGyro = hwMap.get(ModernRoboticsI2cGyro.class, "alignGyro"); + gyro = (IntegratingGyroscope)alignGyro; + + // Set motor and servo directions based on orientation of motors on robot + leftFront.setDirection(DcMotor.Direction.REVERSE); + leftBack.setDirection(DcMotor.Direction.REVERSE); + rightFront.setDirection(DcMotor.Direction.FORWARD); + rightBack.setDirection(DcMotor.Direction.FORWARD); + armMotor.setDirection(DcMotor.Direction.FORWARD); + extendMotor.setDirection(DcMotor.Direction.FORWARD); + + alignServo.setDirection(Servo.Direction.REVERSE); + leftDragServo.setDirection(Servo.Direction.FORWARD); + rightDragServo.setDirection(Servo.Direction.FORWARD); + + // Set initial servo positions + //alignServo.setPosition(1.0); + //rightDragServo.setPosition(0); + //leftDragServo.setPosition(0); + + // Set all motors to zero power + leftFront.setPower(0); + leftBack.setPower(0); + rightFront.setPower(0); + rightBack.setPower(0); + + // Set all motors to run with encoders + leftFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + leftBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + rightFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + rightBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + + + /*** + LynxEmbeddedIMU imu = hwMap.get(LynxEmbeddedIMU.class, "AlignGyro"); + BNO055IMU.Parameters params = new BNO055IMU.Parameters(); + imu.initialize(params); + ***/ + + } + + public void drivetoPosition(int d, double power){ + + leftFront.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + rightFront.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + leftBack.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + rightBack.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + + int distance = (int)(CPR / (DIAMETER * Math.PI) * d); + + leftFront.setTargetPosition(distance); + rightFront.setTargetPosition(distance); + leftBack.setTargetPosition(distance); + rightBack.setTargetPosition(distance); + + leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + + leftFront.setPower(power); + rightFront.setPower(power); + leftBack.setPower(power); + rightBack.setPower(power); + + while(leftFront.isBusy() || rightFront.isBusy() || leftBack.isBusy() || rightBack.isBusy()){ } + + leftFront.setPower(0); + rightFront.setPower(0); + leftBack.setPower(0); + rightBack.setPower(0); + + leftFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + rightFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + leftBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + rightBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + + } + + + public void strafeToPosition(int d, double power){ + + leftFront.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + rightFront.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + leftBack.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + rightBack.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + + int distance = (int)(CPR / (DIAMETER * Math.PI) * d); + + leftFront.setTargetPosition(distance); + rightFront.setTargetPosition(-distance); + leftBack.setTargetPosition(-distance); + rightBack.setTargetPosition(distance); + + leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + + leftFront.setPower(power); + rightFront.setPower(power); + leftBack.setPower(power); + rightBack.setPower(power); + + while(leftFront.isBusy() || rightFront.isBusy() || leftBack.isBusy() || rightBack.isBusy()){ } + + leftFront.setPower(0); + rightFront.setPower(0); + leftBack.setPower(0); + rightBack.setPower(0); + + leftFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + rightFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + leftBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + rightBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + + } + + public void strafe(double power){ + + // Set all motors to the same power + // rightFront and leftBack go in the opposite directions to strafe + leftFront.setPower(power); + rightFront.setPower(-power); + leftBack.setPower(-power); + rightBack.setPower(power); + + } + + public void drive(double power){ + + // Set all motors to the same power to drive forward + leftFront.setPower(power); + rightFront.setPower(power); + leftBack.setPower(power); + rightBack.setPower(power); + + } + + public void stop(){ + + // Set all motors to 0 power + leftFront.setPower(0); + rightFront.setPower(0); + leftBack.setPower(0); + rightBack.setPower(0); + + } + + public void turnWithEncoder(double input){ + leftFront.setPower(input); + leftBack.setPower(input); + rightFront.setPower(-input); + rightBack.setPower(-input); + } + +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/MecanumDriveOpMode.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/MecanumDriveOpMode.java new file mode 100644 index 00000000000..f1e8c57ed5d --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/MecanumDriveOpMode.java @@ -0,0 +1,235 @@ +/* Copyright (c) 2017 FIRST. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted (subject to the limitations in the disclaimer below) provided that + * the following conditions are met: + * + * Redistributions of source code must retain the above copyright notice, this list + * of conditions and the following disclaimer. + * + * Redistributions in binary form must reproduce the above copyright notice, this + * list of conditions and the following disclaimer in the documentation and/or + * other materials provided with the distribution. + * + * Neither the name of FIRST nor the names of its contributors may be used to endorse or + * promote products derived from this software without specific prior written permission. + * + * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS + * LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, + * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + + +package org.firstinspires.ftc.team6417; + +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; +import com.qualcomm.robotcore.eventloop.opmode.TeleOp; +import com.qualcomm.robotcore.hardware.CRServo; +import com.qualcomm.robotcore.hardware.DcMotorSimple; +import com.qualcomm.robotcore.util.ElapsedTime; + +import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder; +import org.firstinspires.ftc.robotcore.external.navigation.AxesReference; +import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit; + + +/** + * This file contains an minimal example of a Linear "OpMode". An OpMode is a 'program' that runs in either + * the autonomous or the teleop period of an FTC match. The names of OpModes appear on the menu + * of the FTC Driver Station. When an selection is made from the menu, the corresponding OpMode + * class is instantiated on the Robot Controller and executed. + *

+ * This particular OpMode just executes a basic Tank Drive Teleop for a two wheeled robot + * It includes all the skeletal structure that all linear OpModes contain. + *

+ * Use Android Studios to Copy this Class, and Paste it into your team's code folder with a new name. + * Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list + */ + +@TeleOp(name = "Mecanum Opmode", group = "Linear Opmode") +//@Disabled +public class MecanumDriveOpMode extends LinearOpMode { + + enum Direction { + FORWARD, BACKWARD, LEFT, RIGHT, STLEFT, STRIGHT; + } + + // higher lift factor means less adjustment for grab hand during height change + private final int LIFT_FACTOR = 1500; + + // Declare OpMode members. + private ElapsedTime runtime = new ElapsedTime(); + Hardware6417 robot = new Hardware6417(); + + @Override + public void runOpMode() { + + robot.init(hardwareMap); + telemetry.addData("Status", "Initialized"); + telemetry.update(); + + // Initialize the hardware variables. Note that the strings used here as parameters + // to 'get' must correspond to the names assigned during the robot configuration + // step (using the FTC Robot Controller app on the phone). + + // Most robots need the motor on one side to be reversed to drive forward + // Reverse the motor that runs backwards when connected directly to the battery + // Wait for the game to start (driver presses PLAY) + + waitForStart(); + runtime.reset(); + + double forward, strafe, rotate, lift, armSpeed, extendSpeed, armangle; + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0); + + telemetry.log().add("Gyro Calibrating..."); + robot.alignGyro.calibrate(); + + // run until the end of the match (driver presses STOP) + while (opModeIsActive()) { + + forward = -gamepad1.left_stick_y; + strafe = gamepad1.left_stick_x; + rotate = gamepad1.right_stick_x; + lift = -gamepad2.left_stick_y; + + if(Math.abs(forward) > 0.3 || Math.abs(strafe) > 0.3 || Math.abs(rotate) > 0.3){ + setDriveSpeeds(forward, strafe, rotate); + } + else{ + setDriveSpeeds(0, 0, 0); + } + + // code to raise and lower arm + if(Math.abs(lift) > 0.3){ + armSpeed = gamepad2.left_stick_y; + } + else{ + armSpeed = 0; + } + + robot.armMotor.setPower(armSpeed); + + // this section rotates the grabber claw on a servo so that it is always + // aligned perpendicular to the ground. This helps us keep the skystone + // at a 90 degree angle so we can stack it on top of the building + + armangle = robot.gyro.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES).firstAngle; + telemetry.addData("Gyro reading:", armangle); + telemetry.update(); + robot.alignServo.setPosition(robot.alignServo.getPosition() - (lift / LIFT_FACTOR)); + + // extend and retract the arm's extrusions + extendSpeed = gamepad2.right_stick_y; + robot.extendMotor.setPower(extendSpeed / 2); + + // latch and unlatch the grabber claw onto the skystone + if(gamepad2.left_trigger > 0) { + robot.grabServo.setPosition(0); + } + else if(gamepad2.right_trigger > 0) { + robot.grabServo.setPosition(0.75); + } + + // nudging allows us to move a small distance more precisely + // than we can with the gamepad sticks + if(gamepad1.dpad_up || gamepad2.dpad_up){ + nudgeRobot(Direction.FORWARD, 10); + } + else if(gamepad1.dpad_left || gamepad2.dpad_left){ + nudgeRobot(Direction.LEFT, 10); + } + else if(gamepad1.dpad_down || gamepad2.dpad_down){ + nudgeRobot(Direction.BACKWARD, 10); + } + else if(gamepad1.dpad_right || gamepad2.dpad_right){ + nudgeRobot(Direction.RIGHT, 10); + } + else if(gamepad1.left_bumper || gamepad2.left_bumper){ + nudgeRobot(Direction.STLEFT, 20); + } + else if(gamepad2.right_bumper || gamepad1.right_bumper){ + nudgeRobot(Direction.STRIGHT, 20); + } + + // latch and unlatch onto the building platform + if(gamepad1.left_trigger > 0) { + robot.leftDragServo.setPosition(0.75); + robot.rightDragServo.setPosition(0); + } + else if(gamepad1.right_trigger > 0){ + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0.75); + } + + if(gamepad2.y) { + resetArm(); + } + } + } + + // moves robot in direction controlled by top gamepad button for a moment + private void setDriveSpeeds(double forward, double strafe, double rotate) { + + double frontLeftSpeed = forward + strafe + rotate; + double frontRightSpeed = forward - strafe - rotate; + double backLeftSpeed = forward - strafe + rotate; + double backRightSpeed = forward + strafe - rotate; + + double largest = 1.0; + largest = Math.max(largest, Math.abs(frontLeftSpeed)); + largest = Math.max(largest, Math.abs(frontRightSpeed)); + largest = Math.max(largest, Math.abs(backLeftSpeed)); + largest = Math.max(largest, Math.abs(backRightSpeed)); + + robot.leftFront.setPower(frontLeftSpeed / largest); + robot.rightFront.setPower(frontRightSpeed / largest); + robot.leftBack.setPower(backLeftSpeed / largest); + robot.rightBack.setPower(backRightSpeed / largest); + } + + // nudges robot based on direction passed in + // directions will be dealt with in runOpMode + private void nudgeRobot(Direction dir, int sl) { + + switch(dir) { + case FORWARD: + setDriveSpeeds(0.2, 0, 0); + break; + case BACKWARD: + setDriveSpeeds(-0.2, 0, 0); + break; + case LEFT: + setDriveSpeeds(0, 0, -0.2); + break; + case RIGHT: + setDriveSpeeds(0, 0, 0.2); + break; + case STLEFT: + setDriveSpeeds(0, -0.2, 0); + break; + case STRIGHT: + setDriveSpeeds(0, 0.2, 0); + break; + } + + sleep(sl); + setDriveSpeeds(0, 0, 0); + + } + + // resets grab hand angle to perpendicular to arm + // used in case the auto adjust code messes up for whatever reason + private void resetArm() { + robot.alignServo.setPosition(.8); + } +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Waffle.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Waffle.java new file mode 100644 index 00000000000..e5c37423cd5 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/Waffle.java @@ -0,0 +1,41 @@ +package org.firstinspires.ftc.team6417; + +import com.qualcomm.hardware.bosch.BNO055IMU; +import com.qualcomm.hardware.lynx.LynxEmbeddedIMU; +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; + +import org.firstinspires.ftc.robotcore.external.navigation.Acceleration; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; + +import detectors.FoundationPipeline.SkyStone; +import detectors.ImageDetector; +import detectors.OpenCvDetector; + +@Autonomous(name="Wafflywaffle", group="Autonomous") +public class Waffle extends LinearOpMode { + + Hardware6417 robot = new Hardware6417(); + BNO055IMU imu; + Orientation angles; + Acceleration gravity; + + Boolean exit = false; + + public void runOpMode(){ + + ImageDetector detector = new ImageDetector(this, false); + detector.start(); + + detector.getPosition(); + + + /*** + OpenCvDetector cam = new OpenCvDetector(this); + cam.loop(); // update + SkyStone[] stones = cam.getObjectsSkyStones(); + ***/ + + } + +} diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto2.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto2.java new file mode 100644 index 00000000000..432cfef032a --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto2.java @@ -0,0 +1,91 @@ +package org.firstinspires.ftc.team6417.irrelevent; + +import com.qualcomm.hardware.bosch.BNO055IMU; +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; +import com.qualcomm.robotcore.hardware.DcMotor; + +import org.firstinspires.ftc.robotcore.external.navigation.Acceleration; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; +import org.firstinspires.ftc.team6417.Hardware6417; + +@Autonomous(name="ParkRight", group="Autonomous") +public class Auto2 extends LinearOpMode { + + Hardware6417 robot = new Hardware6417(); + BNO055IMU imu; + Orientation angles; + Acceleration gravity; + + Boolean exit = false; + + public void runOpMode(){ + + robot.init(hardwareMap); + waitForStart(); + + robot.drive(-0.2); + sleep(2200); + robot.stop(); + + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0.75); + + sleep(1000); + + robot.drive(0.2); + sleep(2500); + robot.stop(); + + robot.leftDragServo.setPosition(0.75); + robot.rightDragServo.setPosition(0); + + sleep(1000); + + robot.strafe(-0.75); + sleep(1000); + robot.stop(); + + } + + /*** + public void moveToPosition(double inches, double speed){ + // + int move = (int)(Math.round(inches*conversion)); + // + robot.leftBack.setTargetPosition(robot.leftBack.getCurrentPosition() + move); + robot.leftFront.setTargetPosition(robot.leftFront.getCurrentPosition() + move); + robot.rightBack.setTargetPosition(robot.rightBack.getCurrentPosition() + move); + robot.rightFront.setTargetPosition(robot.rightFront.getCurrentPosition() + move); + // + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + robot.leftBack.setPower(speed); + robot.leftFront.setPower(speed); + robot.rightBack.setPower(speed); + robot.rightFront.setPower(speed); + // + while (robot.leftFront.isBusy() && robot.rightFront.isBusy() && robot.leftBack.isBusy() && robot.rightBack.isBusy()){ + if (exit){ + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + return; + } + } + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0); + return; + + } + ***/ + +} diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto3.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto3.java new file mode 100644 index 00000000000..d429eb08831 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto3.java @@ -0,0 +1,96 @@ +package org.firstinspires.ftc.team6417.irrelevent; + +import com.qualcomm.hardware.bosch.BNO055IMU; +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; + +import org.firstinspires.ftc.robotcore.external.navigation.Acceleration; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; +import org.firstinspires.ftc.team6417.Hardware6417; + +@Autonomous(name="ParkLeft", group="Autonomous") +public class Auto3 extends LinearOpMode { + + Hardware6417 robot = new Hardware6417(); + BNO055IMU imu; + Orientation angles; + Acceleration gravity; + + Boolean exit = false; + + public void runOpMode(){ + + robot.init(hardwareMap); + waitForStart(); + + robot.drive(-0.2); + sleep(2200); + robot.stop(); + + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0.75); + + sleep(1000); + + robot.drive(0.2); + sleep(2500); + robot.stop(); + + robot.leftDragServo.setPosition(0.75); + robot.rightDragServo.setPosition(0); + + sleep(1000); + + robot.strafe(0.75); + sleep(1000); + robot.stop(); + + /*** + while(robot.colorSensor.blue() < 40 && robot.colorSensor.red() < 40){ + } + sleep(1000); + ***/ + + } + + /*** + public void moveToPosition(double inches, double speed){ + // + int move = (int)(Math.round(inches*conversion)); + // + robot.leftBack.setTargetPosition(robot.leftBack.getCurrentPosition() + move); + robot.leftFront.setTargetPosition(robot.leftFront.getCurrentPosition() + move); + robot.rightBack.setTargetPosition(robot.rightBack.getCurrentPosition() + move); + robot.rightFront.setTargetPosition(robot.rightFront.getCurrentPosition() + move); + // + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + robot.leftBack.setPower(speed); + robot.leftFront.setPower(speed); + robot.rightBack.setPower(speed); + robot.rightFront.setPower(speed); + // + while (robot.leftFront.isBusy() && robot.rightFront.isBusy() && robot.leftBack.isBusy() && robot.rightBack.isBusy()){ + if (exit){ + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + return; + } + } + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0); + return; + + } + ***/ + +} diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto6417.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto6417.java new file mode 100644 index 00000000000..31012a25c28 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto6417.java @@ -0,0 +1,300 @@ +package org.firstinspires.ftc.team6417.irrelevent; + +import com.qualcomm.hardware.bosch.BNO055IMU; +import com.qualcomm.hardware.bosch.JustLoggingAccelerationIntegrator; +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; +import com.qualcomm.robotcore.hardware.DcMotor; + +import org.firstinspires.ftc.robotcore.external.navigation.Acceleration; +import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit; +import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder; +import org.firstinspires.ftc.robotcore.external.navigation.AxesReference; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; +import org.firstinspires.ftc.team6417.Hardware6417; + + +//@disabled +@Autonomous(name="WAFFLE BOI RED", group="Autonomous") +public class Auto6417 extends LinearOpMode { + + Hardware6417 robot = new Hardware6417(); + + //28 * 20 / (2ppi * 4.125) + Double width = 16.0; //inches + Integer cpr = 723; //counts per rotation + Integer gearratio = 26; + Double diameter = 4.125; + Double cpi = (cpr * gearratio)/(Math.PI * diameter); //counts per inch, 28cpr * gear ratio / (2 * pi * diameter (in inches, in the center)) + Double bias = 0.8;//default 0.8 + Double meccyBias = 0.9;//change to adjust only strafing movement + // + Double conversion = cpi * bias; + Boolean exit = false; + // + BNO055IMU imu; + Orientation angles; + Acceleration gravity; + // + public void runOpMode(){ + + robot.init(hardwareMap); + initGyro(); + waitForStartify(); + + moveToPosition(-46.4, 0.2); + + /*** + moveToPosition(46.4, 0.2); + strafeToPosition(23.6, 0.2); + moveToPosition(-22.8, 0.2); + turnWithGyro(90, 0.2); + moveToPosition(22.8, 0.2); + robot.leftDragServo.setPosition(0.75); + robot.rightDragServo.setPosition(0.75); + ***/ + + } + /* + This function's purpose is simply to drive forward. + */ + public void moveToPosition(double inches, double speed){ + // + int move = (int)(Math.round(inches*conversion)); + // + robot.leftBack.setTargetPosition(robot.leftBack.getCurrentPosition() + move); + robot.leftFront.setTargetPosition(robot.leftFront.getCurrentPosition() + move); + robot.rightBack.setTargetPosition(robot.rightBack.getCurrentPosition() + move); + robot.rightFront.setTargetPosition(robot.rightFront.getCurrentPosition() + move); + // + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + robot.leftBack.setPower(speed); + robot.leftFront.setPower(speed); + robot.rightBack.setPower(speed); + robot.rightFront.setPower(speed); + // + while (robot.leftFront.isBusy() && robot.rightFront.isBusy() && robot.leftBack.isBusy() && robot.rightBack.isBusy()){ + if (exit){ + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + return; + } + } + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0); + return; + + } + // + /* + This function uses the Expansion Hub IMU Gyro to turn a 90 degrees. + */ + public void turnWithGyro(double degrees, double speedDirection){ + // + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + double yaw = -angles.firstAngle;//make this negative + telemetry.addData("Speed Direction", speedDirection); + telemetry.addData("Yaw", yaw); + telemetry.update(); + // + telemetry.addData("stuff", speedDirection); + telemetry.update(); + // + double first; + double second; + // + // + if (speedDirection > 0){//set target positions + // + if (degrees > 10){ + first = (degrees - 10) + devertify(yaw); + second = degrees + devertify(yaw); + }else{ + first = devertify(yaw); + second = degrees + devertify(yaw); + } + // + }else{ + // + if (degrees > 10){ + first = devertify(-(degrees - 10) + devertify(yaw)); + second = devertify(-degrees + devertify(yaw)); + }else{ + first = devertify(yaw); + second = devertify(-degrees + devertify(yaw)); + } + // + // + } + // + // + Double firsta = convertify(first - 5);//175 + Double firstb = convertify(first + 5);//-175 + // + turnWithEncoder(speedDirection); + // + if (Math.abs(firsta - firstb) < 11) { + while (!(firsta < yaw && yaw < firstb) && opModeIsActive()) {//within range? + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + gravity = imu.getGravity(); + yaw = -angles.firstAngle; + telemetry.addData("Position", yaw); + telemetry.addData("first before", first); + telemetry.addData("first after", convertify(first)); + telemetry.update(); + } + }else{ + // + while (!((firsta < yaw && yaw < 180) || (-180 < yaw && yaw < firstb)) && opModeIsActive()) {//within range? + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + gravity = imu.getGravity(); + yaw = -angles.firstAngle; + telemetry.addData("Position", yaw); + telemetry.addData("first before", first); + telemetry.addData("first after", convertify(first)); + telemetry.update(); + } + } + // + Double seconda = convertify(second - 5);//175 + Double secondb = convertify(second + 5);//-175 + // + turnWithEncoder(speedDirection / 3); + // + if (Math.abs(seconda - secondb) < 11) { + while (!(seconda < yaw && yaw < secondb) && opModeIsActive()) {//within range? + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + gravity = imu.getGravity(); + yaw = -angles.firstAngle; + telemetry.addData("Position", yaw); + telemetry.addData("second before", second); + telemetry.addData("second after", convertify(second)); + telemetry.update(); + } + while (!((seconda < yaw && yaw < 180) || (-180 < yaw && yaw < secondb)) && opModeIsActive()) {//within range? + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + gravity = imu.getGravity(); + yaw = -angles.firstAngle; + telemetry.addData("Position", yaw); + telemetry.addData("second before", second); + telemetry.addData("second after", convertify(second)); + telemetry.update(); + } + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + } + // + // + robot.leftFront.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + robot.rightFront.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + robot.leftBack.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + robot.rightBack.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + } + // + /* + This function uses the encoders to strafe left or right. + This section of the code strafes the bot towards the center of the field + */ + public void strafeToPosition(double inches, double speed){ + // + int move = (int)(Math.round(inches * cpi * meccyBias)); + // + robot.leftBack.setTargetPosition(robot.leftBack.getCurrentPosition() - move); + robot.leftFront.setTargetPosition(robot.leftFront.getCurrentPosition() + move); + robot.rightBack.setTargetPosition(robot.rightBack.getCurrentPosition() + move); + robot.rightFront.setTargetPosition(robot.rightFront.getCurrentPosition() - move); + // + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + robot.leftFront.setPower(speed); + robot.leftBack.setPower(speed); + robot.rightFront.setPower(speed); + robot.rightBack.setPower(speed); + // + while (robot.leftFront.isBusy() && robot.rightFront.isBusy() && robot.leftBack.isBusy() && robot.rightBack.isBusy()){} + robot.rightFront.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.leftBack.setPower(0); + return; + } + + public void waitForStartify(){ + waitForStart(); + } + // + /* + These functions are used in the turnWithGyro function to ensure inputs + are interpreted properly. + */ + public double devertify(double degrees){ + if (degrees < 0){ + degrees = degrees + 360; + } + return degrees; + } + public double convertify(double degrees){ + if (degrees > 179){ + degrees = -(360 - degrees); + } else if(degrees < -180){ + degrees = 360 + degrees; + } else if(degrees > 360){ + degrees = degrees - 360; + } + return degrees; + } + // + /* + This function is called at the beginning of the program to activate + the IMU Integrated Gyro. + */ + public void initGyro(){ + BNO055IMU.Parameters parameters = new BNO055IMU.Parameters(); + parameters.angleUnit = BNO055IMU.AngleUnit.DEGREES; + parameters.accelUnit = BNO055IMU.AccelUnit.METERS_PERSEC_PERSEC; + //parameters.calibrationDataFile = "GyroCal.json"; // see the calibration sample opmode + parameters.loggingEnabled = true; + parameters.loggingTag = "IMU"; + parameters.accelerationIntegrationAlgorithm = new JustLoggingAccelerationIntegrator(); + // + imu = hardwareMap.get(BNO055IMU.class, "imu"); + imu.initialize(parameters); + } + // + /* + This function is used in the turnWithGyro function to set the + encoder mode and turn. + */ + public void turnWithEncoder(double input){ + robot.leftFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + robot.leftBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + robot.rightFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + robot.rightBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + // + robot.leftFront.setPower(input); + robot.leftBack.setPower(input); + robot.rightFront.setPower(-input); + robot.rightBack.setPower(-input); + } + // +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto6417Blue.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto6417Blue.java new file mode 100644 index 00000000000..638a27ba7ee --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/Auto6417Blue.java @@ -0,0 +1,297 @@ +package org.firstinspires.ftc.team6417.irrelevent; + +import com.qualcomm.hardware.bosch.BNO055IMU; +import com.qualcomm.hardware.bosch.JustLoggingAccelerationIntegrator; +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; +import com.qualcomm.robotcore.hardware.DcMotor; + +import org.firstinspires.ftc.robotcore.external.navigation.Acceleration; +import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit; +import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder; +import org.firstinspires.ftc.robotcore.external.navigation.AxesReference; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; +import org.firstinspires.ftc.team6417.Hardware6417; + + +//@disabled +@Autonomous(name="WAFFLE BOI BLUE", group="Autonomous") +public class Auto6417Blue extends LinearOpMode { + + Hardware6417 robot = new Hardware6417(); + + //28 * 20 / (2ppi * 4.125) + Double width = 16.0; //inches + Integer cpr = 28; //counts per rotation + Integer gearratio = 26; + Double diameter = 4.125; + Double cpi = (cpr * gearratio)/(Math.PI * diameter); //counts per inch, 28cpr * gear ratio / (2 * pi * diameter (in inches, in the center)) + Double bias = 0.8;//default 0.8 + Double meccyBias = 0.9;//change to adjust only strafing movement + // + Double conversion = cpi * bias; + Boolean exit = false; + // + BNO055IMU imu; + Orientation angles; + Acceleration gravity; + // + public void runOpMode(){ + + robot.init(hardwareMap); + initGyro(); + waitForStartify(); + + moveToPosition(46.4, 0.2); + moveToPosition(-46.4, 0.2); + strafeToPosition(-23.6, 0.2); + moveToPosition(22.8, 0.2); + turnWithGyro(90, 0.2); + moveToPosition(-22.8, 0.2); + robot.leftDragServo.setPosition(0.75); + robot.rightDragServo.setPosition(0.75); + + } + /* + This function's purpose is simply to drive forward. + */ + public void moveToPosition(double inches, double speed){ + // + int move = (int)(Math.round(inches*conversion)); + // + robot.leftBack.setTargetPosition(robot.leftBack.getCurrentPosition() + move); + robot.leftFront.setTargetPosition(robot.leftFront.getCurrentPosition() + move); + robot.rightBack.setTargetPosition(robot.rightBack.getCurrentPosition() + move); + robot.rightFront.setTargetPosition(robot.rightFront.getCurrentPosition() + move); + // + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + robot.leftBack.setPower(speed); + robot.leftFront.setPower(speed); + robot.rightBack.setPower(speed); + robot.rightFront.setPower(speed); + // + while (robot.leftFront.isBusy() && robot.rightFront.isBusy() && robot.leftBack.isBusy() && robot.rightBack.isBusy()){ + if (exit){ + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + return; + } + } + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0); + return; + + } + // + /* + This function uses the Expansion Hub IMU Gyro to turn a 90 degrees. + */ + public void turnWithGyro(double degrees, double speedDirection){ + // + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + double yaw = -angles.firstAngle;//make this negative + telemetry.addData("Speed Direction", speedDirection); + telemetry.addData("Yaw", yaw); + telemetry.update(); + // + telemetry.addData("stuff", speedDirection); + telemetry.update(); + // + double first; + double second; + // + // + if (speedDirection > 0){//set target positions + // + if (degrees > 10){ + first = (degrees - 10) + devertify(yaw); + second = degrees + devertify(yaw); + }else{ + first = devertify(yaw); + second = degrees + devertify(yaw); + } + // + }else{ + // + if (degrees > 10){ + first = devertify(-(degrees - 10) + devertify(yaw)); + second = devertify(-degrees + devertify(yaw)); + }else{ + first = devertify(yaw); + second = devertify(-degrees + devertify(yaw)); + } + // + // + } + // + // + Double firsta = convertify(first - 5);//175 + Double firstb = convertify(first + 5);//-175 + // + turnWithEncoder(speedDirection); + // + if (Math.abs(firsta - firstb) < 11) { + while (!(firsta < yaw && yaw < firstb) && opModeIsActive()) {//within range? + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + gravity = imu.getGravity(); + yaw = -angles.firstAngle; + telemetry.addData("Position", yaw); + telemetry.addData("first before", first); + telemetry.addData("first after", convertify(first)); + telemetry.update(); + } + }else{ + // + while (!((firsta < yaw && yaw < 180) || (-180 < yaw && yaw < firstb)) && opModeIsActive()) {//within range? + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + gravity = imu.getGravity(); + yaw = -angles.firstAngle; + telemetry.addData("Position", yaw); + telemetry.addData("first before", first); + telemetry.addData("first after", convertify(first)); + telemetry.update(); + } + } + // + Double seconda = convertify(second - 5);//175 + Double secondb = convertify(second + 5);//-175 + // + turnWithEncoder(speedDirection / 3); + // + if (Math.abs(seconda - secondb) < 11) { + while (!(seconda < yaw && yaw < secondb) && opModeIsActive()) {//within range? + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + gravity = imu.getGravity(); + yaw = -angles.firstAngle; + telemetry.addData("Position", yaw); + telemetry.addData("second before", second); + telemetry.addData("second after", convertify(second)); + telemetry.update(); + } + while (!((seconda < yaw && yaw < 180) || (-180 < yaw && yaw < secondb)) && opModeIsActive()) {//within range? + angles = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); + gravity = imu.getGravity(); + yaw = -angles.firstAngle; + telemetry.addData("Position", yaw); + telemetry.addData("second before", second); + telemetry.addData("second after", convertify(second)); + telemetry.update(); + } + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + } + // + // + robot.leftFront.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + robot.rightFront.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + robot.leftBack.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + robot.rightBack.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER); + + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + } + // + /* + This function uses the encoders to strafe left or right. + This section of the code strafes the bot towards the center of the field + */ + public void strafeToPosition(double inches, double speed){ + // + int move = (int)(Math.round(inches * cpi * meccyBias)); + // + robot.leftBack.setTargetPosition(robot.leftBack.getCurrentPosition() - move); + robot.leftFront.setTargetPosition(robot.leftFront.getCurrentPosition() + move); + robot.rightBack.setTargetPosition(robot.rightBack.getCurrentPosition() + move); + robot.rightFront.setTargetPosition(robot.rightFront.getCurrentPosition() - move); + // + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + robot.leftFront.setPower(speed); + robot.leftBack.setPower(speed); + robot.rightFront.setPower(speed); + robot.rightBack.setPower(speed); + // + while (robot.leftFront.isBusy() && robot.rightFront.isBusy() && robot.leftBack.isBusy() && robot.rightBack.isBusy()){} + robot.rightFront.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.leftBack.setPower(0); + return; + } + + public void waitForStartify(){ + waitForStart(); + } + // + /* + These functions are used in the turnWithGyro function to ensure inputs + are interpreted properly. + */ + public double devertify(double degrees){ + if (degrees < 0){ + degrees = degrees + 360; + } + return degrees; + } + public double convertify(double degrees){ + if (degrees > 179){ + degrees = -(360 - degrees); + } else if(degrees < -180){ + degrees = 360 + degrees; + } else if(degrees > 360){ + degrees = degrees - 360; + } + return degrees; + } + // + /* + This function is called at the beginning of the program to activate + the IMU Integrated Gyro. + */ + public void initGyro(){ + BNO055IMU.Parameters parameters = new BNO055IMU.Parameters(); + parameters.angleUnit = BNO055IMU.AngleUnit.DEGREES; + parameters.accelUnit = BNO055IMU.AccelUnit.METERS_PERSEC_PERSEC; + //parameters.calibrationDataFile = "GyroCal.json"; // see the calibration sample opmode + parameters.loggingEnabled = true; + parameters.loggingTag = "IMU"; + parameters.accelerationIntegrationAlgorithm = new JustLoggingAccelerationIntegrator(); + // + imu = hardwareMap.get(BNO055IMU.class, "imu"); + imu.initialize(parameters); + } + // + /* + This function is used in the turnWithGyro function to set the + encoder mode and turn. + */ + public void turnWithEncoder(double input){ + robot.leftFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + robot.leftBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + robot.rightFront.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + robot.rightBack.setMode(DcMotor.RunMode.RUN_USING_ENCODER); + // + robot.leftFront.setPower(input); + robot.leftBack.setPower(input); + robot.rightFront.setPower(-input); + robot.rightBack.setPower(-input); + } + // +} \ No newline at end of file diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/PullMat.java b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/PullMat.java new file mode 100644 index 00000000000..be43e2d6bb5 --- /dev/null +++ b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/irrelevent/PullMat.java @@ -0,0 +1,86 @@ +package org.firstinspires.ftc.team6417.irrelevent; + +import com.qualcomm.hardware.bosch.BNO055IMU; +import com.qualcomm.robotcore.eventloop.opmode.Autonomous; +import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; + +import org.firstinspires.ftc.robotcore.external.navigation.Acceleration; +import org.firstinspires.ftc.robotcore.external.navigation.Orientation; +import org.firstinspires.ftc.team6417.Hardware6417; + +@Autonomous(name="PullMat", group="Autonomous") +public class PullMat extends LinearOpMode { + + Hardware6417 robot = new Hardware6417(); + BNO055IMU imu; + Orientation angles; + Acceleration gravity; + + Boolean exit = false; + + public void runOpMode(){ + + robot.init(hardwareMap); + waitForStart(); + + robot.drive(-0.1); + sleep(3200); + robot.stop(); + + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0.75); + + sleep(1000); + + robot.drive(0.1); + sleep(3200); + robot.stop(); + + robot.leftDragServo.setPosition(0.75); + robot.rightDragServo.setPosition(0); + + sleep(1000); + + } + + /*** + public void moveToPosition(double inches, double speed){ + // + int move = (int)(Math.round(inches*conversion)); + // + robot.leftBack.setTargetPosition(robot.leftBack.getCurrentPosition() + move); + robot.leftFront.setTargetPosition(robot.leftFront.getCurrentPosition() + move); + robot.rightBack.setTargetPosition(robot.rightBack.getCurrentPosition() + move); + robot.rightFront.setTargetPosition(robot.rightFront.getCurrentPosition() + move); + // + robot.leftBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.leftFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightBack.setMode(DcMotor.RunMode.RUN_TO_POSITION); + robot.rightFront.setMode(DcMotor.RunMode.RUN_TO_POSITION); + // + robot.leftBack.setPower(speed); + robot.leftFront.setPower(speed); + robot.rightBack.setPower(speed); + robot.rightFront.setPower(speed); + // + while (robot.leftFront.isBusy() && robot.rightFront.isBusy() && robot.leftBack.isBusy() && robot.rightBack.isBusy()){ + if (exit){ + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + return; + } + } + robot.leftBack.setPower(0); + robot.leftFront.setPower(0); + robot.rightBack.setPower(0); + robot.rightFront.setPower(0); + robot.leftDragServo.setPosition(0); + robot.rightDragServo.setPosition(0); + return; + + } + ***/ + +} diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/teamcode/readme.md b/TeamCode/src/main/java/org/firstinspires/ftc/team6417/readme.md similarity index 100% rename from TeamCode/src/main/java/org/firstinspires/ftc/teamcode/readme.md rename to TeamCode/src/main/java/org/firstinspires/ftc/team6417/readme.md diff --git a/bluejay/build.gradle b/bluejay/build.gradle new file mode 100644 index 00000000000..2e34cc345b4 --- /dev/null +++ b/bluejay/build.gradle @@ -0,0 +1,38 @@ +apply plugin: 'com.android.library' + +android { + compileSdkVersion 28 + buildToolsVersion '28.0.3' + + defaultConfig { + minSdkVersion 19 + targetSdkVersion 27 + versionCode 1 + versionName "1.0" + + + } + buildTypes { + release { + minifyEnabled false + proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro' + } + } + compileOptions { + sourceCompatibility = 1.8 + targetCompatibility = 1.8 + } +} +repositories { + flatDir { + dirs '../libs' + } +} +dependencies { + implementation fileTree(include: ['*.jar'], dir: 'libs') + implementation project(path: ':openCVLibrary3') + implementation (name: 'RobotCore-release', ext: 'aar') + implementation project(path: ':FtcRobotController') + implementation project(path: ':DogeCV') + +} diff --git a/bluejay/src/main/AndroidManifest.xml b/bluejay/src/main/AndroidManifest.xml new file mode 100644 index 00000000000..4610bbb91da --- /dev/null +++ b/bluejay/src/main/AndroidManifest.xml @@ -0,0 +1,10 @@ + + + + + + + diff --git a/bluejay/src/main/java/detectors/ClosableVuforiaLocalizer.java b/bluejay/src/main/java/detectors/ClosableVuforiaLocalizer.java new file mode 100644 index 00000000000..d5e8d3c3045 --- /dev/null +++ b/bluejay/src/main/java/detectors/ClosableVuforiaLocalizer.java @@ -0,0 +1,15 @@ +package detectors; + +import org.firstinspires.ftc.robotcore.internal.vuforia.VuforiaLocalizerImpl; + +public class ClosableVuforiaLocalizer extends VuforiaLocalizerImpl { + boolean closed = false; + public ClosableVuforiaLocalizer(Parameters parameters) { + super(parameters); + } + @Override + public void close() { + if (!closed) super.close(); + closed = true; + } +} \ No newline at end of file diff --git a/bluejay/src/main/java/detectors/FoundationPipeline/Analysis.java b/bluejay/src/main/java/detectors/FoundationPipeline/Analysis.java new file mode 100644 index 00000000000..6df5e949407 --- /dev/null +++ b/bluejay/src/main/java/detectors/FoundationPipeline/Analysis.java @@ -0,0 +1,77 @@ +package detectors.FoundationPipeline; + +import org.opencv.core.Mat; +import org.opencv.core.Point; + +import java.util.ArrayList; +import java.util.Collections; +import java.util.Comparator; +import java.util.List; + +public class Analysis { + + /* + * In order of left to right, return gaps between stones (sorted), + * provided that there is a non negative distance between + * the end of one stone and the start of another + */ + private static List gaps(List stones) { + if(stones.size()==0) return new ArrayList(); + + Stone first = stones.get(0).clone(); + Stone last = stones.get(stones.size()-1).clone(); + + first.bounds.x-=first.bounds.width*2; + last.bounds.x+=last.bounds.width*2; + stones.add(0,first); + stones.add(last); + + List ret = new ArrayList(); + + if(stones.size()<=1) return ret; + + //sort stones + Collections.sort(stones, new Comparator() { + public int compare(Stone one, Stone two) { + if(one.x < two.x) return -1; + if(one.x > two.x) return 1; + return 0; + } + }); + + //iterate over stones and make gaps + for(int i=0;i 0) { + ret.add(new gap((int)stones.get(i).y, + stones.get(i).bounds.x+stones.get(i).bounds.width, + stones.get(i+1).bounds.x)); + } + + } + + return ret; + } + + public static Point skystonePosition(List stones, Mat canvas) { + List gaps = gaps(stones); + + for(gap g : gaps) { + g.draw(canvas); + } + + if(gaps.size()==0)return null; + + Collections.sort(gaps, new Comparator() { + public int compare(gap o1, gap o2) { + if(o1.width > o2.width)return 1; + if(o1.width < o2.width)return -1; + return 0; + } + }); + + return gaps.get(0).center; + } +} diff --git a/bluejay/src/main/java/detectors/FoundationPipeline/Constants.java b/bluejay/src/main/java/detectors/FoundationPipeline/Constants.java new file mode 100644 index 00000000000..dfd7a1b1f42 --- /dev/null +++ b/bluejay/src/main/java/detectors/FoundationPipeline/Constants.java @@ -0,0 +1,74 @@ +package detectors.FoundationPipeline; + +import org.opencv.core.Mat; + +public class Constants { + public static final double[] blueColor1 = {170,180}; + public static final double[] blueColor2 = {0,10}; + + public static final double[] redColor = {110,120}; + + public static final double[] yellowColor = {7+67,38+67}; + public static final double[] stressedYellowColor = {-12+67,45+67}; + + public static Mat redOutput = new Mat(); + public static Mat blueOutput = new Mat(); + public static Mat blackOutput = new Mat(); + public static Mat yellowOutput = new Mat(); + public static Mat yellowTags = new Mat(); + + public static void updateColors(Mat resizedImage, Mat equalizedImage, double blackCutOff) { + /* + //For yellow + double[] yellowRange = {73,86}; + + //For Blue + double[] blueRange1 = {160,180}; + double[] blueRange2 = {0,20}; + + //for Red + double[] redRange = {40,63}; + */ + + double[] satRange = {60, 255}; + double[] valRange = {blackCutOff*1.0, 255}; + + redOutput = compute.threshold(resizedImage, redColor, satRange, valRange); + + blueOutput = compute.combine( + compute.threshold(resizedImage, blueColor1, satRange, valRange), + compute.threshold(resizedImage, blueColor2, satRange, valRange)); + + blackOutput = compute.threshold( + resizedImage, + new double[]{0, 255},//hue 0, 180 + new double[]{0, 180},//sat 0, 180 + new double[]{0, blackCutOff*0.8});//val + + + //For yellow HUE HUE HUE + double[] yellowRange = yellowColor; + double[] stressedYellowRange = stressedYellowColor; + + //STONE STONE STONE + yellowOutput = compute.threshold( //equalize to spread. yellowRange to be less + equalizedImage, + yellowRange, + new double[]{100, 255},//sat + new double[]{blackCutOff*1.0, 255}); //val + + //SKYSTONE SKYSTONE + yellowTags = compute.threshold( //just want all of it + resizedImage, + stressedYellowRange, + new double[]{90, 255},//sat + new double[]{blackCutOff*0.8 , 255}); //val + // Mat yellowTags = compute.threshold( +// resizedImage, +// new double[]{80,105}, +// new double[]{100, 255},//sat +// new double[]{blackCutOff*1.5, 255}); //val + + } + +} diff --git a/bluejay/src/main/java/detectors/FoundationPipeline/Detected.java b/bluejay/src/main/java/detectors/FoundationPipeline/Detected.java new file mode 100644 index 00000000000..7e1fd9ee904 --- /dev/null +++ b/bluejay/src/main/java/detectors/FoundationPipeline/Detected.java @@ -0,0 +1,73 @@ +package detectors.FoundationPipeline; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.imgproc.Imgproc; + +import java.util.Arrays; + +class Detected { + enum Color { + BLUE, RED, YELLOW, BLACK, STONE + } + + double x, y; + double length; + MatOfPoint shape; + Color c; + boolean isBastard = false; + Rect bounds; + + public Detected(MatOfPoint shape, Color c) { + this.length = circularity(shape); + + double size = Imgproc.contourArea(shape); + if(c== Color.BLACK){ + if (length < 1) + isBastard = true; + if(size<200) isBastard = true; + }else{ + if(size<1300) isBastard = true; + } + if(isBastard)return; + + this.shape = shape; + bounds = Imgproc.boundingRect(shape); + Point centerPoint = center(shape); + this.x = centerPoint.x; + this.y = centerPoint.y; + this.c = c; + + } + + //will use rectangular bounds instead of moments because Moments + //are expensive to calculate and Rectangles are perfectly + //fine for our horozontally aligned foundations + Point center(MatOfPoint inp) { + return new Point(bounds.x+bounds.width/2, bounds.y+bounds.height/2); + } + + //We will cheat and do width/height because the correct calculation is expensive + //higher is longer + double circularity(MatOfPoint inp) { + final Rect bb = Imgproc.boundingRect(inp); + final double ratio = bb.width / (double) bb.height; + return ratio; + //double perimeter = Imgproc.arcLength(new MatOfPoint2f(inp.toArray()),true); + //return (Math.PI * perimeter * perimeter) / (4 * Imgproc.contourArea(inp)); + } + + public void draw(Mat canvas) { + Scalar color = new Scalar(00, 255, 00); + Scalar black = new Scalar(0, 0, 0); + + Imgproc.drawContours(canvas, Arrays.asList(shape), 0, color, 2); + Imgproc.putText(canvas, c.toString(), new Point(bounds.tl().x,bounds.tl().y+20), 0, 0.6, black, 7); + Imgproc.putText(canvas, c.toString(), new Point(bounds.tl().x,bounds.tl().y+20), 0, 0.6, color, 2); + Imgproc.circle(canvas, new Point(x, y), 4, new Scalar(255, 255, 255), -1); + } + +} diff --git a/bluejay/src/main/java/detectors/FoundationPipeline/Foundation.java b/bluejay/src/main/java/detectors/FoundationPipeline/Foundation.java new file mode 100644 index 00000000000..f28faccbf25 --- /dev/null +++ b/bluejay/src/main/java/detectors/FoundationPipeline/Foundation.java @@ -0,0 +1,70 @@ +package detectors.FoundationPipeline; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.imgproc.Imgproc; + +public class Foundation { + enum Type { + BLUEFOUNDATION, REDFOUNDATION, UNKNOWNFOUNDATION + } + + public int x = 0; + public int y = 0; + public Type t; + Rect bounds; + + public Foundation(Rect bounds, Type t) { + this.x = bounds.x + bounds.width / 2; + this.y = bounds.y + bounds.height / 2; + this.bounds = bounds; + this.t = t; + } + + public void draw(Mat canvas) { + Scalar color = new Scalar(00, 255, 00); + Scalar black = new Scalar(0, 0, 0); + + Imgproc.rectangle(canvas, bounds.tl(), bounds.br(), new Scalar(255, 0, 0), 4); + Imgproc.putText(canvas, t.toString(), new Point(bounds.tl().x,bounds.tl().y+20), 0, 0.6, black, 7); + Imgproc.putText(canvas, t.toString(), new Point(bounds.tl().x,bounds.tl().y+20), 0, 0.6, color, 2); + + } + + + /** + * @param d is a black detected + * @param j is either blue or red or yellow detected + */ + static Foundation createFoundation(Detected d, Detected j) { + //combine Point arrays + Point[] blackPoints = d.shape.toArray(); + Point[] colorPoints = j.shape.toArray(); + Point[] allTogetherNow = new Point[blackPoints.length+colorPoints.length]; + for(int i =0;i foundations = new ArrayList<>(); + public static List stones = new ArrayList<>(); + public static List skyStones = new ArrayList<>(); + + private static int blackcut=0; + + public static boolean doFoundations = false; + public static boolean doStones = false; + public static boolean doSkyStones = true; + + + public static Mat process(Mat source0){ + + if(FtcRobotControllerActivity.PercentAvailable computeSkyStones(Mat yellowTags){ + //morph + yellowTags = compute.fillHoro(yellowTags); + + List skyStones = new ArrayList<>(); + + List hulls = compute.findHulls(yellowTags); + + Mat mask = yellowTags.clone(); + compute.rectangle(mask,true); + + compute.drawHulls(hulls,mask, new Scalar(255,255,255),-1); + compute.drawHulls(hulls,mask, new Scalar(0,0,0),2);//fuckin' aliased edges + + mask = compute.flip(mask); + yellowTags = compute.add(yellowTags,mask); + + //Start.display(yellowTags,1,"yellowTAG"); + + //setup Mat + Mat drawInternalHulls = new Mat(yellowTags.rows(), yellowTags.cols(), CvType.CV_8UC3); + + Imgproc.rectangle(drawInternalHulls, + new Point(0,0), + new Point(drawInternalHulls.width(),drawInternalHulls.height()), + new Scalar(0,0,0), + -1); + + yellowTags = compute.flip(yellowTags); + + //Start.display(yellowTags,1,"flipTags"); + List internalHulls = compute.findHulls(yellowTags); + internalHulls = compute.filterContours(internalHulls,1500);//1700 + + compute.drawHulls(internalHulls,drawInternalHulls); + //Start.display(drawInternalHulls,1,"hulls"); + + for(MatOfPoint h : internalHulls) { + SkyStone ss = new SkyStone(h); + if(!ss.isBastard) { + skyStones.add(ss); + } + } + + mask.release(); + drawInternalHulls.release(); + + return skyStones; + } + + /* + * Takes in yellow masks, and image to annotate on + * spits out list of Stones + */ + private static List computeStones(Mat yellowOutput){ + Mat dTrans = compute.distanceTransform(yellowOutput,12); + //Start.display(dTrans,1,"trans"); + + List stonesContour = compute.findHulls(dTrans); + + List stones = new ArrayList<>(); + + for(MatOfPoint con : stonesContour) { + Stone d = new Stone(con); + if(!d.isBastard) { + stones.add(d); + } + } + + dTrans.release(); + + return stones; + } + + /* + * Takes in red, blue, yellow, black masks, and image to annotate on + * spits out list of Foundations + */ + private static List computeFoundations(Mat redOutput, Mat blueOutput, Mat yellowOutput, Mat blackOutput, Mat canvas){ + //Find Contours + List hullsRed = compute.findHulls(redOutput); + List hullsBlue = compute.findHulls(blueOutput); + List hullsYellow = compute.findHulls(yellowOutput); + + //populate array of detected (color only) + List detected = new ArrayList<>(); + List detectedHulls = new ArrayList<>(); + + //we will segregate the blacks + List blacks = new ArrayList<>(); + + for (MatOfPoint p : hullsRed) { + Detected toadd = new Detected(p, Detected.Color.RED); + if (!toadd.isBastard) { + detected.add(toadd); + detectedHulls.add(p); + } + } + for (MatOfPoint p : hullsBlue) { + Detected toadd = new Detected(p, Detected.Color.BLUE); + if (!toadd.isBastard) { + detected.add(toadd); + detectedHulls.add(p); + } + } + /* + for (MatOfPoint p : hullsYellow) { + Detected toadd = new Detected(p, Detected.Color.YELLOW); + if (!toadd.isBastard) { + detected.add(toadd); + } + }*/ + Mat detectedAll = new Mat(redOutput.rows(),redOutput.cols(),redOutput.type()); + Imgproc.rectangle(detectedAll, + new Point(0,0), + new Point(detectedAll.width(),detectedAll.height()), + new Scalar(0,0,0), + -1); + compute.drawHulls(detectedHulls, detectedAll, new Scalar(255,255,255),-1); + + //limit black to regions underneath + Imgproc.dilate(detectedAll,detectedAll, + Imgproc.getStructuringElement( + Imgproc.MORPH_RECT, + new Size(1,80), + new Point(0,0) + )); + detectedAll = compute.flip(detectedAll); + blackOutput = compute.subtract(blackOutput,detectedAll); + + //cut sides of color contours. Field walls are bad. + for(Detected d:detected) { + Point one = new Point(d.bounds.x,d.bounds.y+d.bounds.height*0.1); + Point two = new Point(d.bounds.x,d.bounds.y+d.bounds.height*0.1+regionSideClipExtensionLength); + Imgproc.line(blackOutput,one, two,new Scalar(new double[] {0,0,0}),1); + + one = new Point(d.bounds.x+d.bounds.width,d.bounds.y+d.bounds.height*0.1); + two = new Point(d.bounds.x+d.bounds.width,d.bounds.y+d.bounds.height*0.1+regionSideClipExtensionLength); + Imgproc.line(blackOutput,one, two,new Scalar(new double[] {0,0,0}),1); + } + + ArrayList hullsBlack = compute.findHulls(blackOutput); + + for (MatOfPoint p : hullsBlack) { + Detected toadd = new Detected(p, Detected.Color.BLACK); + if (!toadd.isBastard) { + blacks.add(toadd); + } + } + + for (Detected d : detected) { + d.draw(canvas); + }for (Detected d : blacks) { + d.draw(canvas); + } + + //process sandwiches, populate foundation ArrayList + List foundations = new ArrayList<>(); + + Imgproc.putText(canvas, String.valueOf(blackcut), new Point(20,20), 0, 0.6, new Scalar(0,0,0), 7); + Imgproc.putText(canvas, String.valueOf(blackcut), new Point(20,20), 0, 0.6, new Scalar(255,255,0), 2); + + for (Detected black : blacks) { + for (Detected col : detected) { + if (black.x > col.x - 40 && //one above the other, within 40 pix + black.bounds.y < col.bounds.y+col.bounds.height+30 &&//touching, within 30 pix + Math.abs(black.bounds.width*1.0/col.bounds.width-1) < 0.6) {//widths match, within 0.6 + foundations.add(Foundation.createFoundation(black, col)); + } + } + } + + detectedAll.release(); + + return foundations; + } + +} + diff --git a/bluejay/src/main/java/detectors/FoundationPipeline/SkyStone.java b/bluejay/src/main/java/detectors/FoundationPipeline/SkyStone.java new file mode 100644 index 00000000000..5b0f6e04e46 --- /dev/null +++ b/bluejay/src/main/java/detectors/FoundationPipeline/SkyStone.java @@ -0,0 +1,37 @@ +package detectors.FoundationPipeline; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.Point; +import org.opencv.core.RotatedRect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.Arrays; + +public class SkyStone extends Stone { + + public SkyStone(MatOfPoint shape) { + super(shape); + isBastard = false; + if(length<0.4 || Properlength>25)isBastard = true; + + RotatedRect rr = Imgproc.minAreaRect(compute.toDouble(shape)); + Size s = rr.size; + double ratio = Imgproc.contourArea(shape)/(s.width*s.height); + //System.out.println(ratio); + if(ratio<0.75) isBastard=true; + } + + public void draw(Mat canvas) { + Scalar color = new Scalar(0, 255, 0); + Scalar black = new Scalar(0, 0, 0); + + Imgproc.drawContours(canvas, Arrays.asList(shape), 0, new Scalar(255, 0, 255), 4); + Imgproc.putText(canvas, "SKYSTONE", new Point(x, y - 30), 0, 0.6, black, 7); + Imgproc.putText(canvas, "SKYSTONE", new Point(x, y - 30), 0, 0.6, color, 2); + Imgproc.circle(canvas, new Point(x, y), 4, new Scalar(255, 255, 255), -1); + } + +} diff --git a/bluejay/src/main/java/detectors/FoundationPipeline/Stone.java b/bluejay/src/main/java/detectors/FoundationPipeline/Stone.java new file mode 100644 index 00000000000..541b1f376c9 --- /dev/null +++ b/bluejay/src/main/java/detectors/FoundationPipeline/Stone.java @@ -0,0 +1,79 @@ +package detectors.FoundationPipeline; + +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.imgproc.Imgproc; + +public class Stone { + + public double x, y; + double length; + double Properlength; + MatOfPoint shape; + boolean isBastard = false; + Rect bounds; + + public Stone(MatOfPoint shape) { + bounds = Imgproc.boundingRect(shape); + this.length = (1.0*bounds.width)/bounds.height; + this.Properlength = circularity(shape); + + if (length < 1) + isBastard = true; //We only like the long ones. The short ones will be disposed of + if(Imgproc.contourArea(shape)<70) + isBastard = true; + + this.shape = shape; + + Point centerPoint = center(bounds); + this.x = centerPoint.x; + this.y = centerPoint.y; + + //expand bounds + bounds.height+=30; + bounds.width+=30; + bounds.x-=15; + bounds.y-=15; + } + + //will use rectangular bounds instead of moments because Moments + //are expensive to calculate and Rectangles are perfectly + //fine for our horozontally aligned foundations + Point center(Rect bounds) { + return new Point(bounds.x+bounds.width/2, bounds.y+bounds.height/2); + } + + //We will cheat and do width/height because the correct calculation is expensive + double circularity(MatOfPoint inp) { + //final Rect bb = Imgproc.boundingRect(inp); + //final double ratio = bb.width / (double) bb.height; + //return ratio; + double perimeter = Imgproc.arcLength(new MatOfPoint2f(inp.toArray()),true); + return (Math.PI * perimeter * perimeter) / (4 * Imgproc.contourArea(inp)); + } + + public void draw(Mat canvas) { + Scalar color = new Scalar(00, 255, 00); + Scalar black = new Scalar(0, 0, 0); + + //Imgproc.drawContours(canvas, Arrays.asList(shape), 0, new Scalar(0, 0, 255), 4); + Imgproc.rectangle(canvas, bounds.tl(), bounds.br(), new Scalar(0, 0, 255), 4); + Imgproc.putText(canvas, "STONE", new Point(x, y - 30), 0, 0.6, black, 7); + Imgproc.putText(canvas, "STONE", new Point(x, y - 30), 0, 0.6, color, 2); + Imgproc.circle(canvas, new Point(x, y), 4, new Scalar(255, 255, 255), -1); + } + + public Stone clone () { + return new Stone(shape); + } + + public String toString(){ + return x+" "+y; + } + +} + diff --git a/bluejay/src/main/java/detectors/FoundationPipeline/compute.java b/bluejay/src/main/java/detectors/FoundationPipeline/compute.java new file mode 100644 index 00000000000..7e9f07d78f9 --- /dev/null +++ b/bluejay/src/main/java/detectors/FoundationPipeline/compute.java @@ -0,0 +1,338 @@ +package detectors.FoundationPipeline; + +import org.opencv.core.Core; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.MatOfFloat; +import org.opencv.core.MatOfInt; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +import java.util.ArrayList; +import java.util.Arrays; +import java.util.List; + +public class compute { + + static MatOfPoint2f toDouble(MatOfPoint p) { + return new MatOfPoint2f(p.toArray()); + } + + /** + * draw rectangle border + */ + static void rectangle(Mat canvas, boolean fill) { + Point topleftPoint, bottomrightPoint; + + // new point + topleftPoint = new Point(0, 0); + bottomrightPoint = new Point(canvas.width(), canvas.height()); + + // rectangle + Scalar cvRectangleColor = new Scalar(0.0, 0.0, 0.0, 0.0); + int cvRectangleThickness; + if (fill) + cvRectangleThickness = -1; + else + cvRectangleThickness = 2; + int cvRectangleLinetype = Core.BORDER_DEFAULT; + int cvRectangleShift = 0; + Imgproc.rectangle(canvas, topleftPoint, bottomrightPoint, cvRectangleColor, cvRectangleThickness, + cvRectangleLinetype, cvRectangleShift); + } + + /** + * Takes an RGB image and allplies thresholding based on HSV ranges + * + * @param input An RGB image + * @param colRange Hue range + * @param satRange Saturation range + * @param valRange Value Range + * @return Thresholded image + */ + static Mat threshold(Mat input, double[] colRange, double[] satRange, double[] valRange) { + Mat output = new Mat(); + + Imgproc.cvtColor(input.clone(), output, Imgproc.COLOR_BGR2HSV); + Core.inRange(output, new Scalar(colRange[0], satRange[0], valRange[0]), + new Scalar(colRange[1], satRange[1], valRange[1]), output); + + return output; + } + + static ArrayList findHulls(Mat inp) { + return findHulls(inp, false); + } + + /** + * Returns a matrix of points representing the convex hulls of the blobs in the + * input + * + * @param inp a binary image + */ + static ArrayList findHulls(Mat inp, boolean external) { + // rectangle(inp,false); + + ArrayList contours = new ArrayList(); + ArrayList hullsOutput = new ArrayList(); + + findContours(inp, external, contours); + + convexHulls(contours, hullsOutput); + + return hullsOutput; + } + + static void drawHulls(List hulls, Mat drawOn) { + Scalar color = new Scalar(0, 255, 0); // Green + drawHulls(hulls, drawOn, color, 1); + } + + /** + * Takes a point matrix and draws the shape it represents on the Mat input + * + * @param drawOn thing that gets drawn on + */ + static void drawHulls(List hulls, Mat drawOn, Scalar color, int thick) { + // draw convex hulls + for (int i = 0; i < hulls.size(); i++) { + Imgproc.drawContours(drawOn, hulls, i, color, thick); + } + } + + /** + * Finds the shapes of blobs + * + * @param externalOnly Whether to ignore shapes inside shapes + */ + static void findContours(Mat input, boolean externalOnly, List contours) { + Mat hierarchy = new Mat(); + contours.clear(); + int mode; + if (externalOnly) { + mode = Imgproc.RETR_EXTERNAL; + } else { + mode = Imgproc.RETR_LIST; + } + int method = Imgproc.CHAIN_APPROX_SIMPLE; + Imgproc.findContours(input, contours, hierarchy, mode, method); + + + } + + static void floodFill(Mat canvas, Point origin) { + double[] pixel = canvas.get((int) origin.y, (int) origin.x); + if (pixel[0] == 0) + return; + + Imgproc.floodFill(canvas, new Mat(canvas.height() + 2, canvas.width() + 2, canvas.type()), origin, + new Scalar(0, 0, 0)); + } + + /** + * Filters out contours that do not meet certain criteria. Also removes contours + * surrounding everything + * + * @param inputContours is the input list of contours + * @return is the the output list of contours + * @param minArea is the minimum area of a contour that will be kept + */ + static List filterContours(List inputContours, double minArea) { + List output = new ArrayList(); + // operation + for (int i = 0; i < inputContours.size(); i++) { + final MatOfPoint contour = inputContours.get(i); + final double area = Imgproc.contourArea(contour); + if (area < minArea) + continue; + Point tl = Imgproc.boundingRect(contour).tl(); + Rect b = Imgproc.boundingRect(contour); + if (tl.x < 5 & tl.y < 5) + continue; + if (b.width + b.x > 636 || b.height + b.y > 475) + continue; + + output.add(contour); + } + + return output; + } + + /** + * Compute the convex hulls of contours. + */ + private static void convexHulls(List inputContours, ArrayList outputContours) { + final MatOfInt hull = new MatOfInt(); + outputContours.clear(); + for (int i = 0; i < inputContours.size(); i++) { + final MatOfPoint contour = inputContours.get(i); + final MatOfPoint mopHull = new MatOfPoint(); + Imgproc.convexHull(contour, hull); + mopHull.create((int) hull.size().height, 1, CvType.CV_32SC2); + for (int j = 0; j < hull.size().height; j++) { + int index = (int) hull.get(j, 0)[0]; + double[] point = new double[] { contour.get(index, 0)[0], contour.get(index, 0)[1] }; + mopHull.put(j, 0, point); + } + outputContours.add(mopHull); + } + } + + static Mat distanceTransform(Mat inp, int threshold) { + Mat proc = new Mat(); + /* + * Imgproc.distanceTransform(inp,proc, Imgproc.DIST_C,5); + * + * Core.inRange(proc,new Scalar(threshold), new Scalar(255), proc); + */ + Imgproc.erode(inp, proc, Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(2, 40), new Point(0, 39))); + return proc; + } + + static Mat fillHoro(Mat inp) { + Mat proc = new Mat(); + /* + * Imgproc.distanceTransform(inp,proc, Imgproc.DIST_C,5); + * + * Core.inRange(proc,new Scalar(threshold), new Scalar(255), proc); + */ + Imgproc.dilate(inp, proc, Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(4, 1), new Point(2, 0))); + return proc; + } + + /** + * Runs bitwise and on two binary images + */ + static Mat combine(Mat one, Mat two) { + Mat ret = new Mat(); + + Core.bitwise_or(one, two, ret); + + return ret; + } + + static Mat subtract(Mat one, Mat two) { + Mat ret = new Mat(); + + Core.subtract(one, two, ret); + + return ret; + } + + static Mat add(Mat one, Mat two) { + Mat ret = new Mat(); + + Core.add(one, two, ret); + + return ret; + } + + static Mat flip(Mat one) { + Mat ret = new Mat(); + + Core.bitwise_not(one, ret); + + return ret; + } + + +// static void whiteBalance(Mat canvas, double blueC, double redC) { +// compute.forEach(canvas, (double[] d) -> { +// // b,g,r +// d[0] *= blueC; +// d[2] *= redC; +// +// return d; +// }); +// } + + static Mat equalize(Mat inp) { + Mat out = new Mat(); + + List channels = new ArrayList(); + Core.split(inp, channels); + for (Mat mat : channels) { + Imgproc.equalizeHist(mat, mat); + } + Core.merge(channels, out); + return out; + } + + // ============Histogram================ + // ============Histogram================ + + // no visual debug + /** + * Creates a histogram from input 3 channel mat. it will ananlyze white sufaces + * and decide the image brightness from them Then it returns a value + * proportional to the brightness + */ + public static double getHistogramfast(Mat in) { + int histSize = 255;// # bins + int histogramHeight = 512;// physcical size + + Mat[] histData = new Mat[] { new Mat(), new Mat(), new Mat() }; + + Mat output = new Mat(new Size(512, 512), in.type()); + + // memory leaks and phased out data add static to the image + Imgproc.rectangle(output, new Point(0, 0), new Point(1000, 1000), new Scalar(new double[] { 0, 0, 0 }), -1); + + for (int i = 0; i < 3; i++) { + getHistdataf(in, i, histData[i], histSize); + + // stretch vertically + Core.normalize(histData[i], histData[i], histogramHeight, 0, Core.NORM_INF); + + } + // analysis + // sum of all white colors + double whiteSum = 0; + double whiteTot = 0; + for (int j = 0; j < histSize; j++) { + // avg + double Val = (histData[0].get(j, 0)[0] + histData[1].get(j, 0)[0] + histData[2].get(j, 0)[0]) / 3; + // min + double minVal = minf(histData[0].get(j, 0)[0], histData[1].get(j, 0)[0], histData[2].get(j, 0)[0]); + + whiteSum += minVal * j; + whiteTot += Val * j; + + } + double whiteSumAvg = whiteSum / whiteTot * 500;// width of the thing + double blackCutOff = whiteSumAvg * 1 / 5; + + histData[0].release(); + histData[1].release(); + histData[2].release(); + + return blackCutOff; + + } + + static void getHistdataf(Mat in, int channel, Mat out, int histsize) { + + Imgproc.calcHist(Arrays.asList(in), new MatOfInt(channel), // color channel + new Mat(), out, new MatOfInt(histsize), // size + new MatOfFloat(1, 256));// ranges we do not count zeros because they skew it + + Imgproc.blur(out, out, new Size(90, 90)); + } + + static double minf(double... vals) { + double min = vals[0]; + + for (int i = 1; i < vals.length; i++) { + if (vals[i] < min) + min = vals[i]; + } + + return min; + } + +} diff --git a/bluejay/src/main/java/detectors/FoundationPipeline/gap.java b/bluejay/src/main/java/detectors/FoundationPipeline/gap.java new file mode 100644 index 00000000000..72333338f50 --- /dev/null +++ b/bluejay/src/main/java/detectors/FoundationPipeline/gap.java @@ -0,0 +1,31 @@ +package detectors.FoundationPipeline; + +import org.opencv.core.Mat; +import org.opencv.core.Point; +import org.opencv.core.Scalar; +import org.opencv.imgproc.Imgproc; + +public class gap { + public int y; + public int x1; + public int x2; + public int width; + public Point center; + + public void draw (Mat canvas) { + Scalar color = new Scalar(100,225,255); + + Imgproc.line(canvas, new Point(x1,y), new Point(x2,y), color, 3); + Imgproc.line(canvas, new Point(x1,y+10), new Point(x1,y-10), color, 3); + Imgproc.line(canvas, new Point(x2,y+10), new Point(x2,y-10), color, 3); + } + + public gap(int y, int x1, int x2) { + this.y=y; + this.x1=x1; + this.x2=x2; + + width = Math.abs(x2-x1); + center = new Point((x2+x1)/2,y); + } +} diff --git a/bluejay/src/main/java/detectors/ImageDetector.java b/bluejay/src/main/java/detectors/ImageDetector.java new file mode 100644 index 00000000000..da4485618f7 --- /dev/null +++ b/bluejay/src/main/java/detectors/ImageDetector.java @@ -0,0 +1,307 @@ +package detectors; + +import android.content.Context; +import android.graphics.Bitmap; +import com.qualcomm.robotcore.eventloop.opmode.OpMode; +import com.vuforia.Image; +import com.vuforia.PIXEL_FORMAT; +import com.vuforia.Vuforia; + +import org.firstinspires.ftc.robotcore.external.ClassFactory; +import org.firstinspires.ftc.robotcore.external.matrices.OpenGLMatrix; +import org.firstinspires.ftc.robotcore.external.matrices.VectorF; +import org.firstinspires.ftc.robotcore.external.navigation.*; + +import java.util.ArrayList; +import java.util.List; + +import localizers.Localizer; +import localizers.PoseOrientation; + +import static org.firstinspires.ftc.robotcore.external.navigation.AngleUnit.DEGREES; +import static org.firstinspires.ftc.robotcore.external.navigation.AxesOrder.XYZ; +import static org.firstinspires.ftc.robotcore.external.navigation.AxesOrder.YZX; +import static org.firstinspires.ftc.robotcore.external.navigation.AxesReference.EXTRINSIC; +import static org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer.CameraDirection.BACK; + +public class ImageDetector extends StartStoppable implements Localizer{ + private static final String VUFORIA_KEY = + "ARuvZIj/////AAABmVkUSkLsEkjjhzixTaJVlaFNlxHEjVM47c6y7GtSCjJmsGR3bNdALVunnoGjmIog/AUoVdmCsQmzWc2WS0R1Qh+EVA5/H+39wEZ1sohFZ9UGpyWT/1da4Mm0sUbB4/atlnNbCs9PzFCnd0cFDpbzWRSmQjkaxdBlDY9rFnOGrqdEzdT9hWK2NznebhyCFWITMTu94TYY1vbuiyD+08KBIgsMPypNZ8tVSrB405WNTN3ZEqU1a+tQd7ppLUOIYfcYLKuXHRIsmiybps87PkhD84d+/NiE1pinNwBhtxhMPYgqGf1HrE7H+AzKYJpgla1DyG8AMLL1pwJKsA3penrUGwGENWr6EkVHkMLfsQoe6Jym"; + //phone attributes + private static final boolean PHONE_IS_PORTRAIT = false; + // Everything is in mm + private static final float mmPerInch = 25.4f; + private static final float mmTargetHeight = (6) * mmPerInch; // the height of the center of the target + // Constant for Stone Target + private static final float stoneZ = 2.00f * mmPerInch; + // Constants for the center support targets + private static final float bridgeZ = 6.42f * mmPerInch; + private static final float bridgeY = 23 * mmPerInch; + private static final float bridgeX = 5.18f * mmPerInch; + private static final float bridgeRotY = 59; // Units are degrees + // image above the floor + private static final float bridgeRotZ = 180; + // Constants for perimeter targets + private static final float halfField = 72 * mmPerInch; + private static final float quadField = 36 * mmPerInch; + VuforiaTrackables allTrackables; + private VuforiaLocalizer vuforia = null; + + public ImageDetector(OpMode opMode) { + this(opMode, false); + } + + public ImageDetector(OpMode opMode, boolean useDisplay) { + + if (isVuforiaInitialized()) return; + + setupVuforia(useDisplay, opMode.hardwareMap.appContext); + + allTrackables = this.vuforia.loadTrackablesFromAsset("Skystone"); + + setupTrackables(allTrackables); + + setupPhone(); + } + + /** + * ensures that the static vuforia is made + **/ + private void setupVuforia(boolean useDisplay, Context appContext) { + int cameraMonitorViewId = appContext.getResources().getIdentifier("cameraMonitorViewId", "id", + appContext.getPackageName()); + + //Configure Vuforia by creating a Parameter object, and passing it to the Vuforia engine. + VuforiaLocalizer.Parameters parameters; + if (useDisplay) parameters = new VuforiaLocalizer.Parameters(cameraMonitorViewId); + else parameters = new VuforiaLocalizer.Parameters(); + + parameters.vuforiaLicenseKey = VUFORIA_KEY; + parameters.cameraDirection = VuforiaLocalizer.CameraDirection.BACK; + + // Instantiate the Vuforia engine + VuforiaLocalizer vuforia = ClassFactory.getInstance().createVuforia(parameters); + + //not necessary, you can ignore it + Vuforia.setFrameFormat(PIXEL_FORMAT.RGB565, true); + + this.vuforia = vuforia; + + vuforia.setFrameQueueCapacity(1); + } + + private void setupTrackables(VuforiaTrackables targetsSkyStone) { + // Load the data sets for the trackable objects. These particular data + // sets are stored in the 'assets' part of our application. + + VuforiaTrackable stoneTarget = targetsSkyStone.get(0); + stoneTarget.setName("Stone Target"); + VuforiaTrackable blueRearBridge = targetsSkyStone.get(1); + blueRearBridge.setName("Blue Rear Bridge"); + VuforiaTrackable redRearBridge = targetsSkyStone.get(2); + redRearBridge.setName("Red Rear Bridge"); + VuforiaTrackable redFrontBridge = targetsSkyStone.get(3); + redFrontBridge.setName("Red Front Bridge"); + VuforiaTrackable blueFrontBridge = targetsSkyStone.get(4); + blueFrontBridge.setName("Blue Front Bridge"); + VuforiaTrackable red1 = targetsSkyStone.get(5); + red1.setName("Red Perimeter 1"); + VuforiaTrackable red2 = targetsSkyStone.get(6); + red2.setName("Red Perimeter 2"); + VuforiaTrackable front1 = targetsSkyStone.get(7); + front1.setName("Front Perimeter 1"); + VuforiaTrackable front2 = targetsSkyStone.get(8); + front2.setName("Front Perimeter 2"); + VuforiaTrackable blue1 = targetsSkyStone.get(9); + blue1.setName("Blue Perimeter 1"); + VuforiaTrackable blue2 = targetsSkyStone.get(10); + blue2.setName("Blue Perimeter 2"); + VuforiaTrackable rear1 = targetsSkyStone.get(11); + rear1.setName("Rear Perimeter 1"); + VuforiaTrackable rear2 = targetsSkyStone.get(12); + rear2.setName("Rear Perimeter 2"); + + stoneTarget.setLocation(OpenGLMatrix + .translation(0, 0, stoneZ) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, + -90))); + + //Set the position of the bridge support targets with relation to origin (center of field) + blueFrontBridge.setLocation(OpenGLMatrix + .translation(-bridgeX, bridgeY, bridgeZ) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 0, + bridgeRotY, bridgeRotZ))); + + blueRearBridge.setLocation(OpenGLMatrix + .translation(-bridgeX, bridgeY, bridgeZ) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 0, + -bridgeRotY, bridgeRotZ))); + + redFrontBridge.setLocation(OpenGLMatrix + .translation(-bridgeX, -bridgeY, bridgeZ) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 0, + -bridgeRotY, 0))); + + redRearBridge.setLocation(OpenGLMatrix + .translation(bridgeX, -bridgeY, bridgeZ) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 0, + bridgeRotY, 0))); + + //Set the position of the perimeter targets with relation to origin (center of field) + red1.setLocation(OpenGLMatrix + .translation(quadField, -halfField, mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 180))); + + red2.setLocation(OpenGLMatrix + .translation(-quadField, -halfField, mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 180))); + + front1.setLocation(OpenGLMatrix + .translation(-halfField, -quadField, mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 90))); + + front2.setLocation(OpenGLMatrix + .translation(-halfField, quadField, mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 90))); + + blue1.setLocation(OpenGLMatrix + .translation(-quadField, halfField, mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 0))); + + blue2.setLocation(OpenGLMatrix + .translation(quadField, halfField, mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, 0))); + + rear1.setLocation(OpenGLMatrix + .translation(halfField, quadField, mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, -90))); + + rear2.setLocation(OpenGLMatrix + .translation(halfField, -quadField, mmTargetHeight) + .multiplied(Orientation.getRotationMatrix(EXTRINSIC, XYZ, DEGREES, 90, 0, -90))); + } + + private void setupPhone() { + // We need to rotate the camera around its long axis to bring the correct camera forward. + //if (CAMERA_CHOICE == BACK) { We always use the back camera + float phoneYRotate = -90; + float phoneXRotate = 0; + + // Rotate the phone vertical about the X axis if it's in portrait mode + if (PHONE_IS_PORTRAIT) { + phoneXRotate = 90; + } + + // Next, translate the camera lens to where it is on the robot. + // In this example, it is centered (left to right), but forward of the middle of the robot, and above ground + // level. + final float CAMERA_FORWARD_DISPLACEMENT = 4.0f * mmPerInch; // eg: Camera is 4 Inches in front of robot + // center + final float CAMERA_VERTICAL_DISPLACEMENT = 8.0f * mmPerInch; // eg: Camera is 8 Inches above ground + final float CAMERA_LEFT_DISPLACEMENT = 0; // eg: Camera is ON the robot's center line + + float phoneZRotate = 0; + OpenGLMatrix robotFromCamera = OpenGLMatrix.translation( + CAMERA_FORWARD_DISPLACEMENT, CAMERA_LEFT_DISPLACEMENT, CAMERA_VERTICAL_DISPLACEMENT + ).multiplied(Orientation.getRotationMatrix( + EXTRINSIC, YZX, DEGREES, + phoneYRotate, phoneZRotate, phoneXRotate + )); + + for (VuforiaTrackable trackable : allTrackables) { + ((VuforiaTrackableDefaultListener) trackable.getListener()).setPhoneInformation(robotFromCamera, BACK); + } + } + + public boolean isVuforiaInitialized() { + return vuforia != null; + } + + public VuforiaLocalizer getVuforiaLocalizer() { + return vuforia; + } + + public void begin() { + allTrackables.activate(); + } + + public void end() { + allTrackables.deactivate(); + //vuforia.close(); + } + + @Override + public void loop() { + calculatePosition(); + } + + /** + * Gets the most recent position, if available. + */ + public PoseOrientation getPosition() { + if (!activated) throw new IllegalStateException("Not activated"); + OpenGLMatrix matrix = calculatePosition(); + if (matrix == null) return null; + return toPoseOrientation(matrix); + } + + OpenGLMatrix calculatePosition() { + List newLocations = new ArrayList<>(); + for (VuforiaTrackable trackable : allTrackables) { + VuforiaTrackableDefaultListener listener = (VuforiaTrackableDefaultListener) trackable.getListener(); + if (listener.isVisible()) { + + if (trackable.getName().equals("Stone Target")) { + //we cannot depend on this for coordinates + continue; + } + OpenGLMatrix robotLocationTransform = listener.getRobotLocation(); + //get, instead of get updated. + //store in list. + if (robotLocationTransform != null) { + newLocations.add(robotLocationTransform); + } + } + } + //take average, or null if none. + if (newLocations.isEmpty()) return null; + OpenGLMatrix sum = newLocations.get(0); + for (int i = 1; i < newLocations.size(); i++) { + sum.add(newLocations.get(i)); + } + sum.multiply(1f / newLocations.size()); + return sum; + } + + private PoseOrientation toPoseOrientation(OpenGLMatrix matrix) { + VectorF translation = matrix.getTranslation(); + Orientation rotation = Orientation.getOrientation(matrix, EXTRINSIC, XYZ, DEGREES); + return new PoseOrientation(translation.get(0), translation.get(1), rotation.thirdAngle); + } + + /** + * @return next image if available. + */ + public Bitmap getImage() { + try { + + VuforiaLocalizer.CloseableFrame closeableFrame = vuforia.getFrameQueue().take(); + try { + for (int i = 0; i < closeableFrame.getNumImages(); i++) { + Image image = closeableFrame.getImage(i); + + if (image.getFormat() == PIXEL_FORMAT.RGB565) { + Bitmap bm = Bitmap.createBitmap(image.getWidth(), image.getHeight(), Bitmap.Config.RGB_565); + bm.copyPixelsFromBuffer(image.getPixels()); + return bm; + } + } + } finally { + closeableFrame.close(); + } + } catch (InterruptedException ignored) { + Thread.currentThread().interrupt(); + } + return null; + } +} \ No newline at end of file diff --git a/bluejay/src/main/java/detectors/OpenCvDetector.java b/bluejay/src/main/java/detectors/OpenCvDetector.java new file mode 100644 index 00000000000..7e3dddeac99 --- /dev/null +++ b/bluejay/src/main/java/detectors/OpenCvDetector.java @@ -0,0 +1,100 @@ +package detectors; + +import android.graphics.Bitmap; +import android.util.Log; + +import com.qualcomm.robotcore.eventloop.opmode.OpMode; + +import org.opencv.android.OpenCVLoader; +import org.opencv.android.Utils; +import org.opencv.core.CvType; +import org.opencv.core.Mat; + +import java.util.ArrayList; +import java.util.List; + +import detectors.FoundationPipeline.Foundation; +import detectors.FoundationPipeline.Pipeline; +import detectors.FoundationPipeline.SkyStone; +import detectors.FoundationPipeline.Stone; + +public class OpenCvDetector extends StartStoppable { + + //Originally in RobotControllerActivity, but caused the camera shutter to make weird noises, so now it lives here + static { + OpenCVLoader.initDebug(); + //OR System.LoadLibrary("opencv_java3"); + } + + private List foundations = new ArrayList<>(); //detected foundations + private List stones = new ArrayList<>(); + private List skyStones = new ArrayList<>(); + private ImageDetector vuforia; + + + public OpenCvDetector(OpMode opMode) { + this.vuforia = new ImageDetector(opMode, true); + } + + @Override + public void loop() { + //Log.d("GO TO MO","go"); + updateObjects(); + } + + @Override + public void begin() { + vuforia.start(); + } + + @Override + public void end() { + vuforia.stop(); + } + + /** + * hold the phone as you would use it to browse reddit + * x: 0 at the top, increases as you go down + * y: 0 at the right, increases as you go left + */ + private void updateObjects() { + //get raw image + //raw image for camera + start(); + Bitmap image = vuforia.getImage(); + end(); + + //raw to Mat + //image converted to OpenCV Mat + Mat matImage = new Mat(image.getWidth(), image.getHeight(), CvType.CV_8UC1); + Utils.bitmapToMat(image, matImage); + + //Opencv pipeline + Pipeline.process(matImage); + + foundations.clear(); + foundations.addAll(Pipeline.foundations); + stones.clear(); + stones.addAll(Pipeline.stones); + skyStones.clear(); + skyStones.addAll(Pipeline.skyStones); + } + + public Foundation[] getObjectsFoundations() { + if (!activated) throw new IllegalStateException("Not activated"); + + return foundations.toArray(new Foundation[0]); + } + + public Stone[] getObjectsStones() { + if (!activated) throw new IllegalStateException("Not activated"); + + return stones.toArray(new Stone[0]); + } + + public SkyStone[] getObjectsSkyStones() { + if (!activated) throw new IllegalStateException("Not activated"); + + return skyStones.toArray(new SkyStone[0]); + } +} diff --git a/bluejay/src/main/java/detectors/StartStoppable.java b/bluejay/src/main/java/detectors/StartStoppable.java new file mode 100644 index 00000000000..e2f689bb264 --- /dev/null +++ b/bluejay/src/main/java/detectors/StartStoppable.java @@ -0,0 +1,28 @@ +package detectors; + +public abstract class StartStoppable { + volatile boolean activated = false; + + Thread loop = new Thread(()->{ + while (activated){ + loop(); + } + }); + + public final void start() { + activated = true; + loop.start(); + } + + public final void stop() { + //yes stop() is deprecated but there is no big penalty for premature death + //and suspend is useless as well because each cycle is independent + activated = false; + loop.stop(); + } + + public abstract void loop(); + public abstract void begin(); + public abstract void end(); + +} diff --git a/bluejay/src/main/java/detectors/StoneDetector.java b/bluejay/src/main/java/detectors/StoneDetector.java new file mode 100644 index 00000000000..19ae5459bc5 --- /dev/null +++ b/bluejay/src/main/java/detectors/StoneDetector.java @@ -0,0 +1,81 @@ +package detectors; + +import com.qualcomm.robotcore.eventloop.opmode.OpMode; +import com.qualcomm.robotcore.hardware.HardwareMap; +import com.qualcomm.robotcore.util.RobotLog; +import org.firstinspires.ftc.robotcore.external.ClassFactory; +import org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer; +import org.firstinspires.ftc.robotcore.external.tfod.Recognition; +import org.firstinspires.ftc.robotcore.external.tfod.TFObjectDetector; + +import java.util.List; + +public class StoneDetector extends StartStoppable { + List objects; + private TFObjectDetector tfod; + + private HardwareMap hardwareMap; + + public StoneDetector(OpMode opMode, boolean useDisplay) { + this.hardwareMap = opMode.hardwareMap; + + //by creating an image detector, we ensure that the vulocalizer singleton has been created + tfod = SetupTensorflow(new ImageDetector(opMode).getVuforiaLocalizer(), useDisplay); + } + + private TFObjectDetector SetupTensorflow(VuforiaLocalizer vuforia, boolean useDisplay) { + if (!ClassFactory.getInstance().canCreateTFObjectDetector()) { + RobotLog.e("Tensorflow bootup failed. Brace for errors"); + return null; + } + + //apply viewID to parameter object + int tfodMonitorViewId = hardwareMap.appContext.getResources().getIdentifier( + "tfodMonitorViewId", "id", hardwareMap.appContext.getPackageName()); + TFObjectDetector.Parameters tfodParameters; + if (useDisplay) tfodParameters = new TFObjectDetector.Parameters(tfodMonitorViewId); + else tfodParameters = new TFObjectDetector.Parameters(); + + tfodParameters.minimumConfidence = 0.7; + + //create a detector with the viewID + TFObjectDetector tfod = ClassFactory.getInstance().createTFObjectDetector(tfodParameters, vuforia); + + //tell the detector what to detect + tfod.loadModelFromAsset("Skystone.tflite", "Stone", "Skystone"); + + return tfod; + } + + @Override + public void loop() { + updateObjects(); + } + + @Override + public void begin() { + tfod.activate(); + } + + @Override + public void end() { + tfod.shutdown(); + } + + private void updateObjects() { + List sto = tfod.getUpdatedRecognitions(); + + if (sto == null) return; + + objects = sto; + } + + /** + * may be null if see nothing + */ + public List getObjects() { + if (!activated) return null; + + return objects; + } +} diff --git a/bluejay/src/main/java/localizers/IMU.java b/bluejay/src/main/java/localizers/IMU.java new file mode 100644 index 00000000000..3e6a28a1016 --- /dev/null +++ b/bluejay/src/main/java/localizers/IMU.java @@ -0,0 +1,122 @@ +//package localizers; +// +//import com.qualcomm.robotcore.eventloop.opmode.OpMode; +//import org.firstinspires.ftc.robotcore.external.navigation.*; +// +//public class IMU implements deltaLocalizer { +// BNO055IMU imu; +// OpMode opmode; +// +// Orientation lastAngle = new Orientation(); +// Position lastPos = new Position(); +// +// double deltaAngle; +// Position deltaPos; +// +// volatile boolean activated = false; +// +// public IMU(OpMode opMode) { +// +// this.opmode = opMode; +// +// BNO055IMU.Parameters parameters = new BNO055IMU.Parameters(); +// +// parameters.mode = BNO055IMU.SensorMode.IMU; +// parameters.angleUnit = BNO055IMU.AngleUnit.DEGREES; +// parameters.accelUnit = BNO055IMU.AccelUnit.METERS_PERSEC_PERSEC; +// parameters.loggingEnabled = false; +// +// //TODO assumption that that thing is named "imu" +// imu = opmode.hardwareMap.get(BNO055IMU.class, "imu"); +// +// imu.initialize(parameters); +// +// //watchdog +// long start = System.currentTimeMillis(); +// //make sure the imu gyro is calibrated before continuing. +// while (!imu.isGyroCalibrated()) { +// if (System.currentTimeMillis() - start > 500) { +// opmode.telemetry.addData("IMU", "watchdig quit"); +// opmode.telemetry.update(); +// +// break; +// } +// +// //wait +// opmode.telemetry.addData("IMU", ("Loading" + Math.random())); +// opmode.telemetry.update(); +// } +// +// opmode.telemetry.addData("IMU", "startup done"); +// opmode.telemetry.update(); +// } +// +// public void start() { +// resetAngle(); +// } +// +// /** +// * Resets the cumulative angle tracking to zero. +// */ +// private void resetAngle() { +// lastAngle = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); +// lastPos = imu.getPosition(); +// +// deltaAngle = 0; +// deltaPos = new Position(); +// } +// +// public void stop() { +// } +// +// /** +// * call this as fast as you can! +// * return difference in orientation to when you last called it +// * (x,y) is currently broken. But it isn't accurate so you should never use it +// * +// * @return defaults to mm for position x and y +// */ +// public PoseOrientation getDeltaPosition() { +// updatePos(); +// return new PoseOrientation(deltaPos.x, deltaPos.y, deltaAngle); +// } +// +// /** +// * Based on the last time we called get angle, take the smallest possible rotation difference +// * trig angles +// */ +// private void updatePos() { +// //z axis is the one we want +// +// Orientation angle = imu.getAngularOrientation(AxesReference.INTRINSIC, AxesOrder.ZYX, AngleUnit.DEGREES); +// Position pos = imu.getPosition(); +// +// //=========ANGLE============= +// double deltaAngle = angle.firstAngle - lastAngle.firstAngle; +// +// if (deltaAngle < -180) +// deltaAngle += 360; +// +// else if (deltaAngle > 180) +// deltaAngle -= 360; +// +// this.deltaAngle = deltaAngle; +// +// lastAngle = angle; +// //========POSITION========== +// opmode.telemetry.addData("imu raw read", pos.x); +// +// deltaPos.x = pos.x - lastPos.x; +// deltaPos.y = pos.y - lastPos.y; +// +// lastPos = pos; +// } +// +// public void printposition(PoseOrientation toprint) { +// if (toprint != null) { +// opmode.telemetry.addData("IMU-Position (mm) (rot)", toprint.x + " " + toprint.y + " " + toprint.rot); +// } else { +// opmode.telemetry.addData("IMU", "offline"); +// } +// } +//} diff --git a/bluejay/src/main/java/localizers/LocalizationManager.java b/bluejay/src/main/java/localizers/LocalizationManager.java new file mode 100644 index 00000000000..6beadede951 --- /dev/null +++ b/bluejay/src/main/java/localizers/LocalizationManager.java @@ -0,0 +1,68 @@ +package localizers; + +import java.util.ArrayList; +import java.util.List; + +public class LocalizationManager { + List delta = new ArrayList<>(); + List absolute = new ArrayList<>(); + + PoseOrientation lastknowpos = new PoseOrientation(0, 0, 0); + + volatile boolean activated = false; + + Thread run = new Thread() { + @Override + public void run() { + while (activated) { + lastknowpos = getPosition(); + } + } + }; + + /** + * Gives a position based on the best combined guess of all localizers given to this class + * Priority is as follows: absolute localizers first, first added to last added + * relative localizers next, first added to last added + */ + public PoseOrientation getPosition() { + + for (Localizer loc : absolute) { + PoseOrientation o; + if ((o = loc.getPosition()) != null) { + lastknowpos = o; + return o; + } + } + + for (deltaLocalizer loc : delta) { + PoseOrientation o; + if ((o = loc.getDeltaPosition()) != null) { + lastknowpos.x += o.x; + lastknowpos.y += o.y; + lastknowpos.rot += o.rot; + return o; + } + } + + return null; + } + + public void start() { + activated = true; + run.start(); + } + + public void stop() { + activated = false; + } + + public void addLocalizer(deltaLocalizer l) { + delta.add(l); + } + + public void addLocalizer(Localizer l) { + absolute.add(l); + } +} + diff --git a/bluejay/src/main/java/localizers/Localizer.java b/bluejay/src/main/java/localizers/Localizer.java new file mode 100644 index 00000000000..98afc7776a4 --- /dev/null +++ b/bluejay/src/main/java/localizers/Localizer.java @@ -0,0 +1,6 @@ +package localizers; + + +public interface Localizer { + PoseOrientation getPosition(); +} diff --git a/bluejay/src/main/java/localizers/PoseOrientation.java b/bluejay/src/main/java/localizers/PoseOrientation.java new file mode 100644 index 00000000000..d054274f250 --- /dev/null +++ b/bluejay/src/main/java/localizers/PoseOrientation.java @@ -0,0 +1,16 @@ +package localizers; + +/** + * Units in mm and degrees. + */ +public class PoseOrientation { + public double x; + public double y; + public double rot; + + public PoseOrientation(double x, double y, double rot) { + this.x = x; + this.y = y; + this.rot = rot; + } +} diff --git a/bluejay/src/main/java/localizers/deltaLocalizer.java b/bluejay/src/main/java/localizers/deltaLocalizer.java new file mode 100644 index 00000000000..cb7fda9c583 --- /dev/null +++ b/bluejay/src/main/java/localizers/deltaLocalizer.java @@ -0,0 +1,5 @@ +package localizers; + +public interface deltaLocalizer { + PoseOrientation getDeltaPosition(); +} diff --git a/bluejay/src/main/java/util/FileReadUtil.java b/bluejay/src/main/java/util/FileReadUtil.java new file mode 100644 index 00000000000..4cbbe4aa770 --- /dev/null +++ b/bluejay/src/main/java/util/FileReadUtil.java @@ -0,0 +1,36 @@ +package util; + +import android.os.Environment; + +import java.io.BufferedReader; +import java.io.File; +import java.io.FileReader; +import java.io.IOException; + +public class FileReadUtil { + public static String readFromSD(){ + File sdcard = Environment.getExternalStorageDirectory(); + + //Get the text file + File file= new File(sdcard,"Vuforia Key.txt"); + + //Read text from file + StringBuilder text = new StringBuilder(); + + try { + BufferedReader br = new BufferedReader(new FileReader(file)); + String line; + + while ((line = br.readLine()) != null) { + text.append(line); + text.append('\n'); + } + br.close(); + } + catch (IOException e) { + } + + return text.toString(); + } + +} diff --git a/import-summary.txt b/import-summary.txt new file mode 100644 index 00000000000..5e4581babcc --- /dev/null +++ b/import-summary.txt @@ -0,0 +1,255 @@ +ECLIPSE ANDROID PROJECT IMPORT SUMMARY +====================================== + +Ignored Files: +-------------- +The following files were *not* copied into the new Gradle project; you +should evaluate whether these are still needed in your project and if +so manually move them: + +* .DS_Store +* javadoc/ +* javadoc/allclasses-frame.html +* javadoc/allclasses-noframe.html +* javadoc/constant-values.html +* javadoc/help-doc.html +* javadoc/index-all.html +* javadoc/index.html +* javadoc/mymath.js +* javadoc/org/ +* javadoc/org/opencv/ +* javadoc/org/opencv/android/ +* javadoc/org/opencv/android/BaseLoaderCallback.html +* javadoc/org/opencv/android/Camera2Renderer.html +* javadoc/org/opencv/android/CameraActivity.html +* javadoc/org/opencv/android/CameraBridgeViewBase.CvCameraViewFrame.html +* javadoc/org/opencv/android/CameraBridgeViewBase.CvCameraViewListener.html +* javadoc/org/opencv/android/CameraBridgeViewBase.CvCameraViewListener2.html +* javadoc/org/opencv/android/CameraBridgeViewBase.ListItemAccessor.html +* javadoc/org/opencv/android/CameraBridgeViewBase.html +* javadoc/org/opencv/android/CameraGLRendererBase.html +* javadoc/org/opencv/android/CameraGLSurfaceView.CameraTextureListener.html +* javadoc/org/opencv/android/CameraGLSurfaceView.html +* javadoc/org/opencv/android/CameraRenderer.html +* javadoc/org/opencv/android/FpsMeter.html +* javadoc/org/opencv/android/InstallCallbackInterface.html +* javadoc/org/opencv/android/JavaCamera2View.JavaCameraSizeAccessor.html +* javadoc/org/opencv/android/JavaCamera2View.html +* javadoc/org/opencv/android/JavaCameraView.JavaCameraSizeAccessor.html +* javadoc/org/opencv/android/JavaCameraView.html +* javadoc/org/opencv/android/LoaderCallbackInterface.html +* javadoc/org/opencv/android/OpenCVLoader.html +* javadoc/org/opencv/android/Utils.html +* javadoc/org/opencv/android/package-frame.html +* javadoc/org/opencv/android/package-summary.html +* javadoc/org/opencv/android/package-tree.html +* javadoc/org/opencv/calib3d/ +* javadoc/org/opencv/calib3d/Calib3d.html +* javadoc/org/opencv/calib3d/StereoBM.html +* javadoc/org/opencv/calib3d/StereoMatcher.html +* javadoc/org/opencv/calib3d/StereoSGBM.html +* javadoc/org/opencv/calib3d/package-frame.html +* javadoc/org/opencv/calib3d/package-summary.html +* javadoc/org/opencv/calib3d/package-tree.html +* javadoc/org/opencv/core/ +* javadoc/org/opencv/core/Algorithm.html +* javadoc/org/opencv/core/Core.MinMaxLocResult.html +* javadoc/org/opencv/core/Core.html +* javadoc/org/opencv/core/CvException.html +* javadoc/org/opencv/core/CvType.html +* javadoc/org/opencv/core/DMatch.html +* javadoc/org/opencv/core/KeyPoint.html +* javadoc/org/opencv/core/Mat.html +* javadoc/org/opencv/core/MatOfByte.html +* javadoc/org/opencv/core/MatOfDMatch.html +* javadoc/org/opencv/core/MatOfDouble.html +* javadoc/org/opencv/core/MatOfFloat.html +* javadoc/org/opencv/core/MatOfFloat4.html +* javadoc/org/opencv/core/MatOfFloat6.html +* javadoc/org/opencv/core/MatOfInt.html +* javadoc/org/opencv/core/MatOfInt4.html +* javadoc/org/opencv/core/MatOfKeyPoint.html +* javadoc/org/opencv/core/MatOfPoint.html +* javadoc/org/opencv/core/MatOfPoint2f.html +* javadoc/org/opencv/core/MatOfPoint3.html +* javadoc/org/opencv/core/MatOfPoint3f.html +* javadoc/org/opencv/core/MatOfRect.html +* javadoc/org/opencv/core/MatOfRect2d.html +* javadoc/org/opencv/core/MatOfRotatedRect.html +* javadoc/org/opencv/core/Point.html +* javadoc/org/opencv/core/Point3.html +* javadoc/org/opencv/core/Range.html +* javadoc/org/opencv/core/Rect.html +* javadoc/org/opencv/core/Rect2d.html +* javadoc/org/opencv/core/RotatedRect.html +* javadoc/org/opencv/core/Scalar.html +* javadoc/org/opencv/core/Size.html +* javadoc/org/opencv/core/TermCriteria.html +* javadoc/org/opencv/core/TickMeter.html +* javadoc/org/opencv/core/package-frame.html +* javadoc/org/opencv/core/package-summary.html +* javadoc/org/opencv/core/package-tree.html +* javadoc/org/opencv/dnn/ +* javadoc/org/opencv/dnn/ClassificationModel.html +* javadoc/org/opencv/dnn/DetectionModel.html +* javadoc/org/opencv/dnn/DictValue.html +* javadoc/org/opencv/dnn/Dnn.html +* javadoc/org/opencv/dnn/KeypointsModel.html +* javadoc/org/opencv/dnn/Layer.html +* javadoc/org/opencv/dnn/Model.html +* javadoc/org/opencv/dnn/Net.html +* javadoc/org/opencv/dnn/SegmentationModel.html +* javadoc/org/opencv/dnn/package-frame.html +* javadoc/org/opencv/dnn/package-summary.html +* javadoc/org/opencv/dnn/package-tree.html +* javadoc/org/opencv/features2d/ +* javadoc/org/opencv/features2d/AKAZE.html +* javadoc/org/opencv/features2d/AgastFeatureDetector.html +* javadoc/org/opencv/features2d/BFMatcher.html +* javadoc/org/opencv/features2d/BOWImgDescriptorExtractor.html +* javadoc/org/opencv/features2d/BOWKMeansTrainer.html +* javadoc/org/opencv/features2d/BOWTrainer.html +* javadoc/org/opencv/features2d/BRISK.html +* javadoc/org/opencv/features2d/DescriptorMatcher.html +* javadoc/org/opencv/features2d/FastFeatureDetector.html +* javadoc/org/opencv/features2d/Feature2D.html +* javadoc/org/opencv/features2d/Features2d.html +* javadoc/org/opencv/features2d/FlannBasedMatcher.html +* javadoc/org/opencv/features2d/GFTTDetector.html +* javadoc/org/opencv/features2d/KAZE.html +* javadoc/org/opencv/features2d/MSER.html +* javadoc/org/opencv/features2d/ORB.html +* javadoc/org/opencv/features2d/Params.html +* javadoc/org/opencv/features2d/SimpleBlobDetector.html +* javadoc/org/opencv/features2d/package-frame.html +* javadoc/org/opencv/features2d/package-summary.html +* javadoc/org/opencv/features2d/package-tree.html +* javadoc/org/opencv/imgcodecs/ +* javadoc/org/opencv/imgcodecs/Imgcodecs.html +* javadoc/org/opencv/imgcodecs/package-frame.html +* javadoc/org/opencv/imgcodecs/package-summary.html +* javadoc/org/opencv/imgcodecs/package-tree.html +* javadoc/org/opencv/imgproc/ +* javadoc/org/opencv/imgproc/CLAHE.html +* javadoc/org/opencv/imgproc/GeneralizedHough.html +* javadoc/org/opencv/imgproc/GeneralizedHoughBallard.html +* javadoc/org/opencv/imgproc/GeneralizedHoughGuil.html +* javadoc/org/opencv/imgproc/Imgproc.html +* javadoc/org/opencv/imgproc/LineSegmentDetector.html +* javadoc/org/opencv/imgproc/Moments.html +* javadoc/org/opencv/imgproc/Subdiv2D.html +* javadoc/org/opencv/imgproc/package-frame.html +* javadoc/org/opencv/imgproc/package-summary.html +* javadoc/org/opencv/imgproc/package-tree.html +* javadoc/org/opencv/ml/ +* javadoc/org/opencv/ml/ANN_MLP.html +* javadoc/org/opencv/ml/Boost.html +* javadoc/org/opencv/ml/DTrees.html +* javadoc/org/opencv/ml/EM.html +* javadoc/org/opencv/ml/KNearest.html +* javadoc/org/opencv/ml/LogisticRegression.html +* javadoc/org/opencv/ml/Ml.html +* javadoc/org/opencv/ml/NormalBayesClassifier.html +* javadoc/org/opencv/ml/ParamGrid.html +* javadoc/org/opencv/ml/RTrees.html +* javadoc/org/opencv/ml/SVM.html +* javadoc/org/opencv/ml/SVMSGD.html +* javadoc/org/opencv/ml/StatModel.html +* javadoc/org/opencv/ml/TrainData.html +* javadoc/org/opencv/ml/package-frame.html +* javadoc/org/opencv/ml/package-summary.html +* javadoc/org/opencv/ml/package-tree.html +* javadoc/org/opencv/objdetect/ +* javadoc/org/opencv/objdetect/BaseCascadeClassifier.html +* javadoc/org/opencv/objdetect/CascadeClassifier.html +* javadoc/org/opencv/objdetect/HOGDescriptor.html +* javadoc/org/opencv/objdetect/Objdetect.html +* javadoc/org/opencv/objdetect/QRCodeDetector.html +* javadoc/org/opencv/objdetect/package-frame.html +* javadoc/org/opencv/objdetect/package-summary.html +* javadoc/org/opencv/objdetect/package-tree.html +* javadoc/org/opencv/osgi/ +* javadoc/org/opencv/osgi/OpenCVInterface.html +* javadoc/org/opencv/osgi/OpenCVNativeLoader.html +* javadoc/org/opencv/osgi/package-frame.html +* javadoc/org/opencv/osgi/package-summary.html +* javadoc/org/opencv/osgi/package-tree.html +* javadoc/org/opencv/photo/ +* javadoc/org/opencv/photo/AlignExposures.html +* javadoc/org/opencv/photo/AlignMTB.html +* javadoc/org/opencv/photo/CalibrateCRF.html +* javadoc/org/opencv/photo/CalibrateDebevec.html +* javadoc/org/opencv/photo/CalibrateRobertson.html +* javadoc/org/opencv/photo/MergeDebevec.html +* javadoc/org/opencv/photo/MergeExposures.html +* javadoc/org/opencv/photo/MergeMertens.html +* javadoc/org/opencv/photo/MergeRobertson.html +* javadoc/org/opencv/photo/Photo.html +* javadoc/org/opencv/photo/Tonemap.html +* javadoc/org/opencv/photo/TonemapDrago.html +* javadoc/org/opencv/photo/TonemapMantiuk.html +* javadoc/org/opencv/photo/TonemapReinhard.html +* javadoc/org/opencv/photo/package-frame.html +* javadoc/org/opencv/photo/package-summary.html +* javadoc/org/opencv/photo/package-tree.html +* javadoc/org/opencv/utils/ +* javadoc/org/opencv/utils/Converters.html +* javadoc/org/opencv/utils/package-frame.html +* javadoc/org/opencv/utils/package-summary.html +* javadoc/org/opencv/utils/package-tree.html +* javadoc/org/opencv/video/ +* javadoc/org/opencv/video/BackgroundSubtractor.html +* javadoc/org/opencv/video/BackgroundSubtractorKNN.html +* javadoc/org/opencv/video/BackgroundSubtractorMOG2.html +* javadoc/org/opencv/video/DISOpticalFlow.html +* javadoc/org/opencv/video/DenseOpticalFlow.html +* javadoc/org/opencv/video/FarnebackOpticalFlow.html +* javadoc/org/opencv/video/KalmanFilter.html +* javadoc/org/opencv/video/SparseOpticalFlow.html +* javadoc/org/opencv/video/SparsePyrLKOpticalFlow.html +* javadoc/org/opencv/video/VariationalRefinement.html +* javadoc/org/opencv/video/Video.html +* javadoc/org/opencv/video/package-frame.html +* javadoc/org/opencv/video/package-summary.html +* javadoc/org/opencv/video/package-tree.html +* javadoc/org/opencv/videoio/ +* javadoc/org/opencv/videoio/VideoCapture.html +* javadoc/org/opencv/videoio/VideoWriter.html +* javadoc/org/opencv/videoio/Videoio.html +* javadoc/org/opencv/videoio/package-frame.html +* javadoc/org/opencv/videoio/package-summary.html +* javadoc/org/opencv/videoio/package-tree.html +* javadoc/overview-frame.html +* javadoc/overview-summary.html +* javadoc/overview-tree.html +* javadoc/package-list +* javadoc/script.js +* javadoc/serialized-form.html +* javadoc/stylesheet.css + +Moved Files: +------------ +Android Gradle projects use a different directory structure than ADT +Eclipse projects. Here's how the projects were restructured: + +* AndroidManifest.xml => opencv/src/main/AndroidManifest.xml +* res/ => opencv/src/main/res/ +* src/ => opencv/src/main/java/ +* src/.DS_Store => opencv/src/main/resources/.DS_Store +* src/org/.DS_Store => opencv/src/main/resources/org/.DS_Store +* src/org/opencv/engine/OpenCVEngineInterface.aidl => opencv/src/main/aidl/org/opencv/engine/OpenCVEngineInterface.aidl + +Next Steps: +----------- +You can now build the project. The Gradle project needs network +connectivity to download dependencies. + +Bugs: +----- +If for some reason your project does not build, and you determine that +it is due to a bug or limitation of the Eclipse to Gradle importer, +please file a bug at http://b.android.com with category +Component-Tools. + +(This import summary is for your information only, and can be deleted +after import once you are satisfied with the results.) diff --git a/openCVLibrary3/build.gradle b/openCVLibrary3/build.gradle new file mode 100644 index 00000000000..8a35485c55d --- /dev/null +++ b/openCVLibrary3/build.gradle @@ -0,0 +1,20 @@ +apply plugin: 'com.android.library' +android { + compileSdkVersion 23 + buildToolsVersion "28.0.3" + + defaultConfig { + minSdkVersion 8 + targetSdkVersion 21 + } + + buildTypes { + release { + minifyEnabled false + proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.txt' + } + } +} + +dependencies { +} diff --git a/openCVLibrary3/lint.xml b/openCVLibrary3/lint.xml new file mode 100644 index 00000000000..6a5c9c61900 --- /dev/null +++ b/openCVLibrary3/lint.xml @@ -0,0 +1,9 @@ + + + + + + + + + diff --git a/openCVLibrary3/src/main/AndroidManifest.xml b/openCVLibrary3/src/main/AndroidManifest.xml new file mode 100644 index 00000000000..ce73c5ddc72 --- /dev/null +++ b/openCVLibrary3/src/main/AndroidManifest.xml @@ -0,0 +1,6 @@ + + + diff --git a/openCVLibrary3/src/main/aidl/org/opencv/engine/OpenCVEngineInterface.aidl b/openCVLibrary3/src/main/aidl/org/opencv/engine/OpenCVEngineInterface.aidl new file mode 100644 index 00000000000..21fe5f716ba --- /dev/null +++ b/openCVLibrary3/src/main/aidl/org/opencv/engine/OpenCVEngineInterface.aidl @@ -0,0 +1,33 @@ +package org.opencv.engine; + +/** +* Class provides a Java interface for OpenCV Engine Service. It's synchronous with native OpenCVEngine class. +*/ +interface OpenCVEngineInterface +{ + /** + * @return Returns service version. + */ + int getEngineVersion(); + + /** + * Finds an installed OpenCV library. + * @param OpenCV version. + * @return Returns path to OpenCV native libs or an empty string if OpenCV can not be found. + */ + String getLibPathByVersion(String version); + + /** + * Tries to install defined version of OpenCV from Google Play Market. + * @param OpenCV version. + * @return Returns true if installation was successful or OpenCV package has been already installed. + */ + boolean installVersion(String version); + + /** + * Returns list of libraries in loading order, separated by semicolon. + * @param OpenCV version. + * @return Returns names of OpenCV libraries, separated by semicolon. + */ + String getLibraryList(String version); +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/AsyncServiceHelper.java b/openCVLibrary3/src/main/java/org/opencv/android/AsyncServiceHelper.java new file mode 100644 index 00000000000..04a4ac62579 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/AsyncServiceHelper.java @@ -0,0 +1,391 @@ +package org.opencv.android; + +import java.io.File; +import java.util.StringTokenizer; + +import org.opencv.core.Core; +import org.opencv.engine.OpenCVEngineInterface; + +import android.content.ComponentName; +import android.content.Context; +import android.content.Intent; +import android.content.ServiceConnection; +import android.net.Uri; +import android.os.IBinder; +import android.os.RemoteException; +import android.util.Log; + +class AsyncServiceHelper +{ + public static boolean initOpenCV(String Version, final Context AppContext, + final LoaderCallbackInterface Callback) + { + AsyncServiceHelper helper = new AsyncServiceHelper(Version, AppContext, Callback); + Intent intent = new Intent("org.opencv.engine.BIND"); + intent.setPackage("org.opencv.engine"); + if (AppContext.bindService(intent, helper.mServiceConnection, Context.BIND_AUTO_CREATE)) + { + return true; + } + else + { + AppContext.unbindService(helper.mServiceConnection); + InstallService(AppContext, Callback); + return false; + } + } + + protected AsyncServiceHelper(String Version, Context AppContext, LoaderCallbackInterface Callback) + { + mOpenCVersion = Version; + mUserAppCallback = Callback; + mAppContext = AppContext; + } + + protected static final String TAG = "OpenCVManager/Helper"; + protected static final int MINIMUM_ENGINE_VERSION = 2; + protected OpenCVEngineInterface mEngineService; + protected LoaderCallbackInterface mUserAppCallback; + protected String mOpenCVersion; + protected Context mAppContext; + protected static boolean mServiceInstallationProgress = false; + protected static boolean mLibraryInstallationProgress = false; + + protected static boolean InstallServiceQuiet(Context context) + { + boolean result = true; + try + { + Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse(OPEN_CV_SERVICE_URL)); + intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK); + context.startActivity(intent); + } + catch(Exception e) + { + result = false; + } + + return result; + } + + protected static void InstallService(final Context AppContext, final LoaderCallbackInterface Callback) + { + if (!mServiceInstallationProgress) + { + Log.d(TAG, "Request new service installation"); + InstallCallbackInterface InstallQuery = new InstallCallbackInterface() { + private LoaderCallbackInterface mUserAppCallback = Callback; + public String getPackageName() + { + return "OpenCV Manager"; + } + public void install() { + Log.d(TAG, "Trying to install OpenCV Manager via Google Play"); + + boolean result = InstallServiceQuiet(AppContext); + if (result) + { + mServiceInstallationProgress = true; + Log.d(TAG, "Package installation started"); + } + else + { + Log.d(TAG, "OpenCV package was not installed!"); + int Status = LoaderCallbackInterface.MARKET_ERROR; + Log.d(TAG, "Init finished with status " + Status); + Log.d(TAG, "Unbind from service"); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(Status); + } + } + + public void cancel() + { + Log.d(TAG, "OpenCV library installation was canceled"); + int Status = LoaderCallbackInterface.INSTALL_CANCELED; + Log.d(TAG, "Init finished with status " + Status); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(Status); + } + + public void wait_install() + { + Log.e(TAG, "Installation was not started! Nothing to wait!"); + } + }; + + Callback.onPackageInstall(InstallCallbackInterface.NEW_INSTALLATION, InstallQuery); + } + else + { + Log.d(TAG, "Waiting current installation process"); + InstallCallbackInterface WaitQuery = new InstallCallbackInterface() { + private LoaderCallbackInterface mUserAppCallback = Callback; + public String getPackageName() + { + return "OpenCV Manager"; + } + public void install() + { + Log.e(TAG, "Nothing to install we just wait current installation"); + } + public void cancel() + { + Log.d(TAG, "Waiting for OpenCV canceled by user"); + mServiceInstallationProgress = false; + int Status = LoaderCallbackInterface.INSTALL_CANCELED; + Log.d(TAG, "Init finished with status " + Status); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(Status); + } + public void wait_install() + { + InstallServiceQuiet(AppContext); + } + }; + + Callback.onPackageInstall(InstallCallbackInterface.INSTALLATION_PROGRESS, WaitQuery); + } + } + + /** + * URL of OpenCV Manager page on Google Play Market. + */ + protected static final String OPEN_CV_SERVICE_URL = "market://details?id=org.opencv.engine"; + + protected ServiceConnection mServiceConnection = new ServiceConnection() + { + public void onServiceConnected(ComponentName className, IBinder service) + { + Log.d(TAG, "Service connection created"); + mEngineService = OpenCVEngineInterface.Stub.asInterface(service); + if (null == mEngineService) + { + Log.d(TAG, "OpenCV Manager Service connection fails. May be service was not installed?"); + InstallService(mAppContext, mUserAppCallback); + } + else + { + mServiceInstallationProgress = false; + try + { + if (mEngineService.getEngineVersion() < MINIMUM_ENGINE_VERSION) + { + Log.d(TAG, "Init finished with status " + LoaderCallbackInterface.INCOMPATIBLE_MANAGER_VERSION); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(LoaderCallbackInterface.INCOMPATIBLE_MANAGER_VERSION); + return; + } + + Log.d(TAG, "Trying to get library path"); + String path = mEngineService.getLibPathByVersion(mOpenCVersion); + if ((null == path) || (path.length() == 0)) + { + if (!mLibraryInstallationProgress) + { + InstallCallbackInterface InstallQuery = new InstallCallbackInterface() { + public String getPackageName() + { + return "OpenCV library"; + } + public void install() { + Log.d(TAG, "Trying to install OpenCV lib via Google Play"); + try + { + if (mEngineService.installVersion(mOpenCVersion)) + { + mLibraryInstallationProgress = true; + Log.d(TAG, "Package installation started"); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + } + else + { + Log.d(TAG, "OpenCV package was not installed!"); + Log.d(TAG, "Init finished with status " + LoaderCallbackInterface.MARKET_ERROR); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(LoaderCallbackInterface.MARKET_ERROR); + } + } catch (RemoteException e) { + e.printStackTrace();; + Log.d(TAG, "Init finished with status " + LoaderCallbackInterface.INIT_FAILED); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(LoaderCallbackInterface.INIT_FAILED); + } + } + public void cancel() { + Log.d(TAG, "OpenCV library installation was canceled"); + Log.d(TAG, "Init finished with status " + LoaderCallbackInterface.INSTALL_CANCELED); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(LoaderCallbackInterface.INSTALL_CANCELED); + } + public void wait_install() { + Log.e(TAG, "Installation was not started! Nothing to wait!"); + } + }; + + mUserAppCallback.onPackageInstall(InstallCallbackInterface.NEW_INSTALLATION, InstallQuery); + } + else + { + InstallCallbackInterface WaitQuery = new InstallCallbackInterface() { + public String getPackageName() + { + return "OpenCV library"; + } + + public void install() { + Log.e(TAG, "Nothing to install we just wait current installation"); + } + public void cancel() + { + Log.d(TAG, "OpenCV library installation was canceled"); + mLibraryInstallationProgress = false; + Log.d(TAG, "Init finished with status " + LoaderCallbackInterface.INSTALL_CANCELED); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(LoaderCallbackInterface.INSTALL_CANCELED); + } + public void wait_install() { + Log.d(TAG, "Waiting for current installation"); + try + { + if (!mEngineService.installVersion(mOpenCVersion)) + { + Log.d(TAG, "OpenCV package was not installed!"); + Log.d(TAG, "Init finished with status " + LoaderCallbackInterface.MARKET_ERROR); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(LoaderCallbackInterface.MARKET_ERROR); + } + else + { + Log.d(TAG, "Wating for package installation"); + } + + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + + } catch (RemoteException e) { + e.printStackTrace(); + Log.d(TAG, "Init finished with status " + LoaderCallbackInterface.INIT_FAILED); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(LoaderCallbackInterface.INIT_FAILED); + } + } + }; + + mUserAppCallback.onPackageInstall(InstallCallbackInterface.INSTALLATION_PROGRESS, WaitQuery); + } + return; + } + else + { + Log.d(TAG, "Trying to get library list"); + mLibraryInstallationProgress = false; + String libs = mEngineService.getLibraryList(mOpenCVersion); + Log.d(TAG, "Library list: \"" + libs + "\""); + Log.d(TAG, "First attempt to load libs"); + int status; + if (initOpenCVLibs(path, libs)) + { + Log.d(TAG, "First attempt to load libs is OK"); + String eol = System.getProperty("line.separator"); + for (String str : Core.getBuildInformation().split(eol)) + Log.i(TAG, str); + + status = LoaderCallbackInterface.SUCCESS; + } + else + { + Log.d(TAG, "First attempt to load libs fails"); + status = LoaderCallbackInterface.INIT_FAILED; + } + + Log.d(TAG, "Init finished with status " + status); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(status); + } + } + catch (RemoteException e) + { + e.printStackTrace(); + Log.d(TAG, "Init finished with status " + LoaderCallbackInterface.INIT_FAILED); + Log.d(TAG, "Unbind from service"); + mAppContext.unbindService(mServiceConnection); + Log.d(TAG, "Calling using callback"); + mUserAppCallback.onManagerConnected(LoaderCallbackInterface.INIT_FAILED); + } + } + } + + public void onServiceDisconnected(ComponentName className) + { + mEngineService = null; + } + }; + + private boolean loadLibrary(String AbsPath) + { + boolean result = true; + + Log.d(TAG, "Trying to load library " + AbsPath); + try + { + System.load(AbsPath); + Log.d(TAG, "OpenCV libs init was ok!"); + } + catch(UnsatisfiedLinkError e) + { + Log.d(TAG, "Cannot load library \"" + AbsPath + "\""); + e.printStackTrace(); + result = false; + } + + return result; + } + + private boolean initOpenCVLibs(String Path, String Libs) + { + Log.d(TAG, "Trying to init OpenCV libs"); + if ((null != Path) && (Path.length() != 0)) + { + boolean result = true; + if ((null != Libs) && (Libs.length() != 0)) + { + Log.d(TAG, "Trying to load libs by dependency list"); + StringTokenizer splitter = new StringTokenizer(Libs, ";"); + while(splitter.hasMoreTokens()) + { + String AbsLibraryPath = Path + File.separator + splitter.nextToken(); + result &= loadLibrary(AbsLibraryPath); + } + } + else + { + // If the dependencies list is not defined or empty. + String AbsLibraryPath = Path + File.separator + "libopencv_java3.so"; + result = loadLibrary(AbsLibraryPath); + } + + return result; + } + else + { + Log.d(TAG, "Library path \"" + Path + "\" is empty"); + return false; + } + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/BaseLoaderCallback.java b/openCVLibrary3/src/main/java/org/opencv/android/BaseLoaderCallback.java new file mode 100644 index 00000000000..0b8aeedc6a2 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/BaseLoaderCallback.java @@ -0,0 +1,141 @@ +package org.opencv.android; + +import android.app.Activity; +import android.app.AlertDialog; +import android.content.Context; +import android.content.DialogInterface; +import android.content.DialogInterface.OnClickListener; +import android.util.Log; + +/** + * Basic implementation of LoaderCallbackInterface. + */ +public abstract class BaseLoaderCallback implements LoaderCallbackInterface { + + public BaseLoaderCallback(Context AppContext) { + mAppContext = AppContext; + } + + public void onManagerConnected(int status) + { + switch (status) + { + /** OpenCV initialization was successful. **/ + case LoaderCallbackInterface.SUCCESS: + { + /** Application must override this method to handle successful library initialization. **/ + } break; + /** OpenCV loader can not start Google Play Market. **/ + case LoaderCallbackInterface.MARKET_ERROR: + { + Log.e(TAG, "Package installation failed!"); + AlertDialog MarketErrorMessage = new AlertDialog.Builder(mAppContext).create(); + MarketErrorMessage.setTitle("OpenCV Manager"); + MarketErrorMessage.setMessage("Package installation failed!"); + MarketErrorMessage.setCancelable(false); // This blocks the 'BACK' button + MarketErrorMessage.setButton(AlertDialog.BUTTON_POSITIVE, "OK", new OnClickListener() { + public void onClick(DialogInterface dialog, int which) { + finish(); + } + }); + MarketErrorMessage.show(); + } break; + /** Package installation has been canceled. **/ + case LoaderCallbackInterface.INSTALL_CANCELED: + { + Log.d(TAG, "OpenCV library installation was canceled by user"); + finish(); + } break; + /** Application is incompatible with this version of OpenCV Manager. Possibly, a service update is required. **/ + case LoaderCallbackInterface.INCOMPATIBLE_MANAGER_VERSION: + { + Log.d(TAG, "OpenCV Manager Service is uncompatible with this app!"); + AlertDialog IncomatibilityMessage = new AlertDialog.Builder(mAppContext).create(); + IncomatibilityMessage.setTitle("OpenCV Manager"); + IncomatibilityMessage.setMessage("OpenCV Manager service is incompatible with this app. Try to update it via Google Play."); + IncomatibilityMessage.setCancelable(false); // This blocks the 'BACK' button + IncomatibilityMessage.setButton(AlertDialog.BUTTON_POSITIVE, "OK", new OnClickListener() { + public void onClick(DialogInterface dialog, int which) { + finish(); + } + }); + IncomatibilityMessage.show(); + } break; + /** Other status, i.e. INIT_FAILED. **/ + default: + { + Log.e(TAG, "OpenCV loading failed!"); + AlertDialog InitFailedDialog = new AlertDialog.Builder(mAppContext).create(); + InitFailedDialog.setTitle("OpenCV error"); + InitFailedDialog.setMessage("OpenCV was not initialised correctly. Application will be shut down"); + InitFailedDialog.setCancelable(false); // This blocks the 'BACK' button + InitFailedDialog.setButton(AlertDialog.BUTTON_POSITIVE, "OK", new OnClickListener() { + + public void onClick(DialogInterface dialog, int which) { + finish(); + } + }); + + InitFailedDialog.show(); + } break; + } + } + + public void onPackageInstall(final int operation, final InstallCallbackInterface callback) + { + switch (operation) + { + case InstallCallbackInterface.NEW_INSTALLATION: + { + AlertDialog InstallMessage = new AlertDialog.Builder(mAppContext).create(); + InstallMessage.setTitle("Package not found"); + InstallMessage.setMessage(callback.getPackageName() + " package was not found! Try to install it?"); + InstallMessage.setCancelable(false); // This blocks the 'BACK' button + InstallMessage.setButton(AlertDialog.BUTTON_POSITIVE, "Yes", new OnClickListener() + { + public void onClick(DialogInterface dialog, int which) + { + callback.install(); + } + }); + + InstallMessage.setButton(AlertDialog.BUTTON_NEGATIVE, "No", new OnClickListener() { + + public void onClick(DialogInterface dialog, int which) + { + callback.cancel(); + } + }); + + InstallMessage.show(); + } break; + case InstallCallbackInterface.INSTALLATION_PROGRESS: + { + AlertDialog WaitMessage = new AlertDialog.Builder(mAppContext).create(); + WaitMessage.setTitle("OpenCV is not ready"); + WaitMessage.setMessage("Installation is in progress. Wait or exit?"); + WaitMessage.setCancelable(false); // This blocks the 'BACK' button + WaitMessage.setButton(AlertDialog.BUTTON_POSITIVE, "Wait", new OnClickListener() { + public void onClick(DialogInterface dialog, int which) { + callback.wait_install(); + } + }); + WaitMessage.setButton(AlertDialog.BUTTON_NEGATIVE, "Exit", new OnClickListener() { + public void onClick(DialogInterface dialog, int which) { + callback.cancel(); + } + }); + + WaitMessage.show(); + } break; + } + } + + void finish() + { + ((Activity) mAppContext).finish(); + } + + protected Context mAppContext; + private final static String TAG = "OpenCVLoader/BaseLoaderCallback"; +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/Camera2Renderer.java b/openCVLibrary3/src/main/java/org/opencv/android/Camera2Renderer.java new file mode 100644 index 00000000000..408214057a9 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/Camera2Renderer.java @@ -0,0 +1,302 @@ +package org.opencv.android; + +import java.util.Arrays; +import java.util.concurrent.Semaphore; +import java.util.concurrent.TimeUnit; +import android.annotation.TargetApi; +import android.content.Context; +import android.graphics.SurfaceTexture; +import android.hardware.camera2.CameraAccessException; +import android.hardware.camera2.CameraCaptureSession; +import android.hardware.camera2.CameraCharacteristics; +import android.hardware.camera2.CameraDevice; +import android.hardware.camera2.CameraManager; +import android.hardware.camera2.CaptureRequest; +import android.hardware.camera2.params.StreamConfigurationMap; +import android.os.Handler; +import android.os.HandlerThread; +import android.util.Log; +import android.util.Size; +import android.view.Surface; + +@TargetApi(21) +public class Camera2Renderer extends CameraGLRendererBase { + + protected final String LOGTAG = "Camera2Renderer"; + private CameraDevice mCameraDevice; + private CameraCaptureSession mCaptureSession; + private CaptureRequest.Builder mPreviewRequestBuilder; + private String mCameraID; + private Size mPreviewSize = new Size(-1, -1); + + private HandlerThread mBackgroundThread; + private Handler mBackgroundHandler; + private Semaphore mCameraOpenCloseLock = new Semaphore(1); + + Camera2Renderer(CameraGLSurfaceView view) { + super(view); + } + + @Override + protected void doStart() { + Log.d(LOGTAG, "doStart"); + startBackgroundThread(); + super.doStart(); + } + + + @Override + protected void doStop() { + Log.d(LOGTAG, "doStop"); + super.doStop(); + stopBackgroundThread(); + } + + boolean cacPreviewSize(final int width, final int height) { + Log.i(LOGTAG, "cacPreviewSize: "+width+"x"+height); + if(mCameraID == null) { + Log.e(LOGTAG, "Camera isn't initialized!"); + return false; + } + CameraManager manager = (CameraManager) mView.getContext() + .getSystemService(Context.CAMERA_SERVICE); + try { + CameraCharacteristics characteristics = manager + .getCameraCharacteristics(mCameraID); + StreamConfigurationMap map = characteristics + .get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP); + int bestWidth = 0, bestHeight = 0; + float aspect = (float)width / height; + for (Size psize : map.getOutputSizes(SurfaceTexture.class)) { + int w = psize.getWidth(), h = psize.getHeight(); + Log.d(LOGTAG, "trying size: "+w+"x"+h); + if ( width >= w && height >= h && + bestWidth <= w && bestHeight <= h && + Math.abs(aspect - (float)w/h) < 0.2 ) { + bestWidth = w; + bestHeight = h; + } + } + Log.i(LOGTAG, "best size: "+bestWidth+"x"+bestHeight); + if( bestWidth == 0 || bestHeight == 0 || + mPreviewSize.getWidth() == bestWidth && + mPreviewSize.getHeight() == bestHeight ) + return false; + else { + mPreviewSize = new Size(bestWidth, bestHeight); + return true; + } + } catch (CameraAccessException e) { + Log.e(LOGTAG, "cacPreviewSize - Camera Access Exception"); + } catch (IllegalArgumentException e) { + Log.e(LOGTAG, "cacPreviewSize - Illegal Argument Exception"); + } catch (SecurityException e) { + Log.e(LOGTAG, "cacPreviewSize - Security Exception"); + } + return false; + } + + @Override + protected void openCamera(int id) { + Log.i(LOGTAG, "openCamera"); + CameraManager manager = (CameraManager) mView.getContext().getSystemService(Context.CAMERA_SERVICE); + try { + String camList[] = manager.getCameraIdList(); + if(camList.length == 0) { + Log.e(LOGTAG, "Error: camera isn't detected."); + return; + } + if(id == CameraBridgeViewBase.CAMERA_ID_ANY) { + mCameraID = camList[0]; + } else { + for (String cameraID : camList) { + CameraCharacteristics characteristics = manager.getCameraCharacteristics(cameraID); + if( id == CameraBridgeViewBase.CAMERA_ID_BACK && + characteristics.get(CameraCharacteristics.LENS_FACING) == CameraCharacteristics.LENS_FACING_BACK || + id == CameraBridgeViewBase.CAMERA_ID_FRONT && + characteristics.get(CameraCharacteristics.LENS_FACING) == CameraCharacteristics.LENS_FACING_FRONT) { + mCameraID = cameraID; + break; + } + } + } + if(mCameraID != null) { + if (!mCameraOpenCloseLock.tryAcquire(2500, TimeUnit.MILLISECONDS)) { + throw new RuntimeException( + "Time out waiting to lock camera opening."); + } + Log.i(LOGTAG, "Opening camera: " + mCameraID); + manager.openCamera(mCameraID, mStateCallback, mBackgroundHandler); + } + } catch (CameraAccessException e) { + Log.e(LOGTAG, "OpenCamera - Camera Access Exception"); + } catch (IllegalArgumentException e) { + Log.e(LOGTAG, "OpenCamera - Illegal Argument Exception"); + } catch (SecurityException e) { + Log.e(LOGTAG, "OpenCamera - Security Exception"); + } catch (InterruptedException e) { + Log.e(LOGTAG, "OpenCamera - Interrupted Exception"); + } + } + + @Override + protected void closeCamera() { + Log.i(LOGTAG, "closeCamera"); + try { + mCameraOpenCloseLock.acquire(); + if (null != mCaptureSession) { + mCaptureSession.close(); + mCaptureSession = null; + } + if (null != mCameraDevice) { + mCameraDevice.close(); + mCameraDevice = null; + } + } catch (InterruptedException e) { + throw new RuntimeException("Interrupted while trying to lock camera closing.", e); + } finally { + mCameraOpenCloseLock.release(); + } + } + + private final CameraDevice.StateCallback mStateCallback = new CameraDevice.StateCallback() { + + @Override + public void onOpened(CameraDevice cameraDevice) { + mCameraDevice = cameraDevice; + mCameraOpenCloseLock.release(); + createCameraPreviewSession(); + } + + @Override + public void onDisconnected(CameraDevice cameraDevice) { + cameraDevice.close(); + mCameraDevice = null; + mCameraOpenCloseLock.release(); + } + + @Override + public void onError(CameraDevice cameraDevice, int error) { + cameraDevice.close(); + mCameraDevice = null; + mCameraOpenCloseLock.release(); + } + + }; + + private void createCameraPreviewSession() { + int w=mPreviewSize.getWidth(), h=mPreviewSize.getHeight(); + Log.i(LOGTAG, "createCameraPreviewSession("+w+"x"+h+")"); + if(w<0 || h<0) + return; + try { + mCameraOpenCloseLock.acquire(); + if (null == mCameraDevice) { + mCameraOpenCloseLock.release(); + Log.e(LOGTAG, "createCameraPreviewSession: camera isn't opened"); + return; + } + if (null != mCaptureSession) { + mCameraOpenCloseLock.release(); + Log.e(LOGTAG, "createCameraPreviewSession: mCaptureSession is already started"); + return; + } + if(null == mSTexture) { + mCameraOpenCloseLock.release(); + Log.e(LOGTAG, "createCameraPreviewSession: preview SurfaceTexture is null"); + return; + } + mSTexture.setDefaultBufferSize(w, h); + + Surface surface = new Surface(mSTexture); + + mPreviewRequestBuilder = mCameraDevice + .createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW); + mPreviewRequestBuilder.addTarget(surface); + + mCameraDevice.createCaptureSession(Arrays.asList(surface), + new CameraCaptureSession.StateCallback() { + @Override + public void onConfigured( CameraCaptureSession cameraCaptureSession) { + mCaptureSession = cameraCaptureSession; + try { + mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AF_MODE, CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE); + mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AE_MODE, CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH); + + mCaptureSession.setRepeatingRequest(mPreviewRequestBuilder.build(), null, mBackgroundHandler); + Log.i(LOGTAG, "CameraPreviewSession has been started"); + } catch (CameraAccessException e) { + Log.e(LOGTAG, "createCaptureSession failed"); + } + mCameraOpenCloseLock.release(); + } + + @Override + public void onConfigureFailed( + CameraCaptureSession cameraCaptureSession) { + Log.e(LOGTAG, "createCameraPreviewSession failed"); + mCameraOpenCloseLock.release(); + } + }, mBackgroundHandler); + } catch (CameraAccessException e) { + Log.e(LOGTAG, "createCameraPreviewSession"); + } catch (InterruptedException e) { + throw new RuntimeException( + "Interrupted while createCameraPreviewSession", e); + } + finally { + //mCameraOpenCloseLock.release(); + } + } + + private void startBackgroundThread() { + Log.i(LOGTAG, "startBackgroundThread"); + stopBackgroundThread(); + mBackgroundThread = new HandlerThread("CameraBackground"); + mBackgroundThread.start(); + mBackgroundHandler = new Handler(mBackgroundThread.getLooper()); + } + + private void stopBackgroundThread() { + Log.i(LOGTAG, "stopBackgroundThread"); + if(mBackgroundThread == null) + return; + mBackgroundThread.quitSafely(); + try { + mBackgroundThread.join(); + mBackgroundThread = null; + mBackgroundHandler = null; + } catch (InterruptedException e) { + Log.e(LOGTAG, "stopBackgroundThread"); + } + } + + @Override + protected void setCameraPreviewSize(int width, int height) { + Log.i(LOGTAG, "setCameraPreviewSize("+width+"x"+height+")"); + if(mMaxCameraWidth > 0 && mMaxCameraWidth < width) width = mMaxCameraWidth; + if(mMaxCameraHeight > 0 && mMaxCameraHeight < height) height = mMaxCameraHeight; + try { + mCameraOpenCloseLock.acquire(); + + boolean needReconfig = cacPreviewSize(width, height); + mCameraWidth = mPreviewSize.getWidth(); + mCameraHeight = mPreviewSize.getHeight(); + + if( !needReconfig ) { + mCameraOpenCloseLock.release(); + return; + } + if (null != mCaptureSession) { + Log.d(LOGTAG, "closing existing previewSession"); + mCaptureSession.close(); + mCaptureSession = null; + } + mCameraOpenCloseLock.release(); + createCameraPreviewSession(); + } catch (InterruptedException e) { + mCameraOpenCloseLock.release(); + throw new RuntimeException("Interrupted while setCameraPreviewSize.", e); + } + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/CameraBridgeViewBase.java b/openCVLibrary3/src/main/java/org/opencv/android/CameraBridgeViewBase.java new file mode 100644 index 00000000000..2cdaaac3092 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/CameraBridgeViewBase.java @@ -0,0 +1,495 @@ +package org.opencv.android; + +import java.util.List; + +import org.opencv.BuildConfig; +import org.opencv.R; +import org.opencv.core.Mat; +import org.opencv.core.Size; + +import android.app.Activity; +import android.app.AlertDialog; +import android.content.Context; +import android.content.DialogInterface; +import android.content.res.TypedArray; +import android.graphics.Bitmap; +import android.graphics.Canvas; +import android.graphics.Rect; +import android.util.AttributeSet; +import android.util.Log; +import android.view.SurfaceHolder; +import android.view.SurfaceView; + +/** + * This is a basic class, implementing the interaction with Camera and OpenCV library. + * The main responsibility of it - is to control when camera can be enabled, process the frame, + * call external listener to make any adjustments to the frame and then draw the resulting + * frame to the screen. + * The clients shall implement CvCameraViewListener. + */ +public abstract class CameraBridgeViewBase extends SurfaceView implements SurfaceHolder.Callback { + + private static final String TAG = "CameraBridge"; + private static final int MAX_UNSPECIFIED = -1; + private static final int STOPPED = 0; + private static final int STARTED = 1; + + private int mState = STOPPED; + protected Bitmap mCacheBitmap; + protected CvCameraViewListener2 mListener; + private boolean mSurfaceExist; + private final Object mSyncObject = new Object(); + + protected int mFrameWidth; + protected int mFrameHeight; + protected int mMaxHeight; + protected int mMaxWidth; + protected float mScale = 0; + protected int mPreviewFormat = RGBA; + protected int mCameraIndex = CAMERA_ID_ANY; + protected boolean mEnabled; + protected FpsMeter mFpsMeter = null; + + public static final int CAMERA_ID_ANY = -1; + public static final int CAMERA_ID_BACK = 99; + public static final int CAMERA_ID_FRONT = 98; + public static final int RGBA = 1; + public static final int GRAY = 2; + + public CameraBridgeViewBase(Context context, int cameraId) { + super(context); + mCameraIndex = cameraId; + getHolder().addCallback(this); + mMaxWidth = MAX_UNSPECIFIED; + mMaxHeight = MAX_UNSPECIFIED; + } + + public CameraBridgeViewBase(Context context, AttributeSet attrs) { + super(context, attrs); + + int count = attrs.getAttributeCount(); + Log.d(TAG, "Attr count: " + Integer.valueOf(count)); + + TypedArray styledAttrs = getContext().obtainStyledAttributes(attrs, R.styleable.CameraBridgeViewBase); + if (styledAttrs.getBoolean(R.styleable.CameraBridgeViewBase_show_fps, false)) + enableFpsMeter(); + + mCameraIndex = styledAttrs.getInt(R.styleable.CameraBridgeViewBase_camera_id, -1); + + getHolder().addCallback(this); + mMaxWidth = MAX_UNSPECIFIED; + mMaxHeight = MAX_UNSPECIFIED; + styledAttrs.recycle(); + } + + /** + * Sets the camera index + * @param cameraIndex new camera index + */ + public void setCameraIndex(int cameraIndex) { + this.mCameraIndex = cameraIndex; + } + + public interface CvCameraViewListener { + /** + * This method is invoked when camera preview has started. After this method is invoked + * the frames will start to be delivered to client via the onCameraFrame() callback. + * @param width - the width of the frames that will be delivered + * @param height - the height of the frames that will be delivered + */ + public void onCameraViewStarted(int width, int height); + + /** + * This method is invoked when camera preview has been stopped for some reason. + * No frames will be delivered via onCameraFrame() callback after this method is called. + */ + public void onCameraViewStopped(); + + /** + * This method is invoked when delivery of the frame needs to be done. + * The returned values - is a modified frame which needs to be displayed on the screen. + * TODO: pass the parameters specifying the format of the frame (BPP, YUV or RGB and etc) + */ + public Mat onCameraFrame(Mat inputFrame); + } + + public interface CvCameraViewListener2 { + /** + * This method is invoked when camera preview has started. After this method is invoked + * the frames will start to be delivered to client via the onCameraFrame() callback. + * @param width - the width of the frames that will be delivered + * @param height - the height of the frames that will be delivered + */ + public void onCameraViewStarted(int width, int height); + + /** + * This method is invoked when camera preview has been stopped for some reason. + * No frames will be delivered via onCameraFrame() callback after this method is called. + */ + public void onCameraViewStopped(); + + /** + * This method is invoked when delivery of the frame needs to be done. + * The returned values - is a modified frame which needs to be displayed on the screen. + * TODO: pass the parameters specifying the format of the frame (BPP, YUV or RGB and etc) + */ + public Mat onCameraFrame(CvCameraViewFrame inputFrame); + }; + + protected class CvCameraViewListenerAdapter implements CvCameraViewListener2 { + public CvCameraViewListenerAdapter(CvCameraViewListener oldStypeListener) { + mOldStyleListener = oldStypeListener; + } + + public void onCameraViewStarted(int width, int height) { + mOldStyleListener.onCameraViewStarted(width, height); + } + + public void onCameraViewStopped() { + mOldStyleListener.onCameraViewStopped(); + } + + public Mat onCameraFrame(CvCameraViewFrame inputFrame) { + Mat result = null; + switch (mPreviewFormat) { + case RGBA: + result = mOldStyleListener.onCameraFrame(inputFrame.rgba()); + break; + case GRAY: + result = mOldStyleListener.onCameraFrame(inputFrame.gray()); + break; + default: + Log.e(TAG, "Invalid frame format! Only RGBA and Gray Scale are supported!"); + }; + + return result; + } + + public void setFrameFormat(int format) { + mPreviewFormat = format; + } + + private int mPreviewFormat = RGBA; + private CvCameraViewListener mOldStyleListener; + }; + + /** + * This class interface is abstract representation of single frame from camera for onCameraFrame callback + * Attention: Do not use objects, that represents this interface out of onCameraFrame callback! + */ + public interface CvCameraViewFrame { + + /** + * This method returns RGBA Mat with frame + */ + public Mat rgba(); + + /** + * This method returns single channel gray scale Mat with frame + */ + public Mat gray(); + }; + + public void surfaceChanged(SurfaceHolder arg0, int arg1, int arg2, int arg3) { + Log.d(TAG, "call surfaceChanged event"); + synchronized(mSyncObject) { + if (!mSurfaceExist) { + mSurfaceExist = true; + checkCurrentState(); + } else { + /** Surface changed. We need to stop camera and restart with new parameters */ + /* Pretend that old surface has been destroyed */ + mSurfaceExist = false; + checkCurrentState(); + /* Now use new surface. Say we have it now */ + mSurfaceExist = true; + checkCurrentState(); + } + } + } + + public void surfaceCreated(SurfaceHolder holder) { + /* Do nothing. Wait until surfaceChanged delivered */ + } + + public void surfaceDestroyed(SurfaceHolder holder) { + synchronized(mSyncObject) { + mSurfaceExist = false; + checkCurrentState(); + } + } + + /** + * This method is provided for clients, so they can enable the camera connection. + * The actual onCameraViewStarted callback will be delivered only after both this method is called and surface is available + */ + public void enableView() { + synchronized(mSyncObject) { + mEnabled = true; + checkCurrentState(); + } + } + + /** + * This method is provided for clients, so they can disable camera connection and stop + * the delivery of frames even though the surface view itself is not destroyed and still stays on the scren + */ + public void disableView() { + synchronized(mSyncObject) { + mEnabled = false; + checkCurrentState(); + } + } + + /** + * This method enables label with fps value on the screen + */ + public void enableFpsMeter() { + if (mFpsMeter == null) { + mFpsMeter = new FpsMeter(); + mFpsMeter.setResolution(mFrameWidth, mFrameHeight); + } + } + + public void disableFpsMeter() { + mFpsMeter = null; + } + + /** + * + * @param listener + */ + + public void setCvCameraViewListener(CvCameraViewListener2 listener) { + mListener = listener; + } + + public void setCvCameraViewListener(CvCameraViewListener listener) { + CvCameraViewListenerAdapter adapter = new CvCameraViewListenerAdapter(listener); + adapter.setFrameFormat(mPreviewFormat); + mListener = adapter; + } + + /** + * This method sets the maximum size that camera frame is allowed to be. When selecting + * size - the biggest size which less or equal the size set will be selected. + * As an example - we set setMaxFrameSize(200,200) and we have 176x152 and 320x240 sizes. The + * preview frame will be selected with 176x152 size. + * This method is useful when need to restrict the size of preview frame for some reason (for example for video recording) + * @param maxWidth - the maximum width allowed for camera frame. + * @param maxHeight - the maximum height allowed for camera frame + */ + public void setMaxFrameSize(int maxWidth, int maxHeight) { + mMaxWidth = maxWidth; + mMaxHeight = maxHeight; + } + + public void SetCaptureFormat(int format) + { + mPreviewFormat = format; + if (mListener instanceof CvCameraViewListenerAdapter) { + CvCameraViewListenerAdapter adapter = (CvCameraViewListenerAdapter) mListener; + adapter.setFrameFormat(mPreviewFormat); + } + } + + /** + * Called when mSyncObject lock is held + */ + private void checkCurrentState() { + Log.d(TAG, "call checkCurrentState"); + int targetState; + + if (mEnabled && mSurfaceExist && getVisibility() == VISIBLE) { + targetState = STARTED; + } else { + targetState = STOPPED; + } + + if (targetState != mState) { + /* The state change detected. Need to exit the current state and enter target state */ + processExitState(mState); + mState = targetState; + processEnterState(mState); + } + } + + private void processEnterState(int state) { + Log.d(TAG, "call processEnterState: " + state); + switch(state) { + case STARTED: + onEnterStartedState(); + if (mListener != null) { + mListener.onCameraViewStarted(mFrameWidth, mFrameHeight); + } + break; + case STOPPED: + onEnterStoppedState(); + if (mListener != null) { + mListener.onCameraViewStopped(); + } + break; + }; + } + + private void processExitState(int state) { + Log.d(TAG, "call processExitState: " + state); + switch(state) { + case STARTED: + onExitStartedState(); + break; + case STOPPED: + onExitStoppedState(); + break; + }; + } + + private void onEnterStoppedState() { + /* nothing to do */ + } + + private void onExitStoppedState() { + /* nothing to do */ + } + + // NOTE: The order of bitmap constructor and camera connection is important for android 4.1.x + // Bitmap must be constructed before surface + private void onEnterStartedState() { + Log.d(TAG, "call onEnterStartedState"); + /* Connect camera */ + if (!connectCamera(getWidth(), getHeight())) { + AlertDialog ad = new AlertDialog.Builder(getContext()).create(); + ad.setCancelable(false); // This blocks the 'BACK' button + ad.setMessage("It seems that you device does not support camera (or it is locked). Application will be closed."); + ad.setButton(DialogInterface.BUTTON_NEUTRAL, "OK", new DialogInterface.OnClickListener() { + public void onClick(DialogInterface dialog, int which) { + dialog.dismiss(); + ((Activity) getContext()).finish(); + } + }); + ad.show(); + + } + } + + private void onExitStartedState() { + disconnectCamera(); + if (mCacheBitmap != null) { + mCacheBitmap.recycle(); + } + } + + /** + * This method shall be called by the subclasses when they have valid + * object and want it to be delivered to external client (via callback) and + * then displayed on the screen. + * @param frame - the current frame to be delivered + */ + protected void deliverAndDrawFrame(CvCameraViewFrame frame) { + Mat modified; + + if (mListener != null) { + modified = mListener.onCameraFrame(frame); + } else { + modified = frame.rgba(); + } + + boolean bmpValid = true; + if (modified != null) { + try { + Utils.matToBitmap(modified, mCacheBitmap); + } catch(Exception e) { + Log.e(TAG, "Mat type: " + modified); + Log.e(TAG, "Bitmap type: " + mCacheBitmap.getWidth() + "*" + mCacheBitmap.getHeight()); + Log.e(TAG, "Utils.matToBitmap() throws an exception: " + e.getMessage()); + bmpValid = false; + } + } + + if (bmpValid && mCacheBitmap != null) { + Canvas canvas = getHolder().lockCanvas(); + if (canvas != null) { + canvas.drawColor(0, android.graphics.PorterDuff.Mode.CLEAR); + if (BuildConfig.DEBUG) + Log.d(TAG, "mStretch value: " + mScale); + + if (mScale != 0) { + canvas.drawBitmap(mCacheBitmap, new Rect(0,0,mCacheBitmap.getWidth(), mCacheBitmap.getHeight()), + new Rect((int)((canvas.getWidth() - mScale*mCacheBitmap.getWidth()) / 2), + (int)((canvas.getHeight() - mScale*mCacheBitmap.getHeight()) / 2), + (int)((canvas.getWidth() - mScale*mCacheBitmap.getWidth()) / 2 + mScale*mCacheBitmap.getWidth()), + (int)((canvas.getHeight() - mScale*mCacheBitmap.getHeight()) / 2 + mScale*mCacheBitmap.getHeight())), null); + } else { + canvas.drawBitmap(mCacheBitmap, new Rect(0,0,mCacheBitmap.getWidth(), mCacheBitmap.getHeight()), + new Rect((canvas.getWidth() - mCacheBitmap.getWidth()) / 2, + (canvas.getHeight() - mCacheBitmap.getHeight()) / 2, + (canvas.getWidth() - mCacheBitmap.getWidth()) / 2 + mCacheBitmap.getWidth(), + (canvas.getHeight() - mCacheBitmap.getHeight()) / 2 + mCacheBitmap.getHeight()), null); + } + + if (mFpsMeter != null) { + mFpsMeter.measure(); + mFpsMeter.draw(canvas, 20, 30); + } + getHolder().unlockCanvasAndPost(canvas); + } + } + } + + /** + * This method is invoked shall perform concrete operation to initialize the camera. + * CONTRACT: as a result of this method variables mFrameWidth and mFrameHeight MUST be + * initialized with the size of the Camera frames that will be delivered to external processor. + * @param width - the width of this SurfaceView + * @param height - the height of this SurfaceView + */ + protected abstract boolean connectCamera(int width, int height); + + /** + * Disconnects and release the particular camera object being connected to this surface view. + * Called when syncObject lock is held + */ + protected abstract void disconnectCamera(); + + // NOTE: On Android 4.1.x the function must be called before SurfaceTexture constructor! + protected void AllocateCache() + { + mCacheBitmap = Bitmap.createBitmap(mFrameWidth, mFrameHeight, Bitmap.Config.ARGB_8888); + } + + public interface ListItemAccessor { + public int getWidth(Object obj); + public int getHeight(Object obj); + }; + + /** + * This helper method can be called by subclasses to select camera preview size. + * It goes over the list of the supported preview sizes and selects the maximum one which + * fits both values set via setMaxFrameSize() and surface frame allocated for this view + * @param supportedSizes + * @param surfaceWidth + * @param surfaceHeight + * @return optimal frame size + */ + protected Size calculateCameraFrameSize(List supportedSizes, ListItemAccessor accessor, int surfaceWidth, int surfaceHeight) { + int calcWidth = 0; + int calcHeight = 0; + + int maxAllowedWidth = (mMaxWidth != MAX_UNSPECIFIED && mMaxWidth < surfaceWidth)? mMaxWidth : surfaceWidth; + int maxAllowedHeight = (mMaxHeight != MAX_UNSPECIFIED && mMaxHeight < surfaceHeight)? mMaxHeight : surfaceHeight; + + for (Object size : supportedSizes) { + int width = accessor.getWidth(size); + int height = accessor.getHeight(size); + + if (width <= maxAllowedWidth && height <= maxAllowedHeight) { + if (width >= calcWidth && height >= calcHeight) { + calcWidth = (int) width; + calcHeight = (int) height; + } + } + } + + return new Size(calcWidth, calcHeight); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/CameraGLRendererBase.java b/openCVLibrary3/src/main/java/org/opencv/android/CameraGLRendererBase.java new file mode 100644 index 00000000000..60c37c304e2 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/CameraGLRendererBase.java @@ -0,0 +1,440 @@ +package org.opencv.android; + +import java.nio.ByteBuffer; +import java.nio.ByteOrder; +import java.nio.FloatBuffer; + +import javax.microedition.khronos.egl.EGLConfig; +import javax.microedition.khronos.opengles.GL10; + +import org.opencv.android.CameraGLSurfaceView.CameraTextureListener; + +import android.annotation.TargetApi; +import android.graphics.SurfaceTexture; +import android.opengl.GLES11Ext; +import android.opengl.GLES20; +import android.opengl.GLSurfaceView; +import android.util.Log; +import android.view.View; + +@TargetApi(15) +public abstract class CameraGLRendererBase implements GLSurfaceView.Renderer, SurfaceTexture.OnFrameAvailableListener { + + protected final String LOGTAG = "CameraGLRendererBase"; + + // shaders + private final String vss = "" + + "attribute vec2 vPosition;\n" + + "attribute vec2 vTexCoord;\n" + "varying vec2 texCoord;\n" + + "void main() {\n" + " texCoord = vTexCoord;\n" + + " gl_Position = vec4 ( vPosition.x, vPosition.y, 0.0, 1.0 );\n" + + "}"; + + private final String fssOES = "" + + "#extension GL_OES_EGL_image_external : require\n" + + "precision mediump float;\n" + + "uniform samplerExternalOES sTexture;\n" + + "varying vec2 texCoord;\n" + + "void main() {\n" + + " gl_FragColor = texture2D(sTexture,texCoord);\n" + "}"; + + private final String fss2D = "" + + "precision mediump float;\n" + + "uniform sampler2D sTexture;\n" + + "varying vec2 texCoord;\n" + + "void main() {\n" + + " gl_FragColor = texture2D(sTexture,texCoord);\n" + "}"; + + // coord-s + private final float vertices[] = { + -1, -1, + -1, 1, + 1, -1, + 1, 1 }; + private final float texCoordOES[] = { + 0, 1, + 0, 0, + 1, 1, + 1, 0 }; + private final float texCoord2D[] = { + 0, 0, + 0, 1, + 1, 0, + 1, 1 }; + + private int[] texCamera = {0}, texFBO = {0}, texDraw = {0}; + private int[] FBO = {0}; + private int progOES = -1, prog2D = -1; + private int vPosOES, vTCOES, vPos2D, vTC2D; + + private FloatBuffer vert, texOES, tex2D; + + protected int mCameraWidth = -1, mCameraHeight = -1; + protected int mFBOWidth = -1, mFBOHeight = -1; + protected int mMaxCameraWidth = -1, mMaxCameraHeight = -1; + protected int mCameraIndex = CameraBridgeViewBase.CAMERA_ID_ANY; + + protected SurfaceTexture mSTexture; + + protected boolean mHaveSurface = false; + protected boolean mHaveFBO = false; + protected boolean mUpdateST = false; + protected boolean mEnabled = true; + protected boolean mIsStarted = false; + + protected CameraGLSurfaceView mView; + + protected abstract void openCamera(int id); + protected abstract void closeCamera(); + protected abstract void setCameraPreviewSize(int width, int height); // updates mCameraWidth & mCameraHeight + + public CameraGLRendererBase(CameraGLSurfaceView view) { + mView = view; + int bytes = vertices.length * Float.SIZE / Byte.SIZE; + vert = ByteBuffer.allocateDirect(bytes).order(ByteOrder.nativeOrder()).asFloatBuffer(); + texOES = ByteBuffer.allocateDirect(bytes).order(ByteOrder.nativeOrder()).asFloatBuffer(); + tex2D = ByteBuffer.allocateDirect(bytes).order(ByteOrder.nativeOrder()).asFloatBuffer(); + vert.put(vertices).position(0); + texOES.put(texCoordOES).position(0); + tex2D.put(texCoord2D).position(0); + } + + @Override + public synchronized void onFrameAvailable(SurfaceTexture surfaceTexture) { + //Log.i(LOGTAG, "onFrameAvailable"); + mUpdateST = true; + mView.requestRender(); + } + + @Override + public void onDrawFrame(GL10 gl) { + //Log.i(LOGTAG, "onDrawFrame start"); + + if (!mHaveFBO) + return; + + synchronized(this) { + if (mUpdateST) { + mSTexture.updateTexImage(); + mUpdateST = false; + } + + GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT); + + CameraTextureListener texListener = mView.getCameraTextureListener(); + if(texListener != null) { + //Log.d(LOGTAG, "haveUserCallback"); + // texCamera(OES) -> texFBO + drawTex(texCamera[0], true, FBO[0]); + + // call user code (texFBO -> texDraw) + boolean modified = texListener.onCameraTexture(texFBO[0], texDraw[0], mCameraWidth, mCameraHeight); + + if(modified) { + // texDraw -> screen + drawTex(texDraw[0], false, 0); + } else { + // texFBO -> screen + drawTex(texFBO[0], false, 0); + } + } else { + Log.d(LOGTAG, "texCamera(OES) -> screen"); + // texCamera(OES) -> screen + drawTex(texCamera[0], true, 0); + } + //Log.i(LOGTAG, "onDrawFrame end"); + } + } + + @Override + public void onSurfaceChanged(GL10 gl, int surfaceWidth, int surfaceHeight) { + Log.i(LOGTAG, "onSurfaceChanged("+surfaceWidth+"x"+surfaceHeight+")"); + mHaveSurface = true; + updateState(); + setPreviewSize(surfaceWidth, surfaceHeight); + } + + @Override + public void onSurfaceCreated(GL10 gl, EGLConfig config) { + Log.i(LOGTAG, "onSurfaceCreated"); + initShaders(); + } + + private void initShaders() { + String strGLVersion = GLES20.glGetString(GLES20.GL_VERSION); + if (strGLVersion != null) + Log.i(LOGTAG, "OpenGL ES version: " + strGLVersion); + + GLES20.glClearColor(1.0f, 1.0f, 1.0f, 1.0f); + + progOES = loadShader(vss, fssOES); + vPosOES = GLES20.glGetAttribLocation(progOES, "vPosition"); + vTCOES = GLES20.glGetAttribLocation(progOES, "vTexCoord"); + GLES20.glEnableVertexAttribArray(vPosOES); + GLES20.glEnableVertexAttribArray(vTCOES); + + prog2D = loadShader(vss, fss2D); + vPos2D = GLES20.glGetAttribLocation(prog2D, "vPosition"); + vTC2D = GLES20.glGetAttribLocation(prog2D, "vTexCoord"); + GLES20.glEnableVertexAttribArray(vPos2D); + GLES20.glEnableVertexAttribArray(vTC2D); + } + + private void initSurfaceTexture() { + Log.d(LOGTAG, "initSurfaceTexture"); + deleteSurfaceTexture(); + initTexOES(texCamera); + mSTexture = new SurfaceTexture(texCamera[0]); + mSTexture.setOnFrameAvailableListener(this); + } + + private void deleteSurfaceTexture() { + Log.d(LOGTAG, "deleteSurfaceTexture"); + if(mSTexture != null) { + mSTexture.release(); + mSTexture = null; + deleteTex(texCamera); + } + } + + private void initTexOES(int[] tex) { + if(tex.length == 1) { + GLES20.glGenTextures(1, tex, 0); + GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, tex[0]); + GLES20.glTexParameteri(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE); + GLES20.glTexParameteri(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE); + GLES20.glTexParameteri(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST); + GLES20.glTexParameteri(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST); + } + } + + private static void deleteTex(int[] tex) { + if(tex.length == 1) { + GLES20.glDeleteTextures(1, tex, 0); + } + } + + private static int loadShader(String vss, String fss) { + Log.d("CameraGLRendererBase", "loadShader"); + int vshader = GLES20.glCreateShader(GLES20.GL_VERTEX_SHADER); + GLES20.glShaderSource(vshader, vss); + GLES20.glCompileShader(vshader); + int[] status = new int[1]; + GLES20.glGetShaderiv(vshader, GLES20.GL_COMPILE_STATUS, status, 0); + if (status[0] == 0) { + Log.e("CameraGLRendererBase", "Could not compile vertex shader: "+GLES20.glGetShaderInfoLog(vshader)); + GLES20.glDeleteShader(vshader); + vshader = 0; + return 0; + } + + int fshader = GLES20.glCreateShader(GLES20.GL_FRAGMENT_SHADER); + GLES20.glShaderSource(fshader, fss); + GLES20.glCompileShader(fshader); + GLES20.glGetShaderiv(fshader, GLES20.GL_COMPILE_STATUS, status, 0); + if (status[0] == 0) { + Log.e("CameraGLRendererBase", "Could not compile fragment shader:"+GLES20.glGetShaderInfoLog(fshader)); + GLES20.glDeleteShader(vshader); + GLES20.glDeleteShader(fshader); + fshader = 0; + return 0; + } + + int program = GLES20.glCreateProgram(); + GLES20.glAttachShader(program, vshader); + GLES20.glAttachShader(program, fshader); + GLES20.glLinkProgram(program); + GLES20.glDeleteShader(vshader); + GLES20.glDeleteShader(fshader); + GLES20.glGetProgramiv(program, GLES20.GL_LINK_STATUS, status, 0); + if (status[0] == 0) { + Log.e("CameraGLRendererBase", "Could not link shader program: "+GLES20.glGetProgramInfoLog(program)); + program = 0; + return 0; + } + GLES20.glValidateProgram(program); + GLES20.glGetProgramiv(program, GLES20.GL_VALIDATE_STATUS, status, 0); + if (status[0] == 0) + { + Log.e("CameraGLRendererBase", "Shader program validation error: "+GLES20.glGetProgramInfoLog(program)); + GLES20.glDeleteProgram(program); + program = 0; + return 0; + } + + Log.d("CameraGLRendererBase", "Shader program is built OK"); + + return program; + } + + private void deleteFBO() + { + Log.d(LOGTAG, "deleteFBO("+mFBOWidth+"x"+mFBOHeight+")"); + GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0); + GLES20.glDeleteFramebuffers(1, FBO, 0); + + deleteTex(texFBO); + deleteTex(texDraw); + mFBOWidth = mFBOHeight = 0; + } + + private void initFBO(int width, int height) + { + Log.d(LOGTAG, "initFBO("+width+"x"+height+")"); + + deleteFBO(); + + GLES20.glGenTextures(1, texDraw, 0); + GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texDraw[0]); + GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_RGBA, width, height, 0, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, null); + GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE); + GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE); + GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST); + GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST); + + GLES20.glGenTextures(1, texFBO, 0); + GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, texFBO[0]); + GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_RGBA, width, height, 0, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, null); + GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE); + GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE); + GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST); + GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST); + + //int hFBO; + GLES20.glGenFramebuffers(1, FBO, 0); + GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, FBO[0]); + GLES20.glFramebufferTexture2D(GLES20.GL_FRAMEBUFFER, GLES20.GL_COLOR_ATTACHMENT0, GLES20.GL_TEXTURE_2D, texFBO[0], 0); + Log.d(LOGTAG, "initFBO error status: " + GLES20.glGetError()); + + int FBOstatus = GLES20.glCheckFramebufferStatus(GLES20.GL_FRAMEBUFFER); + if (FBOstatus != GLES20.GL_FRAMEBUFFER_COMPLETE) + Log.e(LOGTAG, "initFBO failed, status: " + FBOstatus); + + mFBOWidth = width; + mFBOHeight = height; + } + + // draw texture to FBO or to screen if fbo == 0 + private void drawTex(int tex, boolean isOES, int fbo) + { + GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, fbo); + + if(fbo == 0) + GLES20.glViewport(0, 0, mView.getWidth(), mView.getHeight()); + else + GLES20.glViewport(0, 0, mFBOWidth, mFBOHeight); + + GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT); + + if(isOES) { + GLES20.glUseProgram(progOES); + GLES20.glVertexAttribPointer(vPosOES, 2, GLES20.GL_FLOAT, false, 4*2, vert); + GLES20.glVertexAttribPointer(vTCOES, 2, GLES20.GL_FLOAT, false, 4*2, texOES); + } else { + GLES20.glUseProgram(prog2D); + GLES20.glVertexAttribPointer(vPos2D, 2, GLES20.GL_FLOAT, false, 4*2, vert); + GLES20.glVertexAttribPointer(vTC2D, 2, GLES20.GL_FLOAT, false, 4*2, tex2D); + } + + GLES20.glActiveTexture(GLES20.GL_TEXTURE0); + + if(isOES) { + GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, tex); + GLES20.glUniform1i(GLES20.glGetUniformLocation(progOES, "sTexture"), 0); + } else { + GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, tex); + GLES20.glUniform1i(GLES20.glGetUniformLocation(prog2D, "sTexture"), 0); + } + + GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); + GLES20.glFlush(); + } + + public synchronized void enableView() { + Log.d(LOGTAG, "enableView"); + mEnabled = true; + updateState(); + } + + public synchronized void disableView() { + Log.d(LOGTAG, "disableView"); + mEnabled = false; + updateState(); + } + + protected void updateState() { + Log.d(LOGTAG, "updateState"); + Log.d(LOGTAG, "mEnabled="+mEnabled+", mHaveSurface="+mHaveSurface); + boolean willStart = mEnabled && mHaveSurface && mView.getVisibility() == View.VISIBLE; + if (willStart != mIsStarted) { + if(willStart) doStart(); + else doStop(); + } else { + Log.d(LOGTAG, "keeping State unchanged"); + } + Log.d(LOGTAG, "updateState end"); + } + + protected synchronized void doStart() { + Log.d(LOGTAG, "doStart"); + initSurfaceTexture(); + openCamera(mCameraIndex); + mIsStarted = true; + if(mCameraWidth>0 && mCameraHeight>0) + setPreviewSize(mCameraWidth, mCameraHeight); // start preview and call listener.onCameraViewStarted() + } + + + protected void doStop() { + Log.d(LOGTAG, "doStop"); + synchronized(this) { + mUpdateST = false; + mIsStarted = false; + mHaveFBO = false; + closeCamera(); + deleteSurfaceTexture(); + } + CameraTextureListener listener = mView.getCameraTextureListener(); + if(listener != null) listener.onCameraViewStopped(); + + } + + protected void setPreviewSize(int width, int height) { + synchronized(this) { + mHaveFBO = false; + mCameraWidth = width; + mCameraHeight = height; + setCameraPreviewSize(width, height); // can change mCameraWidth & mCameraHeight + initFBO(mCameraWidth, mCameraHeight); + mHaveFBO = true; + } + + CameraTextureListener listener = mView.getCameraTextureListener(); + if(listener != null) listener.onCameraViewStarted(mCameraWidth, mCameraHeight); + } + + public void setCameraIndex(int cameraIndex) { + disableView(); + mCameraIndex = cameraIndex; + enableView(); + } + + public void setMaxCameraPreviewSize(int maxWidth, int maxHeight) { + disableView(); + mMaxCameraWidth = maxWidth; + mMaxCameraHeight = maxHeight; + enableView(); + } + + public void onResume() { + Log.i(LOGTAG, "onResume"); + } + + public void onPause() { + Log.i(LOGTAG, "onPause"); + mHaveSurface = false; + updateState(); + mCameraWidth = mCameraHeight = -1; + } + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/CameraGLSurfaceView.java b/openCVLibrary3/src/main/java/org/opencv/android/CameraGLSurfaceView.java new file mode 100644 index 00000000000..05f950b4713 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/CameraGLSurfaceView.java @@ -0,0 +1,119 @@ +package org.opencv.android; + +import org.opencv.R; + +import android.content.Context; +import android.content.res.TypedArray; +import android.opengl.GLSurfaceView; +import android.util.AttributeSet; +import android.util.Log; +import android.view.SurfaceHolder; + +public class CameraGLSurfaceView extends GLSurfaceView { + + private static final String LOGTAG = "CameraGLSurfaceView"; + + public interface CameraTextureListener { + /** + * This method is invoked when camera preview has started. After this method is invoked + * the frames will start to be delivered to client via the onCameraFrame() callback. + * @param width - the width of the frames that will be delivered + * @param height - the height of the frames that will be delivered + */ + public void onCameraViewStarted(int width, int height); + + /** + * This method is invoked when camera preview has been stopped for some reason. + * No frames will be delivered via onCameraFrame() callback after this method is called. + */ + public void onCameraViewStopped(); + + /** + * This method is invoked when a new preview frame from Camera is ready. + * @param texIn - the OpenGL texture ID that contains frame in RGBA format + * @param texOut - the OpenGL texture ID that can be used to store modified frame image t display + * @param width - the width of the frame + * @param height - the height of the frame + * @return `true` if `texOut` should be displayed, `false` - to show `texIn` + */ + public boolean onCameraTexture(int texIn, int texOut, int width, int height); + }; + + private CameraTextureListener mTexListener; + private CameraGLRendererBase mRenderer; + + public CameraGLSurfaceView(Context context, AttributeSet attrs) { + super(context, attrs); + + TypedArray styledAttrs = getContext().obtainStyledAttributes(attrs, R.styleable.CameraBridgeViewBase); + int cameraIndex = styledAttrs.getInt(R.styleable.CameraBridgeViewBase_camera_id, -1); + styledAttrs.recycle(); + + if(android.os.Build.VERSION.SDK_INT >= 21) + mRenderer = new Camera2Renderer(this); + else + mRenderer = new CameraRenderer(this); + + setCameraIndex(cameraIndex); + + setEGLContextClientVersion(2); + setRenderer(mRenderer); + setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY); + } + + public void setCameraTextureListener(CameraTextureListener texListener) + { + mTexListener = texListener; + } + + public CameraTextureListener getCameraTextureListener() + { + return mTexListener; + } + + public void setCameraIndex(int cameraIndex) { + mRenderer.setCameraIndex(cameraIndex); + } + + public void setMaxCameraPreviewSize(int maxWidth, int maxHeight) { + mRenderer.setMaxCameraPreviewSize(maxWidth, maxHeight); + } + + @Override + public void surfaceCreated(SurfaceHolder holder) { + super.surfaceCreated(holder); + } + + @Override + public void surfaceDestroyed(SurfaceHolder holder) { + mRenderer.mHaveSurface = false; + super.surfaceDestroyed(holder); + } + + @Override + public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) { + super.surfaceChanged(holder, format, w, h); + } + + @Override + public void onResume() { + Log.i(LOGTAG, "onResume"); + super.onResume(); + mRenderer.onResume(); + } + + @Override + public void onPause() { + Log.i(LOGTAG, "onPause"); + mRenderer.onPause(); + super.onPause(); + } + + public void enableView() { + mRenderer.enableView(); + } + + public void disableView() { + mRenderer.disableView(); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/CameraRenderer.java b/openCVLibrary3/src/main/java/org/opencv/android/CameraRenderer.java new file mode 100644 index 00000000000..2d668ffa6e6 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/CameraRenderer.java @@ -0,0 +1,166 @@ +package org.opencv.android; + +import java.io.IOException; +import java.util.List; + +import android.annotation.TargetApi; +import android.hardware.Camera; +import android.hardware.Camera.Size; +import android.os.Build; +import android.util.Log; + +@TargetApi(15) +@SuppressWarnings("deprecation") +public class CameraRenderer extends CameraGLRendererBase { + + public static final String LOGTAG = "CameraRenderer"; + + private Camera mCamera; + private boolean mPreviewStarted = false; + + CameraRenderer(CameraGLSurfaceView view) { + super(view); + } + + @Override + protected synchronized void closeCamera() { + Log.i(LOGTAG, "closeCamera"); + if(mCamera != null) { + mCamera.stopPreview(); + mPreviewStarted = false; + mCamera.release(); + mCamera = null; + } + } + + @Override + protected synchronized void openCamera(int id) { + Log.i(LOGTAG, "openCamera"); + closeCamera(); + if (id == CameraBridgeViewBase.CAMERA_ID_ANY) { + Log.d(LOGTAG, "Trying to open camera with old open()"); + try { + mCamera = Camera.open(); + } + catch (Exception e){ + Log.e(LOGTAG, "Camera is not available (in use or does not exist): " + e.getLocalizedMessage()); + } + + if(mCamera == null && Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) { + boolean connected = false; + for (int camIdx = 0; camIdx < Camera.getNumberOfCameras(); ++camIdx) { + Log.d(LOGTAG, "Trying to open camera with new open(" + camIdx + ")"); + try { + mCamera = Camera.open(camIdx); + connected = true; + } catch (RuntimeException e) { + Log.e(LOGTAG, "Camera #" + camIdx + "failed to open: " + e.getLocalizedMessage()); + } + if (connected) break; + } + } + } else { + if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) { + int localCameraIndex = mCameraIndex; + if (mCameraIndex == CameraBridgeViewBase.CAMERA_ID_BACK) { + Log.i(LOGTAG, "Trying to open BACK camera"); + Camera.CameraInfo cameraInfo = new Camera.CameraInfo(); + for (int camIdx = 0; camIdx < Camera.getNumberOfCameras(); ++camIdx) { + Camera.getCameraInfo( camIdx, cameraInfo ); + if (cameraInfo.facing == Camera.CameraInfo.CAMERA_FACING_BACK) { + localCameraIndex = camIdx; + break; + } + } + } else if (mCameraIndex == CameraBridgeViewBase.CAMERA_ID_FRONT) { + Log.i(LOGTAG, "Trying to open FRONT camera"); + Camera.CameraInfo cameraInfo = new Camera.CameraInfo(); + for (int camIdx = 0; camIdx < Camera.getNumberOfCameras(); ++camIdx) { + Camera.getCameraInfo( camIdx, cameraInfo ); + if (cameraInfo.facing == Camera.CameraInfo.CAMERA_FACING_FRONT) { + localCameraIndex = camIdx; + break; + } + } + } + if (localCameraIndex == CameraBridgeViewBase.CAMERA_ID_BACK) { + Log.e(LOGTAG, "Back camera not found!"); + } else if (localCameraIndex == CameraBridgeViewBase.CAMERA_ID_FRONT) { + Log.e(LOGTAG, "Front camera not found!"); + } else { + Log.d(LOGTAG, "Trying to open camera with new open(" + localCameraIndex + ")"); + try { + mCamera = Camera.open(localCameraIndex); + } catch (RuntimeException e) { + Log.e(LOGTAG, "Camera #" + localCameraIndex + "failed to open: " + e.getLocalizedMessage()); + } + } + } + } + if(mCamera == null) { + Log.e(LOGTAG, "Error: can't open camera"); + return; + } + Camera.Parameters params = mCamera.getParameters(); + List FocusModes = params.getSupportedFocusModes(); + if (FocusModes != null && FocusModes.contains(Camera.Parameters.FOCUS_MODE_CONTINUOUS_VIDEO)) + { + params.setFocusMode(Camera.Parameters.FOCUS_MODE_CONTINUOUS_VIDEO); + } + mCamera.setParameters(params); + + try { + mCamera.setPreviewTexture(mSTexture); + } catch (IOException ioe) { + Log.e(LOGTAG, "setPreviewTexture() failed: " + ioe.getMessage()); + } + } + + @Override + public synchronized void setCameraPreviewSize(int width, int height) { + Log.i(LOGTAG, "setCameraPreviewSize: "+width+"x"+height); + if(mCamera == null) { + Log.e(LOGTAG, "Camera isn't initialized!"); + return; + } + + if(mMaxCameraWidth > 0 && mMaxCameraWidth < width) width = mMaxCameraWidth; + if(mMaxCameraHeight > 0 && mMaxCameraHeight < height) height = mMaxCameraHeight; + + Camera.Parameters param = mCamera.getParameters(); + List psize = param.getSupportedPreviewSizes(); + int bestWidth = 0, bestHeight = 0; + if (psize.size() > 0) { + float aspect = (float)width / height; + for (Size size : psize) { + int w = size.width, h = size.height; + Log.d(LOGTAG, "checking camera preview size: "+w+"x"+h); + if ( w <= width && h <= height && + w >= bestWidth && h >= bestHeight && + Math.abs(aspect - (float)w/h) < 0.2 ) { + bestWidth = w; + bestHeight = h; + } + } + if(bestWidth <= 0 || bestHeight <= 0) { + bestWidth = psize.get(0).width; + bestHeight = psize.get(0).height; + Log.e(LOGTAG, "Error: best size was not selected, using "+bestWidth+" x "+bestHeight); + } else { + Log.i(LOGTAG, "Selected best size: "+bestWidth+" x "+bestHeight); + } + + if(mPreviewStarted) { + mCamera.stopPreview(); + mPreviewStarted = false; + } + mCameraWidth = bestWidth; + mCameraHeight = bestHeight; + param.setPreviewSize(bestWidth, bestHeight); + } + param.set("orientation", "landscape"); + mCamera.setParameters(param); + mCamera.startPreview(); + mPreviewStarted = true; + } +} \ No newline at end of file diff --git a/openCVLibrary3/src/main/java/org/opencv/android/FpsMeter.java b/openCVLibrary3/src/main/java/org/opencv/android/FpsMeter.java new file mode 100644 index 00000000000..88e826cf965 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/FpsMeter.java @@ -0,0 +1,66 @@ +package org.opencv.android; + +import java.text.DecimalFormat; + +import org.opencv.core.Core; + +import android.graphics.Canvas; +import android.graphics.Color; +import android.graphics.Paint; +import android.util.Log; + +public class FpsMeter { + private static final String TAG = "FpsMeter"; + private static final int STEP = 20; + private static final DecimalFormat FPS_FORMAT = new DecimalFormat("0.00"); + + private int mFramesCouner; + private double mFrequency; + private long mprevFrameTime; + private String mStrfps; + Paint mPaint; + boolean mIsInitialized = false; + int mWidth = 0; + int mHeight = 0; + + public void init() { + mFramesCouner = 0; + mFrequency = Core.getTickFrequency(); + mprevFrameTime = Core.getTickCount(); + mStrfps = ""; + + mPaint = new Paint(); + mPaint.setColor(Color.BLUE); + mPaint.setTextSize(20); + } + + public void measure() { + if (!mIsInitialized) { + init(); + mIsInitialized = true; + } else { + mFramesCouner++; + if (mFramesCouner % STEP == 0) { + long time = Core.getTickCount(); + double fps = STEP * mFrequency / (time - mprevFrameTime); + mprevFrameTime = time; + if (mWidth != 0 && mHeight != 0) + mStrfps = FPS_FORMAT.format(fps) + " FPS@" + Integer.valueOf(mWidth) + "x" + Integer.valueOf(mHeight); + else + mStrfps = FPS_FORMAT.format(fps) + " FPS"; + Log.i(TAG, mStrfps); + } + } + } + + public void setResolution(int width, int height) { + mWidth = width; + mHeight = height; + } + + public void draw(Canvas canvas, float offsetx, float offsety) { + Log.d(TAG, mStrfps); + canvas.drawText(mStrfps, offsetx, offsety, mPaint); + } + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/InstallCallbackInterface.java b/openCVLibrary3/src/main/java/org/opencv/android/InstallCallbackInterface.java new file mode 100644 index 00000000000..f68027a7ba2 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/InstallCallbackInterface.java @@ -0,0 +1,34 @@ +package org.opencv.android; + +/** + * Installation callback interface. + */ +public interface InstallCallbackInterface +{ + /** + * New package installation is required. + */ + static final int NEW_INSTALLATION = 0; + /** + * Current package installation is in progress. + */ + static final int INSTALLATION_PROGRESS = 1; + + /** + * Target package name. + * @return Return target package name. + */ + public String getPackageName(); + /** + * Installation is approved. + */ + public void install(); + /** + * Installation is canceled. + */ + public void cancel(); + /** + * Wait for package installation. + */ + public void wait_install(); +}; diff --git a/openCVLibrary3/src/main/java/org/opencv/android/JavaCamera2View.java b/openCVLibrary3/src/main/java/org/opencv/android/JavaCamera2View.java new file mode 100644 index 00000000000..2cf512f3215 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/JavaCamera2View.java @@ -0,0 +1,374 @@ +package org.opencv.android; + +import java.nio.ByteBuffer; +import java.util.Arrays; + +import android.annotation.TargetApi; +import android.content.Context; +import android.graphics.ImageFormat; +import android.hardware.camera2.CameraAccessException; +import android.hardware.camera2.CameraCaptureSession; +import android.hardware.camera2.CameraCharacteristics; +import android.hardware.camera2.CameraDevice; +import android.hardware.camera2.CameraManager; +import android.hardware.camera2.CaptureRequest; +import android.hardware.camera2.params.StreamConfigurationMap; +import android.media.Image; +import android.media.ImageReader; +import android.os.Handler; +import android.os.HandlerThread; +import android.util.AttributeSet; +import android.util.Log; +import android.view.Surface; +import android.view.ViewGroup.LayoutParams; + +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.imgproc.Imgproc; + +/** + * This class is an implementation of the Bridge View between OpenCV and Java Camera. + * This class relays on the functionality available in base class and only implements + * required functions: + * connectCamera - opens Java camera and sets the PreviewCallback to be delivered. + * disconnectCamera - closes the camera and stops preview. + * When frame is delivered via callback from Camera - it processed via OpenCV to be + * converted to RGBA32 and then passed to the external callback for modifications if required. + */ + +@TargetApi(21) +public class JavaCamera2View extends CameraBridgeViewBase { + + private static final String LOGTAG = "JavaCamera2View"; + + private ImageReader mImageReader; + private int mPreviewFormat = ImageFormat.YUV_420_888; + + private CameraDevice mCameraDevice; + private CameraCaptureSession mCaptureSession; + private CaptureRequest.Builder mPreviewRequestBuilder; + private String mCameraID; + private android.util.Size mPreviewSize = new android.util.Size(-1, -1); + + private HandlerThread mBackgroundThread; + private Handler mBackgroundHandler; + + public JavaCamera2View(Context context, int cameraId) { + super(context, cameraId); + } + + public JavaCamera2View(Context context, AttributeSet attrs) { + super(context, attrs); + } + + private void startBackgroundThread() { + Log.i(LOGTAG, "startBackgroundThread"); + stopBackgroundThread(); + mBackgroundThread = new HandlerThread("OpenCVCameraBackground"); + mBackgroundThread.start(); + mBackgroundHandler = new Handler(mBackgroundThread.getLooper()); + } + + private void stopBackgroundThread() { + Log.i(LOGTAG, "stopBackgroundThread"); + if (mBackgroundThread == null) + return; + mBackgroundThread.quitSafely(); + try { + mBackgroundThread.join(); + mBackgroundThread = null; + mBackgroundHandler = null; + } catch (InterruptedException e) { + Log.e(LOGTAG, "stopBackgroundThread", e); + } + } + + protected boolean initializeCamera() { + Log.i(LOGTAG, "initializeCamera"); + CameraManager manager = (CameraManager) getContext().getSystemService(Context.CAMERA_SERVICE); + try { + String camList[] = manager.getCameraIdList(); + if (camList.length == 0) { + Log.e(LOGTAG, "Error: camera isn't detected."); + return false; + } + if (mCameraIndex == CameraBridgeViewBase.CAMERA_ID_ANY) { + mCameraID = camList[0]; + } else { + for (String cameraID : camList) { + CameraCharacteristics characteristics = manager.getCameraCharacteristics(cameraID); + if ((mCameraIndex == CameraBridgeViewBase.CAMERA_ID_BACK && + characteristics.get(CameraCharacteristics.LENS_FACING) == CameraCharacteristics.LENS_FACING_BACK) || + (mCameraIndex == CameraBridgeViewBase.CAMERA_ID_FRONT && + characteristics.get(CameraCharacteristics.LENS_FACING) == CameraCharacteristics.LENS_FACING_FRONT) + ) { + mCameraID = cameraID; + break; + } + } + } + if (mCameraID != null) { + Log.i(LOGTAG, "Opening camera: " + mCameraID); + manager.openCamera(mCameraID, mStateCallback, mBackgroundHandler); + } + return true; + } catch (CameraAccessException e) { + Log.e(LOGTAG, "OpenCamera - Camera Access Exception", e); + } catch (IllegalArgumentException e) { + Log.e(LOGTAG, "OpenCamera - Illegal Argument Exception", e); + } catch (SecurityException e) { + Log.e(LOGTAG, "OpenCamera - Security Exception", e); + } + return false; + } + + private final CameraDevice.StateCallback mStateCallback = new CameraDevice.StateCallback() { + + @Override + public void onOpened(CameraDevice cameraDevice) { + mCameraDevice = cameraDevice; + createCameraPreviewSession(); + } + + @Override + public void onDisconnected(CameraDevice cameraDevice) { + cameraDevice.close(); + mCameraDevice = null; + } + + @Override + public void onError(CameraDevice cameraDevice, int error) { + cameraDevice.close(); + mCameraDevice = null; + } + + }; + + private void createCameraPreviewSession() { + final int w = mPreviewSize.getWidth(), h = mPreviewSize.getHeight(); + Log.i(LOGTAG, "createCameraPreviewSession(" + w + "x" + h + ")"); + if (w < 0 || h < 0) + return; + try { + if (null == mCameraDevice) { + Log.e(LOGTAG, "createCameraPreviewSession: camera isn't opened"); + return; + } + if (null != mCaptureSession) { + Log.e(LOGTAG, "createCameraPreviewSession: mCaptureSession is already started"); + return; + } + + mImageReader = ImageReader.newInstance(w, h, mPreviewFormat, 2); + mImageReader.setOnImageAvailableListener(new ImageReader.OnImageAvailableListener() { + @Override + public void onImageAvailable(ImageReader reader) { + Image image = reader.acquireLatestImage(); + if (image == null) + return; + + // sanity checks - 3 planes + Image.Plane[] planes = image.getPlanes(); + assert (planes.length == 3); + assert (image.getFormat() == mPreviewFormat); + + // see also https://developer.android.com/reference/android/graphics/ImageFormat.html#YUV_420_888 + // Y plane (0) non-interleaved => stride == 1; U/V plane interleaved => stride == 2 + assert (planes[0].getPixelStride() == 1); + assert (planes[1].getPixelStride() == 2); + assert (planes[2].getPixelStride() == 2); + + ByteBuffer y_plane = planes[0].getBuffer(); + ByteBuffer uv_plane = planes[1].getBuffer(); + Mat y_mat = new Mat(h, w, CvType.CV_8UC1, y_plane); + Mat uv_mat = new Mat(h / 2, w / 2, CvType.CV_8UC2, uv_plane); + JavaCamera2Frame tempFrame = new JavaCamera2Frame(y_mat, uv_mat, w, h); + deliverAndDrawFrame(tempFrame); + tempFrame.release(); + image.close(); + } + }, mBackgroundHandler); + Surface surface = mImageReader.getSurface(); + + mPreviewRequestBuilder = mCameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW); + mPreviewRequestBuilder.addTarget(surface); + + mCameraDevice.createCaptureSession(Arrays.asList(surface), + new CameraCaptureSession.StateCallback() { + @Override + public void onConfigured(CameraCaptureSession cameraCaptureSession) { + Log.i(LOGTAG, "createCaptureSession::onConfigured"); + if (null == mCameraDevice) { + return; // camera is already closed + } + mCaptureSession = cameraCaptureSession; + try { + mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AF_MODE, + CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE); + mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AE_MODE, + CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH); + + mCaptureSession.setRepeatingRequest(mPreviewRequestBuilder.build(), null, mBackgroundHandler); + Log.i(LOGTAG, "CameraPreviewSession has been started"); + } catch (Exception e) { + Log.e(LOGTAG, "createCaptureSession failed", e); + } + } + + @Override + public void onConfigureFailed(CameraCaptureSession cameraCaptureSession) { + Log.e(LOGTAG, "createCameraPreviewSession failed"); + } + }, + null + ); + } catch (CameraAccessException e) { + Log.e(LOGTAG, "createCameraPreviewSession", e); + } + } + + @Override + protected void disconnectCamera() { + Log.i(LOGTAG, "closeCamera"); + try { + CameraDevice c = mCameraDevice; + mCameraDevice = null; + if (null != mCaptureSession) { + mCaptureSession.close(); + mCaptureSession = null; + } + if (null != c) { + c.close(); + } + if (null != mImageReader) { + mImageReader.close(); + mImageReader = null; + } + } finally { + stopBackgroundThread(); + } + } + + boolean calcPreviewSize(final int width, final int height) { + Log.i(LOGTAG, "calcPreviewSize: " + width + "x" + height); + if (mCameraID == null) { + Log.e(LOGTAG, "Camera isn't initialized!"); + return false; + } + CameraManager manager = (CameraManager) getContext().getSystemService(Context.CAMERA_SERVICE); + try { + CameraCharacteristics characteristics = manager.getCameraCharacteristics(mCameraID); + StreamConfigurationMap map = characteristics.get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP); + int bestWidth = 0, bestHeight = 0; + float aspect = (float) width / height; + android.util.Size[] sizes = map.getOutputSizes(ImageReader.class); + bestWidth = sizes[0].getWidth(); + bestHeight = sizes[0].getHeight(); + for (android.util.Size sz : sizes) { + int w = sz.getWidth(), h = sz.getHeight(); + Log.d(LOGTAG, "trying size: " + w + "x" + h); + if (width >= w && height >= h && bestWidth <= w && bestHeight <= h + && Math.abs(aspect - (float) w / h) < 0.2) { + bestWidth = w; + bestHeight = h; + } + } + Log.i(LOGTAG, "best size: " + bestWidth + "x" + bestHeight); + assert(!(bestWidth == 0 || bestHeight == 0)); + if (mPreviewSize.getWidth() == bestWidth && mPreviewSize.getHeight() == bestHeight) + return false; + else { + mPreviewSize = new android.util.Size(bestWidth, bestHeight); + return true; + } + } catch (CameraAccessException e) { + Log.e(LOGTAG, "calcPreviewSize - Camera Access Exception", e); + } catch (IllegalArgumentException e) { + Log.e(LOGTAG, "calcPreviewSize - Illegal Argument Exception", e); + } catch (SecurityException e) { + Log.e(LOGTAG, "calcPreviewSize - Security Exception", e); + } + return false; + } + + @Override + protected boolean connectCamera(int width, int height) { + Log.i(LOGTAG, "setCameraPreviewSize(" + width + "x" + height + ")"); + startBackgroundThread(); + initializeCamera(); + try { + boolean needReconfig = calcPreviewSize(width, height); + mFrameWidth = mPreviewSize.getWidth(); + mFrameHeight = mPreviewSize.getHeight(); + + if ((getLayoutParams().width == LayoutParams.MATCH_PARENT) && (getLayoutParams().height == LayoutParams.MATCH_PARENT)) + mScale = Math.min(((float)height)/mFrameHeight, ((float)width)/mFrameWidth); + else + mScale = 0; + + AllocateCache(); + + if (needReconfig) { + if (null != mCaptureSession) { + Log.d(LOGTAG, "closing existing previewSession"); + mCaptureSession.close(); + mCaptureSession = null; + } + createCameraPreviewSession(); + } + } catch (RuntimeException e) { + throw new RuntimeException("Interrupted while setCameraPreviewSize.", e); + } + return true; + } + + private class JavaCamera2Frame implements CvCameraViewFrame { + @Override + public Mat gray() { + return mYuvFrameData.submat(0, mHeight, 0, mWidth); + } + + @Override + public Mat rgba() { + if (mPreviewFormat == ImageFormat.NV21) + Imgproc.cvtColor(mYuvFrameData, mRgba, Imgproc.COLOR_YUV2RGBA_NV21, 4); + else if (mPreviewFormat == ImageFormat.YV12) + Imgproc.cvtColor(mYuvFrameData, mRgba, Imgproc.COLOR_YUV2RGB_I420, 4); // COLOR_YUV2RGBA_YV12 produces inverted colors + else if (mPreviewFormat == ImageFormat.YUV_420_888) { + assert (mUVFrameData != null); + Imgproc.cvtColorTwoPlane(mYuvFrameData, mUVFrameData, mRgba, Imgproc.COLOR_YUV2RGBA_NV21); + } else + throw new IllegalArgumentException("Preview Format can be NV21 or YV12"); + + return mRgba; + } + + public JavaCamera2Frame(Mat Yuv420sp, int width, int height) { + super(); + mWidth = width; + mHeight = height; + mYuvFrameData = Yuv420sp; + mUVFrameData = null; + mRgba = new Mat(); + } + + public JavaCamera2Frame(Mat Y, Mat UV, int width, int height) { + super(); + mWidth = width; + mHeight = height; + mYuvFrameData = Y; + mUVFrameData = UV; + mRgba = new Mat(); + } + + public void release() { + mRgba.release(); + } + + private Mat mYuvFrameData; + private Mat mUVFrameData; + private Mat mRgba; + private int mWidth; + private int mHeight; + }; +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/JavaCameraView.java b/openCVLibrary3/src/main/java/org/opencv/android/JavaCameraView.java new file mode 100644 index 00000000000..a7c72e43f00 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/JavaCameraView.java @@ -0,0 +1,379 @@ +package org.opencv.android; + +import java.util.List; + +import android.content.Context; +import android.graphics.ImageFormat; +import android.graphics.SurfaceTexture; +import android.hardware.Camera; +import android.hardware.Camera.PreviewCallback; +import android.os.Build; +import android.util.AttributeSet; +import android.util.Log; +import android.view.ViewGroup.LayoutParams; + +import org.opencv.BuildConfig; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.Size; +import org.opencv.imgproc.Imgproc; + +/** + * This class is an implementation of the Bridge View between OpenCV and Java Camera. + * This class relays on the functionality available in base class and only implements + * required functions: + * connectCamera - opens Java camera and sets the PreviewCallback to be delivered. + * disconnectCamera - closes the camera and stops preview. + * When frame is delivered via callback from Camera - it processed via OpenCV to be + * converted to RGBA32 and then passed to the external callback for modifications if required. + */ +public class JavaCameraView extends CameraBridgeViewBase implements PreviewCallback { + + private static final int MAGIC_TEXTURE_ID = 10; + private static final String TAG = "JavaCameraView"; + + private byte mBuffer[]; + private Mat[] mFrameChain; + private int mChainIdx = 0; + private Thread mThread; + private boolean mStopThread; + + protected Camera mCamera; + protected JavaCameraFrame[] mCameraFrame; + private SurfaceTexture mSurfaceTexture; + private int mPreviewFormat = ImageFormat.NV21; + + public static class JavaCameraSizeAccessor implements ListItemAccessor { + + @Override + public int getWidth(Object obj) { + Camera.Size size = (Camera.Size) obj; + return size.width; + } + + @Override + public int getHeight(Object obj) { + Camera.Size size = (Camera.Size) obj; + return size.height; + } + } + + public JavaCameraView(Context context, int cameraId) { + super(context, cameraId); + } + + public JavaCameraView(Context context, AttributeSet attrs) { + super(context, attrs); + } + + protected boolean initializeCamera(int width, int height) { + Log.d(TAG, "Initialize java camera"); + boolean result = true; + synchronized (this) { + mCamera = null; + + if (mCameraIndex == CAMERA_ID_ANY) { + Log.d(TAG, "Trying to open camera with old open()"); + try { + mCamera = Camera.open(); + } + catch (Exception e){ + Log.e(TAG, "Camera is not available (in use or does not exist): " + e.getLocalizedMessage()); + } + + if(mCamera == null && Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) { + boolean connected = false; + for (int camIdx = 0; camIdx < Camera.getNumberOfCameras(); ++camIdx) { + Log.d(TAG, "Trying to open camera with new open(" + Integer.valueOf(camIdx) + ")"); + try { + mCamera = Camera.open(camIdx); + connected = true; + } catch (RuntimeException e) { + Log.e(TAG, "Camera #" + camIdx + "failed to open: " + e.getLocalizedMessage()); + } + if (connected) break; + } + } + } else { + if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) { + int localCameraIndex = mCameraIndex; + if (mCameraIndex == CAMERA_ID_BACK) { + Log.i(TAG, "Trying to open back camera"); + Camera.CameraInfo cameraInfo = new Camera.CameraInfo(); + for (int camIdx = 0; camIdx < Camera.getNumberOfCameras(); ++camIdx) { + Camera.getCameraInfo( camIdx, cameraInfo ); + if (cameraInfo.facing == Camera.CameraInfo.CAMERA_FACING_BACK) { + localCameraIndex = camIdx; + break; + } + } + } else if (mCameraIndex == CAMERA_ID_FRONT) { + Log.i(TAG, "Trying to open front camera"); + Camera.CameraInfo cameraInfo = new Camera.CameraInfo(); + for (int camIdx = 0; camIdx < Camera.getNumberOfCameras(); ++camIdx) { + Camera.getCameraInfo( camIdx, cameraInfo ); + if (cameraInfo.facing == Camera.CameraInfo.CAMERA_FACING_FRONT) { + localCameraIndex = camIdx; + break; + } + } + } + if (localCameraIndex == CAMERA_ID_BACK) { + Log.e(TAG, "Back camera not found!"); + } else if (localCameraIndex == CAMERA_ID_FRONT) { + Log.e(TAG, "Front camera not found!"); + } else { + Log.d(TAG, "Trying to open camera with new open(" + Integer.valueOf(localCameraIndex) + ")"); + try { + mCamera = Camera.open(localCameraIndex); + } catch (RuntimeException e) { + Log.e(TAG, "Camera #" + localCameraIndex + "failed to open: " + e.getLocalizedMessage()); + } + } + } + } + + if (mCamera == null) + return false; + + /* Now set camera parameters */ + try { + Camera.Parameters params = mCamera.getParameters(); + Log.d(TAG, "getSupportedPreviewSizes()"); + List sizes = params.getSupportedPreviewSizes(); + + if (sizes != null) { + /* Select the size that fits surface considering maximum size allowed */ + Size frameSize = calculateCameraFrameSize(sizes, new JavaCameraSizeAccessor(), width, height); + + /* Image format NV21 causes issues in the Android emulators */ + if (Build.FINGERPRINT.startsWith("generic") + || Build.FINGERPRINT.startsWith("unknown") + || Build.MODEL.contains("google_sdk") + || Build.MODEL.contains("Emulator") + || Build.MODEL.contains("Android SDK built for x86") + || Build.MANUFACTURER.contains("Genymotion") + || (Build.BRAND.startsWith("generic") && Build.DEVICE.startsWith("generic")) + || "google_sdk".equals(Build.PRODUCT)) + params.setPreviewFormat(ImageFormat.YV12); // "generic" or "android" = android emulator + else + params.setPreviewFormat(ImageFormat.NV21); + + mPreviewFormat = params.getPreviewFormat(); + + Log.d(TAG, "Set preview size to " + Integer.valueOf((int)frameSize.width) + "x" + Integer.valueOf((int)frameSize.height)); + params.setPreviewSize((int)frameSize.width, (int)frameSize.height); + + if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH && !android.os.Build.MODEL.equals("GT-I9100")) + params.setRecordingHint(true); + + List FocusModes = params.getSupportedFocusModes(); + if (FocusModes != null && FocusModes.contains(Camera.Parameters.FOCUS_MODE_CONTINUOUS_VIDEO)) + { + params.setFocusMode(Camera.Parameters.FOCUS_MODE_CONTINUOUS_VIDEO); + } + + mCamera.setParameters(params); + params = mCamera.getParameters(); + + mFrameWidth = params.getPreviewSize().width; + mFrameHeight = params.getPreviewSize().height; + + if ((getLayoutParams().width == LayoutParams.MATCH_PARENT) && (getLayoutParams().height == LayoutParams.MATCH_PARENT)) + mScale = Math.min(((float)height)/mFrameHeight, ((float)width)/mFrameWidth); + else + mScale = 0; + + if (mFpsMeter != null) { + mFpsMeter.setResolution(mFrameWidth, mFrameHeight); + } + + int size = mFrameWidth * mFrameHeight; + size = size * ImageFormat.getBitsPerPixel(params.getPreviewFormat()) / 8; + mBuffer = new byte[size]; + + mCamera.addCallbackBuffer(mBuffer); + mCamera.setPreviewCallbackWithBuffer(this); + + mFrameChain = new Mat[2]; + mFrameChain[0] = new Mat(mFrameHeight + (mFrameHeight/2), mFrameWidth, CvType.CV_8UC1); + mFrameChain[1] = new Mat(mFrameHeight + (mFrameHeight/2), mFrameWidth, CvType.CV_8UC1); + + AllocateCache(); + + mCameraFrame = new JavaCameraFrame[2]; + mCameraFrame[0] = new JavaCameraFrame(mFrameChain[0], mFrameWidth, mFrameHeight); + mCameraFrame[1] = new JavaCameraFrame(mFrameChain[1], mFrameWidth, mFrameHeight); + + if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) { + mSurfaceTexture = new SurfaceTexture(MAGIC_TEXTURE_ID); + mCamera.setPreviewTexture(mSurfaceTexture); + } else + mCamera.setPreviewDisplay(null); + + /* Finally we are ready to start the preview */ + Log.d(TAG, "startPreview"); + mCamera.startPreview(); + } + else + result = false; + } catch (Exception e) { + result = false; + e.printStackTrace(); + } + } + + return result; + } + + protected void releaseCamera() { + synchronized (this) { + if (mCamera != null) { + mCamera.stopPreview(); + mCamera.setPreviewCallback(null); + + mCamera.release(); + } + mCamera = null; + if (mFrameChain != null) { + mFrameChain[0].release(); + mFrameChain[1].release(); + } + if (mCameraFrame != null) { + mCameraFrame[0].release(); + mCameraFrame[1].release(); + } + } + } + + private boolean mCameraFrameReady = false; + + @Override + protected boolean connectCamera(int width, int height) { + + /* 1. We need to instantiate camera + * 2. We need to start thread which will be getting frames + */ + /* First step - initialize camera connection */ + Log.d(TAG, "Connecting to camera"); + if (!initializeCamera(width, height)) + return false; + + mCameraFrameReady = false; + + /* now we can start update thread */ + Log.d(TAG, "Starting processing thread"); + mStopThread = false; + mThread = new Thread(new CameraWorker()); + mThread.start(); + + return true; + } + + @Override + protected void disconnectCamera() { + /* 1. We need to stop thread which updating the frames + * 2. Stop camera and release it + */ + Log.d(TAG, "Disconnecting from camera"); + try { + mStopThread = true; + Log.d(TAG, "Notify thread"); + synchronized (this) { + this.notify(); + } + Log.d(TAG, "Waiting for thread"); + if (mThread != null) + mThread.join(); + } catch (InterruptedException e) { + e.printStackTrace(); + } finally { + mThread = null; + } + + /* Now release camera */ + releaseCamera(); + + mCameraFrameReady = false; + } + + @Override + public void onPreviewFrame(byte[] frame, Camera arg1) { + if (BuildConfig.DEBUG) + Log.d(TAG, "Preview Frame received. Frame size: " + frame.length); + synchronized (this) { + mFrameChain[mChainIdx].put(0, 0, frame); + mCameraFrameReady = true; + this.notify(); + } + if (mCamera != null) + mCamera.addCallbackBuffer(mBuffer); + } + + private class JavaCameraFrame implements CvCameraViewFrame { + @Override + public Mat gray() { + return mYuvFrameData.submat(0, mHeight, 0, mWidth); + } + + @Override + public Mat rgba() { + if (mPreviewFormat == ImageFormat.NV21) + Imgproc.cvtColor(mYuvFrameData, mRgba, Imgproc.COLOR_YUV2RGBA_NV21, 4); + else if (mPreviewFormat == ImageFormat.YV12) + Imgproc.cvtColor(mYuvFrameData, mRgba, Imgproc.COLOR_YUV2RGB_I420, 4); // COLOR_YUV2RGBA_YV12 produces inverted colors + else + throw new IllegalArgumentException("Preview Format can be NV21 or YV12"); + + return mRgba; + } + + public JavaCameraFrame(Mat Yuv420sp, int width, int height) { + super(); + mWidth = width; + mHeight = height; + mYuvFrameData = Yuv420sp; + mRgba = new Mat(); + } + + public void release() { + mRgba.release(); + } + + private Mat mYuvFrameData; + private Mat mRgba; + private int mWidth; + private int mHeight; + }; + + private class CameraWorker implements Runnable { + + @Override + public void run() { + do { + boolean hasFrame = false; + synchronized (JavaCameraView.this) { + try { + while (!mCameraFrameReady && !mStopThread) { + JavaCameraView.this.wait(); + } + } catch (InterruptedException e) { + e.printStackTrace(); + } + if (mCameraFrameReady) + { + mChainIdx = 1 - mChainIdx; + mCameraFrameReady = false; + hasFrame = true; + } + } + + if (!mStopThread && hasFrame) { + if (!mFrameChain[1 - mChainIdx].empty()) + deliverAndDrawFrame(mCameraFrame[1 - mChainIdx]); + } + } while (!mStopThread); + Log.d(TAG, "Finish processing thread"); + } + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/LoaderCallbackInterface.java b/openCVLibrary3/src/main/java/org/opencv/android/LoaderCallbackInterface.java new file mode 100644 index 00000000000..a941e8377b6 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/LoaderCallbackInterface.java @@ -0,0 +1,40 @@ +package org.opencv.android; + +/** + * Interface for callback object in case of asynchronous initialization of OpenCV. + */ +public interface LoaderCallbackInterface +{ + /** + * OpenCV initialization finished successfully. + */ + static final int SUCCESS = 0; + /** + * Google Play Market cannot be invoked. + */ + static final int MARKET_ERROR = 2; + /** + * OpenCV library installation has been canceled by the user. + */ + static final int INSTALL_CANCELED = 3; + /** + * This version of OpenCV Manager Service is incompatible with the app. Possibly, a service update is required. + */ + static final int INCOMPATIBLE_MANAGER_VERSION = 4; + /** + * OpenCV library initialization has failed. + */ + static final int INIT_FAILED = 0xff; + + /** + * Callback method, called after OpenCV library initialization. + * @param status status of initialization (see initialization status constants). + */ + public void onManagerConnected(int status); + + /** + * Callback method, called in case the package installation is needed. + * @param callback answer object with approve and cancel methods and the package description. + */ + public void onPackageInstall(final int operation, InstallCallbackInterface callback); +}; diff --git a/openCVLibrary3/src/main/java/org/opencv/android/OpenCVLoader.java b/openCVLibrary3/src/main/java/org/opencv/android/OpenCVLoader.java new file mode 100644 index 00000000000..27932505dda --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/OpenCVLoader.java @@ -0,0 +1,132 @@ +package org.opencv.android; + +import android.content.Context; + +/** + * Helper class provides common initialization methods for OpenCV library. + */ +public class OpenCVLoader +{ + /** + * OpenCV Library version 2.4.2. + */ + public static final String OPENCV_VERSION_2_4_2 = "2.4.2"; + + /** + * OpenCV Library version 2.4.3. + */ + public static final String OPENCV_VERSION_2_4_3 = "2.4.3"; + + /** + * OpenCV Library version 2.4.4. + */ + public static final String OPENCV_VERSION_2_4_4 = "2.4.4"; + + /** + * OpenCV Library version 2.4.5. + */ + public static final String OPENCV_VERSION_2_4_5 = "2.4.5"; + + /** + * OpenCV Library version 2.4.6. + */ + public static final String OPENCV_VERSION_2_4_6 = "2.4.6"; + + /** + * OpenCV Library version 2.4.7. + */ + public static final String OPENCV_VERSION_2_4_7 = "2.4.7"; + + /** + * OpenCV Library version 2.4.8. + */ + public static final String OPENCV_VERSION_2_4_8 = "2.4.8"; + + /** + * OpenCV Library version 2.4.9. + */ + public static final String OPENCV_VERSION_2_4_9 = "2.4.9"; + + /** + * OpenCV Library version 2.4.10. + */ + public static final String OPENCV_VERSION_2_4_10 = "2.4.10"; + + /** + * OpenCV Library version 2.4.11. + */ + public static final String OPENCV_VERSION_2_4_11 = "2.4.11"; + + /** + * OpenCV Library version 2.4.12. + */ + public static final String OPENCV_VERSION_2_4_12 = "2.4.12"; + + /** + * OpenCV Library version 2.4.13. + */ + public static final String OPENCV_VERSION_2_4_13 = "2.4.13"; + + /** + * OpenCV Library version 3.0.0. + */ + public static final String OPENCV_VERSION_3_0_0 = "3.0.0"; + + /** + * OpenCV Library version 3.1.0. + */ + public static final String OPENCV_VERSION_3_1_0 = "3.1.0"; + + /** + * OpenCV Library version 3.2.0. + */ + public static final String OPENCV_VERSION_3_2_0 = "3.2.0"; + + /** + * OpenCV Library version 3.3.0. + */ + public static final String OPENCV_VERSION_3_3_0 = "3.3.0"; + + /** + * OpenCV Library version 3.4.0. + */ + public static final String OPENCV_VERSION_3_4_0 = "3.4.0"; + + /** + * Current OpenCV Library version + */ + public static final String OPENCV_VERSION = "3.4.3"; + + + /** + * Loads and initializes OpenCV library from current application package. Roughly, it's an analog of system.loadLibrary("opencv_java"). + * @return Returns true is initialization of OpenCV was successful. + */ + public static boolean initDebug() + { + return StaticHelper.initOpenCV(false); + } + + /** + * Loads and initializes OpenCV library from current application package. Roughly, it's an analog of system.loadLibrary("opencv_java"). + * @param InitCuda load and initialize CUDA runtime libraries. + * @return Returns true is initialization of OpenCV was successful. + */ + public static boolean initDebug(boolean InitCuda) + { + return StaticHelper.initOpenCV(InitCuda); + } + + /** + * Loads and initializes OpenCV library using OpenCV Engine service. + * @param Version OpenCV library version. + * @param AppContext application context for connecting to the service. + * @param Callback object, that implements LoaderCallbackInterface for handling the connection status. + * @return Returns true if initialization of OpenCV is successful. + */ + public static boolean initAsync(String Version, Context AppContext, + LoaderCallbackInterface Callback) + { + return AsyncServiceHelper.initOpenCV(Version, AppContext, Callback); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/StaticHelper.java b/openCVLibrary3/src/main/java/org/opencv/android/StaticHelper.java new file mode 100644 index 00000000000..f670d933e6d --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/StaticHelper.java @@ -0,0 +1,104 @@ +package org.opencv.android; + +import org.opencv.core.Core; + +import java.util.StringTokenizer; +import android.util.Log; + +class StaticHelper { + + public static boolean initOpenCV(boolean InitCuda) + { + boolean result; + String libs = ""; + + if(InitCuda) + { + loadLibrary("cudart"); + loadLibrary("nppc"); + loadLibrary("nppi"); + loadLibrary("npps"); + loadLibrary("cufft"); + loadLibrary("cublas"); + } + + Log.d(TAG, "Trying to get library list"); + + try + { + System.loadLibrary("opencv_info"); + libs = getLibraryList(); + } + catch(UnsatisfiedLinkError e) + { + Log.e(TAG, "OpenCV error: Cannot load info library for OpenCV"); + } + + Log.d(TAG, "Library list: \"" + libs + "\""); + Log.d(TAG, "First attempt to load libs"); + if (initOpenCVLibs(libs)) + { + Log.d(TAG, "First attempt to load libs is OK"); + String eol = System.getProperty("line.separator"); + for (String str : Core.getBuildInformation().split(eol)) + Log.i(TAG, str); + + result = true; + } + else + { + Log.d(TAG, "First attempt to load libs fails"); + result = false; + } + + return result; + } + + private static boolean loadLibrary(String Name) + { + boolean result = true; + + Log.d(TAG, "Trying to load library " + Name); + try + { + System.loadLibrary(Name); + Log.d(TAG, "Library " + Name + " loaded"); + } + catch(UnsatisfiedLinkError e) + { + Log.d(TAG, "Cannot load library \"" + Name + "\""); + e.printStackTrace(); + result = false; + } + + return result; + } + + private static boolean initOpenCVLibs(String Libs) + { + Log.d(TAG, "Trying to init OpenCV libs"); + + boolean result = true; + + if ((null != Libs) && (Libs.length() != 0)) + { + Log.d(TAG, "Trying to load libs by dependency list"); + StringTokenizer splitter = new StringTokenizer(Libs, ";"); + while(splitter.hasMoreTokens()) + { + result &= loadLibrary(splitter.nextToken()); + } + } + else + { + // If dependencies list is not defined or empty. + result = loadLibrary("opencv_java3"); + } + + return result; + } + + private static final String TAG = "OpenCV/StaticHelper"; + + private static native String getLibraryList(); +} diff --git a/openCVLibrary3/src/main/java/org/opencv/android/Utils.java b/openCVLibrary3/src/main/java/org/opencv/android/Utils.java new file mode 100644 index 00000000000..404c986da80 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/android/Utils.java @@ -0,0 +1,139 @@ +package org.opencv.android; + +import android.content.Context; +import android.graphics.Bitmap; + +import org.opencv.core.CvException; +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.imgcodecs.Imgcodecs; + +import java.io.ByteArrayOutputStream; +import java.io.File; +import java.io.FileOutputStream; +import java.io.IOException; +import java.io.InputStream; + +public class Utils { + + public static String exportResource(Context context, int resourceId) { + return exportResource(context, resourceId, "OpenCV_data"); + } + + public static String exportResource(Context context, int resourceId, String dirname) { + String fullname = context.getResources().getString(resourceId); + String resName = fullname.substring(fullname.lastIndexOf("/") + 1); + try { + InputStream is = context.getResources().openRawResource(resourceId); + File resDir = context.getDir(dirname, Context.MODE_PRIVATE); + File resFile = new File(resDir, resName); + + FileOutputStream os = new FileOutputStream(resFile); + + byte[] buffer = new byte[4096]; + int bytesRead; + while ((bytesRead = is.read(buffer)) != -1) { + os.write(buffer, 0, bytesRead); + } + is.close(); + os.close(); + + return resFile.getAbsolutePath(); + } catch (IOException e) { + e.printStackTrace(); + throw new CvException("Failed to export resource " + resName + + ". Exception thrown: " + e); + } + } + + public static Mat loadResource(Context context, int resourceId) throws IOException + { + return loadResource(context, resourceId, -1); + } + + public static Mat loadResource(Context context, int resourceId, int flags) throws IOException + { + InputStream is = context.getResources().openRawResource(resourceId); + ByteArrayOutputStream os = new ByteArrayOutputStream(is.available()); + + byte[] buffer = new byte[4096]; + int bytesRead; + while ((bytesRead = is.read(buffer)) != -1) { + os.write(buffer, 0, bytesRead); + } + is.close(); + + Mat encoded = new Mat(1, os.size(), CvType.CV_8U); + encoded.put(0, 0, os.toByteArray()); + os.close(); + + Mat decoded = Imgcodecs.imdecode(encoded, flags); + encoded.release(); + + return decoded; + } + + /** + * Converts Android Bitmap to OpenCV Mat. + *

+ * This function converts an Android Bitmap image to the OpenCV Mat. + *
'ARGB_8888' and 'RGB_565' input Bitmap formats are supported. + *
The output Mat is always created of the same size as the input Bitmap and of the 'CV_8UC4' type, + * it keeps the image in RGBA format. + *
This function throws an exception if the conversion fails. + * @param bmp is a valid input Bitmap object of the type 'ARGB_8888' or 'RGB_565'. + * @param mat is a valid output Mat object, it will be reallocated if needed, so it may be empty. + * @param unPremultiplyAlpha is a flag, that determines, whether the bitmap needs to be converted from alpha premultiplied format (like Android keeps 'ARGB_8888' ones) to regular one; this flag is ignored for 'RGB_565' bitmaps. + */ + public static void bitmapToMat(Bitmap bmp, Mat mat, boolean unPremultiplyAlpha) { + if (bmp == null) + throw new java.lang.IllegalArgumentException("bmp == null"); + if (mat == null) + throw new java.lang.IllegalArgumentException("mat == null"); + nBitmapToMat2(bmp, mat.nativeObj, unPremultiplyAlpha); + } + + /** + * Short form of the bitmapToMat(bmp, mat, unPremultiplyAlpha=false). + * @param bmp is a valid input Bitmap object of the type 'ARGB_8888' or 'RGB_565'. + * @param mat is a valid output Mat object, it will be reallocated if needed, so Mat may be empty. + */ + public static void bitmapToMat(Bitmap bmp, Mat mat) { + bitmapToMat(bmp, mat, false); + } + + + /** + * Converts OpenCV Mat to Android Bitmap. + *

+ *
This function converts an image in the OpenCV Mat representation to the Android Bitmap. + *
The input Mat object has to be of the types 'CV_8UC1' (gray-scale), 'CV_8UC3' (RGB) or 'CV_8UC4' (RGBA). + *
The output Bitmap object has to be of the same size as the input Mat and of the types 'ARGB_8888' or 'RGB_565'. + *
This function throws an exception if the conversion fails. + * + * @param mat is a valid input Mat object of types 'CV_8UC1', 'CV_8UC3' or 'CV_8UC4'. + * @param bmp is a valid Bitmap object of the same size as the Mat and of type 'ARGB_8888' or 'RGB_565'. + * @param premultiplyAlpha is a flag, that determines, whether the Mat needs to be converted to alpha premultiplied format (like Android keeps 'ARGB_8888' bitmaps); the flag is ignored for 'RGB_565' bitmaps. + */ + public static void matToBitmap(Mat mat, Bitmap bmp, boolean premultiplyAlpha) { + if (mat == null) + throw new java.lang.IllegalArgumentException("mat == null"); + if (bmp == null) + throw new java.lang.IllegalArgumentException("bmp == null"); + nMatToBitmap2(mat.nativeObj, bmp, premultiplyAlpha); + } + + /** + * Short form of the matToBitmap(mat, bmp, premultiplyAlpha=false) + * @param mat is a valid input Mat object of the types 'CV_8UC1', 'CV_8UC3' or 'CV_8UC4'. + * @param bmp is a valid Bitmap object of the same size as the Mat and of type 'ARGB_8888' or 'RGB_565'. + */ + public static void matToBitmap(Mat mat, Bitmap bmp) { + matToBitmap(mat, bmp, false); + } + + + private static native void nBitmapToMat2(Bitmap b, long m_addr, boolean unPremultiplyAlpha); + + private static native void nMatToBitmap2(long m_addr, Bitmap b, boolean premultiplyAlpha); +} diff --git a/openCVLibrary3/src/main/java/org/opencv/calib3d/Calib3d.java b/openCVLibrary3/src/main/java/org/opencv/calib3d/Calib3d.java new file mode 100644 index 00000000000..72668419a13 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/calib3d/Calib3d.java @@ -0,0 +1,2233 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.calib3d; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfDouble; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.MatOfPoint3f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.Size; +import org.opencv.core.TermCriteria; +import org.opencv.utils.Converters; + +// C++: class Calib3d +//javadoc: Calib3d + +public class Calib3d { + + public static final int + CALIB_USE_INTRINSIC_GUESS = 1, + CALIB_RECOMPUTE_EXTRINSIC = 2, + CALIB_CHECK_COND = 4, + CALIB_FIX_SKEW = 8, + CALIB_FIX_K1 = 16, + CALIB_FIX_K2 = 32, + CALIB_FIX_K3 = 64, + CALIB_FIX_K4 = 128, + CALIB_FIX_INTRINSIC = 256, + CV_ITERATIVE = 0, + CV_EPNP = 1, + CV_P3P = 2, + CV_DLS = 3, + LMEDS = 4, + RANSAC = 8, + RHO = 16, + SOLVEPNP_ITERATIVE = 0, + SOLVEPNP_EPNP = 1, + SOLVEPNP_P3P = 2, + SOLVEPNP_DLS = 3, + SOLVEPNP_UPNP = 4, + SOLVEPNP_AP3P = 5, + SOLVEPNP_MAX_COUNT = 5+1, + CALIB_CB_ADAPTIVE_THRESH = 1, + CALIB_CB_NORMALIZE_IMAGE = 2, + CALIB_CB_FILTER_QUADS = 4, + CALIB_CB_FAST_CHECK = 8, + CALIB_CB_SYMMETRIC_GRID = 1, + CALIB_CB_ASYMMETRIC_GRID = 2, + CALIB_CB_CLUSTERING = 4, + CALIB_FIX_ASPECT_RATIO = 0x00002, + CALIB_FIX_PRINCIPAL_POINT = 0x00004, + CALIB_ZERO_TANGENT_DIST = 0x00008, + CALIB_FIX_FOCAL_LENGTH = 0x00010, + CALIB_FIX_K5 = 0x01000, + CALIB_FIX_K6 = 0x02000, + CALIB_RATIONAL_MODEL = 0x04000, + CALIB_THIN_PRISM_MODEL = 0x08000, + CALIB_FIX_S1_S2_S3_S4 = 0x10000, + CALIB_TILTED_MODEL = 0x40000, + CALIB_FIX_TAUX_TAUY = 0x80000, + CALIB_USE_QR = 0x100000, + CALIB_FIX_TANGENT_DIST = 0x200000, + CALIB_SAME_FOCAL_LENGTH = 0x00200, + CALIB_ZERO_DISPARITY = 0x00400, + CALIB_USE_LU = (1 << 17), + CALIB_USE_EXTRINSIC_GUESS = (1 << 22), + FM_7POINT = 1, + FM_8POINT = 2, + FM_LMEDS = 4, + FM_RANSAC = 8, + fisheye_CALIB_USE_INTRINSIC_GUESS = 1 << 0, + fisheye_CALIB_RECOMPUTE_EXTRINSIC = 1 << 1, + fisheye_CALIB_CHECK_COND = 1 << 2, + fisheye_CALIB_FIX_SKEW = 1 << 3, + fisheye_CALIB_FIX_K1 = 1 << 4, + fisheye_CALIB_FIX_K2 = 1 << 5, + fisheye_CALIB_FIX_K3 = 1 << 6, + fisheye_CALIB_FIX_K4 = 1 << 7, + fisheye_CALIB_FIX_INTRINSIC = 1 << 8, + fisheye_CALIB_FIX_PRINCIPAL_POINT = 1 << 9; + + + // + // C++: Mat cv::estimateAffine2D(Mat from, Mat to, Mat& inliers = Mat(), int method = RANSAC, double ransacReprojThreshold = 3, size_t maxIters = 2000, double confidence = 0.99, size_t refineIters = 10) + // + + //javadoc: estimateAffine2D(from, to, inliers, method, ransacReprojThreshold, maxIters, confidence, refineIters) + public static Mat estimateAffine2D(Mat from, Mat to, Mat inliers, int method, double ransacReprojThreshold, long maxIters, double confidence, long refineIters) + { + + Mat retVal = new Mat(estimateAffine2D_0(from.nativeObj, to.nativeObj, inliers.nativeObj, method, ransacReprojThreshold, maxIters, confidence, refineIters)); + + return retVal; + } + + //javadoc: estimateAffine2D(from, to, inliers, method, ransacReprojThreshold, maxIters, confidence) + public static Mat estimateAffine2D(Mat from, Mat to, Mat inliers, int method, double ransacReprojThreshold, long maxIters, double confidence) + { + + Mat retVal = new Mat(estimateAffine2D_1(from.nativeObj, to.nativeObj, inliers.nativeObj, method, ransacReprojThreshold, maxIters, confidence)); + + return retVal; + } + + //javadoc: estimateAffine2D(from, to, inliers, method, ransacReprojThreshold, maxIters) + public static Mat estimateAffine2D(Mat from, Mat to, Mat inliers, int method, double ransacReprojThreshold, long maxIters) + { + + Mat retVal = new Mat(estimateAffine2D_2(from.nativeObj, to.nativeObj, inliers.nativeObj, method, ransacReprojThreshold, maxIters)); + + return retVal; + } + + //javadoc: estimateAffine2D(from, to, inliers, method, ransacReprojThreshold) + public static Mat estimateAffine2D(Mat from, Mat to, Mat inliers, int method, double ransacReprojThreshold) + { + + Mat retVal = new Mat(estimateAffine2D_3(from.nativeObj, to.nativeObj, inliers.nativeObj, method, ransacReprojThreshold)); + + return retVal; + } + + //javadoc: estimateAffine2D(from, to, inliers, method) + public static Mat estimateAffine2D(Mat from, Mat to, Mat inliers, int method) + { + + Mat retVal = new Mat(estimateAffine2D_4(from.nativeObj, to.nativeObj, inliers.nativeObj, method)); + + return retVal; + } + + //javadoc: estimateAffine2D(from, to, inliers) + public static Mat estimateAffine2D(Mat from, Mat to, Mat inliers) + { + + Mat retVal = new Mat(estimateAffine2D_5(from.nativeObj, to.nativeObj, inliers.nativeObj)); + + return retVal; + } + + //javadoc: estimateAffine2D(from, to) + public static Mat estimateAffine2D(Mat from, Mat to) + { + + Mat retVal = new Mat(estimateAffine2D_6(from.nativeObj, to.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::estimateAffinePartial2D(Mat from, Mat to, Mat& inliers = Mat(), int method = RANSAC, double ransacReprojThreshold = 3, size_t maxIters = 2000, double confidence = 0.99, size_t refineIters = 10) + // + + //javadoc: estimateAffinePartial2D(from, to, inliers, method, ransacReprojThreshold, maxIters, confidence, refineIters) + public static Mat estimateAffinePartial2D(Mat from, Mat to, Mat inliers, int method, double ransacReprojThreshold, long maxIters, double confidence, long refineIters) + { + + Mat retVal = new Mat(estimateAffinePartial2D_0(from.nativeObj, to.nativeObj, inliers.nativeObj, method, ransacReprojThreshold, maxIters, confidence, refineIters)); + + return retVal; + } + + //javadoc: estimateAffinePartial2D(from, to, inliers, method, ransacReprojThreshold, maxIters, confidence) + public static Mat estimateAffinePartial2D(Mat from, Mat to, Mat inliers, int method, double ransacReprojThreshold, long maxIters, double confidence) + { + + Mat retVal = new Mat(estimateAffinePartial2D_1(from.nativeObj, to.nativeObj, inliers.nativeObj, method, ransacReprojThreshold, maxIters, confidence)); + + return retVal; + } + + //javadoc: estimateAffinePartial2D(from, to, inliers, method, ransacReprojThreshold, maxIters) + public static Mat estimateAffinePartial2D(Mat from, Mat to, Mat inliers, int method, double ransacReprojThreshold, long maxIters) + { + + Mat retVal = new Mat(estimateAffinePartial2D_2(from.nativeObj, to.nativeObj, inliers.nativeObj, method, ransacReprojThreshold, maxIters)); + + return retVal; + } + + //javadoc: estimateAffinePartial2D(from, to, inliers, method, ransacReprojThreshold) + public static Mat estimateAffinePartial2D(Mat from, Mat to, Mat inliers, int method, double ransacReprojThreshold) + { + + Mat retVal = new Mat(estimateAffinePartial2D_3(from.nativeObj, to.nativeObj, inliers.nativeObj, method, ransacReprojThreshold)); + + return retVal; + } + + //javadoc: estimateAffinePartial2D(from, to, inliers, method) + public static Mat estimateAffinePartial2D(Mat from, Mat to, Mat inliers, int method) + { + + Mat retVal = new Mat(estimateAffinePartial2D_4(from.nativeObj, to.nativeObj, inliers.nativeObj, method)); + + return retVal; + } + + //javadoc: estimateAffinePartial2D(from, to, inliers) + public static Mat estimateAffinePartial2D(Mat from, Mat to, Mat inliers) + { + + Mat retVal = new Mat(estimateAffinePartial2D_5(from.nativeObj, to.nativeObj, inliers.nativeObj)); + + return retVal; + } + + //javadoc: estimateAffinePartial2D(from, to) + public static Mat estimateAffinePartial2D(Mat from, Mat to) + { + + Mat retVal = new Mat(estimateAffinePartial2D_6(from.nativeObj, to.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::findEssentialMat(Mat points1, Mat points2, Mat cameraMatrix, int method = RANSAC, double prob = 0.999, double threshold = 1.0, Mat& mask = Mat()) + // + + //javadoc: findEssentialMat(points1, points2, cameraMatrix, method, prob, threshold, mask) + public static Mat findEssentialMat(Mat points1, Mat points2, Mat cameraMatrix, int method, double prob, double threshold, Mat mask) + { + + Mat retVal = new Mat(findEssentialMat_0(points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, method, prob, threshold, mask.nativeObj)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, cameraMatrix, method, prob, threshold) + public static Mat findEssentialMat(Mat points1, Mat points2, Mat cameraMatrix, int method, double prob, double threshold) + { + + Mat retVal = new Mat(findEssentialMat_1(points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, method, prob, threshold)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, cameraMatrix, method, prob) + public static Mat findEssentialMat(Mat points1, Mat points2, Mat cameraMatrix, int method, double prob) + { + + Mat retVal = new Mat(findEssentialMat_2(points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, method, prob)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, cameraMatrix, method) + public static Mat findEssentialMat(Mat points1, Mat points2, Mat cameraMatrix, int method) + { + + Mat retVal = new Mat(findEssentialMat_3(points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, method)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, cameraMatrix) + public static Mat findEssentialMat(Mat points1, Mat points2, Mat cameraMatrix) + { + + Mat retVal = new Mat(findEssentialMat_4(points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::findEssentialMat(Mat points1, Mat points2, double focal = 1.0, Point2d pp = Point2d(0, 0), int method = RANSAC, double prob = 0.999, double threshold = 1.0, Mat& mask = Mat()) + // + + //javadoc: findEssentialMat(points1, points2, focal, pp, method, prob, threshold, mask) + public static Mat findEssentialMat(Mat points1, Mat points2, double focal, Point pp, int method, double prob, double threshold, Mat mask) + { + + Mat retVal = new Mat(findEssentialMat_5(points1.nativeObj, points2.nativeObj, focal, pp.x, pp.y, method, prob, threshold, mask.nativeObj)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, focal, pp, method, prob, threshold) + public static Mat findEssentialMat(Mat points1, Mat points2, double focal, Point pp, int method, double prob, double threshold) + { + + Mat retVal = new Mat(findEssentialMat_6(points1.nativeObj, points2.nativeObj, focal, pp.x, pp.y, method, prob, threshold)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, focal, pp, method, prob) + public static Mat findEssentialMat(Mat points1, Mat points2, double focal, Point pp, int method, double prob) + { + + Mat retVal = new Mat(findEssentialMat_7(points1.nativeObj, points2.nativeObj, focal, pp.x, pp.y, method, prob)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, focal, pp, method) + public static Mat findEssentialMat(Mat points1, Mat points2, double focal, Point pp, int method) + { + + Mat retVal = new Mat(findEssentialMat_8(points1.nativeObj, points2.nativeObj, focal, pp.x, pp.y, method)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, focal, pp) + public static Mat findEssentialMat(Mat points1, Mat points2, double focal, Point pp) + { + + Mat retVal = new Mat(findEssentialMat_9(points1.nativeObj, points2.nativeObj, focal, pp.x, pp.y)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2, focal) + public static Mat findEssentialMat(Mat points1, Mat points2, double focal) + { + + Mat retVal = new Mat(findEssentialMat_10(points1.nativeObj, points2.nativeObj, focal)); + + return retVal; + } + + //javadoc: findEssentialMat(points1, points2) + public static Mat findEssentialMat(Mat points1, Mat points2) + { + + Mat retVal = new Mat(findEssentialMat_11(points1.nativeObj, points2.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::findFundamentalMat(vector_Point2f points1, vector_Point2f points2, int method = FM_RANSAC, double ransacReprojThreshold = 3., double confidence = 0.99, Mat& mask = Mat()) + // + + //javadoc: findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence, mask) + public static Mat findFundamentalMat(MatOfPoint2f points1, MatOfPoint2f points2, int method, double ransacReprojThreshold, double confidence, Mat mask) + { + Mat points1_mat = points1; + Mat points2_mat = points2; + Mat retVal = new Mat(findFundamentalMat_0(points1_mat.nativeObj, points2_mat.nativeObj, method, ransacReprojThreshold, confidence, mask.nativeObj)); + + return retVal; + } + + //javadoc: findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence) + public static Mat findFundamentalMat(MatOfPoint2f points1, MatOfPoint2f points2, int method, double ransacReprojThreshold, double confidence) + { + Mat points1_mat = points1; + Mat points2_mat = points2; + Mat retVal = new Mat(findFundamentalMat_1(points1_mat.nativeObj, points2_mat.nativeObj, method, ransacReprojThreshold, confidence)); + + return retVal; + } + + //javadoc: findFundamentalMat(points1, points2, method, ransacReprojThreshold) + public static Mat findFundamentalMat(MatOfPoint2f points1, MatOfPoint2f points2, int method, double ransacReprojThreshold) + { + Mat points1_mat = points1; + Mat points2_mat = points2; + Mat retVal = new Mat(findFundamentalMat_2(points1_mat.nativeObj, points2_mat.nativeObj, method, ransacReprojThreshold)); + + return retVal; + } + + //javadoc: findFundamentalMat(points1, points2, method) + public static Mat findFundamentalMat(MatOfPoint2f points1, MatOfPoint2f points2, int method) + { + Mat points1_mat = points1; + Mat points2_mat = points2; + Mat retVal = new Mat(findFundamentalMat_3(points1_mat.nativeObj, points2_mat.nativeObj, method)); + + return retVal; + } + + //javadoc: findFundamentalMat(points1, points2) + public static Mat findFundamentalMat(MatOfPoint2f points1, MatOfPoint2f points2) + { + Mat points1_mat = points1; + Mat points2_mat = points2; + Mat retVal = new Mat(findFundamentalMat_4(points1_mat.nativeObj, points2_mat.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::findHomography(vector_Point2f srcPoints, vector_Point2f dstPoints, int method = 0, double ransacReprojThreshold = 3, Mat& mask = Mat(), int maxIters = 2000, double confidence = 0.995) + // + + //javadoc: findHomography(srcPoints, dstPoints, method, ransacReprojThreshold, mask, maxIters, confidence) + public static Mat findHomography(MatOfPoint2f srcPoints, MatOfPoint2f dstPoints, int method, double ransacReprojThreshold, Mat mask, int maxIters, double confidence) + { + Mat srcPoints_mat = srcPoints; + Mat dstPoints_mat = dstPoints; + Mat retVal = new Mat(findHomography_0(srcPoints_mat.nativeObj, dstPoints_mat.nativeObj, method, ransacReprojThreshold, mask.nativeObj, maxIters, confidence)); + + return retVal; + } + + //javadoc: findHomography(srcPoints, dstPoints, method, ransacReprojThreshold, mask, maxIters) + public static Mat findHomography(MatOfPoint2f srcPoints, MatOfPoint2f dstPoints, int method, double ransacReprojThreshold, Mat mask, int maxIters) + { + Mat srcPoints_mat = srcPoints; + Mat dstPoints_mat = dstPoints; + Mat retVal = new Mat(findHomography_1(srcPoints_mat.nativeObj, dstPoints_mat.nativeObj, method, ransacReprojThreshold, mask.nativeObj, maxIters)); + + return retVal; + } + + //javadoc: findHomography(srcPoints, dstPoints, method, ransacReprojThreshold, mask) + public static Mat findHomography(MatOfPoint2f srcPoints, MatOfPoint2f dstPoints, int method, double ransacReprojThreshold, Mat mask) + { + Mat srcPoints_mat = srcPoints; + Mat dstPoints_mat = dstPoints; + Mat retVal = new Mat(findHomography_2(srcPoints_mat.nativeObj, dstPoints_mat.nativeObj, method, ransacReprojThreshold, mask.nativeObj)); + + return retVal; + } + + //javadoc: findHomography(srcPoints, dstPoints, method, ransacReprojThreshold) + public static Mat findHomography(MatOfPoint2f srcPoints, MatOfPoint2f dstPoints, int method, double ransacReprojThreshold) + { + Mat srcPoints_mat = srcPoints; + Mat dstPoints_mat = dstPoints; + Mat retVal = new Mat(findHomography_3(srcPoints_mat.nativeObj, dstPoints_mat.nativeObj, method, ransacReprojThreshold)); + + return retVal; + } + + //javadoc: findHomography(srcPoints, dstPoints, method) + public static Mat findHomography(MatOfPoint2f srcPoints, MatOfPoint2f dstPoints, int method) + { + Mat srcPoints_mat = srcPoints; + Mat dstPoints_mat = dstPoints; + Mat retVal = new Mat(findHomography_4(srcPoints_mat.nativeObj, dstPoints_mat.nativeObj, method)); + + return retVal; + } + + //javadoc: findHomography(srcPoints, dstPoints) + public static Mat findHomography(MatOfPoint2f srcPoints, MatOfPoint2f dstPoints) + { + Mat srcPoints_mat = srcPoints; + Mat dstPoints_mat = dstPoints; + Mat retVal = new Mat(findHomography_5(srcPoints_mat.nativeObj, dstPoints_mat.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::getOptimalNewCameraMatrix(Mat cameraMatrix, Mat distCoeffs, Size imageSize, double alpha, Size newImgSize = Size(), Rect* validPixROI = 0, bool centerPrincipalPoint = false) + // + + //javadoc: getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha, newImgSize, validPixROI, centerPrincipalPoint) + public static Mat getOptimalNewCameraMatrix(Mat cameraMatrix, Mat distCoeffs, Size imageSize, double alpha, Size newImgSize, Rect validPixROI, boolean centerPrincipalPoint) + { + double[] validPixROI_out = new double[4]; + Mat retVal = new Mat(getOptimalNewCameraMatrix_0(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, alpha, newImgSize.width, newImgSize.height, validPixROI_out, centerPrincipalPoint)); + if(validPixROI!=null){ validPixROI.x = (int)validPixROI_out[0]; validPixROI.y = (int)validPixROI_out[1]; validPixROI.width = (int)validPixROI_out[2]; validPixROI.height = (int)validPixROI_out[3]; } + return retVal; + } + + //javadoc: getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha, newImgSize, validPixROI) + public static Mat getOptimalNewCameraMatrix(Mat cameraMatrix, Mat distCoeffs, Size imageSize, double alpha, Size newImgSize, Rect validPixROI) + { + double[] validPixROI_out = new double[4]; + Mat retVal = new Mat(getOptimalNewCameraMatrix_1(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, alpha, newImgSize.width, newImgSize.height, validPixROI_out)); + if(validPixROI!=null){ validPixROI.x = (int)validPixROI_out[0]; validPixROI.y = (int)validPixROI_out[1]; validPixROI.width = (int)validPixROI_out[2]; validPixROI.height = (int)validPixROI_out[3]; } + return retVal; + } + + //javadoc: getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha, newImgSize) + public static Mat getOptimalNewCameraMatrix(Mat cameraMatrix, Mat distCoeffs, Size imageSize, double alpha, Size newImgSize) + { + + Mat retVal = new Mat(getOptimalNewCameraMatrix_2(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, alpha, newImgSize.width, newImgSize.height)); + + return retVal; + } + + //javadoc: getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha) + public static Mat getOptimalNewCameraMatrix(Mat cameraMatrix, Mat distCoeffs, Size imageSize, double alpha) + { + + Mat retVal = new Mat(getOptimalNewCameraMatrix_3(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, alpha)); + + return retVal; + } + + + // + // C++: Mat cv::initCameraMatrix2D(vector_vector_Point3f objectPoints, vector_vector_Point2f imagePoints, Size imageSize, double aspectRatio = 1.0) + // + + //javadoc: initCameraMatrix2D(objectPoints, imagePoints, imageSize, aspectRatio) + public static Mat initCameraMatrix2D(List objectPoints, List imagePoints, Size imageSize, double aspectRatio) + { + List objectPoints_tmplm = new ArrayList((objectPoints != null) ? objectPoints.size() : 0); + Mat objectPoints_mat = Converters.vector_vector_Point3f_to_Mat(objectPoints, objectPoints_tmplm); + List imagePoints_tmplm = new ArrayList((imagePoints != null) ? imagePoints.size() : 0); + Mat imagePoints_mat = Converters.vector_vector_Point2f_to_Mat(imagePoints, imagePoints_tmplm); + Mat retVal = new Mat(initCameraMatrix2D_0(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, imageSize.width, imageSize.height, aspectRatio)); + + return retVal; + } + + //javadoc: initCameraMatrix2D(objectPoints, imagePoints, imageSize) + public static Mat initCameraMatrix2D(List objectPoints, List imagePoints, Size imageSize) + { + List objectPoints_tmplm = new ArrayList((objectPoints != null) ? objectPoints.size() : 0); + Mat objectPoints_mat = Converters.vector_vector_Point3f_to_Mat(objectPoints, objectPoints_tmplm); + List imagePoints_tmplm = new ArrayList((imagePoints != null) ? imagePoints.size() : 0); + Mat imagePoints_mat = Converters.vector_vector_Point2f_to_Mat(imagePoints, imagePoints_tmplm); + Mat retVal = new Mat(initCameraMatrix2D_1(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, imageSize.width, imageSize.height)); + + return retVal; + } + + + // + // C++: Rect cv::getValidDisparityROI(Rect roi1, Rect roi2, int minDisparity, int numberOfDisparities, int SADWindowSize) + // + + //javadoc: getValidDisparityROI(roi1, roi2, minDisparity, numberOfDisparities, SADWindowSize) + public static Rect getValidDisparityROI(Rect roi1, Rect roi2, int minDisparity, int numberOfDisparities, int SADWindowSize) + { + + Rect retVal = new Rect(getValidDisparityROI_0(roi1.x, roi1.y, roi1.width, roi1.height, roi2.x, roi2.y, roi2.width, roi2.height, minDisparity, numberOfDisparities, SADWindowSize)); + + return retVal; + } + + + // + // C++: Vec3d cv::RQDecomp3x3(Mat src, Mat& mtxR, Mat& mtxQ, Mat& Qx = Mat(), Mat& Qy = Mat(), Mat& Qz = Mat()) + // + + //javadoc: RQDecomp3x3(src, mtxR, mtxQ, Qx, Qy, Qz) + public static double[] RQDecomp3x3(Mat src, Mat mtxR, Mat mtxQ, Mat Qx, Mat Qy, Mat Qz) + { + + double[] retVal = RQDecomp3x3_0(src.nativeObj, mtxR.nativeObj, mtxQ.nativeObj, Qx.nativeObj, Qy.nativeObj, Qz.nativeObj); + + return retVal; + } + + //javadoc: RQDecomp3x3(src, mtxR, mtxQ, Qx, Qy) + public static double[] RQDecomp3x3(Mat src, Mat mtxR, Mat mtxQ, Mat Qx, Mat Qy) + { + + double[] retVal = RQDecomp3x3_1(src.nativeObj, mtxR.nativeObj, mtxQ.nativeObj, Qx.nativeObj, Qy.nativeObj); + + return retVal; + } + + //javadoc: RQDecomp3x3(src, mtxR, mtxQ, Qx) + public static double[] RQDecomp3x3(Mat src, Mat mtxR, Mat mtxQ, Mat Qx) + { + + double[] retVal = RQDecomp3x3_2(src.nativeObj, mtxR.nativeObj, mtxQ.nativeObj, Qx.nativeObj); + + return retVal; + } + + //javadoc: RQDecomp3x3(src, mtxR, mtxQ) + public static double[] RQDecomp3x3(Mat src, Mat mtxR, Mat mtxQ) + { + + double[] retVal = RQDecomp3x3_3(src.nativeObj, mtxR.nativeObj, mtxQ.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::findChessboardCorners(Mat image, Size patternSize, vector_Point2f& corners, int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE) + // + + //javadoc: findChessboardCorners(image, patternSize, corners, flags) + public static boolean findChessboardCorners(Mat image, Size patternSize, MatOfPoint2f corners, int flags) + { + Mat corners_mat = corners; + boolean retVal = findChessboardCorners_0(image.nativeObj, patternSize.width, patternSize.height, corners_mat.nativeObj, flags); + + return retVal; + } + + //javadoc: findChessboardCorners(image, patternSize, corners) + public static boolean findChessboardCorners(Mat image, Size patternSize, MatOfPoint2f corners) + { + Mat corners_mat = corners; + boolean retVal = findChessboardCorners_1(image.nativeObj, patternSize.width, patternSize.height, corners_mat.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::findCirclesGrid(Mat image, Size patternSize, Mat& centers, int flags, Ptr_FeatureDetector blobDetector, CirclesGridFinderParameters parameters) + // + + // Unknown type 'Ptr_FeatureDetector' (I), skipping the function + + + // + // C++: bool cv::findCirclesGrid(Mat image, Size patternSize, Mat& centers, int flags = CALIB_CB_SYMMETRIC_GRID, Ptr_FeatureDetector blobDetector = SimpleBlobDetector::create()) + // + + //javadoc: findCirclesGrid(image, patternSize, centers, flags) + public static boolean findCirclesGrid(Mat image, Size patternSize, Mat centers, int flags) + { + + boolean retVal = findCirclesGrid_0(image.nativeObj, patternSize.width, patternSize.height, centers.nativeObj, flags); + + return retVal; + } + + //javadoc: findCirclesGrid(image, patternSize, centers) + public static boolean findCirclesGrid(Mat image, Size patternSize, Mat centers) + { + + boolean retVal = findCirclesGrid_2(image.nativeObj, patternSize.width, patternSize.height, centers.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::findCirclesGrid2(Mat image, Size patternSize, Mat& centers, int flags, Ptr_FeatureDetector blobDetector, CirclesGridFinderParameters2 parameters) + // + + // Unknown type 'Ptr_FeatureDetector' (I), skipping the function + + + // + // C++: bool cv::solvePnP(vector_Point3f objectPoints, vector_Point2f imagePoints, Mat cameraMatrix, vector_double distCoeffs, Mat& rvec, Mat& tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE) + // + + //javadoc: solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, flags) + public static boolean solvePnP(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec, boolean useExtrinsicGuess, int flags) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnP_0(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, useExtrinsicGuess, flags); + + return retVal; + } + + //javadoc: solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess) + public static boolean solvePnP(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec, boolean useExtrinsicGuess) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnP_1(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, useExtrinsicGuess); + + return retVal; + } + + //javadoc: solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec) + public static boolean solvePnP(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnP_2(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::solvePnPRansac(vector_Point3f objectPoints, vector_Point2f imagePoints, Mat cameraMatrix, vector_double distCoeffs, Mat& rvec, Mat& tvec, bool useExtrinsicGuess = false, int iterationsCount = 100, float reprojectionError = 8.0, double confidence = 0.99, Mat& inliers = Mat(), int flags = SOLVEPNP_ITERATIVE) + // + + //javadoc: solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, iterationsCount, reprojectionError, confidence, inliers, flags) + public static boolean solvePnPRansac(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec, boolean useExtrinsicGuess, int iterationsCount, float reprojectionError, double confidence, Mat inliers, int flags) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnPRansac_0(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, useExtrinsicGuess, iterationsCount, reprojectionError, confidence, inliers.nativeObj, flags); + + return retVal; + } + + //javadoc: solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, iterationsCount, reprojectionError, confidence, inliers) + public static boolean solvePnPRansac(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec, boolean useExtrinsicGuess, int iterationsCount, float reprojectionError, double confidence, Mat inliers) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnPRansac_1(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, useExtrinsicGuess, iterationsCount, reprojectionError, confidence, inliers.nativeObj); + + return retVal; + } + + //javadoc: solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, iterationsCount, reprojectionError, confidence) + public static boolean solvePnPRansac(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec, boolean useExtrinsicGuess, int iterationsCount, float reprojectionError, double confidence) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnPRansac_2(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, useExtrinsicGuess, iterationsCount, reprojectionError, confidence); + + return retVal; + } + + //javadoc: solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, iterationsCount, reprojectionError) + public static boolean solvePnPRansac(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec, boolean useExtrinsicGuess, int iterationsCount, float reprojectionError) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnPRansac_3(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, useExtrinsicGuess, iterationsCount, reprojectionError); + + return retVal; + } + + //javadoc: solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, iterationsCount) + public static boolean solvePnPRansac(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec, boolean useExtrinsicGuess, int iterationsCount) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnPRansac_4(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, useExtrinsicGuess, iterationsCount); + + return retVal; + } + + //javadoc: solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess) + public static boolean solvePnPRansac(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec, boolean useExtrinsicGuess) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnPRansac_5(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, useExtrinsicGuess); + + return retVal; + } + + //javadoc: solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec) + public static boolean solvePnPRansac(MatOfPoint3f objectPoints, MatOfPoint2f imagePoints, Mat cameraMatrix, MatOfDouble distCoeffs, Mat rvec, Mat tvec) + { + Mat objectPoints_mat = objectPoints; + Mat imagePoints_mat = imagePoints; + Mat distCoeffs_mat = distCoeffs; + boolean retVal = solvePnPRansac_6(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, rvec.nativeObj, tvec.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::stereoRectifyUncalibrated(Mat points1, Mat points2, Mat F, Size imgSize, Mat& H1, Mat& H2, double threshold = 5) + // + + //javadoc: stereoRectifyUncalibrated(points1, points2, F, imgSize, H1, H2, threshold) + public static boolean stereoRectifyUncalibrated(Mat points1, Mat points2, Mat F, Size imgSize, Mat H1, Mat H2, double threshold) + { + + boolean retVal = stereoRectifyUncalibrated_0(points1.nativeObj, points2.nativeObj, F.nativeObj, imgSize.width, imgSize.height, H1.nativeObj, H2.nativeObj, threshold); + + return retVal; + } + + //javadoc: stereoRectifyUncalibrated(points1, points2, F, imgSize, H1, H2) + public static boolean stereoRectifyUncalibrated(Mat points1, Mat points2, Mat F, Size imgSize, Mat H1, Mat H2) + { + + boolean retVal = stereoRectifyUncalibrated_1(points1.nativeObj, points2.nativeObj, F.nativeObj, imgSize.width, imgSize.height, H1.nativeObj, H2.nativeObj); + + return retVal; + } + + + // + // C++: double cv::calibrateCamera(vector_Mat objectPoints, vector_Mat imagePoints, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs, vector_Mat& rvecs, vector_Mat& tvecs, Mat& stdDeviationsIntrinsics, Mat& stdDeviationsExtrinsics, Mat& perViewErrors, int flags = 0, TermCriteria criteria = TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)) + // + + //javadoc: calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors, flags, criteria) + public static double calibrateCameraExtended(List objectPoints, List imagePoints, Size imageSize, Mat cameraMatrix, Mat distCoeffs, List rvecs, List tvecs, Mat stdDeviationsIntrinsics, Mat stdDeviationsExtrinsics, Mat perViewErrors, int flags, TermCriteria criteria) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = calibrateCameraExtended_0(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, imageSize.width, imageSize.height, cameraMatrix.nativeObj, distCoeffs.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj, stdDeviationsIntrinsics.nativeObj, stdDeviationsExtrinsics.nativeObj, perViewErrors.nativeObj, flags, criteria.type, criteria.maxCount, criteria.epsilon); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + //javadoc: calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors, flags) + public static double calibrateCameraExtended(List objectPoints, List imagePoints, Size imageSize, Mat cameraMatrix, Mat distCoeffs, List rvecs, List tvecs, Mat stdDeviationsIntrinsics, Mat stdDeviationsExtrinsics, Mat perViewErrors, int flags) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = calibrateCameraExtended_1(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, imageSize.width, imageSize.height, cameraMatrix.nativeObj, distCoeffs.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj, stdDeviationsIntrinsics.nativeObj, stdDeviationsExtrinsics.nativeObj, perViewErrors.nativeObj, flags); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + //javadoc: calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors) + public static double calibrateCameraExtended(List objectPoints, List imagePoints, Size imageSize, Mat cameraMatrix, Mat distCoeffs, List rvecs, List tvecs, Mat stdDeviationsIntrinsics, Mat stdDeviationsExtrinsics, Mat perViewErrors) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = calibrateCameraExtended_2(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, imageSize.width, imageSize.height, cameraMatrix.nativeObj, distCoeffs.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj, stdDeviationsIntrinsics.nativeObj, stdDeviationsExtrinsics.nativeObj, perViewErrors.nativeObj); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + + // + // C++: double cv::calibrateCamera(vector_Mat objectPoints, vector_Mat imagePoints, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs, vector_Mat& rvecs, vector_Mat& tvecs, int flags = 0, TermCriteria criteria = TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)) + // + + //javadoc: calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, flags, criteria) + public static double calibrateCamera(List objectPoints, List imagePoints, Size imageSize, Mat cameraMatrix, Mat distCoeffs, List rvecs, List tvecs, int flags, TermCriteria criteria) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = calibrateCamera_0(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, imageSize.width, imageSize.height, cameraMatrix.nativeObj, distCoeffs.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj, flags, criteria.type, criteria.maxCount, criteria.epsilon); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + //javadoc: calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, flags) + public static double calibrateCamera(List objectPoints, List imagePoints, Size imageSize, Mat cameraMatrix, Mat distCoeffs, List rvecs, List tvecs, int flags) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = calibrateCamera_1(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, imageSize.width, imageSize.height, cameraMatrix.nativeObj, distCoeffs.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj, flags); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + //javadoc: calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs) + public static double calibrateCamera(List objectPoints, List imagePoints, Size imageSize, Mat cameraMatrix, Mat distCoeffs, List rvecs, List tvecs) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = calibrateCamera_2(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, imageSize.width, imageSize.height, cameraMatrix.nativeObj, distCoeffs.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + + // + // C++: double cv::sampsonDistance(Mat pt1, Mat pt2, Mat F) + // + + //javadoc: sampsonDistance(pt1, pt2, F) + public static double sampsonDistance(Mat pt1, Mat pt2, Mat F) + { + + double retVal = sampsonDistance_0(pt1.nativeObj, pt2.nativeObj, F.nativeObj); + + return retVal; + } + + + // + // C++: double cv::stereoCalibrate(vector_Mat objectPoints, vector_Mat imagePoints1, vector_Mat imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, Mat& perViewErrors, int flags = CALIB_FIX_INTRINSIC, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6)) + // + + //javadoc: stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, E, F, perViewErrors, flags, criteria) + public static double stereoCalibrateExtended(List objectPoints, List imagePoints1, List imagePoints2, Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat E, Mat F, Mat perViewErrors, int flags, TermCriteria criteria) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = stereoCalibrateExtended_0(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, E.nativeObj, F.nativeObj, perViewErrors.nativeObj, flags, criteria.type, criteria.maxCount, criteria.epsilon); + + return retVal; + } + + //javadoc: stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, E, F, perViewErrors, flags) + public static double stereoCalibrateExtended(List objectPoints, List imagePoints1, List imagePoints2, Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat E, Mat F, Mat perViewErrors, int flags) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = stereoCalibrateExtended_1(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, E.nativeObj, F.nativeObj, perViewErrors.nativeObj, flags); + + return retVal; + } + + //javadoc: stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, E, F, perViewErrors) + public static double stereoCalibrateExtended(List objectPoints, List imagePoints1, List imagePoints2, Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat E, Mat F, Mat perViewErrors) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = stereoCalibrateExtended_2(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, E.nativeObj, F.nativeObj, perViewErrors.nativeObj); + + return retVal; + } + + + // + // C++: double cv::stereoCalibrate(vector_Mat objectPoints, vector_Mat imagePoints1, vector_Mat imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, int flags = CALIB_FIX_INTRINSIC, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6)) + // + + //javadoc: stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, E, F, flags, criteria) + public static double stereoCalibrate(List objectPoints, List imagePoints1, List imagePoints2, Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat E, Mat F, int flags, TermCriteria criteria) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = stereoCalibrate_0(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, E.nativeObj, F.nativeObj, flags, criteria.type, criteria.maxCount, criteria.epsilon); + + return retVal; + } + + //javadoc: stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, E, F, flags) + public static double stereoCalibrate(List objectPoints, List imagePoints1, List imagePoints2, Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat E, Mat F, int flags) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = stereoCalibrate_1(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, E.nativeObj, F.nativeObj, flags); + + return retVal; + } + + //javadoc: stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, E, F) + public static double stereoCalibrate(List objectPoints, List imagePoints1, List imagePoints2, Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat E, Mat F) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = stereoCalibrate_2(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, E.nativeObj, F.nativeObj); + + return retVal; + } + + + // + // C++: double cv::fisheye::calibrate(vector_Mat objectPoints, vector_Mat imagePoints, Size image_size, Mat& K, Mat& D, vector_Mat& rvecs, vector_Mat& tvecs, int flags = 0, TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)) + // + + //javadoc: fisheye_calibrate(objectPoints, imagePoints, image_size, K, D, rvecs, tvecs, flags, criteria) + public static double fisheye_calibrate(List objectPoints, List imagePoints, Size image_size, Mat K, Mat D, List rvecs, List tvecs, int flags, TermCriteria criteria) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = fisheye_calibrate_0(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, image_size.width, image_size.height, K.nativeObj, D.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj, flags, criteria.type, criteria.maxCount, criteria.epsilon); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + //javadoc: fisheye_calibrate(objectPoints, imagePoints, image_size, K, D, rvecs, tvecs, flags) + public static double fisheye_calibrate(List objectPoints, List imagePoints, Size image_size, Mat K, Mat D, List rvecs, List tvecs, int flags) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = fisheye_calibrate_1(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, image_size.width, image_size.height, K.nativeObj, D.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj, flags); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + //javadoc: fisheye_calibrate(objectPoints, imagePoints, image_size, K, D, rvecs, tvecs) + public static double fisheye_calibrate(List objectPoints, List imagePoints, Size image_size, Mat K, Mat D, List rvecs, List tvecs) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints_mat = Converters.vector_Mat_to_Mat(imagePoints); + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + double retVal = fisheye_calibrate_2(objectPoints_mat.nativeObj, imagePoints_mat.nativeObj, image_size.width, image_size.height, K.nativeObj, D.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + + // + // C++: double cv::fisheye::stereoCalibrate(vector_Mat objectPoints, vector_Mat imagePoints1, vector_Mat imagePoints2, Mat& K1, Mat& D1, Mat& K2, Mat& D2, Size imageSize, Mat& R, Mat& T, int flags = fisheye::CALIB_FIX_INTRINSIC, TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)) + // + + //javadoc: fisheye_stereoCalibrate(objectPoints, imagePoints1, imagePoints2, K1, D1, K2, D2, imageSize, R, T, flags, criteria) + public static double fisheye_stereoCalibrate(List objectPoints, List imagePoints1, List imagePoints2, Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat T, int flags, TermCriteria criteria) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = fisheye_stereoCalibrate_0(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, K1.nativeObj, D1.nativeObj, K2.nativeObj, D2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, flags, criteria.type, criteria.maxCount, criteria.epsilon); + + return retVal; + } + + //javadoc: fisheye_stereoCalibrate(objectPoints, imagePoints1, imagePoints2, K1, D1, K2, D2, imageSize, R, T, flags) + public static double fisheye_stereoCalibrate(List objectPoints, List imagePoints1, List imagePoints2, Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat T, int flags) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = fisheye_stereoCalibrate_1(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, K1.nativeObj, D1.nativeObj, K2.nativeObj, D2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, flags); + + return retVal; + } + + //javadoc: fisheye_stereoCalibrate(objectPoints, imagePoints1, imagePoints2, K1, D1, K2, D2, imageSize, R, T) + public static double fisheye_stereoCalibrate(List objectPoints, List imagePoints1, List imagePoints2, Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat T) + { + Mat objectPoints_mat = Converters.vector_Mat_to_Mat(objectPoints); + Mat imagePoints1_mat = Converters.vector_Mat_to_Mat(imagePoints1); + Mat imagePoints2_mat = Converters.vector_Mat_to_Mat(imagePoints2); + double retVal = fisheye_stereoCalibrate_2(objectPoints_mat.nativeObj, imagePoints1_mat.nativeObj, imagePoints2_mat.nativeObj, K1.nativeObj, D1.nativeObj, K2.nativeObj, D2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj); + + return retVal; + } + + + // + // C++: float cv::rectify3Collinear(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Mat cameraMatrix3, Mat distCoeffs3, vector_Mat imgpt1, vector_Mat imgpt3, Size imageSize, Mat R12, Mat T12, Mat R13, Mat T13, Mat& R1, Mat& R2, Mat& R3, Mat& P1, Mat& P2, Mat& P3, Mat& Q, double alpha, Size newImgSize, Rect* roi1, Rect* roi2, int flags) + // + + //javadoc: rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, R12, T12, R13, T13, R1, R2, R3, P1, P2, P3, Q, alpha, newImgSize, roi1, roi2, flags) + public static float rectify3Collinear(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Mat cameraMatrix3, Mat distCoeffs3, List imgpt1, List imgpt3, Size imageSize, Mat R12, Mat T12, Mat R13, Mat T13, Mat R1, Mat R2, Mat R3, Mat P1, Mat P2, Mat P3, Mat Q, double alpha, Size newImgSize, Rect roi1, Rect roi2, int flags) + { + Mat imgpt1_mat = Converters.vector_Mat_to_Mat(imgpt1); + Mat imgpt3_mat = Converters.vector_Mat_to_Mat(imgpt3); + double[] roi1_out = new double[4]; + double[] roi2_out = new double[4]; + float retVal = rectify3Collinear_0(cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, cameraMatrix3.nativeObj, distCoeffs3.nativeObj, imgpt1_mat.nativeObj, imgpt3_mat.nativeObj, imageSize.width, imageSize.height, R12.nativeObj, T12.nativeObj, R13.nativeObj, T13.nativeObj, R1.nativeObj, R2.nativeObj, R3.nativeObj, P1.nativeObj, P2.nativeObj, P3.nativeObj, Q.nativeObj, alpha, newImgSize.width, newImgSize.height, roi1_out, roi2_out, flags); + if(roi1!=null){ roi1.x = (int)roi1_out[0]; roi1.y = (int)roi1_out[1]; roi1.width = (int)roi1_out[2]; roi1.height = (int)roi1_out[3]; } + if(roi2!=null){ roi2.x = (int)roi2_out[0]; roi2.y = (int)roi2_out[1]; roi2.width = (int)roi2_out[2]; roi2.height = (int)roi2_out[3]; } + return retVal; + } + + + // + // C++: int cv::decomposeHomographyMat(Mat H, Mat K, vector_Mat& rotations, vector_Mat& translations, vector_Mat& normals) + // + + //javadoc: decomposeHomographyMat(H, K, rotations, translations, normals) + public static int decomposeHomographyMat(Mat H, Mat K, List rotations, List translations, List normals) + { + Mat rotations_mat = new Mat(); + Mat translations_mat = new Mat(); + Mat normals_mat = new Mat(); + int retVal = decomposeHomographyMat_0(H.nativeObj, K.nativeObj, rotations_mat.nativeObj, translations_mat.nativeObj, normals_mat.nativeObj); + Converters.Mat_to_vector_Mat(rotations_mat, rotations); + rotations_mat.release(); + Converters.Mat_to_vector_Mat(translations_mat, translations); + translations_mat.release(); + Converters.Mat_to_vector_Mat(normals_mat, normals); + normals_mat.release(); + return retVal; + } + + + // + // C++: int cv::estimateAffine3D(Mat src, Mat dst, Mat& out, Mat& inliers, double ransacThreshold = 3, double confidence = 0.99) + // + + //javadoc: estimateAffine3D(src, dst, out, inliers, ransacThreshold, confidence) + public static int estimateAffine3D(Mat src, Mat dst, Mat out, Mat inliers, double ransacThreshold, double confidence) + { + + int retVal = estimateAffine3D_0(src.nativeObj, dst.nativeObj, out.nativeObj, inliers.nativeObj, ransacThreshold, confidence); + + return retVal; + } + + //javadoc: estimateAffine3D(src, dst, out, inliers, ransacThreshold) + public static int estimateAffine3D(Mat src, Mat dst, Mat out, Mat inliers, double ransacThreshold) + { + + int retVal = estimateAffine3D_1(src.nativeObj, dst.nativeObj, out.nativeObj, inliers.nativeObj, ransacThreshold); + + return retVal; + } + + //javadoc: estimateAffine3D(src, dst, out, inliers) + public static int estimateAffine3D(Mat src, Mat dst, Mat out, Mat inliers) + { + + int retVal = estimateAffine3D_2(src.nativeObj, dst.nativeObj, out.nativeObj, inliers.nativeObj); + + return retVal; + } + + + // + // C++: int cv::recoverPose(Mat E, Mat points1, Mat points2, Mat& R, Mat& t, double focal = 1.0, Point2d pp = Point2d(0, 0), Mat& mask = Mat()) + // + + //javadoc: recoverPose(E, points1, points2, R, t, focal, pp, mask) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat R, Mat t, double focal, Point pp, Mat mask) + { + + int retVal = recoverPose_0(E.nativeObj, points1.nativeObj, points2.nativeObj, R.nativeObj, t.nativeObj, focal, pp.x, pp.y, mask.nativeObj); + + return retVal; + } + + //javadoc: recoverPose(E, points1, points2, R, t, focal, pp) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat R, Mat t, double focal, Point pp) + { + + int retVal = recoverPose_1(E.nativeObj, points1.nativeObj, points2.nativeObj, R.nativeObj, t.nativeObj, focal, pp.x, pp.y); + + return retVal; + } + + //javadoc: recoverPose(E, points1, points2, R, t, focal) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat R, Mat t, double focal) + { + + int retVal = recoverPose_2(E.nativeObj, points1.nativeObj, points2.nativeObj, R.nativeObj, t.nativeObj, focal); + + return retVal; + } + + //javadoc: recoverPose(E, points1, points2, R, t) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat R, Mat t) + { + + int retVal = recoverPose_3(E.nativeObj, points1.nativeObj, points2.nativeObj, R.nativeObj, t.nativeObj); + + return retVal; + } + + + // + // C++: int cv::recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat& R, Mat& t, Mat& mask = Mat()) + // + + //javadoc: recoverPose(E, points1, points2, cameraMatrix, R, t, mask) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat R, Mat t, Mat mask) + { + + int retVal = recoverPose_4(E.nativeObj, points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, R.nativeObj, t.nativeObj, mask.nativeObj); + + return retVal; + } + + //javadoc: recoverPose(E, points1, points2, cameraMatrix, R, t) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat R, Mat t) + { + + int retVal = recoverPose_5(E.nativeObj, points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, R.nativeObj, t.nativeObj); + + return retVal; + } + + + // + // C++: int cv::recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat& R, Mat& t, double distanceThresh, Mat& mask = Mat(), Mat& triangulatedPoints = Mat()) + // + + //javadoc: recoverPose(E, points1, points2, cameraMatrix, R, t, distanceThresh, mask, triangulatedPoints) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat R, Mat t, double distanceThresh, Mat mask, Mat triangulatedPoints) + { + + int retVal = recoverPose_6(E.nativeObj, points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, R.nativeObj, t.nativeObj, distanceThresh, mask.nativeObj, triangulatedPoints.nativeObj); + + return retVal; + } + + //javadoc: recoverPose(E, points1, points2, cameraMatrix, R, t, distanceThresh, mask) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat R, Mat t, double distanceThresh, Mat mask) + { + + int retVal = recoverPose_7(E.nativeObj, points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, R.nativeObj, t.nativeObj, distanceThresh, mask.nativeObj); + + return retVal; + } + + //javadoc: recoverPose(E, points1, points2, cameraMatrix, R, t, distanceThresh) + public static int recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat R, Mat t, double distanceThresh) + { + + int retVal = recoverPose_8(E.nativeObj, points1.nativeObj, points2.nativeObj, cameraMatrix.nativeObj, R.nativeObj, t.nativeObj, distanceThresh); + + return retVal; + } + + + // + // C++: int cv::solveP3P(Mat objectPoints, Mat imagePoints, Mat cameraMatrix, Mat distCoeffs, vector_Mat& rvecs, vector_Mat& tvecs, int flags) + // + + //javadoc: solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvecs, tvecs, flags) + public static int solveP3P(Mat objectPoints, Mat imagePoints, Mat cameraMatrix, Mat distCoeffs, List rvecs, List tvecs, int flags) + { + Mat rvecs_mat = new Mat(); + Mat tvecs_mat = new Mat(); + int retVal = solveP3P_0(objectPoints.nativeObj, imagePoints.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj, rvecs_mat.nativeObj, tvecs_mat.nativeObj, flags); + Converters.Mat_to_vector_Mat(rvecs_mat, rvecs); + rvecs_mat.release(); + Converters.Mat_to_vector_Mat(tvecs_mat, tvecs); + tvecs_mat.release(); + return retVal; + } + + + // + // C++: void cv::Rodrigues(Mat src, Mat& dst, Mat& jacobian = Mat()) + // + + //javadoc: Rodrigues(src, dst, jacobian) + public static void Rodrigues(Mat src, Mat dst, Mat jacobian) + { + + Rodrigues_0(src.nativeObj, dst.nativeObj, jacobian.nativeObj); + + return; + } + + //javadoc: Rodrigues(src, dst) + public static void Rodrigues(Mat src, Mat dst) + { + + Rodrigues_1(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::calibrationMatrixValues(Mat cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength, Point2d& principalPoint, double& aspectRatio) + // + + //javadoc: calibrationMatrixValues(cameraMatrix, imageSize, apertureWidth, apertureHeight, fovx, fovy, focalLength, principalPoint, aspectRatio) + public static void calibrationMatrixValues(Mat cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double[] fovx, double[] fovy, double[] focalLength, Point principalPoint, double[] aspectRatio) + { + double[] fovx_out = new double[1]; + double[] fovy_out = new double[1]; + double[] focalLength_out = new double[1]; + double[] principalPoint_out = new double[2]; + double[] aspectRatio_out = new double[1]; + calibrationMatrixValues_0(cameraMatrix.nativeObj, imageSize.width, imageSize.height, apertureWidth, apertureHeight, fovx_out, fovy_out, focalLength_out, principalPoint_out, aspectRatio_out); + if(fovx!=null) fovx[0] = (double)fovx_out[0]; + if(fovy!=null) fovy[0] = (double)fovy_out[0]; + if(focalLength!=null) focalLength[0] = (double)focalLength_out[0]; + if(principalPoint!=null){ principalPoint.x = principalPoint_out[0]; principalPoint.y = principalPoint_out[1]; } + if(aspectRatio!=null) aspectRatio[0] = (double)aspectRatio_out[0]; + return; + } + + + // + // C++: void cv::composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat& rvec3, Mat& tvec3, Mat& dr3dr1 = Mat(), Mat& dr3dt1 = Mat(), Mat& dr3dr2 = Mat(), Mat& dr3dt2 = Mat(), Mat& dt3dr1 = Mat(), Mat& dt3dt1 = Mat(), Mat& dt3dr2 = Mat(), Mat& dt3dt2 = Mat()) + // + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2, dt3dt2) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3, Mat dr3dr1, Mat dr3dt1, Mat dr3dr2, Mat dr3dt2, Mat dt3dr1, Mat dt3dt1, Mat dt3dr2, Mat dt3dt2) + { + + composeRT_0(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj, dr3dr1.nativeObj, dr3dt1.nativeObj, dr3dr2.nativeObj, dr3dt2.nativeObj, dt3dr1.nativeObj, dt3dt1.nativeObj, dt3dr2.nativeObj, dt3dt2.nativeObj); + + return; + } + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3, Mat dr3dr1, Mat dr3dt1, Mat dr3dr2, Mat dr3dt2, Mat dt3dr1, Mat dt3dt1, Mat dt3dr2) + { + + composeRT_1(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj, dr3dr1.nativeObj, dr3dt1.nativeObj, dr3dr2.nativeObj, dr3dt2.nativeObj, dt3dr1.nativeObj, dt3dt1.nativeObj, dt3dr2.nativeObj); + + return; + } + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3, Mat dr3dr1, Mat dr3dt1, Mat dr3dr2, Mat dr3dt2, Mat dt3dr1, Mat dt3dt1) + { + + composeRT_2(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj, dr3dr1.nativeObj, dr3dt1.nativeObj, dr3dr2.nativeObj, dr3dt2.nativeObj, dt3dr1.nativeObj, dt3dt1.nativeObj); + + return; + } + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3, Mat dr3dr1, Mat dr3dt1, Mat dr3dr2, Mat dr3dt2, Mat dt3dr1) + { + + composeRT_3(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj, dr3dr1.nativeObj, dr3dt1.nativeObj, dr3dr2.nativeObj, dr3dt2.nativeObj, dt3dr1.nativeObj); + + return; + } + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3, Mat dr3dr1, Mat dr3dt1, Mat dr3dr2, Mat dr3dt2) + { + + composeRT_4(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj, dr3dr1.nativeObj, dr3dt1.nativeObj, dr3dr2.nativeObj, dr3dt2.nativeObj); + + return; + } + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3, Mat dr3dr1, Mat dr3dt1, Mat dr3dr2) + { + + composeRT_5(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj, dr3dr1.nativeObj, dr3dt1.nativeObj, dr3dr2.nativeObj); + + return; + } + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3, dr3dr1, dr3dt1) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3, Mat dr3dr1, Mat dr3dt1) + { + + composeRT_6(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj, dr3dr1.nativeObj, dr3dt1.nativeObj); + + return; + } + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3, dr3dr1) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3, Mat dr3dr1) + { + + composeRT_7(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj, dr3dr1.nativeObj); + + return; + } + + //javadoc: composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3) + public static void composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat rvec3, Mat tvec3) + { + + composeRT_8(rvec1.nativeObj, tvec1.nativeObj, rvec2.nativeObj, tvec2.nativeObj, rvec3.nativeObj, tvec3.nativeObj); + + return; + } + + + // + // C++: void cv::computeCorrespondEpilines(Mat points, int whichImage, Mat F, Mat& lines) + // + + //javadoc: computeCorrespondEpilines(points, whichImage, F, lines) + public static void computeCorrespondEpilines(Mat points, int whichImage, Mat F, Mat lines) + { + + computeCorrespondEpilines_0(points.nativeObj, whichImage, F.nativeObj, lines.nativeObj); + + return; + } + + + // + // C++: void cv::convertPointsFromHomogeneous(Mat src, Mat& dst) + // + + //javadoc: convertPointsFromHomogeneous(src, dst) + public static void convertPointsFromHomogeneous(Mat src, Mat dst) + { + + convertPointsFromHomogeneous_0(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::convertPointsToHomogeneous(Mat src, Mat& dst) + // + + //javadoc: convertPointsToHomogeneous(src, dst) + public static void convertPointsToHomogeneous(Mat src, Mat dst) + { + + convertPointsToHomogeneous_0(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::correctMatches(Mat F, Mat points1, Mat points2, Mat& newPoints1, Mat& newPoints2) + // + + //javadoc: correctMatches(F, points1, points2, newPoints1, newPoints2) + public static void correctMatches(Mat F, Mat points1, Mat points2, Mat newPoints1, Mat newPoints2) + { + + correctMatches_0(F.nativeObj, points1.nativeObj, points2.nativeObj, newPoints1.nativeObj, newPoints2.nativeObj); + + return; + } + + + // + // C++: void cv::decomposeEssentialMat(Mat E, Mat& R1, Mat& R2, Mat& t) + // + + //javadoc: decomposeEssentialMat(E, R1, R2, t) + public static void decomposeEssentialMat(Mat E, Mat R1, Mat R2, Mat t) + { + + decomposeEssentialMat_0(E.nativeObj, R1.nativeObj, R2.nativeObj, t.nativeObj); + + return; + } + + + // + // C++: void cv::decomposeProjectionMatrix(Mat projMatrix, Mat& cameraMatrix, Mat& rotMatrix, Mat& transVect, Mat& rotMatrixX = Mat(), Mat& rotMatrixY = Mat(), Mat& rotMatrixZ = Mat(), Mat& eulerAngles = Mat()) + // + + //javadoc: decomposeProjectionMatrix(projMatrix, cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY, rotMatrixZ, eulerAngles) + public static void decomposeProjectionMatrix(Mat projMatrix, Mat cameraMatrix, Mat rotMatrix, Mat transVect, Mat rotMatrixX, Mat rotMatrixY, Mat rotMatrixZ, Mat eulerAngles) + { + + decomposeProjectionMatrix_0(projMatrix.nativeObj, cameraMatrix.nativeObj, rotMatrix.nativeObj, transVect.nativeObj, rotMatrixX.nativeObj, rotMatrixY.nativeObj, rotMatrixZ.nativeObj, eulerAngles.nativeObj); + + return; + } + + //javadoc: decomposeProjectionMatrix(projMatrix, cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY, rotMatrixZ) + public static void decomposeProjectionMatrix(Mat projMatrix, Mat cameraMatrix, Mat rotMatrix, Mat transVect, Mat rotMatrixX, Mat rotMatrixY, Mat rotMatrixZ) + { + + decomposeProjectionMatrix_1(projMatrix.nativeObj, cameraMatrix.nativeObj, rotMatrix.nativeObj, transVect.nativeObj, rotMatrixX.nativeObj, rotMatrixY.nativeObj, rotMatrixZ.nativeObj); + + return; + } + + //javadoc: decomposeProjectionMatrix(projMatrix, cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY) + public static void decomposeProjectionMatrix(Mat projMatrix, Mat cameraMatrix, Mat rotMatrix, Mat transVect, Mat rotMatrixX, Mat rotMatrixY) + { + + decomposeProjectionMatrix_2(projMatrix.nativeObj, cameraMatrix.nativeObj, rotMatrix.nativeObj, transVect.nativeObj, rotMatrixX.nativeObj, rotMatrixY.nativeObj); + + return; + } + + //javadoc: decomposeProjectionMatrix(projMatrix, cameraMatrix, rotMatrix, transVect, rotMatrixX) + public static void decomposeProjectionMatrix(Mat projMatrix, Mat cameraMatrix, Mat rotMatrix, Mat transVect, Mat rotMatrixX) + { + + decomposeProjectionMatrix_3(projMatrix.nativeObj, cameraMatrix.nativeObj, rotMatrix.nativeObj, transVect.nativeObj, rotMatrixX.nativeObj); + + return; + } + + //javadoc: decomposeProjectionMatrix(projMatrix, cameraMatrix, rotMatrix, transVect) + public static void decomposeProjectionMatrix(Mat projMatrix, Mat cameraMatrix, Mat rotMatrix, Mat transVect) + { + + decomposeProjectionMatrix_4(projMatrix.nativeObj, cameraMatrix.nativeObj, rotMatrix.nativeObj, transVect.nativeObj); + + return; + } + + + // + // C++: void cv::drawChessboardCorners(Mat& image, Size patternSize, vector_Point2f corners, bool patternWasFound) + // + + //javadoc: drawChessboardCorners(image, patternSize, corners, patternWasFound) + public static void drawChessboardCorners(Mat image, Size patternSize, MatOfPoint2f corners, boolean patternWasFound) + { + Mat corners_mat = corners; + drawChessboardCorners_0(image.nativeObj, patternSize.width, patternSize.height, corners_mat.nativeObj, patternWasFound); + + return; + } + + + // + // C++: void cv::filterHomographyDecompByVisibleRefpoints(vector_Mat rotations, vector_Mat normals, Mat beforePoints, Mat afterPoints, Mat& possibleSolutions, Mat pointsMask = Mat()) + // + + //javadoc: filterHomographyDecompByVisibleRefpoints(rotations, normals, beforePoints, afterPoints, possibleSolutions, pointsMask) + public static void filterHomographyDecompByVisibleRefpoints(List rotations, List normals, Mat beforePoints, Mat afterPoints, Mat possibleSolutions, Mat pointsMask) + { + Mat rotations_mat = Converters.vector_Mat_to_Mat(rotations); + Mat normals_mat = Converters.vector_Mat_to_Mat(normals); + filterHomographyDecompByVisibleRefpoints_0(rotations_mat.nativeObj, normals_mat.nativeObj, beforePoints.nativeObj, afterPoints.nativeObj, possibleSolutions.nativeObj, pointsMask.nativeObj); + + return; + } + + //javadoc: filterHomographyDecompByVisibleRefpoints(rotations, normals, beforePoints, afterPoints, possibleSolutions) + public static void filterHomographyDecompByVisibleRefpoints(List rotations, List normals, Mat beforePoints, Mat afterPoints, Mat possibleSolutions) + { + Mat rotations_mat = Converters.vector_Mat_to_Mat(rotations); + Mat normals_mat = Converters.vector_Mat_to_Mat(normals); + filterHomographyDecompByVisibleRefpoints_1(rotations_mat.nativeObj, normals_mat.nativeObj, beforePoints.nativeObj, afterPoints.nativeObj, possibleSolutions.nativeObj); + + return; + } + + + // + // C++: void cv::filterSpeckles(Mat& img, double newVal, int maxSpeckleSize, double maxDiff, Mat& buf = Mat()) + // + + //javadoc: filterSpeckles(img, newVal, maxSpeckleSize, maxDiff, buf) + public static void filterSpeckles(Mat img, double newVal, int maxSpeckleSize, double maxDiff, Mat buf) + { + + filterSpeckles_0(img.nativeObj, newVal, maxSpeckleSize, maxDiff, buf.nativeObj); + + return; + } + + //javadoc: filterSpeckles(img, newVal, maxSpeckleSize, maxDiff) + public static void filterSpeckles(Mat img, double newVal, int maxSpeckleSize, double maxDiff) + { + + filterSpeckles_1(img.nativeObj, newVal, maxSpeckleSize, maxDiff); + + return; + } + + + // + // C++: void cv::matMulDeriv(Mat A, Mat B, Mat& dABdA, Mat& dABdB) + // + + //javadoc: matMulDeriv(A, B, dABdA, dABdB) + public static void matMulDeriv(Mat A, Mat B, Mat dABdA, Mat dABdB) + { + + matMulDeriv_0(A.nativeObj, B.nativeObj, dABdA.nativeObj, dABdB.nativeObj); + + return; + } + + + // + // C++: void cv::projectPoints(vector_Point3f objectPoints, Mat rvec, Mat tvec, Mat cameraMatrix, vector_double distCoeffs, vector_Point2f& imagePoints, Mat& jacobian = Mat(), double aspectRatio = 0) + // + + //javadoc: projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints, jacobian, aspectRatio) + public static void projectPoints(MatOfPoint3f objectPoints, Mat rvec, Mat tvec, Mat cameraMatrix, MatOfDouble distCoeffs, MatOfPoint2f imagePoints, Mat jacobian, double aspectRatio) + { + Mat objectPoints_mat = objectPoints; + Mat distCoeffs_mat = distCoeffs; + Mat imagePoints_mat = imagePoints; + projectPoints_0(objectPoints_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, imagePoints_mat.nativeObj, jacobian.nativeObj, aspectRatio); + + return; + } + + //javadoc: projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints, jacobian) + public static void projectPoints(MatOfPoint3f objectPoints, Mat rvec, Mat tvec, Mat cameraMatrix, MatOfDouble distCoeffs, MatOfPoint2f imagePoints, Mat jacobian) + { + Mat objectPoints_mat = objectPoints; + Mat distCoeffs_mat = distCoeffs; + Mat imagePoints_mat = imagePoints; + projectPoints_1(objectPoints_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, imagePoints_mat.nativeObj, jacobian.nativeObj); + + return; + } + + //javadoc: projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints) + public static void projectPoints(MatOfPoint3f objectPoints, Mat rvec, Mat tvec, Mat cameraMatrix, MatOfDouble distCoeffs, MatOfPoint2f imagePoints) + { + Mat objectPoints_mat = objectPoints; + Mat distCoeffs_mat = distCoeffs; + Mat imagePoints_mat = imagePoints; + projectPoints_2(objectPoints_mat.nativeObj, rvec.nativeObj, tvec.nativeObj, cameraMatrix.nativeObj, distCoeffs_mat.nativeObj, imagePoints_mat.nativeObj); + + return; + } + + + // + // C++: void cv::reprojectImageTo3D(Mat disparity, Mat& _3dImage, Mat Q, bool handleMissingValues = false, int ddepth = -1) + // + + //javadoc: reprojectImageTo3D(disparity, _3dImage, Q, handleMissingValues, ddepth) + public static void reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q, boolean handleMissingValues, int ddepth) + { + + reprojectImageTo3D_0(disparity.nativeObj, _3dImage.nativeObj, Q.nativeObj, handleMissingValues, ddepth); + + return; + } + + //javadoc: reprojectImageTo3D(disparity, _3dImage, Q, handleMissingValues) + public static void reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q, boolean handleMissingValues) + { + + reprojectImageTo3D_1(disparity.nativeObj, _3dImage.nativeObj, Q.nativeObj, handleMissingValues); + + return; + } + + //javadoc: reprojectImageTo3D(disparity, _3dImage, Q) + public static void reprojectImageTo3D(Mat disparity, Mat _3dImage, Mat Q) + { + + reprojectImageTo3D_2(disparity.nativeObj, _3dImage.nativeObj, Q.nativeObj); + + return; + } + + + // + // C++: void cv::stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, int flags = CALIB_ZERO_DISPARITY, double alpha = -1, Size newImageSize = Size(), Rect* validPixROI1 = 0, Rect* validPixROI2 = 0) + // + + //javadoc: stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, R1, R2, P1, P2, Q, flags, alpha, newImageSize, validPixROI1, validPixROI2) + public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize, Rect validPixROI1, Rect validPixROI2) + { + double[] validPixROI1_out = new double[4]; + double[] validPixROI2_out = new double[4]; + stereoRectify_0(cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags, alpha, newImageSize.width, newImageSize.height, validPixROI1_out, validPixROI2_out); + if(validPixROI1!=null){ validPixROI1.x = (int)validPixROI1_out[0]; validPixROI1.y = (int)validPixROI1_out[1]; validPixROI1.width = (int)validPixROI1_out[2]; validPixROI1.height = (int)validPixROI1_out[3]; } + if(validPixROI2!=null){ validPixROI2.x = (int)validPixROI2_out[0]; validPixROI2.y = (int)validPixROI2_out[1]; validPixROI2.width = (int)validPixROI2_out[2]; validPixROI2.height = (int)validPixROI2_out[3]; } + return; + } + + //javadoc: stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, R1, R2, P1, P2, Q, flags, alpha, newImageSize, validPixROI1) + public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize, Rect validPixROI1) + { + double[] validPixROI1_out = new double[4]; + stereoRectify_1(cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags, alpha, newImageSize.width, newImageSize.height, validPixROI1_out); + if(validPixROI1!=null){ validPixROI1.x = (int)validPixROI1_out[0]; validPixROI1.y = (int)validPixROI1_out[1]; validPixROI1.width = (int)validPixROI1_out[2]; validPixROI1.height = (int)validPixROI1_out[3]; } + return; + } + + //javadoc: stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, R1, R2, P1, P2, Q, flags, alpha, newImageSize) + public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha, Size newImageSize) + { + + stereoRectify_2(cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags, alpha, newImageSize.width, newImageSize.height); + + return; + } + + //javadoc: stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, R1, R2, P1, P2, Q, flags, alpha) + public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, double alpha) + { + + stereoRectify_3(cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags, alpha); + + return; + } + + //javadoc: stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, R1, R2, P1, P2, Q, flags) + public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags) + { + + stereoRectify_4(cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags); + + return; + } + + //javadoc: stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, R1, R2, P1, P2, Q) + public static void stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q) + { + + stereoRectify_5(cameraMatrix1.nativeObj, distCoeffs1.nativeObj, cameraMatrix2.nativeObj, distCoeffs2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, T.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj); + + return; + } + + + // + // C++: void cv::triangulatePoints(Mat projMatr1, Mat projMatr2, Mat projPoints1, Mat projPoints2, Mat& points4D) + // + + //javadoc: triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2, points4D) + public static void triangulatePoints(Mat projMatr1, Mat projMatr2, Mat projPoints1, Mat projPoints2, Mat points4D) + { + + triangulatePoints_0(projMatr1.nativeObj, projMatr2.nativeObj, projPoints1.nativeObj, projPoints2.nativeObj, points4D.nativeObj); + + return; + } + + + // + // C++: void cv::validateDisparity(Mat& disparity, Mat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp = 1) + // + + //javadoc: validateDisparity(disparity, cost, minDisparity, numberOfDisparities, disp12MaxDisp) + public static void validateDisparity(Mat disparity, Mat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp) + { + + validateDisparity_0(disparity.nativeObj, cost.nativeObj, minDisparity, numberOfDisparities, disp12MaxDisp); + + return; + } + + //javadoc: validateDisparity(disparity, cost, minDisparity, numberOfDisparities) + public static void validateDisparity(Mat disparity, Mat cost, int minDisparity, int numberOfDisparities) + { + + validateDisparity_1(disparity.nativeObj, cost.nativeObj, minDisparity, numberOfDisparities); + + return; + } + + + // + // C++: void cv::fisheye::distortPoints(Mat undistorted, Mat& distorted, Mat K, Mat D, double alpha = 0) + // + + //javadoc: fisheye_distortPoints(undistorted, distorted, K, D, alpha) + public static void fisheye_distortPoints(Mat undistorted, Mat distorted, Mat K, Mat D, double alpha) + { + + fisheye_distortPoints_0(undistorted.nativeObj, distorted.nativeObj, K.nativeObj, D.nativeObj, alpha); + + return; + } + + //javadoc: fisheye_distortPoints(undistorted, distorted, K, D) + public static void fisheye_distortPoints(Mat undistorted, Mat distorted, Mat K, Mat D) + { + + fisheye_distortPoints_1(undistorted.nativeObj, distorted.nativeObj, K.nativeObj, D.nativeObj); + + return; + } + + + // + // C++: void cv::fisheye::estimateNewCameraMatrixForUndistortRectify(Mat K, Mat D, Size image_size, Mat R, Mat& P, double balance = 0.0, Size new_size = Size(), double fov_scale = 1.0) + // + + //javadoc: fisheye_estimateNewCameraMatrixForUndistortRectify(K, D, image_size, R, P, balance, new_size, fov_scale) + public static void fisheye_estimateNewCameraMatrixForUndistortRectify(Mat K, Mat D, Size image_size, Mat R, Mat P, double balance, Size new_size, double fov_scale) + { + + fisheye_estimateNewCameraMatrixForUndistortRectify_0(K.nativeObj, D.nativeObj, image_size.width, image_size.height, R.nativeObj, P.nativeObj, balance, new_size.width, new_size.height, fov_scale); + + return; + } + + //javadoc: fisheye_estimateNewCameraMatrixForUndistortRectify(K, D, image_size, R, P, balance, new_size) + public static void fisheye_estimateNewCameraMatrixForUndistortRectify(Mat K, Mat D, Size image_size, Mat R, Mat P, double balance, Size new_size) + { + + fisheye_estimateNewCameraMatrixForUndistortRectify_1(K.nativeObj, D.nativeObj, image_size.width, image_size.height, R.nativeObj, P.nativeObj, balance, new_size.width, new_size.height); + + return; + } + + //javadoc: fisheye_estimateNewCameraMatrixForUndistortRectify(K, D, image_size, R, P, balance) + public static void fisheye_estimateNewCameraMatrixForUndistortRectify(Mat K, Mat D, Size image_size, Mat R, Mat P, double balance) + { + + fisheye_estimateNewCameraMatrixForUndistortRectify_2(K.nativeObj, D.nativeObj, image_size.width, image_size.height, R.nativeObj, P.nativeObj, balance); + + return; + } + + //javadoc: fisheye_estimateNewCameraMatrixForUndistortRectify(K, D, image_size, R, P) + public static void fisheye_estimateNewCameraMatrixForUndistortRectify(Mat K, Mat D, Size image_size, Mat R, Mat P) + { + + fisheye_estimateNewCameraMatrixForUndistortRectify_3(K.nativeObj, D.nativeObj, image_size.width, image_size.height, R.nativeObj, P.nativeObj); + + return; + } + + + // + // C++: void cv::fisheye::initUndistortRectifyMap(Mat K, Mat D, Mat R, Mat P, Size size, int m1type, Mat& map1, Mat& map2) + // + + //javadoc: fisheye_initUndistortRectifyMap(K, D, R, P, size, m1type, map1, map2) + public static void fisheye_initUndistortRectifyMap(Mat K, Mat D, Mat R, Mat P, Size size, int m1type, Mat map1, Mat map2) + { + + fisheye_initUndistortRectifyMap_0(K.nativeObj, D.nativeObj, R.nativeObj, P.nativeObj, size.width, size.height, m1type, map1.nativeObj, map2.nativeObj); + + return; + } + + + // + // C++: void cv::fisheye::projectPoints(Mat objectPoints, Mat& imagePoints, Mat rvec, Mat tvec, Mat K, Mat D, double alpha = 0, Mat& jacobian = Mat()) + // + + //javadoc: fisheye_projectPoints(objectPoints, imagePoints, rvec, tvec, K, D, alpha, jacobian) + public static void fisheye_projectPoints(Mat objectPoints, Mat imagePoints, Mat rvec, Mat tvec, Mat K, Mat D, double alpha, Mat jacobian) + { + + fisheye_projectPoints_0(objectPoints.nativeObj, imagePoints.nativeObj, rvec.nativeObj, tvec.nativeObj, K.nativeObj, D.nativeObj, alpha, jacobian.nativeObj); + + return; + } + + //javadoc: fisheye_projectPoints(objectPoints, imagePoints, rvec, tvec, K, D, alpha) + public static void fisheye_projectPoints(Mat objectPoints, Mat imagePoints, Mat rvec, Mat tvec, Mat K, Mat D, double alpha) + { + + fisheye_projectPoints_1(objectPoints.nativeObj, imagePoints.nativeObj, rvec.nativeObj, tvec.nativeObj, K.nativeObj, D.nativeObj, alpha); + + return; + } + + //javadoc: fisheye_projectPoints(objectPoints, imagePoints, rvec, tvec, K, D) + public static void fisheye_projectPoints(Mat objectPoints, Mat imagePoints, Mat rvec, Mat tvec, Mat K, Mat D) + { + + fisheye_projectPoints_2(objectPoints.nativeObj, imagePoints.nativeObj, rvec.nativeObj, tvec.nativeObj, K.nativeObj, D.nativeObj); + + return; + } + + + // + // C++: void cv::fisheye::stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, int flags, Size newImageSize = Size(), double balance = 0.0, double fov_scale = 1.0) + // + + //javadoc: fisheye_stereoRectify(K1, D1, K2, D2, imageSize, R, tvec, R1, R2, P1, P2, Q, flags, newImageSize, balance, fov_scale) + public static void fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize, double balance, double fov_scale) + { + + fisheye_stereoRectify_0(K1.nativeObj, D1.nativeObj, K2.nativeObj, D2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, tvec.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags, newImageSize.width, newImageSize.height, balance, fov_scale); + + return; + } + + //javadoc: fisheye_stereoRectify(K1, D1, K2, D2, imageSize, R, tvec, R1, R2, P1, P2, Q, flags, newImageSize, balance) + public static void fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize, double balance) + { + + fisheye_stereoRectify_1(K1.nativeObj, D1.nativeObj, K2.nativeObj, D2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, tvec.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags, newImageSize.width, newImageSize.height, balance); + + return; + } + + //javadoc: fisheye_stereoRectify(K1, D1, K2, D2, imageSize, R, tvec, R1, R2, P1, P2, Q, flags, newImageSize) + public static void fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags, Size newImageSize) + { + + fisheye_stereoRectify_2(K1.nativeObj, D1.nativeObj, K2.nativeObj, D2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, tvec.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags, newImageSize.width, newImageSize.height); + + return; + } + + //javadoc: fisheye_stereoRectify(K1, D1, K2, D2, imageSize, R, tvec, R1, R2, P1, P2, Q, flags) + public static void fisheye_stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat R1, Mat R2, Mat P1, Mat P2, Mat Q, int flags) + { + + fisheye_stereoRectify_3(K1.nativeObj, D1.nativeObj, K2.nativeObj, D2.nativeObj, imageSize.width, imageSize.height, R.nativeObj, tvec.nativeObj, R1.nativeObj, R2.nativeObj, P1.nativeObj, P2.nativeObj, Q.nativeObj, flags); + + return; + } + + + // + // C++: void cv::fisheye::undistortImage(Mat distorted, Mat& undistorted, Mat K, Mat D, Mat Knew = cv::Mat(), Size new_size = Size()) + // + + //javadoc: fisheye_undistortImage(distorted, undistorted, K, D, Knew, new_size) + public static void fisheye_undistortImage(Mat distorted, Mat undistorted, Mat K, Mat D, Mat Knew, Size new_size) + { + + fisheye_undistortImage_0(distorted.nativeObj, undistorted.nativeObj, K.nativeObj, D.nativeObj, Knew.nativeObj, new_size.width, new_size.height); + + return; + } + + //javadoc: fisheye_undistortImage(distorted, undistorted, K, D, Knew) + public static void fisheye_undistortImage(Mat distorted, Mat undistorted, Mat K, Mat D, Mat Knew) + { + + fisheye_undistortImage_1(distorted.nativeObj, undistorted.nativeObj, K.nativeObj, D.nativeObj, Knew.nativeObj); + + return; + } + + //javadoc: fisheye_undistortImage(distorted, undistorted, K, D) + public static void fisheye_undistortImage(Mat distorted, Mat undistorted, Mat K, Mat D) + { + + fisheye_undistortImage_2(distorted.nativeObj, undistorted.nativeObj, K.nativeObj, D.nativeObj); + + return; + } + + + // + // C++: void cv::fisheye::undistortPoints(Mat distorted, Mat& undistorted, Mat K, Mat D, Mat R = Mat(), Mat P = Mat()) + // + + //javadoc: fisheye_undistortPoints(distorted, undistorted, K, D, R, P) + public static void fisheye_undistortPoints(Mat distorted, Mat undistorted, Mat K, Mat D, Mat R, Mat P) + { + + fisheye_undistortPoints_0(distorted.nativeObj, undistorted.nativeObj, K.nativeObj, D.nativeObj, R.nativeObj, P.nativeObj); + + return; + } + + //javadoc: fisheye_undistortPoints(distorted, undistorted, K, D, R) + public static void fisheye_undistortPoints(Mat distorted, Mat undistorted, Mat K, Mat D, Mat R) + { + + fisheye_undistortPoints_1(distorted.nativeObj, undistorted.nativeObj, K.nativeObj, D.nativeObj, R.nativeObj); + + return; + } + + //javadoc: fisheye_undistortPoints(distorted, undistorted, K, D) + public static void fisheye_undistortPoints(Mat distorted, Mat undistorted, Mat K, Mat D) + { + + fisheye_undistortPoints_2(distorted.nativeObj, undistorted.nativeObj, K.nativeObj, D.nativeObj); + + return; + } + + + + + // C++: Mat cv::estimateAffine2D(Mat from, Mat to, Mat& inliers = Mat(), int method = RANSAC, double ransacReprojThreshold = 3, size_t maxIters = 2000, double confidence = 0.99, size_t refineIters = 10) + private static native long estimateAffine2D_0(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method, double ransacReprojThreshold, long maxIters, double confidence, long refineIters); + private static native long estimateAffine2D_1(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method, double ransacReprojThreshold, long maxIters, double confidence); + private static native long estimateAffine2D_2(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method, double ransacReprojThreshold, long maxIters); + private static native long estimateAffine2D_3(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method, double ransacReprojThreshold); + private static native long estimateAffine2D_4(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method); + private static native long estimateAffine2D_5(long from_nativeObj, long to_nativeObj, long inliers_nativeObj); + private static native long estimateAffine2D_6(long from_nativeObj, long to_nativeObj); + + // C++: Mat cv::estimateAffinePartial2D(Mat from, Mat to, Mat& inliers = Mat(), int method = RANSAC, double ransacReprojThreshold = 3, size_t maxIters = 2000, double confidence = 0.99, size_t refineIters = 10) + private static native long estimateAffinePartial2D_0(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method, double ransacReprojThreshold, long maxIters, double confidence, long refineIters); + private static native long estimateAffinePartial2D_1(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method, double ransacReprojThreshold, long maxIters, double confidence); + private static native long estimateAffinePartial2D_2(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method, double ransacReprojThreshold, long maxIters); + private static native long estimateAffinePartial2D_3(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method, double ransacReprojThreshold); + private static native long estimateAffinePartial2D_4(long from_nativeObj, long to_nativeObj, long inliers_nativeObj, int method); + private static native long estimateAffinePartial2D_5(long from_nativeObj, long to_nativeObj, long inliers_nativeObj); + private static native long estimateAffinePartial2D_6(long from_nativeObj, long to_nativeObj); + + // C++: Mat cv::findEssentialMat(Mat points1, Mat points2, Mat cameraMatrix, int method = RANSAC, double prob = 0.999, double threshold = 1.0, Mat& mask = Mat()) + private static native long findEssentialMat_0(long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, int method, double prob, double threshold, long mask_nativeObj); + private static native long findEssentialMat_1(long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, int method, double prob, double threshold); + private static native long findEssentialMat_2(long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, int method, double prob); + private static native long findEssentialMat_3(long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, int method); + private static native long findEssentialMat_4(long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj); + + // C++: Mat cv::findEssentialMat(Mat points1, Mat points2, double focal = 1.0, Point2d pp = Point2d(0, 0), int method = RANSAC, double prob = 0.999, double threshold = 1.0, Mat& mask = Mat()) + private static native long findEssentialMat_5(long points1_nativeObj, long points2_nativeObj, double focal, double pp_x, double pp_y, int method, double prob, double threshold, long mask_nativeObj); + private static native long findEssentialMat_6(long points1_nativeObj, long points2_nativeObj, double focal, double pp_x, double pp_y, int method, double prob, double threshold); + private static native long findEssentialMat_7(long points1_nativeObj, long points2_nativeObj, double focal, double pp_x, double pp_y, int method, double prob); + private static native long findEssentialMat_8(long points1_nativeObj, long points2_nativeObj, double focal, double pp_x, double pp_y, int method); + private static native long findEssentialMat_9(long points1_nativeObj, long points2_nativeObj, double focal, double pp_x, double pp_y); + private static native long findEssentialMat_10(long points1_nativeObj, long points2_nativeObj, double focal); + private static native long findEssentialMat_11(long points1_nativeObj, long points2_nativeObj); + + // C++: Mat cv::findFundamentalMat(vector_Point2f points1, vector_Point2f points2, int method = FM_RANSAC, double ransacReprojThreshold = 3., double confidence = 0.99, Mat& mask = Mat()) + private static native long findFundamentalMat_0(long points1_mat_nativeObj, long points2_mat_nativeObj, int method, double ransacReprojThreshold, double confidence, long mask_nativeObj); + private static native long findFundamentalMat_1(long points1_mat_nativeObj, long points2_mat_nativeObj, int method, double ransacReprojThreshold, double confidence); + private static native long findFundamentalMat_2(long points1_mat_nativeObj, long points2_mat_nativeObj, int method, double ransacReprojThreshold); + private static native long findFundamentalMat_3(long points1_mat_nativeObj, long points2_mat_nativeObj, int method); + private static native long findFundamentalMat_4(long points1_mat_nativeObj, long points2_mat_nativeObj); + + // C++: Mat cv::findHomography(vector_Point2f srcPoints, vector_Point2f dstPoints, int method = 0, double ransacReprojThreshold = 3, Mat& mask = Mat(), int maxIters = 2000, double confidence = 0.995) + private static native long findHomography_0(long srcPoints_mat_nativeObj, long dstPoints_mat_nativeObj, int method, double ransacReprojThreshold, long mask_nativeObj, int maxIters, double confidence); + private static native long findHomography_1(long srcPoints_mat_nativeObj, long dstPoints_mat_nativeObj, int method, double ransacReprojThreshold, long mask_nativeObj, int maxIters); + private static native long findHomography_2(long srcPoints_mat_nativeObj, long dstPoints_mat_nativeObj, int method, double ransacReprojThreshold, long mask_nativeObj); + private static native long findHomography_3(long srcPoints_mat_nativeObj, long dstPoints_mat_nativeObj, int method, double ransacReprojThreshold); + private static native long findHomography_4(long srcPoints_mat_nativeObj, long dstPoints_mat_nativeObj, int method); + private static native long findHomography_5(long srcPoints_mat_nativeObj, long dstPoints_mat_nativeObj); + + // C++: Mat cv::getOptimalNewCameraMatrix(Mat cameraMatrix, Mat distCoeffs, Size imageSize, double alpha, Size newImgSize = Size(), Rect* validPixROI = 0, bool centerPrincipalPoint = false) + private static native long getOptimalNewCameraMatrix_0(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, double alpha, double newImgSize_width, double newImgSize_height, double[] validPixROI_out, boolean centerPrincipalPoint); + private static native long getOptimalNewCameraMatrix_1(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, double alpha, double newImgSize_width, double newImgSize_height, double[] validPixROI_out); + private static native long getOptimalNewCameraMatrix_2(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, double alpha, double newImgSize_width, double newImgSize_height); + private static native long getOptimalNewCameraMatrix_3(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, double alpha); + + // C++: Mat cv::initCameraMatrix2D(vector_vector_Point3f objectPoints, vector_vector_Point2f imagePoints, Size imageSize, double aspectRatio = 1.0) + private static native long initCameraMatrix2D_0(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double imageSize_width, double imageSize_height, double aspectRatio); + private static native long initCameraMatrix2D_1(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double imageSize_width, double imageSize_height); + + // C++: Rect cv::getValidDisparityROI(Rect roi1, Rect roi2, int minDisparity, int numberOfDisparities, int SADWindowSize) + private static native double[] getValidDisparityROI_0(int roi1_x, int roi1_y, int roi1_width, int roi1_height, int roi2_x, int roi2_y, int roi2_width, int roi2_height, int minDisparity, int numberOfDisparities, int SADWindowSize); + + // C++: Vec3d cv::RQDecomp3x3(Mat src, Mat& mtxR, Mat& mtxQ, Mat& Qx = Mat(), Mat& Qy = Mat(), Mat& Qz = Mat()) + private static native double[] RQDecomp3x3_0(long src_nativeObj, long mtxR_nativeObj, long mtxQ_nativeObj, long Qx_nativeObj, long Qy_nativeObj, long Qz_nativeObj); + private static native double[] RQDecomp3x3_1(long src_nativeObj, long mtxR_nativeObj, long mtxQ_nativeObj, long Qx_nativeObj, long Qy_nativeObj); + private static native double[] RQDecomp3x3_2(long src_nativeObj, long mtxR_nativeObj, long mtxQ_nativeObj, long Qx_nativeObj); + private static native double[] RQDecomp3x3_3(long src_nativeObj, long mtxR_nativeObj, long mtxQ_nativeObj); + + // C++: bool cv::findChessboardCorners(Mat image, Size patternSize, vector_Point2f& corners, int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE) + private static native boolean findChessboardCorners_0(long image_nativeObj, double patternSize_width, double patternSize_height, long corners_mat_nativeObj, int flags); + private static native boolean findChessboardCorners_1(long image_nativeObj, double patternSize_width, double patternSize_height, long corners_mat_nativeObj); + + // C++: bool cv::findCirclesGrid(Mat image, Size patternSize, Mat& centers, int flags = CALIB_CB_SYMMETRIC_GRID, Ptr_FeatureDetector blobDetector = SimpleBlobDetector::create()) + private static native boolean findCirclesGrid_0(long image_nativeObj, double patternSize_width, double patternSize_height, long centers_nativeObj, int flags); + private static native boolean findCirclesGrid_2(long image_nativeObj, double patternSize_width, double patternSize_height, long centers_nativeObj); + + // C++: bool cv::solvePnP(vector_Point3f objectPoints, vector_Point2f imagePoints, Mat cameraMatrix, vector_double distCoeffs, Mat& rvec, Mat& tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE) + private static native boolean solvePnP_0(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, boolean useExtrinsicGuess, int flags); + private static native boolean solvePnP_1(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, boolean useExtrinsicGuess); + private static native boolean solvePnP_2(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj); + + // C++: bool cv::solvePnPRansac(vector_Point3f objectPoints, vector_Point2f imagePoints, Mat cameraMatrix, vector_double distCoeffs, Mat& rvec, Mat& tvec, bool useExtrinsicGuess = false, int iterationsCount = 100, float reprojectionError = 8.0, double confidence = 0.99, Mat& inliers = Mat(), int flags = SOLVEPNP_ITERATIVE) + private static native boolean solvePnPRansac_0(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, boolean useExtrinsicGuess, int iterationsCount, float reprojectionError, double confidence, long inliers_nativeObj, int flags); + private static native boolean solvePnPRansac_1(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, boolean useExtrinsicGuess, int iterationsCount, float reprojectionError, double confidence, long inliers_nativeObj); + private static native boolean solvePnPRansac_2(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, boolean useExtrinsicGuess, int iterationsCount, float reprojectionError, double confidence); + private static native boolean solvePnPRansac_3(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, boolean useExtrinsicGuess, int iterationsCount, float reprojectionError); + private static native boolean solvePnPRansac_4(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, boolean useExtrinsicGuess, int iterationsCount); + private static native boolean solvePnPRansac_5(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, boolean useExtrinsicGuess); + private static native boolean solvePnPRansac_6(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj); + + // C++: bool cv::stereoRectifyUncalibrated(Mat points1, Mat points2, Mat F, Size imgSize, Mat& H1, Mat& H2, double threshold = 5) + private static native boolean stereoRectifyUncalibrated_0(long points1_nativeObj, long points2_nativeObj, long F_nativeObj, double imgSize_width, double imgSize_height, long H1_nativeObj, long H2_nativeObj, double threshold); + private static native boolean stereoRectifyUncalibrated_1(long points1_nativeObj, long points2_nativeObj, long F_nativeObj, double imgSize_width, double imgSize_height, long H1_nativeObj, long H2_nativeObj); + + // C++: double cv::calibrateCamera(vector_Mat objectPoints, vector_Mat imagePoints, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs, vector_Mat& rvecs, vector_Mat& tvecs, Mat& stdDeviationsIntrinsics, Mat& stdDeviationsExtrinsics, Mat& perViewErrors, int flags = 0, TermCriteria criteria = TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)) + private static native double calibrateCameraExtended_0(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double imageSize_width, double imageSize_height, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj, long stdDeviationsIntrinsics_nativeObj, long stdDeviationsExtrinsics_nativeObj, long perViewErrors_nativeObj, int flags, int criteria_type, int criteria_maxCount, double criteria_epsilon); + private static native double calibrateCameraExtended_1(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double imageSize_width, double imageSize_height, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj, long stdDeviationsIntrinsics_nativeObj, long stdDeviationsExtrinsics_nativeObj, long perViewErrors_nativeObj, int flags); + private static native double calibrateCameraExtended_2(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double imageSize_width, double imageSize_height, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj, long stdDeviationsIntrinsics_nativeObj, long stdDeviationsExtrinsics_nativeObj, long perViewErrors_nativeObj); + + // C++: double cv::calibrateCamera(vector_Mat objectPoints, vector_Mat imagePoints, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs, vector_Mat& rvecs, vector_Mat& tvecs, int flags = 0, TermCriteria criteria = TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)) + private static native double calibrateCamera_0(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double imageSize_width, double imageSize_height, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj, int flags, int criteria_type, int criteria_maxCount, double criteria_epsilon); + private static native double calibrateCamera_1(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double imageSize_width, double imageSize_height, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj, int flags); + private static native double calibrateCamera_2(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double imageSize_width, double imageSize_height, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj); + + // C++: double cv::sampsonDistance(Mat pt1, Mat pt2, Mat F) + private static native double sampsonDistance_0(long pt1_nativeObj, long pt2_nativeObj, long F_nativeObj); + + // C++: double cv::stereoCalibrate(vector_Mat objectPoints, vector_Mat imagePoints1, vector_Mat imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, Mat& perViewErrors, int flags = CALIB_FIX_INTRINSIC, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6)) + private static native double stereoCalibrateExtended_0(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long E_nativeObj, long F_nativeObj, long perViewErrors_nativeObj, int flags, int criteria_type, int criteria_maxCount, double criteria_epsilon); + private static native double stereoCalibrateExtended_1(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long E_nativeObj, long F_nativeObj, long perViewErrors_nativeObj, int flags); + private static native double stereoCalibrateExtended_2(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long E_nativeObj, long F_nativeObj, long perViewErrors_nativeObj); + + // C++: double cv::stereoCalibrate(vector_Mat objectPoints, vector_Mat imagePoints1, vector_Mat imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, int flags = CALIB_FIX_INTRINSIC, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6)) + private static native double stereoCalibrate_0(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long E_nativeObj, long F_nativeObj, int flags, int criteria_type, int criteria_maxCount, double criteria_epsilon); + private static native double stereoCalibrate_1(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long E_nativeObj, long F_nativeObj, int flags); + private static native double stereoCalibrate_2(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long E_nativeObj, long F_nativeObj); + + // C++: double cv::fisheye::calibrate(vector_Mat objectPoints, vector_Mat imagePoints, Size image_size, Mat& K, Mat& D, vector_Mat& rvecs, vector_Mat& tvecs, int flags = 0, TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)) + private static native double fisheye_calibrate_0(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double image_size_width, double image_size_height, long K_nativeObj, long D_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj, int flags, int criteria_type, int criteria_maxCount, double criteria_epsilon); + private static native double fisheye_calibrate_1(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double image_size_width, double image_size_height, long K_nativeObj, long D_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj, int flags); + private static native double fisheye_calibrate_2(long objectPoints_mat_nativeObj, long imagePoints_mat_nativeObj, double image_size_width, double image_size_height, long K_nativeObj, long D_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj); + + // C++: double cv::fisheye::stereoCalibrate(vector_Mat objectPoints, vector_Mat imagePoints1, vector_Mat imagePoints2, Mat& K1, Mat& D1, Mat& K2, Mat& D2, Size imageSize, Mat& R, Mat& T, int flags = fisheye::CALIB_FIX_INTRINSIC, TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)) + private static native double fisheye_stereoCalibrate_0(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long K1_nativeObj, long D1_nativeObj, long K2_nativeObj, long D2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, int flags, int criteria_type, int criteria_maxCount, double criteria_epsilon); + private static native double fisheye_stereoCalibrate_1(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long K1_nativeObj, long D1_nativeObj, long K2_nativeObj, long D2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, int flags); + private static native double fisheye_stereoCalibrate_2(long objectPoints_mat_nativeObj, long imagePoints1_mat_nativeObj, long imagePoints2_mat_nativeObj, long K1_nativeObj, long D1_nativeObj, long K2_nativeObj, long D2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj); + + // C++: float cv::rectify3Collinear(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Mat cameraMatrix3, Mat distCoeffs3, vector_Mat imgpt1, vector_Mat imgpt3, Size imageSize, Mat R12, Mat T12, Mat R13, Mat T13, Mat& R1, Mat& R2, Mat& R3, Mat& P1, Mat& P2, Mat& P3, Mat& Q, double alpha, Size newImgSize, Rect* roi1, Rect* roi2, int flags) + private static native float rectify3Collinear_0(long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, long cameraMatrix3_nativeObj, long distCoeffs3_nativeObj, long imgpt1_mat_nativeObj, long imgpt3_mat_nativeObj, double imageSize_width, double imageSize_height, long R12_nativeObj, long T12_nativeObj, long R13_nativeObj, long T13_nativeObj, long R1_nativeObj, long R2_nativeObj, long R3_nativeObj, long P1_nativeObj, long P2_nativeObj, long P3_nativeObj, long Q_nativeObj, double alpha, double newImgSize_width, double newImgSize_height, double[] roi1_out, double[] roi2_out, int flags); + + // C++: int cv::decomposeHomographyMat(Mat H, Mat K, vector_Mat& rotations, vector_Mat& translations, vector_Mat& normals) + private static native int decomposeHomographyMat_0(long H_nativeObj, long K_nativeObj, long rotations_mat_nativeObj, long translations_mat_nativeObj, long normals_mat_nativeObj); + + // C++: int cv::estimateAffine3D(Mat src, Mat dst, Mat& out, Mat& inliers, double ransacThreshold = 3, double confidence = 0.99) + private static native int estimateAffine3D_0(long src_nativeObj, long dst_nativeObj, long out_nativeObj, long inliers_nativeObj, double ransacThreshold, double confidence); + private static native int estimateAffine3D_1(long src_nativeObj, long dst_nativeObj, long out_nativeObj, long inliers_nativeObj, double ransacThreshold); + private static native int estimateAffine3D_2(long src_nativeObj, long dst_nativeObj, long out_nativeObj, long inliers_nativeObj); + + // C++: int cv::recoverPose(Mat E, Mat points1, Mat points2, Mat& R, Mat& t, double focal = 1.0, Point2d pp = Point2d(0, 0), Mat& mask = Mat()) + private static native int recoverPose_0(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long R_nativeObj, long t_nativeObj, double focal, double pp_x, double pp_y, long mask_nativeObj); + private static native int recoverPose_1(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long R_nativeObj, long t_nativeObj, double focal, double pp_x, double pp_y); + private static native int recoverPose_2(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long R_nativeObj, long t_nativeObj, double focal); + private static native int recoverPose_3(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long R_nativeObj, long t_nativeObj); + + // C++: int cv::recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat& R, Mat& t, Mat& mask = Mat()) + private static native int recoverPose_4(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, long R_nativeObj, long t_nativeObj, long mask_nativeObj); + private static native int recoverPose_5(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, long R_nativeObj, long t_nativeObj); + + // C++: int cv::recoverPose(Mat E, Mat points1, Mat points2, Mat cameraMatrix, Mat& R, Mat& t, double distanceThresh, Mat& mask = Mat(), Mat& triangulatedPoints = Mat()) + private static native int recoverPose_6(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, long R_nativeObj, long t_nativeObj, double distanceThresh, long mask_nativeObj, long triangulatedPoints_nativeObj); + private static native int recoverPose_7(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, long R_nativeObj, long t_nativeObj, double distanceThresh, long mask_nativeObj); + private static native int recoverPose_8(long E_nativeObj, long points1_nativeObj, long points2_nativeObj, long cameraMatrix_nativeObj, long R_nativeObj, long t_nativeObj, double distanceThresh); + + // C++: int cv::solveP3P(Mat objectPoints, Mat imagePoints, Mat cameraMatrix, Mat distCoeffs, vector_Mat& rvecs, vector_Mat& tvecs, int flags) + private static native int solveP3P_0(long objectPoints_nativeObj, long imagePoints_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long rvecs_mat_nativeObj, long tvecs_mat_nativeObj, int flags); + + // C++: void cv::Rodrigues(Mat src, Mat& dst, Mat& jacobian = Mat()) + private static native void Rodrigues_0(long src_nativeObj, long dst_nativeObj, long jacobian_nativeObj); + private static native void Rodrigues_1(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::calibrationMatrixValues(Mat cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength, Point2d& principalPoint, double& aspectRatio) + private static native void calibrationMatrixValues_0(long cameraMatrix_nativeObj, double imageSize_width, double imageSize_height, double apertureWidth, double apertureHeight, double[] fovx_out, double[] fovy_out, double[] focalLength_out, double[] principalPoint_out, double[] aspectRatio_out); + + // C++: void cv::composeRT(Mat rvec1, Mat tvec1, Mat rvec2, Mat tvec2, Mat& rvec3, Mat& tvec3, Mat& dr3dr1 = Mat(), Mat& dr3dt1 = Mat(), Mat& dr3dr2 = Mat(), Mat& dr3dt2 = Mat(), Mat& dt3dr1 = Mat(), Mat& dt3dt1 = Mat(), Mat& dt3dr2 = Mat(), Mat& dt3dt2 = Mat()) + private static native void composeRT_0(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj, long dr3dr1_nativeObj, long dr3dt1_nativeObj, long dr3dr2_nativeObj, long dr3dt2_nativeObj, long dt3dr1_nativeObj, long dt3dt1_nativeObj, long dt3dr2_nativeObj, long dt3dt2_nativeObj); + private static native void composeRT_1(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj, long dr3dr1_nativeObj, long dr3dt1_nativeObj, long dr3dr2_nativeObj, long dr3dt2_nativeObj, long dt3dr1_nativeObj, long dt3dt1_nativeObj, long dt3dr2_nativeObj); + private static native void composeRT_2(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj, long dr3dr1_nativeObj, long dr3dt1_nativeObj, long dr3dr2_nativeObj, long dr3dt2_nativeObj, long dt3dr1_nativeObj, long dt3dt1_nativeObj); + private static native void composeRT_3(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj, long dr3dr1_nativeObj, long dr3dt1_nativeObj, long dr3dr2_nativeObj, long dr3dt2_nativeObj, long dt3dr1_nativeObj); + private static native void composeRT_4(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj, long dr3dr1_nativeObj, long dr3dt1_nativeObj, long dr3dr2_nativeObj, long dr3dt2_nativeObj); + private static native void composeRT_5(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj, long dr3dr1_nativeObj, long dr3dt1_nativeObj, long dr3dr2_nativeObj); + private static native void composeRT_6(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj, long dr3dr1_nativeObj, long dr3dt1_nativeObj); + private static native void composeRT_7(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj, long dr3dr1_nativeObj); + private static native void composeRT_8(long rvec1_nativeObj, long tvec1_nativeObj, long rvec2_nativeObj, long tvec2_nativeObj, long rvec3_nativeObj, long tvec3_nativeObj); + + // C++: void cv::computeCorrespondEpilines(Mat points, int whichImage, Mat F, Mat& lines) + private static native void computeCorrespondEpilines_0(long points_nativeObj, int whichImage, long F_nativeObj, long lines_nativeObj); + + // C++: void cv::convertPointsFromHomogeneous(Mat src, Mat& dst) + private static native void convertPointsFromHomogeneous_0(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::convertPointsToHomogeneous(Mat src, Mat& dst) + private static native void convertPointsToHomogeneous_0(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::correctMatches(Mat F, Mat points1, Mat points2, Mat& newPoints1, Mat& newPoints2) + private static native void correctMatches_0(long F_nativeObj, long points1_nativeObj, long points2_nativeObj, long newPoints1_nativeObj, long newPoints2_nativeObj); + + // C++: void cv::decomposeEssentialMat(Mat E, Mat& R1, Mat& R2, Mat& t) + private static native void decomposeEssentialMat_0(long E_nativeObj, long R1_nativeObj, long R2_nativeObj, long t_nativeObj); + + // C++: void cv::decomposeProjectionMatrix(Mat projMatrix, Mat& cameraMatrix, Mat& rotMatrix, Mat& transVect, Mat& rotMatrixX = Mat(), Mat& rotMatrixY = Mat(), Mat& rotMatrixZ = Mat(), Mat& eulerAngles = Mat()) + private static native void decomposeProjectionMatrix_0(long projMatrix_nativeObj, long cameraMatrix_nativeObj, long rotMatrix_nativeObj, long transVect_nativeObj, long rotMatrixX_nativeObj, long rotMatrixY_nativeObj, long rotMatrixZ_nativeObj, long eulerAngles_nativeObj); + private static native void decomposeProjectionMatrix_1(long projMatrix_nativeObj, long cameraMatrix_nativeObj, long rotMatrix_nativeObj, long transVect_nativeObj, long rotMatrixX_nativeObj, long rotMatrixY_nativeObj, long rotMatrixZ_nativeObj); + private static native void decomposeProjectionMatrix_2(long projMatrix_nativeObj, long cameraMatrix_nativeObj, long rotMatrix_nativeObj, long transVect_nativeObj, long rotMatrixX_nativeObj, long rotMatrixY_nativeObj); + private static native void decomposeProjectionMatrix_3(long projMatrix_nativeObj, long cameraMatrix_nativeObj, long rotMatrix_nativeObj, long transVect_nativeObj, long rotMatrixX_nativeObj); + private static native void decomposeProjectionMatrix_4(long projMatrix_nativeObj, long cameraMatrix_nativeObj, long rotMatrix_nativeObj, long transVect_nativeObj); + + // C++: void cv::drawChessboardCorners(Mat& image, Size patternSize, vector_Point2f corners, bool patternWasFound) + private static native void drawChessboardCorners_0(long image_nativeObj, double patternSize_width, double patternSize_height, long corners_mat_nativeObj, boolean patternWasFound); + + // C++: void cv::filterHomographyDecompByVisibleRefpoints(vector_Mat rotations, vector_Mat normals, Mat beforePoints, Mat afterPoints, Mat& possibleSolutions, Mat pointsMask = Mat()) + private static native void filterHomographyDecompByVisibleRefpoints_0(long rotations_mat_nativeObj, long normals_mat_nativeObj, long beforePoints_nativeObj, long afterPoints_nativeObj, long possibleSolutions_nativeObj, long pointsMask_nativeObj); + private static native void filterHomographyDecompByVisibleRefpoints_1(long rotations_mat_nativeObj, long normals_mat_nativeObj, long beforePoints_nativeObj, long afterPoints_nativeObj, long possibleSolutions_nativeObj); + + // C++: void cv::filterSpeckles(Mat& img, double newVal, int maxSpeckleSize, double maxDiff, Mat& buf = Mat()) + private static native void filterSpeckles_0(long img_nativeObj, double newVal, int maxSpeckleSize, double maxDiff, long buf_nativeObj); + private static native void filterSpeckles_1(long img_nativeObj, double newVal, int maxSpeckleSize, double maxDiff); + + // C++: void cv::matMulDeriv(Mat A, Mat B, Mat& dABdA, Mat& dABdB) + private static native void matMulDeriv_0(long A_nativeObj, long B_nativeObj, long dABdA_nativeObj, long dABdB_nativeObj); + + // C++: void cv::projectPoints(vector_Point3f objectPoints, Mat rvec, Mat tvec, Mat cameraMatrix, vector_double distCoeffs, vector_Point2f& imagePoints, Mat& jacobian = Mat(), double aspectRatio = 0) + private static native void projectPoints_0(long objectPoints_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long imagePoints_mat_nativeObj, long jacobian_nativeObj, double aspectRatio); + private static native void projectPoints_1(long objectPoints_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long imagePoints_mat_nativeObj, long jacobian_nativeObj); + private static native void projectPoints_2(long objectPoints_mat_nativeObj, long rvec_nativeObj, long tvec_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_mat_nativeObj, long imagePoints_mat_nativeObj); + + // C++: void cv::reprojectImageTo3D(Mat disparity, Mat& _3dImage, Mat Q, bool handleMissingValues = false, int ddepth = -1) + private static native void reprojectImageTo3D_0(long disparity_nativeObj, long _3dImage_nativeObj, long Q_nativeObj, boolean handleMissingValues, int ddepth); + private static native void reprojectImageTo3D_1(long disparity_nativeObj, long _3dImage_nativeObj, long Q_nativeObj, boolean handleMissingValues); + private static native void reprojectImageTo3D_2(long disparity_nativeObj, long _3dImage_nativeObj, long Q_nativeObj); + + // C++: void cv::stereoRectify(Mat cameraMatrix1, Mat distCoeffs1, Mat cameraMatrix2, Mat distCoeffs2, Size imageSize, Mat R, Mat T, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, int flags = CALIB_ZERO_DISPARITY, double alpha = -1, Size newImageSize = Size(), Rect* validPixROI1 = 0, Rect* validPixROI2 = 0) + private static native void stereoRectify_0(long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags, double alpha, double newImageSize_width, double newImageSize_height, double[] validPixROI1_out, double[] validPixROI2_out); + private static native void stereoRectify_1(long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags, double alpha, double newImageSize_width, double newImageSize_height, double[] validPixROI1_out); + private static native void stereoRectify_2(long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags, double alpha, double newImageSize_width, double newImageSize_height); + private static native void stereoRectify_3(long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags, double alpha); + private static native void stereoRectify_4(long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags); + private static native void stereoRectify_5(long cameraMatrix1_nativeObj, long distCoeffs1_nativeObj, long cameraMatrix2_nativeObj, long distCoeffs2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long T_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj); + + // C++: void cv::triangulatePoints(Mat projMatr1, Mat projMatr2, Mat projPoints1, Mat projPoints2, Mat& points4D) + private static native void triangulatePoints_0(long projMatr1_nativeObj, long projMatr2_nativeObj, long projPoints1_nativeObj, long projPoints2_nativeObj, long points4D_nativeObj); + + // C++: void cv::validateDisparity(Mat& disparity, Mat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp = 1) + private static native void validateDisparity_0(long disparity_nativeObj, long cost_nativeObj, int minDisparity, int numberOfDisparities, int disp12MaxDisp); + private static native void validateDisparity_1(long disparity_nativeObj, long cost_nativeObj, int minDisparity, int numberOfDisparities); + + // C++: void cv::fisheye::distortPoints(Mat undistorted, Mat& distorted, Mat K, Mat D, double alpha = 0) + private static native void fisheye_distortPoints_0(long undistorted_nativeObj, long distorted_nativeObj, long K_nativeObj, long D_nativeObj, double alpha); + private static native void fisheye_distortPoints_1(long undistorted_nativeObj, long distorted_nativeObj, long K_nativeObj, long D_nativeObj); + + // C++: void cv::fisheye::estimateNewCameraMatrixForUndistortRectify(Mat K, Mat D, Size image_size, Mat R, Mat& P, double balance = 0.0, Size new_size = Size(), double fov_scale = 1.0) + private static native void fisheye_estimateNewCameraMatrixForUndistortRectify_0(long K_nativeObj, long D_nativeObj, double image_size_width, double image_size_height, long R_nativeObj, long P_nativeObj, double balance, double new_size_width, double new_size_height, double fov_scale); + private static native void fisheye_estimateNewCameraMatrixForUndistortRectify_1(long K_nativeObj, long D_nativeObj, double image_size_width, double image_size_height, long R_nativeObj, long P_nativeObj, double balance, double new_size_width, double new_size_height); + private static native void fisheye_estimateNewCameraMatrixForUndistortRectify_2(long K_nativeObj, long D_nativeObj, double image_size_width, double image_size_height, long R_nativeObj, long P_nativeObj, double balance); + private static native void fisheye_estimateNewCameraMatrixForUndistortRectify_3(long K_nativeObj, long D_nativeObj, double image_size_width, double image_size_height, long R_nativeObj, long P_nativeObj); + + // C++: void cv::fisheye::initUndistortRectifyMap(Mat K, Mat D, Mat R, Mat P, Size size, int m1type, Mat& map1, Mat& map2) + private static native void fisheye_initUndistortRectifyMap_0(long K_nativeObj, long D_nativeObj, long R_nativeObj, long P_nativeObj, double size_width, double size_height, int m1type, long map1_nativeObj, long map2_nativeObj); + + // C++: void cv::fisheye::projectPoints(Mat objectPoints, Mat& imagePoints, Mat rvec, Mat tvec, Mat K, Mat D, double alpha = 0, Mat& jacobian = Mat()) + private static native void fisheye_projectPoints_0(long objectPoints_nativeObj, long imagePoints_nativeObj, long rvec_nativeObj, long tvec_nativeObj, long K_nativeObj, long D_nativeObj, double alpha, long jacobian_nativeObj); + private static native void fisheye_projectPoints_1(long objectPoints_nativeObj, long imagePoints_nativeObj, long rvec_nativeObj, long tvec_nativeObj, long K_nativeObj, long D_nativeObj, double alpha); + private static native void fisheye_projectPoints_2(long objectPoints_nativeObj, long imagePoints_nativeObj, long rvec_nativeObj, long tvec_nativeObj, long K_nativeObj, long D_nativeObj); + + // C++: void cv::fisheye::stereoRectify(Mat K1, Mat D1, Mat K2, Mat D2, Size imageSize, Mat R, Mat tvec, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, int flags, Size newImageSize = Size(), double balance = 0.0, double fov_scale = 1.0) + private static native void fisheye_stereoRectify_0(long K1_nativeObj, long D1_nativeObj, long K2_nativeObj, long D2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long tvec_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags, double newImageSize_width, double newImageSize_height, double balance, double fov_scale); + private static native void fisheye_stereoRectify_1(long K1_nativeObj, long D1_nativeObj, long K2_nativeObj, long D2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long tvec_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags, double newImageSize_width, double newImageSize_height, double balance); + private static native void fisheye_stereoRectify_2(long K1_nativeObj, long D1_nativeObj, long K2_nativeObj, long D2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long tvec_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags, double newImageSize_width, double newImageSize_height); + private static native void fisheye_stereoRectify_3(long K1_nativeObj, long D1_nativeObj, long K2_nativeObj, long D2_nativeObj, double imageSize_width, double imageSize_height, long R_nativeObj, long tvec_nativeObj, long R1_nativeObj, long R2_nativeObj, long P1_nativeObj, long P2_nativeObj, long Q_nativeObj, int flags); + + // C++: void cv::fisheye::undistortImage(Mat distorted, Mat& undistorted, Mat K, Mat D, Mat Knew = cv::Mat(), Size new_size = Size()) + private static native void fisheye_undistortImage_0(long distorted_nativeObj, long undistorted_nativeObj, long K_nativeObj, long D_nativeObj, long Knew_nativeObj, double new_size_width, double new_size_height); + private static native void fisheye_undistortImage_1(long distorted_nativeObj, long undistorted_nativeObj, long K_nativeObj, long D_nativeObj, long Knew_nativeObj); + private static native void fisheye_undistortImage_2(long distorted_nativeObj, long undistorted_nativeObj, long K_nativeObj, long D_nativeObj); + + // C++: void cv::fisheye::undistortPoints(Mat distorted, Mat& undistorted, Mat K, Mat D, Mat R = Mat(), Mat P = Mat()) + private static native void fisheye_undistortPoints_0(long distorted_nativeObj, long undistorted_nativeObj, long K_nativeObj, long D_nativeObj, long R_nativeObj, long P_nativeObj); + private static native void fisheye_undistortPoints_1(long distorted_nativeObj, long undistorted_nativeObj, long K_nativeObj, long D_nativeObj, long R_nativeObj); + private static native void fisheye_undistortPoints_2(long distorted_nativeObj, long undistorted_nativeObj, long K_nativeObj, long D_nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoBM.java b/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoBM.java new file mode 100644 index 00000000000..4c730b82857 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoBM.java @@ -0,0 +1,344 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.calib3d; + +import org.opencv.calib3d.StereoBM; +import org.opencv.calib3d.StereoMatcher; +import org.opencv.core.Rect; + +// C++: class StereoBM +//javadoc: StereoBM + +public class StereoBM extends StereoMatcher { + + protected StereoBM(long addr) { super(addr); } + + // internal usage only + public static StereoBM __fromPtr__(long addr) { return new StereoBM(addr); } + + public static final int + PREFILTER_NORMALIZED_RESPONSE = 0, + PREFILTER_XSOBEL = 1; + + + // + // C++: static Ptr_StereoBM cv::StereoBM::create(int numDisparities = 0, int blockSize = 21) + // + + //javadoc: StereoBM::create(numDisparities, blockSize) + public static StereoBM create(int numDisparities, int blockSize) + { + + StereoBM retVal = StereoBM.__fromPtr__(create_0(numDisparities, blockSize)); + + return retVal; + } + + //javadoc: StereoBM::create(numDisparities) + public static StereoBM create(int numDisparities) + { + + StereoBM retVal = StereoBM.__fromPtr__(create_1(numDisparities)); + + return retVal; + } + + //javadoc: StereoBM::create() + public static StereoBM create() + { + + StereoBM retVal = StereoBM.__fromPtr__(create_2()); + + return retVal; + } + + + // + // C++: Rect cv::StereoBM::getROI1() + // + + //javadoc: StereoBM::getROI1() + public Rect getROI1() + { + + Rect retVal = new Rect(getROI1_0(nativeObj)); + + return retVal; + } + + + // + // C++: Rect cv::StereoBM::getROI2() + // + + //javadoc: StereoBM::getROI2() + public Rect getROI2() + { + + Rect retVal = new Rect(getROI2_0(nativeObj)); + + return retVal; + } + + + // + // C++: int cv::StereoBM::getPreFilterCap() + // + + //javadoc: StereoBM::getPreFilterCap() + public int getPreFilterCap() + { + + int retVal = getPreFilterCap_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoBM::getPreFilterSize() + // + + //javadoc: StereoBM::getPreFilterSize() + public int getPreFilterSize() + { + + int retVal = getPreFilterSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoBM::getPreFilterType() + // + + //javadoc: StereoBM::getPreFilterType() + public int getPreFilterType() + { + + int retVal = getPreFilterType_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoBM::getSmallerBlockSize() + // + + //javadoc: StereoBM::getSmallerBlockSize() + public int getSmallerBlockSize() + { + + int retVal = getSmallerBlockSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoBM::getTextureThreshold() + // + + //javadoc: StereoBM::getTextureThreshold() + public int getTextureThreshold() + { + + int retVal = getTextureThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoBM::getUniquenessRatio() + // + + //javadoc: StereoBM::getUniquenessRatio() + public int getUniquenessRatio() + { + + int retVal = getUniquenessRatio_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::StereoBM::setPreFilterCap(int preFilterCap) + // + + //javadoc: StereoBM::setPreFilterCap(preFilterCap) + public void setPreFilterCap(int preFilterCap) + { + + setPreFilterCap_0(nativeObj, preFilterCap); + + return; + } + + + // + // C++: void cv::StereoBM::setPreFilterSize(int preFilterSize) + // + + //javadoc: StereoBM::setPreFilterSize(preFilterSize) + public void setPreFilterSize(int preFilterSize) + { + + setPreFilterSize_0(nativeObj, preFilterSize); + + return; + } + + + // + // C++: void cv::StereoBM::setPreFilterType(int preFilterType) + // + + //javadoc: StereoBM::setPreFilterType(preFilterType) + public void setPreFilterType(int preFilterType) + { + + setPreFilterType_0(nativeObj, preFilterType); + + return; + } + + + // + // C++: void cv::StereoBM::setROI1(Rect roi1) + // + + //javadoc: StereoBM::setROI1(roi1) + public void setROI1(Rect roi1) + { + + setROI1_0(nativeObj, roi1.x, roi1.y, roi1.width, roi1.height); + + return; + } + + + // + // C++: void cv::StereoBM::setROI2(Rect roi2) + // + + //javadoc: StereoBM::setROI2(roi2) + public void setROI2(Rect roi2) + { + + setROI2_0(nativeObj, roi2.x, roi2.y, roi2.width, roi2.height); + + return; + } + + + // + // C++: void cv::StereoBM::setSmallerBlockSize(int blockSize) + // + + //javadoc: StereoBM::setSmallerBlockSize(blockSize) + public void setSmallerBlockSize(int blockSize) + { + + setSmallerBlockSize_0(nativeObj, blockSize); + + return; + } + + + // + // C++: void cv::StereoBM::setTextureThreshold(int textureThreshold) + // + + //javadoc: StereoBM::setTextureThreshold(textureThreshold) + public void setTextureThreshold(int textureThreshold) + { + + setTextureThreshold_0(nativeObj, textureThreshold); + + return; + } + + + // + // C++: void cv::StereoBM::setUniquenessRatio(int uniquenessRatio) + // + + //javadoc: StereoBM::setUniquenessRatio(uniquenessRatio) + public void setUniquenessRatio(int uniquenessRatio) + { + + setUniquenessRatio_0(nativeObj, uniquenessRatio); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_StereoBM cv::StereoBM::create(int numDisparities = 0, int blockSize = 21) + private static native long create_0(int numDisparities, int blockSize); + private static native long create_1(int numDisparities); + private static native long create_2(); + + // C++: Rect cv::StereoBM::getROI1() + private static native double[] getROI1_0(long nativeObj); + + // C++: Rect cv::StereoBM::getROI2() + private static native double[] getROI2_0(long nativeObj); + + // C++: int cv::StereoBM::getPreFilterCap() + private static native int getPreFilterCap_0(long nativeObj); + + // C++: int cv::StereoBM::getPreFilterSize() + private static native int getPreFilterSize_0(long nativeObj); + + // C++: int cv::StereoBM::getPreFilterType() + private static native int getPreFilterType_0(long nativeObj); + + // C++: int cv::StereoBM::getSmallerBlockSize() + private static native int getSmallerBlockSize_0(long nativeObj); + + // C++: int cv::StereoBM::getTextureThreshold() + private static native int getTextureThreshold_0(long nativeObj); + + // C++: int cv::StereoBM::getUniquenessRatio() + private static native int getUniquenessRatio_0(long nativeObj); + + // C++: void cv::StereoBM::setPreFilterCap(int preFilterCap) + private static native void setPreFilterCap_0(long nativeObj, int preFilterCap); + + // C++: void cv::StereoBM::setPreFilterSize(int preFilterSize) + private static native void setPreFilterSize_0(long nativeObj, int preFilterSize); + + // C++: void cv::StereoBM::setPreFilterType(int preFilterType) + private static native void setPreFilterType_0(long nativeObj, int preFilterType); + + // C++: void cv::StereoBM::setROI1(Rect roi1) + private static native void setROI1_0(long nativeObj, int roi1_x, int roi1_y, int roi1_width, int roi1_height); + + // C++: void cv::StereoBM::setROI2(Rect roi2) + private static native void setROI2_0(long nativeObj, int roi2_x, int roi2_y, int roi2_width, int roi2_height); + + // C++: void cv::StereoBM::setSmallerBlockSize(int blockSize) + private static native void setSmallerBlockSize_0(long nativeObj, int blockSize); + + // C++: void cv::StereoBM::setTextureThreshold(int textureThreshold) + private static native void setTextureThreshold_0(long nativeObj, int textureThreshold); + + // C++: void cv::StereoBM::setUniquenessRatio(int uniquenessRatio) + private static native void setUniquenessRatio_0(long nativeObj, int uniquenessRatio); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoMatcher.java b/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoMatcher.java new file mode 100644 index 00000000000..39777919aa0 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoMatcher.java @@ -0,0 +1,255 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.calib3d; + +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; + +// C++: class StereoMatcher +//javadoc: StereoMatcher + +public class StereoMatcher extends Algorithm { + + protected StereoMatcher(long addr) { super(addr); } + + // internal usage only + public static StereoMatcher __fromPtr__(long addr) { return new StereoMatcher(addr); } + + public static final int + DISP_SHIFT = 4, + DISP_SCALE = (1 << DISP_SHIFT); + + + // + // C++: int cv::StereoMatcher::getBlockSize() + // + + //javadoc: StereoMatcher::getBlockSize() + public int getBlockSize() + { + + int retVal = getBlockSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoMatcher::getDisp12MaxDiff() + // + + //javadoc: StereoMatcher::getDisp12MaxDiff() + public int getDisp12MaxDiff() + { + + int retVal = getDisp12MaxDiff_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoMatcher::getMinDisparity() + // + + //javadoc: StereoMatcher::getMinDisparity() + public int getMinDisparity() + { + + int retVal = getMinDisparity_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoMatcher::getNumDisparities() + // + + //javadoc: StereoMatcher::getNumDisparities() + public int getNumDisparities() + { + + int retVal = getNumDisparities_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoMatcher::getSpeckleRange() + // + + //javadoc: StereoMatcher::getSpeckleRange() + public int getSpeckleRange() + { + + int retVal = getSpeckleRange_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoMatcher::getSpeckleWindowSize() + // + + //javadoc: StereoMatcher::getSpeckleWindowSize() + public int getSpeckleWindowSize() + { + + int retVal = getSpeckleWindowSize_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::StereoMatcher::compute(Mat left, Mat right, Mat& disparity) + // + + //javadoc: StereoMatcher::compute(left, right, disparity) + public void compute(Mat left, Mat right, Mat disparity) + { + + compute_0(nativeObj, left.nativeObj, right.nativeObj, disparity.nativeObj); + + return; + } + + + // + // C++: void cv::StereoMatcher::setBlockSize(int blockSize) + // + + //javadoc: StereoMatcher::setBlockSize(blockSize) + public void setBlockSize(int blockSize) + { + + setBlockSize_0(nativeObj, blockSize); + + return; + } + + + // + // C++: void cv::StereoMatcher::setDisp12MaxDiff(int disp12MaxDiff) + // + + //javadoc: StereoMatcher::setDisp12MaxDiff(disp12MaxDiff) + public void setDisp12MaxDiff(int disp12MaxDiff) + { + + setDisp12MaxDiff_0(nativeObj, disp12MaxDiff); + + return; + } + + + // + // C++: void cv::StereoMatcher::setMinDisparity(int minDisparity) + // + + //javadoc: StereoMatcher::setMinDisparity(minDisparity) + public void setMinDisparity(int minDisparity) + { + + setMinDisparity_0(nativeObj, minDisparity); + + return; + } + + + // + // C++: void cv::StereoMatcher::setNumDisparities(int numDisparities) + // + + //javadoc: StereoMatcher::setNumDisparities(numDisparities) + public void setNumDisparities(int numDisparities) + { + + setNumDisparities_0(nativeObj, numDisparities); + + return; + } + + + // + // C++: void cv::StereoMatcher::setSpeckleRange(int speckleRange) + // + + //javadoc: StereoMatcher::setSpeckleRange(speckleRange) + public void setSpeckleRange(int speckleRange) + { + + setSpeckleRange_0(nativeObj, speckleRange); + + return; + } + + + // + // C++: void cv::StereoMatcher::setSpeckleWindowSize(int speckleWindowSize) + // + + //javadoc: StereoMatcher::setSpeckleWindowSize(speckleWindowSize) + public void setSpeckleWindowSize(int speckleWindowSize) + { + + setSpeckleWindowSize_0(nativeObj, speckleWindowSize); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: int cv::StereoMatcher::getBlockSize() + private static native int getBlockSize_0(long nativeObj); + + // C++: int cv::StereoMatcher::getDisp12MaxDiff() + private static native int getDisp12MaxDiff_0(long nativeObj); + + // C++: int cv::StereoMatcher::getMinDisparity() + private static native int getMinDisparity_0(long nativeObj); + + // C++: int cv::StereoMatcher::getNumDisparities() + private static native int getNumDisparities_0(long nativeObj); + + // C++: int cv::StereoMatcher::getSpeckleRange() + private static native int getSpeckleRange_0(long nativeObj); + + // C++: int cv::StereoMatcher::getSpeckleWindowSize() + private static native int getSpeckleWindowSize_0(long nativeObj); + + // C++: void cv::StereoMatcher::compute(Mat left, Mat right, Mat& disparity) + private static native void compute_0(long nativeObj, long left_nativeObj, long right_nativeObj, long disparity_nativeObj); + + // C++: void cv::StereoMatcher::setBlockSize(int blockSize) + private static native void setBlockSize_0(long nativeObj, int blockSize); + + // C++: void cv::StereoMatcher::setDisp12MaxDiff(int disp12MaxDiff) + private static native void setDisp12MaxDiff_0(long nativeObj, int disp12MaxDiff); + + // C++: void cv::StereoMatcher::setMinDisparity(int minDisparity) + private static native void setMinDisparity_0(long nativeObj, int minDisparity); + + // C++: void cv::StereoMatcher::setNumDisparities(int numDisparities) + private static native void setNumDisparities_0(long nativeObj, int numDisparities); + + // C++: void cv::StereoMatcher::setSpeckleRange(int speckleRange) + private static native void setSpeckleRange_0(long nativeObj, int speckleRange); + + // C++: void cv::StereoMatcher::setSpeckleWindowSize(int speckleWindowSize) + private static native void setSpeckleWindowSize_0(long nativeObj, int speckleWindowSize); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoSGBM.java b/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoSGBM.java new file mode 100644 index 00000000000..372c4f25269 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/calib3d/StereoSGBM.java @@ -0,0 +1,333 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.calib3d; + +import org.opencv.calib3d.StereoMatcher; +import org.opencv.calib3d.StereoSGBM; + +// C++: class StereoSGBM +//javadoc: StereoSGBM + +public class StereoSGBM extends StereoMatcher { + + protected StereoSGBM(long addr) { super(addr); } + + // internal usage only + public static StereoSGBM __fromPtr__(long addr) { return new StereoSGBM(addr); } + + public static final int + MODE_SGBM = 0, + MODE_HH = 1, + MODE_SGBM_3WAY = 2, + MODE_HH4 = 3; + + + // + // C++: static Ptr_StereoSGBM cv::StereoSGBM::create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3, int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, int preFilterCap = 0, int uniquenessRatio = 0, int speckleWindowSize = 0, int speckleRange = 0, int mode = StereoSGBM::MODE_SGBM) + // + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap, uniquenessRatio, speckleWindowSize, speckleRange, mode) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap, int uniquenessRatio, int speckleWindowSize, int speckleRange, int mode) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_0(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap, uniquenessRatio, speckleWindowSize, speckleRange, mode)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap, uniquenessRatio, speckleWindowSize, speckleRange) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap, int uniquenessRatio, int speckleWindowSize, int speckleRange) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_1(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap, uniquenessRatio, speckleWindowSize, speckleRange)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap, uniquenessRatio, speckleWindowSize) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap, int uniquenessRatio, int speckleWindowSize) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_2(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap, uniquenessRatio, speckleWindowSize)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap, uniquenessRatio) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap, int uniquenessRatio) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_3(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap, uniquenessRatio)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_4(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff, preFilterCap)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_5(minDisparity, numDisparities, blockSize, P1, P2, disp12MaxDiff)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize, P1, P2) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize, int P1, int P2) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_6(minDisparity, numDisparities, blockSize, P1, P2)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize, P1) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize, int P1) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_7(minDisparity, numDisparities, blockSize, P1)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities, blockSize) + public static StereoSGBM create(int minDisparity, int numDisparities, int blockSize) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_8(minDisparity, numDisparities, blockSize)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity, numDisparities) + public static StereoSGBM create(int minDisparity, int numDisparities) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_9(minDisparity, numDisparities)); + + return retVal; + } + + //javadoc: StereoSGBM::create(minDisparity) + public static StereoSGBM create(int minDisparity) + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_10(minDisparity)); + + return retVal; + } + + //javadoc: StereoSGBM::create() + public static StereoSGBM create() + { + + StereoSGBM retVal = StereoSGBM.__fromPtr__(create_11()); + + return retVal; + } + + + // + // C++: int cv::StereoSGBM::getMode() + // + + //javadoc: StereoSGBM::getMode() + public int getMode() + { + + int retVal = getMode_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoSGBM::getP1() + // + + //javadoc: StereoSGBM::getP1() + public int getP1() + { + + int retVal = getP1_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoSGBM::getP2() + // + + //javadoc: StereoSGBM::getP2() + public int getP2() + { + + int retVal = getP2_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoSGBM::getPreFilterCap() + // + + //javadoc: StereoSGBM::getPreFilterCap() + public int getPreFilterCap() + { + + int retVal = getPreFilterCap_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::StereoSGBM::getUniquenessRatio() + // + + //javadoc: StereoSGBM::getUniquenessRatio() + public int getUniquenessRatio() + { + + int retVal = getUniquenessRatio_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::StereoSGBM::setMode(int mode) + // + + //javadoc: StereoSGBM::setMode(mode) + public void setMode(int mode) + { + + setMode_0(nativeObj, mode); + + return; + } + + + // + // C++: void cv::StereoSGBM::setP1(int P1) + // + + //javadoc: StereoSGBM::setP1(P1) + public void setP1(int P1) + { + + setP1_0(nativeObj, P1); + + return; + } + + + // + // C++: void cv::StereoSGBM::setP2(int P2) + // + + //javadoc: StereoSGBM::setP2(P2) + public void setP2(int P2) + { + + setP2_0(nativeObj, P2); + + return; + } + + + // + // C++: void cv::StereoSGBM::setPreFilterCap(int preFilterCap) + // + + //javadoc: StereoSGBM::setPreFilterCap(preFilterCap) + public void setPreFilterCap(int preFilterCap) + { + + setPreFilterCap_0(nativeObj, preFilterCap); + + return; + } + + + // + // C++: void cv::StereoSGBM::setUniquenessRatio(int uniquenessRatio) + // + + //javadoc: StereoSGBM::setUniquenessRatio(uniquenessRatio) + public void setUniquenessRatio(int uniquenessRatio) + { + + setUniquenessRatio_0(nativeObj, uniquenessRatio); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_StereoSGBM cv::StereoSGBM::create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3, int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, int preFilterCap = 0, int uniquenessRatio = 0, int speckleWindowSize = 0, int speckleRange = 0, int mode = StereoSGBM::MODE_SGBM) + private static native long create_0(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap, int uniquenessRatio, int speckleWindowSize, int speckleRange, int mode); + private static native long create_1(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap, int uniquenessRatio, int speckleWindowSize, int speckleRange); + private static native long create_2(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap, int uniquenessRatio, int speckleWindowSize); + private static native long create_3(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap, int uniquenessRatio); + private static native long create_4(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff, int preFilterCap); + private static native long create_5(int minDisparity, int numDisparities, int blockSize, int P1, int P2, int disp12MaxDiff); + private static native long create_6(int minDisparity, int numDisparities, int blockSize, int P1, int P2); + private static native long create_7(int minDisparity, int numDisparities, int blockSize, int P1); + private static native long create_8(int minDisparity, int numDisparities, int blockSize); + private static native long create_9(int minDisparity, int numDisparities); + private static native long create_10(int minDisparity); + private static native long create_11(); + + // C++: int cv::StereoSGBM::getMode() + private static native int getMode_0(long nativeObj); + + // C++: int cv::StereoSGBM::getP1() + private static native int getP1_0(long nativeObj); + + // C++: int cv::StereoSGBM::getP2() + private static native int getP2_0(long nativeObj); + + // C++: int cv::StereoSGBM::getPreFilterCap() + private static native int getPreFilterCap_0(long nativeObj); + + // C++: int cv::StereoSGBM::getUniquenessRatio() + private static native int getUniquenessRatio_0(long nativeObj); + + // C++: void cv::StereoSGBM::setMode(int mode) + private static native void setMode_0(long nativeObj, int mode); + + // C++: void cv::StereoSGBM::setP1(int P1) + private static native void setP1_0(long nativeObj, int P1); + + // C++: void cv::StereoSGBM::setP2(int P2) + private static native void setP2_0(long nativeObj, int P2); + + // C++: void cv::StereoSGBM::setPreFilterCap(int preFilterCap) + private static native void setPreFilterCap_0(long nativeObj, int preFilterCap); + + // C++: void cv::StereoSGBM::setUniquenessRatio(int uniquenessRatio) + private static native void setUniquenessRatio_0(long nativeObj, int uniquenessRatio); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Algorithm.java b/openCVLibrary3/src/main/java/org/opencv/core/Algorithm.java new file mode 100644 index 00000000000..8db0fe0187b --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Algorithm.java @@ -0,0 +1,113 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.core; + +import java.lang.String; + +// C++: class Algorithm +//javadoc: Algorithm + +public class Algorithm { + + protected final long nativeObj; + protected Algorithm(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static Algorithm __fromPtr__(long addr) { return new Algorithm(addr); } + + // + // C++: String cv::Algorithm::getDefaultName() + // + + //javadoc: Algorithm::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::Algorithm::empty() + // + + //javadoc: Algorithm::empty() + public boolean empty() + { + + boolean retVal = empty_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::Algorithm::clear() + // + + //javadoc: Algorithm::clear() + public void clear() + { + + clear_0(nativeObj); + + return; + } + + + // + // C++: void cv::Algorithm::read(FileNode fn) + // + + // Unknown type 'FileNode' (I), skipping the function + + + // + // C++: void cv::Algorithm::save(String filename) + // + + //javadoc: Algorithm::save(filename) + public void save(String filename) + { + + save_0(nativeObj, filename); + + return; + } + + + // + // C++: void cv::Algorithm::write(Ptr_FileStorage fs, String name = String()) + // + + // Unknown type 'Ptr_FileStorage' (I), skipping the function + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: String cv::Algorithm::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: bool cv::Algorithm::empty() + private static native boolean empty_0(long nativeObj); + + // C++: void cv::Algorithm::clear() + private static native void clear_0(long nativeObj); + + // C++: void cv::Algorithm::save(String filename) + private static native void save_0(long nativeObj, String filename); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Core.java b/openCVLibrary3/src/main/java/org/opencv/core/Core.java new file mode 100644 index 00000000000..9afc6b3455b --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Core.java @@ -0,0 +1,2983 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.core; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfDouble; +import org.opencv.core.MatOfInt; +import org.opencv.core.Scalar; +import org.opencv.core.TermCriteria; +import org.opencv.utils.Converters; + +// C++: class Core +//javadoc: Core + +public class Core { + // these constants are wrapped inside functions to prevent inlining + private static String getVersion() { return "3.4.3"; } + private static String getNativeLibraryName() { return "opencv_java343"; } + private static int getVersionMajorJ() { return 3; } + private static int getVersionMinorJ() { return 4; } + private static int getVersionRevisionJ() { return 3; } + private static String getVersionStatusJ() { return ""; } + + public static final String VERSION = getVersion(); + public static final String NATIVE_LIBRARY_NAME = getNativeLibraryName(); + public static final int VERSION_MAJOR = getVersionMajorJ(); + public static final int VERSION_MINOR = getVersionMinorJ(); + public static final int VERSION_REVISION = getVersionRevisionJ(); + public static final String VERSION_STATUS = getVersionStatusJ(); + + private static final int + CV_8U = 0, + CV_8S = 1, + CV_16U = 2, + CV_16S = 3, + CV_32S = 4, + CV_32F = 5, + CV_64F = 6, + CV_USRTYPE1 = 7; + + + public static final int + SVD_MODIFY_A = 1, + SVD_NO_UV = 2, + SVD_FULL_UV = 4, + FILLED = -1, + REDUCE_SUM = 0, + REDUCE_AVG = 1, + REDUCE_MAX = 2, + REDUCE_MIN = 3, + StsOk = 0, + StsBackTrace = -1, + StsError = -2, + StsInternal = -3, + StsNoMem = -4, + StsBadArg = -5, + StsBadFunc = -6, + StsNoConv = -7, + StsAutoTrace = -8, + HeaderIsNull = -9, + BadImageSize = -10, + BadOffset = -11, + BadDataPtr = -12, + BadStep = -13, + BadModelOrChSeq = -14, + BadNumChannels = -15, + BadNumChannel1U = -16, + BadDepth = -17, + BadAlphaChannel = -18, + BadOrder = -19, + BadOrigin = -20, + BadAlign = -21, + BadCallBack = -22, + BadTileSize = -23, + BadCOI = -24, + BadROISize = -25, + MaskIsTiled = -26, + StsNullPtr = -27, + StsVecLengthErr = -28, + StsFilterStructContentErr = -29, + StsKernelStructContentErr = -30, + StsFilterOffsetErr = -31, + StsBadSize = -201, + StsDivByZero = -202, + StsInplaceNotSupported = -203, + StsObjectNotFound = -204, + StsUnmatchedFormats = -205, + StsBadFlag = -206, + StsBadPoint = -207, + StsBadMask = -208, + StsUnmatchedSizes = -209, + StsUnsupportedFormat = -210, + StsOutOfRange = -211, + StsParseError = -212, + StsNotImplemented = -213, + StsBadMemBlock = -214, + StsAssert = -215, + GpuNotSupported = -216, + GpuApiCallError = -217, + OpenGlNotSupported = -218, + OpenGlApiCallError = -219, + OpenCLApiCallError = -220, + OpenCLDoubleNotSupported = -221, + OpenCLInitError = -222, + OpenCLNoAMDBlasFft = -223, + DECOMP_LU = 0, + DECOMP_SVD = 1, + DECOMP_EIG = 2, + DECOMP_CHOLESKY = 3, + DECOMP_QR = 4, + DECOMP_NORMAL = 16, + NORM_INF = 1, + NORM_L1 = 2, + NORM_L2 = 4, + NORM_L2SQR = 5, + NORM_HAMMING = 6, + NORM_HAMMING2 = 7, + NORM_TYPE_MASK = 7, + NORM_RELATIVE = 8, + NORM_MINMAX = 32, + CMP_EQ = 0, + CMP_GT = 1, + CMP_GE = 2, + CMP_LT = 3, + CMP_LE = 4, + CMP_NE = 5, + GEMM_1_T = 1, + GEMM_2_T = 2, + GEMM_3_T = 4, + DFT_INVERSE = 1, + DFT_SCALE = 2, + DFT_ROWS = 4, + DFT_COMPLEX_OUTPUT = 16, + DFT_REAL_OUTPUT = 32, + DFT_COMPLEX_INPUT = 64, + DCT_INVERSE = DFT_INVERSE, + DCT_ROWS = DFT_ROWS, + BORDER_CONSTANT = 0, + BORDER_REPLICATE = 1, + BORDER_REFLECT = 2, + BORDER_WRAP = 3, + BORDER_REFLECT_101 = 4, + BORDER_TRANSPARENT = 5, + BORDER_REFLECT101 = BORDER_REFLECT_101, + BORDER_DEFAULT = BORDER_REFLECT_101, + BORDER_ISOLATED = 16, + SORT_EVERY_ROW = 0, + SORT_EVERY_COLUMN = 1, + SORT_ASCENDING = 0, + SORT_DESCENDING = 16, + COVAR_SCRAMBLED = 0, + COVAR_NORMAL = 1, + COVAR_USE_AVG = 2, + COVAR_SCALE = 4, + COVAR_ROWS = 8, + COVAR_COLS = 16, + KMEANS_RANDOM_CENTERS = 0, + KMEANS_PP_CENTERS = 2, + KMEANS_USE_INITIAL_LABELS = 1, + LINE_4 = 4, + LINE_8 = 8, + LINE_AA = 16, + FONT_HERSHEY_SIMPLEX = 0, + FONT_HERSHEY_PLAIN = 1, + FONT_HERSHEY_DUPLEX = 2, + FONT_HERSHEY_COMPLEX = 3, + FONT_HERSHEY_TRIPLEX = 4, + FONT_HERSHEY_COMPLEX_SMALL = 5, + FONT_HERSHEY_SCRIPT_SIMPLEX = 6, + FONT_HERSHEY_SCRIPT_COMPLEX = 7, + FONT_ITALIC = 16, + ROTATE_90_CLOCKWISE = 0, + ROTATE_180 = 1, + ROTATE_90_COUNTERCLOCKWISE = 2, + TYPE_GENERAL = 0, + TYPE_MARKER = 0+1, + TYPE_WRAPPER = 0+2, + TYPE_FUN = 0+3, + IMPL_PLAIN = 0, + IMPL_IPP = 0+1, + IMPL_OPENCL = 0+2, + FLAGS_NONE = 0, + FLAGS_MAPPING = 0x01, + FLAGS_EXPAND_SAME_NAMES = 0x02; + + + // + // C++: Scalar cv::mean(Mat src, Mat mask = Mat()) + // + + //javadoc: mean(src, mask) + public static Scalar mean(Mat src, Mat mask) + { + + Scalar retVal = new Scalar(mean_0(src.nativeObj, mask.nativeObj)); + + return retVal; + } + + //javadoc: mean(src) + public static Scalar mean(Mat src) + { + + Scalar retVal = new Scalar(mean_1(src.nativeObj)); + + return retVal; + } + + + // + // C++: Scalar cv::sum(Mat src) + // + + //javadoc: sumElems(src) + public static Scalar sumElems(Mat src) + { + + Scalar retVal = new Scalar(sumElems_0(src.nativeObj)); + + return retVal; + } + + + // + // C++: Scalar cv::trace(Mat mtx) + // + + //javadoc: trace(mtx) + public static Scalar trace(Mat mtx) + { + + Scalar retVal = new Scalar(trace_0(mtx.nativeObj)); + + return retVal; + } + + + // + // C++: String cv::getBuildInformation() + // + + //javadoc: getBuildInformation() + public static String getBuildInformation() + { + + String retVal = getBuildInformation_0(); + + return retVal; + } + + + // + // C++: String cv::getHardwareFeatureName(int feature) + // + + //javadoc: getHardwareFeatureName(feature) + public static String getHardwareFeatureName(int feature) + { + + String retVal = getHardwareFeatureName_0(feature); + + return retVal; + } + + + // + // C++: String cv::getVersionString() + // + + //javadoc: getVersionString() + public static String getVersionString() + { + + String retVal = getVersionString_0(); + + return retVal; + } + + + // + // C++: String cv::ipp::getIppVersion() + // + + //javadoc: getIppVersion() + public static String getIppVersion() + { + + String retVal = getIppVersion_0(); + + return retVal; + } + + + // + // C++: bool cv::checkRange(Mat a, bool quiet = true, _hidden_ * pos = 0, double minVal = -DBL_MAX, double maxVal = DBL_MAX) + // + + //javadoc: checkRange(a, quiet, minVal, maxVal) + public static boolean checkRange(Mat a, boolean quiet, double minVal, double maxVal) + { + + boolean retVal = checkRange_0(a.nativeObj, quiet, minVal, maxVal); + + return retVal; + } + + //javadoc: checkRange(a, quiet, minVal) + public static boolean checkRange(Mat a, boolean quiet, double minVal) + { + + boolean retVal = checkRange_1(a.nativeObj, quiet, minVal); + + return retVal; + } + + //javadoc: checkRange(a, quiet) + public static boolean checkRange(Mat a, boolean quiet) + { + + boolean retVal = checkRange_2(a.nativeObj, quiet); + + return retVal; + } + + //javadoc: checkRange(a) + public static boolean checkRange(Mat a) + { + + boolean retVal = checkRange_4(a.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::eigen(Mat src, Mat& eigenvalues, Mat& eigenvectors = Mat()) + // + + //javadoc: eigen(src, eigenvalues, eigenvectors) + public static boolean eigen(Mat src, Mat eigenvalues, Mat eigenvectors) + { + + boolean retVal = eigen_0(src.nativeObj, eigenvalues.nativeObj, eigenvectors.nativeObj); + + return retVal; + } + + //javadoc: eigen(src, eigenvalues) + public static boolean eigen(Mat src, Mat eigenvalues) + { + + boolean retVal = eigen_1(src.nativeObj, eigenvalues.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::solve(Mat src1, Mat src2, Mat& dst, int flags = DECOMP_LU) + // + + //javadoc: solve(src1, src2, dst, flags) + public static boolean solve(Mat src1, Mat src2, Mat dst, int flags) + { + + boolean retVal = solve_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, flags); + + return retVal; + } + + //javadoc: solve(src1, src2, dst) + public static boolean solve(Mat src1, Mat src2, Mat dst) + { + + boolean retVal = solve_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ipp::useIPP() + // + + //javadoc: useIPP() + public static boolean useIPP() + { + + boolean retVal = useIPP_0(); + + return retVal; + } + + + // + // C++: bool cv::ipp::useIPP_NE() + // + + //javadoc: useIPP_NE() + public static boolean useIPP_NE() + { + + boolean retVal = useIPP_NE_0(); + + return retVal; + } + + + // + // C++: double cv::Mahalanobis(Mat v1, Mat v2, Mat icovar) + // + + //javadoc: Mahalanobis(v1, v2, icovar) + public static double Mahalanobis(Mat v1, Mat v2, Mat icovar) + { + + double retVal = Mahalanobis_0(v1.nativeObj, v2.nativeObj, icovar.nativeObj); + + return retVal; + } + + + // + // C++: double cv::PSNR(Mat src1, Mat src2) + // + + //javadoc: PSNR(src1, src2) + public static double PSNR(Mat src1, Mat src2) + { + + double retVal = PSNR_0(src1.nativeObj, src2.nativeObj); + + return retVal; + } + + + // + // C++: double cv::determinant(Mat mtx) + // + + //javadoc: determinant(mtx) + public static double determinant(Mat mtx) + { + + double retVal = determinant_0(mtx.nativeObj); + + return retVal; + } + + + // + // C++: double cv::getTickFrequency() + // + + //javadoc: getTickFrequency() + public static double getTickFrequency() + { + + double retVal = getTickFrequency_0(); + + return retVal; + } + + + // + // C++: double cv::invert(Mat src, Mat& dst, int flags = DECOMP_LU) + // + + //javadoc: invert(src, dst, flags) + public static double invert(Mat src, Mat dst, int flags) + { + + double retVal = invert_0(src.nativeObj, dst.nativeObj, flags); + + return retVal; + } + + //javadoc: invert(src, dst) + public static double invert(Mat src, Mat dst) + { + + double retVal = invert_1(src.nativeObj, dst.nativeObj); + + return retVal; + } + + + // + // C++: double cv::kmeans(Mat data, int K, Mat& bestLabels, TermCriteria criteria, int attempts, int flags, Mat& centers = Mat()) + // + + //javadoc: kmeans(data, K, bestLabels, criteria, attempts, flags, centers) + public static double kmeans(Mat data, int K, Mat bestLabels, TermCriteria criteria, int attempts, int flags, Mat centers) + { + + double retVal = kmeans_0(data.nativeObj, K, bestLabels.nativeObj, criteria.type, criteria.maxCount, criteria.epsilon, attempts, flags, centers.nativeObj); + + return retVal; + } + + //javadoc: kmeans(data, K, bestLabels, criteria, attempts, flags) + public static double kmeans(Mat data, int K, Mat bestLabels, TermCriteria criteria, int attempts, int flags) + { + + double retVal = kmeans_1(data.nativeObj, K, bestLabels.nativeObj, criteria.type, criteria.maxCount, criteria.epsilon, attempts, flags); + + return retVal; + } + + + // + // C++: double cv::norm(Mat src1, Mat src2, int normType = NORM_L2, Mat mask = Mat()) + // + + //javadoc: norm(src1, src2, normType, mask) + public static double norm(Mat src1, Mat src2, int normType, Mat mask) + { + + double retVal = norm_0(src1.nativeObj, src2.nativeObj, normType, mask.nativeObj); + + return retVal; + } + + //javadoc: norm(src1, src2, normType) + public static double norm(Mat src1, Mat src2, int normType) + { + + double retVal = norm_1(src1.nativeObj, src2.nativeObj, normType); + + return retVal; + } + + //javadoc: norm(src1, src2) + public static double norm(Mat src1, Mat src2) + { + + double retVal = norm_2(src1.nativeObj, src2.nativeObj); + + return retVal; + } + + + // + // C++: double cv::norm(Mat src1, int normType = NORM_L2, Mat mask = Mat()) + // + + //javadoc: norm(src1, normType, mask) + public static double norm(Mat src1, int normType, Mat mask) + { + + double retVal = norm_3(src1.nativeObj, normType, mask.nativeObj); + + return retVal; + } + + //javadoc: norm(src1, normType) + public static double norm(Mat src1, int normType) + { + + double retVal = norm_4(src1.nativeObj, normType); + + return retVal; + } + + //javadoc: norm(src1) + public static double norm(Mat src1) + { + + double retVal = norm_5(src1.nativeObj); + + return retVal; + } + + + // + // C++: double cv::solvePoly(Mat coeffs, Mat& roots, int maxIters = 300) + // + + //javadoc: solvePoly(coeffs, roots, maxIters) + public static double solvePoly(Mat coeffs, Mat roots, int maxIters) + { + + double retVal = solvePoly_0(coeffs.nativeObj, roots.nativeObj, maxIters); + + return retVal; + } + + //javadoc: solvePoly(coeffs, roots) + public static double solvePoly(Mat coeffs, Mat roots) + { + + double retVal = solvePoly_1(coeffs.nativeObj, roots.nativeObj); + + return retVal; + } + + + // + // C++: float cv::cubeRoot(float val) + // + + //javadoc: cubeRoot(val) + public static float cubeRoot(float val) + { + + float retVal = cubeRoot_0(val); + + return retVal; + } + + + // + // C++: float cv::fastAtan2(float y, float x) + // + + //javadoc: fastAtan2(y, x) + public static float fastAtan2(float y, float x) + { + + float retVal = fastAtan2_0(y, x); + + return retVal; + } + + + // + // C++: int cv::borderInterpolate(int p, int len, int borderType) + // + + //javadoc: borderInterpolate(p, len, borderType) + public static int borderInterpolate(int p, int len, int borderType) + { + + int retVal = borderInterpolate_0(p, len, borderType); + + return retVal; + } + + + // + // C++: int cv::countNonZero(Mat src) + // + + //javadoc: countNonZero(src) + public static int countNonZero(Mat src) + { + + int retVal = countNonZero_0(src.nativeObj); + + return retVal; + } + + + // + // C++: int cv::getNumThreads() + // + + //javadoc: getNumThreads() + public static int getNumThreads() + { + + int retVal = getNumThreads_0(); + + return retVal; + } + + + // + // C++: int cv::getNumberOfCPUs() + // + + //javadoc: getNumberOfCPUs() + public static int getNumberOfCPUs() + { + + int retVal = getNumberOfCPUs_0(); + + return retVal; + } + + + // + // C++: int cv::getOptimalDFTSize(int vecsize) + // + + //javadoc: getOptimalDFTSize(vecsize) + public static int getOptimalDFTSize(int vecsize) + { + + int retVal = getOptimalDFTSize_0(vecsize); + + return retVal; + } + + + // + // C++: int cv::getThreadNum() + // + + //javadoc: getThreadNum() + @Deprecated + public static int getThreadNum() + { + + int retVal = getThreadNum_0(); + + return retVal; + } + + + // + // C++: int cv::getVersionMajor() + // + + //javadoc: getVersionMajor() + public static int getVersionMajor() + { + + int retVal = getVersionMajor_0(); + + return retVal; + } + + + // + // C++: int cv::getVersionMinor() + // + + //javadoc: getVersionMinor() + public static int getVersionMinor() + { + + int retVal = getVersionMinor_0(); + + return retVal; + } + + + // + // C++: int cv::getVersionRevision() + // + + //javadoc: getVersionRevision() + public static int getVersionRevision() + { + + int retVal = getVersionRevision_0(); + + return retVal; + } + + + // + // C++: int cv::solveCubic(Mat coeffs, Mat& roots) + // + + //javadoc: solveCubic(coeffs, roots) + public static int solveCubic(Mat coeffs, Mat roots) + { + + int retVal = solveCubic_0(coeffs.nativeObj, roots.nativeObj); + + return retVal; + } + + + // + // C++: int64 cv::getCPUTickCount() + // + + //javadoc: getCPUTickCount() + public static long getCPUTickCount() + { + + long retVal = getCPUTickCount_0(); + + return retVal; + } + + + // + // C++: int64 cv::getTickCount() + // + + //javadoc: getTickCount() + public static long getTickCount() + { + + long retVal = getTickCount_0(); + + return retVal; + } + + + // + // C++: void cv::LUT(Mat src, Mat lut, Mat& dst) + // + + //javadoc: LUT(src, lut, dst) + public static void LUT(Mat src, Mat lut, Mat dst) + { + + LUT_0(src.nativeObj, lut.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat& result) + // + + //javadoc: PCABackProject(data, mean, eigenvectors, result) + public static void PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat result) + { + + PCABackProject_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, result.nativeObj); + + return; + } + + + // + // C++: void cv::PCACompute(Mat data, Mat& mean, Mat& eigenvectors, Mat& eigenvalues, double retainedVariance) + // + + //javadoc: PCACompute2(data, mean, eigenvectors, eigenvalues, retainedVariance) + public static void PCACompute2(Mat data, Mat mean, Mat eigenvectors, Mat eigenvalues, double retainedVariance) + { + + PCACompute2_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, eigenvalues.nativeObj, retainedVariance); + + return; + } + + + // + // C++: void cv::PCACompute(Mat data, Mat& mean, Mat& eigenvectors, Mat& eigenvalues, int maxComponents = 0) + // + + //javadoc: PCACompute2(data, mean, eigenvectors, eigenvalues, maxComponents) + public static void PCACompute2(Mat data, Mat mean, Mat eigenvectors, Mat eigenvalues, int maxComponents) + { + + PCACompute2_1(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, eigenvalues.nativeObj, maxComponents); + + return; + } + + //javadoc: PCACompute2(data, mean, eigenvectors, eigenvalues) + public static void PCACompute2(Mat data, Mat mean, Mat eigenvectors, Mat eigenvalues) + { + + PCACompute2_2(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, eigenvalues.nativeObj); + + return; + } + + + // + // C++: void cv::PCACompute(Mat data, Mat& mean, Mat& eigenvectors, double retainedVariance) + // + + //javadoc: PCACompute(data, mean, eigenvectors, retainedVariance) + public static void PCACompute(Mat data, Mat mean, Mat eigenvectors, double retainedVariance) + { + + PCACompute_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, retainedVariance); + + return; + } + + + // + // C++: void cv::PCACompute(Mat data, Mat& mean, Mat& eigenvectors, int maxComponents = 0) + // + + //javadoc: PCACompute(data, mean, eigenvectors, maxComponents) + public static void PCACompute(Mat data, Mat mean, Mat eigenvectors, int maxComponents) + { + + PCACompute_1(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, maxComponents); + + return; + } + + //javadoc: PCACompute(data, mean, eigenvectors) + public static void PCACompute(Mat data, Mat mean, Mat eigenvectors) + { + + PCACompute_2(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj); + + return; + } + + + // + // C++: void cv::PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat& result) + // + + //javadoc: PCAProject(data, mean, eigenvectors, result) + public static void PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat result) + { + + PCAProject_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, result.nativeObj); + + return; + } + + + // + // C++: void cv::SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat& dst) + // + + //javadoc: SVBackSubst(w, u, vt, rhs, dst) + public static void SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat dst) + { + + SVBackSubst_0(w.nativeObj, u.nativeObj, vt.nativeObj, rhs.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::SVDecomp(Mat src, Mat& w, Mat& u, Mat& vt, int flags = 0) + // + + //javadoc: SVDecomp(src, w, u, vt, flags) + public static void SVDecomp(Mat src, Mat w, Mat u, Mat vt, int flags) + { + + SVDecomp_0(src.nativeObj, w.nativeObj, u.nativeObj, vt.nativeObj, flags); + + return; + } + + //javadoc: SVDecomp(src, w, u, vt) + public static void SVDecomp(Mat src, Mat w, Mat u, Mat vt) + { + + SVDecomp_1(src.nativeObj, w.nativeObj, u.nativeObj, vt.nativeObj); + + return; + } + + + // + // C++: void cv::absdiff(Mat src1, Mat src2, Mat& dst) + // + + //javadoc: absdiff(src1, src2, dst) + public static void absdiff(Mat src1, Mat src2, Mat dst) + { + + absdiff_0(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::absdiff(Mat src1, Scalar src2, Mat& dst) + // + + //javadoc: absdiff(src1, src2, dst) + public static void absdiff(Mat src1, Scalar src2, Mat dst) + { + + absdiff_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj); + + return; + } + + + // + // C++: void cv::add(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1) + // + + //javadoc: add(src1, src2, dst, mask, dtype) + public static void add(Mat src1, Mat src2, Mat dst, Mat mask, int dtype) + { + + add_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj, dtype); + + return; + } + + //javadoc: add(src1, src2, dst, mask) + public static void add(Mat src1, Mat src2, Mat dst, Mat mask) + { + + add_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: add(src1, src2, dst) + public static void add(Mat src1, Mat src2, Mat dst) + { + + add_2(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::add(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1) + // + + //javadoc: add(src1, src2, dst, mask, dtype) + public static void add(Mat src1, Scalar src2, Mat dst, Mat mask, int dtype) + { + + add_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj, dtype); + + return; + } + + //javadoc: add(src1, src2, dst, mask) + public static void add(Mat src1, Scalar src2, Mat dst, Mat mask) + { + + add_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: add(src1, src2, dst) + public static void add(Mat src1, Scalar src2, Mat dst) + { + + add_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj); + + return; + } + + + // + // C++: void cv::addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat& dst, int dtype = -1) + // + + //javadoc: addWeighted(src1, alpha, src2, beta, gamma, dst, dtype) + public static void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst, int dtype) + { + + addWeighted_0(src1.nativeObj, alpha, src2.nativeObj, beta, gamma, dst.nativeObj, dtype); + + return; + } + + //javadoc: addWeighted(src1, alpha, src2, beta, gamma, dst) + public static void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst) + { + + addWeighted_1(src1.nativeObj, alpha, src2.nativeObj, beta, gamma, dst.nativeObj); + + return; + } + + + // + // C++: void cv::batchDistance(Mat src1, Mat src2, Mat& dist, int dtype, Mat& nidx, int normType = NORM_L2, int K = 0, Mat mask = Mat(), int update = 0, bool crosscheck = false) + // + + //javadoc: batchDistance(src1, src2, dist, dtype, nidx, normType, K, mask, update, crosscheck) + public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K, Mat mask, int update, boolean crosscheck) + { + + batchDistance_0(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType, K, mask.nativeObj, update, crosscheck); + + return; + } + + //javadoc: batchDistance(src1, src2, dist, dtype, nidx, normType, K, mask, update) + public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K, Mat mask, int update) + { + + batchDistance_1(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType, K, mask.nativeObj, update); + + return; + } + + //javadoc: batchDistance(src1, src2, dist, dtype, nidx, normType, K, mask) + public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K, Mat mask) + { + + batchDistance_2(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType, K, mask.nativeObj); + + return; + } + + //javadoc: batchDistance(src1, src2, dist, dtype, nidx, normType, K) + public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K) + { + + batchDistance_3(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType, K); + + return; + } + + //javadoc: batchDistance(src1, src2, dist, dtype, nidx, normType) + public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType) + { + + batchDistance_4(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType); + + return; + } + + //javadoc: batchDistance(src1, src2, dist, dtype, nidx) + public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx) + { + + batchDistance_5(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj); + + return; + } + + + // + // C++: void cv::bitwise_and(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) + // + + //javadoc: bitwise_and(src1, src2, dst, mask) + public static void bitwise_and(Mat src1, Mat src2, Mat dst, Mat mask) + { + + bitwise_and_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: bitwise_and(src1, src2, dst) + public static void bitwise_and(Mat src1, Mat src2, Mat dst) + { + + bitwise_and_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::bitwise_not(Mat src, Mat& dst, Mat mask = Mat()) + // + + //javadoc: bitwise_not(src, dst, mask) + public static void bitwise_not(Mat src, Mat dst, Mat mask) + { + + bitwise_not_0(src.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: bitwise_not(src, dst) + public static void bitwise_not(Mat src, Mat dst) + { + + bitwise_not_1(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::bitwise_or(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) + // + + //javadoc: bitwise_or(src1, src2, dst, mask) + public static void bitwise_or(Mat src1, Mat src2, Mat dst, Mat mask) + { + + bitwise_or_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: bitwise_or(src1, src2, dst) + public static void bitwise_or(Mat src1, Mat src2, Mat dst) + { + + bitwise_or_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::bitwise_xor(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) + // + + //javadoc: bitwise_xor(src1, src2, dst, mask) + public static void bitwise_xor(Mat src1, Mat src2, Mat dst, Mat mask) + { + + bitwise_xor_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: bitwise_xor(src1, src2, dst) + public static void bitwise_xor(Mat src1, Mat src2, Mat dst) + { + + bitwise_xor_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::calcCovarMatrix(Mat samples, Mat& covar, Mat& mean, int flags, int ctype = CV_64F) + // + + //javadoc: calcCovarMatrix(samples, covar, mean, flags, ctype) + public static void calcCovarMatrix(Mat samples, Mat covar, Mat mean, int flags, int ctype) + { + + calcCovarMatrix_0(samples.nativeObj, covar.nativeObj, mean.nativeObj, flags, ctype); + + return; + } + + //javadoc: calcCovarMatrix(samples, covar, mean, flags) + public static void calcCovarMatrix(Mat samples, Mat covar, Mat mean, int flags) + { + + calcCovarMatrix_1(samples.nativeObj, covar.nativeObj, mean.nativeObj, flags); + + return; + } + + + // + // C++: void cv::cartToPolar(Mat x, Mat y, Mat& magnitude, Mat& angle, bool angleInDegrees = false) + // + + //javadoc: cartToPolar(x, y, magnitude, angle, angleInDegrees) + public static void cartToPolar(Mat x, Mat y, Mat magnitude, Mat angle, boolean angleInDegrees) + { + + cartToPolar_0(x.nativeObj, y.nativeObj, magnitude.nativeObj, angle.nativeObj, angleInDegrees); + + return; + } + + //javadoc: cartToPolar(x, y, magnitude, angle) + public static void cartToPolar(Mat x, Mat y, Mat magnitude, Mat angle) + { + + cartToPolar_1(x.nativeObj, y.nativeObj, magnitude.nativeObj, angle.nativeObj); + + return; + } + + + // + // C++: void cv::compare(Mat src1, Mat src2, Mat& dst, int cmpop) + // + + //javadoc: compare(src1, src2, dst, cmpop) + public static void compare(Mat src1, Mat src2, Mat dst, int cmpop) + { + + compare_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, cmpop); + + return; + } + + + // + // C++: void cv::compare(Mat src1, Scalar src2, Mat& dst, int cmpop) + // + + //javadoc: compare(src1, src2, dst, cmpop) + public static void compare(Mat src1, Scalar src2, Mat dst, int cmpop) + { + + compare_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, cmpop); + + return; + } + + + // + // C++: void cv::completeSymm(Mat& m, bool lowerToUpper = false) + // + + //javadoc: completeSymm(m, lowerToUpper) + public static void completeSymm(Mat m, boolean lowerToUpper) + { + + completeSymm_0(m.nativeObj, lowerToUpper); + + return; + } + + //javadoc: completeSymm(m) + public static void completeSymm(Mat m) + { + + completeSymm_1(m.nativeObj); + + return; + } + + + // + // C++: void cv::convertFp16(Mat src, Mat& dst) + // + + //javadoc: convertFp16(src, dst) + public static void convertFp16(Mat src, Mat dst) + { + + convertFp16_0(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::convertScaleAbs(Mat src, Mat& dst, double alpha = 1, double beta = 0) + // + + //javadoc: convertScaleAbs(src, dst, alpha, beta) + public static void convertScaleAbs(Mat src, Mat dst, double alpha, double beta) + { + + convertScaleAbs_0(src.nativeObj, dst.nativeObj, alpha, beta); + + return; + } + + //javadoc: convertScaleAbs(src, dst, alpha) + public static void convertScaleAbs(Mat src, Mat dst, double alpha) + { + + convertScaleAbs_1(src.nativeObj, dst.nativeObj, alpha); + + return; + } + + //javadoc: convertScaleAbs(src, dst) + public static void convertScaleAbs(Mat src, Mat dst) + { + + convertScaleAbs_2(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::copyMakeBorder(Mat src, Mat& dst, int top, int bottom, int left, int right, int borderType, Scalar value = Scalar()) + // + + //javadoc: copyMakeBorder(src, dst, top, bottom, left, right, borderType, value) + public static void copyMakeBorder(Mat src, Mat dst, int top, int bottom, int left, int right, int borderType, Scalar value) + { + + copyMakeBorder_0(src.nativeObj, dst.nativeObj, top, bottom, left, right, borderType, value.val[0], value.val[1], value.val[2], value.val[3]); + + return; + } + + //javadoc: copyMakeBorder(src, dst, top, bottom, left, right, borderType) + public static void copyMakeBorder(Mat src, Mat dst, int top, int bottom, int left, int right, int borderType) + { + + copyMakeBorder_1(src.nativeObj, dst.nativeObj, top, bottom, left, right, borderType); + + return; + } + + + // + // C++: void cv::dct(Mat src, Mat& dst, int flags = 0) + // + + //javadoc: dct(src, dst, flags) + public static void dct(Mat src, Mat dst, int flags) + { + + dct_0(src.nativeObj, dst.nativeObj, flags); + + return; + } + + //javadoc: dct(src, dst) + public static void dct(Mat src, Mat dst) + { + + dct_1(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::dft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0) + // + + //javadoc: dft(src, dst, flags, nonzeroRows) + public static void dft(Mat src, Mat dst, int flags, int nonzeroRows) + { + + dft_0(src.nativeObj, dst.nativeObj, flags, nonzeroRows); + + return; + } + + //javadoc: dft(src, dst, flags) + public static void dft(Mat src, Mat dst, int flags) + { + + dft_1(src.nativeObj, dst.nativeObj, flags); + + return; + } + + //javadoc: dft(src, dst) + public static void dft(Mat src, Mat dst) + { + + dft_2(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::divide(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1) + // + + //javadoc: divide(src1, src2, dst, scale, dtype) + public static void divide(Mat src1, Mat src2, Mat dst, double scale, int dtype) + { + + divide_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale, dtype); + + return; + } + + //javadoc: divide(src1, src2, dst, scale) + public static void divide(Mat src1, Mat src2, Mat dst, double scale) + { + + divide_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale); + + return; + } + + //javadoc: divide(src1, src2, dst) + public static void divide(Mat src1, Mat src2, Mat dst) + { + + divide_2(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::divide(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1) + // + + //javadoc: divide(src1, src2, dst, scale, dtype) + public static void divide(Mat src1, Scalar src2, Mat dst, double scale, int dtype) + { + + divide_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale, dtype); + + return; + } + + //javadoc: divide(src1, src2, dst, scale) + public static void divide(Mat src1, Scalar src2, Mat dst, double scale) + { + + divide_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale); + + return; + } + + //javadoc: divide(src1, src2, dst) + public static void divide(Mat src1, Scalar src2, Mat dst) + { + + divide_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj); + + return; + } + + + // + // C++: void cv::divide(double scale, Mat src2, Mat& dst, int dtype = -1) + // + + //javadoc: divide(scale, src2, dst, dtype) + public static void divide(double scale, Mat src2, Mat dst, int dtype) + { + + divide_6(scale, src2.nativeObj, dst.nativeObj, dtype); + + return; + } + + //javadoc: divide(scale, src2, dst) + public static void divide(double scale, Mat src2, Mat dst) + { + + divide_7(scale, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::eigenNonSymmetric(Mat src, Mat& eigenvalues, Mat& eigenvectors) + // + + //javadoc: eigenNonSymmetric(src, eigenvalues, eigenvectors) + public static void eigenNonSymmetric(Mat src, Mat eigenvalues, Mat eigenvectors) + { + + eigenNonSymmetric_0(src.nativeObj, eigenvalues.nativeObj, eigenvectors.nativeObj); + + return; + } + + + // + // C++: void cv::exp(Mat src, Mat& dst) + // + + //javadoc: exp(src, dst) + public static void exp(Mat src, Mat dst) + { + + exp_0(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::extractChannel(Mat src, Mat& dst, int coi) + // + + //javadoc: extractChannel(src, dst, coi) + public static void extractChannel(Mat src, Mat dst, int coi) + { + + extractChannel_0(src.nativeObj, dst.nativeObj, coi); + + return; + } + + + // + // C++: void cv::findNonZero(Mat src, Mat& idx) + // + + //javadoc: findNonZero(src, idx) + public static void findNonZero(Mat src, Mat idx) + { + + findNonZero_0(src.nativeObj, idx.nativeObj); + + return; + } + + + // + // C++: void cv::flip(Mat src, Mat& dst, int flipCode) + // + + //javadoc: flip(src, dst, flipCode) + public static void flip(Mat src, Mat dst, int flipCode) + { + + flip_0(src.nativeObj, dst.nativeObj, flipCode); + + return; + } + + + // + // C++: void cv::gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat& dst, int flags = 0) + // + + //javadoc: gemm(src1, src2, alpha, src3, beta, dst, flags) + public static void gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat dst, int flags) + { + + gemm_0(src1.nativeObj, src2.nativeObj, alpha, src3.nativeObj, beta, dst.nativeObj, flags); + + return; + } + + //javadoc: gemm(src1, src2, alpha, src3, beta, dst) + public static void gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat dst) + { + + gemm_1(src1.nativeObj, src2.nativeObj, alpha, src3.nativeObj, beta, dst.nativeObj); + + return; + } + + + // + // C++: void cv::hconcat(vector_Mat src, Mat& dst) + // + + //javadoc: hconcat(src, dst) + public static void hconcat(List src, Mat dst) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + hconcat_0(src_mat.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::idct(Mat src, Mat& dst, int flags = 0) + // + + //javadoc: idct(src, dst, flags) + public static void idct(Mat src, Mat dst, int flags) + { + + idct_0(src.nativeObj, dst.nativeObj, flags); + + return; + } + + //javadoc: idct(src, dst) + public static void idct(Mat src, Mat dst) + { + + idct_1(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::idft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0) + // + + //javadoc: idft(src, dst, flags, nonzeroRows) + public static void idft(Mat src, Mat dst, int flags, int nonzeroRows) + { + + idft_0(src.nativeObj, dst.nativeObj, flags, nonzeroRows); + + return; + } + + //javadoc: idft(src, dst, flags) + public static void idft(Mat src, Mat dst, int flags) + { + + idft_1(src.nativeObj, dst.nativeObj, flags); + + return; + } + + //javadoc: idft(src, dst) + public static void idft(Mat src, Mat dst) + { + + idft_2(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::inRange(Mat src, Scalar lowerb, Scalar upperb, Mat& dst) + // + + //javadoc: inRange(src, lowerb, upperb, dst) + public static void inRange(Mat src, Scalar lowerb, Scalar upperb, Mat dst) + { + + inRange_0(src.nativeObj, lowerb.val[0], lowerb.val[1], lowerb.val[2], lowerb.val[3], upperb.val[0], upperb.val[1], upperb.val[2], upperb.val[3], dst.nativeObj); + + return; + } + + + // + // C++: void cv::insertChannel(Mat src, Mat& dst, int coi) + // + + //javadoc: insertChannel(src, dst, coi) + public static void insertChannel(Mat src, Mat dst, int coi) + { + + insertChannel_0(src.nativeObj, dst.nativeObj, coi); + + return; + } + + + // + // C++: void cv::log(Mat src, Mat& dst) + // + + //javadoc: log(src, dst) + public static void log(Mat src, Mat dst) + { + + log_0(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::magnitude(Mat x, Mat y, Mat& magnitude) + // + + //javadoc: magnitude(x, y, magnitude) + public static void magnitude(Mat x, Mat y, Mat magnitude) + { + + magnitude_0(x.nativeObj, y.nativeObj, magnitude.nativeObj); + + return; + } + + + // + // C++: void cv::max(Mat src1, Mat src2, Mat& dst) + // + + //javadoc: max(src1, src2, dst) + public static void max(Mat src1, Mat src2, Mat dst) + { + + max_0(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::max(Mat src1, Scalar src2, Mat& dst) + // + + //javadoc: max(src1, src2, dst) + public static void max(Mat src1, Scalar src2, Mat dst) + { + + max_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj); + + return; + } + + + // + // C++: void cv::meanStdDev(Mat src, vector_double& mean, vector_double& stddev, Mat mask = Mat()) + // + + //javadoc: meanStdDev(src, mean, stddev, mask) + public static void meanStdDev(Mat src, MatOfDouble mean, MatOfDouble stddev, Mat mask) + { + Mat mean_mat = mean; + Mat stddev_mat = stddev; + meanStdDev_0(src.nativeObj, mean_mat.nativeObj, stddev_mat.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: meanStdDev(src, mean, stddev) + public static void meanStdDev(Mat src, MatOfDouble mean, MatOfDouble stddev) + { + Mat mean_mat = mean; + Mat stddev_mat = stddev; + meanStdDev_1(src.nativeObj, mean_mat.nativeObj, stddev_mat.nativeObj); + + return; + } + + + // + // C++: void cv::merge(vector_Mat mv, Mat& dst) + // + + //javadoc: merge(mv, dst) + public static void merge(List mv, Mat dst) + { + Mat mv_mat = Converters.vector_Mat_to_Mat(mv); + merge_0(mv_mat.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::min(Mat src1, Mat src2, Mat& dst) + // + + //javadoc: min(src1, src2, dst) + public static void min(Mat src1, Mat src2, Mat dst) + { + + min_0(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::min(Mat src1, Scalar src2, Mat& dst) + // + + //javadoc: min(src1, src2, dst) + public static void min(Mat src1, Scalar src2, Mat dst) + { + + min_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj); + + return; + } + + + // + // C++: void cv::mixChannels(vector_Mat src, vector_Mat dst, vector_int fromTo) + // + + //javadoc: mixChannels(src, dst, fromTo) + public static void mixChannels(List src, List dst, MatOfInt fromTo) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + Mat dst_mat = Converters.vector_Mat_to_Mat(dst); + Mat fromTo_mat = fromTo; + mixChannels_0(src_mat.nativeObj, dst_mat.nativeObj, fromTo_mat.nativeObj); + + return; + } + + + // + // C++: void cv::mulSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false) + // + + //javadoc: mulSpectrums(a, b, c, flags, conjB) + public static void mulSpectrums(Mat a, Mat b, Mat c, int flags, boolean conjB) + { + + mulSpectrums_0(a.nativeObj, b.nativeObj, c.nativeObj, flags, conjB); + + return; + } + + //javadoc: mulSpectrums(a, b, c, flags) + public static void mulSpectrums(Mat a, Mat b, Mat c, int flags) + { + + mulSpectrums_1(a.nativeObj, b.nativeObj, c.nativeObj, flags); + + return; + } + + + // + // C++: void cv::mulTransposed(Mat src, Mat& dst, bool aTa, Mat delta = Mat(), double scale = 1, int dtype = -1) + // + + //javadoc: mulTransposed(src, dst, aTa, delta, scale, dtype) + public static void mulTransposed(Mat src, Mat dst, boolean aTa, Mat delta, double scale, int dtype) + { + + mulTransposed_0(src.nativeObj, dst.nativeObj, aTa, delta.nativeObj, scale, dtype); + + return; + } + + //javadoc: mulTransposed(src, dst, aTa, delta, scale) + public static void mulTransposed(Mat src, Mat dst, boolean aTa, Mat delta, double scale) + { + + mulTransposed_1(src.nativeObj, dst.nativeObj, aTa, delta.nativeObj, scale); + + return; + } + + //javadoc: mulTransposed(src, dst, aTa, delta) + public static void mulTransposed(Mat src, Mat dst, boolean aTa, Mat delta) + { + + mulTransposed_2(src.nativeObj, dst.nativeObj, aTa, delta.nativeObj); + + return; + } + + //javadoc: mulTransposed(src, dst, aTa) + public static void mulTransposed(Mat src, Mat dst, boolean aTa) + { + + mulTransposed_3(src.nativeObj, dst.nativeObj, aTa); + + return; + } + + + // + // C++: void cv::multiply(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1) + // + + //javadoc: multiply(src1, src2, dst, scale, dtype) + public static void multiply(Mat src1, Mat src2, Mat dst, double scale, int dtype) + { + + multiply_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale, dtype); + + return; + } + + //javadoc: multiply(src1, src2, dst, scale) + public static void multiply(Mat src1, Mat src2, Mat dst, double scale) + { + + multiply_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale); + + return; + } + + //javadoc: multiply(src1, src2, dst) + public static void multiply(Mat src1, Mat src2, Mat dst) + { + + multiply_2(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::multiply(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1) + // + + //javadoc: multiply(src1, src2, dst, scale, dtype) + public static void multiply(Mat src1, Scalar src2, Mat dst, double scale, int dtype) + { + + multiply_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale, dtype); + + return; + } + + //javadoc: multiply(src1, src2, dst, scale) + public static void multiply(Mat src1, Scalar src2, Mat dst, double scale) + { + + multiply_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale); + + return; + } + + //javadoc: multiply(src1, src2, dst) + public static void multiply(Mat src1, Scalar src2, Mat dst) + { + + multiply_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj); + + return; + } + + + // + // C++: void cv::normalize(Mat src, Mat& dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, Mat mask = Mat()) + // + + //javadoc: normalize(src, dst, alpha, beta, norm_type, dtype, mask) + public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type, int dtype, Mat mask) + { + + normalize_0(src.nativeObj, dst.nativeObj, alpha, beta, norm_type, dtype, mask.nativeObj); + + return; + } + + //javadoc: normalize(src, dst, alpha, beta, norm_type, dtype) + public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type, int dtype) + { + + normalize_1(src.nativeObj, dst.nativeObj, alpha, beta, norm_type, dtype); + + return; + } + + //javadoc: normalize(src, dst, alpha, beta, norm_type) + public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type) + { + + normalize_2(src.nativeObj, dst.nativeObj, alpha, beta, norm_type); + + return; + } + + //javadoc: normalize(src, dst, alpha, beta) + public static void normalize(Mat src, Mat dst, double alpha, double beta) + { + + normalize_3(src.nativeObj, dst.nativeObj, alpha, beta); + + return; + } + + //javadoc: normalize(src, dst, alpha) + public static void normalize(Mat src, Mat dst, double alpha) + { + + normalize_4(src.nativeObj, dst.nativeObj, alpha); + + return; + } + + //javadoc: normalize(src, dst) + public static void normalize(Mat src, Mat dst) + { + + normalize_5(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::patchNaNs(Mat& a, double val = 0) + // + + //javadoc: patchNaNs(a, val) + public static void patchNaNs(Mat a, double val) + { + + patchNaNs_0(a.nativeObj, val); + + return; + } + + //javadoc: patchNaNs(a) + public static void patchNaNs(Mat a) + { + + patchNaNs_1(a.nativeObj); + + return; + } + + + // + // C++: void cv::perspectiveTransform(Mat src, Mat& dst, Mat m) + // + + //javadoc: perspectiveTransform(src, dst, m) + public static void perspectiveTransform(Mat src, Mat dst, Mat m) + { + + perspectiveTransform_0(src.nativeObj, dst.nativeObj, m.nativeObj); + + return; + } + + + // + // C++: void cv::phase(Mat x, Mat y, Mat& angle, bool angleInDegrees = false) + // + + //javadoc: phase(x, y, angle, angleInDegrees) + public static void phase(Mat x, Mat y, Mat angle, boolean angleInDegrees) + { + + phase_0(x.nativeObj, y.nativeObj, angle.nativeObj, angleInDegrees); + + return; + } + + //javadoc: phase(x, y, angle) + public static void phase(Mat x, Mat y, Mat angle) + { + + phase_1(x.nativeObj, y.nativeObj, angle.nativeObj); + + return; + } + + + // + // C++: void cv::polarToCart(Mat magnitude, Mat angle, Mat& x, Mat& y, bool angleInDegrees = false) + // + + //javadoc: polarToCart(magnitude, angle, x, y, angleInDegrees) + public static void polarToCart(Mat magnitude, Mat angle, Mat x, Mat y, boolean angleInDegrees) + { + + polarToCart_0(magnitude.nativeObj, angle.nativeObj, x.nativeObj, y.nativeObj, angleInDegrees); + + return; + } + + //javadoc: polarToCart(magnitude, angle, x, y) + public static void polarToCart(Mat magnitude, Mat angle, Mat x, Mat y) + { + + polarToCart_1(magnitude.nativeObj, angle.nativeObj, x.nativeObj, y.nativeObj); + + return; + } + + + // + // C++: void cv::pow(Mat src, double power, Mat& dst) + // + + //javadoc: pow(src, power, dst) + public static void pow(Mat src, double power, Mat dst) + { + + pow_0(src.nativeObj, power, dst.nativeObj); + + return; + } + + + // + // C++: void cv::randShuffle(Mat& dst, double iterFactor = 1., RNG* rng = 0) + // + + //javadoc: randShuffle(dst, iterFactor) + public static void randShuffle(Mat dst, double iterFactor) + { + + randShuffle_0(dst.nativeObj, iterFactor); + + return; + } + + //javadoc: randShuffle(dst) + public static void randShuffle(Mat dst) + { + + randShuffle_2(dst.nativeObj); + + return; + } + + + // + // C++: void cv::randn(Mat& dst, double mean, double stddev) + // + + //javadoc: randn(dst, mean, stddev) + public static void randn(Mat dst, double mean, double stddev) + { + + randn_0(dst.nativeObj, mean, stddev); + + return; + } + + + // + // C++: void cv::randu(Mat& dst, double low, double high) + // + + //javadoc: randu(dst, low, high) + public static void randu(Mat dst, double low, double high) + { + + randu_0(dst.nativeObj, low, high); + + return; + } + + + // + // C++: void cv::reduce(Mat src, Mat& dst, int dim, int rtype, int dtype = -1) + // + + //javadoc: reduce(src, dst, dim, rtype, dtype) + public static void reduce(Mat src, Mat dst, int dim, int rtype, int dtype) + { + + reduce_0(src.nativeObj, dst.nativeObj, dim, rtype, dtype); + + return; + } + + //javadoc: reduce(src, dst, dim, rtype) + public static void reduce(Mat src, Mat dst, int dim, int rtype) + { + + reduce_1(src.nativeObj, dst.nativeObj, dim, rtype); + + return; + } + + + // + // C++: void cv::repeat(Mat src, int ny, int nx, Mat& dst) + // + + //javadoc: repeat(src, ny, nx, dst) + public static void repeat(Mat src, int ny, int nx, Mat dst) + { + + repeat_0(src.nativeObj, ny, nx, dst.nativeObj); + + return; + } + + + // + // C++: void cv::rotate(Mat src, Mat& dst, int rotateCode) + // + + //javadoc: rotate(src, dst, rotateCode) + public static void rotate(Mat src, Mat dst, int rotateCode) + { + + rotate_0(src.nativeObj, dst.nativeObj, rotateCode); + + return; + } + + + // + // C++: void cv::scaleAdd(Mat src1, double alpha, Mat src2, Mat& dst) + // + + //javadoc: scaleAdd(src1, alpha, src2, dst) + public static void scaleAdd(Mat src1, double alpha, Mat src2, Mat dst) + { + + scaleAdd_0(src1.nativeObj, alpha, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::setErrorVerbosity(bool verbose) + // + + //javadoc: setErrorVerbosity(verbose) + public static void setErrorVerbosity(boolean verbose) + { + + setErrorVerbosity_0(verbose); + + return; + } + + + // + // C++: void cv::setIdentity(Mat& mtx, Scalar s = Scalar(1)) + // + + //javadoc: setIdentity(mtx, s) + public static void setIdentity(Mat mtx, Scalar s) + { + + setIdentity_0(mtx.nativeObj, s.val[0], s.val[1], s.val[2], s.val[3]); + + return; + } + + //javadoc: setIdentity(mtx) + public static void setIdentity(Mat mtx) + { + + setIdentity_1(mtx.nativeObj); + + return; + } + + + // + // C++: void cv::setNumThreads(int nthreads) + // + + //javadoc: setNumThreads(nthreads) + public static void setNumThreads(int nthreads) + { + + setNumThreads_0(nthreads); + + return; + } + + + // + // C++: void cv::setRNGSeed(int seed) + // + + //javadoc: setRNGSeed(seed) + public static void setRNGSeed(int seed) + { + + setRNGSeed_0(seed); + + return; + } + + + // + // C++: void cv::sort(Mat src, Mat& dst, int flags) + // + + //javadoc: sort(src, dst, flags) + public static void sort(Mat src, Mat dst, int flags) + { + + sort_0(src.nativeObj, dst.nativeObj, flags); + + return; + } + + + // + // C++: void cv::sortIdx(Mat src, Mat& dst, int flags) + // + + //javadoc: sortIdx(src, dst, flags) + public static void sortIdx(Mat src, Mat dst, int flags) + { + + sortIdx_0(src.nativeObj, dst.nativeObj, flags); + + return; + } + + + // + // C++: void cv::split(Mat m, vector_Mat& mv) + // + + //javadoc: split(m, mv) + public static void split(Mat m, List mv) + { + Mat mv_mat = new Mat(); + split_0(m.nativeObj, mv_mat.nativeObj); + Converters.Mat_to_vector_Mat(mv_mat, mv); + mv_mat.release(); + return; + } + + + // + // C++: void cv::sqrt(Mat src, Mat& dst) + // + + //javadoc: sqrt(src, dst) + public static void sqrt(Mat src, Mat dst) + { + + sqrt_0(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::subtract(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1) + // + + //javadoc: subtract(src1, src2, dst, mask, dtype) + public static void subtract(Mat src1, Mat src2, Mat dst, Mat mask, int dtype) + { + + subtract_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj, dtype); + + return; + } + + //javadoc: subtract(src1, src2, dst, mask) + public static void subtract(Mat src1, Mat src2, Mat dst, Mat mask) + { + + subtract_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: subtract(src1, src2, dst) + public static void subtract(Mat src1, Mat src2, Mat dst) + { + + subtract_2(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::subtract(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1) + // + + //javadoc: subtract(src1, src2, dst, mask, dtype) + public static void subtract(Mat src1, Scalar src2, Mat dst, Mat mask, int dtype) + { + + subtract_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj, dtype); + + return; + } + + //javadoc: subtract(src1, src2, dst, mask) + public static void subtract(Mat src1, Scalar src2, Mat dst, Mat mask) + { + + subtract_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: subtract(src1, src2, dst) + public static void subtract(Mat src1, Scalar src2, Mat dst) + { + + subtract_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj); + + return; + } + + + // + // C++: void cv::transform(Mat src, Mat& dst, Mat m) + // + + //javadoc: transform(src, dst, m) + public static void transform(Mat src, Mat dst, Mat m) + { + + transform_0(src.nativeObj, dst.nativeObj, m.nativeObj); + + return; + } + + + // + // C++: void cv::transpose(Mat src, Mat& dst) + // + + //javadoc: transpose(src, dst) + public static void transpose(Mat src, Mat dst) + { + + transpose_0(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::vconcat(vector_Mat src, Mat& dst) + // + + //javadoc: vconcat(src, dst) + public static void vconcat(List src, Mat dst) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + vconcat_0(src_mat.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::ipp::setUseIPP(bool flag) + // + + //javadoc: setUseIPP(flag) + public static void setUseIPP(boolean flag) + { + + setUseIPP_0(flag); + + return; + } + + + // + // C++: void cv::ipp::setUseIPP_NE(bool flag) + // + + //javadoc: setUseIPP_NE(flag) + public static void setUseIPP_NE(boolean flag) + { + + setUseIPP_NE_0(flag); + + return; + } + +// manual port +public static class MinMaxLocResult { + public double minVal; + public double maxVal; + public Point minLoc; + public Point maxLoc; + + + public MinMaxLocResult() { + minVal=0; maxVal=0; + minLoc=new Point(); + maxLoc=new Point(); + } +} + + +// C++: minMaxLoc(Mat src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray()) + + +//javadoc: minMaxLoc(src, mask) +public static MinMaxLocResult minMaxLoc(Mat src, Mat mask) { + MinMaxLocResult res = new MinMaxLocResult(); + long maskNativeObj=0; + if (mask != null) { + maskNativeObj=mask.nativeObj; + } + double resarr[] = n_minMaxLocManual(src.nativeObj, maskNativeObj); + res.minVal=resarr[0]; + res.maxVal=resarr[1]; + res.minLoc.x=resarr[2]; + res.minLoc.y=resarr[3]; + res.maxLoc.x=resarr[4]; + res.maxLoc.y=resarr[5]; + return res; +} + + +//javadoc: minMaxLoc(src) +public static MinMaxLocResult minMaxLoc(Mat src) { + return minMaxLoc(src, null); +} + + + // C++: Scalar cv::mean(Mat src, Mat mask = Mat()) + private static native double[] mean_0(long src_nativeObj, long mask_nativeObj); + private static native double[] mean_1(long src_nativeObj); + + // C++: Scalar cv::sum(Mat src) + private static native double[] sumElems_0(long src_nativeObj); + + // C++: Scalar cv::trace(Mat mtx) + private static native double[] trace_0(long mtx_nativeObj); + + // C++: String cv::getBuildInformation() + private static native String getBuildInformation_0(); + + // C++: String cv::getHardwareFeatureName(int feature) + private static native String getHardwareFeatureName_0(int feature); + + // C++: String cv::getVersionString() + private static native String getVersionString_0(); + + // C++: String cv::ipp::getIppVersion() + private static native String getIppVersion_0(); + + // C++: bool cv::checkRange(Mat a, bool quiet = true, _hidden_ * pos = 0, double minVal = -DBL_MAX, double maxVal = DBL_MAX) + private static native boolean checkRange_0(long a_nativeObj, boolean quiet, double minVal, double maxVal); + private static native boolean checkRange_1(long a_nativeObj, boolean quiet, double minVal); + private static native boolean checkRange_2(long a_nativeObj, boolean quiet); + private static native boolean checkRange_4(long a_nativeObj); + + // C++: bool cv::eigen(Mat src, Mat& eigenvalues, Mat& eigenvectors = Mat()) + private static native boolean eigen_0(long src_nativeObj, long eigenvalues_nativeObj, long eigenvectors_nativeObj); + private static native boolean eigen_1(long src_nativeObj, long eigenvalues_nativeObj); + + // C++: bool cv::solve(Mat src1, Mat src2, Mat& dst, int flags = DECOMP_LU) + private static native boolean solve_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, int flags); + private static native boolean solve_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: bool cv::ipp::useIPP() + private static native boolean useIPP_0(); + + // C++: bool cv::ipp::useIPP_NE() + private static native boolean useIPP_NE_0(); + + // C++: double cv::Mahalanobis(Mat v1, Mat v2, Mat icovar) + private static native double Mahalanobis_0(long v1_nativeObj, long v2_nativeObj, long icovar_nativeObj); + + // C++: double cv::PSNR(Mat src1, Mat src2) + private static native double PSNR_0(long src1_nativeObj, long src2_nativeObj); + + // C++: double cv::determinant(Mat mtx) + private static native double determinant_0(long mtx_nativeObj); + + // C++: double cv::getTickFrequency() + private static native double getTickFrequency_0(); + + // C++: double cv::invert(Mat src, Mat& dst, int flags = DECOMP_LU) + private static native double invert_0(long src_nativeObj, long dst_nativeObj, int flags); + private static native double invert_1(long src_nativeObj, long dst_nativeObj); + + // C++: double cv::kmeans(Mat data, int K, Mat& bestLabels, TermCriteria criteria, int attempts, int flags, Mat& centers = Mat()) + private static native double kmeans_0(long data_nativeObj, int K, long bestLabels_nativeObj, int criteria_type, int criteria_maxCount, double criteria_epsilon, int attempts, int flags, long centers_nativeObj); + private static native double kmeans_1(long data_nativeObj, int K, long bestLabels_nativeObj, int criteria_type, int criteria_maxCount, double criteria_epsilon, int attempts, int flags); + + // C++: double cv::norm(Mat src1, Mat src2, int normType = NORM_L2, Mat mask = Mat()) + private static native double norm_0(long src1_nativeObj, long src2_nativeObj, int normType, long mask_nativeObj); + private static native double norm_1(long src1_nativeObj, long src2_nativeObj, int normType); + private static native double norm_2(long src1_nativeObj, long src2_nativeObj); + + // C++: double cv::norm(Mat src1, int normType = NORM_L2, Mat mask = Mat()) + private static native double norm_3(long src1_nativeObj, int normType, long mask_nativeObj); + private static native double norm_4(long src1_nativeObj, int normType); + private static native double norm_5(long src1_nativeObj); + + // C++: double cv::solvePoly(Mat coeffs, Mat& roots, int maxIters = 300) + private static native double solvePoly_0(long coeffs_nativeObj, long roots_nativeObj, int maxIters); + private static native double solvePoly_1(long coeffs_nativeObj, long roots_nativeObj); + + // C++: float cv::cubeRoot(float val) + private static native float cubeRoot_0(float val); + + // C++: float cv::fastAtan2(float y, float x) + private static native float fastAtan2_0(float y, float x); + + // C++: int cv::borderInterpolate(int p, int len, int borderType) + private static native int borderInterpolate_0(int p, int len, int borderType); + + // C++: int cv::countNonZero(Mat src) + private static native int countNonZero_0(long src_nativeObj); + + // C++: int cv::getNumThreads() + private static native int getNumThreads_0(); + + // C++: int cv::getNumberOfCPUs() + private static native int getNumberOfCPUs_0(); + + // C++: int cv::getOptimalDFTSize(int vecsize) + private static native int getOptimalDFTSize_0(int vecsize); + + // C++: int cv::getThreadNum() + private static native int getThreadNum_0(); + + // C++: int cv::getVersionMajor() + private static native int getVersionMajor_0(); + + // C++: int cv::getVersionMinor() + private static native int getVersionMinor_0(); + + // C++: int cv::getVersionRevision() + private static native int getVersionRevision_0(); + + // C++: int cv::solveCubic(Mat coeffs, Mat& roots) + private static native int solveCubic_0(long coeffs_nativeObj, long roots_nativeObj); + + // C++: int64 cv::getCPUTickCount() + private static native long getCPUTickCount_0(); + + // C++: int64 cv::getTickCount() + private static native long getTickCount_0(); + + // C++: void cv::LUT(Mat src, Mat lut, Mat& dst) + private static native void LUT_0(long src_nativeObj, long lut_nativeObj, long dst_nativeObj); + + // C++: void cv::PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat& result) + private static native void PCABackProject_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long result_nativeObj); + + // C++: void cv::PCACompute(Mat data, Mat& mean, Mat& eigenvectors, Mat& eigenvalues, double retainedVariance) + private static native void PCACompute2_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long eigenvalues_nativeObj, double retainedVariance); + + // C++: void cv::PCACompute(Mat data, Mat& mean, Mat& eigenvectors, Mat& eigenvalues, int maxComponents = 0) + private static native void PCACompute2_1(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long eigenvalues_nativeObj, int maxComponents); + private static native void PCACompute2_2(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long eigenvalues_nativeObj); + + // C++: void cv::PCACompute(Mat data, Mat& mean, Mat& eigenvectors, double retainedVariance) + private static native void PCACompute_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, double retainedVariance); + + // C++: void cv::PCACompute(Mat data, Mat& mean, Mat& eigenvectors, int maxComponents = 0) + private static native void PCACompute_1(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, int maxComponents); + private static native void PCACompute_2(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj); + + // C++: void cv::PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat& result) + private static native void PCAProject_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long result_nativeObj); + + // C++: void cv::SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat& dst) + private static native void SVBackSubst_0(long w_nativeObj, long u_nativeObj, long vt_nativeObj, long rhs_nativeObj, long dst_nativeObj); + + // C++: void cv::SVDecomp(Mat src, Mat& w, Mat& u, Mat& vt, int flags = 0) + private static native void SVDecomp_0(long src_nativeObj, long w_nativeObj, long u_nativeObj, long vt_nativeObj, int flags); + private static native void SVDecomp_1(long src_nativeObj, long w_nativeObj, long u_nativeObj, long vt_nativeObj); + + // C++: void cv::absdiff(Mat src1, Mat src2, Mat& dst) + private static native void absdiff_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::absdiff(Mat src1, Scalar src2, Mat& dst) + private static native void absdiff_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); + + // C++: void cv::add(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1) + private static native void add_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj, int dtype); + private static native void add_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void add_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::add(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1) + private static native void add_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj, int dtype); + private static native void add_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj); + private static native void add_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); + + // C++: void cv::addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat& dst, int dtype = -1) + private static native void addWeighted_0(long src1_nativeObj, double alpha, long src2_nativeObj, double beta, double gamma, long dst_nativeObj, int dtype); + private static native void addWeighted_1(long src1_nativeObj, double alpha, long src2_nativeObj, double beta, double gamma, long dst_nativeObj); + + // C++: void cv::batchDistance(Mat src1, Mat src2, Mat& dist, int dtype, Mat& nidx, int normType = NORM_L2, int K = 0, Mat mask = Mat(), int update = 0, bool crosscheck = false) + private static native void batchDistance_0(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType, int K, long mask_nativeObj, int update, boolean crosscheck); + private static native void batchDistance_1(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType, int K, long mask_nativeObj, int update); + private static native void batchDistance_2(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType, int K, long mask_nativeObj); + private static native void batchDistance_3(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType, int K); + private static native void batchDistance_4(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType); + private static native void batchDistance_5(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj); + + // C++: void cv::bitwise_and(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) + private static native void bitwise_and_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void bitwise_and_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::bitwise_not(Mat src, Mat& dst, Mat mask = Mat()) + private static native void bitwise_not_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void bitwise_not_1(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::bitwise_or(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) + private static native void bitwise_or_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void bitwise_or_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::bitwise_xor(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) + private static native void bitwise_xor_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void bitwise_xor_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::calcCovarMatrix(Mat samples, Mat& covar, Mat& mean, int flags, int ctype = CV_64F) + private static native void calcCovarMatrix_0(long samples_nativeObj, long covar_nativeObj, long mean_nativeObj, int flags, int ctype); + private static native void calcCovarMatrix_1(long samples_nativeObj, long covar_nativeObj, long mean_nativeObj, int flags); + + // C++: void cv::cartToPolar(Mat x, Mat y, Mat& magnitude, Mat& angle, bool angleInDegrees = false) + private static native void cartToPolar_0(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj, long angle_nativeObj, boolean angleInDegrees); + private static native void cartToPolar_1(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj, long angle_nativeObj); + + // C++: void cv::compare(Mat src1, Mat src2, Mat& dst, int cmpop) + private static native void compare_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, int cmpop); + + // C++: void cv::compare(Mat src1, Scalar src2, Mat& dst, int cmpop) + private static native void compare_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, int cmpop); + + // C++: void cv::completeSymm(Mat& m, bool lowerToUpper = false) + private static native void completeSymm_0(long m_nativeObj, boolean lowerToUpper); + private static native void completeSymm_1(long m_nativeObj); + + // C++: void cv::convertFp16(Mat src, Mat& dst) + private static native void convertFp16_0(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::convertScaleAbs(Mat src, Mat& dst, double alpha = 1, double beta = 0) + private static native void convertScaleAbs_0(long src_nativeObj, long dst_nativeObj, double alpha, double beta); + private static native void convertScaleAbs_1(long src_nativeObj, long dst_nativeObj, double alpha); + private static native void convertScaleAbs_2(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::copyMakeBorder(Mat src, Mat& dst, int top, int bottom, int left, int right, int borderType, Scalar value = Scalar()) + private static native void copyMakeBorder_0(long src_nativeObj, long dst_nativeObj, int top, int bottom, int left, int right, int borderType, double value_val0, double value_val1, double value_val2, double value_val3); + private static native void copyMakeBorder_1(long src_nativeObj, long dst_nativeObj, int top, int bottom, int left, int right, int borderType); + + // C++: void cv::dct(Mat src, Mat& dst, int flags = 0) + private static native void dct_0(long src_nativeObj, long dst_nativeObj, int flags); + private static native void dct_1(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::dft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0) + private static native void dft_0(long src_nativeObj, long dst_nativeObj, int flags, int nonzeroRows); + private static native void dft_1(long src_nativeObj, long dst_nativeObj, int flags); + private static native void dft_2(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::divide(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1) + private static native void divide_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale, int dtype); + private static native void divide_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale); + private static native void divide_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::divide(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1) + private static native void divide_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale, int dtype); + private static native void divide_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale); + private static native void divide_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); + + // C++: void cv::divide(double scale, Mat src2, Mat& dst, int dtype = -1) + private static native void divide_6(double scale, long src2_nativeObj, long dst_nativeObj, int dtype); + private static native void divide_7(double scale, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::eigenNonSymmetric(Mat src, Mat& eigenvalues, Mat& eigenvectors) + private static native void eigenNonSymmetric_0(long src_nativeObj, long eigenvalues_nativeObj, long eigenvectors_nativeObj); + + // C++: void cv::exp(Mat src, Mat& dst) + private static native void exp_0(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::extractChannel(Mat src, Mat& dst, int coi) + private static native void extractChannel_0(long src_nativeObj, long dst_nativeObj, int coi); + + // C++: void cv::findNonZero(Mat src, Mat& idx) + private static native void findNonZero_0(long src_nativeObj, long idx_nativeObj); + + // C++: void cv::flip(Mat src, Mat& dst, int flipCode) + private static native void flip_0(long src_nativeObj, long dst_nativeObj, int flipCode); + + // C++: void cv::gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat& dst, int flags = 0) + private static native void gemm_0(long src1_nativeObj, long src2_nativeObj, double alpha, long src3_nativeObj, double beta, long dst_nativeObj, int flags); + private static native void gemm_1(long src1_nativeObj, long src2_nativeObj, double alpha, long src3_nativeObj, double beta, long dst_nativeObj); + + // C++: void cv::hconcat(vector_Mat src, Mat& dst) + private static native void hconcat_0(long src_mat_nativeObj, long dst_nativeObj); + + // C++: void cv::idct(Mat src, Mat& dst, int flags = 0) + private static native void idct_0(long src_nativeObj, long dst_nativeObj, int flags); + private static native void idct_1(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::idft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0) + private static native void idft_0(long src_nativeObj, long dst_nativeObj, int flags, int nonzeroRows); + private static native void idft_1(long src_nativeObj, long dst_nativeObj, int flags); + private static native void idft_2(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::inRange(Mat src, Scalar lowerb, Scalar upperb, Mat& dst) + private static native void inRange_0(long src_nativeObj, double lowerb_val0, double lowerb_val1, double lowerb_val2, double lowerb_val3, double upperb_val0, double upperb_val1, double upperb_val2, double upperb_val3, long dst_nativeObj); + + // C++: void cv::insertChannel(Mat src, Mat& dst, int coi) + private static native void insertChannel_0(long src_nativeObj, long dst_nativeObj, int coi); + + // C++: void cv::log(Mat src, Mat& dst) + private static native void log_0(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::magnitude(Mat x, Mat y, Mat& magnitude) + private static native void magnitude_0(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj); + + // C++: void cv::max(Mat src1, Mat src2, Mat& dst) + private static native void max_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::max(Mat src1, Scalar src2, Mat& dst) + private static native void max_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); + + // C++: void cv::meanStdDev(Mat src, vector_double& mean, vector_double& stddev, Mat mask = Mat()) + private static native void meanStdDev_0(long src_nativeObj, long mean_mat_nativeObj, long stddev_mat_nativeObj, long mask_nativeObj); + private static native void meanStdDev_1(long src_nativeObj, long mean_mat_nativeObj, long stddev_mat_nativeObj); + + // C++: void cv::merge(vector_Mat mv, Mat& dst) + private static native void merge_0(long mv_mat_nativeObj, long dst_nativeObj); + + // C++: void cv::min(Mat src1, Mat src2, Mat& dst) + private static native void min_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::min(Mat src1, Scalar src2, Mat& dst) + private static native void min_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); + + // C++: void cv::mixChannels(vector_Mat src, vector_Mat dst, vector_int fromTo) + private static native void mixChannels_0(long src_mat_nativeObj, long dst_mat_nativeObj, long fromTo_mat_nativeObj); + + // C++: void cv::mulSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false) + private static native void mulSpectrums_0(long a_nativeObj, long b_nativeObj, long c_nativeObj, int flags, boolean conjB); + private static native void mulSpectrums_1(long a_nativeObj, long b_nativeObj, long c_nativeObj, int flags); + + // C++: void cv::mulTransposed(Mat src, Mat& dst, bool aTa, Mat delta = Mat(), double scale = 1, int dtype = -1) + private static native void mulTransposed_0(long src_nativeObj, long dst_nativeObj, boolean aTa, long delta_nativeObj, double scale, int dtype); + private static native void mulTransposed_1(long src_nativeObj, long dst_nativeObj, boolean aTa, long delta_nativeObj, double scale); + private static native void mulTransposed_2(long src_nativeObj, long dst_nativeObj, boolean aTa, long delta_nativeObj); + private static native void mulTransposed_3(long src_nativeObj, long dst_nativeObj, boolean aTa); + + // C++: void cv::multiply(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1) + private static native void multiply_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale, int dtype); + private static native void multiply_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale); + private static native void multiply_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::multiply(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1) + private static native void multiply_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale, int dtype); + private static native void multiply_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale); + private static native void multiply_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); + + // C++: void cv::normalize(Mat src, Mat& dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, Mat mask = Mat()) + private static native void normalize_0(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type, int dtype, long mask_nativeObj); + private static native void normalize_1(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type, int dtype); + private static native void normalize_2(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type); + private static native void normalize_3(long src_nativeObj, long dst_nativeObj, double alpha, double beta); + private static native void normalize_4(long src_nativeObj, long dst_nativeObj, double alpha); + private static native void normalize_5(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::patchNaNs(Mat& a, double val = 0) + private static native void patchNaNs_0(long a_nativeObj, double val); + private static native void patchNaNs_1(long a_nativeObj); + + // C++: void cv::perspectiveTransform(Mat src, Mat& dst, Mat m) + private static native void perspectiveTransform_0(long src_nativeObj, long dst_nativeObj, long m_nativeObj); + + // C++: void cv::phase(Mat x, Mat y, Mat& angle, bool angleInDegrees = false) + private static native void phase_0(long x_nativeObj, long y_nativeObj, long angle_nativeObj, boolean angleInDegrees); + private static native void phase_1(long x_nativeObj, long y_nativeObj, long angle_nativeObj); + + // C++: void cv::polarToCart(Mat magnitude, Mat angle, Mat& x, Mat& y, bool angleInDegrees = false) + private static native void polarToCart_0(long magnitude_nativeObj, long angle_nativeObj, long x_nativeObj, long y_nativeObj, boolean angleInDegrees); + private static native void polarToCart_1(long magnitude_nativeObj, long angle_nativeObj, long x_nativeObj, long y_nativeObj); + + // C++: void cv::pow(Mat src, double power, Mat& dst) + private static native void pow_0(long src_nativeObj, double power, long dst_nativeObj); + + // C++: void cv::randShuffle(Mat& dst, double iterFactor = 1., RNG* rng = 0) + private static native void randShuffle_0(long dst_nativeObj, double iterFactor); + private static native void randShuffle_2(long dst_nativeObj); + + // C++: void cv::randn(Mat& dst, double mean, double stddev) + private static native void randn_0(long dst_nativeObj, double mean, double stddev); + + // C++: void cv::randu(Mat& dst, double low, double high) + private static native void randu_0(long dst_nativeObj, double low, double high); + + // C++: void cv::reduce(Mat src, Mat& dst, int dim, int rtype, int dtype = -1) + private static native void reduce_0(long src_nativeObj, long dst_nativeObj, int dim, int rtype, int dtype); + private static native void reduce_1(long src_nativeObj, long dst_nativeObj, int dim, int rtype); + + // C++: void cv::repeat(Mat src, int ny, int nx, Mat& dst) + private static native void repeat_0(long src_nativeObj, int ny, int nx, long dst_nativeObj); + + // C++: void cv::rotate(Mat src, Mat& dst, int rotateCode) + private static native void rotate_0(long src_nativeObj, long dst_nativeObj, int rotateCode); + + // C++: void cv::scaleAdd(Mat src1, double alpha, Mat src2, Mat& dst) + private static native void scaleAdd_0(long src1_nativeObj, double alpha, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::setErrorVerbosity(bool verbose) + private static native void setErrorVerbosity_0(boolean verbose); + + // C++: void cv::setIdentity(Mat& mtx, Scalar s = Scalar(1)) + private static native void setIdentity_0(long mtx_nativeObj, double s_val0, double s_val1, double s_val2, double s_val3); + private static native void setIdentity_1(long mtx_nativeObj); + + // C++: void cv::setNumThreads(int nthreads) + private static native void setNumThreads_0(int nthreads); + + // C++: void cv::setRNGSeed(int seed) + private static native void setRNGSeed_0(int seed); + + // C++: void cv::sort(Mat src, Mat& dst, int flags) + private static native void sort_0(long src_nativeObj, long dst_nativeObj, int flags); + + // C++: void cv::sortIdx(Mat src, Mat& dst, int flags) + private static native void sortIdx_0(long src_nativeObj, long dst_nativeObj, int flags); + + // C++: void cv::split(Mat m, vector_Mat& mv) + private static native void split_0(long m_nativeObj, long mv_mat_nativeObj); + + // C++: void cv::sqrt(Mat src, Mat& dst) + private static native void sqrt_0(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::subtract(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1) + private static native void subtract_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj, int dtype); + private static native void subtract_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void subtract_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::subtract(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1) + private static native void subtract_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj, int dtype); + private static native void subtract_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj); + private static native void subtract_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj); + + // C++: void cv::transform(Mat src, Mat& dst, Mat m) + private static native void transform_0(long src_nativeObj, long dst_nativeObj, long m_nativeObj); + + // C++: void cv::transpose(Mat src, Mat& dst) + private static native void transpose_0(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::vconcat(vector_Mat src, Mat& dst) + private static native void vconcat_0(long src_mat_nativeObj, long dst_nativeObj); + + // C++: void cv::ipp::setUseIPP(bool flag) + private static native void setUseIPP_0(boolean flag); + + // C++: void cv::ipp::setUseIPP_NE(bool flag) + private static native void setUseIPP_NE_0(boolean flag); +private static native double[] n_minMaxLocManual(long src_nativeObj, long mask_nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/CvException.java b/openCVLibrary3/src/main/java/org/opencv/core/CvException.java new file mode 100644 index 00000000000..e9241e68860 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/CvException.java @@ -0,0 +1,15 @@ +package org.opencv.core; + +public class CvException extends RuntimeException { + + private static final long serialVersionUID = 1L; + + public CvException(String msg) { + super(msg); + } + + @Override + public String toString() { + return "CvException [" + super.toString() + "]"; + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/CvType.java b/openCVLibrary3/src/main/java/org/opencv/core/CvType.java new file mode 100644 index 00000000000..748c1cd75c2 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/CvType.java @@ -0,0 +1,136 @@ +package org.opencv.core; + +public final class CvType { + + // type depth constants + public static final int + CV_8U = 0, CV_8S = 1, + CV_16U = 2, CV_16S = 3, + CV_32S = 4, + CV_32F = 5, + CV_64F = 6, + CV_USRTYPE1 = 7; + + // predefined type constants + public static final int + CV_8UC1 = CV_8UC(1), CV_8UC2 = CV_8UC(2), CV_8UC3 = CV_8UC(3), CV_8UC4 = CV_8UC(4), + CV_8SC1 = CV_8SC(1), CV_8SC2 = CV_8SC(2), CV_8SC3 = CV_8SC(3), CV_8SC4 = CV_8SC(4), + CV_16UC1 = CV_16UC(1), CV_16UC2 = CV_16UC(2), CV_16UC3 = CV_16UC(3), CV_16UC4 = CV_16UC(4), + CV_16SC1 = CV_16SC(1), CV_16SC2 = CV_16SC(2), CV_16SC3 = CV_16SC(3), CV_16SC4 = CV_16SC(4), + CV_32SC1 = CV_32SC(1), CV_32SC2 = CV_32SC(2), CV_32SC3 = CV_32SC(3), CV_32SC4 = CV_32SC(4), + CV_32FC1 = CV_32FC(1), CV_32FC2 = CV_32FC(2), CV_32FC3 = CV_32FC(3), CV_32FC4 = CV_32FC(4), + CV_64FC1 = CV_64FC(1), CV_64FC2 = CV_64FC(2), CV_64FC3 = CV_64FC(3), CV_64FC4 = CV_64FC(4); + + private static final int CV_CN_MAX = 512, CV_CN_SHIFT = 3, CV_DEPTH_MAX = (1 << CV_CN_SHIFT); + + public static final int makeType(int depth, int channels) { + if (channels <= 0 || channels >= CV_CN_MAX) { + throw new java.lang.UnsupportedOperationException( + "Channels count should be 1.." + (CV_CN_MAX - 1)); + } + if (depth < 0 || depth >= CV_DEPTH_MAX) { + throw new java.lang.UnsupportedOperationException( + "Data type depth should be 0.." + (CV_DEPTH_MAX - 1)); + } + return (depth & (CV_DEPTH_MAX - 1)) + ((channels - 1) << CV_CN_SHIFT); + } + + public static final int CV_8UC(int ch) { + return makeType(CV_8U, ch); + } + + public static final int CV_8SC(int ch) { + return makeType(CV_8S, ch); + } + + public static final int CV_16UC(int ch) { + return makeType(CV_16U, ch); + } + + public static final int CV_16SC(int ch) { + return makeType(CV_16S, ch); + } + + public static final int CV_32SC(int ch) { + return makeType(CV_32S, ch); + } + + public static final int CV_32FC(int ch) { + return makeType(CV_32F, ch); + } + + public static final int CV_64FC(int ch) { + return makeType(CV_64F, ch); + } + + public static final int channels(int type) { + return (type >> CV_CN_SHIFT) + 1; + } + + public static final int depth(int type) { + return type & (CV_DEPTH_MAX - 1); + } + + public static final boolean isInteger(int type) { + return depth(type) < CV_32F; + } + + public static final int ELEM_SIZE(int type) { + switch (depth(type)) { + case CV_8U: + case CV_8S: + return channels(type); + case CV_16U: + case CV_16S: + return 2 * channels(type); + case CV_32S: + case CV_32F: + return 4 * channels(type); + case CV_64F: + return 8 * channels(type); + default: + throw new java.lang.UnsupportedOperationException( + "Unsupported CvType value: " + type); + } + } + + public static final String typeToString(int type) { + String s; + switch (depth(type)) { + case CV_8U: + s = "CV_8U"; + break; + case CV_8S: + s = "CV_8S"; + break; + case CV_16U: + s = "CV_16U"; + break; + case CV_16S: + s = "CV_16S"; + break; + case CV_32S: + s = "CV_32S"; + break; + case CV_32F: + s = "CV_32F"; + break; + case CV_64F: + s = "CV_64F"; + break; + case CV_USRTYPE1: + s = "CV_USRTYPE1"; + break; + default: + throw new java.lang.UnsupportedOperationException( + "Unsupported CvType value: " + type); + } + + int ch = channels(type); + if (ch <= 4) + return s + "C" + ch; + else + return s + "C(" + ch + ")"; + } + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/DMatch.java b/openCVLibrary3/src/main/java/org/opencv/core/DMatch.java new file mode 100644 index 00000000000..db44d9a0a68 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/DMatch.java @@ -0,0 +1,58 @@ +package org.opencv.core; + +//C++: class DMatch + +/** + * Structure for matching: query descriptor index, train descriptor index, train + * image index and distance between descriptors. + */ +public class DMatch { + + /** + * Query descriptor index. + */ + public int queryIdx; + /** + * Train descriptor index. + */ + public int trainIdx; + /** + * Train image index. + */ + public int imgIdx; + + // javadoc: DMatch::distance + public float distance; + + // javadoc: DMatch::DMatch() + public DMatch() { + this(-1, -1, Float.MAX_VALUE); + } + + // javadoc: DMatch::DMatch(_queryIdx, _trainIdx, _distance) + public DMatch(int _queryIdx, int _trainIdx, float _distance) { + queryIdx = _queryIdx; + trainIdx = _trainIdx; + imgIdx = -1; + distance = _distance; + } + + // javadoc: DMatch::DMatch(_queryIdx, _trainIdx, _imgIdx, _distance) + public DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance) { + queryIdx = _queryIdx; + trainIdx = _trainIdx; + imgIdx = _imgIdx; + distance = _distance; + } + + public boolean lessThan(DMatch it) { + return distance < it.distance; + } + + @Override + public String toString() { + return "DMatch [queryIdx=" + queryIdx + ", trainIdx=" + trainIdx + + ", imgIdx=" + imgIdx + ", distance=" + distance + "]"; + } + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/KeyPoint.java b/openCVLibrary3/src/main/java/org/opencv/core/KeyPoint.java new file mode 100644 index 00000000000..de5b2151ff7 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/KeyPoint.java @@ -0,0 +1,83 @@ +package org.opencv.core; + +import org.opencv.core.Point; + +//javadoc: KeyPoint +public class KeyPoint { + + /** + * Coordinates of the keypoint. + */ + public Point pt; + /** + * Diameter of the useful keypoint adjacent area. + */ + public float size; + /** + * Computed orientation of the keypoint (-1 if not applicable). + */ + public float angle; + /** + * The response, by which the strongest keypoints have been selected. Can + * be used for further sorting or subsampling. + */ + public float response; + /** + * Octave (pyramid layer), from which the keypoint has been extracted. + */ + public int octave; + /** + * Object ID, that can be used to cluster keypoints by an object they + * belong to. + */ + public int class_id; + + // javadoc:KeyPoint::KeyPoint(x,y,_size,_angle,_response,_octave,_class_id) + public KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave, int _class_id) + { + pt = new Point(x, y); + size = _size; + angle = _angle; + response = _response; + octave = _octave; + class_id = _class_id; + } + + // javadoc: KeyPoint::KeyPoint() + public KeyPoint() + { + this(0, 0, 0, -1, 0, 0, -1); + } + + // javadoc: KeyPoint::KeyPoint(x, y, _size, _angle, _response, _octave) + public KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave) + { + this(x, y, _size, _angle, _response, _octave, -1); + } + + // javadoc: KeyPoint::KeyPoint(x, y, _size, _angle, _response) + public KeyPoint(float x, float y, float _size, float _angle, float _response) + { + this(x, y, _size, _angle, _response, 0, -1); + } + + // javadoc: KeyPoint::KeyPoint(x, y, _size, _angle) + public KeyPoint(float x, float y, float _size, float _angle) + { + this(x, y, _size, _angle, 0, 0, -1); + } + + // javadoc: KeyPoint::KeyPoint(x, y, _size) + public KeyPoint(float x, float y, float _size) + { + this(x, y, _size, -1, 0, 0, -1); + } + + @Override + public String toString() { + return "KeyPoint [pt=" + pt + ", size=" + size + ", angle=" + angle + + ", response=" + response + ", octave=" + octave + + ", class_id=" + class_id + "]"; + } + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Mat.java b/openCVLibrary3/src/main/java/org/opencv/core/Mat.java new file mode 100644 index 00000000000..c975f0c44b8 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Mat.java @@ -0,0 +1,1351 @@ +package org.opencv.core; + +import java.nio.ByteBuffer; + +// C++: class Mat +//javadoc: Mat +public class Mat { + + public final long nativeObj; + + public Mat(long addr) + { + if (addr == 0) + throw new java.lang.UnsupportedOperationException("Native object address is NULL"); + nativeObj = addr; + } + + // + // C++: Mat::Mat() + // + + // javadoc: Mat::Mat() + public Mat() + { + + nativeObj = n_Mat(); + + return; + } + + // + // C++: Mat::Mat(int rows, int cols, int type) + // + + // javadoc: Mat::Mat(rows, cols, type) + public Mat(int rows, int cols, int type) + { + + nativeObj = n_Mat(rows, cols, type); + + return; + } + + // + // C++: Mat::Mat(int rows, int cols, int type, void* data) + // + + // javadoc: Mat::Mat(rows, cols, type, data) + public Mat(int rows, int cols, int type, ByteBuffer data) + { + + nativeObj = n_Mat(rows, cols, type, data); + + return; + } + + // + // C++: Mat::Mat(Size size, int type) + // + + // javadoc: Mat::Mat(size, type) + public Mat(Size size, int type) + { + + nativeObj = n_Mat(size.width, size.height, type); + + return; + } + + // + // C++: Mat::Mat(int rows, int cols, int type, Scalar s) + // + + // javadoc: Mat::Mat(rows, cols, type, s) + public Mat(int rows, int cols, int type, Scalar s) + { + + nativeObj = n_Mat(rows, cols, type, s.val[0], s.val[1], s.val[2], s.val[3]); + + return; + } + + // + // C++: Mat::Mat(Size size, int type, Scalar s) + // + + // javadoc: Mat::Mat(size, type, s) + public Mat(Size size, int type, Scalar s) + { + + nativeObj = n_Mat(size.width, size.height, type, s.val[0], s.val[1], s.val[2], s.val[3]); + + return; + } + + // + // C++: Mat::Mat(Mat m, Range rowRange, Range colRange = Range::all()) + // + + // javadoc: Mat::Mat(m, rowRange, colRange) + public Mat(Mat m, Range rowRange, Range colRange) + { + + nativeObj = n_Mat(m.nativeObj, rowRange.start, rowRange.end, colRange.start, colRange.end); + + return; + } + + // javadoc: Mat::Mat(m, rowRange) + public Mat(Mat m, Range rowRange) + { + + nativeObj = n_Mat(m.nativeObj, rowRange.start, rowRange.end); + + return; + } + + // + // C++: Mat::Mat(Mat m, Rect roi) + // + + // javadoc: Mat::Mat(m, roi) + public Mat(Mat m, Rect roi) + { + + nativeObj = n_Mat(m.nativeObj, roi.y, roi.y + roi.height, roi.x, roi.x + roi.width); + + return; + } + + // + // C++: Mat Mat::adjustROI(int dtop, int dbottom, int dleft, int dright) + // + + // javadoc: Mat::adjustROI(dtop, dbottom, dleft, dright) + public Mat adjustROI(int dtop, int dbottom, int dleft, int dright) + { + + Mat retVal = new Mat(n_adjustROI(nativeObj, dtop, dbottom, dleft, dright)); + + return retVal; + } + + // + // C++: void Mat::assignTo(Mat m, int type = -1) + // + + // javadoc: Mat::assignTo(m, type) + public void assignTo(Mat m, int type) + { + + n_assignTo(nativeObj, m.nativeObj, type); + + return; + } + + // javadoc: Mat::assignTo(m) + public void assignTo(Mat m) + { + + n_assignTo(nativeObj, m.nativeObj); + + return; + } + + // + // C++: int Mat::channels() + // + + // javadoc: Mat::channels() + public int channels() + { + + int retVal = n_channels(nativeObj); + + return retVal; + } + + // + // C++: int Mat::checkVector(int elemChannels, int depth = -1, bool + // requireContinuous = true) + // + + // javadoc: Mat::checkVector(elemChannels, depth, requireContinuous) + public int checkVector(int elemChannels, int depth, boolean requireContinuous) + { + + int retVal = n_checkVector(nativeObj, elemChannels, depth, requireContinuous); + + return retVal; + } + + // javadoc: Mat::checkVector(elemChannels, depth) + public int checkVector(int elemChannels, int depth) + { + + int retVal = n_checkVector(nativeObj, elemChannels, depth); + + return retVal; + } + + // javadoc: Mat::checkVector(elemChannels) + public int checkVector(int elemChannels) + { + + int retVal = n_checkVector(nativeObj, elemChannels); + + return retVal; + } + + // + // C++: Mat Mat::clone() + // + + // javadoc: Mat::clone() + public Mat clone() + { + + Mat retVal = new Mat(n_clone(nativeObj)); + + return retVal; + } + + // + // C++: Mat Mat::col(int x) + // + + // javadoc: Mat::col(x) + public Mat col(int x) + { + + Mat retVal = new Mat(n_col(nativeObj, x)); + + return retVal; + } + + // + // C++: Mat Mat::colRange(int startcol, int endcol) + // + + // javadoc: Mat::colRange(startcol, endcol) + public Mat colRange(int startcol, int endcol) + { + + Mat retVal = new Mat(n_colRange(nativeObj, startcol, endcol)); + + return retVal; + } + + // + // C++: Mat Mat::colRange(Range r) + // + + // javadoc: Mat::colRange(r) + public Mat colRange(Range r) + { + + Mat retVal = new Mat(n_colRange(nativeObj, r.start, r.end)); + + return retVal; + } + + // + // C++: int Mat::dims() + // + + // javadoc: Mat::dims() + public int dims() + { + + int retVal = n_dims(nativeObj); + + return retVal; + } + + // + // C++: int Mat::cols() + // + + // javadoc: Mat::cols() + public int cols() + { + + int retVal = n_cols(nativeObj); + + return retVal; + } + + // + // C++: void Mat::convertTo(Mat& m, int rtype, double alpha = 1, double beta + // = 0) + // + + // javadoc: Mat::convertTo(m, rtype, alpha, beta) + public void convertTo(Mat m, int rtype, double alpha, double beta) + { + + n_convertTo(nativeObj, m.nativeObj, rtype, alpha, beta); + + return; + } + + // javadoc: Mat::convertTo(m, rtype, alpha) + public void convertTo(Mat m, int rtype, double alpha) + { + + n_convertTo(nativeObj, m.nativeObj, rtype, alpha); + + return; + } + + // javadoc: Mat::convertTo(m, rtype) + public void convertTo(Mat m, int rtype) + { + + n_convertTo(nativeObj, m.nativeObj, rtype); + + return; + } + + // + // C++: void Mat::copyTo(Mat& m) + // + + // javadoc: Mat::copyTo(m) + public void copyTo(Mat m) + { + + n_copyTo(nativeObj, m.nativeObj); + + return; + } + + // + // C++: void Mat::copyTo(Mat& m, Mat mask) + // + + // javadoc: Mat::copyTo(m, mask) + public void copyTo(Mat m, Mat mask) + { + + n_copyTo(nativeObj, m.nativeObj, mask.nativeObj); + + return; + } + + // + // C++: void Mat::create(int rows, int cols, int type) + // + + // javadoc: Mat::create(rows, cols, type) + public void create(int rows, int cols, int type) + { + + n_create(nativeObj, rows, cols, type); + + return; + } + + // + // C++: void Mat::create(Size size, int type) + // + + // javadoc: Mat::create(size, type) + public void create(Size size, int type) + { + + n_create(nativeObj, size.width, size.height, type); + + return; + } + + // + // C++: Mat Mat::cross(Mat m) + // + + // javadoc: Mat::cross(m) + public Mat cross(Mat m) + { + + Mat retVal = new Mat(n_cross(nativeObj, m.nativeObj)); + + return retVal; + } + + // + // C++: long Mat::dataAddr() + // + + // javadoc: Mat::dataAddr() + public long dataAddr() + { + + long retVal = n_dataAddr(nativeObj); + + return retVal; + } + + // + // C++: int Mat::depth() + // + + // javadoc: Mat::depth() + public int depth() + { + + int retVal = n_depth(nativeObj); + + return retVal; + } + + // + // C++: Mat Mat::diag(int d = 0) + // + + // javadoc: Mat::diag(d) + public Mat diag(int d) + { + + Mat retVal = new Mat(n_diag(nativeObj, d)); + + return retVal; + } + + // javadoc: Mat::diag() + public Mat diag() + { + + Mat retVal = new Mat(n_diag(nativeObj, 0)); + + return retVal; + } + + // + // C++: static Mat Mat::diag(Mat d) + // + + // javadoc: Mat::diag(d) + public static Mat diag(Mat d) + { + + Mat retVal = new Mat(n_diag(d.nativeObj)); + + return retVal; + } + + // + // C++: double Mat::dot(Mat m) + // + + // javadoc: Mat::dot(m) + public double dot(Mat m) + { + + double retVal = n_dot(nativeObj, m.nativeObj); + + return retVal; + } + + // + // C++: size_t Mat::elemSize() + // + + // javadoc: Mat::elemSize() + public long elemSize() + { + + long retVal = n_elemSize(nativeObj); + + return retVal; + } + + // + // C++: size_t Mat::elemSize1() + // + + // javadoc: Mat::elemSize1() + public long elemSize1() + { + + long retVal = n_elemSize1(nativeObj); + + return retVal; + } + + // + // C++: bool Mat::empty() + // + + // javadoc: Mat::empty() + public boolean empty() + { + + boolean retVal = n_empty(nativeObj); + + return retVal; + } + + // + // C++: static Mat Mat::eye(int rows, int cols, int type) + // + + // javadoc: Mat::eye(rows, cols, type) + public static Mat eye(int rows, int cols, int type) + { + + Mat retVal = new Mat(n_eye(rows, cols, type)); + + return retVal; + } + + // + // C++: static Mat Mat::eye(Size size, int type) + // + + // javadoc: Mat::eye(size, type) + public static Mat eye(Size size, int type) + { + + Mat retVal = new Mat(n_eye(size.width, size.height, type)); + + return retVal; + } + + // + // C++: Mat Mat::inv(int method = DECOMP_LU) + // + + // javadoc: Mat::inv(method) + public Mat inv(int method) + { + + Mat retVal = new Mat(n_inv(nativeObj, method)); + + return retVal; + } + + // javadoc: Mat::inv() + public Mat inv() + { + + Mat retVal = new Mat(n_inv(nativeObj)); + + return retVal; + } + + // + // C++: bool Mat::isContinuous() + // + + // javadoc: Mat::isContinuous() + public boolean isContinuous() + { + + boolean retVal = n_isContinuous(nativeObj); + + return retVal; + } + + // + // C++: bool Mat::isSubmatrix() + // + + // javadoc: Mat::isSubmatrix() + public boolean isSubmatrix() + { + + boolean retVal = n_isSubmatrix(nativeObj); + + return retVal; + } + + // + // C++: void Mat::locateROI(Size wholeSize, Point ofs) + // + + // javadoc: Mat::locateROI(wholeSize, ofs) + public void locateROI(Size wholeSize, Point ofs) + { + double[] wholeSize_out = new double[2]; + double[] ofs_out = new double[2]; + locateROI_0(nativeObj, wholeSize_out, ofs_out); + if(wholeSize!=null){ wholeSize.width = wholeSize_out[0]; wholeSize.height = wholeSize_out[1]; } + if(ofs!=null){ ofs.x = ofs_out[0]; ofs.y = ofs_out[1]; } + return; + } + + // + // C++: Mat Mat::mul(Mat m, double scale = 1) + // + + // javadoc: Mat::mul(m, scale) + public Mat mul(Mat m, double scale) + { + + Mat retVal = new Mat(n_mul(nativeObj, m.nativeObj, scale)); + + return retVal; + } + + // javadoc: Mat::mul(m) + public Mat mul(Mat m) + { + + Mat retVal = new Mat(n_mul(nativeObj, m.nativeObj)); + + return retVal; + } + + // + // C++: static Mat Mat::ones(int rows, int cols, int type) + // + + // javadoc: Mat::ones(rows, cols, type) + public static Mat ones(int rows, int cols, int type) + { + + Mat retVal = new Mat(n_ones(rows, cols, type)); + + return retVal; + } + + // + // C++: static Mat Mat::ones(Size size, int type) + // + + // javadoc: Mat::ones(size, type) + public static Mat ones(Size size, int type) + { + + Mat retVal = new Mat(n_ones(size.width, size.height, type)); + + return retVal; + } + + // + // C++: void Mat::push_back(Mat m) + // + + // javadoc: Mat::push_back(m) + public void push_back(Mat m) + { + + n_push_back(nativeObj, m.nativeObj); + + return; + } + + // + // C++: void Mat::release() + // + + // javadoc: Mat::release() + public void release() + { + + n_release(nativeObj); + + return; + } + + // + // C++: Mat Mat::reshape(int cn, int rows = 0) + // + + // javadoc: Mat::reshape(cn, rows) + public Mat reshape(int cn, int rows) + { + + Mat retVal = new Mat(n_reshape(nativeObj, cn, rows)); + + return retVal; + } + + // javadoc: Mat::reshape(cn) + public Mat reshape(int cn) + { + + Mat retVal = new Mat(n_reshape(nativeObj, cn)); + + return retVal; + } + + // + // C++: Mat Mat::row(int y) + // + + // javadoc: Mat::row(y) + public Mat row(int y) + { + + Mat retVal = new Mat(n_row(nativeObj, y)); + + return retVal; + } + + // + // C++: Mat Mat::rowRange(int startrow, int endrow) + // + + // javadoc: Mat::rowRange(startrow, endrow) + public Mat rowRange(int startrow, int endrow) + { + + Mat retVal = new Mat(n_rowRange(nativeObj, startrow, endrow)); + + return retVal; + } + + // + // C++: Mat Mat::rowRange(Range r) + // + + // javadoc: Mat::rowRange(r) + public Mat rowRange(Range r) + { + + Mat retVal = new Mat(n_rowRange(nativeObj, r.start, r.end)); + + return retVal; + } + + // + // C++: int Mat::rows() + // + + // javadoc: Mat::rows() + public int rows() + { + + int retVal = n_rows(nativeObj); + + return retVal; + } + + // + // C++: Mat Mat::operator =(Scalar s) + // + + // javadoc: Mat::operator =(s) + public Mat setTo(Scalar s) + { + + Mat retVal = new Mat(n_setTo(nativeObj, s.val[0], s.val[1], s.val[2], s.val[3])); + + return retVal; + } + + // + // C++: Mat Mat::setTo(Scalar value, Mat mask = Mat()) + // + + // javadoc: Mat::setTo(value, mask) + public Mat setTo(Scalar value, Mat mask) + { + + Mat retVal = new Mat(n_setTo(nativeObj, value.val[0], value.val[1], value.val[2], value.val[3], mask.nativeObj)); + + return retVal; + } + + // + // C++: Mat Mat::setTo(Mat value, Mat mask = Mat()) + // + + // javadoc: Mat::setTo(value, mask) + public Mat setTo(Mat value, Mat mask) + { + + Mat retVal = new Mat(n_setTo(nativeObj, value.nativeObj, mask.nativeObj)); + + return retVal; + } + + // javadoc: Mat::setTo(value) + public Mat setTo(Mat value) + { + + Mat retVal = new Mat(n_setTo(nativeObj, value.nativeObj)); + + return retVal; + } + + // + // C++: Size Mat::size() + // + + // javadoc: Mat::size() + public Size size() + { + + Size retVal = new Size(n_size(nativeObj)); + + return retVal; + } + + // + // C++: size_t Mat::step1(int i = 0) + // + + // javadoc: Mat::step1(i) + public long step1(int i) + { + + long retVal = n_step1(nativeObj, i); + + return retVal; + } + + // javadoc: Mat::step1() + public long step1() + { + + long retVal = n_step1(nativeObj); + + return retVal; + } + + // + // C++: Mat Mat::operator()(int rowStart, int rowEnd, int colStart, int + // colEnd) + // + + // javadoc: Mat::operator()(rowStart, rowEnd, colStart, colEnd) + public Mat submat(int rowStart, int rowEnd, int colStart, int colEnd) + { + + Mat retVal = new Mat(n_submat_rr(nativeObj, rowStart, rowEnd, colStart, colEnd)); + + return retVal; + } + + // + // C++: Mat Mat::operator()(Range rowRange, Range colRange) + // + + // javadoc: Mat::operator()(rowRange, colRange) + public Mat submat(Range rowRange, Range colRange) + { + + Mat retVal = new Mat(n_submat_rr(nativeObj, rowRange.start, rowRange.end, colRange.start, colRange.end)); + + return retVal; + } + + // + // C++: Mat Mat::operator()(Rect roi) + // + + // javadoc: Mat::operator()(roi) + public Mat submat(Rect roi) + { + + Mat retVal = new Mat(n_submat(nativeObj, roi.x, roi.y, roi.width, roi.height)); + + return retVal; + } + + // + // C++: Mat Mat::t() + // + + // javadoc: Mat::t() + public Mat t() + { + + Mat retVal = new Mat(n_t(nativeObj)); + + return retVal; + } + + // + // C++: size_t Mat::total() + // + + // javadoc: Mat::total() + public long total() + { + + long retVal = n_total(nativeObj); + + return retVal; + } + + // + // C++: int Mat::type() + // + + // javadoc: Mat::type() + public int type() + { + + int retVal = n_type(nativeObj); + + return retVal; + } + + // + // C++: static Mat Mat::zeros(int rows, int cols, int type) + // + + // javadoc: Mat::zeros(rows, cols, type) + public static Mat zeros(int rows, int cols, int type) + { + + Mat retVal = new Mat(n_zeros(rows, cols, type)); + + return retVal; + } + + // + // C++: static Mat Mat::zeros(Size size, int type) + // + + // javadoc: Mat::zeros(size, type) + public static Mat zeros(Size size, int type) + { + + Mat retVal = new Mat(n_zeros(size.width, size.height, type)); + + return retVal; + } + + @Override + protected void finalize() throws Throwable { + n_delete(nativeObj); + super.finalize(); + } + + // javadoc:Mat::toString() + @Override + public String toString() { + return "Mat [ " + + rows() + "*" + cols() + "*" + CvType.typeToString(type()) + + ", isCont=" + isContinuous() + ", isSubmat=" + isSubmatrix() + + ", nativeObj=0x" + Long.toHexString(nativeObj) + + ", dataAddr=0x" + Long.toHexString(dataAddr()) + + " ]"; + } + + // javadoc:Mat::dump() + public String dump() { + return nDump(nativeObj); + } + + // javadoc:Mat::put(row,col,data) + public int put(int row, int col, double... data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + return nPutD(nativeObj, row, col, data.length, data); + } + + // javadoc:Mat::put(row,col,data) + public int put(int row, int col, float[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_32F) { + return nPutF(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::put(row,col,data) + public int put(int row, int col, int[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_32S) { + return nPutI(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::put(row,col,data) + public int put(int row, int col, short[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_16U || CvType.depth(t) == CvType.CV_16S) { + return nPutS(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::put(row,col,data) + public int put(int row, int col, byte[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) { + return nPutB(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::put(row,col,data,offset,length) + public int put(int row, int col, byte[] data, int offset, int length) { + int t = type(); + if (data == null || length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) { + return nPutBwOffset(nativeObj, row, col, length, offset, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::get(row,col,data) + public int get(int row, int col, byte[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) { + return nGetB(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::get(row,col,data) + public int get(int row, int col, short[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_16U || CvType.depth(t) == CvType.CV_16S) { + return nGetS(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::get(row,col,data) + public int get(int row, int col, int[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_32S) { + return nGetI(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::get(row,col,data) + public int get(int row, int col, float[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_32F) { + return nGetF(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::get(row,col,data) + public int get(int row, int col, double[] data) { + int t = type(); + if (data == null || data.length % CvType.channels(t) != 0) + throw new java.lang.UnsupportedOperationException( + "Provided data element number (" + + (data == null ? 0 : data.length) + + ") should be multiple of the Mat channels count (" + + CvType.channels(t) + ")"); + if (CvType.depth(t) == CvType.CV_64F) { + return nGetD(nativeObj, row, col, data.length, data); + } + throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); + } + + // javadoc:Mat::get(row,col) + public double[] get(int row, int col) { + return nGet(nativeObj, row, col); + } + + // javadoc:Mat::height() + public int height() { + return rows(); + } + + // javadoc:Mat::width() + public int width() { + return cols(); + } + + // javadoc:Mat::getNativeObjAddr() + public long getNativeObjAddr() { + return nativeObj; + } + + // C++: Mat::Mat() + private static native long n_Mat(); + + // C++: Mat::Mat(int rows, int cols, int type) + private static native long n_Mat(int rows, int cols, int type); + + // C++: Mat::Mat(int rows, int cols, int type, void* data) + private static native long n_Mat(int rows, int cols, int type, ByteBuffer data); + + // C++: Mat::Mat(Size size, int type) + private static native long n_Mat(double size_width, double size_height, int type); + + // C++: Mat::Mat(int rows, int cols, int type, Scalar s) + private static native long n_Mat(int rows, int cols, int type, double s_val0, double s_val1, double s_val2, double s_val3); + + // C++: Mat::Mat(Size size, int type, Scalar s) + private static native long n_Mat(double size_width, double size_height, int type, double s_val0, double s_val1, double s_val2, double s_val3); + + // C++: Mat::Mat(Mat m, Range rowRange, Range colRange = Range::all()) + private static native long n_Mat(long m_nativeObj, int rowRange_start, int rowRange_end, int colRange_start, int colRange_end); + + private static native long n_Mat(long m_nativeObj, int rowRange_start, int rowRange_end); + + // C++: Mat Mat::adjustROI(int dtop, int dbottom, int dleft, int dright) + private static native long n_adjustROI(long nativeObj, int dtop, int dbottom, int dleft, int dright); + + // C++: void Mat::assignTo(Mat m, int type = -1) + private static native void n_assignTo(long nativeObj, long m_nativeObj, int type); + + private static native void n_assignTo(long nativeObj, long m_nativeObj); + + // C++: int Mat::channels() + private static native int n_channels(long nativeObj); + + // C++: int Mat::checkVector(int elemChannels, int depth = -1, bool + // requireContinuous = true) + private static native int n_checkVector(long nativeObj, int elemChannels, int depth, boolean requireContinuous); + + private static native int n_checkVector(long nativeObj, int elemChannels, int depth); + + private static native int n_checkVector(long nativeObj, int elemChannels); + + // C++: Mat Mat::clone() + private static native long n_clone(long nativeObj); + + // C++: Mat Mat::col(int x) + private static native long n_col(long nativeObj, int x); + + // C++: Mat Mat::colRange(int startcol, int endcol) + private static native long n_colRange(long nativeObj, int startcol, int endcol); + + // C++: int Mat::dims() + private static native int n_dims(long nativeObj); + + // C++: int Mat::cols() + private static native int n_cols(long nativeObj); + + // C++: void Mat::convertTo(Mat& m, int rtype, double alpha = 1, double beta + // = 0) + private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype, double alpha, double beta); + + private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype, double alpha); + + private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype); + + // C++: void Mat::copyTo(Mat& m) + private static native void n_copyTo(long nativeObj, long m_nativeObj); + + // C++: void Mat::copyTo(Mat& m, Mat mask) + private static native void n_copyTo(long nativeObj, long m_nativeObj, long mask_nativeObj); + + // C++: void Mat::create(int rows, int cols, int type) + private static native void n_create(long nativeObj, int rows, int cols, int type); + + // C++: void Mat::create(Size size, int type) + private static native void n_create(long nativeObj, double size_width, double size_height, int type); + + // C++: Mat Mat::cross(Mat m) + private static native long n_cross(long nativeObj, long m_nativeObj); + + // C++: long Mat::dataAddr() + private static native long n_dataAddr(long nativeObj); + + // C++: int Mat::depth() + private static native int n_depth(long nativeObj); + + // C++: Mat Mat::diag(int d = 0) + private static native long n_diag(long nativeObj, int d); + + // C++: static Mat Mat::diag(Mat d) + private static native long n_diag(long d_nativeObj); + + // C++: double Mat::dot(Mat m) + private static native double n_dot(long nativeObj, long m_nativeObj); + + // C++: size_t Mat::elemSize() + private static native long n_elemSize(long nativeObj); + + // C++: size_t Mat::elemSize1() + private static native long n_elemSize1(long nativeObj); + + // C++: bool Mat::empty() + private static native boolean n_empty(long nativeObj); + + // C++: static Mat Mat::eye(int rows, int cols, int type) + private static native long n_eye(int rows, int cols, int type); + + // C++: static Mat Mat::eye(Size size, int type) + private static native long n_eye(double size_width, double size_height, int type); + + // C++: Mat Mat::inv(int method = DECOMP_LU) + private static native long n_inv(long nativeObj, int method); + + private static native long n_inv(long nativeObj); + + // C++: bool Mat::isContinuous() + private static native boolean n_isContinuous(long nativeObj); + + // C++: bool Mat::isSubmatrix() + private static native boolean n_isSubmatrix(long nativeObj); + + // C++: void Mat::locateROI(Size wholeSize, Point ofs) + private static native void locateROI_0(long nativeObj, double[] wholeSize_out, double[] ofs_out); + + // C++: Mat Mat::mul(Mat m, double scale = 1) + private static native long n_mul(long nativeObj, long m_nativeObj, double scale); + + private static native long n_mul(long nativeObj, long m_nativeObj); + + // C++: static Mat Mat::ones(int rows, int cols, int type) + private static native long n_ones(int rows, int cols, int type); + + // C++: static Mat Mat::ones(Size size, int type) + private static native long n_ones(double size_width, double size_height, int type); + + // C++: void Mat::push_back(Mat m) + private static native void n_push_back(long nativeObj, long m_nativeObj); + + // C++: void Mat::release() + private static native void n_release(long nativeObj); + + // C++: Mat Mat::reshape(int cn, int rows = 0) + private static native long n_reshape(long nativeObj, int cn, int rows); + + private static native long n_reshape(long nativeObj, int cn); + + // C++: Mat Mat::row(int y) + private static native long n_row(long nativeObj, int y); + + // C++: Mat Mat::rowRange(int startrow, int endrow) + private static native long n_rowRange(long nativeObj, int startrow, int endrow); + + // C++: int Mat::rows() + private static native int n_rows(long nativeObj); + + // C++: Mat Mat::operator =(Scalar s) + private static native long n_setTo(long nativeObj, double s_val0, double s_val1, double s_val2, double s_val3); + + // C++: Mat Mat::setTo(Scalar value, Mat mask = Mat()) + private static native long n_setTo(long nativeObj, double s_val0, double s_val1, double s_val2, double s_val3, long mask_nativeObj); + + // C++: Mat Mat::setTo(Mat value, Mat mask = Mat()) + private static native long n_setTo(long nativeObj, long value_nativeObj, long mask_nativeObj); + + private static native long n_setTo(long nativeObj, long value_nativeObj); + + // C++: Size Mat::size() + private static native double[] n_size(long nativeObj); + + // C++: size_t Mat::step1(int i = 0) + private static native long n_step1(long nativeObj, int i); + + private static native long n_step1(long nativeObj); + + // C++: Mat Mat::operator()(Range rowRange, Range colRange) + private static native long n_submat_rr(long nativeObj, int rowRange_start, int rowRange_end, int colRange_start, int colRange_end); + + // C++: Mat Mat::operator()(Rect roi) + private static native long n_submat(long nativeObj, int roi_x, int roi_y, int roi_width, int roi_height); + + // C++: Mat Mat::t() + private static native long n_t(long nativeObj); + + // C++: size_t Mat::total() + private static native long n_total(long nativeObj); + + // C++: int Mat::type() + private static native int n_type(long nativeObj); + + // C++: static Mat Mat::zeros(int rows, int cols, int type) + private static native long n_zeros(int rows, int cols, int type); + + // C++: static Mat Mat::zeros(Size size, int type) + private static native long n_zeros(double size_width, double size_height, int type); + + // native support for java finalize() + private static native void n_delete(long nativeObj); + + private static native int nPutD(long self, int row, int col, int count, double[] data); + + private static native int nPutF(long self, int row, int col, int count, float[] data); + + private static native int nPutI(long self, int row, int col, int count, int[] data); + + private static native int nPutS(long self, int row, int col, int count, short[] data); + + private static native int nPutB(long self, int row, int col, int count, byte[] data); + + private static native int nPutBwOffset(long self, int row, int col, int count, int offset, byte[] data); + + private static native int nGetB(long self, int row, int col, int count, byte[] vals); + + private static native int nGetS(long self, int row, int col, int count, short[] vals); + + private static native int nGetI(long self, int row, int col, int count, int[] vals); + + private static native int nGetF(long self, int row, int col, int count, float[] vals); + + private static native int nGetD(long self, int row, int col, int count, double[] vals); + + private static native double[] nGet(long self, int row, int col); + + private static native String nDump(long self); +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfByte.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfByte.java new file mode 100644 index 00000000000..eb928fb0a9a --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfByte.java @@ -0,0 +1,98 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + +public class MatOfByte extends Mat { + // 8UC(x) + private static final int _depth = CvType.CV_8U; + private static final int _channels = 1; + + public MatOfByte() { + super(); + } + + protected MatOfByte(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfByte fromNativeAddr(long addr) { + return new MatOfByte(addr); + } + + public MatOfByte(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfByte(byte...a) { + super(); + fromArray(a); + } + + public MatOfByte(int offset, int length, byte...a) { + super(); + fromArray(offset, length, a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(byte...a) { + if(a==null || a.length==0) + return; + int num = a.length / _channels; + alloc(num); + put(0, 0, a); //TODO: check ret val! + } + + public void fromArray(int offset, int length, byte...a) { + if (offset < 0) + throw new IllegalArgumentException("offset < 0"); + if (a == null) + throw new NullPointerException(); + if (length < 0 || length + offset > a.length) + throw new IllegalArgumentException("invalid 'length' parameter: " + Integer.toString(length)); + if (a.length == 0) + return; + int num = length / _channels; + alloc(num); + put(0, 0, a, offset, length); //TODO: check ret val! + } + + public byte[] toArray() { + int num = checkVector(_channels, _depth); + if(num < 0) + throw new RuntimeException("Native Mat has unexpected type or size: " + toString()); + byte[] a = new byte[num * _channels]; + if(num == 0) + return a; + get(0, 0, a); //TODO: check ret val! + return a; + } + + public void fromList(List lb) { + if(lb==null || lb.size()==0) + return; + Byte ab[] = lb.toArray(new Byte[0]); + byte a[] = new byte[ab.length]; + for(int i=0; i toList() { + byte[] a = toArray(); + Byte ab[] = new Byte[a.length]; + for(int i=0; i0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + + public void fromArray(DMatch...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + float buff[] = new float[num * _channels]; + for(int i=0; i ldm) { + DMatch adm[] = ldm.toArray(new DMatch[0]); + fromArray(adm); + } + + public List toList() { + DMatch[] adm = toArray(); + return Arrays.asList(adm); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfDouble.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfDouble.java new file mode 100644 index 00000000000..1a8e23ca30f --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfDouble.java @@ -0,0 +1,79 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + +public class MatOfDouble extends Mat { + // 64FC(x) + private static final int _depth = CvType.CV_64F; + private static final int _channels = 1; + + public MatOfDouble() { + super(); + } + + protected MatOfDouble(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfDouble fromNativeAddr(long addr) { + return new MatOfDouble(addr); + } + + public MatOfDouble(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfDouble(double...a) { + super(); + fromArray(a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(double...a) { + if(a==null || a.length==0) + return; + int num = a.length / _channels; + alloc(num); + put(0, 0, a); //TODO: check ret val! + } + + public double[] toArray() { + int num = checkVector(_channels, _depth); + if(num < 0) + throw new RuntimeException("Native Mat has unexpected type or size: " + toString()); + double[] a = new double[num * _channels]; + if(num == 0) + return a; + get(0, 0, a); //TODO: check ret val! + return a; + } + + public void fromList(List lb) { + if(lb==null || lb.size()==0) + return; + Double ab[] = lb.toArray(new Double[0]); + double a[] = new double[ab.length]; + for(int i=0; i toList() { + double[] a = toArray(); + Double ab[] = new Double[a.length]; + for(int i=0; i0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(float...a) { + if(a==null || a.length==0) + return; + int num = a.length / _channels; + alloc(num); + put(0, 0, a); //TODO: check ret val! + } + + public float[] toArray() { + int num = checkVector(_channels, _depth); + if(num < 0) + throw new RuntimeException("Native Mat has unexpected type or size: " + toString()); + float[] a = new float[num * _channels]; + if(num == 0) + return a; + get(0, 0, a); //TODO: check ret val! + return a; + } + + public void fromList(List lb) { + if(lb==null || lb.size()==0) + return; + Float ab[] = lb.toArray(new Float[0]); + float a[] = new float[ab.length]; + for(int i=0; i toList() { + float[] a = toArray(); + Float ab[] = new Float[a.length]; + for(int i=0; i0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(float...a) { + if(a==null || a.length==0) + return; + int num = a.length / _channels; + alloc(num); + put(0, 0, a); //TODO: check ret val! + } + + public float[] toArray() { + int num = checkVector(_channels, _depth); + if(num < 0) + throw new RuntimeException("Native Mat has unexpected type or size: " + toString()); + float[] a = new float[num * _channels]; + if(num == 0) + return a; + get(0, 0, a); //TODO: check ret val! + return a; + } + + public void fromList(List lb) { + if(lb==null || lb.size()==0) + return; + Float ab[] = lb.toArray(new Float[0]); + float a[] = new float[ab.length]; + for(int i=0; i toList() { + float[] a = toArray(); + Float ab[] = new Float[a.length]; + for(int i=0; i0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(float...a) { + if(a==null || a.length==0) + return; + int num = a.length / _channels; + alloc(num); + put(0, 0, a); //TODO: check ret val! + } + + public float[] toArray() { + int num = checkVector(_channels, _depth); + if(num < 0) + throw new RuntimeException("Native Mat has unexpected type or size: " + toString()); + float[] a = new float[num * _channels]; + if(num == 0) + return a; + get(0, 0, a); //TODO: check ret val! + return a; + } + + public void fromList(List lb) { + if(lb==null || lb.size()==0) + return; + Float ab[] = lb.toArray(new Float[0]); + float a[] = new float[ab.length]; + for(int i=0; i toList() { + float[] a = toArray(); + Float ab[] = new Float[a.length]; + for(int i=0; i0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(int...a) { + if(a==null || a.length==0) + return; + int num = a.length / _channels; + alloc(num); + put(0, 0, a); //TODO: check ret val! + } + + public int[] toArray() { + int num = checkVector(_channels, _depth); + if(num < 0) + throw new RuntimeException("Native Mat has unexpected type or size: " + toString()); + int[] a = new int[num * _channels]; + if(num == 0) + return a; + get(0, 0, a); //TODO: check ret val! + return a; + } + + public void fromList(List lb) { + if(lb==null || lb.size()==0) + return; + Integer ab[] = lb.toArray(new Integer[0]); + int a[] = new int[ab.length]; + for(int i=0; i toList() { + int[] a = toArray(); + Integer ab[] = new Integer[a.length]; + for(int i=0; i0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(int...a) { + if(a==null || a.length==0) + return; + int num = a.length / _channels; + alloc(num); + put(0, 0, a); //TODO: check ret val! + } + + public int[] toArray() { + int num = checkVector(_channels, _depth); + if(num < 0) + throw new RuntimeException("Native Mat has unexpected type or size: " + toString()); + int[] a = new int[num * _channels]; + if(num == 0) + return a; + get(0, 0, a); //TODO: check ret val! + return a; + } + + public void fromList(List lb) { + if(lb==null || lb.size()==0) + return; + Integer ab[] = lb.toArray(new Integer[0]); + int a[] = new int[ab.length]; + for(int i=0; i toList() { + int[] a = toArray(); + Integer ab[] = new Integer[a.length]; + for(int i=0; i0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(KeyPoint...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + float buff[] = new float[num * _channels]; + for(int i=0; i lkp) { + KeyPoint akp[] = lkp.toArray(new KeyPoint[0]); + fromArray(akp); + } + + public List toList() { + KeyPoint[] akp = toArray(); + return Arrays.asList(akp); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint.java new file mode 100644 index 00000000000..f4d573bb734 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint.java @@ -0,0 +1,78 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + +public class MatOfPoint extends Mat { + // 32SC2 + private static final int _depth = CvType.CV_32S; + private static final int _channels = 2; + + public MatOfPoint() { + super(); + } + + protected MatOfPoint(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfPoint fromNativeAddr(long addr) { + return new MatOfPoint(addr); + } + + public MatOfPoint(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfPoint(Point...a) { + super(); + fromArray(a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(Point...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + int buff[] = new int[num * _channels]; + for(int i=0; i lp) { + Point ap[] = lp.toArray(new Point[0]); + fromArray(ap); + } + + public List toList() { + Point[] ap = toArray(); + return Arrays.asList(ap); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint2f.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint2f.java new file mode 100644 index 00000000000..4b8c926fffa --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint2f.java @@ -0,0 +1,78 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + +public class MatOfPoint2f extends Mat { + // 32FC2 + private static final int _depth = CvType.CV_32F; + private static final int _channels = 2; + + public MatOfPoint2f() { + super(); + } + + protected MatOfPoint2f(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfPoint2f fromNativeAddr(long addr) { + return new MatOfPoint2f(addr); + } + + public MatOfPoint2f(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfPoint2f(Point...a) { + super(); + fromArray(a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(Point...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + float buff[] = new float[num * _channels]; + for(int i=0; i lp) { + Point ap[] = lp.toArray(new Point[0]); + fromArray(ap); + } + + public List toList() { + Point[] ap = toArray(); + return Arrays.asList(ap); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint3.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint3.java new file mode 100644 index 00000000000..3b50561e914 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint3.java @@ -0,0 +1,79 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + +public class MatOfPoint3 extends Mat { + // 32SC3 + private static final int _depth = CvType.CV_32S; + private static final int _channels = 3; + + public MatOfPoint3() { + super(); + } + + protected MatOfPoint3(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfPoint3 fromNativeAddr(long addr) { + return new MatOfPoint3(addr); + } + + public MatOfPoint3(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfPoint3(Point3...a) { + super(); + fromArray(a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(Point3...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + int buff[] = new int[num * _channels]; + for(int i=0; i lp) { + Point3 ap[] = lp.toArray(new Point3[0]); + fromArray(ap); + } + + public List toList() { + Point3[] ap = toArray(); + return Arrays.asList(ap); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint3f.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint3f.java new file mode 100644 index 00000000000..fc5fee436d7 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfPoint3f.java @@ -0,0 +1,79 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + +public class MatOfPoint3f extends Mat { + // 32FC3 + private static final int _depth = CvType.CV_32F; + private static final int _channels = 3; + + public MatOfPoint3f() { + super(); + } + + protected MatOfPoint3f(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfPoint3f fromNativeAddr(long addr) { + return new MatOfPoint3f(addr); + } + + public MatOfPoint3f(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfPoint3f(Point3...a) { + super(); + fromArray(a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(Point3...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + float buff[] = new float[num * _channels]; + for(int i=0; i lp) { + Point3 ap[] = lp.toArray(new Point3[0]); + fromArray(ap); + } + + public List toList() { + Point3[] ap = toArray(); + return Arrays.asList(ap); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfRect.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfRect.java new file mode 100644 index 00000000000..ec0fb01e4ac --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfRect.java @@ -0,0 +1,81 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + + +public class MatOfRect extends Mat { + // 32SC4 + private static final int _depth = CvType.CV_32S; + private static final int _channels = 4; + + public MatOfRect() { + super(); + } + + protected MatOfRect(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfRect fromNativeAddr(long addr) { + return new MatOfRect(addr); + } + + public MatOfRect(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfRect(Rect...a) { + super(); + fromArray(a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(Rect...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + int buff[] = new int[num * _channels]; + for(int i=0; i lr) { + Rect ap[] = lr.toArray(new Rect[0]); + fromArray(ap); + } + + public List toList() { + Rect[] ar = toArray(); + return Arrays.asList(ar); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfRect2d.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfRect2d.java new file mode 100644 index 00000000000..71c4b1aef61 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfRect2d.java @@ -0,0 +1,81 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + + +public class MatOfRect2d extends Mat { + // 64FC4 + private static final int _depth = CvType.CV_64F; + private static final int _channels = 4; + + public MatOfRect2d() { + super(); + } + + protected MatOfRect2d(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfRect2d fromNativeAddr(long addr) { + return new MatOfRect2d(addr); + } + + public MatOfRect2d(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfRect2d(Rect2d...a) { + super(); + fromArray(a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(Rect2d...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + double buff[] = new double[num * _channels]; + for(int i=0; i lr) { + Rect2d ap[] = lr.toArray(new Rect2d[0]); + fromArray(ap); + } + + public List toList() { + Rect2d[] ar = toArray(); + return Arrays.asList(ar); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/MatOfRotatedRect.java b/openCVLibrary3/src/main/java/org/opencv/core/MatOfRotatedRect.java new file mode 100644 index 00000000000..6f36e6ca6c2 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/MatOfRotatedRect.java @@ -0,0 +1,86 @@ +package org.opencv.core; + +import java.util.Arrays; +import java.util.List; + +import org.opencv.core.RotatedRect; + + + +public class MatOfRotatedRect extends Mat { + // 32FC5 + private static final int _depth = CvType.CV_32F; + private static final int _channels = 5; + + public MatOfRotatedRect() { + super(); + } + + protected MatOfRotatedRect(long addr) { + super(addr); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public static MatOfRotatedRect fromNativeAddr(long addr) { + return new MatOfRotatedRect(addr); + } + + public MatOfRotatedRect(Mat m) { + super(m, Range.all()); + if( !empty() && checkVector(_channels, _depth) < 0 ) + throw new IllegalArgumentException("Incompatible Mat"); + //FIXME: do we need release() here? + } + + public MatOfRotatedRect(RotatedRect...a) { + super(); + fromArray(a); + } + + public void alloc(int elemNumber) { + if(elemNumber>0) + super.create(elemNumber, 1, CvType.makeType(_depth, _channels)); + } + + public void fromArray(RotatedRect...a) { + if(a==null || a.length==0) + return; + int num = a.length; + alloc(num); + float buff[] = new float[num * _channels]; + for(int i=0; i lr) { + RotatedRect ap[] = lr.toArray(new RotatedRect[0]); + fromArray(ap); + } + + public List toList() { + RotatedRect[] ar = toArray(); + return Arrays.asList(ar); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Point.java b/openCVLibrary3/src/main/java/org/opencv/core/Point.java new file mode 100644 index 00000000000..ce493d7400f --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Point.java @@ -0,0 +1,68 @@ +package org.opencv.core; + +//javadoc:Point_ +public class Point { + + public double x, y; + + public Point(double x, double y) { + this.x = x; + this.y = y; + } + + public Point() { + this(0, 0); + } + + public Point(double[] vals) { + this(); + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + x = vals.length > 0 ? vals[0] : 0; + y = vals.length > 1 ? vals[1] : 0; + } else { + x = 0; + y = 0; + } + } + + public Point clone() { + return new Point(x, y); + } + + public double dot(Point p) { + return x * p.x + y * p.y; + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + long temp; + temp = Double.doubleToLongBits(x); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(y); + result = prime * result + (int) (temp ^ (temp >>> 32)); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof Point)) return false; + Point it = (Point) obj; + return x == it.x && y == it.y; + } + + public boolean inside(Rect r) { + return r.contains(this); + } + + @Override + public String toString() { + return "{" + x + ", " + y + "}"; + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Point3.java b/openCVLibrary3/src/main/java/org/opencv/core/Point3.java new file mode 100644 index 00000000000..14b91c6b218 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Point3.java @@ -0,0 +1,79 @@ +package org.opencv.core; + +//javadoc:Point3_ +public class Point3 { + + public double x, y, z; + + public Point3(double x, double y, double z) { + this.x = x; + this.y = y; + this.z = z; + } + + public Point3() { + this(0, 0, 0); + } + + public Point3(Point p) { + x = p.x; + y = p.y; + z = 0; + } + + public Point3(double[] vals) { + this(); + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + x = vals.length > 0 ? vals[0] : 0; + y = vals.length > 1 ? vals[1] : 0; + z = vals.length > 2 ? vals[2] : 0; + } else { + x = 0; + y = 0; + z = 0; + } + } + + public Point3 clone() { + return new Point3(x, y, z); + } + + public double dot(Point3 p) { + return x * p.x + y * p.y + z * p.z; + } + + public Point3 cross(Point3 p) { + return new Point3(y * p.z - z * p.y, z * p.x - x * p.z, x * p.y - y * p.x); + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + long temp; + temp = Double.doubleToLongBits(x); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(y); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(z); + result = prime * result + (int) (temp ^ (temp >>> 32)); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof Point3)) return false; + Point3 it = (Point3) obj; + return x == it.x && y == it.y && z == it.z; + } + + @Override + public String toString() { + return "{" + x + ", " + y + ", " + z + "}"; + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Range.java b/openCVLibrary3/src/main/java/org/opencv/core/Range.java new file mode 100644 index 00000000000..f7eee4ddc3f --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Range.java @@ -0,0 +1,82 @@ +package org.opencv.core; + +//javadoc:Range +public class Range { + + public int start, end; + + public Range(int s, int e) { + this.start = s; + this.end = e; + } + + public Range() { + this(0, 0); + } + + public Range(double[] vals) { + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + start = vals.length > 0 ? (int) vals[0] : 0; + end = vals.length > 1 ? (int) vals[1] : 0; + } else { + start = 0; + end = 0; + } + + } + + public int size() { + return empty() ? 0 : end - start; + } + + public boolean empty() { + return end <= start; + } + + public static Range all() { + return new Range(Integer.MIN_VALUE, Integer.MAX_VALUE); + } + + public Range intersection(Range r1) { + Range r = new Range(Math.max(r1.start, this.start), Math.min(r1.end, this.end)); + r.end = Math.max(r.end, r.start); + return r; + } + + public Range shift(int delta) { + return new Range(start + delta, end + delta); + } + + public Range clone() { + return new Range(start, end); + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + long temp; + temp = Double.doubleToLongBits(start); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(end); + result = prime * result + (int) (temp ^ (temp >>> 32)); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof Range)) return false; + Range it = (Range) obj; + return start == it.start && end == it.end; + } + + @Override + public String toString() { + return "[" + start + ", " + end + ")"; + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Rect.java b/openCVLibrary3/src/main/java/org/opencv/core/Rect.java new file mode 100644 index 00000000000..c68e818ea42 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Rect.java @@ -0,0 +1,104 @@ +package org.opencv.core; + +//javadoc:Rect_ +public class Rect { + + public int x, y, width, height; + + public Rect(int x, int y, int width, int height) { + this.x = x; + this.y = y; + this.width = width; + this.height = height; + } + + public Rect() { + this(0, 0, 0, 0); + } + + public Rect(Point p1, Point p2) { + x = (int) (p1.x < p2.x ? p1.x : p2.x); + y = (int) (p1.y < p2.y ? p1.y : p2.y); + width = (int) (p1.x > p2.x ? p1.x : p2.x) - x; + height = (int) (p1.y > p2.y ? p1.y : p2.y) - y; + } + + public Rect(Point p, Size s) { + this((int) p.x, (int) p.y, (int) s.width, (int) s.height); + } + + public Rect(double[] vals) { + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + x = vals.length > 0 ? (int) vals[0] : 0; + y = vals.length > 1 ? (int) vals[1] : 0; + width = vals.length > 2 ? (int) vals[2] : 0; + height = vals.length > 3 ? (int) vals[3] : 0; + } else { + x = 0; + y = 0; + width = 0; + height = 0; + } + } + + public Rect clone() { + return new Rect(x, y, width, height); + } + + public Point tl() { + return new Point(x, y); + } + + public Point br() { + return new Point(x + width, y + height); + } + + public Size size() { + return new Size(width, height); + } + + public double area() { + return width * height; + } + + public boolean empty() { + return width <= 0 || height <= 0; + } + + public boolean contains(Point p) { + return x <= p.x && p.x < x + width && y <= p.y && p.y < y + height; + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + long temp; + temp = Double.doubleToLongBits(height); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(width); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(x); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(y); + result = prime * result + (int) (temp ^ (temp >>> 32)); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof Rect)) return false; + Rect it = (Rect) obj; + return x == it.x && y == it.y && width == it.width && height == it.height; + } + + @Override + public String toString() { + return "{" + x + ", " + y + ", " + width + "x" + height + "}"; + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Rect2d.java b/openCVLibrary3/src/main/java/org/opencv/core/Rect2d.java new file mode 100644 index 00000000000..4c278696350 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Rect2d.java @@ -0,0 +1,104 @@ +package org.opencv.core; + +//javadoc:Rect2d_ +public class Rect2d { + + public double x, y, width, height; + + public Rect2d(double x, double y, double width, double height) { + this.x = x; + this.y = y; + this.width = width; + this.height = height; + } + + public Rect2d() { + this(0, 0, 0, 0); + } + + public Rect2d(Point p1, Point p2) { + x = (double) (p1.x < p2.x ? p1.x : p2.x); + y = (double) (p1.y < p2.y ? p1.y : p2.y); + width = (double) (p1.x > p2.x ? p1.x : p2.x) - x; + height = (double) (p1.y > p2.y ? p1.y : p2.y) - y; + } + + public Rect2d(Point p, Size s) { + this((double) p.x, (double) p.y, (double) s.width, (double) s.height); + } + + public Rect2d(double[] vals) { + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + x = vals.length > 0 ? (double) vals[0] : 0; + y = vals.length > 1 ? (double) vals[1] : 0; + width = vals.length > 2 ? (double) vals[2] : 0; + height = vals.length > 3 ? (double) vals[3] : 0; + } else { + x = 0; + y = 0; + width = 0; + height = 0; + } + } + + public Rect2d clone() { + return new Rect2d(x, y, width, height); + } + + public Point tl() { + return new Point(x, y); + } + + public Point br() { + return new Point(x + width, y + height); + } + + public Size size() { + return new Size(width, height); + } + + public double area() { + return width * height; + } + + public boolean empty() { + return width <= 0 || height <= 0; + } + + public boolean contains(Point p) { + return x <= p.x && p.x < x + width && y <= p.y && p.y < y + height; + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + long temp; + temp = Double.doubleToLongBits(height); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(width); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(x); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(y); + result = prime * result + (int) (temp ^ (temp >>> 32)); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof Rect2d)) return false; + Rect2d it = (Rect2d) obj; + return x == it.x && y == it.y && width == it.width && height == it.height; + } + + @Override + public String toString() { + return "{" + x + ", " + y + ", " + width + "x" + height + "}"; + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/RotatedRect.java b/openCVLibrary3/src/main/java/org/opencv/core/RotatedRect.java new file mode 100644 index 00000000000..f6d1163e02b --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/RotatedRect.java @@ -0,0 +1,113 @@ +package org.opencv.core; + +//javadoc:RotatedRect_ +public class RotatedRect { + + public Point center; + public Size size; + public double angle; + + public RotatedRect() { + this.center = new Point(); + this.size = new Size(); + this.angle = 0; + } + + public RotatedRect(Point c, Size s, double a) { + this.center = c.clone(); + this.size = s.clone(); + this.angle = a; + } + + public RotatedRect(double[] vals) { + this(); + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + center.x = vals.length > 0 ? (double) vals[0] : 0; + center.y = vals.length > 1 ? (double) vals[1] : 0; + size.width = vals.length > 2 ? (double) vals[2] : 0; + size.height = vals.length > 3 ? (double) vals[3] : 0; + angle = vals.length > 4 ? (double) vals[4] : 0; + } else { + center.x = 0; + center.x = 0; + size.width = 0; + size.height = 0; + angle = 0; + } + } + + public void points(Point pt[]) + { + double _angle = angle * Math.PI / 180.0; + double b = (double) Math.cos(_angle) * 0.5f; + double a = (double) Math.sin(_angle) * 0.5f; + + pt[0] = new Point( + center.x - a * size.height - b * size.width, + center.y + b * size.height - a * size.width); + + pt[1] = new Point( + center.x + a * size.height - b * size.width, + center.y - b * size.height - a * size.width); + + pt[2] = new Point( + 2 * center.x - pt[0].x, + 2 * center.y - pt[0].y); + + pt[3] = new Point( + 2 * center.x - pt[1].x, + 2 * center.y - pt[1].y); + } + + public Rect boundingRect() + { + Point pt[] = new Point[4]; + points(pt); + Rect r = new Rect((int) Math.floor(Math.min(Math.min(Math.min(pt[0].x, pt[1].x), pt[2].x), pt[3].x)), + (int) Math.floor(Math.min(Math.min(Math.min(pt[0].y, pt[1].y), pt[2].y), pt[3].y)), + (int) Math.ceil(Math.max(Math.max(Math.max(pt[0].x, pt[1].x), pt[2].x), pt[3].x)), + (int) Math.ceil(Math.max(Math.max(Math.max(pt[0].y, pt[1].y), pt[2].y), pt[3].y))); + r.width -= r.x - 1; + r.height -= r.y - 1; + return r; + } + + public RotatedRect clone() { + return new RotatedRect(center, size, angle); + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + long temp; + temp = Double.doubleToLongBits(center.x); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(center.y); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(size.width); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(size.height); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(angle); + result = prime * result + (int) (temp ^ (temp >>> 32)); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof RotatedRect)) return false; + RotatedRect it = (RotatedRect) obj; + return center.equals(it.center) && size.equals(it.size) && angle == it.angle; + } + + @Override + public String toString() { + return "{ " + center + " " + size + " * " + angle + " }"; + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Scalar.java b/openCVLibrary3/src/main/java/org/opencv/core/Scalar.java new file mode 100644 index 00000000000..01676e4cb5b --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Scalar.java @@ -0,0 +1,90 @@ +package org.opencv.core; + +//javadoc:Scalar_ +public class Scalar { + + public double val[]; + + public Scalar(double v0, double v1, double v2, double v3) { + val = new double[] { v0, v1, v2, v3 }; + } + + public Scalar(double v0, double v1, double v2) { + val = new double[] { v0, v1, v2, 0 }; + } + + public Scalar(double v0, double v1) { + val = new double[] { v0, v1, 0, 0 }; + } + + public Scalar(double v0) { + val = new double[] { v0, 0, 0, 0 }; + } + + public Scalar(double[] vals) { + if (vals != null && vals.length == 4) + val = vals.clone(); + else { + val = new double[4]; + set(vals); + } + } + + public void set(double[] vals) { + if (vals != null) { + val[0] = vals.length > 0 ? vals[0] : 0; + val[1] = vals.length > 1 ? vals[1] : 0; + val[2] = vals.length > 2 ? vals[2] : 0; + val[3] = vals.length > 3 ? vals[3] : 0; + } else + val[0] = val[1] = val[2] = val[3] = 0; + } + + public static Scalar all(double v) { + return new Scalar(v, v, v, v); + } + + public Scalar clone() { + return new Scalar(val); + } + + public Scalar mul(Scalar it, double scale) { + return new Scalar(val[0] * it.val[0] * scale, val[1] * it.val[1] * scale, + val[2] * it.val[2] * scale, val[3] * it.val[3] * scale); + } + + public Scalar mul(Scalar it) { + return mul(it, 1); + } + + public Scalar conj() { + return new Scalar(val[0], -val[1], -val[2], -val[3]); + } + + public boolean isReal() { + return val[1] == 0 && val[2] == 0 && val[3] == 0; + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + result = prime * result + java.util.Arrays.hashCode(val); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof Scalar)) return false; + Scalar it = (Scalar) obj; + if (!java.util.Arrays.equals(val, it.val)) return false; + return true; + } + + @Override + public String toString() { + return "[" + val[0] + ", " + val[1] + ", " + val[2] + ", " + val[3] + "]"; + } + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/Size.java b/openCVLibrary3/src/main/java/org/opencv/core/Size.java new file mode 100644 index 00000000000..f7d69f37cd4 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/Size.java @@ -0,0 +1,73 @@ +package org.opencv.core; + +//javadoc:Size_ +public class Size { + + public double width, height; + + public Size(double width, double height) { + this.width = width; + this.height = height; + } + + public Size() { + this(0, 0); + } + + public Size(Point p) { + width = p.x; + height = p.y; + } + + public Size(double[] vals) { + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + width = vals.length > 0 ? vals[0] : 0; + height = vals.length > 1 ? vals[1] : 0; + } else { + width = 0; + height = 0; + } + } + + public double area() { + return width * height; + } + + public boolean empty() { + return width <= 0 || height <= 0; + } + + public Size clone() { + return new Size(width, height); + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + long temp; + temp = Double.doubleToLongBits(height); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(width); + result = prime * result + (int) (temp ^ (temp >>> 32)); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof Size)) return false; + Size it = (Size) obj; + return width == it.width && height == it.height; + } + + @Override + public String toString() { + return (int)width + "x" + (int)height; + } + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/TermCriteria.java b/openCVLibrary3/src/main/java/org/opencv/core/TermCriteria.java new file mode 100644 index 00000000000..c67e51ea8dc --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/TermCriteria.java @@ -0,0 +1,92 @@ +package org.opencv.core; + +//javadoc:TermCriteria +public class TermCriteria { + + /** + * The maximum number of iterations or elements to compute + */ + public static final int COUNT = 1; + /** + * The maximum number of iterations or elements to compute + */ + public static final int MAX_ITER = COUNT; + /** + * The desired accuracy threshold or change in parameters at which the iterative algorithm is terminated. + */ + public static final int EPS = 2; + + public int type; + public int maxCount; + public double epsilon; + + /** + * Termination criteria for iterative algorithms. + * + * @param type + * the type of termination criteria: COUNT, EPS or COUNT + EPS. + * @param maxCount + * the maximum number of iterations/elements. + * @param epsilon + * the desired accuracy. + */ + public TermCriteria(int type, int maxCount, double epsilon) { + this.type = type; + this.maxCount = maxCount; + this.epsilon = epsilon; + } + + /** + * Termination criteria for iterative algorithms. + */ + public TermCriteria() { + this(0, 0, 0.0); + } + + public TermCriteria(double[] vals) { + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + type = vals.length > 0 ? (int) vals[0] : 0; + maxCount = vals.length > 1 ? (int) vals[1] : 0; + epsilon = vals.length > 2 ? (double) vals[2] : 0; + } else { + type = 0; + maxCount = 0; + epsilon = 0; + } + } + + public TermCriteria clone() { + return new TermCriteria(type, maxCount, epsilon); + } + + @Override + public int hashCode() { + final int prime = 31; + int result = 1; + long temp; + temp = Double.doubleToLongBits(type); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(maxCount); + result = prime * result + (int) (temp ^ (temp >>> 32)); + temp = Double.doubleToLongBits(epsilon); + result = prime * result + (int) (temp ^ (temp >>> 32)); + return result; + } + + @Override + public boolean equals(Object obj) { + if (this == obj) return true; + if (!(obj instanceof TermCriteria)) return false; + TermCriteria it = (TermCriteria) obj; + return type == it.type && maxCount == it.maxCount && epsilon == it.epsilon; + } + + @Override + public String toString() { + return "{ type: " + type + ", maxCount: " + maxCount + ", epsilon: " + epsilon + "}"; + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/core/TickMeter.java b/openCVLibrary3/src/main/java/org/opencv/core/TickMeter.java new file mode 100644 index 00000000000..1ad728d9b7f --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/core/TickMeter.java @@ -0,0 +1,184 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.core; + + + +// C++: class TickMeter +//javadoc: TickMeter + +public class TickMeter { + + protected final long nativeObj; + protected TickMeter(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static TickMeter __fromPtr__(long addr) { return new TickMeter(addr); } + + // + // C++: cv::TickMeter::TickMeter() + // + + //javadoc: TickMeter::TickMeter() + public TickMeter() + { + + nativeObj = TickMeter_0(); + + return; + } + + + // + // C++: double cv::TickMeter::getTimeMicro() + // + + //javadoc: TickMeter::getTimeMicro() + public double getTimeMicro() + { + + double retVal = getTimeMicro_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::TickMeter::getTimeMilli() + // + + //javadoc: TickMeter::getTimeMilli() + public double getTimeMilli() + { + + double retVal = getTimeMilli_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::TickMeter::getTimeSec() + // + + //javadoc: TickMeter::getTimeSec() + public double getTimeSec() + { + + double retVal = getTimeSec_0(nativeObj); + + return retVal; + } + + + // + // C++: int64 cv::TickMeter::getCounter() + // + + //javadoc: TickMeter::getCounter() + public long getCounter() + { + + long retVal = getCounter_0(nativeObj); + + return retVal; + } + + + // + // C++: int64 cv::TickMeter::getTimeTicks() + // + + //javadoc: TickMeter::getTimeTicks() + public long getTimeTicks() + { + + long retVal = getTimeTicks_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::TickMeter::reset() + // + + //javadoc: TickMeter::reset() + public void reset() + { + + reset_0(nativeObj); + + return; + } + + + // + // C++: void cv::TickMeter::start() + // + + //javadoc: TickMeter::start() + public void start() + { + + start_0(nativeObj); + + return; + } + + + // + // C++: void cv::TickMeter::stop() + // + + //javadoc: TickMeter::stop() + public void stop() + { + + stop_0(nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::TickMeter::TickMeter() + private static native long TickMeter_0(); + + // C++: double cv::TickMeter::getTimeMicro() + private static native double getTimeMicro_0(long nativeObj); + + // C++: double cv::TickMeter::getTimeMilli() + private static native double getTimeMilli_0(long nativeObj); + + // C++: double cv::TickMeter::getTimeSec() + private static native double getTimeSec_0(long nativeObj); + + // C++: int64 cv::TickMeter::getCounter() + private static native long getCounter_0(long nativeObj); + + // C++: int64 cv::TickMeter::getTimeTicks() + private static native long getTimeTicks_0(long nativeObj); + + // C++: void cv::TickMeter::reset() + private static native void reset_0(long nativeObj); + + // C++: void cv::TickMeter::start() + private static native void start_0(long nativeObj); + + // C++: void cv::TickMeter::stop() + private static native void stop_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/dnn/DictValue.java b/openCVLibrary3/src/main/java/org/opencv/dnn/DictValue.java new file mode 100644 index 00000000000..194429ad2bd --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/dnn/DictValue.java @@ -0,0 +1,214 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.dnn; + +import java.lang.String; + +// C++: class DictValue +//javadoc: DictValue + +public class DictValue { + + protected final long nativeObj; + protected DictValue(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static DictValue __fromPtr__(long addr) { return new DictValue(addr); } + + // + // C++: cv::dnn::DictValue::DictValue(String s) + // + + //javadoc: DictValue::DictValue(s) + public DictValue(String s) + { + + nativeObj = DictValue_0(s); + + return; + } + + + // + // C++: cv::dnn::DictValue::DictValue(double p) + // + + //javadoc: DictValue::DictValue(p) + public DictValue(double p) + { + + nativeObj = DictValue_1(p); + + return; + } + + + // + // C++: cv::dnn::DictValue::DictValue(int i) + // + + //javadoc: DictValue::DictValue(i) + public DictValue(int i) + { + + nativeObj = DictValue_2(i); + + return; + } + + + // + // C++: String cv::dnn::DictValue::getStringValue(int idx = -1) + // + + //javadoc: DictValue::getStringValue(idx) + public String getStringValue(int idx) + { + + String retVal = getStringValue_0(nativeObj, idx); + + return retVal; + } + + //javadoc: DictValue::getStringValue() + public String getStringValue() + { + + String retVal = getStringValue_1(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::dnn::DictValue::isInt() + // + + //javadoc: DictValue::isInt() + public boolean isInt() + { + + boolean retVal = isInt_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::dnn::DictValue::isReal() + // + + //javadoc: DictValue::isReal() + public boolean isReal() + { + + boolean retVal = isReal_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::dnn::DictValue::isString() + // + + //javadoc: DictValue::isString() + public boolean isString() + { + + boolean retVal = isString_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::dnn::DictValue::getRealValue(int idx = -1) + // + + //javadoc: DictValue::getRealValue(idx) + public double getRealValue(int idx) + { + + double retVal = getRealValue_0(nativeObj, idx); + + return retVal; + } + + //javadoc: DictValue::getRealValue() + public double getRealValue() + { + + double retVal = getRealValue_1(nativeObj); + + return retVal; + } + + + // + // C++: int cv::dnn::DictValue::getIntValue(int idx = -1) + // + + //javadoc: DictValue::getIntValue(idx) + public int getIntValue(int idx) + { + + int retVal = getIntValue_0(nativeObj, idx); + + return retVal; + } + + //javadoc: DictValue::getIntValue() + public int getIntValue() + { + + int retVal = getIntValue_1(nativeObj); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::dnn::DictValue::DictValue(String s) + private static native long DictValue_0(String s); + + // C++: cv::dnn::DictValue::DictValue(double p) + private static native long DictValue_1(double p); + + // C++: cv::dnn::DictValue::DictValue(int i) + private static native long DictValue_2(int i); + + // C++: String cv::dnn::DictValue::getStringValue(int idx = -1) + private static native String getStringValue_0(long nativeObj, int idx); + private static native String getStringValue_1(long nativeObj); + + // C++: bool cv::dnn::DictValue::isInt() + private static native boolean isInt_0(long nativeObj); + + // C++: bool cv::dnn::DictValue::isReal() + private static native boolean isReal_0(long nativeObj); + + // C++: bool cv::dnn::DictValue::isString() + private static native boolean isString_0(long nativeObj); + + // C++: double cv::dnn::DictValue::getRealValue(int idx = -1) + private static native double getRealValue_0(long nativeObj, int idx); + private static native double getRealValue_1(long nativeObj); + + // C++: int cv::dnn::DictValue::getIntValue(int idx = -1) + private static native int getIntValue_0(long nativeObj, int idx); + private static native int getIntValue_1(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/dnn/Dnn.java b/openCVLibrary3/src/main/java/org/opencv/dnn/Dnn.java new file mode 100644 index 00000000000..e19af9e76b2 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/dnn/Dnn.java @@ -0,0 +1,587 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.dnn; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfByte; +import org.opencv.core.MatOfFloat; +import org.opencv.core.MatOfInt; +import org.opencv.core.MatOfRect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.dnn.Net; +import org.opencv.utils.Converters; + +// C++: class Dnn +//javadoc: Dnn + +public class Dnn { + + public static final int + DNN_BACKEND_DEFAULT = 0, + DNN_BACKEND_HALIDE = 1, + DNN_BACKEND_INFERENCE_ENGINE = 2, + DNN_BACKEND_OPENCV = 3, + DNN_TARGET_CPU = 0, + DNN_TARGET_OPENCL = 1, + DNN_TARGET_OPENCL_FP16 = 2, + DNN_TARGET_MYRIAD = 3; + + + // + // C++: Mat cv::dnn::blobFromImage(Mat image, double scalefactor = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = true, bool crop = true, int ddepth = CV_32F) + // + + //javadoc: blobFromImage(image, scalefactor, size, mean, swapRB, crop, ddepth) + public static Mat blobFromImage(Mat image, double scalefactor, Size size, Scalar mean, boolean swapRB, boolean crop, int ddepth) + { + + Mat retVal = new Mat(blobFromImage_0(image.nativeObj, scalefactor, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3], swapRB, crop, ddepth)); + + return retVal; + } + + //javadoc: blobFromImage(image, scalefactor, size, mean, swapRB, crop) + public static Mat blobFromImage(Mat image, double scalefactor, Size size, Scalar mean, boolean swapRB, boolean crop) + { + + Mat retVal = new Mat(blobFromImage_1(image.nativeObj, scalefactor, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3], swapRB, crop)); + + return retVal; + } + + //javadoc: blobFromImage(image, scalefactor, size, mean, swapRB) + public static Mat blobFromImage(Mat image, double scalefactor, Size size, Scalar mean, boolean swapRB) + { + + Mat retVal = new Mat(blobFromImage_2(image.nativeObj, scalefactor, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3], swapRB)); + + return retVal; + } + + //javadoc: blobFromImage(image, scalefactor, size, mean) + public static Mat blobFromImage(Mat image, double scalefactor, Size size, Scalar mean) + { + + Mat retVal = new Mat(blobFromImage_3(image.nativeObj, scalefactor, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3])); + + return retVal; + } + + //javadoc: blobFromImage(image, scalefactor, size) + public static Mat blobFromImage(Mat image, double scalefactor, Size size) + { + + Mat retVal = new Mat(blobFromImage_4(image.nativeObj, scalefactor, size.width, size.height)); + + return retVal; + } + + //javadoc: blobFromImage(image, scalefactor) + public static Mat blobFromImage(Mat image, double scalefactor) + { + + Mat retVal = new Mat(blobFromImage_5(image.nativeObj, scalefactor)); + + return retVal; + } + + //javadoc: blobFromImage(image) + public static Mat blobFromImage(Mat image) + { + + Mat retVal = new Mat(blobFromImage_6(image.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::dnn::blobFromImages(vector_Mat images, double scalefactor = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = true, bool crop = true, int ddepth = CV_32F) + // + + //javadoc: blobFromImages(images, scalefactor, size, mean, swapRB, crop, ddepth) + public static Mat blobFromImages(List images, double scalefactor, Size size, Scalar mean, boolean swapRB, boolean crop, int ddepth) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat retVal = new Mat(blobFromImages_0(images_mat.nativeObj, scalefactor, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3], swapRB, crop, ddepth)); + + return retVal; + } + + //javadoc: blobFromImages(images, scalefactor, size, mean, swapRB, crop) + public static Mat blobFromImages(List images, double scalefactor, Size size, Scalar mean, boolean swapRB, boolean crop) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat retVal = new Mat(blobFromImages_1(images_mat.nativeObj, scalefactor, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3], swapRB, crop)); + + return retVal; + } + + //javadoc: blobFromImages(images, scalefactor, size, mean, swapRB) + public static Mat blobFromImages(List images, double scalefactor, Size size, Scalar mean, boolean swapRB) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat retVal = new Mat(blobFromImages_2(images_mat.nativeObj, scalefactor, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3], swapRB)); + + return retVal; + } + + //javadoc: blobFromImages(images, scalefactor, size, mean) + public static Mat blobFromImages(List images, double scalefactor, Size size, Scalar mean) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat retVal = new Mat(blobFromImages_3(images_mat.nativeObj, scalefactor, size.width, size.height, mean.val[0], mean.val[1], mean.val[2], mean.val[3])); + + return retVal; + } + + //javadoc: blobFromImages(images, scalefactor, size) + public static Mat blobFromImages(List images, double scalefactor, Size size) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat retVal = new Mat(blobFromImages_4(images_mat.nativeObj, scalefactor, size.width, size.height)); + + return retVal; + } + + //javadoc: blobFromImages(images, scalefactor) + public static Mat blobFromImages(List images, double scalefactor) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat retVal = new Mat(blobFromImages_5(images_mat.nativeObj, scalefactor)); + + return retVal; + } + + //javadoc: blobFromImages(images) + public static Mat blobFromImages(List images) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat retVal = new Mat(blobFromImages_6(images_mat.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::dnn::readTorchBlob(String filename, bool isBinary = true) + // + + //javadoc: readTorchBlob(filename, isBinary) + public static Mat readTorchBlob(String filename, boolean isBinary) + { + + Mat retVal = new Mat(readTorchBlob_0(filename, isBinary)); + + return retVal; + } + + //javadoc: readTorchBlob(filename) + public static Mat readTorchBlob(String filename) + { + + Mat retVal = new Mat(readTorchBlob_1(filename)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNet(String framework, vector_uchar bufferModel, vector_uchar bufferConfig = std::vector()) + // + + //javadoc: readNet(framework, bufferModel, bufferConfig) + public static Net readNet(String framework, MatOfByte bufferModel, MatOfByte bufferConfig) + { + Mat bufferModel_mat = bufferModel; + Mat bufferConfig_mat = bufferConfig; + Net retVal = new Net(readNet_0(framework, bufferModel_mat.nativeObj, bufferConfig_mat.nativeObj)); + + return retVal; + } + + //javadoc: readNet(framework, bufferModel) + public static Net readNet(String framework, MatOfByte bufferModel) + { + Mat bufferModel_mat = bufferModel; + Net retVal = new Net(readNet_1(framework, bufferModel_mat.nativeObj)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNet(String model, String config = "", String framework = "") + // + + //javadoc: readNet(model, config, framework) + public static Net readNet(String model, String config, String framework) + { + + Net retVal = new Net(readNet_2(model, config, framework)); + + return retVal; + } + + //javadoc: readNet(model, config) + public static Net readNet(String model, String config) + { + + Net retVal = new Net(readNet_3(model, config)); + + return retVal; + } + + //javadoc: readNet(model) + public static Net readNet(String model) + { + + Net retVal = new Net(readNet_4(model)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNetFromCaffe(String prototxt, String caffeModel = String()) + // + + //javadoc: readNetFromCaffe(prototxt, caffeModel) + public static Net readNetFromCaffe(String prototxt, String caffeModel) + { + + Net retVal = new Net(readNetFromCaffe_0(prototxt, caffeModel)); + + return retVal; + } + + //javadoc: readNetFromCaffe(prototxt) + public static Net readNetFromCaffe(String prototxt) + { + + Net retVal = new Net(readNetFromCaffe_1(prototxt)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNetFromCaffe(vector_uchar bufferProto, vector_uchar bufferModel = std::vector()) + // + + //javadoc: readNetFromCaffe(bufferProto, bufferModel) + public static Net readNetFromCaffe(MatOfByte bufferProto, MatOfByte bufferModel) + { + Mat bufferProto_mat = bufferProto; + Mat bufferModel_mat = bufferModel; + Net retVal = new Net(readNetFromCaffe_2(bufferProto_mat.nativeObj, bufferModel_mat.nativeObj)); + + return retVal; + } + + //javadoc: readNetFromCaffe(bufferProto) + public static Net readNetFromCaffe(MatOfByte bufferProto) + { + Mat bufferProto_mat = bufferProto; + Net retVal = new Net(readNetFromCaffe_3(bufferProto_mat.nativeObj)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNetFromDarknet(String cfgFile, String darknetModel = String()) + // + + //javadoc: readNetFromDarknet(cfgFile, darknetModel) + public static Net readNetFromDarknet(String cfgFile, String darknetModel) + { + + Net retVal = new Net(readNetFromDarknet_0(cfgFile, darknetModel)); + + return retVal; + } + + //javadoc: readNetFromDarknet(cfgFile) + public static Net readNetFromDarknet(String cfgFile) + { + + Net retVal = new Net(readNetFromDarknet_1(cfgFile)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNetFromDarknet(vector_uchar bufferCfg, vector_uchar bufferModel = std::vector()) + // + + //javadoc: readNetFromDarknet(bufferCfg, bufferModel) + public static Net readNetFromDarknet(MatOfByte bufferCfg, MatOfByte bufferModel) + { + Mat bufferCfg_mat = bufferCfg; + Mat bufferModel_mat = bufferModel; + Net retVal = new Net(readNetFromDarknet_2(bufferCfg_mat.nativeObj, bufferModel_mat.nativeObj)); + + return retVal; + } + + //javadoc: readNetFromDarknet(bufferCfg) + public static Net readNetFromDarknet(MatOfByte bufferCfg) + { + Mat bufferCfg_mat = bufferCfg; + Net retVal = new Net(readNetFromDarknet_3(bufferCfg_mat.nativeObj)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNetFromModelOptimizer(String xml, String bin) + // + + //javadoc: readNetFromModelOptimizer(xml, bin) + public static Net readNetFromModelOptimizer(String xml, String bin) + { + + Net retVal = new Net(readNetFromModelOptimizer_0(xml, bin)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNetFromTensorflow(String model, String config = String()) + // + + //javadoc: readNetFromTensorflow(model, config) + public static Net readNetFromTensorflow(String model, String config) + { + + Net retVal = new Net(readNetFromTensorflow_0(model, config)); + + return retVal; + } + + //javadoc: readNetFromTensorflow(model) + public static Net readNetFromTensorflow(String model) + { + + Net retVal = new Net(readNetFromTensorflow_1(model)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNetFromTensorflow(vector_uchar bufferModel, vector_uchar bufferConfig = std::vector()) + // + + //javadoc: readNetFromTensorflow(bufferModel, bufferConfig) + public static Net readNetFromTensorflow(MatOfByte bufferModel, MatOfByte bufferConfig) + { + Mat bufferModel_mat = bufferModel; + Mat bufferConfig_mat = bufferConfig; + Net retVal = new Net(readNetFromTensorflow_2(bufferModel_mat.nativeObj, bufferConfig_mat.nativeObj)); + + return retVal; + } + + //javadoc: readNetFromTensorflow(bufferModel) + public static Net readNetFromTensorflow(MatOfByte bufferModel) + { + Mat bufferModel_mat = bufferModel; + Net retVal = new Net(readNetFromTensorflow_3(bufferModel_mat.nativeObj)); + + return retVal; + } + + + // + // C++: Net cv::dnn::readNetFromTorch(String model, bool isBinary = true) + // + + //javadoc: readNetFromTorch(model, isBinary) + public static Net readNetFromTorch(String model, boolean isBinary) + { + + Net retVal = new Net(readNetFromTorch_0(model, isBinary)); + + return retVal; + } + + //javadoc: readNetFromTorch(model) + public static Net readNetFromTorch(String model) + { + + Net retVal = new Net(readNetFromTorch_1(model)); + + return retVal; + } + + + // + // C++: void cv::dnn::NMSBoxes(vector_Rect bboxes, vector_float scores, float score_threshold, float nms_threshold, vector_int& indices, float eta = 1.f, int top_k = 0) + // + + //javadoc: NMSBoxes(bboxes, scores, score_threshold, nms_threshold, indices, eta, top_k) + public static void NMSBoxes(MatOfRect bboxes, MatOfFloat scores, float score_threshold, float nms_threshold, MatOfInt indices, float eta, int top_k) + { + Mat bboxes_mat = bboxes; + Mat scores_mat = scores; + Mat indices_mat = indices; + NMSBoxes_0(bboxes_mat.nativeObj, scores_mat.nativeObj, score_threshold, nms_threshold, indices_mat.nativeObj, eta, top_k); + + return; + } + + //javadoc: NMSBoxes(bboxes, scores, score_threshold, nms_threshold, indices, eta) + public static void NMSBoxes(MatOfRect bboxes, MatOfFloat scores, float score_threshold, float nms_threshold, MatOfInt indices, float eta) + { + Mat bboxes_mat = bboxes; + Mat scores_mat = scores; + Mat indices_mat = indices; + NMSBoxes_1(bboxes_mat.nativeObj, scores_mat.nativeObj, score_threshold, nms_threshold, indices_mat.nativeObj, eta); + + return; + } + + //javadoc: NMSBoxes(bboxes, scores, score_threshold, nms_threshold, indices) + public static void NMSBoxes(MatOfRect bboxes, MatOfFloat scores, float score_threshold, float nms_threshold, MatOfInt indices) + { + Mat bboxes_mat = bboxes; + Mat scores_mat = scores; + Mat indices_mat = indices; + NMSBoxes_2(bboxes_mat.nativeObj, scores_mat.nativeObj, score_threshold, nms_threshold, indices_mat.nativeObj); + + return; + } + + + // + // C++: void cv::dnn::NMSBoxes(vector_RotatedRect bboxes, vector_float scores, float score_threshold, float nms_threshold, vector_int& indices, float eta = 1.f, int top_k = 0) + // + + // Unknown type 'vector_RotatedRect' (I), skipping the function + + + // + // C++: void cv::dnn::imagesFromBlob(Mat blob_, vector_Mat& images_) + // + + //javadoc: imagesFromBlob(blob_, images_) + public static void imagesFromBlob(Mat blob_, List images_) + { + Mat images__mat = new Mat(); + imagesFromBlob_0(blob_.nativeObj, images__mat.nativeObj); + Converters.Mat_to_vector_Mat(images__mat, images_); + images__mat.release(); + return; + } + + + // + // C++: void cv::dnn::shrinkCaffeModel(String src, String dst, vector_String layersTypes = std::vector()) + // + + //javadoc: shrinkCaffeModel(src, dst, layersTypes) + public static void shrinkCaffeModel(String src, String dst, List layersTypes) + { + + shrinkCaffeModel_0(src, dst, layersTypes); + + return; + } + + //javadoc: shrinkCaffeModel(src, dst) + public static void shrinkCaffeModel(String src, String dst) + { + + shrinkCaffeModel_1(src, dst); + + return; + } + + + + + // C++: Mat cv::dnn::blobFromImage(Mat image, double scalefactor = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = true, bool crop = true, int ddepth = CV_32F) + private static native long blobFromImage_0(long image_nativeObj, double scalefactor, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3, boolean swapRB, boolean crop, int ddepth); + private static native long blobFromImage_1(long image_nativeObj, double scalefactor, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3, boolean swapRB, boolean crop); + private static native long blobFromImage_2(long image_nativeObj, double scalefactor, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3, boolean swapRB); + private static native long blobFromImage_3(long image_nativeObj, double scalefactor, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3); + private static native long blobFromImage_4(long image_nativeObj, double scalefactor, double size_width, double size_height); + private static native long blobFromImage_5(long image_nativeObj, double scalefactor); + private static native long blobFromImage_6(long image_nativeObj); + + // C++: Mat cv::dnn::blobFromImages(vector_Mat images, double scalefactor = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = true, bool crop = true, int ddepth = CV_32F) + private static native long blobFromImages_0(long images_mat_nativeObj, double scalefactor, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3, boolean swapRB, boolean crop, int ddepth); + private static native long blobFromImages_1(long images_mat_nativeObj, double scalefactor, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3, boolean swapRB, boolean crop); + private static native long blobFromImages_2(long images_mat_nativeObj, double scalefactor, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3, boolean swapRB); + private static native long blobFromImages_3(long images_mat_nativeObj, double scalefactor, double size_width, double size_height, double mean_val0, double mean_val1, double mean_val2, double mean_val3); + private static native long blobFromImages_4(long images_mat_nativeObj, double scalefactor, double size_width, double size_height); + private static native long blobFromImages_5(long images_mat_nativeObj, double scalefactor); + private static native long blobFromImages_6(long images_mat_nativeObj); + + // C++: Mat cv::dnn::readTorchBlob(String filename, bool isBinary = true) + private static native long readTorchBlob_0(String filename, boolean isBinary); + private static native long readTorchBlob_1(String filename); + + // C++: Net cv::dnn::readNet(String framework, vector_uchar bufferModel, vector_uchar bufferConfig = std::vector()) + private static native long readNet_0(String framework, long bufferModel_mat_nativeObj, long bufferConfig_mat_nativeObj); + private static native long readNet_1(String framework, long bufferModel_mat_nativeObj); + + // C++: Net cv::dnn::readNet(String model, String config = "", String framework = "") + private static native long readNet_2(String model, String config, String framework); + private static native long readNet_3(String model, String config); + private static native long readNet_4(String model); + + // C++: Net cv::dnn::readNetFromCaffe(String prototxt, String caffeModel = String()) + private static native long readNetFromCaffe_0(String prototxt, String caffeModel); + private static native long readNetFromCaffe_1(String prototxt); + + // C++: Net cv::dnn::readNetFromCaffe(vector_uchar bufferProto, vector_uchar bufferModel = std::vector()) + private static native long readNetFromCaffe_2(long bufferProto_mat_nativeObj, long bufferModel_mat_nativeObj); + private static native long readNetFromCaffe_3(long bufferProto_mat_nativeObj); + + // C++: Net cv::dnn::readNetFromDarknet(String cfgFile, String darknetModel = String()) + private static native long readNetFromDarknet_0(String cfgFile, String darknetModel); + private static native long readNetFromDarknet_1(String cfgFile); + + // C++: Net cv::dnn::readNetFromDarknet(vector_uchar bufferCfg, vector_uchar bufferModel = std::vector()) + private static native long readNetFromDarknet_2(long bufferCfg_mat_nativeObj, long bufferModel_mat_nativeObj); + private static native long readNetFromDarknet_3(long bufferCfg_mat_nativeObj); + + // C++: Net cv::dnn::readNetFromModelOptimizer(String xml, String bin) + private static native long readNetFromModelOptimizer_0(String xml, String bin); + + // C++: Net cv::dnn::readNetFromTensorflow(String model, String config = String()) + private static native long readNetFromTensorflow_0(String model, String config); + private static native long readNetFromTensorflow_1(String model); + + // C++: Net cv::dnn::readNetFromTensorflow(vector_uchar bufferModel, vector_uchar bufferConfig = std::vector()) + private static native long readNetFromTensorflow_2(long bufferModel_mat_nativeObj, long bufferConfig_mat_nativeObj); + private static native long readNetFromTensorflow_3(long bufferModel_mat_nativeObj); + + // C++: Net cv::dnn::readNetFromTorch(String model, bool isBinary = true) + private static native long readNetFromTorch_0(String model, boolean isBinary); + private static native long readNetFromTorch_1(String model); + + // C++: void cv::dnn::NMSBoxes(vector_Rect bboxes, vector_float scores, float score_threshold, float nms_threshold, vector_int& indices, float eta = 1.f, int top_k = 0) + private static native void NMSBoxes_0(long bboxes_mat_nativeObj, long scores_mat_nativeObj, float score_threshold, float nms_threshold, long indices_mat_nativeObj, float eta, int top_k); + private static native void NMSBoxes_1(long bboxes_mat_nativeObj, long scores_mat_nativeObj, float score_threshold, float nms_threshold, long indices_mat_nativeObj, float eta); + private static native void NMSBoxes_2(long bboxes_mat_nativeObj, long scores_mat_nativeObj, float score_threshold, float nms_threshold, long indices_mat_nativeObj); + + // C++: void cv::dnn::imagesFromBlob(Mat blob_, vector_Mat& images_) + private static native void imagesFromBlob_0(long blob__nativeObj, long images__mat_nativeObj); + + // C++: void cv::dnn::shrinkCaffeModel(String src, String dst, vector_String layersTypes = std::vector()) + private static native void shrinkCaffeModel_0(String src, String dst, List layersTypes); + private static native void shrinkCaffeModel_1(String src, String dst); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/dnn/Layer.java b/openCVLibrary3/src/main/java/org/opencv/dnn/Layer.java new file mode 100644 index 00000000000..04d6122126c --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/dnn/Layer.java @@ -0,0 +1,194 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.dnn; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.utils.Converters; + +// C++: class Layer +//javadoc: Layer + +public class Layer extends Algorithm { + + protected Layer(long addr) { super(addr); } + + // internal usage only + public static Layer __fromPtr__(long addr) { return new Layer(addr); } + + // + // C++: int cv::dnn::Layer::outputNameToIndex(String outputName) + // + + //javadoc: Layer::outputNameToIndex(outputName) + public int outputNameToIndex(String outputName) + { + + int retVal = outputNameToIndex_0(nativeObj, outputName); + + return retVal; + } + + + // + // C++: vector_Mat cv::dnn::Layer::finalize(vector_Mat inputs) + // + + //javadoc: Layer::finalize(inputs) + public List finalize(List inputs) + { + Mat inputs_mat = Converters.vector_Mat_to_Mat(inputs); + List retVal = new ArrayList(); + Mat retValMat = new Mat(finalize_0(nativeObj, inputs_mat.nativeObj)); + Converters.Mat_to_vector_Mat(retValMat, retVal); + return retVal; + } + + + // + // C++: void cv::dnn::Layer::finalize(vector_Mat inputs, vector_Mat& outputs) + // + + //javadoc: Layer::finalize(inputs, outputs) + public void finalize(List inputs, List outputs) + { + Mat inputs_mat = Converters.vector_Mat_to_Mat(inputs); + Mat outputs_mat = new Mat(); + finalize_1(nativeObj, inputs_mat.nativeObj, outputs_mat.nativeObj); + Converters.Mat_to_vector_Mat(outputs_mat, outputs); + outputs_mat.release(); + return; + } + + + // + // C++: void cv::dnn::Layer::run(vector_Mat inputs, vector_Mat& outputs, vector_Mat& internals) + // + + //javadoc: Layer::run(inputs, outputs, internals) + public void run(List inputs, List outputs, List internals) + { + Mat inputs_mat = Converters.vector_Mat_to_Mat(inputs); + Mat outputs_mat = new Mat(); + Mat internals_mat = Converters.vector_Mat_to_Mat(internals); + run_0(nativeObj, inputs_mat.nativeObj, outputs_mat.nativeObj, internals_mat.nativeObj); + Converters.Mat_to_vector_Mat(outputs_mat, outputs); + outputs_mat.release(); + Converters.Mat_to_vector_Mat(internals_mat, internals); + internals_mat.release(); + return; + } + + + // + // C++: vector_Mat Layer::blobs + // + + //javadoc: Layer::get_blobs() + public List get_blobs() + { + List retVal = new ArrayList(); + Mat retValMat = new Mat(get_blobs_0(nativeObj)); + Converters.Mat_to_vector_Mat(retValMat, retVal); + return retVal; + } + + + // + // C++: void Layer::blobs + // + + //javadoc: Layer::set_blobs(blobs) + public void set_blobs(List blobs) + { + Mat blobs_mat = Converters.vector_Mat_to_Mat(blobs); + set_blobs_0(nativeObj, blobs_mat.nativeObj); + + return; + } + + + // + // C++: String Layer::name + // + + //javadoc: Layer::get_name() + public String get_name() + { + + String retVal = get_name_0(nativeObj); + + return retVal; + } + + + // + // C++: String Layer::type + // + + //javadoc: Layer::get_type() + public String get_type() + { + + String retVal = get_type_0(nativeObj); + + return retVal; + } + + + // + // C++: int Layer::preferableTarget + // + + //javadoc: Layer::get_preferableTarget() + public int get_preferableTarget() + { + + int retVal = get_preferableTarget_0(nativeObj); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: int cv::dnn::Layer::outputNameToIndex(String outputName) + private static native int outputNameToIndex_0(long nativeObj, String outputName); + + // C++: vector_Mat cv::dnn::Layer::finalize(vector_Mat inputs) + private static native long finalize_0(long nativeObj, long inputs_mat_nativeObj); + + // C++: void cv::dnn::Layer::finalize(vector_Mat inputs, vector_Mat& outputs) + private static native void finalize_1(long nativeObj, long inputs_mat_nativeObj, long outputs_mat_nativeObj); + + // C++: void cv::dnn::Layer::run(vector_Mat inputs, vector_Mat& outputs, vector_Mat& internals) + private static native void run_0(long nativeObj, long inputs_mat_nativeObj, long outputs_mat_nativeObj, long internals_mat_nativeObj); + + // C++: vector_Mat Layer::blobs + private static native long get_blobs_0(long nativeObj); + + // C++: void Layer::blobs + private static native void set_blobs_0(long nativeObj, long blobs_mat_nativeObj); + + // C++: String Layer::name + private static native String get_name_0(long nativeObj); + + // C++: String Layer::type + private static native String get_type_0(long nativeObj); + + // C++: int Layer::preferableTarget + private static native int get_preferableTarget_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/dnn/Net.java b/openCVLibrary3/src/main/java/org/opencv/dnn/Net.java new file mode 100644 index 00000000000..e389d96f834 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/dnn/Net.java @@ -0,0 +1,643 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.dnn; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfDouble; +import org.opencv.core.MatOfInt; +import org.opencv.core.Scalar; +import org.opencv.dnn.DictValue; +import org.opencv.dnn.Layer; +import org.opencv.dnn.Net; +import org.opencv.utils.Converters; + +// C++: class Net +//javadoc: Net + +public class Net { + + protected final long nativeObj; + protected Net(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static Net __fromPtr__(long addr) { return new Net(addr); } + + // + // C++: cv::dnn::Net::Net() + // + + //javadoc: Net::Net() + public Net() + { + + nativeObj = Net_0(); + + return; + } + + + // + // C++: Mat cv::dnn::Net::forward(String outputName = String()) + // + + //javadoc: Net::forward(outputName) + public Mat forward(String outputName) + { + + Mat retVal = new Mat(forward_0(nativeObj, outputName)); + + return retVal; + } + + //javadoc: Net::forward() + public Mat forward() + { + + Mat retVal = new Mat(forward_1(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::dnn::Net::getParam(LayerId layer, int numParam = 0) + // + + //javadoc: Net::getParam(layer, numParam) + public Mat getParam(DictValue layer, int numParam) + { + + Mat retVal = new Mat(getParam_0(nativeObj, layer.getNativeObjAddr(), numParam)); + + return retVal; + } + + //javadoc: Net::getParam(layer) + public Mat getParam(DictValue layer) + { + + Mat retVal = new Mat(getParam_1(nativeObj, layer.getNativeObjAddr())); + + return retVal; + } + + + // + // C++: static Net cv::dnn::Net::readFromModelOptimizer(String xml, String bin) + // + + //javadoc: Net::readFromModelOptimizer(xml, bin) + public static Net readFromModelOptimizer(String xml, String bin) + { + + Net retVal = new Net(readFromModelOptimizer_0(xml, bin)); + + return retVal; + } + + + // + // C++: Ptr_Layer cv::dnn::Net::getLayer(LayerId layerId) + // + + //javadoc: Net::getLayer(layerId) + public Layer getLayer(DictValue layerId) + { + + Layer retVal = Layer.__fromPtr__(getLayer_0(nativeObj, layerId.getNativeObjAddr())); + + return retVal; + } + + + // + // C++: bool cv::dnn::Net::empty() + // + + //javadoc: Net::empty() + public boolean empty() + { + + boolean retVal = empty_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::dnn::Net::getLayerId(String layer) + // + + //javadoc: Net::getLayerId(layer) + public int getLayerId(String layer) + { + + int retVal = getLayerId_0(nativeObj, layer); + + return retVal; + } + + + // + // C++: int cv::dnn::Net::getLayersCount(String layerType) + // + + //javadoc: Net::getLayersCount(layerType) + public int getLayersCount(String layerType) + { + + int retVal = getLayersCount_0(nativeObj, layerType); + + return retVal; + } + + + // + // C++: int64 cv::dnn::Net::getFLOPS(MatShape netInputShape) + // + + //javadoc: Net::getFLOPS(netInputShape) + public long getFLOPS(MatOfInt netInputShape) + { + Mat netInputShape_mat = netInputShape; + long retVal = getFLOPS_0(nativeObj, netInputShape_mat.nativeObj); + + return retVal; + } + + + // + // C++: int64 cv::dnn::Net::getFLOPS(int layerId, MatShape netInputShape) + // + + //javadoc: Net::getFLOPS(layerId, netInputShape) + public long getFLOPS(int layerId, MatOfInt netInputShape) + { + Mat netInputShape_mat = netInputShape; + long retVal = getFLOPS_1(nativeObj, layerId, netInputShape_mat.nativeObj); + + return retVal; + } + + + // + // C++: int64 cv::dnn::Net::getFLOPS(int layerId, vector_MatShape netInputShapes) + // + + //javadoc: Net::getFLOPS(layerId, netInputShapes) + public long getFLOPS(int layerId, List netInputShapes) + { + + long retVal = getFLOPS_2(nativeObj, layerId, netInputShapes); + + return retVal; + } + + + // + // C++: int64 cv::dnn::Net::getFLOPS(vector_MatShape netInputShapes) + // + + //javadoc: Net::getFLOPS(netInputShapes) + public long getFLOPS(List netInputShapes) + { + + long retVal = getFLOPS_3(nativeObj, netInputShapes); + + return retVal; + } + + + // + // C++: int64 cv::dnn::Net::getPerfProfile(vector_double& timings) + // + + //javadoc: Net::getPerfProfile(timings) + public long getPerfProfile(MatOfDouble timings) + { + Mat timings_mat = timings; + long retVal = getPerfProfile_0(nativeObj, timings_mat.nativeObj); + + return retVal; + } + + + // + // C++: vector_String cv::dnn::Net::getLayerNames() + // + + //javadoc: Net::getLayerNames() + public List getLayerNames() + { + + List retVal = getLayerNames_0(nativeObj); + + return retVal; + } + + + // + // C++: vector_int cv::dnn::Net::getUnconnectedOutLayers() + // + + //javadoc: Net::getUnconnectedOutLayers() + public MatOfInt getUnconnectedOutLayers() + { + + MatOfInt retVal = MatOfInt.fromNativeAddr(getUnconnectedOutLayers_0(nativeObj)); + + return retVal; + } + + + // + // C++: void cv::dnn::Net::connect(String outPin, String inpPin) + // + + //javadoc: Net::connect(outPin, inpPin) + public void connect(String outPin, String inpPin) + { + + connect_0(nativeObj, outPin, inpPin); + + return; + } + + + // + // C++: void cv::dnn::Net::deleteLayer(LayerId layer) + // + + //javadoc: Net::deleteLayer(layer) + public void deleteLayer(DictValue layer) + { + + deleteLayer_0(nativeObj, layer.getNativeObjAddr()); + + return; + } + + + // + // C++: void cv::dnn::Net::enableFusion(bool fusion) + // + + //javadoc: Net::enableFusion(fusion) + public void enableFusion(boolean fusion) + { + + enableFusion_0(nativeObj, fusion); + + return; + } + + + // + // C++: void cv::dnn::Net::forward(vector_Mat& outputBlobs, String outputName = String()) + // + + //javadoc: Net::forward(outputBlobs, outputName) + public void forward(List outputBlobs, String outputName) + { + Mat outputBlobs_mat = new Mat(); + forward_2(nativeObj, outputBlobs_mat.nativeObj, outputName); + Converters.Mat_to_vector_Mat(outputBlobs_mat, outputBlobs); + outputBlobs_mat.release(); + return; + } + + //javadoc: Net::forward(outputBlobs) + public void forward(List outputBlobs) + { + Mat outputBlobs_mat = new Mat(); + forward_3(nativeObj, outputBlobs_mat.nativeObj); + Converters.Mat_to_vector_Mat(outputBlobs_mat, outputBlobs); + outputBlobs_mat.release(); + return; + } + + + // + // C++: void cv::dnn::Net::forward(vector_Mat& outputBlobs, vector_String outBlobNames) + // + + //javadoc: Net::forward(outputBlobs, outBlobNames) + public void forward(List outputBlobs, List outBlobNames) + { + Mat outputBlobs_mat = new Mat(); + forward_4(nativeObj, outputBlobs_mat.nativeObj, outBlobNames); + Converters.Mat_to_vector_Mat(outputBlobs_mat, outputBlobs); + outputBlobs_mat.release(); + return; + } + + + // + // C++: void cv::dnn::Net::forward(vector_vector_Mat& outputBlobs, vector_String outBlobNames) + // + + // Unknown type 'vector_vector_Mat' (O), skipping the function + + + // + // C++: void cv::dnn::Net::getLayerTypes(vector_String& layersTypes) + // + + //javadoc: Net::getLayerTypes(layersTypes) + public void getLayerTypes(List layersTypes) + { + + getLayerTypes_0(nativeObj, layersTypes); + + return; + } + + + // + // C++: void cv::dnn::Net::getLayersShapes(MatShape netInputShape, vector_int& layersIds, vector_vector_MatShape& inLayersShapes, vector_vector_MatShape& outLayersShapes) + // + + // Unknown type 'vector_vector_MatShape' (O), skipping the function + + + // + // C++: void cv::dnn::Net::getLayersShapes(vector_MatShape netInputShapes, vector_int& layersIds, vector_vector_MatShape& inLayersShapes, vector_vector_MatShape& outLayersShapes) + // + + // Unknown type 'vector_vector_MatShape' (O), skipping the function + + + // + // C++: void cv::dnn::Net::getMemoryConsumption(MatShape netInputShape, size_t& weights, size_t& blobs) + // + + //javadoc: Net::getMemoryConsumption(netInputShape, weights, blobs) + public void getMemoryConsumption(MatOfInt netInputShape, long[] weights, long[] blobs) + { + Mat netInputShape_mat = netInputShape; + double[] weights_out = new double[1]; + double[] blobs_out = new double[1]; + getMemoryConsumption_0(nativeObj, netInputShape_mat.nativeObj, weights_out, blobs_out); + if(weights!=null) weights[0] = (long)weights_out[0]; + if(blobs!=null) blobs[0] = (long)blobs_out[0]; + return; + } + + + // + // C++: void cv::dnn::Net::getMemoryConsumption(int layerId, MatShape netInputShape, size_t& weights, size_t& blobs) + // + + //javadoc: Net::getMemoryConsumption(layerId, netInputShape, weights, blobs) + public void getMemoryConsumption(int layerId, MatOfInt netInputShape, long[] weights, long[] blobs) + { + Mat netInputShape_mat = netInputShape; + double[] weights_out = new double[1]; + double[] blobs_out = new double[1]; + getMemoryConsumption_1(nativeObj, layerId, netInputShape_mat.nativeObj, weights_out, blobs_out); + if(weights!=null) weights[0] = (long)weights_out[0]; + if(blobs!=null) blobs[0] = (long)blobs_out[0]; + return; + } + + + // + // C++: void cv::dnn::Net::getMemoryConsumption(int layerId, vector_MatShape netInputShapes, size_t& weights, size_t& blobs) + // + + //javadoc: Net::getMemoryConsumption(layerId, netInputShapes, weights, blobs) + public void getMemoryConsumption(int layerId, List netInputShapes, long[] weights, long[] blobs) + { + double[] weights_out = new double[1]; + double[] blobs_out = new double[1]; + getMemoryConsumption_2(nativeObj, layerId, netInputShapes, weights_out, blobs_out); + if(weights!=null) weights[0] = (long)weights_out[0]; + if(blobs!=null) blobs[0] = (long)blobs_out[0]; + return; + } + + + // + // C++: void cv::dnn::Net::setHalideScheduler(String scheduler) + // + + //javadoc: Net::setHalideScheduler(scheduler) + public void setHalideScheduler(String scheduler) + { + + setHalideScheduler_0(nativeObj, scheduler); + + return; + } + + + // + // C++: void cv::dnn::Net::setInput(Mat blob, String name = "", double scalefactor = 1.0, Scalar mean = Scalar()) + // + + //javadoc: Net::setInput(blob, name, scalefactor, mean) + public void setInput(Mat blob, String name, double scalefactor, Scalar mean) + { + + setInput_0(nativeObj, blob.nativeObj, name, scalefactor, mean.val[0], mean.val[1], mean.val[2], mean.val[3]); + + return; + } + + //javadoc: Net::setInput(blob, name, scalefactor) + public void setInput(Mat blob, String name, double scalefactor) + { + + setInput_1(nativeObj, blob.nativeObj, name, scalefactor); + + return; + } + + //javadoc: Net::setInput(blob, name) + public void setInput(Mat blob, String name) + { + + setInput_2(nativeObj, blob.nativeObj, name); + + return; + } + + //javadoc: Net::setInput(blob) + public void setInput(Mat blob) + { + + setInput_3(nativeObj, blob.nativeObj); + + return; + } + + + // + // C++: void cv::dnn::Net::setInputsNames(vector_String inputBlobNames) + // + + //javadoc: Net::setInputsNames(inputBlobNames) + public void setInputsNames(List inputBlobNames) + { + + setInputsNames_0(nativeObj, inputBlobNames); + + return; + } + + + // + // C++: void cv::dnn::Net::setParam(LayerId layer, int numParam, Mat blob) + // + + //javadoc: Net::setParam(layer, numParam, blob) + public void setParam(DictValue layer, int numParam, Mat blob) + { + + setParam_0(nativeObj, layer.getNativeObjAddr(), numParam, blob.nativeObj); + + return; + } + + + // + // C++: void cv::dnn::Net::setPreferableBackend(int backendId) + // + + //javadoc: Net::setPreferableBackend(backendId) + public void setPreferableBackend(int backendId) + { + + setPreferableBackend_0(nativeObj, backendId); + + return; + } + + + // + // C++: void cv::dnn::Net::setPreferableTarget(int targetId) + // + + //javadoc: Net::setPreferableTarget(targetId) + public void setPreferableTarget(int targetId) + { + + setPreferableTarget_0(nativeObj, targetId); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::dnn::Net::Net() + private static native long Net_0(); + + // C++: Mat cv::dnn::Net::forward(String outputName = String()) + private static native long forward_0(long nativeObj, String outputName); + private static native long forward_1(long nativeObj); + + // C++: Mat cv::dnn::Net::getParam(LayerId layer, int numParam = 0) + private static native long getParam_0(long nativeObj, long layer_nativeObj, int numParam); + private static native long getParam_1(long nativeObj, long layer_nativeObj); + + // C++: static Net cv::dnn::Net::readFromModelOptimizer(String xml, String bin) + private static native long readFromModelOptimizer_0(String xml, String bin); + + // C++: Ptr_Layer cv::dnn::Net::getLayer(LayerId layerId) + private static native long getLayer_0(long nativeObj, long layerId_nativeObj); + + // C++: bool cv::dnn::Net::empty() + private static native boolean empty_0(long nativeObj); + + // C++: int cv::dnn::Net::getLayerId(String layer) + private static native int getLayerId_0(long nativeObj, String layer); + + // C++: int cv::dnn::Net::getLayersCount(String layerType) + private static native int getLayersCount_0(long nativeObj, String layerType); + + // C++: int64 cv::dnn::Net::getFLOPS(MatShape netInputShape) + private static native long getFLOPS_0(long nativeObj, long netInputShape_mat_nativeObj); + + // C++: int64 cv::dnn::Net::getFLOPS(int layerId, MatShape netInputShape) + private static native long getFLOPS_1(long nativeObj, int layerId, long netInputShape_mat_nativeObj); + + // C++: int64 cv::dnn::Net::getFLOPS(int layerId, vector_MatShape netInputShapes) + private static native long getFLOPS_2(long nativeObj, int layerId, List netInputShapes); + + // C++: int64 cv::dnn::Net::getFLOPS(vector_MatShape netInputShapes) + private static native long getFLOPS_3(long nativeObj, List netInputShapes); + + // C++: int64 cv::dnn::Net::getPerfProfile(vector_double& timings) + private static native long getPerfProfile_0(long nativeObj, long timings_mat_nativeObj); + + // C++: vector_String cv::dnn::Net::getLayerNames() + private static native List getLayerNames_0(long nativeObj); + + // C++: vector_int cv::dnn::Net::getUnconnectedOutLayers() + private static native long getUnconnectedOutLayers_0(long nativeObj); + + // C++: void cv::dnn::Net::connect(String outPin, String inpPin) + private static native void connect_0(long nativeObj, String outPin, String inpPin); + + // C++: void cv::dnn::Net::deleteLayer(LayerId layer) + private static native void deleteLayer_0(long nativeObj, long layer_nativeObj); + + // C++: void cv::dnn::Net::enableFusion(bool fusion) + private static native void enableFusion_0(long nativeObj, boolean fusion); + + // C++: void cv::dnn::Net::forward(vector_Mat& outputBlobs, String outputName = String()) + private static native void forward_2(long nativeObj, long outputBlobs_mat_nativeObj, String outputName); + private static native void forward_3(long nativeObj, long outputBlobs_mat_nativeObj); + + // C++: void cv::dnn::Net::forward(vector_Mat& outputBlobs, vector_String outBlobNames) + private static native void forward_4(long nativeObj, long outputBlobs_mat_nativeObj, List outBlobNames); + + // C++: void cv::dnn::Net::getLayerTypes(vector_String& layersTypes) + private static native void getLayerTypes_0(long nativeObj, List layersTypes); + + // C++: void cv::dnn::Net::getMemoryConsumption(MatShape netInputShape, size_t& weights, size_t& blobs) + private static native void getMemoryConsumption_0(long nativeObj, long netInputShape_mat_nativeObj, double[] weights_out, double[] blobs_out); + + // C++: void cv::dnn::Net::getMemoryConsumption(int layerId, MatShape netInputShape, size_t& weights, size_t& blobs) + private static native void getMemoryConsumption_1(long nativeObj, int layerId, long netInputShape_mat_nativeObj, double[] weights_out, double[] blobs_out); + + // C++: void cv::dnn::Net::getMemoryConsumption(int layerId, vector_MatShape netInputShapes, size_t& weights, size_t& blobs) + private static native void getMemoryConsumption_2(long nativeObj, int layerId, List netInputShapes, double[] weights_out, double[] blobs_out); + + // C++: void cv::dnn::Net::setHalideScheduler(String scheduler) + private static native void setHalideScheduler_0(long nativeObj, String scheduler); + + // C++: void cv::dnn::Net::setInput(Mat blob, String name = "", double scalefactor = 1.0, Scalar mean = Scalar()) + private static native void setInput_0(long nativeObj, long blob_nativeObj, String name, double scalefactor, double mean_val0, double mean_val1, double mean_val2, double mean_val3); + private static native void setInput_1(long nativeObj, long blob_nativeObj, String name, double scalefactor); + private static native void setInput_2(long nativeObj, long blob_nativeObj, String name); + private static native void setInput_3(long nativeObj, long blob_nativeObj); + + // C++: void cv::dnn::Net::setInputsNames(vector_String inputBlobNames) + private static native void setInputsNames_0(long nativeObj, List inputBlobNames); + + // C++: void cv::dnn::Net::setParam(LayerId layer, int numParam, Mat blob) + private static native void setParam_0(long nativeObj, long layer_nativeObj, int numParam, long blob_nativeObj); + + // C++: void cv::dnn::Net::setPreferableBackend(int backendId) + private static native void setPreferableBackend_0(long nativeObj, int backendId); + + // C++: void cv::dnn::Net::setPreferableTarget(int targetId) + private static native void setPreferableTarget_0(long nativeObj, int targetId); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/AKAZE.java b/openCVLibrary3/src/main/java/org/opencv/features2d/AKAZE.java new file mode 100644 index 00000000000..42d6507ddf5 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/AKAZE.java @@ -0,0 +1,379 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import org.opencv.features2d.AKAZE; +import org.opencv.features2d.Feature2D; + +// C++: class AKAZE +//javadoc: AKAZE + +public class AKAZE extends Feature2D { + + protected AKAZE(long addr) { super(addr); } + + // internal usage only + public static AKAZE __fromPtr__(long addr) { return new AKAZE(addr); } + + public static final int + DESCRIPTOR_KAZE_UPRIGHT = 2, + DESCRIPTOR_KAZE = 3, + DESCRIPTOR_MLDB_UPRIGHT = 4, + DESCRIPTOR_MLDB = 5; + + + // + // C++: static Ptr_AKAZE cv::AKAZE::create(int descriptor_type = AKAZE::DESCRIPTOR_MLDB, int descriptor_size = 0, int descriptor_channels = 3, float threshold = 0.001f, int nOctaves = 4, int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2) + // + + //javadoc: AKAZE::create(descriptor_type, descriptor_size, descriptor_channels, threshold, nOctaves, nOctaveLayers, diffusivity) + public static AKAZE create(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold, int nOctaves, int nOctaveLayers, int diffusivity) + { + + AKAZE retVal = AKAZE.__fromPtr__(create_0(descriptor_type, descriptor_size, descriptor_channels, threshold, nOctaves, nOctaveLayers, diffusivity)); + + return retVal; + } + + //javadoc: AKAZE::create(descriptor_type, descriptor_size, descriptor_channels, threshold, nOctaves, nOctaveLayers) + public static AKAZE create(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold, int nOctaves, int nOctaveLayers) + { + + AKAZE retVal = AKAZE.__fromPtr__(create_1(descriptor_type, descriptor_size, descriptor_channels, threshold, nOctaves, nOctaveLayers)); + + return retVal; + } + + //javadoc: AKAZE::create(descriptor_type, descriptor_size, descriptor_channels, threshold, nOctaves) + public static AKAZE create(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold, int nOctaves) + { + + AKAZE retVal = AKAZE.__fromPtr__(create_2(descriptor_type, descriptor_size, descriptor_channels, threshold, nOctaves)); + + return retVal; + } + + //javadoc: AKAZE::create(descriptor_type, descriptor_size, descriptor_channels, threshold) + public static AKAZE create(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold) + { + + AKAZE retVal = AKAZE.__fromPtr__(create_3(descriptor_type, descriptor_size, descriptor_channels, threshold)); + + return retVal; + } + + //javadoc: AKAZE::create(descriptor_type, descriptor_size, descriptor_channels) + public static AKAZE create(int descriptor_type, int descriptor_size, int descriptor_channels) + { + + AKAZE retVal = AKAZE.__fromPtr__(create_4(descriptor_type, descriptor_size, descriptor_channels)); + + return retVal; + } + + //javadoc: AKAZE::create(descriptor_type, descriptor_size) + public static AKAZE create(int descriptor_type, int descriptor_size) + { + + AKAZE retVal = AKAZE.__fromPtr__(create_5(descriptor_type, descriptor_size)); + + return retVal; + } + + //javadoc: AKAZE::create(descriptor_type) + public static AKAZE create(int descriptor_type) + { + + AKAZE retVal = AKAZE.__fromPtr__(create_6(descriptor_type)); + + return retVal; + } + + //javadoc: AKAZE::create() + public static AKAZE create() + { + + AKAZE retVal = AKAZE.__fromPtr__(create_7()); + + return retVal; + } + + + // + // C++: String cv::AKAZE::getDefaultName() + // + + //javadoc: AKAZE::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::AKAZE::getThreshold() + // + + //javadoc: AKAZE::getThreshold() + public double getThreshold() + { + + double retVal = getThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AKAZE::getDescriptorChannels() + // + + //javadoc: AKAZE::getDescriptorChannels() + public int getDescriptorChannels() + { + + int retVal = getDescriptorChannels_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AKAZE::getDescriptorSize() + // + + //javadoc: AKAZE::getDescriptorSize() + public int getDescriptorSize() + { + + int retVal = getDescriptorSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AKAZE::getDescriptorType() + // + + //javadoc: AKAZE::getDescriptorType() + public int getDescriptorType() + { + + int retVal = getDescriptorType_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AKAZE::getDiffusivity() + // + + //javadoc: AKAZE::getDiffusivity() + public int getDiffusivity() + { + + int retVal = getDiffusivity_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AKAZE::getNOctaveLayers() + // + + //javadoc: AKAZE::getNOctaveLayers() + public int getNOctaveLayers() + { + + int retVal = getNOctaveLayers_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AKAZE::getNOctaves() + // + + //javadoc: AKAZE::getNOctaves() + public int getNOctaves() + { + + int retVal = getNOctaves_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::AKAZE::setDescriptorChannels(int dch) + // + + //javadoc: AKAZE::setDescriptorChannels(dch) + public void setDescriptorChannels(int dch) + { + + setDescriptorChannels_0(nativeObj, dch); + + return; + } + + + // + // C++: void cv::AKAZE::setDescriptorSize(int dsize) + // + + //javadoc: AKAZE::setDescriptorSize(dsize) + public void setDescriptorSize(int dsize) + { + + setDescriptorSize_0(nativeObj, dsize); + + return; + } + + + // + // C++: void cv::AKAZE::setDescriptorType(int dtype) + // + + //javadoc: AKAZE::setDescriptorType(dtype) + public void setDescriptorType(int dtype) + { + + setDescriptorType_0(nativeObj, dtype); + + return; + } + + + // + // C++: void cv::AKAZE::setDiffusivity(int diff) + // + + //javadoc: AKAZE::setDiffusivity(diff) + public void setDiffusivity(int diff) + { + + setDiffusivity_0(nativeObj, diff); + + return; + } + + + // + // C++: void cv::AKAZE::setNOctaveLayers(int octaveLayers) + // + + //javadoc: AKAZE::setNOctaveLayers(octaveLayers) + public void setNOctaveLayers(int octaveLayers) + { + + setNOctaveLayers_0(nativeObj, octaveLayers); + + return; + } + + + // + // C++: void cv::AKAZE::setNOctaves(int octaves) + // + + //javadoc: AKAZE::setNOctaves(octaves) + public void setNOctaves(int octaves) + { + + setNOctaves_0(nativeObj, octaves); + + return; + } + + + // + // C++: void cv::AKAZE::setThreshold(double threshold) + // + + //javadoc: AKAZE::setThreshold(threshold) + public void setThreshold(double threshold) + { + + setThreshold_0(nativeObj, threshold); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_AKAZE cv::AKAZE::create(int descriptor_type = AKAZE::DESCRIPTOR_MLDB, int descriptor_size = 0, int descriptor_channels = 3, float threshold = 0.001f, int nOctaves = 4, int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2) + private static native long create_0(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold, int nOctaves, int nOctaveLayers, int diffusivity); + private static native long create_1(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold, int nOctaves, int nOctaveLayers); + private static native long create_2(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold, int nOctaves); + private static native long create_3(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold); + private static native long create_4(int descriptor_type, int descriptor_size, int descriptor_channels); + private static native long create_5(int descriptor_type, int descriptor_size); + private static native long create_6(int descriptor_type); + private static native long create_7(); + + // C++: String cv::AKAZE::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: double cv::AKAZE::getThreshold() + private static native double getThreshold_0(long nativeObj); + + // C++: int cv::AKAZE::getDescriptorChannels() + private static native int getDescriptorChannels_0(long nativeObj); + + // C++: int cv::AKAZE::getDescriptorSize() + private static native int getDescriptorSize_0(long nativeObj); + + // C++: int cv::AKAZE::getDescriptorType() + private static native int getDescriptorType_0(long nativeObj); + + // C++: int cv::AKAZE::getDiffusivity() + private static native int getDiffusivity_0(long nativeObj); + + // C++: int cv::AKAZE::getNOctaveLayers() + private static native int getNOctaveLayers_0(long nativeObj); + + // C++: int cv::AKAZE::getNOctaves() + private static native int getNOctaves_0(long nativeObj); + + // C++: void cv::AKAZE::setDescriptorChannels(int dch) + private static native void setDescriptorChannels_0(long nativeObj, int dch); + + // C++: void cv::AKAZE::setDescriptorSize(int dsize) + private static native void setDescriptorSize_0(long nativeObj, int dsize); + + // C++: void cv::AKAZE::setDescriptorType(int dtype) + private static native void setDescriptorType_0(long nativeObj, int dtype); + + // C++: void cv::AKAZE::setDiffusivity(int diff) + private static native void setDiffusivity_0(long nativeObj, int diff); + + // C++: void cv::AKAZE::setNOctaveLayers(int octaveLayers) + private static native void setNOctaveLayers_0(long nativeObj, int octaveLayers); + + // C++: void cv::AKAZE::setNOctaves(int octaves) + private static native void setNOctaves_0(long nativeObj, int octaves); + + // C++: void cv::AKAZE::setThreshold(double threshold) + private static native void setThreshold_0(long nativeObj, double threshold); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/AgastFeatureDetector.java b/openCVLibrary3/src/main/java/org/opencv/features2d/AgastFeatureDetector.java new file mode 100644 index 00000000000..f18f0b7e7b5 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/AgastFeatureDetector.java @@ -0,0 +1,205 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import org.opencv.features2d.AgastFeatureDetector; +import org.opencv.features2d.Feature2D; + +// C++: class AgastFeatureDetector +//javadoc: AgastFeatureDetector + +public class AgastFeatureDetector extends Feature2D { + + protected AgastFeatureDetector(long addr) { super(addr); } + + // internal usage only + public static AgastFeatureDetector __fromPtr__(long addr) { return new AgastFeatureDetector(addr); } + + public static final int + AGAST_5_8 = 0, + AGAST_7_12d = 1, + AGAST_7_12s = 2, + OAST_9_16 = 3, + THRESHOLD = 10000, + NONMAX_SUPPRESSION = 10001; + + + // + // C++: static Ptr_AgastFeatureDetector cv::AgastFeatureDetector::create(int threshold = 10, bool nonmaxSuppression = true, int type = AgastFeatureDetector::OAST_9_16) + // + + //javadoc: AgastFeatureDetector::create(threshold, nonmaxSuppression, type) + public static AgastFeatureDetector create(int threshold, boolean nonmaxSuppression, int type) + { + + AgastFeatureDetector retVal = AgastFeatureDetector.__fromPtr__(create_0(threshold, nonmaxSuppression, type)); + + return retVal; + } + + //javadoc: AgastFeatureDetector::create(threshold, nonmaxSuppression) + public static AgastFeatureDetector create(int threshold, boolean nonmaxSuppression) + { + + AgastFeatureDetector retVal = AgastFeatureDetector.__fromPtr__(create_1(threshold, nonmaxSuppression)); + + return retVal; + } + + //javadoc: AgastFeatureDetector::create(threshold) + public static AgastFeatureDetector create(int threshold) + { + + AgastFeatureDetector retVal = AgastFeatureDetector.__fromPtr__(create_2(threshold)); + + return retVal; + } + + //javadoc: AgastFeatureDetector::create() + public static AgastFeatureDetector create() + { + + AgastFeatureDetector retVal = AgastFeatureDetector.__fromPtr__(create_3()); + + return retVal; + } + + + // + // C++: String cv::AgastFeatureDetector::getDefaultName() + // + + //javadoc: AgastFeatureDetector::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::AgastFeatureDetector::getNonmaxSuppression() + // + + //javadoc: AgastFeatureDetector::getNonmaxSuppression() + public boolean getNonmaxSuppression() + { + + boolean retVal = getNonmaxSuppression_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AgastFeatureDetector::getThreshold() + // + + //javadoc: AgastFeatureDetector::getThreshold() + public int getThreshold() + { + + int retVal = getThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AgastFeatureDetector::getType() + // + + //javadoc: AgastFeatureDetector::getType() + public int getType() + { + + int retVal = getType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::AgastFeatureDetector::setNonmaxSuppression(bool f) + // + + //javadoc: AgastFeatureDetector::setNonmaxSuppression(f) + public void setNonmaxSuppression(boolean f) + { + + setNonmaxSuppression_0(nativeObj, f); + + return; + } + + + // + // C++: void cv::AgastFeatureDetector::setThreshold(int threshold) + // + + //javadoc: AgastFeatureDetector::setThreshold(threshold) + public void setThreshold(int threshold) + { + + setThreshold_0(nativeObj, threshold); + + return; + } + + + // + // C++: void cv::AgastFeatureDetector::setType(int type) + // + + //javadoc: AgastFeatureDetector::setType(type) + public void setType(int type) + { + + setType_0(nativeObj, type); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_AgastFeatureDetector cv::AgastFeatureDetector::create(int threshold = 10, bool nonmaxSuppression = true, int type = AgastFeatureDetector::OAST_9_16) + private static native long create_0(int threshold, boolean nonmaxSuppression, int type); + private static native long create_1(int threshold, boolean nonmaxSuppression); + private static native long create_2(int threshold); + private static native long create_3(); + + // C++: String cv::AgastFeatureDetector::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: bool cv::AgastFeatureDetector::getNonmaxSuppression() + private static native boolean getNonmaxSuppression_0(long nativeObj); + + // C++: int cv::AgastFeatureDetector::getThreshold() + private static native int getThreshold_0(long nativeObj); + + // C++: int cv::AgastFeatureDetector::getType() + private static native int getType_0(long nativeObj); + + // C++: void cv::AgastFeatureDetector::setNonmaxSuppression(bool f) + private static native void setNonmaxSuppression_0(long nativeObj, boolean f); + + // C++: void cv::AgastFeatureDetector::setThreshold(int threshold) + private static native void setThreshold_0(long nativeObj, int threshold); + + // C++: void cv::AgastFeatureDetector::setType(int type) + private static native void setType_0(long nativeObj, int type); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/BFMatcher.java b/openCVLibrary3/src/main/java/org/opencv/features2d/BFMatcher.java new file mode 100644 index 00000000000..15a1ffa744d --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/BFMatcher.java @@ -0,0 +1,103 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import org.opencv.features2d.BFMatcher; +import org.opencv.features2d.DescriptorMatcher; + +// C++: class BFMatcher +//javadoc: BFMatcher + +public class BFMatcher extends DescriptorMatcher { + + protected BFMatcher(long addr) { super(addr); } + + // internal usage only + public static BFMatcher __fromPtr__(long addr) { return new BFMatcher(addr); } + + // + // C++: cv::BFMatcher::BFMatcher(int normType = NORM_L2, bool crossCheck = false) + // + + //javadoc: BFMatcher::BFMatcher(normType, crossCheck) + public BFMatcher(int normType, boolean crossCheck) + { + + super( BFMatcher_0(normType, crossCheck) ); + + return; + } + + //javadoc: BFMatcher::BFMatcher(normType) + public BFMatcher(int normType) + { + + super( BFMatcher_1(normType) ); + + return; + } + + //javadoc: BFMatcher::BFMatcher() + public BFMatcher() + { + + super( BFMatcher_2() ); + + return; + } + + + // + // C++: static Ptr_BFMatcher cv::BFMatcher::create(int normType = NORM_L2, bool crossCheck = false) + // + + //javadoc: BFMatcher::create(normType, crossCheck) + public static BFMatcher create(int normType, boolean crossCheck) + { + + BFMatcher retVal = BFMatcher.__fromPtr__(create_0(normType, crossCheck)); + + return retVal; + } + + //javadoc: BFMatcher::create(normType) + public static BFMatcher create(int normType) + { + + BFMatcher retVal = BFMatcher.__fromPtr__(create_1(normType)); + + return retVal; + } + + //javadoc: BFMatcher::create() + public static BFMatcher create() + { + + BFMatcher retVal = BFMatcher.__fromPtr__(create_2()); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::BFMatcher::BFMatcher(int normType = NORM_L2, bool crossCheck = false) + private static native long BFMatcher_0(int normType, boolean crossCheck); + private static native long BFMatcher_1(int normType); + private static native long BFMatcher_2(); + + // C++: static Ptr_BFMatcher cv::BFMatcher::create(int normType = NORM_L2, bool crossCheck = false) + private static native long create_0(int normType, boolean crossCheck); + private static native long create_1(int normType); + private static native long create_2(); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/BOWImgDescriptorExtractor.java b/openCVLibrary3/src/main/java/org/opencv/features2d/BOWImgDescriptorExtractor.java new file mode 100644 index 00000000000..6de2cb67f42 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/BOWImgDescriptorExtractor.java @@ -0,0 +1,127 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfKeyPoint; +import org.opencv.utils.Converters; + +// C++: class BOWImgDescriptorExtractor +//javadoc: BOWImgDescriptorExtractor + +public class BOWImgDescriptorExtractor { + + protected final long nativeObj; + protected BOWImgDescriptorExtractor(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static BOWImgDescriptorExtractor __fromPtr__(long addr) { return new BOWImgDescriptorExtractor(addr); } + + // + // C++: cv::BOWImgDescriptorExtractor::BOWImgDescriptorExtractor(Ptr_DescriptorExtractor dextractor, Ptr_DescriptorMatcher dmatcher) + // + + // Unknown type 'Ptr_DescriptorExtractor' (I), skipping the function + + + // + // C++: Mat cv::BOWImgDescriptorExtractor::getVocabulary() + // + + //javadoc: BOWImgDescriptorExtractor::getVocabulary() + public Mat getVocabulary() + { + + Mat retVal = new Mat(getVocabulary_0(nativeObj)); + + return retVal; + } + + + // + // C++: int cv::BOWImgDescriptorExtractor::descriptorSize() + // + + //javadoc: BOWImgDescriptorExtractor::descriptorSize() + public int descriptorSize() + { + + int retVal = descriptorSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::BOWImgDescriptorExtractor::descriptorType() + // + + //javadoc: BOWImgDescriptorExtractor::descriptorType() + public int descriptorType() + { + + int retVal = descriptorType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::BOWImgDescriptorExtractor::compute2(Mat image, vector_KeyPoint keypoints, Mat& imgDescriptor) + // + + //javadoc: BOWImgDescriptorExtractor::compute(image, keypoints, imgDescriptor) + public void compute(Mat image, MatOfKeyPoint keypoints, Mat imgDescriptor) + { + Mat keypoints_mat = keypoints; + compute_0(nativeObj, image.nativeObj, keypoints_mat.nativeObj, imgDescriptor.nativeObj); + + return; + } + + + // + // C++: void cv::BOWImgDescriptorExtractor::setVocabulary(Mat vocabulary) + // + + //javadoc: BOWImgDescriptorExtractor::setVocabulary(vocabulary) + public void setVocabulary(Mat vocabulary) + { + + setVocabulary_0(nativeObj, vocabulary.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::BOWImgDescriptorExtractor::getVocabulary() + private static native long getVocabulary_0(long nativeObj); + + // C++: int cv::BOWImgDescriptorExtractor::descriptorSize() + private static native int descriptorSize_0(long nativeObj); + + // C++: int cv::BOWImgDescriptorExtractor::descriptorType() + private static native int descriptorType_0(long nativeObj); + + // C++: void cv::BOWImgDescriptorExtractor::compute2(Mat image, vector_KeyPoint keypoints, Mat& imgDescriptor) + private static native void compute_0(long nativeObj, long image_nativeObj, long keypoints_mat_nativeObj, long imgDescriptor_nativeObj); + + // C++: void cv::BOWImgDescriptorExtractor::setVocabulary(Mat vocabulary) + private static native void setVocabulary_0(long nativeObj, long vocabulary_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/BOWKMeansTrainer.java b/openCVLibrary3/src/main/java/org/opencv/features2d/BOWKMeansTrainer.java new file mode 100644 index 00000000000..c578aba65e3 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/BOWKMeansTrainer.java @@ -0,0 +1,111 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import org.opencv.core.Mat; +import org.opencv.core.TermCriteria; +import org.opencv.features2d.BOWTrainer; + +// C++: class BOWKMeansTrainer +//javadoc: BOWKMeansTrainer + +public class BOWKMeansTrainer extends BOWTrainer { + + protected BOWKMeansTrainer(long addr) { super(addr); } + + // internal usage only + public static BOWKMeansTrainer __fromPtr__(long addr) { return new BOWKMeansTrainer(addr); } + + // + // C++: cv::BOWKMeansTrainer::BOWKMeansTrainer(int clusterCount, TermCriteria termcrit = TermCriteria(), int attempts = 3, int flags = KMEANS_PP_CENTERS) + // + + //javadoc: BOWKMeansTrainer::BOWKMeansTrainer(clusterCount, termcrit, attempts, flags) + public BOWKMeansTrainer(int clusterCount, TermCriteria termcrit, int attempts, int flags) + { + + super( BOWKMeansTrainer_0(clusterCount, termcrit.type, termcrit.maxCount, termcrit.epsilon, attempts, flags) ); + + return; + } + + //javadoc: BOWKMeansTrainer::BOWKMeansTrainer(clusterCount, termcrit, attempts) + public BOWKMeansTrainer(int clusterCount, TermCriteria termcrit, int attempts) + { + + super( BOWKMeansTrainer_1(clusterCount, termcrit.type, termcrit.maxCount, termcrit.epsilon, attempts) ); + + return; + } + + //javadoc: BOWKMeansTrainer::BOWKMeansTrainer(clusterCount, termcrit) + public BOWKMeansTrainer(int clusterCount, TermCriteria termcrit) + { + + super( BOWKMeansTrainer_2(clusterCount, termcrit.type, termcrit.maxCount, termcrit.epsilon) ); + + return; + } + + //javadoc: BOWKMeansTrainer::BOWKMeansTrainer(clusterCount) + public BOWKMeansTrainer(int clusterCount) + { + + super( BOWKMeansTrainer_3(clusterCount) ); + + return; + } + + + // + // C++: Mat cv::BOWKMeansTrainer::cluster(Mat descriptors) + // + + //javadoc: BOWKMeansTrainer::cluster(descriptors) + public Mat cluster(Mat descriptors) + { + + Mat retVal = new Mat(cluster_0(nativeObj, descriptors.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::BOWKMeansTrainer::cluster() + // + + //javadoc: BOWKMeansTrainer::cluster() + public Mat cluster() + { + + Mat retVal = new Mat(cluster_1(nativeObj)); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::BOWKMeansTrainer::BOWKMeansTrainer(int clusterCount, TermCriteria termcrit = TermCriteria(), int attempts = 3, int flags = KMEANS_PP_CENTERS) + private static native long BOWKMeansTrainer_0(int clusterCount, int termcrit_type, int termcrit_maxCount, double termcrit_epsilon, int attempts, int flags); + private static native long BOWKMeansTrainer_1(int clusterCount, int termcrit_type, int termcrit_maxCount, double termcrit_epsilon, int attempts); + private static native long BOWKMeansTrainer_2(int clusterCount, int termcrit_type, int termcrit_maxCount, double termcrit_epsilon); + private static native long BOWKMeansTrainer_3(int clusterCount); + + // C++: Mat cv::BOWKMeansTrainer::cluster(Mat descriptors) + private static native long cluster_0(long nativeObj, long descriptors_nativeObj); + + // C++: Mat cv::BOWKMeansTrainer::cluster() + private static native long cluster_1(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/BOWTrainer.java b/openCVLibrary3/src/main/java/org/opencv/features2d/BOWTrainer.java new file mode 100644 index 00000000000..80b2497c534 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/BOWTrainer.java @@ -0,0 +1,136 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.utils.Converters; + +// C++: class BOWTrainer +//javadoc: BOWTrainer + +public class BOWTrainer { + + protected final long nativeObj; + protected BOWTrainer(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static BOWTrainer __fromPtr__(long addr) { return new BOWTrainer(addr); } + + // + // C++: Mat cv::BOWTrainer::cluster(Mat descriptors) + // + + //javadoc: BOWTrainer::cluster(descriptors) + public Mat cluster(Mat descriptors) + { + + Mat retVal = new Mat(cluster_0(nativeObj, descriptors.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::BOWTrainer::cluster() + // + + //javadoc: BOWTrainer::cluster() + public Mat cluster() + { + + Mat retVal = new Mat(cluster_1(nativeObj)); + + return retVal; + } + + + // + // C++: int cv::BOWTrainer::descriptorsCount() + // + + //javadoc: BOWTrainer::descriptorsCount() + public int descriptorsCount() + { + + int retVal = descriptorsCount_0(nativeObj); + + return retVal; + } + + + // + // C++: vector_Mat cv::BOWTrainer::getDescriptors() + // + + //javadoc: BOWTrainer::getDescriptors() + public List getDescriptors() + { + List retVal = new ArrayList(); + Mat retValMat = new Mat(getDescriptors_0(nativeObj)); + Converters.Mat_to_vector_Mat(retValMat, retVal); + return retVal; + } + + + // + // C++: void cv::BOWTrainer::add(Mat descriptors) + // + + //javadoc: BOWTrainer::add(descriptors) + public void add(Mat descriptors) + { + + add_0(nativeObj, descriptors.nativeObj); + + return; + } + + + // + // C++: void cv::BOWTrainer::clear() + // + + //javadoc: BOWTrainer::clear() + public void clear() + { + + clear_0(nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::BOWTrainer::cluster(Mat descriptors) + private static native long cluster_0(long nativeObj, long descriptors_nativeObj); + + // C++: Mat cv::BOWTrainer::cluster() + private static native long cluster_1(long nativeObj); + + // C++: int cv::BOWTrainer::descriptorsCount() + private static native int descriptorsCount_0(long nativeObj); + + // C++: vector_Mat cv::BOWTrainer::getDescriptors() + private static native long getDescriptors_0(long nativeObj); + + // C++: void cv::BOWTrainer::add(Mat descriptors) + private static native void add_0(long nativeObj, long descriptors_nativeObj); + + // C++: void cv::BOWTrainer::clear() + private static native void clear_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/BRISK.java b/openCVLibrary3/src/main/java/org/opencv/features2d/BRISK.java new file mode 100644 index 00000000000..d045b86c67b --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/BRISK.java @@ -0,0 +1,204 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfFloat; +import org.opencv.core.MatOfInt; +import org.opencv.features2d.BRISK; +import org.opencv.features2d.Feature2D; +import org.opencv.utils.Converters; + +// C++: class BRISK +//javadoc: BRISK + +public class BRISK extends Feature2D { + + protected BRISK(long addr) { super(addr); } + + // internal usage only + public static BRISK __fromPtr__(long addr) { return new BRISK(addr); } + + // + // C++: static Ptr_BRISK cv::BRISK::create(int thresh, int octaves, vector_float radiusList, vector_int numberList, float dMax = 5.85f, float dMin = 8.2f, vector_int indexChange = std::vector()) + // + + //javadoc: BRISK::create(thresh, octaves, radiusList, numberList, dMax, dMin, indexChange) + public static BRISK create(int thresh, int octaves, MatOfFloat radiusList, MatOfInt numberList, float dMax, float dMin, MatOfInt indexChange) + { + Mat radiusList_mat = radiusList; + Mat numberList_mat = numberList; + Mat indexChange_mat = indexChange; + BRISK retVal = BRISK.__fromPtr__(create_0(thresh, octaves, radiusList_mat.nativeObj, numberList_mat.nativeObj, dMax, dMin, indexChange_mat.nativeObj)); + + return retVal; + } + + //javadoc: BRISK::create(thresh, octaves, radiusList, numberList, dMax, dMin) + public static BRISK create(int thresh, int octaves, MatOfFloat radiusList, MatOfInt numberList, float dMax, float dMin) + { + Mat radiusList_mat = radiusList; + Mat numberList_mat = numberList; + BRISK retVal = BRISK.__fromPtr__(create_1(thresh, octaves, radiusList_mat.nativeObj, numberList_mat.nativeObj, dMax, dMin)); + + return retVal; + } + + //javadoc: BRISK::create(thresh, octaves, radiusList, numberList, dMax) + public static BRISK create(int thresh, int octaves, MatOfFloat radiusList, MatOfInt numberList, float dMax) + { + Mat radiusList_mat = radiusList; + Mat numberList_mat = numberList; + BRISK retVal = BRISK.__fromPtr__(create_2(thresh, octaves, radiusList_mat.nativeObj, numberList_mat.nativeObj, dMax)); + + return retVal; + } + + //javadoc: BRISK::create(thresh, octaves, radiusList, numberList) + public static BRISK create(int thresh, int octaves, MatOfFloat radiusList, MatOfInt numberList) + { + Mat radiusList_mat = radiusList; + Mat numberList_mat = numberList; + BRISK retVal = BRISK.__fromPtr__(create_3(thresh, octaves, radiusList_mat.nativeObj, numberList_mat.nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_BRISK cv::BRISK::create(int thresh = 30, int octaves = 3, float patternScale = 1.0f) + // + + //javadoc: BRISK::create(thresh, octaves, patternScale) + public static BRISK create(int thresh, int octaves, float patternScale) + { + + BRISK retVal = BRISK.__fromPtr__(create_4(thresh, octaves, patternScale)); + + return retVal; + } + + //javadoc: BRISK::create(thresh, octaves) + public static BRISK create(int thresh, int octaves) + { + + BRISK retVal = BRISK.__fromPtr__(create_5(thresh, octaves)); + + return retVal; + } + + //javadoc: BRISK::create(thresh) + public static BRISK create(int thresh) + { + + BRISK retVal = BRISK.__fromPtr__(create_6(thresh)); + + return retVal; + } + + //javadoc: BRISK::create() + public static BRISK create() + { + + BRISK retVal = BRISK.__fromPtr__(create_7()); + + return retVal; + } + + + // + // C++: static Ptr_BRISK cv::BRISK::create(vector_float radiusList, vector_int numberList, float dMax = 5.85f, float dMin = 8.2f, vector_int indexChange = std::vector()) + // + + //javadoc: BRISK::create(radiusList, numberList, dMax, dMin, indexChange) + public static BRISK create(MatOfFloat radiusList, MatOfInt numberList, float dMax, float dMin, MatOfInt indexChange) + { + Mat radiusList_mat = radiusList; + Mat numberList_mat = numberList; + Mat indexChange_mat = indexChange; + BRISK retVal = BRISK.__fromPtr__(create_8(radiusList_mat.nativeObj, numberList_mat.nativeObj, dMax, dMin, indexChange_mat.nativeObj)); + + return retVal; + } + + //javadoc: BRISK::create(radiusList, numberList, dMax, dMin) + public static BRISK create(MatOfFloat radiusList, MatOfInt numberList, float dMax, float dMin) + { + Mat radiusList_mat = radiusList; + Mat numberList_mat = numberList; + BRISK retVal = BRISK.__fromPtr__(create_9(radiusList_mat.nativeObj, numberList_mat.nativeObj, dMax, dMin)); + + return retVal; + } + + //javadoc: BRISK::create(radiusList, numberList, dMax) + public static BRISK create(MatOfFloat radiusList, MatOfInt numberList, float dMax) + { + Mat radiusList_mat = radiusList; + Mat numberList_mat = numberList; + BRISK retVal = BRISK.__fromPtr__(create_10(radiusList_mat.nativeObj, numberList_mat.nativeObj, dMax)); + + return retVal; + } + + //javadoc: BRISK::create(radiusList, numberList) + public static BRISK create(MatOfFloat radiusList, MatOfInt numberList) + { + Mat radiusList_mat = radiusList; + Mat numberList_mat = numberList; + BRISK retVal = BRISK.__fromPtr__(create_11(radiusList_mat.nativeObj, numberList_mat.nativeObj)); + + return retVal; + } + + + // + // C++: String cv::BRISK::getDefaultName() + // + + //javadoc: BRISK::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_BRISK cv::BRISK::create(int thresh, int octaves, vector_float radiusList, vector_int numberList, float dMax = 5.85f, float dMin = 8.2f, vector_int indexChange = std::vector()) + private static native long create_0(int thresh, int octaves, long radiusList_mat_nativeObj, long numberList_mat_nativeObj, float dMax, float dMin, long indexChange_mat_nativeObj); + private static native long create_1(int thresh, int octaves, long radiusList_mat_nativeObj, long numberList_mat_nativeObj, float dMax, float dMin); + private static native long create_2(int thresh, int octaves, long radiusList_mat_nativeObj, long numberList_mat_nativeObj, float dMax); + private static native long create_3(int thresh, int octaves, long radiusList_mat_nativeObj, long numberList_mat_nativeObj); + + // C++: static Ptr_BRISK cv::BRISK::create(int thresh = 30, int octaves = 3, float patternScale = 1.0f) + private static native long create_4(int thresh, int octaves, float patternScale); + private static native long create_5(int thresh, int octaves); + private static native long create_6(int thresh); + private static native long create_7(); + + // C++: static Ptr_BRISK cv::BRISK::create(vector_float radiusList, vector_int numberList, float dMax = 5.85f, float dMin = 8.2f, vector_int indexChange = std::vector()) + private static native long create_8(long radiusList_mat_nativeObj, long numberList_mat_nativeObj, float dMax, float dMin, long indexChange_mat_nativeObj); + private static native long create_9(long radiusList_mat_nativeObj, long numberList_mat_nativeObj, float dMax, float dMin); + private static native long create_10(long radiusList_mat_nativeObj, long numberList_mat_nativeObj, float dMax); + private static native long create_11(long radiusList_mat_nativeObj, long numberList_mat_nativeObj); + + // C++: String cv::BRISK::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/DescriptorExtractor.java b/openCVLibrary3/src/main/java/org/opencv/features2d/DescriptorExtractor.java new file mode 100644 index 00000000000..2bb5d4fd23a --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/DescriptorExtractor.java @@ -0,0 +1,200 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfKeyPoint; +import org.opencv.features2d.DescriptorExtractor; +import org.opencv.utils.Converters; + +// C++: class javaDescriptorExtractor +//javadoc: javaDescriptorExtractor +@Deprecated +public class DescriptorExtractor { + + protected final long nativeObj; + protected DescriptorExtractor(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static DescriptorExtractor __fromPtr__(long addr) { return new DescriptorExtractor(addr); } + + private static final int + OPPONENTEXTRACTOR = 1000; + + + public static final int + SIFT = 1, + SURF = 2, + ORB = 3, + BRIEF = 4, + BRISK = 5, + FREAK = 6, + AKAZE = 7, + OPPONENT_SIFT = OPPONENTEXTRACTOR + SIFT, + OPPONENT_SURF = OPPONENTEXTRACTOR + SURF, + OPPONENT_ORB = OPPONENTEXTRACTOR + ORB, + OPPONENT_BRIEF = OPPONENTEXTRACTOR + BRIEF, + OPPONENT_BRISK = OPPONENTEXTRACTOR + BRISK, + OPPONENT_FREAK = OPPONENTEXTRACTOR + FREAK, + OPPONENT_AKAZE = OPPONENTEXTRACTOR + AKAZE; + + + // + // C++: static Ptr_javaDescriptorExtractor cv::javaDescriptorExtractor::create(int extractorType) + // + + //javadoc: javaDescriptorExtractor::create(extractorType) + public static DescriptorExtractor create(int extractorType) + { + + DescriptorExtractor retVal = DescriptorExtractor.__fromPtr__(create_0(extractorType)); + + return retVal; + } + + + // + // C++: bool cv::javaDescriptorExtractor::empty() + // + + //javadoc: javaDescriptorExtractor::empty() + public boolean empty() + { + + boolean retVal = empty_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::javaDescriptorExtractor::descriptorSize() + // + + //javadoc: javaDescriptorExtractor::descriptorSize() + public int descriptorSize() + { + + int retVal = descriptorSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::javaDescriptorExtractor::descriptorType() + // + + //javadoc: javaDescriptorExtractor::descriptorType() + public int descriptorType() + { + + int retVal = descriptorType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::javaDescriptorExtractor::compute(Mat image, vector_KeyPoint& keypoints, Mat descriptors) + // + + //javadoc: javaDescriptorExtractor::compute(image, keypoints, descriptors) + public void compute(Mat image, MatOfKeyPoint keypoints, Mat descriptors) + { + Mat keypoints_mat = keypoints; + compute_0(nativeObj, image.nativeObj, keypoints_mat.nativeObj, descriptors.nativeObj); + + return; + } + + + // + // C++: void cv::javaDescriptorExtractor::compute(vector_Mat images, vector_vector_KeyPoint& keypoints, vector_Mat& descriptors) + // + + //javadoc: javaDescriptorExtractor::compute(images, keypoints, descriptors) + public void compute(List images, List keypoints, List descriptors) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + List keypoints_tmplm = new ArrayList((keypoints != null) ? keypoints.size() : 0); + Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); + Mat descriptors_mat = new Mat(); + compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); + Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); + keypoints_mat.release(); + Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); + descriptors_mat.release(); + return; + } + + + // + // C++: void cv::javaDescriptorExtractor::read(String fileName) + // + + //javadoc: javaDescriptorExtractor::read(fileName) + public void read(String fileName) + { + + read_0(nativeObj, fileName); + + return; + } + + + // + // C++: void cv::javaDescriptorExtractor::write(String fileName) + // + + //javadoc: javaDescriptorExtractor::write(fileName) + public void write(String fileName) + { + + write_0(nativeObj, fileName); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_javaDescriptorExtractor cv::javaDescriptorExtractor::create(int extractorType) + private static native long create_0(int extractorType); + + // C++: bool cv::javaDescriptorExtractor::empty() + private static native boolean empty_0(long nativeObj); + + // C++: int cv::javaDescriptorExtractor::descriptorSize() + private static native int descriptorSize_0(long nativeObj); + + // C++: int cv::javaDescriptorExtractor::descriptorType() + private static native int descriptorType_0(long nativeObj); + + // C++: void cv::javaDescriptorExtractor::compute(Mat image, vector_KeyPoint& keypoints, Mat descriptors) + private static native void compute_0(long nativeObj, long image_nativeObj, long keypoints_mat_nativeObj, long descriptors_nativeObj); + + // C++: void cv::javaDescriptorExtractor::compute(vector_Mat images, vector_vector_KeyPoint& keypoints, vector_Mat& descriptors) + private static native void compute_1(long nativeObj, long images_mat_nativeObj, long keypoints_mat_nativeObj, long descriptors_mat_nativeObj); + + // C++: void cv::javaDescriptorExtractor::read(String fileName) + private static native void read_0(long nativeObj, String fileName); + + // C++: void cv::javaDescriptorExtractor::write(String fileName) + private static native void write_0(long nativeObj, String fileName); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/DescriptorMatcher.java b/openCVLibrary3/src/main/java/org/opencv/features2d/DescriptorMatcher.java new file mode 100644 index 00000000000..e295a2e6461 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/DescriptorMatcher.java @@ -0,0 +1,474 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.core.MatOfDMatch; +import org.opencv.features2d.DescriptorMatcher; +import org.opencv.utils.Converters; + +// C++: class DescriptorMatcher +//javadoc: DescriptorMatcher + +public class DescriptorMatcher extends Algorithm { + + protected DescriptorMatcher(long addr) { super(addr); } + + // internal usage only + public static DescriptorMatcher __fromPtr__(long addr) { return new DescriptorMatcher(addr); } + + public static final int + FLANNBASED = 1, + BRUTEFORCE = 2, + BRUTEFORCE_L1 = 3, + BRUTEFORCE_HAMMING = 4, + BRUTEFORCE_HAMMINGLUT = 5, + BRUTEFORCE_SL2 = 6; + + + // + // C++: Ptr_DescriptorMatcher cv::DescriptorMatcher::clone(bool emptyTrainData = false) + // + + //javadoc: DescriptorMatcher::clone(emptyTrainData) + public DescriptorMatcher clone(boolean emptyTrainData) + { + + DescriptorMatcher retVal = DescriptorMatcher.__fromPtr__(clone_0(nativeObj, emptyTrainData)); + + return retVal; + } + + //javadoc: DescriptorMatcher::clone() + public DescriptorMatcher clone() + { + + DescriptorMatcher retVal = DescriptorMatcher.__fromPtr__(clone_1(nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_DescriptorMatcher cv::DescriptorMatcher::create(String descriptorMatcherType) + // + + //javadoc: DescriptorMatcher::create(descriptorMatcherType) + public static DescriptorMatcher create(String descriptorMatcherType) + { + + DescriptorMatcher retVal = DescriptorMatcher.__fromPtr__(create_0(descriptorMatcherType)); + + return retVal; + } + + + // + // C++: static Ptr_DescriptorMatcher cv::DescriptorMatcher::create(int matcherType) + // + + //javadoc: DescriptorMatcher::create(matcherType) + public static DescriptorMatcher create(int matcherType) + { + + DescriptorMatcher retVal = DescriptorMatcher.__fromPtr__(create_1(matcherType)); + + return retVal; + } + + + // + // C++: bool cv::DescriptorMatcher::empty() + // + + //javadoc: DescriptorMatcher::empty() + public boolean empty() + { + + boolean retVal = empty_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::DescriptorMatcher::isMaskSupported() + // + + //javadoc: DescriptorMatcher::isMaskSupported() + public boolean isMaskSupported() + { + + boolean retVal = isMaskSupported_0(nativeObj); + + return retVal; + } + + + // + // C++: vector_Mat cv::DescriptorMatcher::getTrainDescriptors() + // + + //javadoc: DescriptorMatcher::getTrainDescriptors() + public List getTrainDescriptors() + { + List retVal = new ArrayList(); + Mat retValMat = new Mat(getTrainDescriptors_0(nativeObj)); + Converters.Mat_to_vector_Mat(retValMat, retVal); + return retVal; + } + + + // + // C++: void cv::DescriptorMatcher::add(vector_Mat descriptors) + // + + //javadoc: DescriptorMatcher::add(descriptors) + public void add(List descriptors) + { + Mat descriptors_mat = Converters.vector_Mat_to_Mat(descriptors); + add_0(nativeObj, descriptors_mat.nativeObj); + + return; + } + + + // + // C++: void cv::DescriptorMatcher::clear() + // + + //javadoc: DescriptorMatcher::clear() + public void clear() + { + + clear_0(nativeObj); + + return; + } + + + // + // C++: void cv::DescriptorMatcher::knnMatch(Mat queryDescriptors, Mat trainDescriptors, vector_vector_DMatch& matches, int k, Mat mask = Mat(), bool compactResult = false) + // + + //javadoc: DescriptorMatcher::knnMatch(queryDescriptors, trainDescriptors, matches, k, mask, compactResult) + public void knnMatch(Mat queryDescriptors, Mat trainDescriptors, List matches, int k, Mat mask, boolean compactResult) + { + Mat matches_mat = new Mat(); + knnMatch_0(nativeObj, queryDescriptors.nativeObj, trainDescriptors.nativeObj, matches_mat.nativeObj, k, mask.nativeObj, compactResult); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + //javadoc: DescriptorMatcher::knnMatch(queryDescriptors, trainDescriptors, matches, k, mask) + public void knnMatch(Mat queryDescriptors, Mat trainDescriptors, List matches, int k, Mat mask) + { + Mat matches_mat = new Mat(); + knnMatch_1(nativeObj, queryDescriptors.nativeObj, trainDescriptors.nativeObj, matches_mat.nativeObj, k, mask.nativeObj); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + //javadoc: DescriptorMatcher::knnMatch(queryDescriptors, trainDescriptors, matches, k) + public void knnMatch(Mat queryDescriptors, Mat trainDescriptors, List matches, int k) + { + Mat matches_mat = new Mat(); + knnMatch_2(nativeObj, queryDescriptors.nativeObj, trainDescriptors.nativeObj, matches_mat.nativeObj, k); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + + // + // C++: void cv::DescriptorMatcher::knnMatch(Mat queryDescriptors, vector_vector_DMatch& matches, int k, vector_Mat masks = vector_Mat(), bool compactResult = false) + // + + //javadoc: DescriptorMatcher::knnMatch(queryDescriptors, matches, k, masks, compactResult) + public void knnMatch(Mat queryDescriptors, List matches, int k, List masks, boolean compactResult) + { + Mat matches_mat = new Mat(); + Mat masks_mat = Converters.vector_Mat_to_Mat(masks); + knnMatch_3(nativeObj, queryDescriptors.nativeObj, matches_mat.nativeObj, k, masks_mat.nativeObj, compactResult); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + //javadoc: DescriptorMatcher::knnMatch(queryDescriptors, matches, k, masks) + public void knnMatch(Mat queryDescriptors, List matches, int k, List masks) + { + Mat matches_mat = new Mat(); + Mat masks_mat = Converters.vector_Mat_to_Mat(masks); + knnMatch_4(nativeObj, queryDescriptors.nativeObj, matches_mat.nativeObj, k, masks_mat.nativeObj); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + //javadoc: DescriptorMatcher::knnMatch(queryDescriptors, matches, k) + public void knnMatch(Mat queryDescriptors, List matches, int k) + { + Mat matches_mat = new Mat(); + knnMatch_5(nativeObj, queryDescriptors.nativeObj, matches_mat.nativeObj, k); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + + // + // C++: void cv::DescriptorMatcher::match(Mat queryDescriptors, Mat trainDescriptors, vector_DMatch& matches, Mat mask = Mat()) + // + + //javadoc: DescriptorMatcher::match(queryDescriptors, trainDescriptors, matches, mask) + public void match(Mat queryDescriptors, Mat trainDescriptors, MatOfDMatch matches, Mat mask) + { + Mat matches_mat = matches; + match_0(nativeObj, queryDescriptors.nativeObj, trainDescriptors.nativeObj, matches_mat.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: DescriptorMatcher::match(queryDescriptors, trainDescriptors, matches) + public void match(Mat queryDescriptors, Mat trainDescriptors, MatOfDMatch matches) + { + Mat matches_mat = matches; + match_1(nativeObj, queryDescriptors.nativeObj, trainDescriptors.nativeObj, matches_mat.nativeObj); + + return; + } + + + // + // C++: void cv::DescriptorMatcher::match(Mat queryDescriptors, vector_DMatch& matches, vector_Mat masks = vector_Mat()) + // + + //javadoc: DescriptorMatcher::match(queryDescriptors, matches, masks) + public void match(Mat queryDescriptors, MatOfDMatch matches, List masks) + { + Mat matches_mat = matches; + Mat masks_mat = Converters.vector_Mat_to_Mat(masks); + match_2(nativeObj, queryDescriptors.nativeObj, matches_mat.nativeObj, masks_mat.nativeObj); + + return; + } + + //javadoc: DescriptorMatcher::match(queryDescriptors, matches) + public void match(Mat queryDescriptors, MatOfDMatch matches) + { + Mat matches_mat = matches; + match_3(nativeObj, queryDescriptors.nativeObj, matches_mat.nativeObj); + + return; + } + + + // + // C++: void cv::DescriptorMatcher::radiusMatch(Mat queryDescriptors, Mat trainDescriptors, vector_vector_DMatch& matches, float maxDistance, Mat mask = Mat(), bool compactResult = false) + // + + //javadoc: DescriptorMatcher::radiusMatch(queryDescriptors, trainDescriptors, matches, maxDistance, mask, compactResult) + public void radiusMatch(Mat queryDescriptors, Mat trainDescriptors, List matches, float maxDistance, Mat mask, boolean compactResult) + { + Mat matches_mat = new Mat(); + radiusMatch_0(nativeObj, queryDescriptors.nativeObj, trainDescriptors.nativeObj, matches_mat.nativeObj, maxDistance, mask.nativeObj, compactResult); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + //javadoc: DescriptorMatcher::radiusMatch(queryDescriptors, trainDescriptors, matches, maxDistance, mask) + public void radiusMatch(Mat queryDescriptors, Mat trainDescriptors, List matches, float maxDistance, Mat mask) + { + Mat matches_mat = new Mat(); + radiusMatch_1(nativeObj, queryDescriptors.nativeObj, trainDescriptors.nativeObj, matches_mat.nativeObj, maxDistance, mask.nativeObj); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + //javadoc: DescriptorMatcher::radiusMatch(queryDescriptors, trainDescriptors, matches, maxDistance) + public void radiusMatch(Mat queryDescriptors, Mat trainDescriptors, List matches, float maxDistance) + { + Mat matches_mat = new Mat(); + radiusMatch_2(nativeObj, queryDescriptors.nativeObj, trainDescriptors.nativeObj, matches_mat.nativeObj, maxDistance); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + + // + // C++: void cv::DescriptorMatcher::radiusMatch(Mat queryDescriptors, vector_vector_DMatch& matches, float maxDistance, vector_Mat masks = vector_Mat(), bool compactResult = false) + // + + //javadoc: DescriptorMatcher::radiusMatch(queryDescriptors, matches, maxDistance, masks, compactResult) + public void radiusMatch(Mat queryDescriptors, List matches, float maxDistance, List masks, boolean compactResult) + { + Mat matches_mat = new Mat(); + Mat masks_mat = Converters.vector_Mat_to_Mat(masks); + radiusMatch_3(nativeObj, queryDescriptors.nativeObj, matches_mat.nativeObj, maxDistance, masks_mat.nativeObj, compactResult); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + //javadoc: DescriptorMatcher::radiusMatch(queryDescriptors, matches, maxDistance, masks) + public void radiusMatch(Mat queryDescriptors, List matches, float maxDistance, List masks) + { + Mat matches_mat = new Mat(); + Mat masks_mat = Converters.vector_Mat_to_Mat(masks); + radiusMatch_4(nativeObj, queryDescriptors.nativeObj, matches_mat.nativeObj, maxDistance, masks_mat.nativeObj); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + //javadoc: DescriptorMatcher::radiusMatch(queryDescriptors, matches, maxDistance) + public void radiusMatch(Mat queryDescriptors, List matches, float maxDistance) + { + Mat matches_mat = new Mat(); + radiusMatch_5(nativeObj, queryDescriptors.nativeObj, matches_mat.nativeObj, maxDistance); + Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); + matches_mat.release(); + return; + } + + + // + // C++: void cv::DescriptorMatcher::read(FileNode arg1) + // + + // Unknown type 'FileNode' (I), skipping the function + + + // + // C++: void cv::DescriptorMatcher::read(String fileName) + // + + //javadoc: DescriptorMatcher::read(fileName) + public void read(String fileName) + { + + read_0(nativeObj, fileName); + + return; + } + + + // + // C++: void cv::DescriptorMatcher::train() + // + + //javadoc: DescriptorMatcher::train() + public void train() + { + + train_0(nativeObj); + + return; + } + + + // + // C++: void cv::DescriptorMatcher::write(Ptr_FileStorage fs, String name = String()) + // + + // Unknown type 'Ptr_FileStorage' (I), skipping the function + + + // + // C++: void cv::DescriptorMatcher::write(String fileName) + // + + //javadoc: DescriptorMatcher::write(fileName) + public void write(String fileName) + { + + write_0(nativeObj, fileName); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Ptr_DescriptorMatcher cv::DescriptorMatcher::clone(bool emptyTrainData = false) + private static native long clone_0(long nativeObj, boolean emptyTrainData); + private static native long clone_1(long nativeObj); + + // C++: static Ptr_DescriptorMatcher cv::DescriptorMatcher::create(String descriptorMatcherType) + private static native long create_0(String descriptorMatcherType); + + // C++: static Ptr_DescriptorMatcher cv::DescriptorMatcher::create(int matcherType) + private static native long create_1(int matcherType); + + // C++: bool cv::DescriptorMatcher::empty() + private static native boolean empty_0(long nativeObj); + + // C++: bool cv::DescriptorMatcher::isMaskSupported() + private static native boolean isMaskSupported_0(long nativeObj); + + // C++: vector_Mat cv::DescriptorMatcher::getTrainDescriptors() + private static native long getTrainDescriptors_0(long nativeObj); + + // C++: void cv::DescriptorMatcher::add(vector_Mat descriptors) + private static native void add_0(long nativeObj, long descriptors_mat_nativeObj); + + // C++: void cv::DescriptorMatcher::clear() + private static native void clear_0(long nativeObj); + + // C++: void cv::DescriptorMatcher::knnMatch(Mat queryDescriptors, Mat trainDescriptors, vector_vector_DMatch& matches, int k, Mat mask = Mat(), bool compactResult = false) + private static native void knnMatch_0(long nativeObj, long queryDescriptors_nativeObj, long trainDescriptors_nativeObj, long matches_mat_nativeObj, int k, long mask_nativeObj, boolean compactResult); + private static native void knnMatch_1(long nativeObj, long queryDescriptors_nativeObj, long trainDescriptors_nativeObj, long matches_mat_nativeObj, int k, long mask_nativeObj); + private static native void knnMatch_2(long nativeObj, long queryDescriptors_nativeObj, long trainDescriptors_nativeObj, long matches_mat_nativeObj, int k); + + // C++: void cv::DescriptorMatcher::knnMatch(Mat queryDescriptors, vector_vector_DMatch& matches, int k, vector_Mat masks = vector_Mat(), bool compactResult = false) + private static native void knnMatch_3(long nativeObj, long queryDescriptors_nativeObj, long matches_mat_nativeObj, int k, long masks_mat_nativeObj, boolean compactResult); + private static native void knnMatch_4(long nativeObj, long queryDescriptors_nativeObj, long matches_mat_nativeObj, int k, long masks_mat_nativeObj); + private static native void knnMatch_5(long nativeObj, long queryDescriptors_nativeObj, long matches_mat_nativeObj, int k); + + // C++: void cv::DescriptorMatcher::match(Mat queryDescriptors, Mat trainDescriptors, vector_DMatch& matches, Mat mask = Mat()) + private static native void match_0(long nativeObj, long queryDescriptors_nativeObj, long trainDescriptors_nativeObj, long matches_mat_nativeObj, long mask_nativeObj); + private static native void match_1(long nativeObj, long queryDescriptors_nativeObj, long trainDescriptors_nativeObj, long matches_mat_nativeObj); + + // C++: void cv::DescriptorMatcher::match(Mat queryDescriptors, vector_DMatch& matches, vector_Mat masks = vector_Mat()) + private static native void match_2(long nativeObj, long queryDescriptors_nativeObj, long matches_mat_nativeObj, long masks_mat_nativeObj); + private static native void match_3(long nativeObj, long queryDescriptors_nativeObj, long matches_mat_nativeObj); + + // C++: void cv::DescriptorMatcher::radiusMatch(Mat queryDescriptors, Mat trainDescriptors, vector_vector_DMatch& matches, float maxDistance, Mat mask = Mat(), bool compactResult = false) + private static native void radiusMatch_0(long nativeObj, long queryDescriptors_nativeObj, long trainDescriptors_nativeObj, long matches_mat_nativeObj, float maxDistance, long mask_nativeObj, boolean compactResult); + private static native void radiusMatch_1(long nativeObj, long queryDescriptors_nativeObj, long trainDescriptors_nativeObj, long matches_mat_nativeObj, float maxDistance, long mask_nativeObj); + private static native void radiusMatch_2(long nativeObj, long queryDescriptors_nativeObj, long trainDescriptors_nativeObj, long matches_mat_nativeObj, float maxDistance); + + // C++: void cv::DescriptorMatcher::radiusMatch(Mat queryDescriptors, vector_vector_DMatch& matches, float maxDistance, vector_Mat masks = vector_Mat(), bool compactResult = false) + private static native void radiusMatch_3(long nativeObj, long queryDescriptors_nativeObj, long matches_mat_nativeObj, float maxDistance, long masks_mat_nativeObj, boolean compactResult); + private static native void radiusMatch_4(long nativeObj, long queryDescriptors_nativeObj, long matches_mat_nativeObj, float maxDistance, long masks_mat_nativeObj); + private static native void radiusMatch_5(long nativeObj, long queryDescriptors_nativeObj, long matches_mat_nativeObj, float maxDistance); + + // C++: void cv::DescriptorMatcher::read(String fileName) + private static native void read_0(long nativeObj, String fileName); + + // C++: void cv::DescriptorMatcher::train() + private static native void train_0(long nativeObj); + + // C++: void cv::DescriptorMatcher::write(String fileName) + private static native void write_0(long nativeObj, String fileName); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/FastFeatureDetector.java b/openCVLibrary3/src/main/java/org/opencv/features2d/FastFeatureDetector.java new file mode 100644 index 00000000000..a272ec92f38 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/FastFeatureDetector.java @@ -0,0 +1,205 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import org.opencv.features2d.FastFeatureDetector; +import org.opencv.features2d.Feature2D; + +// C++: class FastFeatureDetector +//javadoc: FastFeatureDetector + +public class FastFeatureDetector extends Feature2D { + + protected FastFeatureDetector(long addr) { super(addr); } + + // internal usage only + public static FastFeatureDetector __fromPtr__(long addr) { return new FastFeatureDetector(addr); } + + public static final int + TYPE_5_8 = 0, + TYPE_7_12 = 1, + TYPE_9_16 = 2, + THRESHOLD = 10000, + NONMAX_SUPPRESSION = 10001, + FAST_N = 10002; + + + // + // C++: static Ptr_FastFeatureDetector cv::FastFeatureDetector::create(int threshold = 10, bool nonmaxSuppression = true, int type = FastFeatureDetector::TYPE_9_16) + // + + //javadoc: FastFeatureDetector::create(threshold, nonmaxSuppression, type) + public static FastFeatureDetector create(int threshold, boolean nonmaxSuppression, int type) + { + + FastFeatureDetector retVal = FastFeatureDetector.__fromPtr__(create_0(threshold, nonmaxSuppression, type)); + + return retVal; + } + + //javadoc: FastFeatureDetector::create(threshold, nonmaxSuppression) + public static FastFeatureDetector create(int threshold, boolean nonmaxSuppression) + { + + FastFeatureDetector retVal = FastFeatureDetector.__fromPtr__(create_1(threshold, nonmaxSuppression)); + + return retVal; + } + + //javadoc: FastFeatureDetector::create(threshold) + public static FastFeatureDetector create(int threshold) + { + + FastFeatureDetector retVal = FastFeatureDetector.__fromPtr__(create_2(threshold)); + + return retVal; + } + + //javadoc: FastFeatureDetector::create() + public static FastFeatureDetector create() + { + + FastFeatureDetector retVal = FastFeatureDetector.__fromPtr__(create_3()); + + return retVal; + } + + + // + // C++: String cv::FastFeatureDetector::getDefaultName() + // + + //javadoc: FastFeatureDetector::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::FastFeatureDetector::getNonmaxSuppression() + // + + //javadoc: FastFeatureDetector::getNonmaxSuppression() + public boolean getNonmaxSuppression() + { + + boolean retVal = getNonmaxSuppression_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::FastFeatureDetector::getThreshold() + // + + //javadoc: FastFeatureDetector::getThreshold() + public int getThreshold() + { + + int retVal = getThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::FastFeatureDetector::getType() + // + + //javadoc: FastFeatureDetector::getType() + public int getType() + { + + int retVal = getType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::FastFeatureDetector::setNonmaxSuppression(bool f) + // + + //javadoc: FastFeatureDetector::setNonmaxSuppression(f) + public void setNonmaxSuppression(boolean f) + { + + setNonmaxSuppression_0(nativeObj, f); + + return; + } + + + // + // C++: void cv::FastFeatureDetector::setThreshold(int threshold) + // + + //javadoc: FastFeatureDetector::setThreshold(threshold) + public void setThreshold(int threshold) + { + + setThreshold_0(nativeObj, threshold); + + return; + } + + + // + // C++: void cv::FastFeatureDetector::setType(int type) + // + + //javadoc: FastFeatureDetector::setType(type) + public void setType(int type) + { + + setType_0(nativeObj, type); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_FastFeatureDetector cv::FastFeatureDetector::create(int threshold = 10, bool nonmaxSuppression = true, int type = FastFeatureDetector::TYPE_9_16) + private static native long create_0(int threshold, boolean nonmaxSuppression, int type); + private static native long create_1(int threshold, boolean nonmaxSuppression); + private static native long create_2(int threshold); + private static native long create_3(); + + // C++: String cv::FastFeatureDetector::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: bool cv::FastFeatureDetector::getNonmaxSuppression() + private static native boolean getNonmaxSuppression_0(long nativeObj); + + // C++: int cv::FastFeatureDetector::getThreshold() + private static native int getThreshold_0(long nativeObj); + + // C++: int cv::FastFeatureDetector::getType() + private static native int getType_0(long nativeObj); + + // C++: void cv::FastFeatureDetector::setNonmaxSuppression(bool f) + private static native void setNonmaxSuppression_0(long nativeObj, boolean f); + + // C++: void cv::FastFeatureDetector::setThreshold(int threshold) + private static native void setThreshold_0(long nativeObj, int threshold); + + // C++: void cv::FastFeatureDetector::setType(int type) + private static native void setType_0(long nativeObj, int type); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/Feature2D.java b/openCVLibrary3/src/main/java/org/opencv/features2d/Feature2D.java new file mode 100644 index 00000000000..07100341ed0 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/Feature2D.java @@ -0,0 +1,293 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.core.MatOfKeyPoint; +import org.opencv.utils.Converters; + +// C++: class Feature2D +//javadoc: Feature2D + +public class Feature2D extends Algorithm { + + protected Feature2D(long addr) { super(addr); } + + // internal usage only + public static Feature2D __fromPtr__(long addr) { return new Feature2D(addr); } + + // + // C++: String cv::Feature2D::getDefaultName() + // + + //javadoc: Feature2D::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::Feature2D::empty() + // + + //javadoc: Feature2D::empty() + public boolean empty() + { + + boolean retVal = empty_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::Feature2D::defaultNorm() + // + + //javadoc: Feature2D::defaultNorm() + public int defaultNorm() + { + + int retVal = defaultNorm_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::Feature2D::descriptorSize() + // + + //javadoc: Feature2D::descriptorSize() + public int descriptorSize() + { + + int retVal = descriptorSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::Feature2D::descriptorType() + // + + //javadoc: Feature2D::descriptorType() + public int descriptorType() + { + + int retVal = descriptorType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::Feature2D::compute(Mat image, vector_KeyPoint& keypoints, Mat& descriptors) + // + + //javadoc: Feature2D::compute(image, keypoints, descriptors) + public void compute(Mat image, MatOfKeyPoint keypoints, Mat descriptors) + { + Mat keypoints_mat = keypoints; + compute_0(nativeObj, image.nativeObj, keypoints_mat.nativeObj, descriptors.nativeObj); + + return; + } + + + // + // C++: void cv::Feature2D::compute(vector_Mat images, vector_vector_KeyPoint& keypoints, vector_Mat& descriptors) + // + + //javadoc: Feature2D::compute(images, keypoints, descriptors) + public void compute(List images, List keypoints, List descriptors) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + List keypoints_tmplm = new ArrayList((keypoints != null) ? keypoints.size() : 0); + Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); + Mat descriptors_mat = new Mat(); + compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); + Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); + keypoints_mat.release(); + Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); + descriptors_mat.release(); + return; + } + + + // + // C++: void cv::Feature2D::detect(Mat image, vector_KeyPoint& keypoints, Mat mask = Mat()) + // + + //javadoc: Feature2D::detect(image, keypoints, mask) + public void detect(Mat image, MatOfKeyPoint keypoints, Mat mask) + { + Mat keypoints_mat = keypoints; + detect_0(nativeObj, image.nativeObj, keypoints_mat.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: Feature2D::detect(image, keypoints) + public void detect(Mat image, MatOfKeyPoint keypoints) + { + Mat keypoints_mat = keypoints; + detect_1(nativeObj, image.nativeObj, keypoints_mat.nativeObj); + + return; + } + + + // + // C++: void cv::Feature2D::detect(vector_Mat images, vector_vector_KeyPoint& keypoints, vector_Mat masks = vector_Mat()) + // + + //javadoc: Feature2D::detect(images, keypoints, masks) + public void detect(List images, List keypoints, List masks) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat keypoints_mat = new Mat(); + Mat masks_mat = Converters.vector_Mat_to_Mat(masks); + detect_2(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, masks_mat.nativeObj); + Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); + keypoints_mat.release(); + return; + } + + //javadoc: Feature2D::detect(images, keypoints) + public void detect(List images, List keypoints) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat keypoints_mat = new Mat(); + detect_3(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj); + Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); + keypoints_mat.release(); + return; + } + + + // + // C++: void cv::Feature2D::detectAndCompute(Mat image, Mat mask, vector_KeyPoint& keypoints, Mat& descriptors, bool useProvidedKeypoints = false) + // + + //javadoc: Feature2D::detectAndCompute(image, mask, keypoints, descriptors, useProvidedKeypoints) + public void detectAndCompute(Mat image, Mat mask, MatOfKeyPoint keypoints, Mat descriptors, boolean useProvidedKeypoints) + { + Mat keypoints_mat = keypoints; + detectAndCompute_0(nativeObj, image.nativeObj, mask.nativeObj, keypoints_mat.nativeObj, descriptors.nativeObj, useProvidedKeypoints); + + return; + } + + //javadoc: Feature2D::detectAndCompute(image, mask, keypoints, descriptors) + public void detectAndCompute(Mat image, Mat mask, MatOfKeyPoint keypoints, Mat descriptors) + { + Mat keypoints_mat = keypoints; + detectAndCompute_1(nativeObj, image.nativeObj, mask.nativeObj, keypoints_mat.nativeObj, descriptors.nativeObj); + + return; + } + + + // + // C++: void cv::Feature2D::read(FileNode arg1) + // + + // Unknown type 'FileNode' (I), skipping the function + + + // + // C++: void cv::Feature2D::read(String fileName) + // + + //javadoc: Feature2D::read(fileName) + public void read(String fileName) + { + + read_0(nativeObj, fileName); + + return; + } + + + // + // C++: void cv::Feature2D::write(Ptr_FileStorage fs, String name = String()) + // + + // Unknown type 'Ptr_FileStorage' (I), skipping the function + + + // + // C++: void cv::Feature2D::write(String fileName) + // + + //javadoc: Feature2D::write(fileName) + public void write(String fileName) + { + + write_0(nativeObj, fileName); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: String cv::Feature2D::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: bool cv::Feature2D::empty() + private static native boolean empty_0(long nativeObj); + + // C++: int cv::Feature2D::defaultNorm() + private static native int defaultNorm_0(long nativeObj); + + // C++: int cv::Feature2D::descriptorSize() + private static native int descriptorSize_0(long nativeObj); + + // C++: int cv::Feature2D::descriptorType() + private static native int descriptorType_0(long nativeObj); + + // C++: void cv::Feature2D::compute(Mat image, vector_KeyPoint& keypoints, Mat& descriptors) + private static native void compute_0(long nativeObj, long image_nativeObj, long keypoints_mat_nativeObj, long descriptors_nativeObj); + + // C++: void cv::Feature2D::compute(vector_Mat images, vector_vector_KeyPoint& keypoints, vector_Mat& descriptors) + private static native void compute_1(long nativeObj, long images_mat_nativeObj, long keypoints_mat_nativeObj, long descriptors_mat_nativeObj); + + // C++: void cv::Feature2D::detect(Mat image, vector_KeyPoint& keypoints, Mat mask = Mat()) + private static native void detect_0(long nativeObj, long image_nativeObj, long keypoints_mat_nativeObj, long mask_nativeObj); + private static native void detect_1(long nativeObj, long image_nativeObj, long keypoints_mat_nativeObj); + + // C++: void cv::Feature2D::detect(vector_Mat images, vector_vector_KeyPoint& keypoints, vector_Mat masks = vector_Mat()) + private static native void detect_2(long nativeObj, long images_mat_nativeObj, long keypoints_mat_nativeObj, long masks_mat_nativeObj); + private static native void detect_3(long nativeObj, long images_mat_nativeObj, long keypoints_mat_nativeObj); + + // C++: void cv::Feature2D::detectAndCompute(Mat image, Mat mask, vector_KeyPoint& keypoints, Mat& descriptors, bool useProvidedKeypoints = false) + private static native void detectAndCompute_0(long nativeObj, long image_nativeObj, long mask_nativeObj, long keypoints_mat_nativeObj, long descriptors_nativeObj, boolean useProvidedKeypoints); + private static native void detectAndCompute_1(long nativeObj, long image_nativeObj, long mask_nativeObj, long keypoints_mat_nativeObj, long descriptors_nativeObj); + + // C++: void cv::Feature2D::read(String fileName) + private static native void read_0(long nativeObj, String fileName); + + // C++: void cv::Feature2D::write(String fileName) + private static native void write_0(long nativeObj, String fileName); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/FeatureDetector.java b/openCVLibrary3/src/main/java/org/opencv/features2d/FeatureDetector.java new file mode 100644 index 00000000000..b8c04735980 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/FeatureDetector.java @@ -0,0 +1,222 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfKeyPoint; +import org.opencv.features2d.FeatureDetector; +import org.opencv.utils.Converters; + +// C++: class javaFeatureDetector +//javadoc: javaFeatureDetector +@Deprecated +public class FeatureDetector { + + protected final long nativeObj; + protected FeatureDetector(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static FeatureDetector __fromPtr__(long addr) { return new FeatureDetector(addr); } + + private static final int + GRIDDETECTOR = 1000, + PYRAMIDDETECTOR = 2000, + DYNAMICDETECTOR = 3000; + + + public static final int + FAST = 1, + STAR = 2, + SIFT = 3, + SURF = 4, + ORB = 5, + MSER = 6, + GFTT = 7, + HARRIS = 8, + SIMPLEBLOB = 9, + DENSE = 10, + BRISK = 11, + AKAZE = 12, + GRID_FAST = GRIDDETECTOR + FAST, + GRID_STAR = GRIDDETECTOR + STAR, + GRID_SIFT = GRIDDETECTOR + SIFT, + GRID_SURF = GRIDDETECTOR + SURF, + GRID_ORB = GRIDDETECTOR + ORB, + GRID_MSER = GRIDDETECTOR + MSER, + GRID_GFTT = GRIDDETECTOR + GFTT, + GRID_HARRIS = GRIDDETECTOR + HARRIS, + GRID_SIMPLEBLOB = GRIDDETECTOR + SIMPLEBLOB, + GRID_DENSE = GRIDDETECTOR + DENSE, + GRID_BRISK = GRIDDETECTOR + BRISK, + GRID_AKAZE = GRIDDETECTOR + AKAZE, + PYRAMID_FAST = PYRAMIDDETECTOR + FAST, + PYRAMID_STAR = PYRAMIDDETECTOR + STAR, + PYRAMID_SIFT = PYRAMIDDETECTOR + SIFT, + PYRAMID_SURF = PYRAMIDDETECTOR + SURF, + PYRAMID_ORB = PYRAMIDDETECTOR + ORB, + PYRAMID_MSER = PYRAMIDDETECTOR + MSER, + PYRAMID_GFTT = PYRAMIDDETECTOR + GFTT, + PYRAMID_HARRIS = PYRAMIDDETECTOR + HARRIS, + PYRAMID_SIMPLEBLOB = PYRAMIDDETECTOR + SIMPLEBLOB, + PYRAMID_DENSE = PYRAMIDDETECTOR + DENSE, + PYRAMID_BRISK = PYRAMIDDETECTOR + BRISK, + PYRAMID_AKAZE = PYRAMIDDETECTOR + AKAZE, + DYNAMIC_FAST = DYNAMICDETECTOR + FAST, + DYNAMIC_STAR = DYNAMICDETECTOR + STAR, + DYNAMIC_SIFT = DYNAMICDETECTOR + SIFT, + DYNAMIC_SURF = DYNAMICDETECTOR + SURF, + DYNAMIC_ORB = DYNAMICDETECTOR + ORB, + DYNAMIC_MSER = DYNAMICDETECTOR + MSER, + DYNAMIC_GFTT = DYNAMICDETECTOR + GFTT, + DYNAMIC_HARRIS = DYNAMICDETECTOR + HARRIS, + DYNAMIC_SIMPLEBLOB = DYNAMICDETECTOR + SIMPLEBLOB, + DYNAMIC_DENSE = DYNAMICDETECTOR + DENSE, + DYNAMIC_BRISK = DYNAMICDETECTOR + BRISK, + DYNAMIC_AKAZE = DYNAMICDETECTOR + AKAZE; + + + // + // C++: static Ptr_javaFeatureDetector cv::javaFeatureDetector::create(int detectorType) + // + + //javadoc: javaFeatureDetector::create(detectorType) + @Deprecated + public static FeatureDetector create(int detectorType) + { + + FeatureDetector retVal = FeatureDetector.__fromPtr__(create_0(detectorType)); + + return retVal; + } + + + // + // C++: bool cv::javaFeatureDetector::empty() + // + + //javadoc: javaFeatureDetector::empty() + public boolean empty() + { + + boolean retVal = empty_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::javaFeatureDetector::detect(Mat image, vector_KeyPoint& keypoints, Mat mask = Mat()) + // + + //javadoc: javaFeatureDetector::detect(image, keypoints, mask) + public void detect(Mat image, MatOfKeyPoint keypoints, Mat mask) + { + Mat keypoints_mat = keypoints; + detect_0(nativeObj, image.nativeObj, keypoints_mat.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: javaFeatureDetector::detect(image, keypoints) + public void detect(Mat image, MatOfKeyPoint keypoints) + { + Mat keypoints_mat = keypoints; + detect_1(nativeObj, image.nativeObj, keypoints_mat.nativeObj); + + return; + } + + + // + // C++: void cv::javaFeatureDetector::detect(vector_Mat images, vector_vector_KeyPoint& keypoints, vector_Mat masks = std::vector()) + // + + //javadoc: javaFeatureDetector::detect(images, keypoints, masks) + public void detect(List images, List keypoints, List masks) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat keypoints_mat = new Mat(); + Mat masks_mat = Converters.vector_Mat_to_Mat(masks); + detect_2(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, masks_mat.nativeObj); + Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); + keypoints_mat.release(); + return; + } + + //javadoc: javaFeatureDetector::detect(images, keypoints) + public void detect(List images, List keypoints) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat keypoints_mat = new Mat(); + detect_3(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj); + Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); + keypoints_mat.release(); + return; + } + + + // + // C++: void cv::javaFeatureDetector::read(String fileName) + // + + //javadoc: javaFeatureDetector::read(fileName) + public void read(String fileName) + { + + read_0(nativeObj, fileName); + + return; + } + + + // + // C++: void cv::javaFeatureDetector::write(String fileName) + // + + //javadoc: javaFeatureDetector::write(fileName) + public void write(String fileName) + { + + write_0(nativeObj, fileName); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_javaFeatureDetector cv::javaFeatureDetector::create(int detectorType) + private static native long create_0(int detectorType); + + // C++: bool cv::javaFeatureDetector::empty() + private static native boolean empty_0(long nativeObj); + + // C++: void cv::javaFeatureDetector::detect(Mat image, vector_KeyPoint& keypoints, Mat mask = Mat()) + private static native void detect_0(long nativeObj, long image_nativeObj, long keypoints_mat_nativeObj, long mask_nativeObj); + private static native void detect_1(long nativeObj, long image_nativeObj, long keypoints_mat_nativeObj); + + // C++: void cv::javaFeatureDetector::detect(vector_Mat images, vector_vector_KeyPoint& keypoints, vector_Mat masks = std::vector()) + private static native void detect_2(long nativeObj, long images_mat_nativeObj, long keypoints_mat_nativeObj, long masks_mat_nativeObj); + private static native void detect_3(long nativeObj, long images_mat_nativeObj, long keypoints_mat_nativeObj); + + // C++: void cv::javaFeatureDetector::read(String fileName) + private static native void read_0(long nativeObj, String fileName); + + // C++: void cv::javaFeatureDetector::write(String fileName) + private static native void write_0(long nativeObj, String fileName); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/Features2d.java b/openCVLibrary3/src/main/java/org/opencv/features2d/Features2d.java new file mode 100644 index 00000000000..85e695716c0 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/Features2d.java @@ -0,0 +1,286 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfByte; +import org.opencv.core.MatOfDMatch; +import org.opencv.core.MatOfKeyPoint; +import org.opencv.core.Scalar; +import org.opencv.utils.Converters; + +// C++: class Features2d +//javadoc: Features2d + +public class Features2d { + + public static final int + DRAW_OVER_OUTIMG = 1, + NOT_DRAW_SINGLE_POINTS = 2, + DRAW_RICH_KEYPOINTS = 4; + + + // + // C++: void cv::drawKeypoints(Mat image, vector_KeyPoint keypoints, Mat& outImage, Scalar color = Scalar::all(-1), int flags = DrawMatchesFlags::DEFAULT) + // + + //javadoc: drawKeypoints(image, keypoints, outImage, color, flags) + public static void drawKeypoints(Mat image, MatOfKeyPoint keypoints, Mat outImage, Scalar color, int flags) + { + Mat keypoints_mat = keypoints; + drawKeypoints_0(image.nativeObj, keypoints_mat.nativeObj, outImage.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], flags); + + return; + } + + //javadoc: drawKeypoints(image, keypoints, outImage, color) + public static void drawKeypoints(Mat image, MatOfKeyPoint keypoints, Mat outImage, Scalar color) + { + Mat keypoints_mat = keypoints; + drawKeypoints_1(image.nativeObj, keypoints_mat.nativeObj, outImage.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + //javadoc: drawKeypoints(image, keypoints, outImage) + public static void drawKeypoints(Mat image, MatOfKeyPoint keypoints, Mat outImage) + { + Mat keypoints_mat = keypoints; + drawKeypoints_2(image.nativeObj, keypoints_mat.nativeObj, outImage.nativeObj); + + return; + } + + + // + // C++: void cv::drawMatches(Mat img1, vector_KeyPoint keypoints1, Mat img2, vector_KeyPoint keypoints2, vector_DMatch matches1to2, Mat& outImg, Scalar matchColor = Scalar::all(-1), Scalar singlePointColor = Scalar::all(-1), vector_char matchesMask = std::vector(), int flags = DrawMatchesFlags::DEFAULT) + // + + //javadoc: drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor, matchesMask, flags) + public static void drawMatches(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, MatOfDMatch matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor, MatOfByte matchesMask, int flags) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + Mat matches1to2_mat = matches1to2; + Mat matchesMask_mat = matchesMask; + drawMatches_0(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3], matchesMask_mat.nativeObj, flags); + + return; + } + + //javadoc: drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor, matchesMask) + public static void drawMatches(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, MatOfDMatch matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor, MatOfByte matchesMask) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + Mat matches1to2_mat = matches1to2; + Mat matchesMask_mat = matchesMask; + drawMatches_1(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3], matchesMask_mat.nativeObj); + + return; + } + + //javadoc: drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor) + public static void drawMatches(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, MatOfDMatch matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + Mat matches1to2_mat = matches1to2; + drawMatches_2(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3]); + + return; + } + + //javadoc: drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor) + public static void drawMatches(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, MatOfDMatch matches1to2, Mat outImg, Scalar matchColor) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + Mat matches1to2_mat = matches1to2; + drawMatches_3(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3]); + + return; + } + + //javadoc: drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg) + public static void drawMatches(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, MatOfDMatch matches1to2, Mat outImg) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + Mat matches1to2_mat = matches1to2; + drawMatches_4(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj); + + return; + } + + + // + // C++: void cv::drawMatches(Mat img1, vector_KeyPoint keypoints1, Mat img2, vector_KeyPoint keypoints2, vector_vector_DMatch matches1to2, Mat outImg, Scalar matchColor = Scalar::all(-1), Scalar singlePointColor = Scalar::all(-1), vector_vector_char matchesMask = std::vector >(), int flags = 0) + // + + //javadoc: drawMatches2(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor, matchesMask, flags) + public static void drawMatches2(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor, List matchesMask, int flags) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + List matchesMask_tmplm = new ArrayList((matchesMask != null) ? matchesMask.size() : 0); + Mat matchesMask_mat = Converters.vector_vector_char_to_Mat(matchesMask, matchesMask_tmplm); + drawMatches2_0(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3], matchesMask_mat.nativeObj, flags); + + return; + } + + //javadoc: drawMatches2(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor, matchesMask) + public static void drawMatches2(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor, List matchesMask) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + List matchesMask_tmplm = new ArrayList((matchesMask != null) ? matchesMask.size() : 0); + Mat matchesMask_mat = Converters.vector_vector_char_to_Mat(matchesMask, matchesMask_tmplm); + drawMatches2_1(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3], matchesMask_mat.nativeObj); + + return; + } + + //javadoc: drawMatches2(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor) + public static void drawMatches2(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + drawMatches2_2(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3]); + + return; + } + + //javadoc: drawMatches2(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor) + public static void drawMatches2(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg, Scalar matchColor) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + drawMatches2_3(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3]); + + return; + } + + //javadoc: drawMatches2(img1, keypoints1, img2, keypoints2, matches1to2, outImg) + public static void drawMatches2(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + drawMatches2_4(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj); + + return; + } + + + // + // C++: void cv::drawMatches(Mat img1, vector_KeyPoint keypoints1, Mat img2, vector_KeyPoint keypoints2, vector_vector_DMatch matches1to2, Mat& outImg, Scalar matchColor = Scalar::all(-1), Scalar singlePointColor = Scalar::all(-1), vector_vector_char matchesMask = std::vector >(), int flags = DrawMatchesFlags::DEFAULT) + // + + //javadoc: drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor, matchesMask, flags) + public static void drawMatchesKnn(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor, List matchesMask, int flags) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + List matchesMask_tmplm = new ArrayList((matchesMask != null) ? matchesMask.size() : 0); + Mat matchesMask_mat = Converters.vector_vector_char_to_Mat(matchesMask, matchesMask_tmplm); + drawMatchesKnn_0(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3], matchesMask_mat.nativeObj, flags); + + return; + } + + //javadoc: drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor, matchesMask) + public static void drawMatchesKnn(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor, List matchesMask) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + List matchesMask_tmplm = new ArrayList((matchesMask != null) ? matchesMask.size() : 0); + Mat matchesMask_mat = Converters.vector_vector_char_to_Mat(matchesMask, matchesMask_tmplm); + drawMatchesKnn_1(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3], matchesMask_mat.nativeObj); + + return; + } + + //javadoc: drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor, singlePointColor) + public static void drawMatchesKnn(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg, Scalar matchColor, Scalar singlePointColor) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + drawMatchesKnn_2(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3], singlePointColor.val[0], singlePointColor.val[1], singlePointColor.val[2], singlePointColor.val[3]); + + return; + } + + //javadoc: drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor) + public static void drawMatchesKnn(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg, Scalar matchColor) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + drawMatchesKnn_3(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj, matchColor.val[0], matchColor.val[1], matchColor.val[2], matchColor.val[3]); + + return; + } + + //javadoc: drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg) + public static void drawMatchesKnn(Mat img1, MatOfKeyPoint keypoints1, Mat img2, MatOfKeyPoint keypoints2, List matches1to2, Mat outImg) + { + Mat keypoints1_mat = keypoints1; + Mat keypoints2_mat = keypoints2; + List matches1to2_tmplm = new ArrayList((matches1to2 != null) ? matches1to2.size() : 0); + Mat matches1to2_mat = Converters.vector_vector_DMatch_to_Mat(matches1to2, matches1to2_tmplm); + drawMatchesKnn_4(img1.nativeObj, keypoints1_mat.nativeObj, img2.nativeObj, keypoints2_mat.nativeObj, matches1to2_mat.nativeObj, outImg.nativeObj); + + return; + } + + + + + // C++: void cv::drawKeypoints(Mat image, vector_KeyPoint keypoints, Mat& outImage, Scalar color = Scalar::all(-1), int flags = DrawMatchesFlags::DEFAULT) + private static native void drawKeypoints_0(long image_nativeObj, long keypoints_mat_nativeObj, long outImage_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int flags); + private static native void drawKeypoints_1(long image_nativeObj, long keypoints_mat_nativeObj, long outImage_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3); + private static native void drawKeypoints_2(long image_nativeObj, long keypoints_mat_nativeObj, long outImage_nativeObj); + + // C++: void cv::drawMatches(Mat img1, vector_KeyPoint keypoints1, Mat img2, vector_KeyPoint keypoints2, vector_DMatch matches1to2, Mat& outImg, Scalar matchColor = Scalar::all(-1), Scalar singlePointColor = Scalar::all(-1), vector_char matchesMask = std::vector(), int flags = DrawMatchesFlags::DEFAULT) + private static native void drawMatches_0(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3, long matchesMask_mat_nativeObj, int flags); + private static native void drawMatches_1(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3, long matchesMask_mat_nativeObj); + private static native void drawMatches_2(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3); + private static native void drawMatches_3(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3); + private static native void drawMatches_4(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj); + + // C++: void cv::drawMatches(Mat img1, vector_KeyPoint keypoints1, Mat img2, vector_KeyPoint keypoints2, vector_vector_DMatch matches1to2, Mat outImg, Scalar matchColor = Scalar::all(-1), Scalar singlePointColor = Scalar::all(-1), vector_vector_char matchesMask = std::vector >(), int flags = 0) + private static native void drawMatches2_0(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3, long matchesMask_mat_nativeObj, int flags); + private static native void drawMatches2_1(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3, long matchesMask_mat_nativeObj); + private static native void drawMatches2_2(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3); + private static native void drawMatches2_3(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3); + private static native void drawMatches2_4(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj); + + // C++: void cv::drawMatches(Mat img1, vector_KeyPoint keypoints1, Mat img2, vector_KeyPoint keypoints2, vector_vector_DMatch matches1to2, Mat& outImg, Scalar matchColor = Scalar::all(-1), Scalar singlePointColor = Scalar::all(-1), vector_vector_char matchesMask = std::vector >(), int flags = DrawMatchesFlags::DEFAULT) + private static native void drawMatchesKnn_0(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3, long matchesMask_mat_nativeObj, int flags); + private static native void drawMatchesKnn_1(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3, long matchesMask_mat_nativeObj); + private static native void drawMatchesKnn_2(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3, double singlePointColor_val0, double singlePointColor_val1, double singlePointColor_val2, double singlePointColor_val3); + private static native void drawMatchesKnn_3(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj, double matchColor_val0, double matchColor_val1, double matchColor_val2, double matchColor_val3); + private static native void drawMatchesKnn_4(long img1_nativeObj, long keypoints1_mat_nativeObj, long img2_nativeObj, long keypoints2_mat_nativeObj, long matches1to2_mat_nativeObj, long outImg_nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/FlannBasedMatcher.java b/openCVLibrary3/src/main/java/org/opencv/features2d/FlannBasedMatcher.java new file mode 100644 index 00000000000..1de9318b989 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/FlannBasedMatcher.java @@ -0,0 +1,63 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import org.opencv.features2d.DescriptorMatcher; +import org.opencv.features2d.FlannBasedMatcher; + +// C++: class FlannBasedMatcher +//javadoc: FlannBasedMatcher + +public class FlannBasedMatcher extends DescriptorMatcher { + + protected FlannBasedMatcher(long addr) { super(addr); } + + // internal usage only + public static FlannBasedMatcher __fromPtr__(long addr) { return new FlannBasedMatcher(addr); } + + // + // C++: cv::FlannBasedMatcher::FlannBasedMatcher(Ptr_flann_IndexParams indexParams = makePtr(), Ptr_flann_SearchParams searchParams = makePtr()) + // + + //javadoc: FlannBasedMatcher::FlannBasedMatcher() + public FlannBasedMatcher() + { + + super( FlannBasedMatcher_0() ); + + return; + } + + + // + // C++: static Ptr_FlannBasedMatcher cv::FlannBasedMatcher::create() + // + + //javadoc: FlannBasedMatcher::create() + public static FlannBasedMatcher create() + { + + FlannBasedMatcher retVal = FlannBasedMatcher.__fromPtr__(create_0()); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::FlannBasedMatcher::FlannBasedMatcher(Ptr_flann_IndexParams indexParams = makePtr(), Ptr_flann_SearchParams searchParams = makePtr()) + private static native long FlannBasedMatcher_0(); + + // C++: static Ptr_FlannBasedMatcher cv::FlannBasedMatcher::create() + private static native long create_0(); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/GFTTDetector.java b/openCVLibrary3/src/main/java/org/opencv/features2d/GFTTDetector.java new file mode 100644 index 00000000000..e1609df1fdd --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/GFTTDetector.java @@ -0,0 +1,365 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import org.opencv.features2d.Feature2D; +import org.opencv.features2d.GFTTDetector; + +// C++: class GFTTDetector +//javadoc: GFTTDetector + +public class GFTTDetector extends Feature2D { + + protected GFTTDetector(long addr) { super(addr); } + + // internal usage only + public static GFTTDetector __fromPtr__(long addr) { return new GFTTDetector(addr); } + + // + // C++: static Ptr_GFTTDetector cv::GFTTDetector::create(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, bool useHarrisDetector = false, double k = 0.04) + // + + //javadoc: GFTTDetector::create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize, useHarrisDetector, k) + public static GFTTDetector create(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, boolean useHarrisDetector, double k) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_0(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize, useHarrisDetector, k)); + + return retVal; + } + + //javadoc: GFTTDetector::create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize, useHarrisDetector) + public static GFTTDetector create(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, boolean useHarrisDetector) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_1(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize, useHarrisDetector)); + + return retVal; + } + + //javadoc: GFTTDetector::create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize) + public static GFTTDetector create(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_2(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize)); + + return retVal; + } + + + // + // C++: static Ptr_GFTTDetector cv::GFTTDetector::create(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 1, int blockSize = 3, bool useHarrisDetector = false, double k = 0.04) + // + + //javadoc: GFTTDetector::create(maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, k) + public static GFTTDetector create(int maxCorners, double qualityLevel, double minDistance, int blockSize, boolean useHarrisDetector, double k) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_3(maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, k)); + + return retVal; + } + + //javadoc: GFTTDetector::create(maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector) + public static GFTTDetector create(int maxCorners, double qualityLevel, double minDistance, int blockSize, boolean useHarrisDetector) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_4(maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector)); + + return retVal; + } + + //javadoc: GFTTDetector::create(maxCorners, qualityLevel, minDistance, blockSize) + public static GFTTDetector create(int maxCorners, double qualityLevel, double minDistance, int blockSize) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_5(maxCorners, qualityLevel, minDistance, blockSize)); + + return retVal; + } + + //javadoc: GFTTDetector::create(maxCorners, qualityLevel, minDistance) + public static GFTTDetector create(int maxCorners, double qualityLevel, double minDistance) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_6(maxCorners, qualityLevel, minDistance)); + + return retVal; + } + + //javadoc: GFTTDetector::create(maxCorners, qualityLevel) + public static GFTTDetector create(int maxCorners, double qualityLevel) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_7(maxCorners, qualityLevel)); + + return retVal; + } + + //javadoc: GFTTDetector::create(maxCorners) + public static GFTTDetector create(int maxCorners) + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_8(maxCorners)); + + return retVal; + } + + //javadoc: GFTTDetector::create() + public static GFTTDetector create() + { + + GFTTDetector retVal = GFTTDetector.__fromPtr__(create_9()); + + return retVal; + } + + + // + // C++: String cv::GFTTDetector::getDefaultName() + // + + //javadoc: GFTTDetector::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::GFTTDetector::getHarrisDetector() + // + + //javadoc: GFTTDetector::getHarrisDetector() + public boolean getHarrisDetector() + { + + boolean retVal = getHarrisDetector_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::GFTTDetector::getK() + // + + //javadoc: GFTTDetector::getK() + public double getK() + { + + double retVal = getK_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::GFTTDetector::getMinDistance() + // + + //javadoc: GFTTDetector::getMinDistance() + public double getMinDistance() + { + + double retVal = getMinDistance_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::GFTTDetector::getQualityLevel() + // + + //javadoc: GFTTDetector::getQualityLevel() + public double getQualityLevel() + { + + double retVal = getQualityLevel_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::GFTTDetector::getBlockSize() + // + + //javadoc: GFTTDetector::getBlockSize() + public int getBlockSize() + { + + int retVal = getBlockSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::GFTTDetector::getMaxFeatures() + // + + //javadoc: GFTTDetector::getMaxFeatures() + public int getMaxFeatures() + { + + int retVal = getMaxFeatures_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::GFTTDetector::setBlockSize(int blockSize) + // + + //javadoc: GFTTDetector::setBlockSize(blockSize) + public void setBlockSize(int blockSize) + { + + setBlockSize_0(nativeObj, blockSize); + + return; + } + + + // + // C++: void cv::GFTTDetector::setHarrisDetector(bool val) + // + + //javadoc: GFTTDetector::setHarrisDetector(val) + public void setHarrisDetector(boolean val) + { + + setHarrisDetector_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::GFTTDetector::setK(double k) + // + + //javadoc: GFTTDetector::setK(k) + public void setK(double k) + { + + setK_0(nativeObj, k); + + return; + } + + + // + // C++: void cv::GFTTDetector::setMaxFeatures(int maxFeatures) + // + + //javadoc: GFTTDetector::setMaxFeatures(maxFeatures) + public void setMaxFeatures(int maxFeatures) + { + + setMaxFeatures_0(nativeObj, maxFeatures); + + return; + } + + + // + // C++: void cv::GFTTDetector::setMinDistance(double minDistance) + // + + //javadoc: GFTTDetector::setMinDistance(minDistance) + public void setMinDistance(double minDistance) + { + + setMinDistance_0(nativeObj, minDistance); + + return; + } + + + // + // C++: void cv::GFTTDetector::setQualityLevel(double qlevel) + // + + //javadoc: GFTTDetector::setQualityLevel(qlevel) + public void setQualityLevel(double qlevel) + { + + setQualityLevel_0(nativeObj, qlevel); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_GFTTDetector cv::GFTTDetector::create(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, bool useHarrisDetector = false, double k = 0.04) + private static native long create_0(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, boolean useHarrisDetector, double k); + private static native long create_1(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, boolean useHarrisDetector); + private static native long create_2(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize); + + // C++: static Ptr_GFTTDetector cv::GFTTDetector::create(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 1, int blockSize = 3, bool useHarrisDetector = false, double k = 0.04) + private static native long create_3(int maxCorners, double qualityLevel, double minDistance, int blockSize, boolean useHarrisDetector, double k); + private static native long create_4(int maxCorners, double qualityLevel, double minDistance, int blockSize, boolean useHarrisDetector); + private static native long create_5(int maxCorners, double qualityLevel, double minDistance, int blockSize); + private static native long create_6(int maxCorners, double qualityLevel, double minDistance); + private static native long create_7(int maxCorners, double qualityLevel); + private static native long create_8(int maxCorners); + private static native long create_9(); + + // C++: String cv::GFTTDetector::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: bool cv::GFTTDetector::getHarrisDetector() + private static native boolean getHarrisDetector_0(long nativeObj); + + // C++: double cv::GFTTDetector::getK() + private static native double getK_0(long nativeObj); + + // C++: double cv::GFTTDetector::getMinDistance() + private static native double getMinDistance_0(long nativeObj); + + // C++: double cv::GFTTDetector::getQualityLevel() + private static native double getQualityLevel_0(long nativeObj); + + // C++: int cv::GFTTDetector::getBlockSize() + private static native int getBlockSize_0(long nativeObj); + + // C++: int cv::GFTTDetector::getMaxFeatures() + private static native int getMaxFeatures_0(long nativeObj); + + // C++: void cv::GFTTDetector::setBlockSize(int blockSize) + private static native void setBlockSize_0(long nativeObj, int blockSize); + + // C++: void cv::GFTTDetector::setHarrisDetector(bool val) + private static native void setHarrisDetector_0(long nativeObj, boolean val); + + // C++: void cv::GFTTDetector::setK(double k) + private static native void setK_0(long nativeObj, double k); + + // C++: void cv::GFTTDetector::setMaxFeatures(int maxFeatures) + private static native void setMaxFeatures_0(long nativeObj, int maxFeatures); + + // C++: void cv::GFTTDetector::setMinDistance(double minDistance) + private static native void setMinDistance_0(long nativeObj, double minDistance); + + // C++: void cv::GFTTDetector::setQualityLevel(double qlevel) + private static native void setQualityLevel_0(long nativeObj, double qlevel); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/KAZE.java b/openCVLibrary3/src/main/java/org/opencv/features2d/KAZE.java new file mode 100644 index 00000000000..47d40cdd9be --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/KAZE.java @@ -0,0 +1,335 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import org.opencv.features2d.Feature2D; +import org.opencv.features2d.KAZE; + +// C++: class KAZE +//javadoc: KAZE + +public class KAZE extends Feature2D { + + protected KAZE(long addr) { super(addr); } + + // internal usage only + public static KAZE __fromPtr__(long addr) { return new KAZE(addr); } + + public static final int + DIFF_PM_G1 = 0, + DIFF_PM_G2 = 1, + DIFF_WEICKERT = 2, + DIFF_CHARBONNIER = 3; + + + // + // C++: static Ptr_KAZE cv::KAZE::create(bool extended = false, bool upright = false, float threshold = 0.001f, int nOctaves = 4, int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2) + // + + //javadoc: KAZE::create(extended, upright, threshold, nOctaves, nOctaveLayers, diffusivity) + public static KAZE create(boolean extended, boolean upright, float threshold, int nOctaves, int nOctaveLayers, int diffusivity) + { + + KAZE retVal = KAZE.__fromPtr__(create_0(extended, upright, threshold, nOctaves, nOctaveLayers, diffusivity)); + + return retVal; + } + + //javadoc: KAZE::create(extended, upright, threshold, nOctaves, nOctaveLayers) + public static KAZE create(boolean extended, boolean upright, float threshold, int nOctaves, int nOctaveLayers) + { + + KAZE retVal = KAZE.__fromPtr__(create_1(extended, upright, threshold, nOctaves, nOctaveLayers)); + + return retVal; + } + + //javadoc: KAZE::create(extended, upright, threshold, nOctaves) + public static KAZE create(boolean extended, boolean upright, float threshold, int nOctaves) + { + + KAZE retVal = KAZE.__fromPtr__(create_2(extended, upright, threshold, nOctaves)); + + return retVal; + } + + //javadoc: KAZE::create(extended, upright, threshold) + public static KAZE create(boolean extended, boolean upright, float threshold) + { + + KAZE retVal = KAZE.__fromPtr__(create_3(extended, upright, threshold)); + + return retVal; + } + + //javadoc: KAZE::create(extended, upright) + public static KAZE create(boolean extended, boolean upright) + { + + KAZE retVal = KAZE.__fromPtr__(create_4(extended, upright)); + + return retVal; + } + + //javadoc: KAZE::create(extended) + public static KAZE create(boolean extended) + { + + KAZE retVal = KAZE.__fromPtr__(create_5(extended)); + + return retVal; + } + + //javadoc: KAZE::create() + public static KAZE create() + { + + KAZE retVal = KAZE.__fromPtr__(create_6()); + + return retVal; + } + + + // + // C++: String cv::KAZE::getDefaultName() + // + + //javadoc: KAZE::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::KAZE::getExtended() + // + + //javadoc: KAZE::getExtended() + public boolean getExtended() + { + + boolean retVal = getExtended_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::KAZE::getUpright() + // + + //javadoc: KAZE::getUpright() + public boolean getUpright() + { + + boolean retVal = getUpright_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::KAZE::getThreshold() + // + + //javadoc: KAZE::getThreshold() + public double getThreshold() + { + + double retVal = getThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::KAZE::getDiffusivity() + // + + //javadoc: KAZE::getDiffusivity() + public int getDiffusivity() + { + + int retVal = getDiffusivity_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::KAZE::getNOctaveLayers() + // + + //javadoc: KAZE::getNOctaveLayers() + public int getNOctaveLayers() + { + + int retVal = getNOctaveLayers_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::KAZE::getNOctaves() + // + + //javadoc: KAZE::getNOctaves() + public int getNOctaves() + { + + int retVal = getNOctaves_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::KAZE::setDiffusivity(int diff) + // + + //javadoc: KAZE::setDiffusivity(diff) + public void setDiffusivity(int diff) + { + + setDiffusivity_0(nativeObj, diff); + + return; + } + + + // + // C++: void cv::KAZE::setExtended(bool extended) + // + + //javadoc: KAZE::setExtended(extended) + public void setExtended(boolean extended) + { + + setExtended_0(nativeObj, extended); + + return; + } + + + // + // C++: void cv::KAZE::setNOctaveLayers(int octaveLayers) + // + + //javadoc: KAZE::setNOctaveLayers(octaveLayers) + public void setNOctaveLayers(int octaveLayers) + { + + setNOctaveLayers_0(nativeObj, octaveLayers); + + return; + } + + + // + // C++: void cv::KAZE::setNOctaves(int octaves) + // + + //javadoc: KAZE::setNOctaves(octaves) + public void setNOctaves(int octaves) + { + + setNOctaves_0(nativeObj, octaves); + + return; + } + + + // + // C++: void cv::KAZE::setThreshold(double threshold) + // + + //javadoc: KAZE::setThreshold(threshold) + public void setThreshold(double threshold) + { + + setThreshold_0(nativeObj, threshold); + + return; + } + + + // + // C++: void cv::KAZE::setUpright(bool upright) + // + + //javadoc: KAZE::setUpright(upright) + public void setUpright(boolean upright) + { + + setUpright_0(nativeObj, upright); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_KAZE cv::KAZE::create(bool extended = false, bool upright = false, float threshold = 0.001f, int nOctaves = 4, int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2) + private static native long create_0(boolean extended, boolean upright, float threshold, int nOctaves, int nOctaveLayers, int diffusivity); + private static native long create_1(boolean extended, boolean upright, float threshold, int nOctaves, int nOctaveLayers); + private static native long create_2(boolean extended, boolean upright, float threshold, int nOctaves); + private static native long create_3(boolean extended, boolean upright, float threshold); + private static native long create_4(boolean extended, boolean upright); + private static native long create_5(boolean extended); + private static native long create_6(); + + // C++: String cv::KAZE::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: bool cv::KAZE::getExtended() + private static native boolean getExtended_0(long nativeObj); + + // C++: bool cv::KAZE::getUpright() + private static native boolean getUpright_0(long nativeObj); + + // C++: double cv::KAZE::getThreshold() + private static native double getThreshold_0(long nativeObj); + + // C++: int cv::KAZE::getDiffusivity() + private static native int getDiffusivity_0(long nativeObj); + + // C++: int cv::KAZE::getNOctaveLayers() + private static native int getNOctaveLayers_0(long nativeObj); + + // C++: int cv::KAZE::getNOctaves() + private static native int getNOctaves_0(long nativeObj); + + // C++: void cv::KAZE::setDiffusivity(int diff) + private static native void setDiffusivity_0(long nativeObj, int diff); + + // C++: void cv::KAZE::setExtended(bool extended) + private static native void setExtended_0(long nativeObj, boolean extended); + + // C++: void cv::KAZE::setNOctaveLayers(int octaveLayers) + private static native void setNOctaveLayers_0(long nativeObj, int octaveLayers); + + // C++: void cv::KAZE::setNOctaves(int octaves) + private static native void setNOctaves_0(long nativeObj, int octaves); + + // C++: void cv::KAZE::setThreshold(double threshold) + private static native void setThreshold_0(long nativeObj, double threshold); + + // C++: void cv::KAZE::setUpright(bool upright) + private static native void setUpright_0(long nativeObj, boolean upright); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/MSER.java b/openCVLibrary3/src/main/java/org/opencv/features2d/MSER.java new file mode 100644 index 00000000000..ac78cc0d496 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/MSER.java @@ -0,0 +1,315 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfRect; +import org.opencv.features2d.Feature2D; +import org.opencv.features2d.MSER; +import org.opencv.utils.Converters; + +// C++: class MSER +//javadoc: MSER + +public class MSER extends Feature2D { + + protected MSER(long addr) { super(addr); } + + // internal usage only + public static MSER __fromPtr__(long addr) { return new MSER(addr); } + + // + // C++: static Ptr_MSER cv::MSER::create(int _delta = 5, int _min_area = 60, int _max_area = 14400, double _max_variation = 0.25, double _min_diversity = .2, int _max_evolution = 200, double _area_threshold = 1.01, double _min_margin = 0.003, int _edge_blur_size = 5) + // + + //javadoc: MSER::create(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution, _area_threshold, _min_margin, _edge_blur_size) + public static MSER create(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution, double _area_threshold, double _min_margin, int _edge_blur_size) + { + + MSER retVal = MSER.__fromPtr__(create_0(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution, _area_threshold, _min_margin, _edge_blur_size)); + + return retVal; + } + + //javadoc: MSER::create(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution, _area_threshold, _min_margin) + public static MSER create(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution, double _area_threshold, double _min_margin) + { + + MSER retVal = MSER.__fromPtr__(create_1(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution, _area_threshold, _min_margin)); + + return retVal; + } + + //javadoc: MSER::create(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution, _area_threshold) + public static MSER create(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution, double _area_threshold) + { + + MSER retVal = MSER.__fromPtr__(create_2(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution, _area_threshold)); + + return retVal; + } + + //javadoc: MSER::create(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution) + public static MSER create(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution) + { + + MSER retVal = MSER.__fromPtr__(create_3(_delta, _min_area, _max_area, _max_variation, _min_diversity, _max_evolution)); + + return retVal; + } + + //javadoc: MSER::create(_delta, _min_area, _max_area, _max_variation, _min_diversity) + public static MSER create(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity) + { + + MSER retVal = MSER.__fromPtr__(create_4(_delta, _min_area, _max_area, _max_variation, _min_diversity)); + + return retVal; + } + + //javadoc: MSER::create(_delta, _min_area, _max_area, _max_variation) + public static MSER create(int _delta, int _min_area, int _max_area, double _max_variation) + { + + MSER retVal = MSER.__fromPtr__(create_5(_delta, _min_area, _max_area, _max_variation)); + + return retVal; + } + + //javadoc: MSER::create(_delta, _min_area, _max_area) + public static MSER create(int _delta, int _min_area, int _max_area) + { + + MSER retVal = MSER.__fromPtr__(create_6(_delta, _min_area, _max_area)); + + return retVal; + } + + //javadoc: MSER::create(_delta, _min_area) + public static MSER create(int _delta, int _min_area) + { + + MSER retVal = MSER.__fromPtr__(create_7(_delta, _min_area)); + + return retVal; + } + + //javadoc: MSER::create(_delta) + public static MSER create(int _delta) + { + + MSER retVal = MSER.__fromPtr__(create_8(_delta)); + + return retVal; + } + + //javadoc: MSER::create() + public static MSER create() + { + + MSER retVal = MSER.__fromPtr__(create_9()); + + return retVal; + } + + + // + // C++: String cv::MSER::getDefaultName() + // + + //javadoc: MSER::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::MSER::getPass2Only() + // + + //javadoc: MSER::getPass2Only() + public boolean getPass2Only() + { + + boolean retVal = getPass2Only_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::MSER::getDelta() + // + + //javadoc: MSER::getDelta() + public int getDelta() + { + + int retVal = getDelta_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::MSER::getMaxArea() + // + + //javadoc: MSER::getMaxArea() + public int getMaxArea() + { + + int retVal = getMaxArea_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::MSER::getMinArea() + // + + //javadoc: MSER::getMinArea() + public int getMinArea() + { + + int retVal = getMinArea_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::MSER::detectRegions(Mat image, vector_vector_Point& msers, vector_Rect& bboxes) + // + + //javadoc: MSER::detectRegions(image, msers, bboxes) + public void detectRegions(Mat image, List msers, MatOfRect bboxes) + { + Mat msers_mat = new Mat(); + Mat bboxes_mat = bboxes; + detectRegions_0(nativeObj, image.nativeObj, msers_mat.nativeObj, bboxes_mat.nativeObj); + Converters.Mat_to_vector_vector_Point(msers_mat, msers); + msers_mat.release(); + return; + } + + + // + // C++: void cv::MSER::setDelta(int delta) + // + + //javadoc: MSER::setDelta(delta) + public void setDelta(int delta) + { + + setDelta_0(nativeObj, delta); + + return; + } + + + // + // C++: void cv::MSER::setMaxArea(int maxArea) + // + + //javadoc: MSER::setMaxArea(maxArea) + public void setMaxArea(int maxArea) + { + + setMaxArea_0(nativeObj, maxArea); + + return; + } + + + // + // C++: void cv::MSER::setMinArea(int minArea) + // + + //javadoc: MSER::setMinArea(minArea) + public void setMinArea(int minArea) + { + + setMinArea_0(nativeObj, minArea); + + return; + } + + + // + // C++: void cv::MSER::setPass2Only(bool f) + // + + //javadoc: MSER::setPass2Only(f) + public void setPass2Only(boolean f) + { + + setPass2Only_0(nativeObj, f); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_MSER cv::MSER::create(int _delta = 5, int _min_area = 60, int _max_area = 14400, double _max_variation = 0.25, double _min_diversity = .2, int _max_evolution = 200, double _area_threshold = 1.01, double _min_margin = 0.003, int _edge_blur_size = 5) + private static native long create_0(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution, double _area_threshold, double _min_margin, int _edge_blur_size); + private static native long create_1(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution, double _area_threshold, double _min_margin); + private static native long create_2(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution, double _area_threshold); + private static native long create_3(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity, int _max_evolution); + private static native long create_4(int _delta, int _min_area, int _max_area, double _max_variation, double _min_diversity); + private static native long create_5(int _delta, int _min_area, int _max_area, double _max_variation); + private static native long create_6(int _delta, int _min_area, int _max_area); + private static native long create_7(int _delta, int _min_area); + private static native long create_8(int _delta); + private static native long create_9(); + + // C++: String cv::MSER::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: bool cv::MSER::getPass2Only() + private static native boolean getPass2Only_0(long nativeObj); + + // C++: int cv::MSER::getDelta() + private static native int getDelta_0(long nativeObj); + + // C++: int cv::MSER::getMaxArea() + private static native int getMaxArea_0(long nativeObj); + + // C++: int cv::MSER::getMinArea() + private static native int getMinArea_0(long nativeObj); + + // C++: void cv::MSER::detectRegions(Mat image, vector_vector_Point& msers, vector_Rect& bboxes) + private static native void detectRegions_0(long nativeObj, long image_nativeObj, long msers_mat_nativeObj, long bboxes_mat_nativeObj); + + // C++: void cv::MSER::setDelta(int delta) + private static native void setDelta_0(long nativeObj, int delta); + + // C++: void cv::MSER::setMaxArea(int maxArea) + private static native void setMaxArea_0(long nativeObj, int maxArea); + + // C++: void cv::MSER::setMinArea(int minArea) + private static native void setMinArea_0(long nativeObj, int minArea); + + // C++: void cv::MSER::setPass2Only(bool f) + private static native void setPass2Only_0(long nativeObj, boolean f); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/ORB.java b/openCVLibrary3/src/main/java/org/opencv/features2d/ORB.java new file mode 100644 index 00000000000..43bb8928f15 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/ORB.java @@ -0,0 +1,466 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + +import java.lang.String; +import org.opencv.features2d.Feature2D; +import org.opencv.features2d.ORB; + +// C++: class ORB +//javadoc: ORB + +public class ORB extends Feature2D { + + protected ORB(long addr) { super(addr); } + + // internal usage only + public static ORB __fromPtr__(long addr) { return new ORB(addr); } + + public static final int + kBytes = 32, + HARRIS_SCORE = 0, + FAST_SCORE = 1; + + + // + // C++: static Ptr_ORB cv::ORB::create(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31, int firstLevel = 0, int WTA_K = 2, int scoreType = ORB::HARRIS_SCORE, int patchSize = 31, int fastThreshold = 20) + // + + //javadoc: ORB::create(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize, fastThreshold) + public static ORB create(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize, int fastThreshold) + { + + ORB retVal = ORB.__fromPtr__(create_0(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize, fastThreshold)); + + return retVal; + } + + //javadoc: ORB::create(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize) + public static ORB create(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize) + { + + ORB retVal = ORB.__fromPtr__(create_1(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize)); + + return retVal; + } + + //javadoc: ORB::create(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType) + public static ORB create(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType) + { + + ORB retVal = ORB.__fromPtr__(create_2(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType)); + + return retVal; + } + + //javadoc: ORB::create(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K) + public static ORB create(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel, int WTA_K) + { + + ORB retVal = ORB.__fromPtr__(create_3(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K)); + + return retVal; + } + + //javadoc: ORB::create(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel) + public static ORB create(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel) + { + + ORB retVal = ORB.__fromPtr__(create_4(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel)); + + return retVal; + } + + //javadoc: ORB::create(nfeatures, scaleFactor, nlevels, edgeThreshold) + public static ORB create(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold) + { + + ORB retVal = ORB.__fromPtr__(create_5(nfeatures, scaleFactor, nlevels, edgeThreshold)); + + return retVal; + } + + //javadoc: ORB::create(nfeatures, scaleFactor, nlevels) + public static ORB create(int nfeatures, float scaleFactor, int nlevels) + { + + ORB retVal = ORB.__fromPtr__(create_6(nfeatures, scaleFactor, nlevels)); + + return retVal; + } + + //javadoc: ORB::create(nfeatures, scaleFactor) + public static ORB create(int nfeatures, float scaleFactor) + { + + ORB retVal = ORB.__fromPtr__(create_7(nfeatures, scaleFactor)); + + return retVal; + } + + //javadoc: ORB::create(nfeatures) + public static ORB create(int nfeatures) + { + + ORB retVal = ORB.__fromPtr__(create_8(nfeatures)); + + return retVal; + } + + //javadoc: ORB::create() + public static ORB create() + { + + ORB retVal = ORB.__fromPtr__(create_9()); + + return retVal; + } + + + // + // C++: String cv::ORB::getDefaultName() + // + + //javadoc: ORB::getDefaultName() + public String getDefaultName() + { + + String retVal = getDefaultName_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ORB::getScaleFactor() + // + + //javadoc: ORB::getScaleFactor() + public double getScaleFactor() + { + + double retVal = getScaleFactor_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ORB::getEdgeThreshold() + // + + //javadoc: ORB::getEdgeThreshold() + public int getEdgeThreshold() + { + + int retVal = getEdgeThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ORB::getFastThreshold() + // + + //javadoc: ORB::getFastThreshold() + public int getFastThreshold() + { + + int retVal = getFastThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ORB::getFirstLevel() + // + + //javadoc: ORB::getFirstLevel() + public int getFirstLevel() + { + + int retVal = getFirstLevel_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ORB::getMaxFeatures() + // + + //javadoc: ORB::getMaxFeatures() + public int getMaxFeatures() + { + + int retVal = getMaxFeatures_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ORB::getNLevels() + // + + //javadoc: ORB::getNLevels() + public int getNLevels() + { + + int retVal = getNLevels_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ORB::getPatchSize() + // + + //javadoc: ORB::getPatchSize() + public int getPatchSize() + { + + int retVal = getPatchSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ORB::getScoreType() + // + + //javadoc: ORB::getScoreType() + public int getScoreType() + { + + int retVal = getScoreType_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ORB::getWTA_K() + // + + //javadoc: ORB::getWTA_K() + public int getWTA_K() + { + + int retVal = getWTA_K_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ORB::setEdgeThreshold(int edgeThreshold) + // + + //javadoc: ORB::setEdgeThreshold(edgeThreshold) + public void setEdgeThreshold(int edgeThreshold) + { + + setEdgeThreshold_0(nativeObj, edgeThreshold); + + return; + } + + + // + // C++: void cv::ORB::setFastThreshold(int fastThreshold) + // + + //javadoc: ORB::setFastThreshold(fastThreshold) + public void setFastThreshold(int fastThreshold) + { + + setFastThreshold_0(nativeObj, fastThreshold); + + return; + } + + + // + // C++: void cv::ORB::setFirstLevel(int firstLevel) + // + + //javadoc: ORB::setFirstLevel(firstLevel) + public void setFirstLevel(int firstLevel) + { + + setFirstLevel_0(nativeObj, firstLevel); + + return; + } + + + // + // C++: void cv::ORB::setMaxFeatures(int maxFeatures) + // + + //javadoc: ORB::setMaxFeatures(maxFeatures) + public void setMaxFeatures(int maxFeatures) + { + + setMaxFeatures_0(nativeObj, maxFeatures); + + return; + } + + + // + // C++: void cv::ORB::setNLevels(int nlevels) + // + + //javadoc: ORB::setNLevels(nlevels) + public void setNLevels(int nlevels) + { + + setNLevels_0(nativeObj, nlevels); + + return; + } + + + // + // C++: void cv::ORB::setPatchSize(int patchSize) + // + + //javadoc: ORB::setPatchSize(patchSize) + public void setPatchSize(int patchSize) + { + + setPatchSize_0(nativeObj, patchSize); + + return; + } + + + // + // C++: void cv::ORB::setScaleFactor(double scaleFactor) + // + + //javadoc: ORB::setScaleFactor(scaleFactor) + public void setScaleFactor(double scaleFactor) + { + + setScaleFactor_0(nativeObj, scaleFactor); + + return; + } + + + // + // C++: void cv::ORB::setScoreType(int scoreType) + // + + //javadoc: ORB::setScoreType(scoreType) + public void setScoreType(int scoreType) + { + + setScoreType_0(nativeObj, scoreType); + + return; + } + + + // + // C++: void cv::ORB::setWTA_K(int wta_k) + // + + //javadoc: ORB::setWTA_K(wta_k) + public void setWTA_K(int wta_k) + { + + setWTA_K_0(nativeObj, wta_k); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_ORB cv::ORB::create(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31, int firstLevel = 0, int WTA_K = 2, int scoreType = ORB::HARRIS_SCORE, int patchSize = 31, int fastThreshold = 20) + private static native long create_0(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize, int fastThreshold); + private static native long create_1(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize); + private static native long create_2(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType); + private static native long create_3(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel, int WTA_K); + private static native long create_4(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold, int firstLevel); + private static native long create_5(int nfeatures, float scaleFactor, int nlevels, int edgeThreshold); + private static native long create_6(int nfeatures, float scaleFactor, int nlevels); + private static native long create_7(int nfeatures, float scaleFactor); + private static native long create_8(int nfeatures); + private static native long create_9(); + + // C++: String cv::ORB::getDefaultName() + private static native String getDefaultName_0(long nativeObj); + + // C++: double cv::ORB::getScaleFactor() + private static native double getScaleFactor_0(long nativeObj); + + // C++: int cv::ORB::getEdgeThreshold() + private static native int getEdgeThreshold_0(long nativeObj); + + // C++: int cv::ORB::getFastThreshold() + private static native int getFastThreshold_0(long nativeObj); + + // C++: int cv::ORB::getFirstLevel() + private static native int getFirstLevel_0(long nativeObj); + + // C++: int cv::ORB::getMaxFeatures() + private static native int getMaxFeatures_0(long nativeObj); + + // C++: int cv::ORB::getNLevels() + private static native int getNLevels_0(long nativeObj); + + // C++: int cv::ORB::getPatchSize() + private static native int getPatchSize_0(long nativeObj); + + // C++: int cv::ORB::getScoreType() + private static native int getScoreType_0(long nativeObj); + + // C++: int cv::ORB::getWTA_K() + private static native int getWTA_K_0(long nativeObj); + + // C++: void cv::ORB::setEdgeThreshold(int edgeThreshold) + private static native void setEdgeThreshold_0(long nativeObj, int edgeThreshold); + + // C++: void cv::ORB::setFastThreshold(int fastThreshold) + private static native void setFastThreshold_0(long nativeObj, int fastThreshold); + + // C++: void cv::ORB::setFirstLevel(int firstLevel) + private static native void setFirstLevel_0(long nativeObj, int firstLevel); + + // C++: void cv::ORB::setMaxFeatures(int maxFeatures) + private static native void setMaxFeatures_0(long nativeObj, int maxFeatures); + + // C++: void cv::ORB::setNLevels(int nlevels) + private static native void setNLevels_0(long nativeObj, int nlevels); + + // C++: void cv::ORB::setPatchSize(int patchSize) + private static native void setPatchSize_0(long nativeObj, int patchSize); + + // C++: void cv::ORB::setScaleFactor(double scaleFactor) + private static native void setScaleFactor_0(long nativeObj, double scaleFactor); + + // C++: void cv::ORB::setScoreType(int scoreType) + private static native void setScoreType_0(long nativeObj, int scoreType); + + // C++: void cv::ORB::setWTA_K(int wta_k) + private static native void setWTA_K_0(long nativeObj, int wta_k); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/features2d/Params.java b/openCVLibrary3/src/main/java/org/opencv/features2d/Params.java new file mode 100644 index 00000000000..3323facc070 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/features2d/Params.java @@ -0,0 +1,674 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.features2d; + + + +// C++: class Params +//javadoc: Params + +public class Params { + + protected final long nativeObj; + protected Params(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static Params __fromPtr__(long addr) { return new Params(addr); } + + // + // C++: cv::SimpleBlobDetector::Params::Params() + // + + //javadoc: Params::Params() + public Params() + { + + nativeObj = Params_0(); + + return; + } + + + // + // C++: float Params::thresholdStep + // + + //javadoc: Params::get_thresholdStep() + public float get_thresholdStep() + { + + float retVal = get_thresholdStep_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::thresholdStep + // + + //javadoc: Params::set_thresholdStep(thresholdStep) + public void set_thresholdStep(float thresholdStep) + { + + set_thresholdStep_0(nativeObj, thresholdStep); + + return; + } + + + // + // C++: float Params::minThreshold + // + + //javadoc: Params::get_minThreshold() + public float get_minThreshold() + { + + float retVal = get_minThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::minThreshold + // + + //javadoc: Params::set_minThreshold(minThreshold) + public void set_minThreshold(float minThreshold) + { + + set_minThreshold_0(nativeObj, minThreshold); + + return; + } + + + // + // C++: float Params::maxThreshold + // + + //javadoc: Params::get_maxThreshold() + public float get_maxThreshold() + { + + float retVal = get_maxThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::maxThreshold + // + + //javadoc: Params::set_maxThreshold(maxThreshold) + public void set_maxThreshold(float maxThreshold) + { + + set_maxThreshold_0(nativeObj, maxThreshold); + + return; + } + + + // + // C++: size_t Params::minRepeatability + // + + //javadoc: Params::get_minRepeatability() + public long get_minRepeatability() + { + + long retVal = get_minRepeatability_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::minRepeatability + // + + //javadoc: Params::set_minRepeatability(minRepeatability) + public void set_minRepeatability(long minRepeatability) + { + + set_minRepeatability_0(nativeObj, minRepeatability); + + return; + } + + + // + // C++: float Params::minDistBetweenBlobs + // + + //javadoc: Params::get_minDistBetweenBlobs() + public float get_minDistBetweenBlobs() + { + + float retVal = get_minDistBetweenBlobs_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::minDistBetweenBlobs + // + + //javadoc: Params::set_minDistBetweenBlobs(minDistBetweenBlobs) + public void set_minDistBetweenBlobs(float minDistBetweenBlobs) + { + + set_minDistBetweenBlobs_0(nativeObj, minDistBetweenBlobs); + + return; + } + + + // + // C++: bool Params::filterByColor + // + + //javadoc: Params::get_filterByColor() + public boolean get_filterByColor() + { + + boolean retVal = get_filterByColor_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::filterByColor + // + + //javadoc: Params::set_filterByColor(filterByColor) + public void set_filterByColor(boolean filterByColor) + { + + set_filterByColor_0(nativeObj, filterByColor); + + return; + } + + + // + // C++: uchar Params::blobColor + // + + // Return type 'uchar' is not supported, skipping the function + + + // + // C++: void Params::blobColor + // + + // Unknown type 'uchar' (I), skipping the function + + + // + // C++: bool Params::filterByArea + // + + //javadoc: Params::get_filterByArea() + public boolean get_filterByArea() + { + + boolean retVal = get_filterByArea_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::filterByArea + // + + //javadoc: Params::set_filterByArea(filterByArea) + public void set_filterByArea(boolean filterByArea) + { + + set_filterByArea_0(nativeObj, filterByArea); + + return; + } + + + // + // C++: float Params::minArea + // + + //javadoc: Params::get_minArea() + public float get_minArea() + { + + float retVal = get_minArea_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::minArea + // + + //javadoc: Params::set_minArea(minArea) + public void set_minArea(float minArea) + { + + set_minArea_0(nativeObj, minArea); + + return; + } + + + // + // C++: float Params::maxArea + // + + //javadoc: Params::get_maxArea() + public float get_maxArea() + { + + float retVal = get_maxArea_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::maxArea + // + + //javadoc: Params::set_maxArea(maxArea) + public void set_maxArea(float maxArea) + { + + set_maxArea_0(nativeObj, maxArea); + + return; + } + + + // + // C++: bool Params::filterByCircularity + // + + //javadoc: Params::get_filterByCircularity() + public boolean get_filterByCircularity() + { + + boolean retVal = get_filterByCircularity_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::filterByCircularity + // + + //javadoc: Params::set_filterByCircularity(filterByCircularity) + public void set_filterByCircularity(boolean filterByCircularity) + { + + set_filterByCircularity_0(nativeObj, filterByCircularity); + + return; + } + + + // + // C++: float Params::minCircularity + // + + //javadoc: Params::get_minCircularity() + public float get_minCircularity() + { + + float retVal = get_minCircularity_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::minCircularity + // + + //javadoc: Params::set_minCircularity(minCircularity) + public void set_minCircularity(float minCircularity) + { + + set_minCircularity_0(nativeObj, minCircularity); + + return; + } + + + // + // C++: float Params::maxCircularity + // + + //javadoc: Params::get_maxCircularity() + public float get_maxCircularity() + { + + float retVal = get_maxCircularity_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::maxCircularity + // + + //javadoc: Params::set_maxCircularity(maxCircularity) + public void set_maxCircularity(float maxCircularity) + { + + set_maxCircularity_0(nativeObj, maxCircularity); + + return; + } + + + // + // C++: bool Params::filterByInertia + // + + //javadoc: Params::get_filterByInertia() + public boolean get_filterByInertia() + { + + boolean retVal = get_filterByInertia_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::filterByInertia + // + + //javadoc: Params::set_filterByInertia(filterByInertia) + public void set_filterByInertia(boolean filterByInertia) + { + + set_filterByInertia_0(nativeObj, filterByInertia); + + return; + } + + + // + // C++: float Params::minInertiaRatio + // + + //javadoc: Params::get_minInertiaRatio() + public float get_minInertiaRatio() + { + + float retVal = get_minInertiaRatio_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::minInertiaRatio + // + + //javadoc: Params::set_minInertiaRatio(minInertiaRatio) + public void set_minInertiaRatio(float minInertiaRatio) + { + + set_minInertiaRatio_0(nativeObj, minInertiaRatio); + + return; + } + + + // + // C++: float Params::maxInertiaRatio + // + + //javadoc: Params::get_maxInertiaRatio() + public float get_maxInertiaRatio() + { + + float retVal = get_maxInertiaRatio_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::maxInertiaRatio + // + + //javadoc: Params::set_maxInertiaRatio(maxInertiaRatio) + public void set_maxInertiaRatio(float maxInertiaRatio) + { + + set_maxInertiaRatio_0(nativeObj, maxInertiaRatio); + + return; + } + + + // + // C++: bool Params::filterByConvexity + // + + //javadoc: Params::get_filterByConvexity() + public boolean get_filterByConvexity() + { + + boolean retVal = get_filterByConvexity_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::filterByConvexity + // + + //javadoc: Params::set_filterByConvexity(filterByConvexity) + public void set_filterByConvexity(boolean filterByConvexity) + { + + set_filterByConvexity_0(nativeObj, filterByConvexity); + + return; + } + + + // + // C++: float Params::minConvexity + // + + //javadoc: Params::get_minConvexity() + public float get_minConvexity() + { + + float retVal = get_minConvexity_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::minConvexity + // + + //javadoc: Params::set_minConvexity(minConvexity) + public void set_minConvexity(float minConvexity) + { + + set_minConvexity_0(nativeObj, minConvexity); + + return; + } + + + // + // C++: float Params::maxConvexity + // + + //javadoc: Params::get_maxConvexity() + public float get_maxConvexity() + { + + float retVal = get_maxConvexity_0(nativeObj); + + return retVal; + } + + + // + // C++: void Params::maxConvexity + // + + //javadoc: Params::set_maxConvexity(maxConvexity) + public void set_maxConvexity(float maxConvexity) + { + + set_maxConvexity_0(nativeObj, maxConvexity); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::SimpleBlobDetector::Params::Params() + private static native long Params_0(); + + // C++: float Params::thresholdStep + private static native float get_thresholdStep_0(long nativeObj); + + // C++: void Params::thresholdStep + private static native void set_thresholdStep_0(long nativeObj, float thresholdStep); + + // C++: float Params::minThreshold + private static native float get_minThreshold_0(long nativeObj); + + // C++: void Params::minThreshold + private static native void set_minThreshold_0(long nativeObj, float minThreshold); + + // C++: float Params::maxThreshold + private static native float get_maxThreshold_0(long nativeObj); + + // C++: void Params::maxThreshold + private static native void set_maxThreshold_0(long nativeObj, float maxThreshold); + + // C++: size_t Params::minRepeatability + private static native long get_minRepeatability_0(long nativeObj); + + // C++: void Params::minRepeatability + private static native void set_minRepeatability_0(long nativeObj, long minRepeatability); + + // C++: float Params::minDistBetweenBlobs + private static native float get_minDistBetweenBlobs_0(long nativeObj); + + // C++: void Params::minDistBetweenBlobs + private static native void set_minDistBetweenBlobs_0(long nativeObj, float minDistBetweenBlobs); + + // C++: bool Params::filterByColor + private static native boolean get_filterByColor_0(long nativeObj); + + // C++: void Params::filterByColor + private static native void set_filterByColor_0(long nativeObj, boolean filterByColor); + + // C++: bool Params::filterByArea + private static native boolean get_filterByArea_0(long nativeObj); + + // C++: void Params::filterByArea + private static native void set_filterByArea_0(long nativeObj, boolean filterByArea); + + // C++: float Params::minArea + private static native float get_minArea_0(long nativeObj); + + // C++: void Params::minArea + private static native void set_minArea_0(long nativeObj, float minArea); + + // C++: float Params::maxArea + private static native float get_maxArea_0(long nativeObj); + + // C++: void Params::maxArea + private static native void set_maxArea_0(long nativeObj, float maxArea); + + // C++: bool Params::filterByCircularity + private static native boolean get_filterByCircularity_0(long nativeObj); + + // C++: void Params::filterByCircularity + private static native void set_filterByCircularity_0(long nativeObj, boolean filterByCircularity); + + // C++: float Params::minCircularity + private static native float get_minCircularity_0(long nativeObj); + + // C++: void Params::minCircularity + private static native void set_minCircularity_0(long nativeObj, float minCircularity); + + // C++: float Params::maxCircularity + private static native float get_maxCircularity_0(long nativeObj); + + // C++: void Params::maxCircularity + private static native void set_maxCircularity_0(long nativeObj, float maxCircularity); + + // C++: bool Params::filterByInertia + private static native boolean get_filterByInertia_0(long nativeObj); + + // C++: void Params::filterByInertia + private static native void set_filterByInertia_0(long nativeObj, boolean filterByInertia); + + // C++: float Params::minInertiaRatio + private static native float get_minInertiaRatio_0(long nativeObj); + + // C++: void Params::minInertiaRatio + private static native void set_minInertiaRatio_0(long nativeObj, float minInertiaRatio); + + // C++: float Params::maxInertiaRatio + private static native float get_maxInertiaRatio_0(long nativeObj); + + // C++: void Params::maxInertiaRatio + private static native void set_maxInertiaRatio_0(long nativeObj, float maxInertiaRatio); + + // C++: bool Params::filterByConvexity + private static native boolean get_filterByConvexity_0(long nativeObj); + + // C++: void Params::filterByConvexity + private static native void set_filterByConvexity_0(long nativeObj, boolean filterByConvexity); + + // C++: float Params::minConvexity + private static native float get_minConvexity_0(long nativeObj); + + // C++: void Params::minConvexity + private static native void set_minConvexity_0(long nativeObj, float minConvexity); + + // C++: float Params::maxConvexity + private static native float get_maxConvexity_0(long nativeObj); + + // C++: void Params::maxConvexity + private static native void set_maxConvexity_0(long nativeObj, float maxConvexity); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/imgcodecs/Imgcodecs.java b/openCVLibrary3/src/main/java/org/opencv/imgcodecs/Imgcodecs.java new file mode 100644 index 00000000000..9ec3d4d6442 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/imgcodecs/Imgcodecs.java @@ -0,0 +1,226 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.imgcodecs; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfByte; +import org.opencv.core.MatOfInt; +import org.opencv.utils.Converters; + +// C++: class Imgcodecs +//javadoc: Imgcodecs + +public class Imgcodecs { + + public static final int + CV_LOAD_IMAGE_UNCHANGED = -1, + CV_LOAD_IMAGE_GRAYSCALE = 0, + CV_LOAD_IMAGE_COLOR = 1, + CV_LOAD_IMAGE_ANYDEPTH = 2, + CV_LOAD_IMAGE_ANYCOLOR = 4, + CV_LOAD_IMAGE_IGNORE_ORIENTATION = 128, + CV_IMWRITE_JPEG_QUALITY = 1, + CV_IMWRITE_JPEG_PROGRESSIVE = 2, + CV_IMWRITE_JPEG_OPTIMIZE = 3, + CV_IMWRITE_JPEG_RST_INTERVAL = 4, + CV_IMWRITE_JPEG_LUMA_QUALITY = 5, + CV_IMWRITE_JPEG_CHROMA_QUALITY = 6, + CV_IMWRITE_PNG_COMPRESSION = 16, + CV_IMWRITE_PNG_STRATEGY = 17, + CV_IMWRITE_PNG_BILEVEL = 18, + CV_IMWRITE_PNG_STRATEGY_DEFAULT = 0, + CV_IMWRITE_PNG_STRATEGY_FILTERED = 1, + CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY = 2, + CV_IMWRITE_PNG_STRATEGY_RLE = 3, + CV_IMWRITE_PNG_STRATEGY_FIXED = 4, + CV_IMWRITE_PXM_BINARY = 32, + CV_IMWRITE_EXR_TYPE = 48, + CV_IMWRITE_WEBP_QUALITY = 64, + CV_IMWRITE_PAM_TUPLETYPE = 128, + CV_IMWRITE_PAM_FORMAT_NULL = 0, + CV_IMWRITE_PAM_FORMAT_BLACKANDWHITE = 1, + CV_IMWRITE_PAM_FORMAT_GRAYSCALE = 2, + CV_IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA = 3, + CV_IMWRITE_PAM_FORMAT_RGB = 4, + CV_IMWRITE_PAM_FORMAT_RGB_ALPHA = 5, + CV_CVTIMG_FLIP = 1, + CV_CVTIMG_SWAP_RB = 2, + IMREAD_UNCHANGED = -1, + IMREAD_GRAYSCALE = 0, + IMREAD_COLOR = 1, + IMREAD_ANYDEPTH = 2, + IMREAD_ANYCOLOR = 4, + IMREAD_LOAD_GDAL = 8, + IMREAD_REDUCED_GRAYSCALE_2 = 16, + IMREAD_REDUCED_COLOR_2 = 17, + IMREAD_REDUCED_GRAYSCALE_4 = 32, + IMREAD_REDUCED_COLOR_4 = 33, + IMREAD_REDUCED_GRAYSCALE_8 = 64, + IMREAD_REDUCED_COLOR_8 = 65, + IMREAD_IGNORE_ORIENTATION = 128, + IMWRITE_JPEG_QUALITY = 1, + IMWRITE_JPEG_PROGRESSIVE = 2, + IMWRITE_JPEG_OPTIMIZE = 3, + IMWRITE_JPEG_RST_INTERVAL = 4, + IMWRITE_JPEG_LUMA_QUALITY = 5, + IMWRITE_JPEG_CHROMA_QUALITY = 6, + IMWRITE_PNG_COMPRESSION = 16, + IMWRITE_PNG_STRATEGY = 17, + IMWRITE_PNG_BILEVEL = 18, + IMWRITE_PXM_BINARY = 32, + IMWRITE_EXR_TYPE = (3 << 4) + 0, + IMWRITE_WEBP_QUALITY = 64, + IMWRITE_PAM_TUPLETYPE = 128, + IMWRITE_TIFF_RESUNIT = 256, + IMWRITE_TIFF_XDPI = 257, + IMWRITE_TIFF_YDPI = 258, + IMWRITE_EXR_TYPE_HALF = 1, + IMWRITE_EXR_TYPE_FLOAT = 2, + IMWRITE_PNG_STRATEGY_DEFAULT = 0, + IMWRITE_PNG_STRATEGY_FILTERED = 1, + IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY = 2, + IMWRITE_PNG_STRATEGY_RLE = 3, + IMWRITE_PNG_STRATEGY_FIXED = 4, + IMWRITE_PAM_FORMAT_NULL = 0, + IMWRITE_PAM_FORMAT_BLACKANDWHITE = 1, + IMWRITE_PAM_FORMAT_GRAYSCALE = 2, + IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA = 3, + IMWRITE_PAM_FORMAT_RGB = 4, + IMWRITE_PAM_FORMAT_RGB_ALPHA = 5; + + + // + // C++: Mat cv::imdecode(Mat buf, int flags) + // + + //javadoc: imdecode(buf, flags) + public static Mat imdecode(Mat buf, int flags) + { + + Mat retVal = new Mat(imdecode_0(buf.nativeObj, flags)); + + return retVal; + } + + + // + // C++: Mat cv::imread(String filename, int flags = IMREAD_COLOR) + // + + //javadoc: imread(filename, flags) + public static Mat imread(String filename, int flags) + { + + Mat retVal = new Mat(imread_0(filename, flags)); + + return retVal; + } + + //javadoc: imread(filename) + public static Mat imread(String filename) + { + + Mat retVal = new Mat(imread_1(filename)); + + return retVal; + } + + + // + // C++: bool cv::imencode(String ext, Mat img, vector_uchar& buf, vector_int params = std::vector()) + // + + //javadoc: imencode(ext, img, buf, params) + public static boolean imencode(String ext, Mat img, MatOfByte buf, MatOfInt params) + { + Mat buf_mat = buf; + Mat params_mat = params; + boolean retVal = imencode_0(ext, img.nativeObj, buf_mat.nativeObj, params_mat.nativeObj); + + return retVal; + } + + //javadoc: imencode(ext, img, buf) + public static boolean imencode(String ext, Mat img, MatOfByte buf) + { + Mat buf_mat = buf; + boolean retVal = imencode_1(ext, img.nativeObj, buf_mat.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::imreadmulti(String filename, vector_Mat& mats, int flags = IMREAD_ANYCOLOR) + // + + //javadoc: imreadmulti(filename, mats, flags) + public static boolean imreadmulti(String filename, List mats, int flags) + { + Mat mats_mat = new Mat(); + boolean retVal = imreadmulti_0(filename, mats_mat.nativeObj, flags); + Converters.Mat_to_vector_Mat(mats_mat, mats); + mats_mat.release(); + return retVal; + } + + //javadoc: imreadmulti(filename, mats) + public static boolean imreadmulti(String filename, List mats) + { + Mat mats_mat = new Mat(); + boolean retVal = imreadmulti_1(filename, mats_mat.nativeObj); + Converters.Mat_to_vector_Mat(mats_mat, mats); + mats_mat.release(); + return retVal; + } + + + // + // C++: bool cv::imwrite(String filename, Mat img, vector_int params = std::vector()) + // + + //javadoc: imwrite(filename, img, params) + public static boolean imwrite(String filename, Mat img, MatOfInt params) + { + Mat params_mat = params; + boolean retVal = imwrite_0(filename, img.nativeObj, params_mat.nativeObj); + + return retVal; + } + + //javadoc: imwrite(filename, img) + public static boolean imwrite(String filename, Mat img) + { + + boolean retVal = imwrite_1(filename, img.nativeObj); + + return retVal; + } + + + + + // C++: Mat cv::imdecode(Mat buf, int flags) + private static native long imdecode_0(long buf_nativeObj, int flags); + + // C++: Mat cv::imread(String filename, int flags = IMREAD_COLOR) + private static native long imread_0(String filename, int flags); + private static native long imread_1(String filename); + + // C++: bool cv::imencode(String ext, Mat img, vector_uchar& buf, vector_int params = std::vector()) + private static native boolean imencode_0(String ext, long img_nativeObj, long buf_mat_nativeObj, long params_mat_nativeObj); + private static native boolean imencode_1(String ext, long img_nativeObj, long buf_mat_nativeObj); + + // C++: bool cv::imreadmulti(String filename, vector_Mat& mats, int flags = IMREAD_ANYCOLOR) + private static native boolean imreadmulti_0(String filename, long mats_mat_nativeObj, int flags); + private static native boolean imreadmulti_1(String filename, long mats_mat_nativeObj); + + // C++: bool cv::imwrite(String filename, Mat img, vector_int params = std::vector()) + private static native boolean imwrite_0(String filename, long img_nativeObj, long params_mat_nativeObj); + private static native boolean imwrite_1(String filename, long img_nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/imgproc/CLAHE.java b/openCVLibrary3/src/main/java/org/opencv/imgproc/CLAHE.java new file mode 100644 index 00000000000..8a320d4dc2c --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/imgproc/CLAHE.java @@ -0,0 +1,132 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.imgproc; + +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.core.Size; + +// C++: class CLAHE +//javadoc: CLAHE + +public class CLAHE extends Algorithm { + + protected CLAHE(long addr) { super(addr); } + + // internal usage only + public static CLAHE __fromPtr__(long addr) { return new CLAHE(addr); } + + // + // C++: Size cv::CLAHE::getTilesGridSize() + // + + //javadoc: CLAHE::getTilesGridSize() + public Size getTilesGridSize() + { + + Size retVal = new Size(getTilesGridSize_0(nativeObj)); + + return retVal; + } + + + // + // C++: double cv::CLAHE::getClipLimit() + // + + //javadoc: CLAHE::getClipLimit() + public double getClipLimit() + { + + double retVal = getClipLimit_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::CLAHE::apply(Mat src, Mat& dst) + // + + //javadoc: CLAHE::apply(src, dst) + public void apply(Mat src, Mat dst) + { + + apply_0(nativeObj, src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::CLAHE::collectGarbage() + // + + //javadoc: CLAHE::collectGarbage() + public void collectGarbage() + { + + collectGarbage_0(nativeObj); + + return; + } + + + // + // C++: void cv::CLAHE::setClipLimit(double clipLimit) + // + + //javadoc: CLAHE::setClipLimit(clipLimit) + public void setClipLimit(double clipLimit) + { + + setClipLimit_0(nativeObj, clipLimit); + + return; + } + + + // + // C++: void cv::CLAHE::setTilesGridSize(Size tileGridSize) + // + + //javadoc: CLAHE::setTilesGridSize(tileGridSize) + public void setTilesGridSize(Size tileGridSize) + { + + setTilesGridSize_0(nativeObj, tileGridSize.width, tileGridSize.height); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Size cv::CLAHE::getTilesGridSize() + private static native double[] getTilesGridSize_0(long nativeObj); + + // C++: double cv::CLAHE::getClipLimit() + private static native double getClipLimit_0(long nativeObj); + + // C++: void cv::CLAHE::apply(Mat src, Mat& dst) + private static native void apply_0(long nativeObj, long src_nativeObj, long dst_nativeObj); + + // C++: void cv::CLAHE::collectGarbage() + private static native void collectGarbage_0(long nativeObj); + + // C++: void cv::CLAHE::setClipLimit(double clipLimit) + private static native void setClipLimit_0(long nativeObj, double clipLimit); + + // C++: void cv::CLAHE::setTilesGridSize(Size tileGridSize) + private static native void setTilesGridSize_0(long nativeObj, double tileGridSize_width, double tileGridSize_height); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/imgproc/Imgproc.java b/openCVLibrary3/src/main/java/org/opencv/imgproc/Imgproc.java new file mode 100644 index 00000000000..6112d7cdd3e --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/imgproc/Imgproc.java @@ -0,0 +1,4413 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.imgproc; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfFloat; +import org.opencv.core.MatOfInt; +import org.opencv.core.MatOfInt4; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.core.RotatedRect; +import org.opencv.core.Scalar; +import org.opencv.core.Size; +import org.opencv.core.TermCriteria; +import org.opencv.imgproc.CLAHE; +import org.opencv.imgproc.LineSegmentDetector; +import org.opencv.utils.Converters; + +// C++: class Imgproc +//javadoc: Imgproc + +public class Imgproc { + + private static final int + IPL_BORDER_CONSTANT = 0, + IPL_BORDER_REPLICATE = 1, + IPL_BORDER_REFLECT = 2, + IPL_BORDER_WRAP = 3, + IPL_BORDER_REFLECT_101 = 4, + IPL_BORDER_TRANSPARENT = 5, + CV_INTER_NN = 0, + CV_INTER_LINEAR = 1, + CV_INTER_CUBIC = 2, + CV_INTER_AREA = 3, + CV_INTER_LANCZOS4 = 4, + CV_MOP_ERODE = 0, + CV_MOP_DILATE = 1, + CV_MOP_OPEN = 2, + CV_MOP_CLOSE = 3, + CV_MOP_GRADIENT = 4, + CV_MOP_TOPHAT = 5, + CV_MOP_BLACKHAT = 6, + CV_RETR_EXTERNAL = 0, + CV_RETR_LIST = 1, + CV_RETR_CCOMP = 2, + CV_RETR_TREE = 3, + CV_RETR_FLOODFILL = 4, + CV_CHAIN_APPROX_NONE = 1, + CV_CHAIN_APPROX_SIMPLE = 2, + CV_CHAIN_APPROX_TC89_L1 = 3, + CV_CHAIN_APPROX_TC89_KCOS = 4, + CV_THRESH_BINARY = 0, + CV_THRESH_BINARY_INV = 1, + CV_THRESH_TRUNC = 2, + CV_THRESH_TOZERO = 3, + CV_THRESH_TOZERO_INV = 4, + CV_THRESH_MASK = 7, + CV_THRESH_OTSU = 8, + CV_THRESH_TRIANGLE = 16; + + + public static final int + LINE_AA = 16, + LINE_8 = 8, + LINE_4 = 4, + CV_BLUR_NO_SCALE = 0, + CV_BLUR = 1, + CV_GAUSSIAN = 2, + CV_MEDIAN = 3, + CV_BILATERAL = 4, + CV_GAUSSIAN_5x5 = 7, + CV_SCHARR = -1, + CV_MAX_SOBEL_KSIZE = 7, + CV_RGBA2mRGBA = 125, + CV_mRGBA2RGBA = 126, + CV_WARP_FILL_OUTLIERS = 8, + CV_WARP_INVERSE_MAP = 16, + CV_SHAPE_RECT = 0, + CV_SHAPE_CROSS = 1, + CV_SHAPE_ELLIPSE = 2, + CV_SHAPE_CUSTOM = 100, + CV_CHAIN_CODE = 0, + CV_LINK_RUNS = 5, + CV_POLY_APPROX_DP = 0, + CV_CONTOURS_MATCH_I1 = 1, + CV_CONTOURS_MATCH_I2 = 2, + CV_CONTOURS_MATCH_I3 = 3, + CV_CLOCKWISE = 1, + CV_COUNTER_CLOCKWISE = 2, + CV_COMP_CORREL = 0, + CV_COMP_CHISQR = 1, + CV_COMP_INTERSECT = 2, + CV_COMP_BHATTACHARYYA = 3, + CV_COMP_HELLINGER = CV_COMP_BHATTACHARYYA, + CV_COMP_CHISQR_ALT = 4, + CV_COMP_KL_DIV = 5, + CV_DIST_MASK_3 = 3, + CV_DIST_MASK_5 = 5, + CV_DIST_MASK_PRECISE = 0, + CV_DIST_LABEL_CCOMP = 0, + CV_DIST_LABEL_PIXEL = 1, + CV_DIST_USER = -1, + CV_DIST_L1 = 1, + CV_DIST_L2 = 2, + CV_DIST_C = 3, + CV_DIST_L12 = 4, + CV_DIST_FAIR = 5, + CV_DIST_WELSCH = 6, + CV_DIST_HUBER = 7, + CV_CANNY_L2_GRADIENT = (1 << 31), + CV_HOUGH_STANDARD = 0, + CV_HOUGH_PROBABILISTIC = 1, + CV_HOUGH_MULTI_SCALE = 2, + CV_HOUGH_GRADIENT = 3, + MORPH_ERODE = 0, + MORPH_DILATE = 1, + MORPH_OPEN = 2, + MORPH_CLOSE = 3, + MORPH_GRADIENT = 4, + MORPH_TOPHAT = 5, + MORPH_BLACKHAT = 6, + MORPH_HITMISS = 7, + MORPH_RECT = 0, + MORPH_CROSS = 1, + MORPH_ELLIPSE = 2, + INTER_NEAREST = 0, + INTER_LINEAR = 1, + INTER_CUBIC = 2, + INTER_AREA = 3, + INTER_LANCZOS4 = 4, + INTER_LINEAR_EXACT = 5, + INTER_MAX = 7, + WARP_FILL_OUTLIERS = 8, + WARP_INVERSE_MAP = 16, + WARP_POLAR_LINEAR = 0, + WARP_POLAR_LOG = 256, + INTER_BITS = 5, + INTER_BITS2 = INTER_BITS * 2, + INTER_TAB_SIZE = 1 << INTER_BITS, + INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE, + DIST_USER = -1, + DIST_L1 = 1, + DIST_L2 = 2, + DIST_C = 3, + DIST_L12 = 4, + DIST_FAIR = 5, + DIST_WELSCH = 6, + DIST_HUBER = 7, + DIST_MASK_3 = 3, + DIST_MASK_5 = 5, + DIST_MASK_PRECISE = 0, + THRESH_BINARY = 0, + THRESH_BINARY_INV = 1, + THRESH_TRUNC = 2, + THRESH_TOZERO = 3, + THRESH_TOZERO_INV = 4, + THRESH_MASK = 7, + THRESH_OTSU = 8, + THRESH_TRIANGLE = 16, + ADAPTIVE_THRESH_MEAN_C = 0, + ADAPTIVE_THRESH_GAUSSIAN_C = 1, + PROJ_SPHERICAL_ORTHO = 0, + PROJ_SPHERICAL_EQRECT = 1, + GC_BGD = 0, + GC_FGD = 1, + GC_PR_BGD = 2, + GC_PR_FGD = 3, + GC_INIT_WITH_RECT = 0, + GC_INIT_WITH_MASK = 1, + GC_EVAL = 2, + GC_EVAL_FREEZE_MODEL = 3, + DIST_LABEL_CCOMP = 0, + DIST_LABEL_PIXEL = 1, + FLOODFILL_FIXED_RANGE = 1 << 16, + FLOODFILL_MASK_ONLY = 1 << 17, + CC_STAT_LEFT = 0, + CC_STAT_TOP = 1, + CC_STAT_WIDTH = 2, + CC_STAT_HEIGHT = 3, + CC_STAT_AREA = 4, + CC_STAT_MAX = 5, + CCL_WU = 0, + CCL_DEFAULT = -1, + CCL_GRANA = 1, + RETR_EXTERNAL = 0, + RETR_LIST = 1, + RETR_CCOMP = 2, + RETR_TREE = 3, + RETR_FLOODFILL = 4, + CHAIN_APPROX_NONE = 1, + CHAIN_APPROX_SIMPLE = 2, + CHAIN_APPROX_TC89_L1 = 3, + CHAIN_APPROX_TC89_KCOS = 4, + CONTOURS_MATCH_I1 = 1, + CONTOURS_MATCH_I2 = 2, + CONTOURS_MATCH_I3 = 3, + HOUGH_STANDARD = 0, + HOUGH_PROBABILISTIC = 1, + HOUGH_MULTI_SCALE = 2, + HOUGH_GRADIENT = 3, + LSD_REFINE_NONE = 0, + LSD_REFINE_STD = 1, + LSD_REFINE_ADV = 2, + HISTCMP_CORREL = 0, + HISTCMP_CHISQR = 1, + HISTCMP_INTERSECT = 2, + HISTCMP_BHATTACHARYYA = 3, + HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA, + HISTCMP_CHISQR_ALT = 4, + HISTCMP_KL_DIV = 5, + COLOR_BGR2BGRA = 0, + COLOR_RGB2RGBA = COLOR_BGR2BGRA, + COLOR_BGRA2BGR = 1, + COLOR_RGBA2RGB = COLOR_BGRA2BGR, + COLOR_BGR2RGBA = 2, + COLOR_RGB2BGRA = COLOR_BGR2RGBA, + COLOR_RGBA2BGR = 3, + COLOR_BGRA2RGB = COLOR_RGBA2BGR, + COLOR_BGR2RGB = 4, + COLOR_RGB2BGR = COLOR_BGR2RGB, + COLOR_BGRA2RGBA = 5, + COLOR_RGBA2BGRA = COLOR_BGRA2RGBA, + COLOR_BGR2GRAY = 6, + COLOR_RGB2GRAY = 7, + COLOR_GRAY2BGR = 8, + COLOR_GRAY2RGB = COLOR_GRAY2BGR, + COLOR_GRAY2BGRA = 9, + COLOR_GRAY2RGBA = COLOR_GRAY2BGRA, + COLOR_BGRA2GRAY = 10, + COLOR_RGBA2GRAY = 11, + COLOR_BGR2BGR565 = 12, + COLOR_RGB2BGR565 = 13, + COLOR_BGR5652BGR = 14, + COLOR_BGR5652RGB = 15, + COLOR_BGRA2BGR565 = 16, + COLOR_RGBA2BGR565 = 17, + COLOR_BGR5652BGRA = 18, + COLOR_BGR5652RGBA = 19, + COLOR_GRAY2BGR565 = 20, + COLOR_BGR5652GRAY = 21, + COLOR_BGR2BGR555 = 22, + COLOR_RGB2BGR555 = 23, + COLOR_BGR5552BGR = 24, + COLOR_BGR5552RGB = 25, + COLOR_BGRA2BGR555 = 26, + COLOR_RGBA2BGR555 = 27, + COLOR_BGR5552BGRA = 28, + COLOR_BGR5552RGBA = 29, + COLOR_GRAY2BGR555 = 30, + COLOR_BGR5552GRAY = 31, + COLOR_BGR2XYZ = 32, + COLOR_RGB2XYZ = 33, + COLOR_XYZ2BGR = 34, + COLOR_XYZ2RGB = 35, + COLOR_BGR2YCrCb = 36, + COLOR_RGB2YCrCb = 37, + COLOR_YCrCb2BGR = 38, + COLOR_YCrCb2RGB = 39, + COLOR_BGR2HSV = 40, + COLOR_RGB2HSV = 41, + COLOR_BGR2Lab = 44, + COLOR_RGB2Lab = 45, + COLOR_BGR2Luv = 50, + COLOR_RGB2Luv = 51, + COLOR_BGR2HLS = 52, + COLOR_RGB2HLS = 53, + COLOR_HSV2BGR = 54, + COLOR_HSV2RGB = 55, + COLOR_Lab2BGR = 56, + COLOR_Lab2RGB = 57, + COLOR_Luv2BGR = 58, + COLOR_Luv2RGB = 59, + COLOR_HLS2BGR = 60, + COLOR_HLS2RGB = 61, + COLOR_BGR2HSV_FULL = 66, + COLOR_RGB2HSV_FULL = 67, + COLOR_BGR2HLS_FULL = 68, + COLOR_RGB2HLS_FULL = 69, + COLOR_HSV2BGR_FULL = 70, + COLOR_HSV2RGB_FULL = 71, + COLOR_HLS2BGR_FULL = 72, + COLOR_HLS2RGB_FULL = 73, + COLOR_LBGR2Lab = 74, + COLOR_LRGB2Lab = 75, + COLOR_LBGR2Luv = 76, + COLOR_LRGB2Luv = 77, + COLOR_Lab2LBGR = 78, + COLOR_Lab2LRGB = 79, + COLOR_Luv2LBGR = 80, + COLOR_Luv2LRGB = 81, + COLOR_BGR2YUV = 82, + COLOR_RGB2YUV = 83, + COLOR_YUV2BGR = 84, + COLOR_YUV2RGB = 85, + COLOR_YUV2RGB_NV12 = 90, + COLOR_YUV2BGR_NV12 = 91, + COLOR_YUV2RGB_NV21 = 92, + COLOR_YUV2BGR_NV21 = 93, + COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, + COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, + COLOR_YUV2RGBA_NV12 = 94, + COLOR_YUV2BGRA_NV12 = 95, + COLOR_YUV2RGBA_NV21 = 96, + COLOR_YUV2BGRA_NV21 = 97, + COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, + COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, + COLOR_YUV2RGB_YV12 = 98, + COLOR_YUV2BGR_YV12 = 99, + COLOR_YUV2RGB_IYUV = 100, + COLOR_YUV2BGR_IYUV = 101, + COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, + COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, + COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, + COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, + COLOR_YUV2RGBA_YV12 = 102, + COLOR_YUV2BGRA_YV12 = 103, + COLOR_YUV2RGBA_IYUV = 104, + COLOR_YUV2BGRA_IYUV = 105, + COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, + COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, + COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, + COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, + COLOR_YUV2GRAY_420 = 106, + COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, + COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, + COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, + COLOR_YUV2RGB_UYVY = 107, + COLOR_YUV2BGR_UYVY = 108, + COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, + COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, + COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, + COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, + COLOR_YUV2RGBA_UYVY = 111, + COLOR_YUV2BGRA_UYVY = 112, + COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, + COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, + COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, + COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, + COLOR_YUV2RGB_YUY2 = 115, + COLOR_YUV2BGR_YUY2 = 116, + COLOR_YUV2RGB_YVYU = 117, + COLOR_YUV2BGR_YVYU = 118, + COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, + COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, + COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, + COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, + COLOR_YUV2RGBA_YUY2 = 119, + COLOR_YUV2BGRA_YUY2 = 120, + COLOR_YUV2RGBA_YVYU = 121, + COLOR_YUV2BGRA_YVYU = 122, + COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, + COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, + COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, + COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, + COLOR_YUV2GRAY_UYVY = 123, + COLOR_YUV2GRAY_YUY2 = 124, + COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, + COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, + COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, + COLOR_RGBA2mRGBA = 125, + COLOR_mRGBA2RGBA = 126, + COLOR_RGB2YUV_I420 = 127, + COLOR_BGR2YUV_I420 = 128, + COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, + COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, + COLOR_RGBA2YUV_I420 = 129, + COLOR_BGRA2YUV_I420 = 130, + COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, + COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, + COLOR_RGB2YUV_YV12 = 131, + COLOR_BGR2YUV_YV12 = 132, + COLOR_RGBA2YUV_YV12 = 133, + COLOR_BGRA2YUV_YV12 = 134, + COLOR_BayerBG2BGR = 46, + COLOR_BayerGB2BGR = 47, + COLOR_BayerRG2BGR = 48, + COLOR_BayerGR2BGR = 49, + COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, + COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, + COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, + COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, + COLOR_BayerBG2GRAY = 86, + COLOR_BayerGB2GRAY = 87, + COLOR_BayerRG2GRAY = 88, + COLOR_BayerGR2GRAY = 89, + COLOR_BayerBG2BGR_VNG = 62, + COLOR_BayerGB2BGR_VNG = 63, + COLOR_BayerRG2BGR_VNG = 64, + COLOR_BayerGR2BGR_VNG = 65, + COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, + COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, + COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, + COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, + COLOR_BayerBG2BGR_EA = 135, + COLOR_BayerGB2BGR_EA = 136, + COLOR_BayerRG2BGR_EA = 137, + COLOR_BayerGR2BGR_EA = 138, + COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, + COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, + COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, + COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, + COLOR_BayerBG2BGRA = 139, + COLOR_BayerGB2BGRA = 140, + COLOR_BayerRG2BGRA = 141, + COLOR_BayerGR2BGRA = 142, + COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, + COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, + COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, + COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, + COLOR_COLORCVT_MAX = 143, + INTERSECT_NONE = 0, + INTERSECT_PARTIAL = 1, + INTERSECT_FULL = 2, + TM_SQDIFF = 0, + TM_SQDIFF_NORMED = 1, + TM_CCORR = 2, + TM_CCORR_NORMED = 3, + TM_CCOEFF = 4, + TM_CCOEFF_NORMED = 5, + COLORMAP_AUTUMN = 0, + COLORMAP_BONE = 1, + COLORMAP_JET = 2, + COLORMAP_WINTER = 3, + COLORMAP_RAINBOW = 4, + COLORMAP_OCEAN = 5, + COLORMAP_SUMMER = 6, + COLORMAP_SPRING = 7, + COLORMAP_COOL = 8, + COLORMAP_HSV = 9, + COLORMAP_PINK = 10, + COLORMAP_HOT = 11, + COLORMAP_PARULA = 12, + MARKER_CROSS = 0, + MARKER_TILTED_CROSS = 1, + MARKER_STAR = 2, + MARKER_DIAMOND = 3, + MARKER_SQUARE = 4, + MARKER_TRIANGLE_UP = 5, + MARKER_TRIANGLE_DOWN = 6; + + + // + // C++: Mat cv::getAffineTransform(vector_Point2f src, vector_Point2f dst) + // + + //javadoc: getAffineTransform(src, dst) + public static Mat getAffineTransform(MatOfPoint2f src, MatOfPoint2f dst) + { + Mat src_mat = src; + Mat dst_mat = dst; + Mat retVal = new Mat(getAffineTransform_0(src_mat.nativeObj, dst_mat.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::getDefaultNewCameraMatrix(Mat cameraMatrix, Size imgsize = Size(), bool centerPrincipalPoint = false) + // + + //javadoc: getDefaultNewCameraMatrix(cameraMatrix, imgsize, centerPrincipalPoint) + public static Mat getDefaultNewCameraMatrix(Mat cameraMatrix, Size imgsize, boolean centerPrincipalPoint) + { + + Mat retVal = new Mat(getDefaultNewCameraMatrix_0(cameraMatrix.nativeObj, imgsize.width, imgsize.height, centerPrincipalPoint)); + + return retVal; + } + + //javadoc: getDefaultNewCameraMatrix(cameraMatrix, imgsize) + public static Mat getDefaultNewCameraMatrix(Mat cameraMatrix, Size imgsize) + { + + Mat retVal = new Mat(getDefaultNewCameraMatrix_1(cameraMatrix.nativeObj, imgsize.width, imgsize.height)); + + return retVal; + } + + //javadoc: getDefaultNewCameraMatrix(cameraMatrix) + public static Mat getDefaultNewCameraMatrix(Mat cameraMatrix) + { + + Mat retVal = new Mat(getDefaultNewCameraMatrix_2(cameraMatrix.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F) + // + + //javadoc: getGaborKernel(ksize, sigma, theta, lambd, gamma, psi, ktype) + public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi, int ktype) + { + + Mat retVal = new Mat(getGaborKernel_0(ksize.width, ksize.height, sigma, theta, lambd, gamma, psi, ktype)); + + return retVal; + } + + //javadoc: getGaborKernel(ksize, sigma, theta, lambd, gamma, psi) + public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi) + { + + Mat retVal = new Mat(getGaborKernel_1(ksize.width, ksize.height, sigma, theta, lambd, gamma, psi)); + + return retVal; + } + + //javadoc: getGaborKernel(ksize, sigma, theta, lambd, gamma) + public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma) + { + + Mat retVal = new Mat(getGaborKernel_2(ksize.width, ksize.height, sigma, theta, lambd, gamma)); + + return retVal; + } + + + // + // C++: Mat cv::getGaussianKernel(int ksize, double sigma, int ktype = CV_64F) + // + + //javadoc: getGaussianKernel(ksize, sigma, ktype) + public static Mat getGaussianKernel(int ksize, double sigma, int ktype) + { + + Mat retVal = new Mat(getGaussianKernel_0(ksize, sigma, ktype)); + + return retVal; + } + + //javadoc: getGaussianKernel(ksize, sigma) + public static Mat getGaussianKernel(int ksize, double sigma) + { + + Mat retVal = new Mat(getGaussianKernel_1(ksize, sigma)); + + return retVal; + } + + + // + // C++: Mat cv::getPerspectiveTransform(Mat src, Mat dst) + // + + //javadoc: getPerspectiveTransform(src, dst) + public static Mat getPerspectiveTransform(Mat src, Mat dst) + { + + Mat retVal = new Mat(getPerspectiveTransform_0(src.nativeObj, dst.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::getRotationMatrix2D(Point2f center, double angle, double scale) + // + + //javadoc: getRotationMatrix2D(center, angle, scale) + public static Mat getRotationMatrix2D(Point center, double angle, double scale) + { + + Mat retVal = new Mat(getRotationMatrix2D_0(center.x, center.y, angle, scale)); + + return retVal; + } + + + // + // C++: Mat cv::getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)) + // + + //javadoc: getStructuringElement(shape, ksize, anchor) + public static Mat getStructuringElement(int shape, Size ksize, Point anchor) + { + + Mat retVal = new Mat(getStructuringElement_0(shape, ksize.width, ksize.height, anchor.x, anchor.y)); + + return retVal; + } + + //javadoc: getStructuringElement(shape, ksize) + public static Mat getStructuringElement(int shape, Size ksize) + { + + Mat retVal = new Mat(getStructuringElement_1(shape, ksize.width, ksize.height)); + + return retVal; + } + + + // + // C++: Moments cv::moments(Mat array, bool binaryImage = false) + // + + //javadoc: moments(array, binaryImage) + public static Moments moments(Mat array, boolean binaryImage) + { + + Moments retVal = new Moments(moments_0(array.nativeObj, binaryImage)); + + return retVal; + } + + //javadoc: moments(array) + public static Moments moments(Mat array) + { + + Moments retVal = new Moments(moments_1(array.nativeObj)); + + return retVal; + } + + + // + // C++: Point2d cv::phaseCorrelate(Mat src1, Mat src2, Mat window = Mat(), double* response = 0) + // + + //javadoc: phaseCorrelate(src1, src2, window, response) + public static Point phaseCorrelate(Mat src1, Mat src2, Mat window, double[] response) + { + double[] response_out = new double[1]; + Point retVal = new Point(phaseCorrelate_0(src1.nativeObj, src2.nativeObj, window.nativeObj, response_out)); + if(response!=null) response[0] = (double)response_out[0]; + return retVal; + } + + //javadoc: phaseCorrelate(src1, src2, window) + public static Point phaseCorrelate(Mat src1, Mat src2, Mat window) + { + + Point retVal = new Point(phaseCorrelate_1(src1.nativeObj, src2.nativeObj, window.nativeObj)); + + return retVal; + } + + //javadoc: phaseCorrelate(src1, src2) + public static Point phaseCorrelate(Mat src1, Mat src2) + { + + Point retVal = new Point(phaseCorrelate_2(src1.nativeObj, src2.nativeObj)); + + return retVal; + } + + + // + // C++: Ptr_CLAHE cv::createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)) + // + + //javadoc: createCLAHE(clipLimit, tileGridSize) + public static CLAHE createCLAHE(double clipLimit, Size tileGridSize) + { + + CLAHE retVal = CLAHE.__fromPtr__(createCLAHE_0(clipLimit, tileGridSize.width, tileGridSize.height)); + + return retVal; + } + + //javadoc: createCLAHE(clipLimit) + public static CLAHE createCLAHE(double clipLimit) + { + + CLAHE retVal = CLAHE.__fromPtr__(createCLAHE_1(clipLimit)); + + return retVal; + } + + //javadoc: createCLAHE() + public static CLAHE createCLAHE() + { + + CLAHE retVal = CLAHE.__fromPtr__(createCLAHE_2()); + + return retVal; + } + + + // + // C++: Ptr_LineSegmentDetector cv::createLineSegmentDetector(int _refine = LSD_REFINE_STD, double _scale = 0.8, double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5, double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024) + // + + //javadoc: createLineSegmentDetector(_refine, _scale, _sigma_scale, _quant, _ang_th, _log_eps, _density_th, _n_bins) + public static LineSegmentDetector createLineSegmentDetector(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th, double _log_eps, double _density_th, int _n_bins) + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_0(_refine, _scale, _sigma_scale, _quant, _ang_th, _log_eps, _density_th, _n_bins)); + + return retVal; + } + + //javadoc: createLineSegmentDetector(_refine, _scale, _sigma_scale, _quant, _ang_th, _log_eps, _density_th) + public static LineSegmentDetector createLineSegmentDetector(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th, double _log_eps, double _density_th) + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_1(_refine, _scale, _sigma_scale, _quant, _ang_th, _log_eps, _density_th)); + + return retVal; + } + + //javadoc: createLineSegmentDetector(_refine, _scale, _sigma_scale, _quant, _ang_th, _log_eps) + public static LineSegmentDetector createLineSegmentDetector(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th, double _log_eps) + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_2(_refine, _scale, _sigma_scale, _quant, _ang_th, _log_eps)); + + return retVal; + } + + //javadoc: createLineSegmentDetector(_refine, _scale, _sigma_scale, _quant, _ang_th) + public static LineSegmentDetector createLineSegmentDetector(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th) + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_3(_refine, _scale, _sigma_scale, _quant, _ang_th)); + + return retVal; + } + + //javadoc: createLineSegmentDetector(_refine, _scale, _sigma_scale, _quant) + public static LineSegmentDetector createLineSegmentDetector(int _refine, double _scale, double _sigma_scale, double _quant) + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_4(_refine, _scale, _sigma_scale, _quant)); + + return retVal; + } + + //javadoc: createLineSegmentDetector(_refine, _scale, _sigma_scale) + public static LineSegmentDetector createLineSegmentDetector(int _refine, double _scale, double _sigma_scale) + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_5(_refine, _scale, _sigma_scale)); + + return retVal; + } + + //javadoc: createLineSegmentDetector(_refine, _scale) + public static LineSegmentDetector createLineSegmentDetector(int _refine, double _scale) + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_6(_refine, _scale)); + + return retVal; + } + + //javadoc: createLineSegmentDetector(_refine) + public static LineSegmentDetector createLineSegmentDetector(int _refine) + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_7(_refine)); + + return retVal; + } + + //javadoc: createLineSegmentDetector() + public static LineSegmentDetector createLineSegmentDetector() + { + + LineSegmentDetector retVal = LineSegmentDetector.__fromPtr__(createLineSegmentDetector_8()); + + return retVal; + } + + + // + // C++: Rect cv::boundingRect(vector_Point points) + // + + //javadoc: boundingRect(points) + public static Rect boundingRect(MatOfPoint points) + { + Mat points_mat = points; + Rect retVal = new Rect(boundingRect_0(points_mat.nativeObj)); + + return retVal; + } + + + // + // C++: RotatedRect cv::fitEllipse(vector_Point2f points) + // + + //javadoc: fitEllipse(points) + public static RotatedRect fitEllipse(MatOfPoint2f points) + { + Mat points_mat = points; + RotatedRect retVal = new RotatedRect(fitEllipse_0(points_mat.nativeObj)); + + return retVal; + } + + + // + // C++: RotatedRect cv::fitEllipseAMS(Mat points) + // + + //javadoc: fitEllipseAMS(points) + public static RotatedRect fitEllipseAMS(Mat points) + { + + RotatedRect retVal = new RotatedRect(fitEllipseAMS_0(points.nativeObj)); + + return retVal; + } + + + // + // C++: RotatedRect cv::fitEllipseDirect(Mat points) + // + + //javadoc: fitEllipseDirect(points) + public static RotatedRect fitEllipseDirect(Mat points) + { + + RotatedRect retVal = new RotatedRect(fitEllipseDirect_0(points.nativeObj)); + + return retVal; + } + + + // + // C++: RotatedRect cv::minAreaRect(vector_Point2f points) + // + + //javadoc: minAreaRect(points) + public static RotatedRect minAreaRect(MatOfPoint2f points) + { + Mat points_mat = points; + RotatedRect retVal = new RotatedRect(minAreaRect_0(points_mat.nativeObj)); + + return retVal; + } + + + // + // C++: bool cv::clipLine(Rect imgRect, Point& pt1, Point& pt2) + // + + //javadoc: clipLine(imgRect, pt1, pt2) + public static boolean clipLine(Rect imgRect, Point pt1, Point pt2) + { + double[] pt1_out = new double[2]; + double[] pt2_out = new double[2]; + boolean retVal = clipLine_0(imgRect.x, imgRect.y, imgRect.width, imgRect.height, pt1.x, pt1.y, pt1_out, pt2.x, pt2.y, pt2_out); + if(pt1!=null){ pt1.x = pt1_out[0]; pt1.y = pt1_out[1]; } + if(pt2!=null){ pt2.x = pt2_out[0]; pt2.y = pt2_out[1]; } + return retVal; + } + + + // + // C++: bool cv::isContourConvex(vector_Point contour) + // + + //javadoc: isContourConvex(contour) + public static boolean isContourConvex(MatOfPoint contour) + { + Mat contour_mat = contour; + boolean retVal = isContourConvex_0(contour_mat.nativeObj); + + return retVal; + } + + + // + // C++: double cv::arcLength(vector_Point2f curve, bool closed) + // + + //javadoc: arcLength(curve, closed) + public static double arcLength(MatOfPoint2f curve, boolean closed) + { + Mat curve_mat = curve; + double retVal = arcLength_0(curve_mat.nativeObj, closed); + + return retVal; + } + + + // + // C++: double cv::compareHist(Mat H1, Mat H2, int method) + // + + //javadoc: compareHist(H1, H2, method) + public static double compareHist(Mat H1, Mat H2, int method) + { + + double retVal = compareHist_0(H1.nativeObj, H2.nativeObj, method); + + return retVal; + } + + + // + // C++: double cv::contourArea(Mat contour, bool oriented = false) + // + + //javadoc: contourArea(contour, oriented) + public static double contourArea(Mat contour, boolean oriented) + { + + double retVal = contourArea_0(contour.nativeObj, oriented); + + return retVal; + } + + //javadoc: contourArea(contour) + public static double contourArea(Mat contour) + { + + double retVal = contourArea_1(contour.nativeObj); + + return retVal; + } + + + // + // C++: double cv::getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness = 1) + // + + //javadoc: getFontScaleFromHeight(fontFace, pixelHeight, thickness) + public static double getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness) + { + + double retVal = getFontScaleFromHeight_0(fontFace, pixelHeight, thickness); + + return retVal; + } + + //javadoc: getFontScaleFromHeight(fontFace, pixelHeight) + public static double getFontScaleFromHeight(int fontFace, int pixelHeight) + { + + double retVal = getFontScaleFromHeight_1(fontFace, pixelHeight); + + return retVal; + } + + + // + // C++: double cv::matchShapes(Mat contour1, Mat contour2, int method, double parameter) + // + + //javadoc: matchShapes(contour1, contour2, method, parameter) + public static double matchShapes(Mat contour1, Mat contour2, int method, double parameter) + { + + double retVal = matchShapes_0(contour1.nativeObj, contour2.nativeObj, method, parameter); + + return retVal; + } + + + // + // C++: double cv::minEnclosingTriangle(Mat points, Mat& triangle) + // + + //javadoc: minEnclosingTriangle(points, triangle) + public static double minEnclosingTriangle(Mat points, Mat triangle) + { + + double retVal = minEnclosingTriangle_0(points.nativeObj, triangle.nativeObj); + + return retVal; + } + + + // + // C++: double cv::pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist) + // + + //javadoc: pointPolygonTest(contour, pt, measureDist) + public static double pointPolygonTest(MatOfPoint2f contour, Point pt, boolean measureDist) + { + Mat contour_mat = contour; + double retVal = pointPolygonTest_0(contour_mat.nativeObj, pt.x, pt.y, measureDist); + + return retVal; + } + + + // + // C++: double cv::threshold(Mat src, Mat& dst, double thresh, double maxval, int type) + // + + //javadoc: threshold(src, dst, thresh, maxval, type) + public static double threshold(Mat src, Mat dst, double thresh, double maxval, int type) + { + + double retVal = threshold_0(src.nativeObj, dst.nativeObj, thresh, maxval, type); + + return retVal; + } + + + // + // C++: float cv::initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat& map1, Mat& map2, int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0) + // + + //javadoc: initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, m1type, map1, map2, projType, alpha) + public static float initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat map1, Mat map2, int projType, double alpha) + { + + float retVal = initWideAngleProjMap_0(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, destImageWidth, m1type, map1.nativeObj, map2.nativeObj, projType, alpha); + + return retVal; + } + + //javadoc: initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, m1type, map1, map2, projType) + public static float initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat map1, Mat map2, int projType) + { + + float retVal = initWideAngleProjMap_1(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, destImageWidth, m1type, map1.nativeObj, map2.nativeObj, projType); + + return retVal; + } + + //javadoc: initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, m1type, map1, map2) + public static float initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat map1, Mat map2) + { + + float retVal = initWideAngleProjMap_2(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, destImageWidth, m1type, map1.nativeObj, map2.nativeObj); + + return retVal; + } + + + // + // C++: float cv::intersectConvexConvex(Mat _p1, Mat _p2, Mat& _p12, bool handleNested = true) + // + + //javadoc: intersectConvexConvex(_p1, _p2, _p12, handleNested) + public static float intersectConvexConvex(Mat _p1, Mat _p2, Mat _p12, boolean handleNested) + { + + float retVal = intersectConvexConvex_0(_p1.nativeObj, _p2.nativeObj, _p12.nativeObj, handleNested); + + return retVal; + } + + //javadoc: intersectConvexConvex(_p1, _p2, _p12) + public static float intersectConvexConvex(Mat _p1, Mat _p2, Mat _p12) + { + + float retVal = intersectConvexConvex_1(_p1.nativeObj, _p2.nativeObj, _p12.nativeObj); + + return retVal; + } + + + // + // C++: float cv::wrapperEMD(Mat signature1, Mat signature2, int distType, Mat cost = Mat(), Ptr_float& lowerBound = Ptr(), Mat& flow = Mat()) + // + + //javadoc: EMD(signature1, signature2, distType, cost, flow) + public static float EMD(Mat signature1, Mat signature2, int distType, Mat cost, Mat flow) + { + + float retVal = EMD_0(signature1.nativeObj, signature2.nativeObj, distType, cost.nativeObj, flow.nativeObj); + + return retVal; + } + + //javadoc: EMD(signature1, signature2, distType, cost) + public static float EMD(Mat signature1, Mat signature2, int distType, Mat cost) + { + + float retVal = EMD_1(signature1.nativeObj, signature2.nativeObj, distType, cost.nativeObj); + + return retVal; + } + + //javadoc: EMD(signature1, signature2, distType) + public static float EMD(Mat signature1, Mat signature2, int distType) + { + + float retVal = EMD_3(signature1.nativeObj, signature2.nativeObj, distType); + + return retVal; + } + + + // + // C++: int cv::connectedComponents(Mat image, Mat& labels, int connectivity, int ltype, int ccltype) + // + + //javadoc: connectedComponentsWithAlgorithm(image, labels, connectivity, ltype, ccltype) + public static int connectedComponentsWithAlgorithm(Mat image, Mat labels, int connectivity, int ltype, int ccltype) + { + + int retVal = connectedComponentsWithAlgorithm_0(image.nativeObj, labels.nativeObj, connectivity, ltype, ccltype); + + return retVal; + } + + + // + // C++: int cv::connectedComponents(Mat image, Mat& labels, int connectivity = 8, int ltype = CV_32S) + // + + //javadoc: connectedComponents(image, labels, connectivity, ltype) + public static int connectedComponents(Mat image, Mat labels, int connectivity, int ltype) + { + + int retVal = connectedComponents_0(image.nativeObj, labels.nativeObj, connectivity, ltype); + + return retVal; + } + + //javadoc: connectedComponents(image, labels, connectivity) + public static int connectedComponents(Mat image, Mat labels, int connectivity) + { + + int retVal = connectedComponents_1(image.nativeObj, labels.nativeObj, connectivity); + + return retVal; + } + + //javadoc: connectedComponents(image, labels) + public static int connectedComponents(Mat image, Mat labels) + { + + int retVal = connectedComponents_2(image.nativeObj, labels.nativeObj); + + return retVal; + } + + + // + // C++: int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity, int ltype, int ccltype) + // + + //javadoc: connectedComponentsWithStatsWithAlgorithm(image, labels, stats, centroids, connectivity, ltype, ccltype) + public static int connectedComponentsWithStatsWithAlgorithm(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype, int ccltype) + { + + int retVal = connectedComponentsWithStatsWithAlgorithm_0(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity, ltype, ccltype); + + return retVal; + } + + + // + // C++: int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity = 8, int ltype = CV_32S) + // + + //javadoc: connectedComponentsWithStats(image, labels, stats, centroids, connectivity, ltype) + public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype) + { + + int retVal = connectedComponentsWithStats_0(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity, ltype); + + return retVal; + } + + //javadoc: connectedComponentsWithStats(image, labels, stats, centroids, connectivity) + public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity) + { + + int retVal = connectedComponentsWithStats_1(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity); + + return retVal; + } + + //javadoc: connectedComponentsWithStats(image, labels, stats, centroids) + public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids) + { + + int retVal = connectedComponentsWithStats_2(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj); + + return retVal; + } + + + // + // C++: int cv::floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4) + // + + //javadoc: floodFill(image, mask, seedPoint, newVal, rect, loDiff, upDiff, flags) + public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff, Scalar upDiff, int flags) + { + double[] rect_out = new double[4]; + int retVal = floodFill_0(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3], upDiff.val[0], upDiff.val[1], upDiff.val[2], upDiff.val[3], flags); + if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } + return retVal; + } + + //javadoc: floodFill(image, mask, seedPoint, newVal, rect, loDiff, upDiff) + public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff, Scalar upDiff) + { + double[] rect_out = new double[4]; + int retVal = floodFill_1(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3], upDiff.val[0], upDiff.val[1], upDiff.val[2], upDiff.val[3]); + if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } + return retVal; + } + + //javadoc: floodFill(image, mask, seedPoint, newVal, rect, loDiff) + public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff) + { + double[] rect_out = new double[4]; + int retVal = floodFill_2(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3]); + if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } + return retVal; + } + + //javadoc: floodFill(image, mask, seedPoint, newVal, rect) + public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect) + { + double[] rect_out = new double[4]; + int retVal = floodFill_3(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out); + if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } + return retVal; + } + + //javadoc: floodFill(image, mask, seedPoint, newVal) + public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal) + { + + int retVal = floodFill_4(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3]); + + return retVal; + } + + + // + // C++: int cv::rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat& intersectingRegion) + // + + //javadoc: rotatedRectangleIntersection(rect1, rect2, intersectingRegion) + public static int rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat intersectingRegion) + { + + int retVal = rotatedRectangleIntersection_0(rect1.center.x, rect1.center.y, rect1.size.width, rect1.size.height, rect1.angle, rect2.center.x, rect2.center.y, rect2.size.width, rect2.size.height, rect2.angle, intersectingRegion.nativeObj); + + return retVal; + } + + + // + // C++: void cv::Canny(Mat dx, Mat dy, Mat& edges, double threshold1, double threshold2, bool L2gradient = false) + // + + //javadoc: Canny(dx, dy, edges, threshold1, threshold2, L2gradient) + public static void Canny(Mat dx, Mat dy, Mat edges, double threshold1, double threshold2, boolean L2gradient) + { + + Canny_0(dx.nativeObj, dy.nativeObj, edges.nativeObj, threshold1, threshold2, L2gradient); + + return; + } + + //javadoc: Canny(dx, dy, edges, threshold1, threshold2) + public static void Canny(Mat dx, Mat dy, Mat edges, double threshold1, double threshold2) + { + + Canny_1(dx.nativeObj, dy.nativeObj, edges.nativeObj, threshold1, threshold2); + + return; + } + + + // + // C++: void cv::Canny(Mat image, Mat& edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false) + // + + //javadoc: Canny(image, edges, threshold1, threshold2, apertureSize, L2gradient) + public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize, boolean L2gradient) + { + + Canny_2(image.nativeObj, edges.nativeObj, threshold1, threshold2, apertureSize, L2gradient); + + return; + } + + //javadoc: Canny(image, edges, threshold1, threshold2, apertureSize) + public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize) + { + + Canny_3(image.nativeObj, edges.nativeObj, threshold1, threshold2, apertureSize); + + return; + } + + //javadoc: Canny(image, edges, threshold1, threshold2) + public static void Canny(Mat image, Mat edges, double threshold1, double threshold2) + { + + Canny_4(image.nativeObj, edges.nativeObj, threshold1, threshold2); + + return; + } + + + // + // C++: void cv::GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT) + // + + //javadoc: GaussianBlur(src, dst, ksize, sigmaX, sigmaY, borderType) + public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX, double sigmaY, int borderType) + { + + GaussianBlur_0(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX, sigmaY, borderType); + + return; + } + + //javadoc: GaussianBlur(src, dst, ksize, sigmaX, sigmaY) + public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX, double sigmaY) + { + + GaussianBlur_1(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX, sigmaY); + + return; + } + + //javadoc: GaussianBlur(src, dst, ksize, sigmaX) + public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX) + { + + GaussianBlur_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX); + + return; + } + + + // + // C++: void cv::HoughCircles(Mat image, Mat& circles, int method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0) + // + + //javadoc: HoughCircles(image, circles, method, dp, minDist, param1, param2, minRadius, maxRadius) + public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius) + { + + HoughCircles_0(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2, minRadius, maxRadius); + + return; + } + + //javadoc: HoughCircles(image, circles, method, dp, minDist, param1, param2, minRadius) + public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius) + { + + HoughCircles_1(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2, minRadius); + + return; + } + + //javadoc: HoughCircles(image, circles, method, dp, minDist, param1, param2) + public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2) + { + + HoughCircles_2(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2); + + return; + } + + //javadoc: HoughCircles(image, circles, method, dp, minDist, param1) + public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1) + { + + HoughCircles_3(image.nativeObj, circles.nativeObj, method, dp, minDist, param1); + + return; + } + + //javadoc: HoughCircles(image, circles, method, dp, minDist) + public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist) + { + + HoughCircles_4(image.nativeObj, circles.nativeObj, method, dp, minDist); + + return; + } + + + // + // C++: void cv::HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI) + // + + //javadoc: HoughLines(image, lines, rho, theta, threshold, srn, stn, min_theta, max_theta) + public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta) + { + + HoughLines_0(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta, max_theta); + + return; + } + + //javadoc: HoughLines(image, lines, rho, theta, threshold, srn, stn, min_theta) + public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta) + { + + HoughLines_1(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta); + + return; + } + + //javadoc: HoughLines(image, lines, rho, theta, threshold, srn, stn) + public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn) + { + + HoughLines_2(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn); + + return; + } + + //javadoc: HoughLines(image, lines, rho, theta, threshold, srn) + public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn) + { + + HoughLines_3(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn); + + return; + } + + //javadoc: HoughLines(image, lines, rho, theta, threshold) + public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold) + { + + HoughLines_4(image.nativeObj, lines.nativeObj, rho, theta, threshold); + + return; + } + + + // + // C++: void cv::HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0) + // + + //javadoc: HoughLinesP(image, lines, rho, theta, threshold, minLineLength, maxLineGap) + public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold, double minLineLength, double maxLineGap) + { + + HoughLinesP_0(image.nativeObj, lines.nativeObj, rho, theta, threshold, minLineLength, maxLineGap); + + return; + } + + //javadoc: HoughLinesP(image, lines, rho, theta, threshold, minLineLength) + public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold, double minLineLength) + { + + HoughLinesP_1(image.nativeObj, lines.nativeObj, rho, theta, threshold, minLineLength); + + return; + } + + //javadoc: HoughLinesP(image, lines, rho, theta, threshold) + public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold) + { + + HoughLinesP_2(image.nativeObj, lines.nativeObj, rho, theta, threshold); + + return; + } + + + // + // C++: void cv::HoughLinesPointSet(Mat _point, Mat& _lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step) + // + + //javadoc: HoughLinesPointSet(_point, _lines, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step) + public static void HoughLinesPointSet(Mat _point, Mat _lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step) + { + + HoughLinesPointSet_0(_point.nativeObj, _lines.nativeObj, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step); + + return; + } + + + // + // C++: void cv::HuMoments(Moments m, Mat& hu) + // + + //javadoc: HuMoments(m, hu) + public static void HuMoments(Moments m, Mat hu) + { + + HuMoments_0(m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03, hu.nativeObj); + + return; + } + + + // + // C++: void cv::Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) + // + + //javadoc: Laplacian(src, dst, ddepth, ksize, scale, delta, borderType) + public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale, double delta, int borderType) + { + + Laplacian_0(src.nativeObj, dst.nativeObj, ddepth, ksize, scale, delta, borderType); + + return; + } + + //javadoc: Laplacian(src, dst, ddepth, ksize, scale, delta) + public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale, double delta) + { + + Laplacian_1(src.nativeObj, dst.nativeObj, ddepth, ksize, scale, delta); + + return; + } + + //javadoc: Laplacian(src, dst, ddepth, ksize, scale) + public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale) + { + + Laplacian_2(src.nativeObj, dst.nativeObj, ddepth, ksize, scale); + + return; + } + + //javadoc: Laplacian(src, dst, ddepth, ksize) + public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize) + { + + Laplacian_3(src.nativeObj, dst.nativeObj, ddepth, ksize); + + return; + } + + //javadoc: Laplacian(src, dst, ddepth) + public static void Laplacian(Mat src, Mat dst, int ddepth) + { + + Laplacian_4(src.nativeObj, dst.nativeObj, ddepth); + + return; + } + + + // + // C++: void cv::Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) + // + + //javadoc: Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType) + public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale, double delta, int borderType) + { + + Scharr_0(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale, delta, borderType); + + return; + } + + //javadoc: Scharr(src, dst, ddepth, dx, dy, scale, delta) + public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale, double delta) + { + + Scharr_1(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale, delta); + + return; + } + + //javadoc: Scharr(src, dst, ddepth, dx, dy, scale) + public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale) + { + + Scharr_2(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale); + + return; + } + + //javadoc: Scharr(src, dst, ddepth, dx, dy) + public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy) + { + + Scharr_3(src.nativeObj, dst.nativeObj, ddepth, dx, dy); + + return; + } + + + // + // C++: void cv::Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) + // + + //javadoc: Sobel(src, dst, ddepth, dx, dy, ksize, scale, delta, borderType) + public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType) + { + + Sobel_0(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale, delta, borderType); + + return; + } + + //javadoc: Sobel(src, dst, ddepth, dx, dy, ksize, scale, delta) + public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta) + { + + Sobel_1(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale, delta); + + return; + } + + //javadoc: Sobel(src, dst, ddepth, dx, dy, ksize, scale) + public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale) + { + + Sobel_2(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale); + + return; + } + + //javadoc: Sobel(src, dst, ddepth, dx, dy, ksize) + public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize) + { + + Sobel_3(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize); + + return; + } + + //javadoc: Sobel(src, dst, ddepth, dx, dy) + public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy) + { + + Sobel_4(src.nativeObj, dst.nativeObj, ddepth, dx, dy); + + return; + } + + + // + // C++: void cv::accumulate(Mat src, Mat& dst, Mat mask = Mat()) + // + + //javadoc: accumulate(src, dst, mask) + public static void accumulate(Mat src, Mat dst, Mat mask) + { + + accumulate_0(src.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: accumulate(src, dst) + public static void accumulate(Mat src, Mat dst) + { + + accumulate_1(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) + // + + //javadoc: accumulateProduct(src1, src2, dst, mask) + public static void accumulateProduct(Mat src1, Mat src2, Mat dst, Mat mask) + { + + accumulateProduct_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: accumulateProduct(src1, src2, dst) + public static void accumulateProduct(Mat src1, Mat src2, Mat dst) + { + + accumulateProduct_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::accumulateSquare(Mat src, Mat& dst, Mat mask = Mat()) + // + + //javadoc: accumulateSquare(src, dst, mask) + public static void accumulateSquare(Mat src, Mat dst, Mat mask) + { + + accumulateSquare_0(src.nativeObj, dst.nativeObj, mask.nativeObj); + + return; + } + + //javadoc: accumulateSquare(src, dst) + public static void accumulateSquare(Mat src, Mat dst) + { + + accumulateSquare_1(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat()) + // + + //javadoc: accumulateWeighted(src, dst, alpha, mask) + public static void accumulateWeighted(Mat src, Mat dst, double alpha, Mat mask) + { + + accumulateWeighted_0(src.nativeObj, dst.nativeObj, alpha, mask.nativeObj); + + return; + } + + //javadoc: accumulateWeighted(src, dst, alpha) + public static void accumulateWeighted(Mat src, Mat dst, double alpha) + { + + accumulateWeighted_1(src.nativeObj, dst.nativeObj, alpha); + + return; + } + + + // + // C++: void cv::adaptiveThreshold(Mat src, Mat& dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) + // + + //javadoc: adaptiveThreshold(src, dst, maxValue, adaptiveMethod, thresholdType, blockSize, C) + public static void adaptiveThreshold(Mat src, Mat dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) + { + + adaptiveThreshold_0(src.nativeObj, dst.nativeObj, maxValue, adaptiveMethod, thresholdType, blockSize, C); + + return; + } + + + // + // C++: void cv::applyColorMap(Mat src, Mat& dst, Mat userColor) + // + + //javadoc: applyColorMap(src, dst, userColor) + public static void applyColorMap(Mat src, Mat dst, Mat userColor) + { + + applyColorMap_0(src.nativeObj, dst.nativeObj, userColor.nativeObj); + + return; + } + + + // + // C++: void cv::applyColorMap(Mat src, Mat& dst, int colormap) + // + + //javadoc: applyColorMap(src, dst, colormap) + public static void applyColorMap(Mat src, Mat dst, int colormap) + { + + applyColorMap_1(src.nativeObj, dst.nativeObj, colormap); + + return; + } + + + // + // C++: void cv::approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed) + // + + //javadoc: approxPolyDP(curve, approxCurve, epsilon, closed) + public static void approxPolyDP(MatOfPoint2f curve, MatOfPoint2f approxCurve, double epsilon, boolean closed) + { + Mat curve_mat = curve; + Mat approxCurve_mat = approxCurve; + approxPolyDP_0(curve_mat.nativeObj, approxCurve_mat.nativeObj, epsilon, closed); + + return; + } + + + // + // C++: void cv::arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1) + // + + //javadoc: arrowedLine(img, pt1, pt2, color, thickness, line_type, shift, tipLength) + public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type, int shift, double tipLength) + { + + arrowedLine_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type, shift, tipLength); + + return; + } + + //javadoc: arrowedLine(img, pt1, pt2, color, thickness, line_type, shift) + public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type, int shift) + { + + arrowedLine_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type, shift); + + return; + } + + //javadoc: arrowedLine(img, pt1, pt2, color, thickness, line_type) + public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type) + { + + arrowedLine_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type); + + return; + } + + //javadoc: arrowedLine(img, pt1, pt2, color, thickness) + public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness) + { + + arrowedLine_3(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: arrowedLine(img, pt1, pt2, color) + public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color) + { + + arrowedLine_4(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT) + // + + //javadoc: bilateralFilter(src, dst, d, sigmaColor, sigmaSpace, borderType) + public static void bilateralFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace, int borderType) + { + + bilateralFilter_0(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace, borderType); + + return; + } + + //javadoc: bilateralFilter(src, dst, d, sigmaColor, sigmaSpace) + public static void bilateralFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace) + { + + bilateralFilter_1(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace); + + return; + } + + + // + // C++: void cv::blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT) + // + + //javadoc: blur(src, dst, ksize, anchor, borderType) + public static void blur(Mat src, Mat dst, Size ksize, Point anchor, int borderType) + { + + blur_0(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, anchor.x, anchor.y, borderType); + + return; + } + + //javadoc: blur(src, dst, ksize, anchor) + public static void blur(Mat src, Mat dst, Size ksize, Point anchor) + { + + blur_1(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, anchor.x, anchor.y); + + return; + } + + //javadoc: blur(src, dst, ksize) + public static void blur(Mat src, Mat dst, Size ksize) + { + + blur_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height); + + return; + } + + + // + // C++: void cv::boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, int borderType = BORDER_DEFAULT) + // + + //javadoc: boxFilter(src, dst, ddepth, ksize, anchor, normalize, borderType) + public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, boolean normalize, int borderType) + { + + boxFilter_0(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize, borderType); + + return; + } + + //javadoc: boxFilter(src, dst, ddepth, ksize, anchor, normalize) + public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, boolean normalize) + { + + boxFilter_1(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize); + + return; + } + + //javadoc: boxFilter(src, dst, ddepth, ksize, anchor) + public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor) + { + + boxFilter_2(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y); + + return; + } + + //javadoc: boxFilter(src, dst, ddepth, ksize) + public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize) + { + + boxFilter_3(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height); + + return; + } + + + // + // C++: void cv::boxPoints(RotatedRect box, Mat& points) + // + + //javadoc: boxPoints(box, points) + public static void boxPoints(RotatedRect box, Mat points) + { + + boxPoints_0(box.center.x, box.center.y, box.size.width, box.size.height, box.angle, points.nativeObj); + + return; + } + + + // + // C++: void cv::calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale) + // + + //javadoc: calcBackProject(images, channels, hist, dst, ranges, scale) + public static void calcBackProject(List images, MatOfInt channels, Mat hist, Mat dst, MatOfFloat ranges, double scale) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat channels_mat = channels; + Mat ranges_mat = ranges; + calcBackProject_0(images_mat.nativeObj, channels_mat.nativeObj, hist.nativeObj, dst.nativeObj, ranges_mat.nativeObj, scale); + + return; + } + + + // + // C++: void cv::calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false) + // + + //javadoc: calcHist(images, channels, mask, hist, histSize, ranges, accumulate) + public static void calcHist(List images, MatOfInt channels, Mat mask, Mat hist, MatOfInt histSize, MatOfFloat ranges, boolean accumulate) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat channels_mat = channels; + Mat histSize_mat = histSize; + Mat ranges_mat = ranges; + calcHist_0(images_mat.nativeObj, channels_mat.nativeObj, mask.nativeObj, hist.nativeObj, histSize_mat.nativeObj, ranges_mat.nativeObj, accumulate); + + return; + } + + //javadoc: calcHist(images, channels, mask, hist, histSize, ranges) + public static void calcHist(List images, MatOfInt channels, Mat mask, Mat hist, MatOfInt histSize, MatOfFloat ranges) + { + Mat images_mat = Converters.vector_Mat_to_Mat(images); + Mat channels_mat = channels; + Mat histSize_mat = histSize; + Mat ranges_mat = ranges; + calcHist_1(images_mat.nativeObj, channels_mat.nativeObj, mask.nativeObj, hist.nativeObj, histSize_mat.nativeObj, ranges_mat.nativeObj); + + return; + } + + + // + // C++: void cv::circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + // + + //javadoc: circle(img, center, radius, color, thickness, lineType, shift) + public static void circle(Mat img, Point center, int radius, Scalar color, int thickness, int lineType, int shift) + { + + circle_0(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); + + return; + } + + //javadoc: circle(img, center, radius, color, thickness, lineType) + public static void circle(Mat img, Point center, int radius, Scalar color, int thickness, int lineType) + { + + circle_1(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); + + return; + } + + //javadoc: circle(img, center, radius, color, thickness) + public static void circle(Mat img, Point center, int radius, Scalar color, int thickness) + { + + circle_2(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: circle(img, center, radius, color) + public static void circle(Mat img, Point center, int radius, Scalar color) + { + + circle_3(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false) + // + + //javadoc: convertMaps(map1, map2, dstmap1, dstmap2, dstmap1type, nninterpolation) + public static void convertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, int dstmap1type, boolean nninterpolation) + { + + convertMaps_0(map1.nativeObj, map2.nativeObj, dstmap1.nativeObj, dstmap2.nativeObj, dstmap1type, nninterpolation); + + return; + } + + //javadoc: convertMaps(map1, map2, dstmap1, dstmap2, dstmap1type) + public static void convertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, int dstmap1type) + { + + convertMaps_1(map1.nativeObj, map2.nativeObj, dstmap1.nativeObj, dstmap2.nativeObj, dstmap1type); + + return; + } + + + // + // C++: void cv::convexHull(vector_Point points, vector_int& hull, bool clockwise = false, _hidden_ returnPoints = true) + // + + //javadoc: convexHull(points, hull, clockwise) + public static void convexHull(MatOfPoint points, MatOfInt hull, boolean clockwise) + { + Mat points_mat = points; + Mat hull_mat = hull; + convexHull_0(points_mat.nativeObj, hull_mat.nativeObj, clockwise); + + return; + } + + //javadoc: convexHull(points, hull) + public static void convexHull(MatOfPoint points, MatOfInt hull) + { + Mat points_mat = points; + Mat hull_mat = hull; + convexHull_2(points_mat.nativeObj, hull_mat.nativeObj); + + return; + } + + + // + // C++: void cv::convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects) + // + + //javadoc: convexityDefects(contour, convexhull, convexityDefects) + public static void convexityDefects(MatOfPoint contour, MatOfInt convexhull, MatOfInt4 convexityDefects) + { + Mat contour_mat = contour; + Mat convexhull_mat = convexhull; + Mat convexityDefects_mat = convexityDefects; + convexityDefects_0(contour_mat.nativeObj, convexhull_mat.nativeObj, convexityDefects_mat.nativeObj); + + return; + } + + + // + // C++: void cv::cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, int borderType = BORDER_DEFAULT) + // + + //javadoc: cornerEigenValsAndVecs(src, dst, blockSize, ksize, borderType) + public static void cornerEigenValsAndVecs(Mat src, Mat dst, int blockSize, int ksize, int borderType) + { + + cornerEigenValsAndVecs_0(src.nativeObj, dst.nativeObj, blockSize, ksize, borderType); + + return; + } + + //javadoc: cornerEigenValsAndVecs(src, dst, blockSize, ksize) + public static void cornerEigenValsAndVecs(Mat src, Mat dst, int blockSize, int ksize) + { + + cornerEigenValsAndVecs_1(src.nativeObj, dst.nativeObj, blockSize, ksize); + + return; + } + + + // + // C++: void cv::cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, int borderType = BORDER_DEFAULT) + // + + //javadoc: cornerHarris(src, dst, blockSize, ksize, k, borderType) + public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k, int borderType) + { + + cornerHarris_0(src.nativeObj, dst.nativeObj, blockSize, ksize, k, borderType); + + return; + } + + //javadoc: cornerHarris(src, dst, blockSize, ksize, k) + public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k) + { + + cornerHarris_1(src.nativeObj, dst.nativeObj, blockSize, ksize, k); + + return; + } + + + // + // C++: void cv::cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, int borderType = BORDER_DEFAULT) + // + + //javadoc: cornerMinEigenVal(src, dst, blockSize, ksize, borderType) + public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize, int ksize, int borderType) + { + + cornerMinEigenVal_0(src.nativeObj, dst.nativeObj, blockSize, ksize, borderType); + + return; + } + + //javadoc: cornerMinEigenVal(src, dst, blockSize, ksize) + public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize, int ksize) + { + + cornerMinEigenVal_1(src.nativeObj, dst.nativeObj, blockSize, ksize); + + return; + } + + //javadoc: cornerMinEigenVal(src, dst, blockSize) + public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize) + { + + cornerMinEigenVal_2(src.nativeObj, dst.nativeObj, blockSize); + + return; + } + + + // + // C++: void cv::cornerSubPix(Mat image, Mat& corners, Size winSize, Size zeroZone, TermCriteria criteria) + // + + //javadoc: cornerSubPix(image, corners, winSize, zeroZone, criteria) + public static void cornerSubPix(Mat image, Mat corners, Size winSize, Size zeroZone, TermCriteria criteria) + { + + cornerSubPix_0(image.nativeObj, corners.nativeObj, winSize.width, winSize.height, zeroZone.width, zeroZone.height, criteria.type, criteria.maxCount, criteria.epsilon); + + return; + } + + + // + // C++: void cv::createHanningWindow(Mat& dst, Size winSize, int type) + // + + //javadoc: createHanningWindow(dst, winSize, type) + public static void createHanningWindow(Mat dst, Size winSize, int type) + { + + createHanningWindow_0(dst.nativeObj, winSize.width, winSize.height, type); + + return; + } + + + // + // C++: void cv::cvtColor(Mat src, Mat& dst, int code, int dstCn = 0) + // + + //javadoc: cvtColor(src, dst, code, dstCn) + public static void cvtColor(Mat src, Mat dst, int code, int dstCn) + { + + cvtColor_0(src.nativeObj, dst.nativeObj, code, dstCn); + + return; + } + + //javadoc: cvtColor(src, dst, code) + public static void cvtColor(Mat src, Mat dst, int code) + { + + cvtColor_1(src.nativeObj, dst.nativeObj, code); + + return; + } + + + // + // C++: void cv::cvtColorTwoPlane(Mat src1, Mat src2, Mat& dst, int code) + // + + //javadoc: cvtColorTwoPlane(src1, src2, dst, code) + public static void cvtColorTwoPlane(Mat src1, Mat src2, Mat dst, int code) + { + + cvtColorTwoPlane_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, code); + + return; + } + + + // + // C++: void cv::demosaicing(Mat _src, Mat& _dst, int code, int dcn = 0) + // + + //javadoc: demosaicing(_src, _dst, code, dcn) + public static void demosaicing(Mat _src, Mat _dst, int code, int dcn) + { + + demosaicing_0(_src.nativeObj, _dst.nativeObj, code, dcn); + + return; + } + + //javadoc: demosaicing(_src, _dst, code) + public static void demosaicing(Mat _src, Mat _dst, int code) + { + + demosaicing_1(_src.nativeObj, _dst.nativeObj, code); + + return; + } + + + // + // C++: void cv::dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) + // + + //javadoc: dilate(src, dst, kernel, anchor, iterations, borderType, borderValue) + public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) + { + + dilate_0(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); + + return; + } + + //javadoc: dilate(src, dst, kernel, anchor, iterations, borderType) + public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType) + { + + dilate_1(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType); + + return; + } + + //javadoc: dilate(src, dst, kernel, anchor, iterations) + public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations) + { + + dilate_2(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations); + + return; + } + + //javadoc: dilate(src, dst, kernel, anchor) + public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor) + { + + dilate_3(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y); + + return; + } + + //javadoc: dilate(src, dst, kernel) + public static void dilate(Mat src, Mat dst, Mat kernel) + { + + dilate_4(src.nativeObj, dst.nativeObj, kernel.nativeObj); + + return; + } + + + // + // C++: void cv::distanceTransform(Mat src, Mat& dst, Mat& labels, int distanceType, int maskSize, int labelType = DIST_LABEL_CCOMP) + // + + //javadoc: distanceTransformWithLabels(src, dst, labels, distanceType, maskSize, labelType) + public static void distanceTransformWithLabels(Mat src, Mat dst, Mat labels, int distanceType, int maskSize, int labelType) + { + + distanceTransformWithLabels_0(src.nativeObj, dst.nativeObj, labels.nativeObj, distanceType, maskSize, labelType); + + return; + } + + //javadoc: distanceTransformWithLabels(src, dst, labels, distanceType, maskSize) + public static void distanceTransformWithLabels(Mat src, Mat dst, Mat labels, int distanceType, int maskSize) + { + + distanceTransformWithLabels_1(src.nativeObj, dst.nativeObj, labels.nativeObj, distanceType, maskSize); + + return; + } + + + // + // C++: void cv::distanceTransform(Mat src, Mat& dst, int distanceType, int maskSize, int dstType = CV_32F) + // + + //javadoc: distanceTransform(src, dst, distanceType, maskSize, dstType) + public static void distanceTransform(Mat src, Mat dst, int distanceType, int maskSize, int dstType) + { + + distanceTransform_0(src.nativeObj, dst.nativeObj, distanceType, maskSize, dstType); + + return; + } + + //javadoc: distanceTransform(src, dst, distanceType, maskSize) + public static void distanceTransform(Mat src, Mat dst, int distanceType, int maskSize) + { + + distanceTransform_1(src.nativeObj, dst.nativeObj, distanceType, maskSize); + + return; + } + + + // + // C++: void cv::drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, int lineType = LINE_8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point()) + // + + //javadoc: drawContours(image, contours, contourIdx, color, thickness, lineType, hierarchy, maxLevel, offset) + public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy, int maxLevel, Point offset) + { + List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); + Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); + drawContours_0(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj, maxLevel, offset.x, offset.y); + + return; + } + + //javadoc: drawContours(image, contours, contourIdx, color, thickness, lineType, hierarchy, maxLevel) + public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy, int maxLevel) + { + List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); + Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); + drawContours_1(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj, maxLevel); + + return; + } + + //javadoc: drawContours(image, contours, contourIdx, color, thickness, lineType, hierarchy) + public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy) + { + List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); + Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); + drawContours_2(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj); + + return; + } + + //javadoc: drawContours(image, contours, contourIdx, color, thickness, lineType) + public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType) + { + List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); + Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); + drawContours_3(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); + + return; + } + + //javadoc: drawContours(image, contours, contourIdx, color, thickness) + public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness) + { + List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); + Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); + drawContours_4(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: drawContours(image, contours, contourIdx, color) + public static void drawContours(Mat image, List contours, int contourIdx, Scalar color) + { + List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); + Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); + drawContours_5(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::drawMarker(Mat& img, Point position, Scalar color, int markerType = MARKER_CROSS, int markerSize = 20, int thickness = 1, int line_type = 8) + // + + //javadoc: drawMarker(img, position, color, markerType, markerSize, thickness, line_type) + public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize, int thickness, int line_type) + { + + drawMarker_0(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize, thickness, line_type); + + return; + } + + //javadoc: drawMarker(img, position, color, markerType, markerSize, thickness) + public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize, int thickness) + { + + drawMarker_1(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize, thickness); + + return; + } + + //javadoc: drawMarker(img, position, color, markerType, markerSize) + public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize) + { + + drawMarker_2(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize); + + return; + } + + //javadoc: drawMarker(img, position, color, markerType) + public static void drawMarker(Mat img, Point position, Scalar color, int markerType) + { + + drawMarker_3(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType); + + return; + } + + //javadoc: drawMarker(img, position, color) + public static void drawMarker(Mat img, Point position, Scalar color) + { + + drawMarker_4(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + // + + //javadoc: ellipse(img, center, axes, angle, startAngle, endAngle, color, thickness, lineType, shift) + public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness, int lineType, int shift) + { + + ellipse_0(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); + + return; + } + + //javadoc: ellipse(img, center, axes, angle, startAngle, endAngle, color, thickness, lineType) + public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness, int lineType) + { + + ellipse_1(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); + + return; + } + + //javadoc: ellipse(img, center, axes, angle, startAngle, endAngle, color, thickness) + public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness) + { + + ellipse_2(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: ellipse(img, center, axes, angle, startAngle, endAngle, color) + public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color) + { + + ellipse_3(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = LINE_8) + // + + //javadoc: ellipse(img, box, color, thickness, lineType) + public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness, int lineType) + { + + ellipse_4(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); + + return; + } + + //javadoc: ellipse(img, box, color, thickness) + public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness) + { + + ellipse_5(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: ellipse(img, box, color) + public static void ellipse(Mat img, RotatedRect box, Scalar color) + { + + ellipse_6(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts) + // + + //javadoc: ellipse2Poly(center, axes, angle, arcStart, arcEnd, delta, pts) + public static void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, MatOfPoint pts) + { + Mat pts_mat = pts; + ellipse2Poly_0(center.x, center.y, axes.width, axes.height, angle, arcStart, arcEnd, delta, pts_mat.nativeObj); + + return; + } + + + // + // C++: void cv::equalizeHist(Mat src, Mat& dst) + // + + //javadoc: equalizeHist(src, dst) + public static void equalizeHist(Mat src, Mat dst) + { + + equalizeHist_0(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) + // + + //javadoc: erode(src, dst, kernel, anchor, iterations, borderType, borderValue) + public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) + { + + erode_0(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); + + return; + } + + //javadoc: erode(src, dst, kernel, anchor, iterations, borderType) + public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType) + { + + erode_1(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType); + + return; + } + + //javadoc: erode(src, dst, kernel, anchor, iterations) + public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations) + { + + erode_2(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations); + + return; + } + + //javadoc: erode(src, dst, kernel, anchor) + public static void erode(Mat src, Mat dst, Mat kernel, Point anchor) + { + + erode_3(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y); + + return; + } + + //javadoc: erode(src, dst, kernel) + public static void erode(Mat src, Mat dst, Mat kernel) + { + + erode_4(src.nativeObj, dst.nativeObj, kernel.nativeObj); + + return; + } + + + // + // C++: void cv::fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = LINE_8, int shift = 0) + // + + //javadoc: fillConvexPoly(img, points, color, lineType, shift) + public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color, int lineType, int shift) + { + Mat points_mat = points; + fillConvexPoly_0(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift); + + return; + } + + //javadoc: fillConvexPoly(img, points, color, lineType) + public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color, int lineType) + { + Mat points_mat = points; + fillConvexPoly_1(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType); + + return; + } + + //javadoc: fillConvexPoly(img, points, color) + public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color) + { + Mat points_mat = points; + fillConvexPoly_2(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = LINE_8, int shift = 0, Point offset = Point()) + // + + //javadoc: fillPoly(img, pts, color, lineType, shift, offset) + public static void fillPoly(Mat img, List pts, Scalar color, int lineType, int shift, Point offset) + { + List pts_tmplm = new ArrayList((pts != null) ? pts.size() : 0); + Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); + fillPoly_0(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift, offset.x, offset.y); + + return; + } + + //javadoc: fillPoly(img, pts, color, lineType, shift) + public static void fillPoly(Mat img, List pts, Scalar color, int lineType, int shift) + { + List pts_tmplm = new ArrayList((pts != null) ? pts.size() : 0); + Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); + fillPoly_1(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift); + + return; + } + + //javadoc: fillPoly(img, pts, color, lineType) + public static void fillPoly(Mat img, List pts, Scalar color, int lineType) + { + List pts_tmplm = new ArrayList((pts != null) ? pts.size() : 0); + Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); + fillPoly_2(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType); + + return; + } + + //javadoc: fillPoly(img, pts, color) + public static void fillPoly(Mat img, List pts, Scalar color) + { + List pts_tmplm = new ArrayList((pts != null) ? pts.size() : 0); + Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); + fillPoly_3(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) + // + + //javadoc: filter2D(src, dst, ddepth, kernel, anchor, delta, borderType) + public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta, int borderType) + { + + filter2D_0(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y, delta, borderType); + + return; + } + + //javadoc: filter2D(src, dst, ddepth, kernel, anchor, delta) + public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta) + { + + filter2D_1(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y, delta); + + return; + } + + //javadoc: filter2D(src, dst, ddepth, kernel, anchor) + public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor) + { + + filter2D_2(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y); + + return; + } + + //javadoc: filter2D(src, dst, ddepth, kernel) + public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel) + { + + filter2D_3(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj); + + return; + } + + + // + // C++: void cv::findContours(Mat& image, vector_vector_Point& contours, Mat& hierarchy, int mode, int method, Point offset = Point()) + // + + //javadoc: findContours(image, contours, hierarchy, mode, method, offset) + public static void findContours(Mat image, List contours, Mat hierarchy, int mode, int method, Point offset) + { + Mat contours_mat = new Mat(); + findContours_0(image.nativeObj, contours_mat.nativeObj, hierarchy.nativeObj, mode, method, offset.x, offset.y); + Converters.Mat_to_vector_vector_Point(contours_mat, contours); + contours_mat.release(); + return; + } + + //javadoc: findContours(image, contours, hierarchy, mode, method) + public static void findContours(Mat image, List contours, Mat hierarchy, int mode, int method) + { + Mat contours_mat = new Mat(); + findContours_1(image.nativeObj, contours_mat.nativeObj, hierarchy.nativeObj, mode, method); + Converters.Mat_to_vector_vector_Point(contours_mat, contours); + contours_mat.release(); + return; + } + + + // + // C++: void cv::fitLine(Mat points, Mat& line, int distType, double param, double reps, double aeps) + // + + //javadoc: fitLine(points, line, distType, param, reps, aeps) + public static void fitLine(Mat points, Mat line, int distType, double param, double reps, double aeps) + { + + fitLine_0(points.nativeObj, line.nativeObj, distType, param, reps, aeps); + + return; + } + + + // + // C++: void cv::getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F) + // + + //javadoc: getDerivKernels(kx, ky, dx, dy, ksize, normalize, ktype) + public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize, boolean normalize, int ktype) + { + + getDerivKernels_0(kx.nativeObj, ky.nativeObj, dx, dy, ksize, normalize, ktype); + + return; + } + + //javadoc: getDerivKernels(kx, ky, dx, dy, ksize, normalize) + public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize, boolean normalize) + { + + getDerivKernels_1(kx.nativeObj, ky.nativeObj, dx, dy, ksize, normalize); + + return; + } + + //javadoc: getDerivKernels(kx, ky, dx, dy, ksize) + public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize) + { + + getDerivKernels_2(kx.nativeObj, ky.nativeObj, dx, dy, ksize); + + return; + } + + + // + // C++: void cv::getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1) + // + + //javadoc: getRectSubPix(image, patchSize, center, patch, patchType) + public static void getRectSubPix(Mat image, Size patchSize, Point center, Mat patch, int patchType) + { + + getRectSubPix_0(image.nativeObj, patchSize.width, patchSize.height, center.x, center.y, patch.nativeObj, patchType); + + return; + } + + //javadoc: getRectSubPix(image, patchSize, center, patch) + public static void getRectSubPix(Mat image, Size patchSize, Point center, Mat patch) + { + + getRectSubPix_1(image.nativeObj, patchSize.width, patchSize.height, center.x, center.y, patch.nativeObj); + + return; + } + + + // + // C++: void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector = false, double k = 0.04) + // + + //javadoc: goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize, useHarrisDetector, k) + public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, boolean useHarrisDetector, double k) + { + Mat corners_mat = corners; + goodFeaturesToTrack_0(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize, useHarrisDetector, k); + + return; + } + + //javadoc: goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize, useHarrisDetector) + public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, boolean useHarrisDetector) + { + Mat corners_mat = corners; + goodFeaturesToTrack_1(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize, useHarrisDetector); + + return; + } + + //javadoc: goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize) + public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize) + { + Mat corners_mat = corners; + goodFeaturesToTrack_2(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize); + + return; + } + + + // + // C++: void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04) + // + + //javadoc: goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k) + public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, boolean useHarrisDetector, double k) + { + Mat corners_mat = corners; + goodFeaturesToTrack_3(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, useHarrisDetector, k); + + return; + } + + //javadoc: goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector) + public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, boolean useHarrisDetector) + { + Mat corners_mat = corners; + goodFeaturesToTrack_4(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, useHarrisDetector); + + return; + } + + //javadoc: goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize) + public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize) + { + Mat corners_mat = corners; + goodFeaturesToTrack_5(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize); + + return; + } + + //javadoc: goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance, mask) + public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask) + { + Mat corners_mat = corners; + goodFeaturesToTrack_6(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj); + + return; + } + + //javadoc: goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance) + public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance) + { + Mat corners_mat = corners; + goodFeaturesToTrack_7(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance); + + return; + } + + + // + // C++: void cv::grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL) + // + + //javadoc: grabCut(img, mask, rect, bgdModel, fgdModel, iterCount, mode) + public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount, int mode) + { + + grabCut_0(img.nativeObj, mask.nativeObj, rect.x, rect.y, rect.width, rect.height, bgdModel.nativeObj, fgdModel.nativeObj, iterCount, mode); + + return; + } + + //javadoc: grabCut(img, mask, rect, bgdModel, fgdModel, iterCount) + public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount) + { + + grabCut_1(img.nativeObj, mask.nativeObj, rect.x, rect.y, rect.width, rect.height, bgdModel.nativeObj, fgdModel.nativeObj, iterCount); + + return; + } + + + // + // C++: void cv::initUndistortRectifyMap(Mat cameraMatrix, Mat distCoeffs, Mat R, Mat newCameraMatrix, Size size, int m1type, Mat& map1, Mat& map2) + // + + //javadoc: initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type, map1, map2) + public static void initUndistortRectifyMap(Mat cameraMatrix, Mat distCoeffs, Mat R, Mat newCameraMatrix, Size size, int m1type, Mat map1, Mat map2) + { + + initUndistortRectifyMap_0(cameraMatrix.nativeObj, distCoeffs.nativeObj, R.nativeObj, newCameraMatrix.nativeObj, size.width, size.height, m1type, map1.nativeObj, map2.nativeObj); + + return; + } + + + // + // C++: void cv::integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1, int sqdepth = -1) + // + + //javadoc: integral3(src, sum, sqsum, tilted, sdepth, sqdepth) + public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted, int sdepth, int sqdepth) + { + + integral3_0(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj, sdepth, sqdepth); + + return; + } + + //javadoc: integral3(src, sum, sqsum, tilted, sdepth) + public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted, int sdepth) + { + + integral3_1(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj, sdepth); + + return; + } + + //javadoc: integral3(src, sum, sqsum, tilted) + public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted) + { + + integral3_2(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj); + + return; + } + + + // + // C++: void cv::integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1, int sqdepth = -1) + // + + //javadoc: integral2(src, sum, sqsum, sdepth, sqdepth) + public static void integral2(Mat src, Mat sum, Mat sqsum, int sdepth, int sqdepth) + { + + integral2_0(src.nativeObj, sum.nativeObj, sqsum.nativeObj, sdepth, sqdepth); + + return; + } + + //javadoc: integral2(src, sum, sqsum, sdepth) + public static void integral2(Mat src, Mat sum, Mat sqsum, int sdepth) + { + + integral2_1(src.nativeObj, sum.nativeObj, sqsum.nativeObj, sdepth); + + return; + } + + //javadoc: integral2(src, sum, sqsum) + public static void integral2(Mat src, Mat sum, Mat sqsum) + { + + integral2_2(src.nativeObj, sum.nativeObj, sqsum.nativeObj); + + return; + } + + + // + // C++: void cv::integral(Mat src, Mat& sum, int sdepth = -1) + // + + //javadoc: integral(src, sum, sdepth) + public static void integral(Mat src, Mat sum, int sdepth) + { + + integral_0(src.nativeObj, sum.nativeObj, sdepth); + + return; + } + + //javadoc: integral(src, sum) + public static void integral(Mat src, Mat sum) + { + + integral_1(src.nativeObj, sum.nativeObj); + + return; + } + + + // + // C++: void cv::invertAffineTransform(Mat M, Mat& iM) + // + + //javadoc: invertAffineTransform(M, iM) + public static void invertAffineTransform(Mat M, Mat iM) + { + + invertAffineTransform_0(M.nativeObj, iM.nativeObj); + + return; + } + + + // + // C++: void cv::line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + // + + //javadoc: line(img, pt1, pt2, color, thickness, lineType, shift) + public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift) + { + + line_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); + + return; + } + + //javadoc: line(img, pt1, pt2, color, thickness, lineType) + public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType) + { + + line_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); + + return; + } + + //javadoc: line(img, pt1, pt2, color, thickness) + public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness) + { + + line_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: line(img, pt1, pt2, color) + public static void line(Mat img, Point pt1, Point pt2, Scalar color) + { + + line_3(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::linearPolar(Mat src, Mat& dst, Point2f center, double maxRadius, int flags) + // + + //javadoc: linearPolar(src, dst, center, maxRadius, flags) + @Deprecated + public static void linearPolar(Mat src, Mat dst, Point center, double maxRadius, int flags) + { + + linearPolar_0(src.nativeObj, dst.nativeObj, center.x, center.y, maxRadius, flags); + + return; + } + + + // + // C++: void cv::logPolar(Mat src, Mat& dst, Point2f center, double M, int flags) + // + + //javadoc: logPolar(src, dst, center, M, flags) + @Deprecated + public static void logPolar(Mat src, Mat dst, Point center, double M, int flags) + { + + logPolar_0(src.nativeObj, dst.nativeObj, center.x, center.y, M, flags); + + return; + } + + + // + // C++: void cv::matchTemplate(Mat image, Mat templ, Mat& result, int method, Mat mask = Mat()) + // + + //javadoc: matchTemplate(image, templ, result, method, mask) + public static void matchTemplate(Mat image, Mat templ, Mat result, int method, Mat mask) + { + + matchTemplate_0(image.nativeObj, templ.nativeObj, result.nativeObj, method, mask.nativeObj); + + return; + } + + //javadoc: matchTemplate(image, templ, result, method) + public static void matchTemplate(Mat image, Mat templ, Mat result, int method) + { + + matchTemplate_1(image.nativeObj, templ.nativeObj, result.nativeObj, method); + + return; + } + + + // + // C++: void cv::medianBlur(Mat src, Mat& dst, int ksize) + // + + //javadoc: medianBlur(src, dst, ksize) + public static void medianBlur(Mat src, Mat dst, int ksize) + { + + medianBlur_0(src.nativeObj, dst.nativeObj, ksize); + + return; + } + + + // + // C++: void cv::minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius) + // + + //javadoc: minEnclosingCircle(points, center, radius) + public static void minEnclosingCircle(MatOfPoint2f points, Point center, float[] radius) + { + Mat points_mat = points; + double[] center_out = new double[2]; + double[] radius_out = new double[1]; + minEnclosingCircle_0(points_mat.nativeObj, center_out, radius_out); + if(center!=null){ center.x = center_out[0]; center.y = center_out[1]; } + if(radius!=null) radius[0] = (float)radius_out[0]; + return; + } + + + // + // C++: void cv::morphologyEx(Mat src, Mat& dst, int op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) + // + + //javadoc: morphologyEx(src, dst, op, kernel, anchor, iterations, borderType, borderValue) + public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) + { + + morphologyEx_0(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); + + return; + } + + //javadoc: morphologyEx(src, dst, op, kernel, anchor, iterations, borderType) + public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations, int borderType) + { + + morphologyEx_1(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType); + + return; + } + + //javadoc: morphologyEx(src, dst, op, kernel, anchor, iterations) + public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations) + { + + morphologyEx_2(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations); + + return; + } + + //javadoc: morphologyEx(src, dst, op, kernel, anchor) + public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor) + { + + morphologyEx_3(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y); + + return; + } + + //javadoc: morphologyEx(src, dst, op, kernel) + public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel) + { + + morphologyEx_4(src.nativeObj, dst.nativeObj, op, kernel.nativeObj); + + return; + } + + + // + // C++: void cv::polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + // + + //javadoc: polylines(img, pts, isClosed, color, thickness, lineType, shift) + public static void polylines(Mat img, List pts, boolean isClosed, Scalar color, int thickness, int lineType, int shift) + { + List pts_tmplm = new ArrayList((pts != null) ? pts.size() : 0); + Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); + polylines_0(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); + + return; + } + + //javadoc: polylines(img, pts, isClosed, color, thickness, lineType) + public static void polylines(Mat img, List pts, boolean isClosed, Scalar color, int thickness, int lineType) + { + List pts_tmplm = new ArrayList((pts != null) ? pts.size() : 0); + Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); + polylines_1(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); + + return; + } + + //javadoc: polylines(img, pts, isClosed, color, thickness) + public static void polylines(Mat img, List pts, boolean isClosed, Scalar color, int thickness) + { + List pts_tmplm = new ArrayList((pts != null) ? pts.size() : 0); + Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); + polylines_2(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: polylines(img, pts, isClosed, color) + public static void polylines(Mat img, List pts, boolean isClosed, Scalar color) + { + List pts_tmplm = new ArrayList((pts != null) ? pts.size() : 0); + Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); + polylines_3(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::preCornerDetect(Mat src, Mat& dst, int ksize, int borderType = BORDER_DEFAULT) + // + + //javadoc: preCornerDetect(src, dst, ksize, borderType) + public static void preCornerDetect(Mat src, Mat dst, int ksize, int borderType) + { + + preCornerDetect_0(src.nativeObj, dst.nativeObj, ksize, borderType); + + return; + } + + //javadoc: preCornerDetect(src, dst, ksize) + public static void preCornerDetect(Mat src, Mat dst, int ksize) + { + + preCornerDetect_1(src.nativeObj, dst.nativeObj, ksize); + + return; + } + + + // + // C++: void cv::putText(Mat& img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = LINE_8, bool bottomLeftOrigin = false) + // + + //javadoc: putText(img, text, org, fontFace, fontScale, color, thickness, lineType, bottomLeftOrigin) + public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType, boolean bottomLeftOrigin) + { + + putText_0(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, bottomLeftOrigin); + + return; + } + + //javadoc: putText(img, text, org, fontFace, fontScale, color, thickness, lineType) + public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType) + { + + putText_1(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); + + return; + } + + //javadoc: putText(img, text, org, fontFace, fontScale, color, thickness) + public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness) + { + + putText_2(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: putText(img, text, org, fontFace, fontScale, color) + public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color) + { + + putText_3(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::pyrDown(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) + // + + //javadoc: pyrDown(src, dst, dstsize, borderType) + public static void pyrDown(Mat src, Mat dst, Size dstsize, int borderType) + { + + pyrDown_0(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height, borderType); + + return; + } + + //javadoc: pyrDown(src, dst, dstsize) + public static void pyrDown(Mat src, Mat dst, Size dstsize) + { + + pyrDown_1(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height); + + return; + } + + //javadoc: pyrDown(src, dst) + public static void pyrDown(Mat src, Mat dst) + { + + pyrDown_2(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) + // + + //javadoc: pyrMeanShiftFiltering(src, dst, sp, sr, maxLevel, termcrit) + public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr, int maxLevel, TermCriteria termcrit) + { + + pyrMeanShiftFiltering_0(src.nativeObj, dst.nativeObj, sp, sr, maxLevel, termcrit.type, termcrit.maxCount, termcrit.epsilon); + + return; + } + + //javadoc: pyrMeanShiftFiltering(src, dst, sp, sr, maxLevel) + public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr, int maxLevel) + { + + pyrMeanShiftFiltering_1(src.nativeObj, dst.nativeObj, sp, sr, maxLevel); + + return; + } + + //javadoc: pyrMeanShiftFiltering(src, dst, sp, sr) + public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr) + { + + pyrMeanShiftFiltering_2(src.nativeObj, dst.nativeObj, sp, sr); + + return; + } + + + // + // C++: void cv::pyrUp(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) + // + + //javadoc: pyrUp(src, dst, dstsize, borderType) + public static void pyrUp(Mat src, Mat dst, Size dstsize, int borderType) + { + + pyrUp_0(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height, borderType); + + return; + } + + //javadoc: pyrUp(src, dst, dstsize) + public static void pyrUp(Mat src, Mat dst, Size dstsize) + { + + pyrUp_1(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height); + + return; + } + + //javadoc: pyrUp(src, dst) + public static void pyrUp(Mat src, Mat dst) + { + + pyrUp_2(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + // + + //javadoc: rectangle(img, pt1, pt2, color, thickness, lineType, shift) + public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift) + { + + rectangle_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); + + return; + } + + //javadoc: rectangle(img, pt1, pt2, color, thickness, lineType) + public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType) + { + + rectangle_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); + + return; + } + + //javadoc: rectangle(img, pt1, pt2, color, thickness) + public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness) + { + + rectangle_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness); + + return; + } + + //javadoc: rectangle(img, pt1, pt2, color) + public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color) + { + + rectangle_3(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]); + + return; + } + + + // + // C++: void cv::remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) + // + + //javadoc: remap(src, dst, map1, map2, interpolation, borderMode, borderValue) + public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode, Scalar borderValue) + { + + remap_0(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); + + return; + } + + //javadoc: remap(src, dst, map1, map2, interpolation, borderMode) + public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode) + { + + remap_1(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation, borderMode); + + return; + } + + //javadoc: remap(src, dst, map1, map2, interpolation) + public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation) + { + + remap_2(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation); + + return; + } + + + // + // C++: void cv::resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR) + // + + //javadoc: resize(src, dst, dsize, fx, fy, interpolation) + public static void resize(Mat src, Mat dst, Size dsize, double fx, double fy, int interpolation) + { + + resize_0(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx, fy, interpolation); + + return; + } + + //javadoc: resize(src, dst, dsize, fx, fy) + public static void resize(Mat src, Mat dst, Size dsize, double fx, double fy) + { + + resize_1(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx, fy); + + return; + } + + //javadoc: resize(src, dst, dsize, fx) + public static void resize(Mat src, Mat dst, Size dsize, double fx) + { + + resize_2(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx); + + return; + } + + //javadoc: resize(src, dst, dsize) + public static void resize(Mat src, Mat dst, Size dsize) + { + + resize_3(src.nativeObj, dst.nativeObj, dsize.width, dsize.height); + + return; + } + + + // + // C++: void cv::sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) + // + + //javadoc: sepFilter2D(src, dst, ddepth, kernelX, kernelY, anchor, delta, borderType) + public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta, int borderType) + { + + sepFilter2D_0(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y, delta, borderType); + + return; + } + + //javadoc: sepFilter2D(src, dst, ddepth, kernelX, kernelY, anchor, delta) + public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta) + { + + sepFilter2D_1(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y, delta); + + return; + } + + //javadoc: sepFilter2D(src, dst, ddepth, kernelX, kernelY, anchor) + public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor) + { + + sepFilter2D_2(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y); + + return; + } + + //javadoc: sepFilter2D(src, dst, ddepth, kernelX, kernelY) + public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY) + { + + sepFilter2D_3(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj); + + return; + } + + + // + // C++: void cv::spatialGradient(Mat src, Mat& dx, Mat& dy, int ksize = 3, int borderType = BORDER_DEFAULT) + // + + //javadoc: spatialGradient(src, dx, dy, ksize, borderType) + public static void spatialGradient(Mat src, Mat dx, Mat dy, int ksize, int borderType) + { + + spatialGradient_0(src.nativeObj, dx.nativeObj, dy.nativeObj, ksize, borderType); + + return; + } + + //javadoc: spatialGradient(src, dx, dy, ksize) + public static void spatialGradient(Mat src, Mat dx, Mat dy, int ksize) + { + + spatialGradient_1(src.nativeObj, dx.nativeObj, dy.nativeObj, ksize); + + return; + } + + //javadoc: spatialGradient(src, dx, dy) + public static void spatialGradient(Mat src, Mat dx, Mat dy) + { + + spatialGradient_2(src.nativeObj, dx.nativeObj, dy.nativeObj); + + return; + } + + + // + // C++: void cv::sqrBoxFilter(Mat _src, Mat& _dst, int ddepth, Size ksize, Point anchor = Point(-1, -1), bool normalize = true, int borderType = BORDER_DEFAULT) + // + + //javadoc: sqrBoxFilter(_src, _dst, ddepth, ksize, anchor, normalize, borderType) + public static void sqrBoxFilter(Mat _src, Mat _dst, int ddepth, Size ksize, Point anchor, boolean normalize, int borderType) + { + + sqrBoxFilter_0(_src.nativeObj, _dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize, borderType); + + return; + } + + //javadoc: sqrBoxFilter(_src, _dst, ddepth, ksize, anchor, normalize) + public static void sqrBoxFilter(Mat _src, Mat _dst, int ddepth, Size ksize, Point anchor, boolean normalize) + { + + sqrBoxFilter_1(_src.nativeObj, _dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize); + + return; + } + + //javadoc: sqrBoxFilter(_src, _dst, ddepth, ksize, anchor) + public static void sqrBoxFilter(Mat _src, Mat _dst, int ddepth, Size ksize, Point anchor) + { + + sqrBoxFilter_2(_src.nativeObj, _dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y); + + return; + } + + //javadoc: sqrBoxFilter(_src, _dst, ddepth, ksize) + public static void sqrBoxFilter(Mat _src, Mat _dst, int ddepth, Size ksize) + { + + sqrBoxFilter_3(_src.nativeObj, _dst.nativeObj, ddepth, ksize.width, ksize.height); + + return; + } + + + // + // C++: void cv::undistort(Mat src, Mat& dst, Mat cameraMatrix, Mat distCoeffs, Mat newCameraMatrix = Mat()) + // + + //javadoc: undistort(src, dst, cameraMatrix, distCoeffs, newCameraMatrix) + public static void undistort(Mat src, Mat dst, Mat cameraMatrix, Mat distCoeffs, Mat newCameraMatrix) + { + + undistort_0(src.nativeObj, dst.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj, newCameraMatrix.nativeObj); + + return; + } + + //javadoc: undistort(src, dst, cameraMatrix, distCoeffs) + public static void undistort(Mat src, Mat dst, Mat cameraMatrix, Mat distCoeffs) + { + + undistort_1(src.nativeObj, dst.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj); + + return; + } + + + // + // C++: void cv::undistortPoints(Mat src, Mat& dst, Mat cameraMatrix, Mat distCoeffs, Mat R, Mat P, TermCriteria criteria) + // + + //javadoc: undistortPointsIter(src, dst, cameraMatrix, distCoeffs, R, P, criteria) + public static void undistortPointsIter(Mat src, Mat dst, Mat cameraMatrix, Mat distCoeffs, Mat R, Mat P, TermCriteria criteria) + { + + undistortPointsIter_0(src.nativeObj, dst.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj, R.nativeObj, P.nativeObj, criteria.type, criteria.maxCount, criteria.epsilon); + + return; + } + + + // + // C++: void cv::undistortPoints(Mat src, Mat& dst, Mat cameraMatrix, Mat distCoeffs, Mat R = Mat(), Mat P = Mat()) + // + + //javadoc: undistortPoints(src, dst, cameraMatrix, distCoeffs, R, P) + public static void undistortPoints(Mat src, Mat dst, Mat cameraMatrix, Mat distCoeffs, Mat R, Mat P) + { + + undistortPoints_0(src.nativeObj, dst.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj, R.nativeObj, P.nativeObj); + + return; + } + + //javadoc: undistortPoints(src, dst, cameraMatrix, distCoeffs, R) + public static void undistortPoints(Mat src, Mat dst, Mat cameraMatrix, Mat distCoeffs, Mat R) + { + + undistortPoints_1(src.nativeObj, dst.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj, R.nativeObj); + + return; + } + + //javadoc: undistortPoints(src, dst, cameraMatrix, distCoeffs) + public static void undistortPoints(Mat src, Mat dst, Mat cameraMatrix, Mat distCoeffs) + { + + undistortPoints_2(src.nativeObj, dst.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj); + + return; + } + + + // + // C++: void cv::warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) + // + + //javadoc: warpAffine(src, dst, M, dsize, flags, borderMode, borderValue) + public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue) + { + + warpAffine_0(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); + + return; + } + + //javadoc: warpAffine(src, dst, M, dsize, flags, borderMode) + public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode) + { + + warpAffine_1(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode); + + return; + } + + //javadoc: warpAffine(src, dst, M, dsize, flags) + public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags) + { + + warpAffine_2(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags); + + return; + } + + //javadoc: warpAffine(src, dst, M, dsize) + public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize) + { + + warpAffine_3(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height); + + return; + } + + + // + // C++: void cv::warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) + // + + //javadoc: warpPerspective(src, dst, M, dsize, flags, borderMode, borderValue) + public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue) + { + + warpPerspective_0(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); + + return; + } + + //javadoc: warpPerspective(src, dst, M, dsize, flags, borderMode) + public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode) + { + + warpPerspective_1(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode); + + return; + } + + //javadoc: warpPerspective(src, dst, M, dsize, flags) + public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags) + { + + warpPerspective_2(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags); + + return; + } + + //javadoc: warpPerspective(src, dst, M, dsize) + public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize) + { + + warpPerspective_3(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height); + + return; + } + + + // + // C++: void cv::warpPolar(Mat src, Mat& dst, Size dsize, Point2f center, double maxRadius, int flags) + // + + //javadoc: warpPolar(src, dst, dsize, center, maxRadius, flags) + public static void warpPolar(Mat src, Mat dst, Size dsize, Point center, double maxRadius, int flags) + { + + warpPolar_0(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, center.x, center.y, maxRadius, flags); + + return; + } + + + // + // C++: void cv::watershed(Mat image, Mat& markers) + // + + //javadoc: watershed(image, markers) + public static void watershed(Mat image, Mat markers) + { + + watershed_0(image.nativeObj, markers.nativeObj); + + return; + } + + + +// C++: Size getTextSize(const String& text, int fontFace, double fontScale, int thickness, int* baseLine); +//javadoc:getTextSize(text, fontFace, fontScale, thickness, baseLine) +public static Size getTextSize(String text, int fontFace, double fontScale, int thickness, int[] baseLine) { + if(baseLine != null && baseLine.length != 1) + throw new java.lang.IllegalArgumentException("'baseLine' must be 'int[1]' or 'null'."); + Size retVal = new Size(n_getTextSize(text, fontFace, fontScale, thickness, baseLine)); + return retVal; +} + + + + + // C++: Mat cv::getAffineTransform(vector_Point2f src, vector_Point2f dst) + private static native long getAffineTransform_0(long src_mat_nativeObj, long dst_mat_nativeObj); + + // C++: Mat cv::getDefaultNewCameraMatrix(Mat cameraMatrix, Size imgsize = Size(), bool centerPrincipalPoint = false) + private static native long getDefaultNewCameraMatrix_0(long cameraMatrix_nativeObj, double imgsize_width, double imgsize_height, boolean centerPrincipalPoint); + private static native long getDefaultNewCameraMatrix_1(long cameraMatrix_nativeObj, double imgsize_width, double imgsize_height); + private static native long getDefaultNewCameraMatrix_2(long cameraMatrix_nativeObj); + + // C++: Mat cv::getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F) + private static native long getGaborKernel_0(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma, double psi, int ktype); + private static native long getGaborKernel_1(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma, double psi); + private static native long getGaborKernel_2(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma); + + // C++: Mat cv::getGaussianKernel(int ksize, double sigma, int ktype = CV_64F) + private static native long getGaussianKernel_0(int ksize, double sigma, int ktype); + private static native long getGaussianKernel_1(int ksize, double sigma); + + // C++: Mat cv::getPerspectiveTransform(Mat src, Mat dst) + private static native long getPerspectiveTransform_0(long src_nativeObj, long dst_nativeObj); + + // C++: Mat cv::getRotationMatrix2D(Point2f center, double angle, double scale) + private static native long getRotationMatrix2D_0(double center_x, double center_y, double angle, double scale); + + // C++: Mat cv::getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)) + private static native long getStructuringElement_0(int shape, double ksize_width, double ksize_height, double anchor_x, double anchor_y); + private static native long getStructuringElement_1(int shape, double ksize_width, double ksize_height); + + // C++: Moments cv::moments(Mat array, bool binaryImage = false) + private static native double[] moments_0(long array_nativeObj, boolean binaryImage); + private static native double[] moments_1(long array_nativeObj); + + // C++: Point2d cv::phaseCorrelate(Mat src1, Mat src2, Mat window = Mat(), double* response = 0) + private static native double[] phaseCorrelate_0(long src1_nativeObj, long src2_nativeObj, long window_nativeObj, double[] response_out); + private static native double[] phaseCorrelate_1(long src1_nativeObj, long src2_nativeObj, long window_nativeObj); + private static native double[] phaseCorrelate_2(long src1_nativeObj, long src2_nativeObj); + + // C++: Ptr_CLAHE cv::createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)) + private static native long createCLAHE_0(double clipLimit, double tileGridSize_width, double tileGridSize_height); + private static native long createCLAHE_1(double clipLimit); + private static native long createCLAHE_2(); + + // C++: Ptr_LineSegmentDetector cv::createLineSegmentDetector(int _refine = LSD_REFINE_STD, double _scale = 0.8, double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5, double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024) + private static native long createLineSegmentDetector_0(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th, double _log_eps, double _density_th, int _n_bins); + private static native long createLineSegmentDetector_1(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th, double _log_eps, double _density_th); + private static native long createLineSegmentDetector_2(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th, double _log_eps); + private static native long createLineSegmentDetector_3(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th); + private static native long createLineSegmentDetector_4(int _refine, double _scale, double _sigma_scale, double _quant); + private static native long createLineSegmentDetector_5(int _refine, double _scale, double _sigma_scale); + private static native long createLineSegmentDetector_6(int _refine, double _scale); + private static native long createLineSegmentDetector_7(int _refine); + private static native long createLineSegmentDetector_8(); + + // C++: Rect cv::boundingRect(vector_Point points) + private static native double[] boundingRect_0(long points_mat_nativeObj); + + // C++: RotatedRect cv::fitEllipse(vector_Point2f points) + private static native double[] fitEllipse_0(long points_mat_nativeObj); + + // C++: RotatedRect cv::fitEllipseAMS(Mat points) + private static native double[] fitEllipseAMS_0(long points_nativeObj); + + // C++: RotatedRect cv::fitEllipseDirect(Mat points) + private static native double[] fitEllipseDirect_0(long points_nativeObj); + + // C++: RotatedRect cv::minAreaRect(vector_Point2f points) + private static native double[] minAreaRect_0(long points_mat_nativeObj); + + // C++: bool cv::clipLine(Rect imgRect, Point& pt1, Point& pt2) + private static native boolean clipLine_0(int imgRect_x, int imgRect_y, int imgRect_width, int imgRect_height, double pt1_x, double pt1_y, double[] pt1_out, double pt2_x, double pt2_y, double[] pt2_out); + + // C++: bool cv::isContourConvex(vector_Point contour) + private static native boolean isContourConvex_0(long contour_mat_nativeObj); + + // C++: double cv::arcLength(vector_Point2f curve, bool closed) + private static native double arcLength_0(long curve_mat_nativeObj, boolean closed); + + // C++: double cv::compareHist(Mat H1, Mat H2, int method) + private static native double compareHist_0(long H1_nativeObj, long H2_nativeObj, int method); + + // C++: double cv::contourArea(Mat contour, bool oriented = false) + private static native double contourArea_0(long contour_nativeObj, boolean oriented); + private static native double contourArea_1(long contour_nativeObj); + + // C++: double cv::getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness = 1) + private static native double getFontScaleFromHeight_0(int fontFace, int pixelHeight, int thickness); + private static native double getFontScaleFromHeight_1(int fontFace, int pixelHeight); + + // C++: double cv::matchShapes(Mat contour1, Mat contour2, int method, double parameter) + private static native double matchShapes_0(long contour1_nativeObj, long contour2_nativeObj, int method, double parameter); + + // C++: double cv::minEnclosingTriangle(Mat points, Mat& triangle) + private static native double minEnclosingTriangle_0(long points_nativeObj, long triangle_nativeObj); + + // C++: double cv::pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist) + private static native double pointPolygonTest_0(long contour_mat_nativeObj, double pt_x, double pt_y, boolean measureDist); + + // C++: double cv::threshold(Mat src, Mat& dst, double thresh, double maxval, int type) + private static native double threshold_0(long src_nativeObj, long dst_nativeObj, double thresh, double maxval, int type); + + // C++: float cv::initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat& map1, Mat& map2, int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0) + private static native float initWideAngleProjMap_0(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, int destImageWidth, int m1type, long map1_nativeObj, long map2_nativeObj, int projType, double alpha); + private static native float initWideAngleProjMap_1(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, int destImageWidth, int m1type, long map1_nativeObj, long map2_nativeObj, int projType); + private static native float initWideAngleProjMap_2(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, int destImageWidth, int m1type, long map1_nativeObj, long map2_nativeObj); + + // C++: float cv::intersectConvexConvex(Mat _p1, Mat _p2, Mat& _p12, bool handleNested = true) + private static native float intersectConvexConvex_0(long _p1_nativeObj, long _p2_nativeObj, long _p12_nativeObj, boolean handleNested); + private static native float intersectConvexConvex_1(long _p1_nativeObj, long _p2_nativeObj, long _p12_nativeObj); + + // C++: float cv::wrapperEMD(Mat signature1, Mat signature2, int distType, Mat cost = Mat(), Ptr_float& lowerBound = Ptr(), Mat& flow = Mat()) + private static native float EMD_0(long signature1_nativeObj, long signature2_nativeObj, int distType, long cost_nativeObj, long flow_nativeObj); + private static native float EMD_1(long signature1_nativeObj, long signature2_nativeObj, int distType, long cost_nativeObj); + private static native float EMD_3(long signature1_nativeObj, long signature2_nativeObj, int distType); + + // C++: int cv::connectedComponents(Mat image, Mat& labels, int connectivity, int ltype, int ccltype) + private static native int connectedComponentsWithAlgorithm_0(long image_nativeObj, long labels_nativeObj, int connectivity, int ltype, int ccltype); + + // C++: int cv::connectedComponents(Mat image, Mat& labels, int connectivity = 8, int ltype = CV_32S) + private static native int connectedComponents_0(long image_nativeObj, long labels_nativeObj, int connectivity, int ltype); + private static native int connectedComponents_1(long image_nativeObj, long labels_nativeObj, int connectivity); + private static native int connectedComponents_2(long image_nativeObj, long labels_nativeObj); + + // C++: int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity, int ltype, int ccltype) + private static native int connectedComponentsWithStatsWithAlgorithm_0(long image_nativeObj, long labels_nativeObj, long stats_nativeObj, long centroids_nativeObj, int connectivity, int ltype, int ccltype); + + // C++: int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity = 8, int ltype = CV_32S) + private static native int connectedComponentsWithStats_0(long image_nativeObj, long labels_nativeObj, long stats_nativeObj, long centroids_nativeObj, int connectivity, int ltype); + private static native int connectedComponentsWithStats_1(long image_nativeObj, long labels_nativeObj, long stats_nativeObj, long centroids_nativeObj, int connectivity); + private static native int connectedComponentsWithStats_2(long image_nativeObj, long labels_nativeObj, long stats_nativeObj, long centroids_nativeObj); + + // C++: int cv::floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4) + private static native int floodFill_0(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3, double upDiff_val0, double upDiff_val1, double upDiff_val2, double upDiff_val3, int flags); + private static native int floodFill_1(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3, double upDiff_val0, double upDiff_val1, double upDiff_val2, double upDiff_val3); + private static native int floodFill_2(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3); + private static native int floodFill_3(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out); + private static native int floodFill_4(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3); + + // C++: int cv::rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat& intersectingRegion) + private static native int rotatedRectangleIntersection_0(double rect1_center_x, double rect1_center_y, double rect1_size_width, double rect1_size_height, double rect1_angle, double rect2_center_x, double rect2_center_y, double rect2_size_width, double rect2_size_height, double rect2_angle, long intersectingRegion_nativeObj); + + // C++: void cv::Canny(Mat dx, Mat dy, Mat& edges, double threshold1, double threshold2, bool L2gradient = false) + private static native void Canny_0(long dx_nativeObj, long dy_nativeObj, long edges_nativeObj, double threshold1, double threshold2, boolean L2gradient); + private static native void Canny_1(long dx_nativeObj, long dy_nativeObj, long edges_nativeObj, double threshold1, double threshold2); + + // C++: void cv::Canny(Mat image, Mat& edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false) + private static native void Canny_2(long image_nativeObj, long edges_nativeObj, double threshold1, double threshold2, int apertureSize, boolean L2gradient); + private static native void Canny_3(long image_nativeObj, long edges_nativeObj, double threshold1, double threshold2, int apertureSize); + private static native void Canny_4(long image_nativeObj, long edges_nativeObj, double threshold1, double threshold2); + + // C++: void cv::GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT) + private static native void GaussianBlur_0(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX, double sigmaY, int borderType); + private static native void GaussianBlur_1(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX, double sigmaY); + private static native void GaussianBlur_2(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX); + + // C++: void cv::HoughCircles(Mat image, Mat& circles, int method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0) + private static native void HoughCircles_0(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius); + private static native void HoughCircles_1(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1, double param2, int minRadius); + private static native void HoughCircles_2(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1, double param2); + private static native void HoughCircles_3(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1); + private static native void HoughCircles_4(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist); + + // C++: void cv::HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI) + private static native void HoughLines_0(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta); + private static native void HoughLines_1(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta); + private static native void HoughLines_2(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn); + private static native void HoughLines_3(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn); + private static native void HoughLines_4(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold); + + // C++: void cv::HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0) + private static native void HoughLinesP_0(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double minLineLength, double maxLineGap); + private static native void HoughLinesP_1(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double minLineLength); + private static native void HoughLinesP_2(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold); + + // C++: void cv::HoughLinesPointSet(Mat _point, Mat& _lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step) + private static native void HoughLinesPointSet_0(long _point_nativeObj, long _lines_nativeObj, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step); + + // C++: void cv::HuMoments(Moments m, Mat& hu) + private static native void HuMoments_0(double m_m00, double m_m10, double m_m01, double m_m20, double m_m11, double m_m02, double m_m30, double m_m21, double m_m12, double m_m03, long hu_nativeObj); + + // C++: void cv::Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) + private static native void Laplacian_0(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize, double scale, double delta, int borderType); + private static native void Laplacian_1(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize, double scale, double delta); + private static native void Laplacian_2(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize, double scale); + private static native void Laplacian_3(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize); + private static native void Laplacian_4(long src_nativeObj, long dst_nativeObj, int ddepth); + + // C++: void cv::Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) + private static native void Scharr_0(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, double scale, double delta, int borderType); + private static native void Scharr_1(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, double scale, double delta); + private static native void Scharr_2(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, double scale); + private static native void Scharr_3(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy); + + // C++: void cv::Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) + private static native void Sobel_0(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType); + private static native void Sobel_1(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale, double delta); + private static native void Sobel_2(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale); + private static native void Sobel_3(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize); + private static native void Sobel_4(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy); + + // C++: void cv::accumulate(Mat src, Mat& dst, Mat mask = Mat()) + private static native void accumulate_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void accumulate_1(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) + private static native void accumulateProduct_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void accumulateProduct_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); + + // C++: void cv::accumulateSquare(Mat src, Mat& dst, Mat mask = Mat()) + private static native void accumulateSquare_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj); + private static native void accumulateSquare_1(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat()) + private static native void accumulateWeighted_0(long src_nativeObj, long dst_nativeObj, double alpha, long mask_nativeObj); + private static native void accumulateWeighted_1(long src_nativeObj, long dst_nativeObj, double alpha); + + // C++: void cv::adaptiveThreshold(Mat src, Mat& dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) + private static native void adaptiveThreshold_0(long src_nativeObj, long dst_nativeObj, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C); + + // C++: void cv::applyColorMap(Mat src, Mat& dst, Mat userColor) + private static native void applyColorMap_0(long src_nativeObj, long dst_nativeObj, long userColor_nativeObj); + + // C++: void cv::applyColorMap(Mat src, Mat& dst, int colormap) + private static native void applyColorMap_1(long src_nativeObj, long dst_nativeObj, int colormap); + + // C++: void cv::approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed) + private static native void approxPolyDP_0(long curve_mat_nativeObj, long approxCurve_mat_nativeObj, double epsilon, boolean closed); + + // C++: void cv::arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1) + private static native void arrowedLine_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type, int shift, double tipLength); + private static native void arrowedLine_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type, int shift); + private static native void arrowedLine_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type); + private static native void arrowedLine_3(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void arrowedLine_4(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT) + private static native void bilateralFilter_0(long src_nativeObj, long dst_nativeObj, int d, double sigmaColor, double sigmaSpace, int borderType); + private static native void bilateralFilter_1(long src_nativeObj, long dst_nativeObj, int d, double sigmaColor, double sigmaSpace); + + // C++: void cv::blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT) + private static native void blur_0(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double anchor_x, double anchor_y, int borderType); + private static native void blur_1(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double anchor_x, double anchor_y); + private static native void blur_2(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height); + + // C++: void cv::boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, int borderType = BORDER_DEFAULT) + private static native void boxFilter_0(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize, int borderType); + private static native void boxFilter_1(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize); + private static native void boxFilter_2(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y); + private static native void boxFilter_3(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height); + + // C++: void cv::boxPoints(RotatedRect box, Mat& points) + private static native void boxPoints_0(double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, long points_nativeObj); + + // C++: void cv::calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale) + private static native void calcBackProject_0(long images_mat_nativeObj, long channels_mat_nativeObj, long hist_nativeObj, long dst_nativeObj, long ranges_mat_nativeObj, double scale); + + // C++: void cv::calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false) + private static native void calcHist_0(long images_mat_nativeObj, long channels_mat_nativeObj, long mask_nativeObj, long hist_nativeObj, long histSize_mat_nativeObj, long ranges_mat_nativeObj, boolean accumulate); + private static native void calcHist_1(long images_mat_nativeObj, long channels_mat_nativeObj, long mask_nativeObj, long hist_nativeObj, long histSize_mat_nativeObj, long ranges_mat_nativeObj); + + // C++: void cv::circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + private static native void circle_0(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); + private static native void circle_1(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); + private static native void circle_2(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void circle_3(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false) + private static native void convertMaps_0(long map1_nativeObj, long map2_nativeObj, long dstmap1_nativeObj, long dstmap2_nativeObj, int dstmap1type, boolean nninterpolation); + private static native void convertMaps_1(long map1_nativeObj, long map2_nativeObj, long dstmap1_nativeObj, long dstmap2_nativeObj, int dstmap1type); + + // C++: void cv::convexHull(vector_Point points, vector_int& hull, bool clockwise = false, _hidden_ returnPoints = true) + private static native void convexHull_0(long points_mat_nativeObj, long hull_mat_nativeObj, boolean clockwise); + private static native void convexHull_2(long points_mat_nativeObj, long hull_mat_nativeObj); + + // C++: void cv::convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects) + private static native void convexityDefects_0(long contour_mat_nativeObj, long convexhull_mat_nativeObj, long convexityDefects_mat_nativeObj); + + // C++: void cv::cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, int borderType = BORDER_DEFAULT) + private static native void cornerEigenValsAndVecs_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, int borderType); + private static native void cornerEigenValsAndVecs_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize); + + // C++: void cv::cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, int borderType = BORDER_DEFAULT) + private static native void cornerHarris_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, double k, int borderType); + private static native void cornerHarris_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, double k); + + // C++: void cv::cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, int borderType = BORDER_DEFAULT) + private static native void cornerMinEigenVal_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, int borderType); + private static native void cornerMinEigenVal_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize); + private static native void cornerMinEigenVal_2(long src_nativeObj, long dst_nativeObj, int blockSize); + + // C++: void cv::cornerSubPix(Mat image, Mat& corners, Size winSize, Size zeroZone, TermCriteria criteria) + private static native void cornerSubPix_0(long image_nativeObj, long corners_nativeObj, double winSize_width, double winSize_height, double zeroZone_width, double zeroZone_height, int criteria_type, int criteria_maxCount, double criteria_epsilon); + + // C++: void cv::createHanningWindow(Mat& dst, Size winSize, int type) + private static native void createHanningWindow_0(long dst_nativeObj, double winSize_width, double winSize_height, int type); + + // C++: void cv::cvtColor(Mat src, Mat& dst, int code, int dstCn = 0) + private static native void cvtColor_0(long src_nativeObj, long dst_nativeObj, int code, int dstCn); + private static native void cvtColor_1(long src_nativeObj, long dst_nativeObj, int code); + + // C++: void cv::cvtColorTwoPlane(Mat src1, Mat src2, Mat& dst, int code) + private static native void cvtColorTwoPlane_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, int code); + + // C++: void cv::demosaicing(Mat _src, Mat& _dst, int code, int dcn = 0) + private static native void demosaicing_0(long _src_nativeObj, long _dst_nativeObj, int code, int dcn); + private static native void demosaicing_1(long _src_nativeObj, long _dst_nativeObj, int code); + + // C++: void cv::dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) + private static native void dilate_0(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); + private static native void dilate_1(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType); + private static native void dilate_2(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations); + private static native void dilate_3(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y); + private static native void dilate_4(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj); + + // C++: void cv::distanceTransform(Mat src, Mat& dst, Mat& labels, int distanceType, int maskSize, int labelType = DIST_LABEL_CCOMP) + private static native void distanceTransformWithLabels_0(long src_nativeObj, long dst_nativeObj, long labels_nativeObj, int distanceType, int maskSize, int labelType); + private static native void distanceTransformWithLabels_1(long src_nativeObj, long dst_nativeObj, long labels_nativeObj, int distanceType, int maskSize); + + // C++: void cv::distanceTransform(Mat src, Mat& dst, int distanceType, int maskSize, int dstType = CV_32F) + private static native void distanceTransform_0(long src_nativeObj, long dst_nativeObj, int distanceType, int maskSize, int dstType); + private static native void distanceTransform_1(long src_nativeObj, long dst_nativeObj, int distanceType, int maskSize); + + // C++: void cv::drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, int lineType = LINE_8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point()) + private static native void drawContours_0(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, long hierarchy_nativeObj, int maxLevel, double offset_x, double offset_y); + private static native void drawContours_1(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, long hierarchy_nativeObj, int maxLevel); + private static native void drawContours_2(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, long hierarchy_nativeObj); + private static native void drawContours_3(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); + private static native void drawContours_4(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void drawContours_5(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::drawMarker(Mat& img, Point position, Scalar color, int markerType = MARKER_CROSS, int markerSize = 20, int thickness = 1, int line_type = 8) + private static native void drawMarker_0(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize, int thickness, int line_type); + private static native void drawMarker_1(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize, int thickness); + private static native void drawMarker_2(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize); + private static native void drawMarker_3(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType); + private static native void drawMarker_4(long img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + private static native void ellipse_0(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); + private static native void ellipse_1(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); + private static native void ellipse_2(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void ellipse_3(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = LINE_8) + private static native void ellipse_4(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); + private static native void ellipse_5(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void ellipse_6(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts) + private static native void ellipse2Poly_0(double center_x, double center_y, double axes_width, double axes_height, int angle, int arcStart, int arcEnd, int delta, long pts_mat_nativeObj); + + // C++: void cv::equalizeHist(Mat src, Mat& dst) + private static native void equalizeHist_0(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) + private static native void erode_0(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); + private static native void erode_1(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType); + private static native void erode_2(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations); + private static native void erode_3(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y); + private static native void erode_4(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj); + + // C++: void cv::fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = LINE_8, int shift = 0) + private static native void fillConvexPoly_0(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift); + private static native void fillConvexPoly_1(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType); + private static native void fillConvexPoly_2(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = LINE_8, int shift = 0, Point offset = Point()) + private static native void fillPoly_0(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift, double offset_x, double offset_y); + private static native void fillPoly_1(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift); + private static native void fillPoly_2(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType); + private static native void fillPoly_3(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) + private static native void filter2D_0(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj, double anchor_x, double anchor_y, double delta, int borderType); + private static native void filter2D_1(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj, double anchor_x, double anchor_y, double delta); + private static native void filter2D_2(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj, double anchor_x, double anchor_y); + private static native void filter2D_3(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj); + + // C++: void cv::findContours(Mat& image, vector_vector_Point& contours, Mat& hierarchy, int mode, int method, Point offset = Point()) + private static native void findContours_0(long image_nativeObj, long contours_mat_nativeObj, long hierarchy_nativeObj, int mode, int method, double offset_x, double offset_y); + private static native void findContours_1(long image_nativeObj, long contours_mat_nativeObj, long hierarchy_nativeObj, int mode, int method); + + // C++: void cv::fitLine(Mat points, Mat& line, int distType, double param, double reps, double aeps) + private static native void fitLine_0(long points_nativeObj, long line_nativeObj, int distType, double param, double reps, double aeps); + + // C++: void cv::getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F) + private static native void getDerivKernels_0(long kx_nativeObj, long ky_nativeObj, int dx, int dy, int ksize, boolean normalize, int ktype); + private static native void getDerivKernels_1(long kx_nativeObj, long ky_nativeObj, int dx, int dy, int ksize, boolean normalize); + private static native void getDerivKernels_2(long kx_nativeObj, long ky_nativeObj, int dx, int dy, int ksize); + + // C++: void cv::getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1) + private static native void getRectSubPix_0(long image_nativeObj, double patchSize_width, double patchSize_height, double center_x, double center_y, long patch_nativeObj, int patchType); + private static native void getRectSubPix_1(long image_nativeObj, double patchSize_width, double patchSize_height, double center_x, double center_y, long patch_nativeObj); + + // C++: void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector = false, double k = 0.04) + private static native void goodFeaturesToTrack_0(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, int gradientSize, boolean useHarrisDetector, double k); + private static native void goodFeaturesToTrack_1(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, int gradientSize, boolean useHarrisDetector); + private static native void goodFeaturesToTrack_2(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, int gradientSize); + + // C++: void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04) + private static native void goodFeaturesToTrack_3(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, boolean useHarrisDetector, double k); + private static native void goodFeaturesToTrack_4(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, boolean useHarrisDetector); + private static native void goodFeaturesToTrack_5(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize); + private static native void goodFeaturesToTrack_6(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj); + private static native void goodFeaturesToTrack_7(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance); + + // C++: void cv::grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL) + private static native void grabCut_0(long img_nativeObj, long mask_nativeObj, int rect_x, int rect_y, int rect_width, int rect_height, long bgdModel_nativeObj, long fgdModel_nativeObj, int iterCount, int mode); + private static native void grabCut_1(long img_nativeObj, long mask_nativeObj, int rect_x, int rect_y, int rect_width, int rect_height, long bgdModel_nativeObj, long fgdModel_nativeObj, int iterCount); + + // C++: void cv::initUndistortRectifyMap(Mat cameraMatrix, Mat distCoeffs, Mat R, Mat newCameraMatrix, Size size, int m1type, Mat& map1, Mat& map2) + private static native void initUndistortRectifyMap_0(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long R_nativeObj, long newCameraMatrix_nativeObj, double size_width, double size_height, int m1type, long map1_nativeObj, long map2_nativeObj); + + // C++: void cv::integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1, int sqdepth = -1) + private static native void integral3_0(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, long tilted_nativeObj, int sdepth, int sqdepth); + private static native void integral3_1(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, long tilted_nativeObj, int sdepth); + private static native void integral3_2(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, long tilted_nativeObj); + + // C++: void cv::integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1, int sqdepth = -1) + private static native void integral2_0(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, int sdepth, int sqdepth); + private static native void integral2_1(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, int sdepth); + private static native void integral2_2(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj); + + // C++: void cv::integral(Mat src, Mat& sum, int sdepth = -1) + private static native void integral_0(long src_nativeObj, long sum_nativeObj, int sdepth); + private static native void integral_1(long src_nativeObj, long sum_nativeObj); + + // C++: void cv::invertAffineTransform(Mat M, Mat& iM) + private static native void invertAffineTransform_0(long M_nativeObj, long iM_nativeObj); + + // C++: void cv::line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + private static native void line_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); + private static native void line_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); + private static native void line_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void line_3(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::linearPolar(Mat src, Mat& dst, Point2f center, double maxRadius, int flags) + private static native void linearPolar_0(long src_nativeObj, long dst_nativeObj, double center_x, double center_y, double maxRadius, int flags); + + // C++: void cv::logPolar(Mat src, Mat& dst, Point2f center, double M, int flags) + private static native void logPolar_0(long src_nativeObj, long dst_nativeObj, double center_x, double center_y, double M, int flags); + + // C++: void cv::matchTemplate(Mat image, Mat templ, Mat& result, int method, Mat mask = Mat()) + private static native void matchTemplate_0(long image_nativeObj, long templ_nativeObj, long result_nativeObj, int method, long mask_nativeObj); + private static native void matchTemplate_1(long image_nativeObj, long templ_nativeObj, long result_nativeObj, int method); + + // C++: void cv::medianBlur(Mat src, Mat& dst, int ksize) + private static native void medianBlur_0(long src_nativeObj, long dst_nativeObj, int ksize); + + // C++: void cv::minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius) + private static native void minEnclosingCircle_0(long points_mat_nativeObj, double[] center_out, double[] radius_out); + + // C++: void cv::morphologyEx(Mat src, Mat& dst, int op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) + private static native void morphologyEx_0(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); + private static native void morphologyEx_1(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType); + private static native void morphologyEx_2(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations); + private static native void morphologyEx_3(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y); + private static native void morphologyEx_4(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj); + + // C++: void cv::polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + private static native void polylines_0(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); + private static native void polylines_1(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); + private static native void polylines_2(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void polylines_3(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::preCornerDetect(Mat src, Mat& dst, int ksize, int borderType = BORDER_DEFAULT) + private static native void preCornerDetect_0(long src_nativeObj, long dst_nativeObj, int ksize, int borderType); + private static native void preCornerDetect_1(long src_nativeObj, long dst_nativeObj, int ksize); + + // C++: void cv::putText(Mat& img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = LINE_8, bool bottomLeftOrigin = false) + private static native void putText_0(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, boolean bottomLeftOrigin); + private static native void putText_1(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); + private static native void putText_2(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void putText_3(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::pyrDown(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) + private static native void pyrDown_0(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height, int borderType); + private static native void pyrDown_1(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height); + private static native void pyrDown_2(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) + private static native void pyrMeanShiftFiltering_0(long src_nativeObj, long dst_nativeObj, double sp, double sr, int maxLevel, int termcrit_type, int termcrit_maxCount, double termcrit_epsilon); + private static native void pyrMeanShiftFiltering_1(long src_nativeObj, long dst_nativeObj, double sp, double sr, int maxLevel); + private static native void pyrMeanShiftFiltering_2(long src_nativeObj, long dst_nativeObj, double sp, double sr); + + // C++: void cv::pyrUp(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) + private static native void pyrUp_0(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height, int borderType); + private static native void pyrUp_1(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height); + private static native void pyrUp_2(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) + private static native void rectangle_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); + private static native void rectangle_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); + private static native void rectangle_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); + private static native void rectangle_3(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3); + + // C++: void cv::remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) + private static native void remap_0(long src_nativeObj, long dst_nativeObj, long map1_nativeObj, long map2_nativeObj, int interpolation, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); + private static native void remap_1(long src_nativeObj, long dst_nativeObj, long map1_nativeObj, long map2_nativeObj, int interpolation, int borderMode); + private static native void remap_2(long src_nativeObj, long dst_nativeObj, long map1_nativeObj, long map2_nativeObj, int interpolation); + + // C++: void cv::resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR) + private static native void resize_0(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double fx, double fy, int interpolation); + private static native void resize_1(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double fx, double fy); + private static native void resize_2(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double fx); + private static native void resize_3(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height); + + // C++: void cv::sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) + private static native void sepFilter2D_0(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj, double anchor_x, double anchor_y, double delta, int borderType); + private static native void sepFilter2D_1(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj, double anchor_x, double anchor_y, double delta); + private static native void sepFilter2D_2(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj, double anchor_x, double anchor_y); + private static native void sepFilter2D_3(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj); + + // C++: void cv::spatialGradient(Mat src, Mat& dx, Mat& dy, int ksize = 3, int borderType = BORDER_DEFAULT) + private static native void spatialGradient_0(long src_nativeObj, long dx_nativeObj, long dy_nativeObj, int ksize, int borderType); + private static native void spatialGradient_1(long src_nativeObj, long dx_nativeObj, long dy_nativeObj, int ksize); + private static native void spatialGradient_2(long src_nativeObj, long dx_nativeObj, long dy_nativeObj); + + // C++: void cv::sqrBoxFilter(Mat _src, Mat& _dst, int ddepth, Size ksize, Point anchor = Point(-1, -1), bool normalize = true, int borderType = BORDER_DEFAULT) + private static native void sqrBoxFilter_0(long _src_nativeObj, long _dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize, int borderType); + private static native void sqrBoxFilter_1(long _src_nativeObj, long _dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize); + private static native void sqrBoxFilter_2(long _src_nativeObj, long _dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y); + private static native void sqrBoxFilter_3(long _src_nativeObj, long _dst_nativeObj, int ddepth, double ksize_width, double ksize_height); + + // C++: void cv::undistort(Mat src, Mat& dst, Mat cameraMatrix, Mat distCoeffs, Mat newCameraMatrix = Mat()) + private static native void undistort_0(long src_nativeObj, long dst_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long newCameraMatrix_nativeObj); + private static native void undistort_1(long src_nativeObj, long dst_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj); + + // C++: void cv::undistortPoints(Mat src, Mat& dst, Mat cameraMatrix, Mat distCoeffs, Mat R, Mat P, TermCriteria criteria) + private static native void undistortPointsIter_0(long src_nativeObj, long dst_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long R_nativeObj, long P_nativeObj, int criteria_type, int criteria_maxCount, double criteria_epsilon); + + // C++: void cv::undistortPoints(Mat src, Mat& dst, Mat cameraMatrix, Mat distCoeffs, Mat R = Mat(), Mat P = Mat()) + private static native void undistortPoints_0(long src_nativeObj, long dst_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long R_nativeObj, long P_nativeObj); + private static native void undistortPoints_1(long src_nativeObj, long dst_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long R_nativeObj); + private static native void undistortPoints_2(long src_nativeObj, long dst_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj); + + // C++: void cv::warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) + private static native void warpAffine_0(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); + private static native void warpAffine_1(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode); + private static native void warpAffine_2(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags); + private static native void warpAffine_3(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height); + + // C++: void cv::warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) + private static native void warpPerspective_0(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); + private static native void warpPerspective_1(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode); + private static native void warpPerspective_2(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags); + private static native void warpPerspective_3(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height); + + // C++: void cv::warpPolar(Mat src, Mat& dst, Size dsize, Point2f center, double maxRadius, int flags) + private static native void warpPolar_0(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double center_x, double center_y, double maxRadius, int flags); + + // C++: void cv::watershed(Mat image, Mat& markers) + private static native void watershed_0(long image_nativeObj, long markers_nativeObj); +private static native double[] n_getTextSize(String text, int fontFace, double fontScale, int thickness, int[] baseLine); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/imgproc/LineSegmentDetector.java b/openCVLibrary3/src/main/java/org/opencv/imgproc/LineSegmentDetector.java new file mode 100644 index 00000000000..b7bd36ff669 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/imgproc/LineSegmentDetector.java @@ -0,0 +1,121 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.imgproc; + +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.core.Size; + +// C++: class LineSegmentDetector +//javadoc: LineSegmentDetector + +public class LineSegmentDetector extends Algorithm { + + protected LineSegmentDetector(long addr) { super(addr); } + + // internal usage only + public static LineSegmentDetector __fromPtr__(long addr) { return new LineSegmentDetector(addr); } + + // + // C++: int cv::LineSegmentDetector::compareSegments(Size size, Mat lines1, Mat lines2, Mat& _image = Mat()) + // + + //javadoc: LineSegmentDetector::compareSegments(size, lines1, lines2, _image) + public int compareSegments(Size size, Mat lines1, Mat lines2, Mat _image) + { + + int retVal = compareSegments_0(nativeObj, size.width, size.height, lines1.nativeObj, lines2.nativeObj, _image.nativeObj); + + return retVal; + } + + //javadoc: LineSegmentDetector::compareSegments(size, lines1, lines2) + public int compareSegments(Size size, Mat lines1, Mat lines2) + { + + int retVal = compareSegments_1(nativeObj, size.width, size.height, lines1.nativeObj, lines2.nativeObj); + + return retVal; + } + + + // + // C++: void cv::LineSegmentDetector::detect(Mat _image, Mat& _lines, Mat& width = Mat(), Mat& prec = Mat(), Mat& nfa = Mat()) + // + + //javadoc: LineSegmentDetector::detect(_image, _lines, width, prec, nfa) + public void detect(Mat _image, Mat _lines, Mat width, Mat prec, Mat nfa) + { + + detect_0(nativeObj, _image.nativeObj, _lines.nativeObj, width.nativeObj, prec.nativeObj, nfa.nativeObj); + + return; + } + + //javadoc: LineSegmentDetector::detect(_image, _lines, width, prec) + public void detect(Mat _image, Mat _lines, Mat width, Mat prec) + { + + detect_1(nativeObj, _image.nativeObj, _lines.nativeObj, width.nativeObj, prec.nativeObj); + + return; + } + + //javadoc: LineSegmentDetector::detect(_image, _lines, width) + public void detect(Mat _image, Mat _lines, Mat width) + { + + detect_2(nativeObj, _image.nativeObj, _lines.nativeObj, width.nativeObj); + + return; + } + + //javadoc: LineSegmentDetector::detect(_image, _lines) + public void detect(Mat _image, Mat _lines) + { + + detect_3(nativeObj, _image.nativeObj, _lines.nativeObj); + + return; + } + + + // + // C++: void cv::LineSegmentDetector::drawSegments(Mat& _image, Mat lines) + // + + //javadoc: LineSegmentDetector::drawSegments(_image, lines) + public void drawSegments(Mat _image, Mat lines) + { + + drawSegments_0(nativeObj, _image.nativeObj, lines.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: int cv::LineSegmentDetector::compareSegments(Size size, Mat lines1, Mat lines2, Mat& _image = Mat()) + private static native int compareSegments_0(long nativeObj, double size_width, double size_height, long lines1_nativeObj, long lines2_nativeObj, long _image_nativeObj); + private static native int compareSegments_1(long nativeObj, double size_width, double size_height, long lines1_nativeObj, long lines2_nativeObj); + + // C++: void cv::LineSegmentDetector::detect(Mat _image, Mat& _lines, Mat& width = Mat(), Mat& prec = Mat(), Mat& nfa = Mat()) + private static native void detect_0(long nativeObj, long _image_nativeObj, long _lines_nativeObj, long width_nativeObj, long prec_nativeObj, long nfa_nativeObj); + private static native void detect_1(long nativeObj, long _image_nativeObj, long _lines_nativeObj, long width_nativeObj, long prec_nativeObj); + private static native void detect_2(long nativeObj, long _image_nativeObj, long _lines_nativeObj, long width_nativeObj); + private static native void detect_3(long nativeObj, long _image_nativeObj, long _lines_nativeObj); + + // C++: void cv::LineSegmentDetector::drawSegments(Mat& _image, Mat lines) + private static native void drawSegments_0(long nativeObj, long _image_nativeObj, long lines_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/imgproc/Moments.java b/openCVLibrary3/src/main/java/org/opencv/imgproc/Moments.java new file mode 100644 index 00000000000..2eeebc9875b --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/imgproc/Moments.java @@ -0,0 +1,244 @@ +package org.opencv.imgproc; + +import java.lang.Math; + +//javadoc:Moments +public class Moments { + + public double m00; + public double m10; + public double m01; + public double m20; + public double m11; + public double m02; + public double m30; + public double m21; + public double m12; + public double m03; + + public double mu20; + public double mu11; + public double mu02; + public double mu30; + public double mu21; + public double mu12; + public double mu03; + + public double nu20; + public double nu11; + public double nu02; + public double nu30; + public double nu21; + public double nu12; + public double nu03; + + public Moments( + double m00, + double m10, + double m01, + double m20, + double m11, + double m02, + double m30, + double m21, + double m12, + double m03) + { + this.m00 = m00; + this.m10 = m10; + this.m01 = m01; + this.m20 = m20; + this.m11 = m11; + this.m02 = m02; + this.m30 = m30; + this.m21 = m21; + this.m12 = m12; + this.m03 = m03; + this.completeState(); + } + + public Moments() { + this(0, 0, 0, 0, 0, 0, 0, 0, 0, 0); + } + + public Moments(double[] vals) { + set(vals); + } + + public void set(double[] vals) { + if (vals != null) { + m00 = vals.length > 0 ? vals[0] : 0; + m10 = vals.length > 1 ? vals[1] : 0; + m01 = vals.length > 2 ? vals[2] : 0; + m20 = vals.length > 3 ? vals[3] : 0; + m11 = vals.length > 4 ? vals[4] : 0; + m02 = vals.length > 5 ? vals[5] : 0; + m30 = vals.length > 6 ? vals[6] : 0; + m21 = vals.length > 7 ? vals[7] : 0; + m12 = vals.length > 8 ? vals[8] : 0; + m03 = vals.length > 9 ? vals[9] : 0; + this.completeState(); + } else { + m00 = 0; + m10 = 0; + m01 = 0; + m20 = 0; + m11 = 0; + m02 = 0; + m30 = 0; + m21 = 0; + m12 = 0; + m03 = 0; + mu20 = 0; + mu11 = 0; + mu02 = 0; + mu30 = 0; + mu21 = 0; + mu12 = 0; + mu03 = 0; + nu20 = 0; + nu11 = 0; + nu02 = 0; + nu30 = 0; + nu21 = 0; + nu12 = 0; + nu03 = 0; + } + } + + @Override + public String toString() { + return "Moments [ " + + "\n" + + "m00=" + m00 + ", " + + "\n" + + "m10=" + m10 + ", " + + "m01=" + m01 + ", " + + "\n" + + "m20=" + m20 + ", " + + "m11=" + m11 + ", " + + "m02=" + m02 + ", " + + "\n" + + "m30=" + m30 + ", " + + "m21=" + m21 + ", " + + "m12=" + m12 + ", " + + "m03=" + m03 + ", " + + "\n" + + "mu20=" + mu20 + ", " + + "mu11=" + mu11 + ", " + + "mu02=" + mu02 + ", " + + "\n" + + "mu30=" + mu30 + ", " + + "mu21=" + mu21 + ", " + + "mu12=" + mu12 + ", " + + "mu03=" + mu03 + ", " + + "\n" + + "nu20=" + nu20 + ", " + + "nu11=" + nu11 + ", " + + "nu02=" + nu02 + ", " + + "\n" + + "nu30=" + nu30 + ", " + + "nu21=" + nu21 + ", " + + "nu12=" + nu12 + ", " + + "nu03=" + nu03 + ", " + + "\n]"; + } + + protected void completeState() + { + double cx = 0, cy = 0; + double mu20, mu11, mu02; + double inv_m00 = 0.0; + + if( Math.abs(this.m00) > 0.00000001 ) + { + inv_m00 = 1. / this.m00; + cx = this.m10 * inv_m00; + cy = this.m01 * inv_m00; + } + + // mu20 = m20 - m10*cx + mu20 = this.m20 - this.m10 * cx; + // mu11 = m11 - m10*cy + mu11 = this.m11 - this.m10 * cy; + // mu02 = m02 - m01*cy + mu02 = this.m02 - this.m01 * cy; + + this.mu20 = mu20; + this.mu11 = mu11; + this.mu02 = mu02; + + // mu30 = m30 - cx*(3*mu20 + cx*m10) + this.mu30 = this.m30 - cx * (3 * mu20 + cx * this.m10); + mu11 += mu11; + // mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20 + this.mu21 = this.m21 - cx * (mu11 + cx * this.m01) - cy * mu20; + // mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02 + this.mu12 = this.m12 - cy * (mu11 + cy * this.m10) - cx * mu02; + // mu03 = m03 - cy*(3*mu02 + cy*m01) + this.mu03 = this.m03 - cy * (3 * mu02 + cy * this.m01); + + + double inv_sqrt_m00 = Math.sqrt(Math.abs(inv_m00)); + double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00; + + this.nu20 = this.mu20*s2; + this.nu11 = this.mu11*s2; + this.nu02 = this.mu02*s2; + this.nu30 = this.mu30*s3; + this.nu21 = this.mu21*s3; + this.nu12 = this.mu12*s3; + this.nu03 = this.mu03*s3; + + } + + public double get_m00() { return this.m00; } + public double get_m10() { return this.m10; } + public double get_m01() { return this.m01; } + public double get_m20() { return this.m20; } + public double get_m11() { return this.m11; } + public double get_m02() { return this.m02; } + public double get_m30() { return this.m30; } + public double get_m21() { return this.m21; } + public double get_m12() { return this.m12; } + public double get_m03() { return this.m03; } + public double get_mu20() { return this.mu20; } + public double get_mu11() { return this.mu11; } + public double get_mu02() { return this.mu02; } + public double get_mu30() { return this.mu30; } + public double get_mu21() { return this.mu21; } + public double get_mu12() { return this.mu12; } + public double get_mu03() { return this.mu03; } + public double get_nu20() { return this.nu20; } + public double get_nu11() { return this.nu11; } + public double get_nu02() { return this.nu02; } + public double get_nu30() { return this.nu30; } + public double get_nu21() { return this.nu21; } + public double get_nu12() { return this.nu12; } + public double get_nu03() { return this.nu03; } + + public void set_m00(double m00) { this.m00 = m00; } + public void set_m10(double m10) { this.m10 = m10; } + public void set_m01(double m01) { this.m01 = m01; } + public void set_m20(double m20) { this.m20 = m20; } + public void set_m11(double m11) { this.m11 = m11; } + public void set_m02(double m02) { this.m02 = m02; } + public void set_m30(double m30) { this.m30 = m30; } + public void set_m21(double m21) { this.m21 = m21; } + public void set_m12(double m12) { this.m12 = m12; } + public void set_m03(double m03) { this.m03 = m03; } + public void set_mu20(double mu20) { this.mu20 = mu20; } + public void set_mu11(double mu11) { this.mu11 = mu11; } + public void set_mu02(double mu02) { this.mu02 = mu02; } + public void set_mu30(double mu30) { this.mu30 = mu30; } + public void set_mu21(double mu21) { this.mu21 = mu21; } + public void set_mu12(double mu12) { this.mu12 = mu12; } + public void set_mu03(double mu03) { this.mu03 = mu03; } + public void set_nu20(double nu20) { this.nu20 = nu20; } + public void set_nu11(double nu11) { this.nu11 = nu11; } + public void set_nu02(double nu02) { this.nu02 = nu02; } + public void set_nu30(double nu30) { this.nu30 = nu30; } + public void set_nu21(double nu21) { this.nu21 = nu21; } + public void set_nu12(double nu12) { this.nu12 = nu12; } + public void set_nu03(double nu03) { this.nu03 = nu03; } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/imgproc/Subdiv2D.java b/openCVLibrary3/src/main/java/org/opencv/imgproc/Subdiv2D.java new file mode 100644 index 00000000000..d6cfe5b4ba0 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/imgproc/Subdiv2D.java @@ -0,0 +1,407 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.imgproc; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfFloat4; +import org.opencv.core.MatOfFloat6; +import org.opencv.core.MatOfInt; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Point; +import org.opencv.core.Rect; +import org.opencv.utils.Converters; + +// C++: class Subdiv2D +//javadoc: Subdiv2D + +public class Subdiv2D { + + protected final long nativeObj; + protected Subdiv2D(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static Subdiv2D __fromPtr__(long addr) { return new Subdiv2D(addr); } + + public static final int + PTLOC_ERROR = -2, + PTLOC_OUTSIDE_RECT = -1, + PTLOC_INSIDE = 0, + PTLOC_VERTEX = 1, + PTLOC_ON_EDGE = 2, + NEXT_AROUND_ORG = 0x00, + NEXT_AROUND_DST = 0x22, + PREV_AROUND_ORG = 0x11, + PREV_AROUND_DST = 0x33, + NEXT_AROUND_LEFT = 0x13, + NEXT_AROUND_RIGHT = 0x31, + PREV_AROUND_LEFT = 0x20, + PREV_AROUND_RIGHT = 0x02; + + + // + // C++: cv::Subdiv2D::Subdiv2D(Rect rect) + // + + //javadoc: Subdiv2D::Subdiv2D(rect) + public Subdiv2D(Rect rect) + { + + nativeObj = Subdiv2D_0(rect.x, rect.y, rect.width, rect.height); + + return; + } + + + // + // C++: cv::Subdiv2D::Subdiv2D() + // + + //javadoc: Subdiv2D::Subdiv2D() + public Subdiv2D() + { + + nativeObj = Subdiv2D_1(); + + return; + } + + + // + // C++: Point2f cv::Subdiv2D::getVertex(int vertex, int* firstEdge = 0) + // + + //javadoc: Subdiv2D::getVertex(vertex, firstEdge) + public Point getVertex(int vertex, int[] firstEdge) + { + double[] firstEdge_out = new double[1]; + Point retVal = new Point(getVertex_0(nativeObj, vertex, firstEdge_out)); + if(firstEdge!=null) firstEdge[0] = (int)firstEdge_out[0]; + return retVal; + } + + //javadoc: Subdiv2D::getVertex(vertex) + public Point getVertex(int vertex) + { + + Point retVal = new Point(getVertex_1(nativeObj, vertex)); + + return retVal; + } + + + // + // C++: int cv::Subdiv2D::edgeDst(int edge, Point2f* dstpt = 0) + // + + //javadoc: Subdiv2D::edgeDst(edge, dstpt) + public int edgeDst(int edge, Point dstpt) + { + double[] dstpt_out = new double[2]; + int retVal = edgeDst_0(nativeObj, edge, dstpt_out); + if(dstpt!=null){ dstpt.x = dstpt_out[0]; dstpt.y = dstpt_out[1]; } + return retVal; + } + + //javadoc: Subdiv2D::edgeDst(edge) + public int edgeDst(int edge) + { + + int retVal = edgeDst_1(nativeObj, edge); + + return retVal; + } + + + // + // C++: int cv::Subdiv2D::edgeOrg(int edge, Point2f* orgpt = 0) + // + + //javadoc: Subdiv2D::edgeOrg(edge, orgpt) + public int edgeOrg(int edge, Point orgpt) + { + double[] orgpt_out = new double[2]; + int retVal = edgeOrg_0(nativeObj, edge, orgpt_out); + if(orgpt!=null){ orgpt.x = orgpt_out[0]; orgpt.y = orgpt_out[1]; } + return retVal; + } + + //javadoc: Subdiv2D::edgeOrg(edge) + public int edgeOrg(int edge) + { + + int retVal = edgeOrg_1(nativeObj, edge); + + return retVal; + } + + + // + // C++: int cv::Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt = 0) + // + + //javadoc: Subdiv2D::findNearest(pt, nearestPt) + public int findNearest(Point pt, Point nearestPt) + { + double[] nearestPt_out = new double[2]; + int retVal = findNearest_0(nativeObj, pt.x, pt.y, nearestPt_out); + if(nearestPt!=null){ nearestPt.x = nearestPt_out[0]; nearestPt.y = nearestPt_out[1]; } + return retVal; + } + + //javadoc: Subdiv2D::findNearest(pt) + public int findNearest(Point pt) + { + + int retVal = findNearest_1(nativeObj, pt.x, pt.y); + + return retVal; + } + + + // + // C++: int cv::Subdiv2D::getEdge(int edge, int nextEdgeType) + // + + //javadoc: Subdiv2D::getEdge(edge, nextEdgeType) + public int getEdge(int edge, int nextEdgeType) + { + + int retVal = getEdge_0(nativeObj, edge, nextEdgeType); + + return retVal; + } + + + // + // C++: int cv::Subdiv2D::insert(Point2f pt) + // + + //javadoc: Subdiv2D::insert(pt) + public int insert(Point pt) + { + + int retVal = insert_0(nativeObj, pt.x, pt.y); + + return retVal; + } + + + // + // C++: int cv::Subdiv2D::locate(Point2f pt, int& edge, int& vertex) + // + + //javadoc: Subdiv2D::locate(pt, edge, vertex) + public int locate(Point pt, int[] edge, int[] vertex) + { + double[] edge_out = new double[1]; + double[] vertex_out = new double[1]; + int retVal = locate_0(nativeObj, pt.x, pt.y, edge_out, vertex_out); + if(edge!=null) edge[0] = (int)edge_out[0]; + if(vertex!=null) vertex[0] = (int)vertex_out[0]; + return retVal; + } + + + // + // C++: int cv::Subdiv2D::nextEdge(int edge) + // + + //javadoc: Subdiv2D::nextEdge(edge) + public int nextEdge(int edge) + { + + int retVal = nextEdge_0(nativeObj, edge); + + return retVal; + } + + + // + // C++: int cv::Subdiv2D::rotateEdge(int edge, int rotate) + // + + //javadoc: Subdiv2D::rotateEdge(edge, rotate) + public int rotateEdge(int edge, int rotate) + { + + int retVal = rotateEdge_0(nativeObj, edge, rotate); + + return retVal; + } + + + // + // C++: int cv::Subdiv2D::symEdge(int edge) + // + + //javadoc: Subdiv2D::symEdge(edge) + public int symEdge(int edge) + { + + int retVal = symEdge_0(nativeObj, edge); + + return retVal; + } + + + // + // C++: void cv::Subdiv2D::getEdgeList(vector_Vec4f& edgeList) + // + + //javadoc: Subdiv2D::getEdgeList(edgeList) + public void getEdgeList(MatOfFloat4 edgeList) + { + Mat edgeList_mat = edgeList; + getEdgeList_0(nativeObj, edgeList_mat.nativeObj); + + return; + } + + + // + // C++: void cv::Subdiv2D::getLeadingEdgeList(vector_int& leadingEdgeList) + // + + //javadoc: Subdiv2D::getLeadingEdgeList(leadingEdgeList) + public void getLeadingEdgeList(MatOfInt leadingEdgeList) + { + Mat leadingEdgeList_mat = leadingEdgeList; + getLeadingEdgeList_0(nativeObj, leadingEdgeList_mat.nativeObj); + + return; + } + + + // + // C++: void cv::Subdiv2D::getTriangleList(vector_Vec6f& triangleList) + // + + //javadoc: Subdiv2D::getTriangleList(triangleList) + public void getTriangleList(MatOfFloat6 triangleList) + { + Mat triangleList_mat = triangleList; + getTriangleList_0(nativeObj, triangleList_mat.nativeObj); + + return; + } + + + // + // C++: void cv::Subdiv2D::getVoronoiFacetList(vector_int idx, vector_vector_Point2f& facetList, vector_Point2f& facetCenters) + // + + //javadoc: Subdiv2D::getVoronoiFacetList(idx, facetList, facetCenters) + public void getVoronoiFacetList(MatOfInt idx, List facetList, MatOfPoint2f facetCenters) + { + Mat idx_mat = idx; + Mat facetList_mat = new Mat(); + Mat facetCenters_mat = facetCenters; + getVoronoiFacetList_0(nativeObj, idx_mat.nativeObj, facetList_mat.nativeObj, facetCenters_mat.nativeObj); + Converters.Mat_to_vector_vector_Point2f(facetList_mat, facetList); + facetList_mat.release(); + return; + } + + + // + // C++: void cv::Subdiv2D::initDelaunay(Rect rect) + // + + //javadoc: Subdiv2D::initDelaunay(rect) + public void initDelaunay(Rect rect) + { + + initDelaunay_0(nativeObj, rect.x, rect.y, rect.width, rect.height); + + return; + } + + + // + // C++: void cv::Subdiv2D::insert(vector_Point2f ptvec) + // + + //javadoc: Subdiv2D::insert(ptvec) + public void insert(MatOfPoint2f ptvec) + { + Mat ptvec_mat = ptvec; + insert_1(nativeObj, ptvec_mat.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::Subdiv2D::Subdiv2D(Rect rect) + private static native long Subdiv2D_0(int rect_x, int rect_y, int rect_width, int rect_height); + + // C++: cv::Subdiv2D::Subdiv2D() + private static native long Subdiv2D_1(); + + // C++: Point2f cv::Subdiv2D::getVertex(int vertex, int* firstEdge = 0) + private static native double[] getVertex_0(long nativeObj, int vertex, double[] firstEdge_out); + private static native double[] getVertex_1(long nativeObj, int vertex); + + // C++: int cv::Subdiv2D::edgeDst(int edge, Point2f* dstpt = 0) + private static native int edgeDst_0(long nativeObj, int edge, double[] dstpt_out); + private static native int edgeDst_1(long nativeObj, int edge); + + // C++: int cv::Subdiv2D::edgeOrg(int edge, Point2f* orgpt = 0) + private static native int edgeOrg_0(long nativeObj, int edge, double[] orgpt_out); + private static native int edgeOrg_1(long nativeObj, int edge); + + // C++: int cv::Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt = 0) + private static native int findNearest_0(long nativeObj, double pt_x, double pt_y, double[] nearestPt_out); + private static native int findNearest_1(long nativeObj, double pt_x, double pt_y); + + // C++: int cv::Subdiv2D::getEdge(int edge, int nextEdgeType) + private static native int getEdge_0(long nativeObj, int edge, int nextEdgeType); + + // C++: int cv::Subdiv2D::insert(Point2f pt) + private static native int insert_0(long nativeObj, double pt_x, double pt_y); + + // C++: int cv::Subdiv2D::locate(Point2f pt, int& edge, int& vertex) + private static native int locate_0(long nativeObj, double pt_x, double pt_y, double[] edge_out, double[] vertex_out); + + // C++: int cv::Subdiv2D::nextEdge(int edge) + private static native int nextEdge_0(long nativeObj, int edge); + + // C++: int cv::Subdiv2D::rotateEdge(int edge, int rotate) + private static native int rotateEdge_0(long nativeObj, int edge, int rotate); + + // C++: int cv::Subdiv2D::symEdge(int edge) + private static native int symEdge_0(long nativeObj, int edge); + + // C++: void cv::Subdiv2D::getEdgeList(vector_Vec4f& edgeList) + private static native void getEdgeList_0(long nativeObj, long edgeList_mat_nativeObj); + + // C++: void cv::Subdiv2D::getLeadingEdgeList(vector_int& leadingEdgeList) + private static native void getLeadingEdgeList_0(long nativeObj, long leadingEdgeList_mat_nativeObj); + + // C++: void cv::Subdiv2D::getTriangleList(vector_Vec6f& triangleList) + private static native void getTriangleList_0(long nativeObj, long triangleList_mat_nativeObj); + + // C++: void cv::Subdiv2D::getVoronoiFacetList(vector_int idx, vector_vector_Point2f& facetList, vector_Point2f& facetCenters) + private static native void getVoronoiFacetList_0(long nativeObj, long idx_mat_nativeObj, long facetList_mat_nativeObj, long facetCenters_mat_nativeObj); + + // C++: void cv::Subdiv2D::initDelaunay(Rect rect) + private static native void initDelaunay_0(long nativeObj, int rect_x, int rect_y, int rect_width, int rect_height); + + // C++: void cv::Subdiv2D::insert(vector_Point2f ptvec) + private static native void insert_1(long nativeObj, long ptvec_mat_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/ANN_MLP.java b/openCVLibrary3/src/main/java/org/opencv/ml/ANN_MLP.java new file mode 100644 index 00000000000..2ac6da055c9 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/ANN_MLP.java @@ -0,0 +1,630 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import org.opencv.core.Mat; +import org.opencv.core.TermCriteria; +import org.opencv.ml.ANN_MLP; +import org.opencv.ml.StatModel; + +// C++: class ANN_MLP +//javadoc: ANN_MLP + +public class ANN_MLP extends StatModel { + + protected ANN_MLP(long addr) { super(addr); } + + // internal usage only + public static ANN_MLP __fromPtr__(long addr) { return new ANN_MLP(addr); } + + public static final int + BACKPROP = 0, + RPROP = 1, + ANNEAL = 2, + IDENTITY = 0, + SIGMOID_SYM = 1, + GAUSSIAN = 2, + RELU = 3, + LEAKYRELU = 4, + UPDATE_WEIGHTS = 1, + NO_INPUT_SCALE = 2, + NO_OUTPUT_SCALE = 4; + + + // + // C++: Mat cv::ml::ANN_MLP::getLayerSizes() + // + + //javadoc: ANN_MLP::getLayerSizes() + public Mat getLayerSizes() + { + + Mat retVal = new Mat(getLayerSizes_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::ANN_MLP::getWeights(int layerIdx) + // + + //javadoc: ANN_MLP::getWeights(layerIdx) + public Mat getWeights(int layerIdx) + { + + Mat retVal = new Mat(getWeights_0(nativeObj, layerIdx)); + + return retVal; + } + + + // + // C++: static Ptr_ANN_MLP cv::ml::ANN_MLP::create() + // + + //javadoc: ANN_MLP::create() + public static ANN_MLP create() + { + + ANN_MLP retVal = ANN_MLP.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_ANN_MLP cv::ml::ANN_MLP::load(String filepath) + // + + //javadoc: ANN_MLP::load(filepath) + public static ANN_MLP load(String filepath) + { + + ANN_MLP retVal = ANN_MLP.__fromPtr__(load_0(filepath)); + + return retVal; + } + + + // + // C++: TermCriteria cv::ml::ANN_MLP::getTermCriteria() + // + + //javadoc: ANN_MLP::getTermCriteria() + public TermCriteria getTermCriteria() + { + + TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getAnnealCoolingRatio() + // + + //javadoc: ANN_MLP::getAnnealCoolingRatio() + public double getAnnealCoolingRatio() + { + + double retVal = getAnnealCoolingRatio_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getAnnealFinalT() + // + + //javadoc: ANN_MLP::getAnnealFinalT() + public double getAnnealFinalT() + { + + double retVal = getAnnealFinalT_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getAnnealInitialT() + // + + //javadoc: ANN_MLP::getAnnealInitialT() + public double getAnnealInitialT() + { + + double retVal = getAnnealInitialT_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getBackpropMomentumScale() + // + + //javadoc: ANN_MLP::getBackpropMomentumScale() + public double getBackpropMomentumScale() + { + + double retVal = getBackpropMomentumScale_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getBackpropWeightScale() + // + + //javadoc: ANN_MLP::getBackpropWeightScale() + public double getBackpropWeightScale() + { + + double retVal = getBackpropWeightScale_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getRpropDW0() + // + + //javadoc: ANN_MLP::getRpropDW0() + public double getRpropDW0() + { + + double retVal = getRpropDW0_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getRpropDWMax() + // + + //javadoc: ANN_MLP::getRpropDWMax() + public double getRpropDWMax() + { + + double retVal = getRpropDWMax_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getRpropDWMin() + // + + //javadoc: ANN_MLP::getRpropDWMin() + public double getRpropDWMin() + { + + double retVal = getRpropDWMin_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getRpropDWMinus() + // + + //javadoc: ANN_MLP::getRpropDWMinus() + public double getRpropDWMinus() + { + + double retVal = getRpropDWMinus_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP::getRpropDWPlus() + // + + //javadoc: ANN_MLP::getRpropDWPlus() + public double getRpropDWPlus() + { + + double retVal = getRpropDWPlus_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::ANN_MLP::getAnnealItePerStep() + // + + //javadoc: ANN_MLP::getAnnealItePerStep() + public int getAnnealItePerStep() + { + + int retVal = getAnnealItePerStep_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::ANN_MLP::getTrainMethod() + // + + //javadoc: ANN_MLP::getTrainMethod() + public int getTrainMethod() + { + + int retVal = getTrainMethod_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::ANN_MLP::setActivationFunction(int type, double param1 = 0, double param2 = 0) + // + + //javadoc: ANN_MLP::setActivationFunction(type, param1, param2) + public void setActivationFunction(int type, double param1, double param2) + { + + setActivationFunction_0(nativeObj, type, param1, param2); + + return; + } + + //javadoc: ANN_MLP::setActivationFunction(type, param1) + public void setActivationFunction(int type, double param1) + { + + setActivationFunction_1(nativeObj, type, param1); + + return; + } + + //javadoc: ANN_MLP::setActivationFunction(type) + public void setActivationFunction(int type) + { + + setActivationFunction_2(nativeObj, type); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setAnnealCoolingRatio(double val) + // + + //javadoc: ANN_MLP::setAnnealCoolingRatio(val) + public void setAnnealCoolingRatio(double val) + { + + setAnnealCoolingRatio_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setAnnealFinalT(double val) + // + + //javadoc: ANN_MLP::setAnnealFinalT(val) + public void setAnnealFinalT(double val) + { + + setAnnealFinalT_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setAnnealInitialT(double val) + // + + //javadoc: ANN_MLP::setAnnealInitialT(val) + public void setAnnealInitialT(double val) + { + + setAnnealInitialT_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setAnnealItePerStep(int val) + // + + //javadoc: ANN_MLP::setAnnealItePerStep(val) + public void setAnnealItePerStep(int val) + { + + setAnnealItePerStep_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setBackpropMomentumScale(double val) + // + + //javadoc: ANN_MLP::setBackpropMomentumScale(val) + public void setBackpropMomentumScale(double val) + { + + setBackpropMomentumScale_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setBackpropWeightScale(double val) + // + + //javadoc: ANN_MLP::setBackpropWeightScale(val) + public void setBackpropWeightScale(double val) + { + + setBackpropWeightScale_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setLayerSizes(Mat _layer_sizes) + // + + //javadoc: ANN_MLP::setLayerSizes(_layer_sizes) + public void setLayerSizes(Mat _layer_sizes) + { + + setLayerSizes_0(nativeObj, _layer_sizes.nativeObj); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setRpropDW0(double val) + // + + //javadoc: ANN_MLP::setRpropDW0(val) + public void setRpropDW0(double val) + { + + setRpropDW0_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setRpropDWMax(double val) + // + + //javadoc: ANN_MLP::setRpropDWMax(val) + public void setRpropDWMax(double val) + { + + setRpropDWMax_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setRpropDWMin(double val) + // + + //javadoc: ANN_MLP::setRpropDWMin(val) + public void setRpropDWMin(double val) + { + + setRpropDWMin_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setRpropDWMinus(double val) + // + + //javadoc: ANN_MLP::setRpropDWMinus(val) + public void setRpropDWMinus(double val) + { + + setRpropDWMinus_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setRpropDWPlus(double val) + // + + //javadoc: ANN_MLP::setRpropDWPlus(val) + public void setRpropDWPlus(double val) + { + + setRpropDWPlus_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setTermCriteria(TermCriteria val) + // + + //javadoc: ANN_MLP::setTermCriteria(val) + public void setTermCriteria(TermCriteria val) + { + + setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP::setTrainMethod(int method, double param1 = 0, double param2 = 0) + // + + //javadoc: ANN_MLP::setTrainMethod(method, param1, param2) + public void setTrainMethod(int method, double param1, double param2) + { + + setTrainMethod_0(nativeObj, method, param1, param2); + + return; + } + + //javadoc: ANN_MLP::setTrainMethod(method, param1) + public void setTrainMethod(int method, double param1) + { + + setTrainMethod_1(nativeObj, method, param1); + + return; + } + + //javadoc: ANN_MLP::setTrainMethod(method) + public void setTrainMethod(int method) + { + + setTrainMethod_2(nativeObj, method); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::ml::ANN_MLP::getLayerSizes() + private static native long getLayerSizes_0(long nativeObj); + + // C++: Mat cv::ml::ANN_MLP::getWeights(int layerIdx) + private static native long getWeights_0(long nativeObj, int layerIdx); + + // C++: static Ptr_ANN_MLP cv::ml::ANN_MLP::create() + private static native long create_0(); + + // C++: static Ptr_ANN_MLP cv::ml::ANN_MLP::load(String filepath) + private static native long load_0(String filepath); + + // C++: TermCriteria cv::ml::ANN_MLP::getTermCriteria() + private static native double[] getTermCriteria_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getAnnealCoolingRatio() + private static native double getAnnealCoolingRatio_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getAnnealFinalT() + private static native double getAnnealFinalT_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getAnnealInitialT() + private static native double getAnnealInitialT_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getBackpropMomentumScale() + private static native double getBackpropMomentumScale_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getBackpropWeightScale() + private static native double getBackpropWeightScale_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getRpropDW0() + private static native double getRpropDW0_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getRpropDWMax() + private static native double getRpropDWMax_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getRpropDWMin() + private static native double getRpropDWMin_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getRpropDWMinus() + private static native double getRpropDWMinus_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP::getRpropDWPlus() + private static native double getRpropDWPlus_0(long nativeObj); + + // C++: int cv::ml::ANN_MLP::getAnnealItePerStep() + private static native int getAnnealItePerStep_0(long nativeObj); + + // C++: int cv::ml::ANN_MLP::getTrainMethod() + private static native int getTrainMethod_0(long nativeObj); + + // C++: void cv::ml::ANN_MLP::setActivationFunction(int type, double param1 = 0, double param2 = 0) + private static native void setActivationFunction_0(long nativeObj, int type, double param1, double param2); + private static native void setActivationFunction_1(long nativeObj, int type, double param1); + private static native void setActivationFunction_2(long nativeObj, int type); + + // C++: void cv::ml::ANN_MLP::setAnnealCoolingRatio(double val) + private static native void setAnnealCoolingRatio_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setAnnealFinalT(double val) + private static native void setAnnealFinalT_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setAnnealInitialT(double val) + private static native void setAnnealInitialT_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setAnnealItePerStep(int val) + private static native void setAnnealItePerStep_0(long nativeObj, int val); + + // C++: void cv::ml::ANN_MLP::setBackpropMomentumScale(double val) + private static native void setBackpropMomentumScale_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setBackpropWeightScale(double val) + private static native void setBackpropWeightScale_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setLayerSizes(Mat _layer_sizes) + private static native void setLayerSizes_0(long nativeObj, long _layer_sizes_nativeObj); + + // C++: void cv::ml::ANN_MLP::setRpropDW0(double val) + private static native void setRpropDW0_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setRpropDWMax(double val) + private static native void setRpropDWMax_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setRpropDWMin(double val) + private static native void setRpropDWMin_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setRpropDWMinus(double val) + private static native void setRpropDWMinus_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setRpropDWPlus(double val) + private static native void setRpropDWPlus_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP::setTermCriteria(TermCriteria val) + private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); + + // C++: void cv::ml::ANN_MLP::setTrainMethod(int method, double param1 = 0, double param2 = 0) + private static native void setTrainMethod_0(long nativeObj, int method, double param1, double param2); + private static native void setTrainMethod_1(long nativeObj, int method, double param1); + private static native void setTrainMethod_2(long nativeObj, int method); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/ANN_MLP_ANNEAL.java b/openCVLibrary3/src/main/java/org/opencv/ml/ANN_MLP_ANNEAL.java new file mode 100644 index 00000000000..fa0c5b24f48 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/ANN_MLP_ANNEAL.java @@ -0,0 +1,164 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import org.opencv.ml.ANN_MLP; + +// C++: class ANN_MLP_ANNEAL +//javadoc: ANN_MLP_ANNEAL + +public class ANN_MLP_ANNEAL extends ANN_MLP { + + protected ANN_MLP_ANNEAL(long addr) { super(addr); } + + // internal usage only + public static ANN_MLP_ANNEAL __fromPtr__(long addr) { return new ANN_MLP_ANNEAL(addr); } + + // + // C++: double cv::ml::ANN_MLP_ANNEAL::getAnnealCoolingRatio() + // + + //javadoc: ANN_MLP_ANNEAL::getAnnealCoolingRatio() + public double getAnnealCoolingRatio() + { + + double retVal = getAnnealCoolingRatio_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP_ANNEAL::getAnnealFinalT() + // + + //javadoc: ANN_MLP_ANNEAL::getAnnealFinalT() + public double getAnnealFinalT() + { + + double retVal = getAnnealFinalT_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::ANN_MLP_ANNEAL::getAnnealInitialT() + // + + //javadoc: ANN_MLP_ANNEAL::getAnnealInitialT() + public double getAnnealInitialT() + { + + double retVal = getAnnealInitialT_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::ANN_MLP_ANNEAL::getAnnealItePerStep() + // + + //javadoc: ANN_MLP_ANNEAL::getAnnealItePerStep() + public int getAnnealItePerStep() + { + + int retVal = getAnnealItePerStep_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::ANN_MLP_ANNEAL::setAnnealCoolingRatio(double val) + // + + //javadoc: ANN_MLP_ANNEAL::setAnnealCoolingRatio(val) + public void setAnnealCoolingRatio(double val) + { + + setAnnealCoolingRatio_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP_ANNEAL::setAnnealFinalT(double val) + // + + //javadoc: ANN_MLP_ANNEAL::setAnnealFinalT(val) + public void setAnnealFinalT(double val) + { + + setAnnealFinalT_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP_ANNEAL::setAnnealInitialT(double val) + // + + //javadoc: ANN_MLP_ANNEAL::setAnnealInitialT(val) + public void setAnnealInitialT(double val) + { + + setAnnealInitialT_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::ANN_MLP_ANNEAL::setAnnealItePerStep(int val) + // + + //javadoc: ANN_MLP_ANNEAL::setAnnealItePerStep(val) + public void setAnnealItePerStep(int val) + { + + setAnnealItePerStep_0(nativeObj, val); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: double cv::ml::ANN_MLP_ANNEAL::getAnnealCoolingRatio() + private static native double getAnnealCoolingRatio_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP_ANNEAL::getAnnealFinalT() + private static native double getAnnealFinalT_0(long nativeObj); + + // C++: double cv::ml::ANN_MLP_ANNEAL::getAnnealInitialT() + private static native double getAnnealInitialT_0(long nativeObj); + + // C++: int cv::ml::ANN_MLP_ANNEAL::getAnnealItePerStep() + private static native int getAnnealItePerStep_0(long nativeObj); + + // C++: void cv::ml::ANN_MLP_ANNEAL::setAnnealCoolingRatio(double val) + private static native void setAnnealCoolingRatio_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP_ANNEAL::setAnnealFinalT(double val) + private static native void setAnnealFinalT_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP_ANNEAL::setAnnealInitialT(double val) + private static native void setAnnealInitialT_0(long nativeObj, double val); + + // C++: void cv::ml::ANN_MLP_ANNEAL::setAnnealItePerStep(int val) + private static native void setAnnealItePerStep_0(long nativeObj, int val); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/Boost.java b/openCVLibrary3/src/main/java/org/opencv/ml/Boost.java new file mode 100644 index 00000000000..7072329f30a --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/Boost.java @@ -0,0 +1,183 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import org.opencv.ml.Boost; +import org.opencv.ml.DTrees; + +// C++: class Boost +//javadoc: Boost + +public class Boost extends DTrees { + + protected Boost(long addr) { super(addr); } + + // internal usage only + public static Boost __fromPtr__(long addr) { return new Boost(addr); } + + public static final int + DISCRETE = 0, + REAL = 1, + LOGIT = 2, + GENTLE = 3; + + + // + // C++: static Ptr_Boost cv::ml::Boost::create() + // + + //javadoc: Boost::create() + public static Boost create() + { + + Boost retVal = Boost.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_Boost cv::ml::Boost::load(String filepath, String nodeName = String()) + // + + //javadoc: Boost::load(filepath, nodeName) + public static Boost load(String filepath, String nodeName) + { + + Boost retVal = Boost.__fromPtr__(load_0(filepath, nodeName)); + + return retVal; + } + + //javadoc: Boost::load(filepath) + public static Boost load(String filepath) + { + + Boost retVal = Boost.__fromPtr__(load_1(filepath)); + + return retVal; + } + + + // + // C++: double cv::ml::Boost::getWeightTrimRate() + // + + //javadoc: Boost::getWeightTrimRate() + public double getWeightTrimRate() + { + + double retVal = getWeightTrimRate_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::Boost::getBoostType() + // + + //javadoc: Boost::getBoostType() + public int getBoostType() + { + + int retVal = getBoostType_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::Boost::getWeakCount() + // + + //javadoc: Boost::getWeakCount() + public int getWeakCount() + { + + int retVal = getWeakCount_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::Boost::setBoostType(int val) + // + + //javadoc: Boost::setBoostType(val) + public void setBoostType(int val) + { + + setBoostType_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::Boost::setWeakCount(int val) + // + + //javadoc: Boost::setWeakCount(val) + public void setWeakCount(int val) + { + + setWeakCount_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::Boost::setWeightTrimRate(double val) + // + + //javadoc: Boost::setWeightTrimRate(val) + public void setWeightTrimRate(double val) + { + + setWeightTrimRate_0(nativeObj, val); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_Boost cv::ml::Boost::create() + private static native long create_0(); + + // C++: static Ptr_Boost cv::ml::Boost::load(String filepath, String nodeName = String()) + private static native long load_0(String filepath, String nodeName); + private static native long load_1(String filepath); + + // C++: double cv::ml::Boost::getWeightTrimRate() + private static native double getWeightTrimRate_0(long nativeObj); + + // C++: int cv::ml::Boost::getBoostType() + private static native int getBoostType_0(long nativeObj); + + // C++: int cv::ml::Boost::getWeakCount() + private static native int getWeakCount_0(long nativeObj); + + // C++: void cv::ml::Boost::setBoostType(int val) + private static native void setBoostType_0(long nativeObj, int val); + + // C++: void cv::ml::Boost::setWeakCount(int val) + private static native void setWeakCount_0(long nativeObj, int val); + + // C++: void cv::ml::Boost::setWeightTrimRate(double val) + private static native void setWeightTrimRate_0(long nativeObj, double val); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/DTrees.java b/openCVLibrary3/src/main/java/org/opencv/ml/DTrees.java new file mode 100644 index 00000000000..10db90de66d --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/DTrees.java @@ -0,0 +1,388 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import org.opencv.core.Mat; +import org.opencv.ml.DTrees; +import org.opencv.ml.StatModel; + +// C++: class DTrees +//javadoc: DTrees + +public class DTrees extends StatModel { + + protected DTrees(long addr) { super(addr); } + + // internal usage only + public static DTrees __fromPtr__(long addr) { return new DTrees(addr); } + + public static final int + PREDICT_AUTO = 0, + PREDICT_SUM = (1<<8), + PREDICT_MAX_VOTE = (2<<8), + PREDICT_MASK = (3<<8); + + + // + // C++: Mat cv::ml::DTrees::getPriors() + // + + //javadoc: DTrees::getPriors() + public Mat getPriors() + { + + Mat retVal = new Mat(getPriors_0(nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_DTrees cv::ml::DTrees::create() + // + + //javadoc: DTrees::create() + public static DTrees create() + { + + DTrees retVal = DTrees.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_DTrees cv::ml::DTrees::load(String filepath, String nodeName = String()) + // + + //javadoc: DTrees::load(filepath, nodeName) + public static DTrees load(String filepath, String nodeName) + { + + DTrees retVal = DTrees.__fromPtr__(load_0(filepath, nodeName)); + + return retVal; + } + + //javadoc: DTrees::load(filepath) + public static DTrees load(String filepath) + { + + DTrees retVal = DTrees.__fromPtr__(load_1(filepath)); + + return retVal; + } + + + // + // C++: bool cv::ml::DTrees::getTruncatePrunedTree() + // + + //javadoc: DTrees::getTruncatePrunedTree() + public boolean getTruncatePrunedTree() + { + + boolean retVal = getTruncatePrunedTree_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::DTrees::getUse1SERule() + // + + //javadoc: DTrees::getUse1SERule() + public boolean getUse1SERule() + { + + boolean retVal = getUse1SERule_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::DTrees::getUseSurrogates() + // + + //javadoc: DTrees::getUseSurrogates() + public boolean getUseSurrogates() + { + + boolean retVal = getUseSurrogates_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::ml::DTrees::getRegressionAccuracy() + // + + //javadoc: DTrees::getRegressionAccuracy() + public float getRegressionAccuracy() + { + + float retVal = getRegressionAccuracy_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::DTrees::getCVFolds() + // + + //javadoc: DTrees::getCVFolds() + public int getCVFolds() + { + + int retVal = getCVFolds_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::DTrees::getMaxCategories() + // + + //javadoc: DTrees::getMaxCategories() + public int getMaxCategories() + { + + int retVal = getMaxCategories_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::DTrees::getMaxDepth() + // + + //javadoc: DTrees::getMaxDepth() + public int getMaxDepth() + { + + int retVal = getMaxDepth_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::DTrees::getMinSampleCount() + // + + //javadoc: DTrees::getMinSampleCount() + public int getMinSampleCount() + { + + int retVal = getMinSampleCount_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::DTrees::setCVFolds(int val) + // + + //javadoc: DTrees::setCVFolds(val) + public void setCVFolds(int val) + { + + setCVFolds_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::DTrees::setMaxCategories(int val) + // + + //javadoc: DTrees::setMaxCategories(val) + public void setMaxCategories(int val) + { + + setMaxCategories_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::DTrees::setMaxDepth(int val) + // + + //javadoc: DTrees::setMaxDepth(val) + public void setMaxDepth(int val) + { + + setMaxDepth_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::DTrees::setMinSampleCount(int val) + // + + //javadoc: DTrees::setMinSampleCount(val) + public void setMinSampleCount(int val) + { + + setMinSampleCount_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::DTrees::setPriors(Mat val) + // + + //javadoc: DTrees::setPriors(val) + public void setPriors(Mat val) + { + + setPriors_0(nativeObj, val.nativeObj); + + return; + } + + + // + // C++: void cv::ml::DTrees::setRegressionAccuracy(float val) + // + + //javadoc: DTrees::setRegressionAccuracy(val) + public void setRegressionAccuracy(float val) + { + + setRegressionAccuracy_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::DTrees::setTruncatePrunedTree(bool val) + // + + //javadoc: DTrees::setTruncatePrunedTree(val) + public void setTruncatePrunedTree(boolean val) + { + + setTruncatePrunedTree_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::DTrees::setUse1SERule(bool val) + // + + //javadoc: DTrees::setUse1SERule(val) + public void setUse1SERule(boolean val) + { + + setUse1SERule_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::DTrees::setUseSurrogates(bool val) + // + + //javadoc: DTrees::setUseSurrogates(val) + public void setUseSurrogates(boolean val) + { + + setUseSurrogates_0(nativeObj, val); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::ml::DTrees::getPriors() + private static native long getPriors_0(long nativeObj); + + // C++: static Ptr_DTrees cv::ml::DTrees::create() + private static native long create_0(); + + // C++: static Ptr_DTrees cv::ml::DTrees::load(String filepath, String nodeName = String()) + private static native long load_0(String filepath, String nodeName); + private static native long load_1(String filepath); + + // C++: bool cv::ml::DTrees::getTruncatePrunedTree() + private static native boolean getTruncatePrunedTree_0(long nativeObj); + + // C++: bool cv::ml::DTrees::getUse1SERule() + private static native boolean getUse1SERule_0(long nativeObj); + + // C++: bool cv::ml::DTrees::getUseSurrogates() + private static native boolean getUseSurrogates_0(long nativeObj); + + // C++: float cv::ml::DTrees::getRegressionAccuracy() + private static native float getRegressionAccuracy_0(long nativeObj); + + // C++: int cv::ml::DTrees::getCVFolds() + private static native int getCVFolds_0(long nativeObj); + + // C++: int cv::ml::DTrees::getMaxCategories() + private static native int getMaxCategories_0(long nativeObj); + + // C++: int cv::ml::DTrees::getMaxDepth() + private static native int getMaxDepth_0(long nativeObj); + + // C++: int cv::ml::DTrees::getMinSampleCount() + private static native int getMinSampleCount_0(long nativeObj); + + // C++: void cv::ml::DTrees::setCVFolds(int val) + private static native void setCVFolds_0(long nativeObj, int val); + + // C++: void cv::ml::DTrees::setMaxCategories(int val) + private static native void setMaxCategories_0(long nativeObj, int val); + + // C++: void cv::ml::DTrees::setMaxDepth(int val) + private static native void setMaxDepth_0(long nativeObj, int val); + + // C++: void cv::ml::DTrees::setMinSampleCount(int val) + private static native void setMinSampleCount_0(long nativeObj, int val); + + // C++: void cv::ml::DTrees::setPriors(Mat val) + private static native void setPriors_0(long nativeObj, long val_nativeObj); + + // C++: void cv::ml::DTrees::setRegressionAccuracy(float val) + private static native void setRegressionAccuracy_0(long nativeObj, float val); + + // C++: void cv::ml::DTrees::setTruncatePrunedTree(bool val) + private static native void setTruncatePrunedTree_0(long nativeObj, boolean val); + + // C++: void cv::ml::DTrees::setUse1SERule(bool val) + private static native void setUse1SERule_0(long nativeObj, boolean val); + + // C++: void cv::ml::DTrees::setUseSurrogates(bool val) + private static native void setUseSurrogates_0(long nativeObj, boolean val); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/EM.java b/openCVLibrary3/src/main/java/org/opencv/ml/EM.java new file mode 100644 index 00000000000..70f538d8b80 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/EM.java @@ -0,0 +1,460 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.TermCriteria; +import org.opencv.ml.EM; +import org.opencv.ml.StatModel; +import org.opencv.utils.Converters; + +// C++: class EM +//javadoc: EM + +public class EM extends StatModel { + + protected EM(long addr) { super(addr); } + + // internal usage only + public static EM __fromPtr__(long addr) { return new EM(addr); } + + public static final int + COV_MAT_SPHERICAL = 0, + COV_MAT_DIAGONAL = 1, + COV_MAT_GENERIC = 2, + COV_MAT_DEFAULT = COV_MAT_DIAGONAL, + DEFAULT_NCLUSTERS = 5, + DEFAULT_MAX_ITERS = 100, + START_E_STEP = 1, + START_M_STEP = 2, + START_AUTO_STEP = 0; + + + // + // C++: Mat cv::ml::EM::getMeans() + // + + //javadoc: EM::getMeans() + public Mat getMeans() + { + + Mat retVal = new Mat(getMeans_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::EM::getWeights() + // + + //javadoc: EM::getWeights() + public Mat getWeights() + { + + Mat retVal = new Mat(getWeights_0(nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_EM cv::ml::EM::create() + // + + //javadoc: EM::create() + public static EM create() + { + + EM retVal = EM.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_EM cv::ml::EM::load(String filepath, String nodeName = String()) + // + + //javadoc: EM::load(filepath, nodeName) + public static EM load(String filepath, String nodeName) + { + + EM retVal = EM.__fromPtr__(load_0(filepath, nodeName)); + + return retVal; + } + + //javadoc: EM::load(filepath) + public static EM load(String filepath) + { + + EM retVal = EM.__fromPtr__(load_1(filepath)); + + return retVal; + } + + + // + // C++: TermCriteria cv::ml::EM::getTermCriteria() + // + + //javadoc: EM::getTermCriteria() + public TermCriteria getTermCriteria() + { + + TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); + + return retVal; + } + + + // + // C++: Vec2d cv::ml::EM::predict2(Mat sample, Mat& probs) + // + + //javadoc: EM::predict2(sample, probs) + public double[] predict2(Mat sample, Mat probs) + { + + double[] retVal = predict2_0(nativeObj, sample.nativeObj, probs.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::EM::trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) + // + + //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels, probs) + public boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs) + { + + boolean retVal = trainE_0(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); + + return retVal; + } + + //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels) + public boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels) + { + + boolean retVal = trainE_1(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj); + + return retVal; + } + + //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods) + public boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods) + { + + boolean retVal = trainE_2(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj); + + return retVal; + } + + //javadoc: EM::trainE(samples, means0, covs0, weights0) + public boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0) + { + + boolean retVal = trainE_3(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj); + + return retVal; + } + + //javadoc: EM::trainE(samples, means0, covs0) + public boolean trainE(Mat samples, Mat means0, Mat covs0) + { + + boolean retVal = trainE_4(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj); + + return retVal; + } + + //javadoc: EM::trainE(samples, means0) + public boolean trainE(Mat samples, Mat means0) + { + + boolean retVal = trainE_5(nativeObj, samples.nativeObj, means0.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::EM::trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) + // + + //javadoc: EM::trainEM(samples, logLikelihoods, labels, probs) + public boolean trainEM(Mat samples, Mat logLikelihoods, Mat labels, Mat probs) + { + + boolean retVal = trainEM_0(nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); + + return retVal; + } + + //javadoc: EM::trainEM(samples, logLikelihoods, labels) + public boolean trainEM(Mat samples, Mat logLikelihoods, Mat labels) + { + + boolean retVal = trainEM_1(nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj); + + return retVal; + } + + //javadoc: EM::trainEM(samples, logLikelihoods) + public boolean trainEM(Mat samples, Mat logLikelihoods) + { + + boolean retVal = trainEM_2(nativeObj, samples.nativeObj, logLikelihoods.nativeObj); + + return retVal; + } + + //javadoc: EM::trainEM(samples) + public boolean trainEM(Mat samples) + { + + boolean retVal = trainEM_3(nativeObj, samples.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::EM::trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) + // + + //javadoc: EM::trainM(samples, probs0, logLikelihoods, labels, probs) + public boolean trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels, Mat probs) + { + + boolean retVal = trainM_0(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); + + return retVal; + } + + //javadoc: EM::trainM(samples, probs0, logLikelihoods, labels) + public boolean trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels) + { + + boolean retVal = trainM_1(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj); + + return retVal; + } + + //javadoc: EM::trainM(samples, probs0, logLikelihoods) + public boolean trainM(Mat samples, Mat probs0, Mat logLikelihoods) + { + + boolean retVal = trainM_2(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj); + + return retVal; + } + + //javadoc: EM::trainM(samples, probs0) + public boolean trainM(Mat samples, Mat probs0) + { + + boolean retVal = trainM_3(nativeObj, samples.nativeObj, probs0.nativeObj); + + return retVal; + } + + + // + // C++: float cv::ml::EM::predict(Mat samples, Mat& results = Mat(), int flags = 0) + // + + //javadoc: EM::predict(samples, results, flags) + public float predict(Mat samples, Mat results, int flags) + { + + float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags); + + return retVal; + } + + //javadoc: EM::predict(samples, results) + public float predict(Mat samples, Mat results) + { + + float retVal = predict_1(nativeObj, samples.nativeObj, results.nativeObj); + + return retVal; + } + + //javadoc: EM::predict(samples) + public float predict(Mat samples) + { + + float retVal = predict_2(nativeObj, samples.nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::EM::getClustersNumber() + // + + //javadoc: EM::getClustersNumber() + public int getClustersNumber() + { + + int retVal = getClustersNumber_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::EM::getCovarianceMatrixType() + // + + //javadoc: EM::getCovarianceMatrixType() + public int getCovarianceMatrixType() + { + + int retVal = getCovarianceMatrixType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::EM::getCovs(vector_Mat& covs) + // + + //javadoc: EM::getCovs(covs) + public void getCovs(List covs) + { + Mat covs_mat = new Mat(); + getCovs_0(nativeObj, covs_mat.nativeObj); + Converters.Mat_to_vector_Mat(covs_mat, covs); + covs_mat.release(); + return; + } + + + // + // C++: void cv::ml::EM::setClustersNumber(int val) + // + + //javadoc: EM::setClustersNumber(val) + public void setClustersNumber(int val) + { + + setClustersNumber_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::EM::setCovarianceMatrixType(int val) + // + + //javadoc: EM::setCovarianceMatrixType(val) + public void setCovarianceMatrixType(int val) + { + + setCovarianceMatrixType_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::EM::setTermCriteria(TermCriteria val) + // + + //javadoc: EM::setTermCriteria(val) + public void setTermCriteria(TermCriteria val) + { + + setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::ml::EM::getMeans() + private static native long getMeans_0(long nativeObj); + + // C++: Mat cv::ml::EM::getWeights() + private static native long getWeights_0(long nativeObj); + + // C++: static Ptr_EM cv::ml::EM::create() + private static native long create_0(); + + // C++: static Ptr_EM cv::ml::EM::load(String filepath, String nodeName = String()) + private static native long load_0(String filepath, String nodeName); + private static native long load_1(String filepath); + + // C++: TermCriteria cv::ml::EM::getTermCriteria() + private static native double[] getTermCriteria_0(long nativeObj); + + // C++: Vec2d cv::ml::EM::predict2(Mat sample, Mat& probs) + private static native double[] predict2_0(long nativeObj, long sample_nativeObj, long probs_nativeObj); + + // C++: bool cv::ml::EM::trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) + private static native boolean trainE_0(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj); + private static native boolean trainE_1(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj); + private static native boolean trainE_2(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj, long logLikelihoods_nativeObj); + private static native boolean trainE_3(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj); + private static native boolean trainE_4(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj); + private static native boolean trainE_5(long nativeObj, long samples_nativeObj, long means0_nativeObj); + + // C++: bool cv::ml::EM::trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) + private static native boolean trainEM_0(long nativeObj, long samples_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj); + private static native boolean trainEM_1(long nativeObj, long samples_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj); + private static native boolean trainEM_2(long nativeObj, long samples_nativeObj, long logLikelihoods_nativeObj); + private static native boolean trainEM_3(long nativeObj, long samples_nativeObj); + + // C++: bool cv::ml::EM::trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) + private static native boolean trainM_0(long nativeObj, long samples_nativeObj, long probs0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj); + private static native boolean trainM_1(long nativeObj, long samples_nativeObj, long probs0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj); + private static native boolean trainM_2(long nativeObj, long samples_nativeObj, long probs0_nativeObj, long logLikelihoods_nativeObj); + private static native boolean trainM_3(long nativeObj, long samples_nativeObj, long probs0_nativeObj); + + // C++: float cv::ml::EM::predict(Mat samples, Mat& results = Mat(), int flags = 0) + private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); + private static native float predict_1(long nativeObj, long samples_nativeObj, long results_nativeObj); + private static native float predict_2(long nativeObj, long samples_nativeObj); + + // C++: int cv::ml::EM::getClustersNumber() + private static native int getClustersNumber_0(long nativeObj); + + // C++: int cv::ml::EM::getCovarianceMatrixType() + private static native int getCovarianceMatrixType_0(long nativeObj); + + // C++: void cv::ml::EM::getCovs(vector_Mat& covs) + private static native void getCovs_0(long nativeObj, long covs_mat_nativeObj); + + // C++: void cv::ml::EM::setClustersNumber(int val) + private static native void setClustersNumber_0(long nativeObj, int val); + + // C++: void cv::ml::EM::setCovarianceMatrixType(int val) + private static native void setCovarianceMatrixType_0(long nativeObj, int val); + + // C++: void cv::ml::EM::setTermCriteria(TermCriteria val) + private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/KNearest.java b/openCVLibrary3/src/main/java/org/opencv/ml/KNearest.java new file mode 100644 index 00000000000..8f0ddcb923c --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/KNearest.java @@ -0,0 +1,225 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import org.opencv.core.Mat; +import org.opencv.ml.KNearest; +import org.opencv.ml.StatModel; + +// C++: class KNearest +//javadoc: KNearest + +public class KNearest extends StatModel { + + protected KNearest(long addr) { super(addr); } + + // internal usage only + public static KNearest __fromPtr__(long addr) { return new KNearest(addr); } + + public static final int + BRUTE_FORCE = 1, + KDTREE = 2; + + + // + // C++: static Ptr_KNearest cv::ml::KNearest::create() + // + + //javadoc: KNearest::create() + public static KNearest create() + { + + KNearest retVal = KNearest.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: bool cv::ml::KNearest::getIsClassifier() + // + + //javadoc: KNearest::getIsClassifier() + public boolean getIsClassifier() + { + + boolean retVal = getIsClassifier_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::ml::KNearest::findNearest(Mat samples, int k, Mat& results, Mat& neighborResponses = Mat(), Mat& dist = Mat()) + // + + //javadoc: KNearest::findNearest(samples, k, results, neighborResponses, dist) + public float findNearest(Mat samples, int k, Mat results, Mat neighborResponses, Mat dist) + { + + float retVal = findNearest_0(nativeObj, samples.nativeObj, k, results.nativeObj, neighborResponses.nativeObj, dist.nativeObj); + + return retVal; + } + + //javadoc: KNearest::findNearest(samples, k, results, neighborResponses) + public float findNearest(Mat samples, int k, Mat results, Mat neighborResponses) + { + + float retVal = findNearest_1(nativeObj, samples.nativeObj, k, results.nativeObj, neighborResponses.nativeObj); + + return retVal; + } + + //javadoc: KNearest::findNearest(samples, k, results) + public float findNearest(Mat samples, int k, Mat results) + { + + float retVal = findNearest_2(nativeObj, samples.nativeObj, k, results.nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::KNearest::getAlgorithmType() + // + + //javadoc: KNearest::getAlgorithmType() + public int getAlgorithmType() + { + + int retVal = getAlgorithmType_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::KNearest::getDefaultK() + // + + //javadoc: KNearest::getDefaultK() + public int getDefaultK() + { + + int retVal = getDefaultK_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::KNearest::getEmax() + // + + //javadoc: KNearest::getEmax() + public int getEmax() + { + + int retVal = getEmax_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::KNearest::setAlgorithmType(int val) + // + + //javadoc: KNearest::setAlgorithmType(val) + public void setAlgorithmType(int val) + { + + setAlgorithmType_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::KNearest::setDefaultK(int val) + // + + //javadoc: KNearest::setDefaultK(val) + public void setDefaultK(int val) + { + + setDefaultK_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::KNearest::setEmax(int val) + // + + //javadoc: KNearest::setEmax(val) + public void setEmax(int val) + { + + setEmax_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::KNearest::setIsClassifier(bool val) + // + + //javadoc: KNearest::setIsClassifier(val) + public void setIsClassifier(boolean val) + { + + setIsClassifier_0(nativeObj, val); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_KNearest cv::ml::KNearest::create() + private static native long create_0(); + + // C++: bool cv::ml::KNearest::getIsClassifier() + private static native boolean getIsClassifier_0(long nativeObj); + + // C++: float cv::ml::KNearest::findNearest(Mat samples, int k, Mat& results, Mat& neighborResponses = Mat(), Mat& dist = Mat()) + private static native float findNearest_0(long nativeObj, long samples_nativeObj, int k, long results_nativeObj, long neighborResponses_nativeObj, long dist_nativeObj); + private static native float findNearest_1(long nativeObj, long samples_nativeObj, int k, long results_nativeObj, long neighborResponses_nativeObj); + private static native float findNearest_2(long nativeObj, long samples_nativeObj, int k, long results_nativeObj); + + // C++: int cv::ml::KNearest::getAlgorithmType() + private static native int getAlgorithmType_0(long nativeObj); + + // C++: int cv::ml::KNearest::getDefaultK() + private static native int getDefaultK_0(long nativeObj); + + // C++: int cv::ml::KNearest::getEmax() + private static native int getEmax_0(long nativeObj); + + // C++: void cv::ml::KNearest::setAlgorithmType(int val) + private static native void setAlgorithmType_0(long nativeObj, int val); + + // C++: void cv::ml::KNearest::setDefaultK(int val) + private static native void setDefaultK_0(long nativeObj, int val); + + // C++: void cv::ml::KNearest::setEmax(int val) + private static native void setEmax_0(long nativeObj, int val); + + // C++: void cv::ml::KNearest::setIsClassifier(bool val) + private static native void setIsClassifier_0(long nativeObj, boolean val); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/LogisticRegression.java b/openCVLibrary3/src/main/java/org/opencv/ml/LogisticRegression.java new file mode 100644 index 00000000000..41d487efae0 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/LogisticRegression.java @@ -0,0 +1,342 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import org.opencv.core.Mat; +import org.opencv.core.TermCriteria; +import org.opencv.ml.LogisticRegression; +import org.opencv.ml.StatModel; + +// C++: class LogisticRegression +//javadoc: LogisticRegression + +public class LogisticRegression extends StatModel { + + protected LogisticRegression(long addr) { super(addr); } + + // internal usage only + public static LogisticRegression __fromPtr__(long addr) { return new LogisticRegression(addr); } + + public static final int + REG_DISABLE = -1, + REG_L1 = 0, + REG_L2 = 1, + BATCH = 0, + MINI_BATCH = 1; + + + // + // C++: Mat cv::ml::LogisticRegression::get_learnt_thetas() + // + + //javadoc: LogisticRegression::get_learnt_thetas() + public Mat get_learnt_thetas() + { + + Mat retVal = new Mat(get_learnt_thetas_0(nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::create() + // + + //javadoc: LogisticRegression::create() + public static LogisticRegression create() + { + + LogisticRegression retVal = LogisticRegression.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::load(String filepath, String nodeName = String()) + // + + //javadoc: LogisticRegression::load(filepath, nodeName) + public static LogisticRegression load(String filepath, String nodeName) + { + + LogisticRegression retVal = LogisticRegression.__fromPtr__(load_0(filepath, nodeName)); + + return retVal; + } + + //javadoc: LogisticRegression::load(filepath) + public static LogisticRegression load(String filepath) + { + + LogisticRegression retVal = LogisticRegression.__fromPtr__(load_1(filepath)); + + return retVal; + } + + + // + // C++: TermCriteria cv::ml::LogisticRegression::getTermCriteria() + // + + //javadoc: LogisticRegression::getTermCriteria() + public TermCriteria getTermCriteria() + { + + TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); + + return retVal; + } + + + // + // C++: double cv::ml::LogisticRegression::getLearningRate() + // + + //javadoc: LogisticRegression::getLearningRate() + public double getLearningRate() + { + + double retVal = getLearningRate_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::ml::LogisticRegression::predict(Mat samples, Mat& results = Mat(), int flags = 0) + // + + //javadoc: LogisticRegression::predict(samples, results, flags) + public float predict(Mat samples, Mat results, int flags) + { + + float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags); + + return retVal; + } + + //javadoc: LogisticRegression::predict(samples, results) + public float predict(Mat samples, Mat results) + { + + float retVal = predict_1(nativeObj, samples.nativeObj, results.nativeObj); + + return retVal; + } + + //javadoc: LogisticRegression::predict(samples) + public float predict(Mat samples) + { + + float retVal = predict_2(nativeObj, samples.nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::LogisticRegression::getIterations() + // + + //javadoc: LogisticRegression::getIterations() + public int getIterations() + { + + int retVal = getIterations_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::LogisticRegression::getMiniBatchSize() + // + + //javadoc: LogisticRegression::getMiniBatchSize() + public int getMiniBatchSize() + { + + int retVal = getMiniBatchSize_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::LogisticRegression::getRegularization() + // + + //javadoc: LogisticRegression::getRegularization() + public int getRegularization() + { + + int retVal = getRegularization_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::LogisticRegression::getTrainMethod() + // + + //javadoc: LogisticRegression::getTrainMethod() + public int getTrainMethod() + { + + int retVal = getTrainMethod_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::LogisticRegression::setIterations(int val) + // + + //javadoc: LogisticRegression::setIterations(val) + public void setIterations(int val) + { + + setIterations_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::LogisticRegression::setLearningRate(double val) + // + + //javadoc: LogisticRegression::setLearningRate(val) + public void setLearningRate(double val) + { + + setLearningRate_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::LogisticRegression::setMiniBatchSize(int val) + // + + //javadoc: LogisticRegression::setMiniBatchSize(val) + public void setMiniBatchSize(int val) + { + + setMiniBatchSize_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::LogisticRegression::setRegularization(int val) + // + + //javadoc: LogisticRegression::setRegularization(val) + public void setRegularization(int val) + { + + setRegularization_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::LogisticRegression::setTermCriteria(TermCriteria val) + // + + //javadoc: LogisticRegression::setTermCriteria(val) + public void setTermCriteria(TermCriteria val) + { + + setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); + + return; + } + + + // + // C++: void cv::ml::LogisticRegression::setTrainMethod(int val) + // + + //javadoc: LogisticRegression::setTrainMethod(val) + public void setTrainMethod(int val) + { + + setTrainMethod_0(nativeObj, val); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::ml::LogisticRegression::get_learnt_thetas() + private static native long get_learnt_thetas_0(long nativeObj); + + // C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::create() + private static native long create_0(); + + // C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::load(String filepath, String nodeName = String()) + private static native long load_0(String filepath, String nodeName); + private static native long load_1(String filepath); + + // C++: TermCriteria cv::ml::LogisticRegression::getTermCriteria() + private static native double[] getTermCriteria_0(long nativeObj); + + // C++: double cv::ml::LogisticRegression::getLearningRate() + private static native double getLearningRate_0(long nativeObj); + + // C++: float cv::ml::LogisticRegression::predict(Mat samples, Mat& results = Mat(), int flags = 0) + private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); + private static native float predict_1(long nativeObj, long samples_nativeObj, long results_nativeObj); + private static native float predict_2(long nativeObj, long samples_nativeObj); + + // C++: int cv::ml::LogisticRegression::getIterations() + private static native int getIterations_0(long nativeObj); + + // C++: int cv::ml::LogisticRegression::getMiniBatchSize() + private static native int getMiniBatchSize_0(long nativeObj); + + // C++: int cv::ml::LogisticRegression::getRegularization() + private static native int getRegularization_0(long nativeObj); + + // C++: int cv::ml::LogisticRegression::getTrainMethod() + private static native int getTrainMethod_0(long nativeObj); + + // C++: void cv::ml::LogisticRegression::setIterations(int val) + private static native void setIterations_0(long nativeObj, int val); + + // C++: void cv::ml::LogisticRegression::setLearningRate(double val) + private static native void setLearningRate_0(long nativeObj, double val); + + // C++: void cv::ml::LogisticRegression::setMiniBatchSize(int val) + private static native void setMiniBatchSize_0(long nativeObj, int val); + + // C++: void cv::ml::LogisticRegression::setRegularization(int val) + private static native void setRegularization_0(long nativeObj, int val); + + // C++: void cv::ml::LogisticRegression::setTermCriteria(TermCriteria val) + private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); + + // C++: void cv::ml::LogisticRegression::setTrainMethod(int val) + private static native void setTrainMethod_0(long nativeObj, int val); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/Ml.java b/openCVLibrary3/src/main/java/org/opencv/ml/Ml.java new file mode 100644 index 00000000000..4f8f3799775 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/Ml.java @@ -0,0 +1,25 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + + + +// C++: class Ml +//javadoc: Ml + +public class Ml { + + public static final int + VAR_NUMERICAL = 0, + VAR_ORDERED = 0, + VAR_CATEGORICAL = 1, + TEST_ERROR = 0, + TRAIN_ERROR = 1, + ROW_SAMPLE = 0, + COL_SAMPLE = 1; + + + + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/NormalBayesClassifier.java b/openCVLibrary3/src/main/java/org/opencv/ml/NormalBayesClassifier.java new file mode 100644 index 00000000000..b803931265b --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/NormalBayesClassifier.java @@ -0,0 +1,102 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import org.opencv.core.Mat; +import org.opencv.ml.NormalBayesClassifier; +import org.opencv.ml.StatModel; + +// C++: class NormalBayesClassifier +//javadoc: NormalBayesClassifier + +public class NormalBayesClassifier extends StatModel { + + protected NormalBayesClassifier(long addr) { super(addr); } + + // internal usage only + public static NormalBayesClassifier __fromPtr__(long addr) { return new NormalBayesClassifier(addr); } + + // + // C++: static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::create() + // + + //javadoc: NormalBayesClassifier::create() + public static NormalBayesClassifier create() + { + + NormalBayesClassifier retVal = NormalBayesClassifier.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::load(String filepath, String nodeName = String()) + // + + //javadoc: NormalBayesClassifier::load(filepath, nodeName) + public static NormalBayesClassifier load(String filepath, String nodeName) + { + + NormalBayesClassifier retVal = NormalBayesClassifier.__fromPtr__(load_0(filepath, nodeName)); + + return retVal; + } + + //javadoc: NormalBayesClassifier::load(filepath) + public static NormalBayesClassifier load(String filepath) + { + + NormalBayesClassifier retVal = NormalBayesClassifier.__fromPtr__(load_1(filepath)); + + return retVal; + } + + + // + // C++: float cv::ml::NormalBayesClassifier::predictProb(Mat inputs, Mat& outputs, Mat& outputProbs, int flags = 0) + // + + //javadoc: NormalBayesClassifier::predictProb(inputs, outputs, outputProbs, flags) + public float predictProb(Mat inputs, Mat outputs, Mat outputProbs, int flags) + { + + float retVal = predictProb_0(nativeObj, inputs.nativeObj, outputs.nativeObj, outputProbs.nativeObj, flags); + + return retVal; + } + + //javadoc: NormalBayesClassifier::predictProb(inputs, outputs, outputProbs) + public float predictProb(Mat inputs, Mat outputs, Mat outputProbs) + { + + float retVal = predictProb_1(nativeObj, inputs.nativeObj, outputs.nativeObj, outputProbs.nativeObj); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::create() + private static native long create_0(); + + // C++: static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::load(String filepath, String nodeName = String()) + private static native long load_0(String filepath, String nodeName); + private static native long load_1(String filepath); + + // C++: float cv::ml::NormalBayesClassifier::predictProb(Mat inputs, Mat& outputs, Mat& outputProbs, int flags = 0) + private static native float predictProb_0(long nativeObj, long inputs_nativeObj, long outputs_nativeObj, long outputProbs_nativeObj, int flags); + private static native float predictProb_1(long nativeObj, long inputs_nativeObj, long outputs_nativeObj, long outputProbs_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/ParamGrid.java b/openCVLibrary3/src/main/java/org/opencv/ml/ParamGrid.java new file mode 100644 index 00000000000..fa6dc1999ea --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/ParamGrid.java @@ -0,0 +1,180 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import org.opencv.ml.ParamGrid; + +// C++: class ParamGrid +//javadoc: ParamGrid + +public class ParamGrid { + + protected final long nativeObj; + protected ParamGrid(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static ParamGrid __fromPtr__(long addr) { return new ParamGrid(addr); } + + // + // C++: static Ptr_ParamGrid cv::ml::ParamGrid::create(double minVal = 0., double maxVal = 0., double logstep = 1.) + // + + //javadoc: ParamGrid::create(minVal, maxVal, logstep) + public static ParamGrid create(double minVal, double maxVal, double logstep) + { + + ParamGrid retVal = ParamGrid.__fromPtr__(create_0(minVal, maxVal, logstep)); + + return retVal; + } + + //javadoc: ParamGrid::create(minVal, maxVal) + public static ParamGrid create(double minVal, double maxVal) + { + + ParamGrid retVal = ParamGrid.__fromPtr__(create_1(minVal, maxVal)); + + return retVal; + } + + //javadoc: ParamGrid::create(minVal) + public static ParamGrid create(double minVal) + { + + ParamGrid retVal = ParamGrid.__fromPtr__(create_2(minVal)); + + return retVal; + } + + //javadoc: ParamGrid::create() + public static ParamGrid create() + { + + ParamGrid retVal = ParamGrid.__fromPtr__(create_3()); + + return retVal; + } + + + // + // C++: double ParamGrid::minVal + // + + //javadoc: ParamGrid::get_minVal() + public double get_minVal() + { + + double retVal = get_minVal_0(nativeObj); + + return retVal; + } + + + // + // C++: void ParamGrid::minVal + // + + //javadoc: ParamGrid::set_minVal(minVal) + public void set_minVal(double minVal) + { + + set_minVal_0(nativeObj, minVal); + + return; + } + + + // + // C++: double ParamGrid::maxVal + // + + //javadoc: ParamGrid::get_maxVal() + public double get_maxVal() + { + + double retVal = get_maxVal_0(nativeObj); + + return retVal; + } + + + // + // C++: void ParamGrid::maxVal + // + + //javadoc: ParamGrid::set_maxVal(maxVal) + public void set_maxVal(double maxVal) + { + + set_maxVal_0(nativeObj, maxVal); + + return; + } + + + // + // C++: double ParamGrid::logStep + // + + //javadoc: ParamGrid::get_logStep() + public double get_logStep() + { + + double retVal = get_logStep_0(nativeObj); + + return retVal; + } + + + // + // C++: void ParamGrid::logStep + // + + //javadoc: ParamGrid::set_logStep(logStep) + public void set_logStep(double logStep) + { + + set_logStep_0(nativeObj, logStep); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_ParamGrid cv::ml::ParamGrid::create(double minVal = 0., double maxVal = 0., double logstep = 1.) + private static native long create_0(double minVal, double maxVal, double logstep); + private static native long create_1(double minVal, double maxVal); + private static native long create_2(double minVal); + private static native long create_3(); + + // C++: double ParamGrid::minVal + private static native double get_minVal_0(long nativeObj); + + // C++: void ParamGrid::minVal + private static native void set_minVal_0(long nativeObj, double minVal); + + // C++: double ParamGrid::maxVal + private static native double get_maxVal_0(long nativeObj); + + // C++: void ParamGrid::maxVal + private static native void set_maxVal_0(long nativeObj, double maxVal); + + // C++: double ParamGrid::logStep + private static native double get_logStep_0(long nativeObj); + + // C++: void ParamGrid::logStep + private static native void set_logStep_0(long nativeObj, double logStep); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/RTrees.java b/openCVLibrary3/src/main/java/org/opencv/ml/RTrees.java new file mode 100644 index 00000000000..80297ed18b0 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/RTrees.java @@ -0,0 +1,212 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import org.opencv.core.Mat; +import org.opencv.core.TermCriteria; +import org.opencv.ml.DTrees; +import org.opencv.ml.RTrees; + +// C++: class RTrees +//javadoc: RTrees + +public class RTrees extends DTrees { + + protected RTrees(long addr) { super(addr); } + + // internal usage only + public static RTrees __fromPtr__(long addr) { return new RTrees(addr); } + + // + // C++: Mat cv::ml::RTrees::getVarImportance() + // + + //javadoc: RTrees::getVarImportance() + public Mat getVarImportance() + { + + Mat retVal = new Mat(getVarImportance_0(nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_RTrees cv::ml::RTrees::create() + // + + //javadoc: RTrees::create() + public static RTrees create() + { + + RTrees retVal = RTrees.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_RTrees cv::ml::RTrees::load(String filepath, String nodeName = String()) + // + + //javadoc: RTrees::load(filepath, nodeName) + public static RTrees load(String filepath, String nodeName) + { + + RTrees retVal = RTrees.__fromPtr__(load_0(filepath, nodeName)); + + return retVal; + } + + //javadoc: RTrees::load(filepath) + public static RTrees load(String filepath) + { + + RTrees retVal = RTrees.__fromPtr__(load_1(filepath)); + + return retVal; + } + + + // + // C++: TermCriteria cv::ml::RTrees::getTermCriteria() + // + + //javadoc: RTrees::getTermCriteria() + public TermCriteria getTermCriteria() + { + + TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); + + return retVal; + } + + + // + // C++: bool cv::ml::RTrees::getCalculateVarImportance() + // + + //javadoc: RTrees::getCalculateVarImportance() + public boolean getCalculateVarImportance() + { + + boolean retVal = getCalculateVarImportance_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::RTrees::getActiveVarCount() + // + + //javadoc: RTrees::getActiveVarCount() + public int getActiveVarCount() + { + + int retVal = getActiveVarCount_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::RTrees::getVotes(Mat samples, Mat& results, int flags) + // + + //javadoc: RTrees::getVotes(samples, results, flags) + public void getVotes(Mat samples, Mat results, int flags) + { + + getVotes_0(nativeObj, samples.nativeObj, results.nativeObj, flags); + + return; + } + + + // + // C++: void cv::ml::RTrees::setActiveVarCount(int val) + // + + //javadoc: RTrees::setActiveVarCount(val) + public void setActiveVarCount(int val) + { + + setActiveVarCount_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::RTrees::setCalculateVarImportance(bool val) + // + + //javadoc: RTrees::setCalculateVarImportance(val) + public void setCalculateVarImportance(boolean val) + { + + setCalculateVarImportance_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::RTrees::setTermCriteria(TermCriteria val) + // + + //javadoc: RTrees::setTermCriteria(val) + public void setTermCriteria(TermCriteria val) + { + + setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::ml::RTrees::getVarImportance() + private static native long getVarImportance_0(long nativeObj); + + // C++: static Ptr_RTrees cv::ml::RTrees::create() + private static native long create_0(); + + // C++: static Ptr_RTrees cv::ml::RTrees::load(String filepath, String nodeName = String()) + private static native long load_0(String filepath, String nodeName); + private static native long load_1(String filepath); + + // C++: TermCriteria cv::ml::RTrees::getTermCriteria() + private static native double[] getTermCriteria_0(long nativeObj); + + // C++: bool cv::ml::RTrees::getCalculateVarImportance() + private static native boolean getCalculateVarImportance_0(long nativeObj); + + // C++: int cv::ml::RTrees::getActiveVarCount() + private static native int getActiveVarCount_0(long nativeObj); + + // C++: void cv::ml::RTrees::getVotes(Mat samples, Mat& results, int flags) + private static native void getVotes_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); + + // C++: void cv::ml::RTrees::setActiveVarCount(int val) + private static native void setActiveVarCount_0(long nativeObj, int val); + + // C++: void cv::ml::RTrees::setCalculateVarImportance(bool val) + private static native void setCalculateVarImportance_0(long nativeObj, boolean val); + + // C++: void cv::ml::RTrees::setTermCriteria(TermCriteria val) + private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/SVM.java b/openCVLibrary3/src/main/java/org/opencv/ml/SVM.java new file mode 100644 index 00000000000..10e28e03e80 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/SVM.java @@ -0,0 +1,593 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import org.opencv.core.Mat; +import org.opencv.core.TermCriteria; +import org.opencv.ml.ParamGrid; +import org.opencv.ml.SVM; +import org.opencv.ml.StatModel; + +// C++: class SVM +//javadoc: SVM + +public class SVM extends StatModel { + + protected SVM(long addr) { super(addr); } + + // internal usage only + public static SVM __fromPtr__(long addr) { return new SVM(addr); } + + public static final int + C_SVC = 100, + NU_SVC = 101, + ONE_CLASS = 102, + EPS_SVR = 103, + NU_SVR = 104, + CUSTOM = -1, + LINEAR = 0, + POLY = 1, + RBF = 2, + SIGMOID = 3, + CHI2 = 4, + INTER = 5, + C = 0, + GAMMA = 1, + P = 2, + NU = 3, + COEF = 4, + DEGREE = 5; + + + // + // C++: Mat cv::ml::SVM::getClassWeights() + // + + //javadoc: SVM::getClassWeights() + public Mat getClassWeights() + { + + Mat retVal = new Mat(getClassWeights_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::SVM::getSupportVectors() + // + + //javadoc: SVM::getSupportVectors() + public Mat getSupportVectors() + { + + Mat retVal = new Mat(getSupportVectors_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::SVM::getUncompressedSupportVectors() + // + + //javadoc: SVM::getUncompressedSupportVectors() + public Mat getUncompressedSupportVectors() + { + + Mat retVal = new Mat(getUncompressedSupportVectors_0(nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_ParamGrid cv::ml::SVM::getDefaultGridPtr(int param_id) + // + + //javadoc: SVM::getDefaultGridPtr(param_id) + public static ParamGrid getDefaultGridPtr(int param_id) + { + + ParamGrid retVal = ParamGrid.__fromPtr__(getDefaultGridPtr_0(param_id)); + + return retVal; + } + + + // + // C++: static Ptr_SVM cv::ml::SVM::create() + // + + //javadoc: SVM::create() + public static SVM create() + { + + SVM retVal = SVM.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_SVM cv::ml::SVM::load(String filepath) + // + + //javadoc: SVM::load(filepath) + public static SVM load(String filepath) + { + + SVM retVal = SVM.__fromPtr__(load_0(filepath)); + + return retVal; + } + + + // + // C++: TermCriteria cv::ml::SVM::getTermCriteria() + // + + //javadoc: SVM::getTermCriteria() + public TermCriteria getTermCriteria() + { + + TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); + + return retVal; + } + + + // + // C++: bool cv::ml::SVM::trainAuto(Mat samples, int layout, Mat responses, int kFold = 10, Ptr_ParamGrid Cgrid = SVM::getDefaultGridPtr(SVM::C), Ptr_ParamGrid gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA), Ptr_ParamGrid pGrid = SVM::getDefaultGridPtr(SVM::P), Ptr_ParamGrid nuGrid = SVM::getDefaultGridPtr(SVM::NU), Ptr_ParamGrid coeffGrid = SVM::getDefaultGridPtr(SVM::COEF), Ptr_ParamGrid degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE), bool balanced = false) + // + + //javadoc: SVM::trainAuto(samples, layout, responses, kFold, Cgrid, gammaGrid, pGrid, nuGrid, coeffGrid, degreeGrid, balanced) + public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid, ParamGrid nuGrid, ParamGrid coeffGrid, ParamGrid degreeGrid, boolean balanced) + { + + boolean retVal = trainAuto_0(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr(), nuGrid.getNativeObjAddr(), coeffGrid.getNativeObjAddr(), degreeGrid.getNativeObjAddr(), balanced); + + return retVal; + } + + //javadoc: SVM::trainAuto(samples, layout, responses, kFold, Cgrid, gammaGrid, pGrid, nuGrid, coeffGrid, degreeGrid) + public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid, ParamGrid nuGrid, ParamGrid coeffGrid, ParamGrid degreeGrid) + { + + boolean retVal = trainAuto_1(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr(), nuGrid.getNativeObjAddr(), coeffGrid.getNativeObjAddr(), degreeGrid.getNativeObjAddr()); + + return retVal; + } + + //javadoc: SVM::trainAuto(samples, layout, responses, kFold, Cgrid, gammaGrid, pGrid, nuGrid, coeffGrid) + public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid, ParamGrid nuGrid, ParamGrid coeffGrid) + { + + boolean retVal = trainAuto_2(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr(), nuGrid.getNativeObjAddr(), coeffGrid.getNativeObjAddr()); + + return retVal; + } + + //javadoc: SVM::trainAuto(samples, layout, responses, kFold, Cgrid, gammaGrid, pGrid, nuGrid) + public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid, ParamGrid nuGrid) + { + + boolean retVal = trainAuto_3(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr(), nuGrid.getNativeObjAddr()); + + return retVal; + } + + //javadoc: SVM::trainAuto(samples, layout, responses, kFold, Cgrid, gammaGrid, pGrid) + public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid, ParamGrid pGrid) + { + + boolean retVal = trainAuto_4(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr(), pGrid.getNativeObjAddr()); + + return retVal; + } + + //javadoc: SVM::trainAuto(samples, layout, responses, kFold, Cgrid, gammaGrid) + public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid, ParamGrid gammaGrid) + { + + boolean retVal = trainAuto_5(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr(), gammaGrid.getNativeObjAddr()); + + return retVal; + } + + //javadoc: SVM::trainAuto(samples, layout, responses, kFold, Cgrid) + public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold, ParamGrid Cgrid) + { + + boolean retVal = trainAuto_6(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold, Cgrid.getNativeObjAddr()); + + return retVal; + } + + //javadoc: SVM::trainAuto(samples, layout, responses, kFold) + public boolean trainAuto(Mat samples, int layout, Mat responses, int kFold) + { + + boolean retVal = trainAuto_7(nativeObj, samples.nativeObj, layout, responses.nativeObj, kFold); + + return retVal; + } + + //javadoc: SVM::trainAuto(samples, layout, responses) + public boolean trainAuto(Mat samples, int layout, Mat responses) + { + + boolean retVal = trainAuto_8(nativeObj, samples.nativeObj, layout, responses.nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::SVM::getC() + // + + //javadoc: SVM::getC() + public double getC() + { + + double retVal = getC_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::SVM::getCoef0() + // + + //javadoc: SVM::getCoef0() + public double getCoef0() + { + + double retVal = getCoef0_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::SVM::getDecisionFunction(int i, Mat& alpha, Mat& svidx) + // + + //javadoc: SVM::getDecisionFunction(i, alpha, svidx) + public double getDecisionFunction(int i, Mat alpha, Mat svidx) + { + + double retVal = getDecisionFunction_0(nativeObj, i, alpha.nativeObj, svidx.nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::SVM::getDegree() + // + + //javadoc: SVM::getDegree() + public double getDegree() + { + + double retVal = getDegree_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::SVM::getGamma() + // + + //javadoc: SVM::getGamma() + public double getGamma() + { + + double retVal = getGamma_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::SVM::getNu() + // + + //javadoc: SVM::getNu() + public double getNu() + { + + double retVal = getNu_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::ml::SVM::getP() + // + + //javadoc: SVM::getP() + public double getP() + { + + double retVal = getP_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::SVM::getKernelType() + // + + //javadoc: SVM::getKernelType() + public int getKernelType() + { + + int retVal = getKernelType_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::SVM::getType() + // + + //javadoc: SVM::getType() + public int getType() + { + + int retVal = getType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::SVM::setC(double val) + // + + //javadoc: SVM::setC(val) + public void setC(double val) + { + + setC_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::SVM::setClassWeights(Mat val) + // + + //javadoc: SVM::setClassWeights(val) + public void setClassWeights(Mat val) + { + + setClassWeights_0(nativeObj, val.nativeObj); + + return; + } + + + // + // C++: void cv::ml::SVM::setCoef0(double val) + // + + //javadoc: SVM::setCoef0(val) + public void setCoef0(double val) + { + + setCoef0_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::SVM::setDegree(double val) + // + + //javadoc: SVM::setDegree(val) + public void setDegree(double val) + { + + setDegree_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::SVM::setGamma(double val) + // + + //javadoc: SVM::setGamma(val) + public void setGamma(double val) + { + + setGamma_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::SVM::setKernel(int kernelType) + // + + //javadoc: SVM::setKernel(kernelType) + public void setKernel(int kernelType) + { + + setKernel_0(nativeObj, kernelType); + + return; + } + + + // + // C++: void cv::ml::SVM::setNu(double val) + // + + //javadoc: SVM::setNu(val) + public void setNu(double val) + { + + setNu_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::SVM::setP(double val) + // + + //javadoc: SVM::setP(val) + public void setP(double val) + { + + setP_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::ml::SVM::setTermCriteria(TermCriteria val) + // + + //javadoc: SVM::setTermCriteria(val) + public void setTermCriteria(TermCriteria val) + { + + setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); + + return; + } + + + // + // C++: void cv::ml::SVM::setType(int val) + // + + //javadoc: SVM::setType(val) + public void setType(int val) + { + + setType_0(nativeObj, val); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::ml::SVM::getClassWeights() + private static native long getClassWeights_0(long nativeObj); + + // C++: Mat cv::ml::SVM::getSupportVectors() + private static native long getSupportVectors_0(long nativeObj); + + // C++: Mat cv::ml::SVM::getUncompressedSupportVectors() + private static native long getUncompressedSupportVectors_0(long nativeObj); + + // C++: static Ptr_ParamGrid cv::ml::SVM::getDefaultGridPtr(int param_id) + private static native long getDefaultGridPtr_0(int param_id); + + // C++: static Ptr_SVM cv::ml::SVM::create() + private static native long create_0(); + + // C++: static Ptr_SVM cv::ml::SVM::load(String filepath) + private static native long load_0(String filepath); + + // C++: TermCriteria cv::ml::SVM::getTermCriteria() + private static native double[] getTermCriteria_0(long nativeObj); + + // C++: bool cv::ml::SVM::trainAuto(Mat samples, int layout, Mat responses, int kFold = 10, Ptr_ParamGrid Cgrid = SVM::getDefaultGridPtr(SVM::C), Ptr_ParamGrid gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA), Ptr_ParamGrid pGrid = SVM::getDefaultGridPtr(SVM::P), Ptr_ParamGrid nuGrid = SVM::getDefaultGridPtr(SVM::NU), Ptr_ParamGrid coeffGrid = SVM::getDefaultGridPtr(SVM::COEF), Ptr_ParamGrid degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE), bool balanced = false) + private static native boolean trainAuto_0(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj, long nuGrid_nativeObj, long coeffGrid_nativeObj, long degreeGrid_nativeObj, boolean balanced); + private static native boolean trainAuto_1(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj, long nuGrid_nativeObj, long coeffGrid_nativeObj, long degreeGrid_nativeObj); + private static native boolean trainAuto_2(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj, long nuGrid_nativeObj, long coeffGrid_nativeObj); + private static native boolean trainAuto_3(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj, long nuGrid_nativeObj); + private static native boolean trainAuto_4(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj, long pGrid_nativeObj); + private static native boolean trainAuto_5(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj, long gammaGrid_nativeObj); + private static native boolean trainAuto_6(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold, long Cgrid_nativeObj); + private static native boolean trainAuto_7(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj, int kFold); + private static native boolean trainAuto_8(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj); + + // C++: double cv::ml::SVM::getC() + private static native double getC_0(long nativeObj); + + // C++: double cv::ml::SVM::getCoef0() + private static native double getCoef0_0(long nativeObj); + + // C++: double cv::ml::SVM::getDecisionFunction(int i, Mat& alpha, Mat& svidx) + private static native double getDecisionFunction_0(long nativeObj, int i, long alpha_nativeObj, long svidx_nativeObj); + + // C++: double cv::ml::SVM::getDegree() + private static native double getDegree_0(long nativeObj); + + // C++: double cv::ml::SVM::getGamma() + private static native double getGamma_0(long nativeObj); + + // C++: double cv::ml::SVM::getNu() + private static native double getNu_0(long nativeObj); + + // C++: double cv::ml::SVM::getP() + private static native double getP_0(long nativeObj); + + // C++: int cv::ml::SVM::getKernelType() + private static native int getKernelType_0(long nativeObj); + + // C++: int cv::ml::SVM::getType() + private static native int getType_0(long nativeObj); + + // C++: void cv::ml::SVM::setC(double val) + private static native void setC_0(long nativeObj, double val); + + // C++: void cv::ml::SVM::setClassWeights(Mat val) + private static native void setClassWeights_0(long nativeObj, long val_nativeObj); + + // C++: void cv::ml::SVM::setCoef0(double val) + private static native void setCoef0_0(long nativeObj, double val); + + // C++: void cv::ml::SVM::setDegree(double val) + private static native void setDegree_0(long nativeObj, double val); + + // C++: void cv::ml::SVM::setGamma(double val) + private static native void setGamma_0(long nativeObj, double val); + + // C++: void cv::ml::SVM::setKernel(int kernelType) + private static native void setKernel_0(long nativeObj, int kernelType); + + // C++: void cv::ml::SVM::setNu(double val) + private static native void setNu_0(long nativeObj, double val); + + // C++: void cv::ml::SVM::setP(double val) + private static native void setP_0(long nativeObj, double val); + + // C++: void cv::ml::SVM::setTermCriteria(TermCriteria val) + private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); + + // C++: void cv::ml::SVM::setType(int val) + private static native void setType_0(long nativeObj, int val); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/SVMSGD.java b/openCVLibrary3/src/main/java/org/opencv/ml/SVMSGD.java new file mode 100644 index 00000000000..35cc62da8f4 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/SVMSGD.java @@ -0,0 +1,358 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import org.opencv.core.Mat; +import org.opencv.core.TermCriteria; +import org.opencv.ml.SVMSGD; +import org.opencv.ml.StatModel; + +// C++: class SVMSGD +//javadoc: SVMSGD + +public class SVMSGD extends StatModel { + + protected SVMSGD(long addr) { super(addr); } + + // internal usage only + public static SVMSGD __fromPtr__(long addr) { return new SVMSGD(addr); } + + public static final int + SGD = 0, + ASGD = 1, + SOFT_MARGIN = 0, + HARD_MARGIN = 1; + + + // + // C++: Mat cv::ml::SVMSGD::getWeights() + // + + //javadoc: SVMSGD::getWeights() + public Mat getWeights() + { + + Mat retVal = new Mat(getWeights_0(nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_SVMSGD cv::ml::SVMSGD::create() + // + + //javadoc: SVMSGD::create() + public static SVMSGD create() + { + + SVMSGD retVal = SVMSGD.__fromPtr__(create_0()); + + return retVal; + } + + + // + // C++: static Ptr_SVMSGD cv::ml::SVMSGD::load(String filepath, String nodeName = String()) + // + + //javadoc: SVMSGD::load(filepath, nodeName) + public static SVMSGD load(String filepath, String nodeName) + { + + SVMSGD retVal = SVMSGD.__fromPtr__(load_0(filepath, nodeName)); + + return retVal; + } + + //javadoc: SVMSGD::load(filepath) + public static SVMSGD load(String filepath) + { + + SVMSGD retVal = SVMSGD.__fromPtr__(load_1(filepath)); + + return retVal; + } + + + // + // C++: TermCriteria cv::ml::SVMSGD::getTermCriteria() + // + + //javadoc: SVMSGD::getTermCriteria() + public TermCriteria getTermCriteria() + { + + TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); + + return retVal; + } + + + // + // C++: float cv::ml::SVMSGD::getInitialStepSize() + // + + //javadoc: SVMSGD::getInitialStepSize() + public float getInitialStepSize() + { + + float retVal = getInitialStepSize_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::ml::SVMSGD::getMarginRegularization() + // + + //javadoc: SVMSGD::getMarginRegularization() + public float getMarginRegularization() + { + + float retVal = getMarginRegularization_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::ml::SVMSGD::getShift() + // + + //javadoc: SVMSGD::getShift() + public float getShift() + { + + float retVal = getShift_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::ml::SVMSGD::getStepDecreasingPower() + // + + //javadoc: SVMSGD::getStepDecreasingPower() + public float getStepDecreasingPower() + { + + float retVal = getStepDecreasingPower_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::SVMSGD::getMarginType() + // + + //javadoc: SVMSGD::getMarginType() + public int getMarginType() + { + + int retVal = getMarginType_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::SVMSGD::getSvmsgdType() + // + + //javadoc: SVMSGD::getSvmsgdType() + public int getSvmsgdType() + { + + int retVal = getSvmsgdType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::SVMSGD::setInitialStepSize(float InitialStepSize) + // + + //javadoc: SVMSGD::setInitialStepSize(InitialStepSize) + public void setInitialStepSize(float InitialStepSize) + { + + setInitialStepSize_0(nativeObj, InitialStepSize); + + return; + } + + + // + // C++: void cv::ml::SVMSGD::setMarginRegularization(float marginRegularization) + // + + //javadoc: SVMSGD::setMarginRegularization(marginRegularization) + public void setMarginRegularization(float marginRegularization) + { + + setMarginRegularization_0(nativeObj, marginRegularization); + + return; + } + + + // + // C++: void cv::ml::SVMSGD::setMarginType(int marginType) + // + + //javadoc: SVMSGD::setMarginType(marginType) + public void setMarginType(int marginType) + { + + setMarginType_0(nativeObj, marginType); + + return; + } + + + // + // C++: void cv::ml::SVMSGD::setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) + // + + //javadoc: SVMSGD::setOptimalParameters(svmsgdType, marginType) + public void setOptimalParameters(int svmsgdType, int marginType) + { + + setOptimalParameters_0(nativeObj, svmsgdType, marginType); + + return; + } + + //javadoc: SVMSGD::setOptimalParameters(svmsgdType) + public void setOptimalParameters(int svmsgdType) + { + + setOptimalParameters_1(nativeObj, svmsgdType); + + return; + } + + //javadoc: SVMSGD::setOptimalParameters() + public void setOptimalParameters() + { + + setOptimalParameters_2(nativeObj); + + return; + } + + + // + // C++: void cv::ml::SVMSGD::setStepDecreasingPower(float stepDecreasingPower) + // + + //javadoc: SVMSGD::setStepDecreasingPower(stepDecreasingPower) + public void setStepDecreasingPower(float stepDecreasingPower) + { + + setStepDecreasingPower_0(nativeObj, stepDecreasingPower); + + return; + } + + + // + // C++: void cv::ml::SVMSGD::setSvmsgdType(int svmsgdType) + // + + //javadoc: SVMSGD::setSvmsgdType(svmsgdType) + public void setSvmsgdType(int svmsgdType) + { + + setSvmsgdType_0(nativeObj, svmsgdType); + + return; + } + + + // + // C++: void cv::ml::SVMSGD::setTermCriteria(TermCriteria val) + // + + //javadoc: SVMSGD::setTermCriteria(val) + public void setTermCriteria(TermCriteria val) + { + + setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::ml::SVMSGD::getWeights() + private static native long getWeights_0(long nativeObj); + + // C++: static Ptr_SVMSGD cv::ml::SVMSGD::create() + private static native long create_0(); + + // C++: static Ptr_SVMSGD cv::ml::SVMSGD::load(String filepath, String nodeName = String()) + private static native long load_0(String filepath, String nodeName); + private static native long load_1(String filepath); + + // C++: TermCriteria cv::ml::SVMSGD::getTermCriteria() + private static native double[] getTermCriteria_0(long nativeObj); + + // C++: float cv::ml::SVMSGD::getInitialStepSize() + private static native float getInitialStepSize_0(long nativeObj); + + // C++: float cv::ml::SVMSGD::getMarginRegularization() + private static native float getMarginRegularization_0(long nativeObj); + + // C++: float cv::ml::SVMSGD::getShift() + private static native float getShift_0(long nativeObj); + + // C++: float cv::ml::SVMSGD::getStepDecreasingPower() + private static native float getStepDecreasingPower_0(long nativeObj); + + // C++: int cv::ml::SVMSGD::getMarginType() + private static native int getMarginType_0(long nativeObj); + + // C++: int cv::ml::SVMSGD::getSvmsgdType() + private static native int getSvmsgdType_0(long nativeObj); + + // C++: void cv::ml::SVMSGD::setInitialStepSize(float InitialStepSize) + private static native void setInitialStepSize_0(long nativeObj, float InitialStepSize); + + // C++: void cv::ml::SVMSGD::setMarginRegularization(float marginRegularization) + private static native void setMarginRegularization_0(long nativeObj, float marginRegularization); + + // C++: void cv::ml::SVMSGD::setMarginType(int marginType) + private static native void setMarginType_0(long nativeObj, int marginType); + + // C++: void cv::ml::SVMSGD::setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) + private static native void setOptimalParameters_0(long nativeObj, int svmsgdType, int marginType); + private static native void setOptimalParameters_1(long nativeObj, int svmsgdType); + private static native void setOptimalParameters_2(long nativeObj); + + // C++: void cv::ml::SVMSGD::setStepDecreasingPower(float stepDecreasingPower) + private static native void setStepDecreasingPower_0(long nativeObj, float stepDecreasingPower); + + // C++: void cv::ml::SVMSGD::setSvmsgdType(int svmsgdType) + private static native void setSvmsgdType_0(long nativeObj, int svmsgdType); + + // C++: void cv::ml::SVMSGD::setTermCriteria(TermCriteria val) + private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/StatModel.java b/openCVLibrary3/src/main/java/org/opencv/ml/StatModel.java new file mode 100644 index 00000000000..2c207c0a262 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/StatModel.java @@ -0,0 +1,203 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.ml.TrainData; + +// C++: class StatModel +//javadoc: StatModel + +public class StatModel extends Algorithm { + + protected StatModel(long addr) { super(addr); } + + // internal usage only + public static StatModel __fromPtr__(long addr) { return new StatModel(addr); } + + public static final int + UPDATE_MODEL = 1, + RAW_OUTPUT = 1, + COMPRESSED_INPUT = 2, + PREPROCESSED_INPUT = 4; + + + // + // C++: bool cv::ml::StatModel::empty() + // + + //javadoc: StatModel::empty() + public boolean empty() + { + + boolean retVal = empty_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::StatModel::isClassifier() + // + + //javadoc: StatModel::isClassifier() + public boolean isClassifier() + { + + boolean retVal = isClassifier_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::StatModel::isTrained() + // + + //javadoc: StatModel::isTrained() + public boolean isTrained() + { + + boolean retVal = isTrained_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::StatModel::train(Mat samples, int layout, Mat responses) + // + + //javadoc: StatModel::train(samples, layout, responses) + public boolean train(Mat samples, int layout, Mat responses) + { + + boolean retVal = train_0(nativeObj, samples.nativeObj, layout, responses.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::ml::StatModel::train(Ptr_TrainData trainData, int flags = 0) + // + + //javadoc: StatModel::train(trainData, flags) + public boolean train(TrainData trainData, int flags) + { + + boolean retVal = train_1(nativeObj, trainData.getNativeObjAddr(), flags); + + return retVal; + } + + //javadoc: StatModel::train(trainData) + public boolean train(TrainData trainData) + { + + boolean retVal = train_2(nativeObj, trainData.getNativeObjAddr()); + + return retVal; + } + + + // + // C++: float cv::ml::StatModel::calcError(Ptr_TrainData data, bool test, Mat& resp) + // + + //javadoc: StatModel::calcError(data, test, resp) + public float calcError(TrainData data, boolean test, Mat resp) + { + + float retVal = calcError_0(nativeObj, data.getNativeObjAddr(), test, resp.nativeObj); + + return retVal; + } + + + // + // C++: float cv::ml::StatModel::predict(Mat samples, Mat& results = Mat(), int flags = 0) + // + + //javadoc: StatModel::predict(samples, results, flags) + public float predict(Mat samples, Mat results, int flags) + { + + float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags); + + return retVal; + } + + //javadoc: StatModel::predict(samples, results) + public float predict(Mat samples, Mat results) + { + + float retVal = predict_1(nativeObj, samples.nativeObj, results.nativeObj); + + return retVal; + } + + //javadoc: StatModel::predict(samples) + public float predict(Mat samples) + { + + float retVal = predict_2(nativeObj, samples.nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::StatModel::getVarCount() + // + + //javadoc: StatModel::getVarCount() + public int getVarCount() + { + + int retVal = getVarCount_0(nativeObj); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: bool cv::ml::StatModel::empty() + private static native boolean empty_0(long nativeObj); + + // C++: bool cv::ml::StatModel::isClassifier() + private static native boolean isClassifier_0(long nativeObj); + + // C++: bool cv::ml::StatModel::isTrained() + private static native boolean isTrained_0(long nativeObj); + + // C++: bool cv::ml::StatModel::train(Mat samples, int layout, Mat responses) + private static native boolean train_0(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj); + + // C++: bool cv::ml::StatModel::train(Ptr_TrainData trainData, int flags = 0) + private static native boolean train_1(long nativeObj, long trainData_nativeObj, int flags); + private static native boolean train_2(long nativeObj, long trainData_nativeObj); + + // C++: float cv::ml::StatModel::calcError(Ptr_TrainData data, bool test, Mat& resp) + private static native float calcError_0(long nativeObj, long data_nativeObj, boolean test, long resp_nativeObj); + + // C++: float cv::ml::StatModel::predict(Mat samples, Mat& results = Mat(), int flags = 0) + private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); + private static native float predict_1(long nativeObj, long samples_nativeObj, long results_nativeObj); + private static native float predict_2(long nativeObj, long samples_nativeObj); + + // C++: int cv::ml::StatModel::getVarCount() + private static native int getVarCount_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/ml/TrainData.java b/openCVLibrary3/src/main/java/org/opencv/ml/TrainData.java new file mode 100644 index 00000000000..174a496d349 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/ml/TrainData.java @@ -0,0 +1,789 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.ml; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.ml.TrainData; +import org.opencv.utils.Converters; + +// C++: class TrainData +//javadoc: TrainData + +public class TrainData { + + protected final long nativeObj; + protected TrainData(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static TrainData __fromPtr__(long addr) { return new TrainData(addr); } + + // + // C++: Mat cv::ml::TrainData::getCatMap() + // + + //javadoc: TrainData::getCatMap() + public Mat getCatMap() + { + + Mat retVal = new Mat(getCatMap_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getCatOfs() + // + + //javadoc: TrainData::getCatOfs() + public Mat getCatOfs() + { + + Mat retVal = new Mat(getCatOfs_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getClassLabels() + // + + //javadoc: TrainData::getClassLabels() + public Mat getClassLabels() + { + + Mat retVal = new Mat(getClassLabels_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getDefaultSubstValues() + // + + //javadoc: TrainData::getDefaultSubstValues() + public Mat getDefaultSubstValues() + { + + Mat retVal = new Mat(getDefaultSubstValues_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getMissing() + // + + //javadoc: TrainData::getMissing() + public Mat getMissing() + { + + Mat retVal = new Mat(getMissing_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getNormCatResponses() + // + + //javadoc: TrainData::getNormCatResponses() + public Mat getNormCatResponses() + { + + Mat retVal = new Mat(getNormCatResponses_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getResponses() + // + + //javadoc: TrainData::getResponses() + public Mat getResponses() + { + + Mat retVal = new Mat(getResponses_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getSampleWeights() + // + + //javadoc: TrainData::getSampleWeights() + public Mat getSampleWeights() + { + + Mat retVal = new Mat(getSampleWeights_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getSamples() + // + + //javadoc: TrainData::getSamples() + public Mat getSamples() + { + + Mat retVal = new Mat(getSamples_0(nativeObj)); + + return retVal; + } + + + // + // C++: static Mat cv::ml::TrainData::getSubMatrix(Mat matrix, Mat idx, int layout) + // + + //javadoc: TrainData::getSubMatrix(matrix, idx, layout) + public static Mat getSubMatrix(Mat matrix, Mat idx, int layout) + { + + Mat retVal = new Mat(getSubMatrix_0(matrix.nativeObj, idx.nativeObj, layout)); + + return retVal; + } + + + // + // C++: static Mat cv::ml::TrainData::getSubVector(Mat vec, Mat idx) + // + + //javadoc: TrainData::getSubVector(vec, idx) + public static Mat getSubVector(Mat vec, Mat idx) + { + + Mat retVal = new Mat(getSubVector_0(vec.nativeObj, idx.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTestNormCatResponses() + // + + //javadoc: TrainData::getTestNormCatResponses() + public Mat getTestNormCatResponses() + { + + Mat retVal = new Mat(getTestNormCatResponses_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTestResponses() + // + + //javadoc: TrainData::getTestResponses() + public Mat getTestResponses() + { + + Mat retVal = new Mat(getTestResponses_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTestSampleIdx() + // + + //javadoc: TrainData::getTestSampleIdx() + public Mat getTestSampleIdx() + { + + Mat retVal = new Mat(getTestSampleIdx_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTestSampleWeights() + // + + //javadoc: TrainData::getTestSampleWeights() + public Mat getTestSampleWeights() + { + + Mat retVal = new Mat(getTestSampleWeights_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTestSamples() + // + + //javadoc: TrainData::getTestSamples() + public Mat getTestSamples() + { + + Mat retVal = new Mat(getTestSamples_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTrainNormCatResponses() + // + + //javadoc: TrainData::getTrainNormCatResponses() + public Mat getTrainNormCatResponses() + { + + Mat retVal = new Mat(getTrainNormCatResponses_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTrainResponses() + // + + //javadoc: TrainData::getTrainResponses() + public Mat getTrainResponses() + { + + Mat retVal = new Mat(getTrainResponses_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTrainSampleIdx() + // + + //javadoc: TrainData::getTrainSampleIdx() + public Mat getTrainSampleIdx() + { + + Mat retVal = new Mat(getTrainSampleIdx_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTrainSampleWeights() + // + + //javadoc: TrainData::getTrainSampleWeights() + public Mat getTrainSampleWeights() + { + + Mat retVal = new Mat(getTrainSampleWeights_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getTrainSamples(int layout = ROW_SAMPLE, bool compressSamples = true, bool compressVars = true) + // + + //javadoc: TrainData::getTrainSamples(layout, compressSamples, compressVars) + public Mat getTrainSamples(int layout, boolean compressSamples, boolean compressVars) + { + + Mat retVal = new Mat(getTrainSamples_0(nativeObj, layout, compressSamples, compressVars)); + + return retVal; + } + + //javadoc: TrainData::getTrainSamples(layout, compressSamples) + public Mat getTrainSamples(int layout, boolean compressSamples) + { + + Mat retVal = new Mat(getTrainSamples_1(nativeObj, layout, compressSamples)); + + return retVal; + } + + //javadoc: TrainData::getTrainSamples(layout) + public Mat getTrainSamples(int layout) + { + + Mat retVal = new Mat(getTrainSamples_2(nativeObj, layout)); + + return retVal; + } + + //javadoc: TrainData::getTrainSamples() + public Mat getTrainSamples() + { + + Mat retVal = new Mat(getTrainSamples_3(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getVarIdx() + // + + //javadoc: TrainData::getVarIdx() + public Mat getVarIdx() + { + + Mat retVal = new Mat(getVarIdx_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getVarSymbolFlags() + // + + //javadoc: TrainData::getVarSymbolFlags() + public Mat getVarSymbolFlags() + { + + Mat retVal = new Mat(getVarSymbolFlags_0(nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::ml::TrainData::getVarType() + // + + //javadoc: TrainData::getVarType() + public Mat getVarType() + { + + Mat retVal = new Mat(getVarType_0(nativeObj)); + + return retVal; + } + + + // + // C++: static Ptr_TrainData cv::ml::TrainData::create(Mat samples, int layout, Mat responses, Mat varIdx = Mat(), Mat sampleIdx = Mat(), Mat sampleWeights = Mat(), Mat varType = Mat()) + // + + //javadoc: TrainData::create(samples, layout, responses, varIdx, sampleIdx, sampleWeights, varType) + public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx, Mat sampleWeights, Mat varType) + { + + TrainData retVal = TrainData.__fromPtr__(create_0(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, sampleWeights.nativeObj, varType.nativeObj)); + + return retVal; + } + + //javadoc: TrainData::create(samples, layout, responses, varIdx, sampleIdx, sampleWeights) + public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx, Mat sampleWeights) + { + + TrainData retVal = TrainData.__fromPtr__(create_1(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, sampleWeights.nativeObj)); + + return retVal; + } + + //javadoc: TrainData::create(samples, layout, responses, varIdx, sampleIdx) + public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx) + { + + TrainData retVal = TrainData.__fromPtr__(create_2(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj)); + + return retVal; + } + + //javadoc: TrainData::create(samples, layout, responses, varIdx) + public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx) + { + + TrainData retVal = TrainData.__fromPtr__(create_3(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj)); + + return retVal; + } + + //javadoc: TrainData::create(samples, layout, responses) + public static TrainData create(Mat samples, int layout, Mat responses) + { + + TrainData retVal = TrainData.__fromPtr__(create_4(samples.nativeObj, layout, responses.nativeObj)); + + return retVal; + } + + + // + // C++: int cv::ml::TrainData::getCatCount(int vi) + // + + //javadoc: TrainData::getCatCount(vi) + public int getCatCount(int vi) + { + + int retVal = getCatCount_0(nativeObj, vi); + + return retVal; + } + + + // + // C++: int cv::ml::TrainData::getLayout() + // + + //javadoc: TrainData::getLayout() + public int getLayout() + { + + int retVal = getLayout_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::TrainData::getNAllVars() + // + + //javadoc: TrainData::getNAllVars() + public int getNAllVars() + { + + int retVal = getNAllVars_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::TrainData::getNSamples() + // + + //javadoc: TrainData::getNSamples() + public int getNSamples() + { + + int retVal = getNSamples_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::TrainData::getNTestSamples() + // + + //javadoc: TrainData::getNTestSamples() + public int getNTestSamples() + { + + int retVal = getNTestSamples_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::TrainData::getNTrainSamples() + // + + //javadoc: TrainData::getNTrainSamples() + public int getNTrainSamples() + { + + int retVal = getNTrainSamples_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::TrainData::getNVars() + // + + //javadoc: TrainData::getNVars() + public int getNVars() + { + + int retVal = getNVars_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::ml::TrainData::getResponseType() + // + + //javadoc: TrainData::getResponseType() + public int getResponseType() + { + + int retVal = getResponseType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::ml::TrainData::getNames(vector_String names) + // + + //javadoc: TrainData::getNames(names) + public void getNames(List names) + { + + getNames_0(nativeObj, names); + + return; + } + + + // + // C++: void cv::ml::TrainData::getSample(Mat varIdx, int sidx, float* buf) + // + + //javadoc: TrainData::getSample(varIdx, sidx, buf) + public void getSample(Mat varIdx, int sidx, float buf) + { + + getSample_0(nativeObj, varIdx.nativeObj, sidx, buf); + + return; + } + + + // + // C++: void cv::ml::TrainData::getValues(int vi, Mat sidx, float* values) + // + + //javadoc: TrainData::getValues(vi, sidx, values) + public void getValues(int vi, Mat sidx, float values) + { + + getValues_0(nativeObj, vi, sidx.nativeObj, values); + + return; + } + + + // + // C++: void cv::ml::TrainData::setTrainTestSplit(int count, bool shuffle = true) + // + + //javadoc: TrainData::setTrainTestSplit(count, shuffle) + public void setTrainTestSplit(int count, boolean shuffle) + { + + setTrainTestSplit_0(nativeObj, count, shuffle); + + return; + } + + //javadoc: TrainData::setTrainTestSplit(count) + public void setTrainTestSplit(int count) + { + + setTrainTestSplit_1(nativeObj, count); + + return; + } + + + // + // C++: void cv::ml::TrainData::setTrainTestSplitRatio(double ratio, bool shuffle = true) + // + + //javadoc: TrainData::setTrainTestSplitRatio(ratio, shuffle) + public void setTrainTestSplitRatio(double ratio, boolean shuffle) + { + + setTrainTestSplitRatio_0(nativeObj, ratio, shuffle); + + return; + } + + //javadoc: TrainData::setTrainTestSplitRatio(ratio) + public void setTrainTestSplitRatio(double ratio) + { + + setTrainTestSplitRatio_1(nativeObj, ratio); + + return; + } + + + // + // C++: void cv::ml::TrainData::shuffleTrainTest() + // + + //javadoc: TrainData::shuffleTrainTest() + public void shuffleTrainTest() + { + + shuffleTrainTest_0(nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::ml::TrainData::getCatMap() + private static native long getCatMap_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getCatOfs() + private static native long getCatOfs_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getClassLabels() + private static native long getClassLabels_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getDefaultSubstValues() + private static native long getDefaultSubstValues_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getMissing() + private static native long getMissing_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getNormCatResponses() + private static native long getNormCatResponses_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getResponses() + private static native long getResponses_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getSampleWeights() + private static native long getSampleWeights_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getSamples() + private static native long getSamples_0(long nativeObj); + + // C++: static Mat cv::ml::TrainData::getSubMatrix(Mat matrix, Mat idx, int layout) + private static native long getSubMatrix_0(long matrix_nativeObj, long idx_nativeObj, int layout); + + // C++: static Mat cv::ml::TrainData::getSubVector(Mat vec, Mat idx) + private static native long getSubVector_0(long vec_nativeObj, long idx_nativeObj); + + // C++: Mat cv::ml::TrainData::getTestNormCatResponses() + private static native long getTestNormCatResponses_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTestResponses() + private static native long getTestResponses_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTestSampleIdx() + private static native long getTestSampleIdx_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTestSampleWeights() + private static native long getTestSampleWeights_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTestSamples() + private static native long getTestSamples_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTrainNormCatResponses() + private static native long getTrainNormCatResponses_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTrainResponses() + private static native long getTrainResponses_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTrainSampleIdx() + private static native long getTrainSampleIdx_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTrainSampleWeights() + private static native long getTrainSampleWeights_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getTrainSamples(int layout = ROW_SAMPLE, bool compressSamples = true, bool compressVars = true) + private static native long getTrainSamples_0(long nativeObj, int layout, boolean compressSamples, boolean compressVars); + private static native long getTrainSamples_1(long nativeObj, int layout, boolean compressSamples); + private static native long getTrainSamples_2(long nativeObj, int layout); + private static native long getTrainSamples_3(long nativeObj); + + // C++: Mat cv::ml::TrainData::getVarIdx() + private static native long getVarIdx_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getVarSymbolFlags() + private static native long getVarSymbolFlags_0(long nativeObj); + + // C++: Mat cv::ml::TrainData::getVarType() + private static native long getVarType_0(long nativeObj); + + // C++: static Ptr_TrainData cv::ml::TrainData::create(Mat samples, int layout, Mat responses, Mat varIdx = Mat(), Mat sampleIdx = Mat(), Mat sampleWeights = Mat(), Mat varType = Mat()) + private static native long create_0(long samples_nativeObj, int layout, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long sampleWeights_nativeObj, long varType_nativeObj); + private static native long create_1(long samples_nativeObj, int layout, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long sampleWeights_nativeObj); + private static native long create_2(long samples_nativeObj, int layout, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj); + private static native long create_3(long samples_nativeObj, int layout, long responses_nativeObj, long varIdx_nativeObj); + private static native long create_4(long samples_nativeObj, int layout, long responses_nativeObj); + + // C++: int cv::ml::TrainData::getCatCount(int vi) + private static native int getCatCount_0(long nativeObj, int vi); + + // C++: int cv::ml::TrainData::getLayout() + private static native int getLayout_0(long nativeObj); + + // C++: int cv::ml::TrainData::getNAllVars() + private static native int getNAllVars_0(long nativeObj); + + // C++: int cv::ml::TrainData::getNSamples() + private static native int getNSamples_0(long nativeObj); + + // C++: int cv::ml::TrainData::getNTestSamples() + private static native int getNTestSamples_0(long nativeObj); + + // C++: int cv::ml::TrainData::getNTrainSamples() + private static native int getNTrainSamples_0(long nativeObj); + + // C++: int cv::ml::TrainData::getNVars() + private static native int getNVars_0(long nativeObj); + + // C++: int cv::ml::TrainData::getResponseType() + private static native int getResponseType_0(long nativeObj); + + // C++: void cv::ml::TrainData::getNames(vector_String names) + private static native void getNames_0(long nativeObj, List names); + + // C++: void cv::ml::TrainData::getSample(Mat varIdx, int sidx, float* buf) + private static native void getSample_0(long nativeObj, long varIdx_nativeObj, int sidx, float buf); + + // C++: void cv::ml::TrainData::getValues(int vi, Mat sidx, float* values) + private static native void getValues_0(long nativeObj, int vi, long sidx_nativeObj, float values); + + // C++: void cv::ml::TrainData::setTrainTestSplit(int count, bool shuffle = true) + private static native void setTrainTestSplit_0(long nativeObj, int count, boolean shuffle); + private static native void setTrainTestSplit_1(long nativeObj, int count); + + // C++: void cv::ml::TrainData::setTrainTestSplitRatio(double ratio, bool shuffle = true) + private static native void setTrainTestSplitRatio_0(long nativeObj, double ratio, boolean shuffle); + private static native void setTrainTestSplitRatio_1(long nativeObj, double ratio); + + // C++: void cv::ml::TrainData::shuffleTrainTest() + private static native void shuffleTrainTest_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/objdetect/BaseCascadeClassifier.java b/openCVLibrary3/src/main/java/org/opencv/objdetect/BaseCascadeClassifier.java new file mode 100644 index 00000000000..8e9afa0998c --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/objdetect/BaseCascadeClassifier.java @@ -0,0 +1,28 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.objdetect; + +import org.opencv.core.Algorithm; + +// C++: class BaseCascadeClassifier +//javadoc: BaseCascadeClassifier + +public class BaseCascadeClassifier extends Algorithm { + + protected BaseCascadeClassifier(long addr) { super(addr); } + + // internal usage only + public static BaseCascadeClassifier __fromPtr__(long addr) { return new BaseCascadeClassifier(addr); } + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/objdetect/CascadeClassifier.java b/openCVLibrary3/src/main/java/org/opencv/objdetect/CascadeClassifier.java new file mode 100644 index 00000000000..462dc921e5d --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/objdetect/CascadeClassifier.java @@ -0,0 +1,413 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.objdetect; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfDouble; +import org.opencv.core.MatOfInt; +import org.opencv.core.MatOfRect; +import org.opencv.core.Size; +import org.opencv.utils.Converters; + +// C++: class CascadeClassifier +//javadoc: CascadeClassifier + +public class CascadeClassifier { + + protected final long nativeObj; + protected CascadeClassifier(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static CascadeClassifier __fromPtr__(long addr) { return new CascadeClassifier(addr); } + + // + // C++: cv::CascadeClassifier::CascadeClassifier(String filename) + // + + //javadoc: CascadeClassifier::CascadeClassifier(filename) + public CascadeClassifier(String filename) + { + + nativeObj = CascadeClassifier_0(filename); + + return; + } + + + // + // C++: cv::CascadeClassifier::CascadeClassifier() + // + + //javadoc: CascadeClassifier::CascadeClassifier() + public CascadeClassifier() + { + + nativeObj = CascadeClassifier_1(); + + return; + } + + + // + // C++: Size cv::CascadeClassifier::getOriginalWindowSize() + // + + //javadoc: CascadeClassifier::getOriginalWindowSize() + public Size getOriginalWindowSize() + { + + Size retVal = new Size(getOriginalWindowSize_0(nativeObj)); + + return retVal; + } + + + // + // C++: static bool cv::CascadeClassifier::convert(String oldcascade, String newcascade) + // + + //javadoc: CascadeClassifier::convert(oldcascade, newcascade) + public static boolean convert(String oldcascade, String newcascade) + { + + boolean retVal = convert_0(oldcascade, newcascade); + + return retVal; + } + + + // + // C++: bool cv::CascadeClassifier::empty() + // + + //javadoc: CascadeClassifier::empty() + public boolean empty() + { + + boolean retVal = empty_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::CascadeClassifier::isOldFormatCascade() + // + + //javadoc: CascadeClassifier::isOldFormatCascade() + public boolean isOldFormatCascade() + { + + boolean retVal = isOldFormatCascade_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::CascadeClassifier::load(String filename) + // + + //javadoc: CascadeClassifier::load(filename) + public boolean load(String filename) + { + + boolean retVal = load_0(nativeObj, filename); + + return retVal; + } + + + // + // C++: bool cv::CascadeClassifier::read(FileNode node) + // + + // Unknown type 'FileNode' (I), skipping the function + + + // + // C++: int cv::CascadeClassifier::getFeatureType() + // + + //javadoc: CascadeClassifier::getFeatureType() + public int getFeatureType() + { + + int retVal = getFeatureType_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size()) + // + + //javadoc: CascadeClassifier::detectMultiScale(image, objects, scaleFactor, minNeighbors, flags, minSize, maxSize) + public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize) + { + Mat objects_mat = objects; + detectMultiScale_0(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height, maxSize.width, maxSize.height); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale(image, objects, scaleFactor, minNeighbors, flags, minSize) + public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors, int flags, Size minSize) + { + Mat objects_mat = objects; + detectMultiScale_1(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale(image, objects, scaleFactor, minNeighbors, flags) + public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors, int flags) + { + Mat objects_mat = objects; + detectMultiScale_2(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor, minNeighbors, flags); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale(image, objects, scaleFactor, minNeighbors) + public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors) + { + Mat objects_mat = objects; + detectMultiScale_3(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor, minNeighbors); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale(image, objects, scaleFactor) + public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor) + { + Mat objects_mat = objects; + detectMultiScale_4(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale(image, objects) + public void detectMultiScale(Mat image, MatOfRect objects) + { + Mat objects_mat = objects; + detectMultiScale_5(nativeObj, image.nativeObj, objects_mat.nativeObj); + + return; + } + + + // + // C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, vector_int& numDetections, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size()) + // + + //javadoc: CascadeClassifier::detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors, flags, minSize, maxSize) + public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize) + { + Mat objects_mat = objects; + Mat numDetections_mat = numDetections; + detectMultiScale2_0(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height, maxSize.width, maxSize.height); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors, flags, minSize) + public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors, int flags, Size minSize) + { + Mat objects_mat = objects; + Mat numDetections_mat = numDetections; + detectMultiScale2_1(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors, flags) + public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors, int flags) + { + Mat objects_mat = objects; + Mat numDetections_mat = numDetections; + detectMultiScale2_2(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors, flags); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors) + public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors) + { + Mat objects_mat = objects; + Mat numDetections_mat = numDetections; + detectMultiScale2_3(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale2(image, objects, numDetections, scaleFactor) + public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor) + { + Mat objects_mat = objects; + Mat numDetections_mat = numDetections; + detectMultiScale2_4(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale2(image, objects, numDetections) + public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections) + { + Mat objects_mat = objects; + Mat numDetections_mat = numDetections; + detectMultiScale2_5(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj); + + return; + } + + + // + // C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, vector_int& rejectLevels, vector_double& levelWeights, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size(), bool outputRejectLevels = false) + // + + //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minSize, maxSize, outputRejectLevels) + public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize, boolean outputRejectLevels) + { + Mat objects_mat = objects; + Mat rejectLevels_mat = rejectLevels; + Mat levelWeights_mat = levelWeights; + detectMultiScale3_0(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height, maxSize.width, maxSize.height, outputRejectLevels); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minSize, maxSize) + public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize) + { + Mat objects_mat = objects; + Mat rejectLevels_mat = rejectLevels; + Mat levelWeights_mat = levelWeights; + detectMultiScale3_1(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height, maxSize.width, maxSize.height); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minSize) + public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize) + { + Mat objects_mat = objects; + Mat rejectLevels_mat = rejectLevels; + Mat levelWeights_mat = levelWeights; + detectMultiScale3_2(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags) + public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags) + { + Mat objects_mat = objects; + Mat rejectLevels_mat = rejectLevels; + Mat levelWeights_mat = levelWeights; + detectMultiScale3_3(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights, scaleFactor, minNeighbors) + public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors) + { + Mat objects_mat = objects; + Mat rejectLevels_mat = rejectLevels; + Mat levelWeights_mat = levelWeights; + detectMultiScale3_4(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights, scaleFactor) + public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor) + { + Mat objects_mat = objects; + Mat rejectLevels_mat = rejectLevels; + Mat levelWeights_mat = levelWeights; + detectMultiScale3_5(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor); + + return; + } + + //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights) + public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights) + { + Mat objects_mat = objects; + Mat rejectLevels_mat = rejectLevels; + Mat levelWeights_mat = levelWeights; + detectMultiScale3_6(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::CascadeClassifier::CascadeClassifier(String filename) + private static native long CascadeClassifier_0(String filename); + + // C++: cv::CascadeClassifier::CascadeClassifier() + private static native long CascadeClassifier_1(); + + // C++: Size cv::CascadeClassifier::getOriginalWindowSize() + private static native double[] getOriginalWindowSize_0(long nativeObj); + + // C++: static bool cv::CascadeClassifier::convert(String oldcascade, String newcascade) + private static native boolean convert_0(String oldcascade, String newcascade); + + // C++: bool cv::CascadeClassifier::empty() + private static native boolean empty_0(long nativeObj); + + // C++: bool cv::CascadeClassifier::isOldFormatCascade() + private static native boolean isOldFormatCascade_0(long nativeObj); + + // C++: bool cv::CascadeClassifier::load(String filename) + private static native boolean load_0(long nativeObj, String filename); + + // C++: int cv::CascadeClassifier::getFeatureType() + private static native int getFeatureType_0(long nativeObj); + + // C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size()) + private static native void detectMultiScale_0(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height, double maxSize_width, double maxSize_height); + private static native void detectMultiScale_1(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height); + private static native void detectMultiScale_2(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, double scaleFactor, int minNeighbors, int flags); + private static native void detectMultiScale_3(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, double scaleFactor, int minNeighbors); + private static native void detectMultiScale_4(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, double scaleFactor); + private static native void detectMultiScale_5(long nativeObj, long image_nativeObj, long objects_mat_nativeObj); + + // C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, vector_int& numDetections, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size()) + private static native void detectMultiScale2_0(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long numDetections_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height, double maxSize_width, double maxSize_height); + private static native void detectMultiScale2_1(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long numDetections_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height); + private static native void detectMultiScale2_2(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long numDetections_mat_nativeObj, double scaleFactor, int minNeighbors, int flags); + private static native void detectMultiScale2_3(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long numDetections_mat_nativeObj, double scaleFactor, int minNeighbors); + private static native void detectMultiScale2_4(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long numDetections_mat_nativeObj, double scaleFactor); + private static native void detectMultiScale2_5(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long numDetections_mat_nativeObj); + + // C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, vector_int& rejectLevels, vector_double& levelWeights, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size(), bool outputRejectLevels = false) + private static native void detectMultiScale3_0(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long rejectLevels_mat_nativeObj, long levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height, double maxSize_width, double maxSize_height, boolean outputRejectLevels); + private static native void detectMultiScale3_1(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long rejectLevels_mat_nativeObj, long levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height, double maxSize_width, double maxSize_height); + private static native void detectMultiScale3_2(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long rejectLevels_mat_nativeObj, long levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height); + private static native void detectMultiScale3_3(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long rejectLevels_mat_nativeObj, long levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors, int flags); + private static native void detectMultiScale3_4(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long rejectLevels_mat_nativeObj, long levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors); + private static native void detectMultiScale3_5(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long rejectLevels_mat_nativeObj, long levelWeights_mat_nativeObj, double scaleFactor); + private static native void detectMultiScale3_6(long nativeObj, long image_nativeObj, long objects_mat_nativeObj, long rejectLevels_mat_nativeObj, long levelWeights_mat_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/objdetect/HOGDescriptor.java b/openCVLibrary3/src/main/java/org/opencv/objdetect/HOGDescriptor.java new file mode 100644 index 00000000000..37281f3e18c --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/objdetect/HOGDescriptor.java @@ -0,0 +1,775 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.objdetect; + +import java.lang.String; +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfDouble; +import org.opencv.core.MatOfFloat; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfRect; +import org.opencv.core.Size; +import org.opencv.utils.Converters; + +// C++: class HOGDescriptor +//javadoc: HOGDescriptor + +public class HOGDescriptor { + + protected final long nativeObj; + protected HOGDescriptor(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static HOGDescriptor __fromPtr__(long addr) { return new HOGDescriptor(addr); } + + public static final int + L2Hys = 0, + DEFAULT_NLEVELS = 64; + + + // + // C++: cv::HOGDescriptor::HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture = 1, double _winSigma = -1, int _histogramNormType = HOGDescriptor::L2Hys, double _L2HysThreshold = 0.2, bool _gammaCorrection = false, int _nlevels = HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient = false) + // + + //javadoc: HOGDescriptor::HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection, _nlevels, _signedGradient) + public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels, boolean _signedGradient) + { + + nativeObj = HOGDescriptor_0(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection, _nlevels, _signedGradient); + + return; + } + + //javadoc: HOGDescriptor::HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection, _nlevels) + public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels) + { + + nativeObj = HOGDescriptor_1(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection, _nlevels); + + return; + } + + //javadoc: HOGDescriptor::HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection) + public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection) + { + + nativeObj = HOGDescriptor_2(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold, _gammaCorrection); + + return; + } + + //javadoc: HOGDescriptor::HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold) + public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold) + { + + nativeObj = HOGDescriptor_3(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType, _L2HysThreshold); + + return; + } + + //javadoc: HOGDescriptor::HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins, _derivAperture, _winSigma, _histogramNormType) + public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType) + { + + nativeObj = HOGDescriptor_4(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma, _histogramNormType); + + return; + } + + //javadoc: HOGDescriptor::HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins, _derivAperture, _winSigma) + public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma) + { + + nativeObj = HOGDescriptor_5(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture, _winSigma); + + return; + } + + //javadoc: HOGDescriptor::HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins, _derivAperture) + public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture) + { + + nativeObj = HOGDescriptor_6(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins, _derivAperture); + + return; + } + + //javadoc: HOGDescriptor::HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins) + public HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins) + { + + nativeObj = HOGDescriptor_7(_winSize.width, _winSize.height, _blockSize.width, _blockSize.height, _blockStride.width, _blockStride.height, _cellSize.width, _cellSize.height, _nbins); + + return; + } + + + // + // C++: cv::HOGDescriptor::HOGDescriptor(String filename) + // + + //javadoc: HOGDescriptor::HOGDescriptor(filename) + public HOGDescriptor(String filename) + { + + nativeObj = HOGDescriptor_8(filename); + + return; + } + + + // + // C++: cv::HOGDescriptor::HOGDescriptor() + // + + //javadoc: HOGDescriptor::HOGDescriptor() + public HOGDescriptor() + { + + nativeObj = HOGDescriptor_9(); + + return; + } + + + // + // C++: bool cv::HOGDescriptor::checkDetectorSize() + // + + //javadoc: HOGDescriptor::checkDetectorSize() + public boolean checkDetectorSize() + { + + boolean retVal = checkDetectorSize_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::HOGDescriptor::load(String filename, String objname = String()) + // + + //javadoc: HOGDescriptor::load(filename, objname) + public boolean load(String filename, String objname) + { + + boolean retVal = load_0(nativeObj, filename, objname); + + return retVal; + } + + //javadoc: HOGDescriptor::load(filename) + public boolean load(String filename) + { + + boolean retVal = load_1(nativeObj, filename); + + return retVal; + } + + + // + // C++: double cv::HOGDescriptor::getWinSigma() + // + + //javadoc: HOGDescriptor::getWinSigma() + public double getWinSigma() + { + + double retVal = getWinSigma_0(nativeObj); + + return retVal; + } + + + // + // C++: size_t cv::HOGDescriptor::getDescriptorSize() + // + + //javadoc: HOGDescriptor::getDescriptorSize() + public long getDescriptorSize() + { + + long retVal = getDescriptorSize_0(nativeObj); + + return retVal; + } + + + // + // C++: static vector_float cv::HOGDescriptor::getDaimlerPeopleDetector() + // + + //javadoc: HOGDescriptor::getDaimlerPeopleDetector() + public static MatOfFloat getDaimlerPeopleDetector() + { + + MatOfFloat retVal = MatOfFloat.fromNativeAddr(getDaimlerPeopleDetector_0()); + + return retVal; + } + + + // + // C++: static vector_float cv::HOGDescriptor::getDefaultPeopleDetector() + // + + //javadoc: HOGDescriptor::getDefaultPeopleDetector() + public static MatOfFloat getDefaultPeopleDetector() + { + + MatOfFloat retVal = MatOfFloat.fromNativeAddr(getDefaultPeopleDetector_0()); + + return retVal; + } + + + // + // C++: void cv::HOGDescriptor::compute(Mat img, vector_float& descriptors, Size winStride = Size(), Size padding = Size(), vector_Point locations = std::vector()) + // + + //javadoc: HOGDescriptor::compute(img, descriptors, winStride, padding, locations) + public void compute(Mat img, MatOfFloat descriptors, Size winStride, Size padding, MatOfPoint locations) + { + Mat descriptors_mat = descriptors; + Mat locations_mat = locations; + compute_0(nativeObj, img.nativeObj, descriptors_mat.nativeObj, winStride.width, winStride.height, padding.width, padding.height, locations_mat.nativeObj); + + return; + } + + //javadoc: HOGDescriptor::compute(img, descriptors, winStride, padding) + public void compute(Mat img, MatOfFloat descriptors, Size winStride, Size padding) + { + Mat descriptors_mat = descriptors; + compute_1(nativeObj, img.nativeObj, descriptors_mat.nativeObj, winStride.width, winStride.height, padding.width, padding.height); + + return; + } + + //javadoc: HOGDescriptor::compute(img, descriptors, winStride) + public void compute(Mat img, MatOfFloat descriptors, Size winStride) + { + Mat descriptors_mat = descriptors; + compute_2(nativeObj, img.nativeObj, descriptors_mat.nativeObj, winStride.width, winStride.height); + + return; + } + + //javadoc: HOGDescriptor::compute(img, descriptors) + public void compute(Mat img, MatOfFloat descriptors) + { + Mat descriptors_mat = descriptors; + compute_3(nativeObj, img.nativeObj, descriptors_mat.nativeObj); + + return; + } + + + // + // C++: void cv::HOGDescriptor::computeGradient(Mat img, Mat& grad, Mat& angleOfs, Size paddingTL = Size(), Size paddingBR = Size()) + // + + //javadoc: HOGDescriptor::computeGradient(img, grad, angleOfs, paddingTL, paddingBR) + public void computeGradient(Mat img, Mat grad, Mat angleOfs, Size paddingTL, Size paddingBR) + { + + computeGradient_0(nativeObj, img.nativeObj, grad.nativeObj, angleOfs.nativeObj, paddingTL.width, paddingTL.height, paddingBR.width, paddingBR.height); + + return; + } + + //javadoc: HOGDescriptor::computeGradient(img, grad, angleOfs, paddingTL) + public void computeGradient(Mat img, Mat grad, Mat angleOfs, Size paddingTL) + { + + computeGradient_1(nativeObj, img.nativeObj, grad.nativeObj, angleOfs.nativeObj, paddingTL.width, paddingTL.height); + + return; + } + + //javadoc: HOGDescriptor::computeGradient(img, grad, angleOfs) + public void computeGradient(Mat img, Mat grad, Mat angleOfs) + { + + computeGradient_2(nativeObj, img.nativeObj, grad.nativeObj, angleOfs.nativeObj); + + return; + } + + + // + // C++: void cv::HOGDescriptor::detect(Mat img, vector_Point& foundLocations, vector_double& weights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), vector_Point searchLocations = std::vector()) + // + + //javadoc: HOGDescriptor::detect(img, foundLocations, weights, hitThreshold, winStride, padding, searchLocations) + public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride, Size padding, MatOfPoint searchLocations) + { + Mat foundLocations_mat = foundLocations; + Mat weights_mat = weights; + Mat searchLocations_mat = searchLocations; + detect_0(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height, searchLocations_mat.nativeObj); + + return; + } + + //javadoc: HOGDescriptor::detect(img, foundLocations, weights, hitThreshold, winStride, padding) + public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride, Size padding) + { + Mat foundLocations_mat = foundLocations; + Mat weights_mat = weights; + detect_1(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height); + + return; + } + + //javadoc: HOGDescriptor::detect(img, foundLocations, weights, hitThreshold, winStride) + public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride) + { + Mat foundLocations_mat = foundLocations; + Mat weights_mat = weights; + detect_2(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj, hitThreshold, winStride.width, winStride.height); + + return; + } + + //javadoc: HOGDescriptor::detect(img, foundLocations, weights, hitThreshold) + public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold) + { + Mat foundLocations_mat = foundLocations; + Mat weights_mat = weights; + detect_3(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj, hitThreshold); + + return; + } + + //javadoc: HOGDescriptor::detect(img, foundLocations, weights) + public void detect(Mat img, MatOfPoint foundLocations, MatOfDouble weights) + { + Mat foundLocations_mat = foundLocations; + Mat weights_mat = weights; + detect_4(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, weights_mat.nativeObj); + + return; + } + + + // + // C++: void cv::HOGDescriptor::detectMultiScale(Mat img, vector_Rect& foundLocations, vector_double& foundWeights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), double scale = 1.05, double finalThreshold = 2.0, bool useMeanshiftGrouping = false) + // + + //javadoc: HOGDescriptor::detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride, padding, scale, finalThreshold, useMeanshiftGrouping) + public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale, double finalThreshold, boolean useMeanshiftGrouping) + { + Mat foundLocations_mat = foundLocations; + Mat foundWeights_mat = foundWeights; + detectMultiScale_0(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height, scale, finalThreshold, useMeanshiftGrouping); + + return; + } + + //javadoc: HOGDescriptor::detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride, padding, scale, finalThreshold) + public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale, double finalThreshold) + { + Mat foundLocations_mat = foundLocations; + Mat foundWeights_mat = foundWeights; + detectMultiScale_1(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height, scale, finalThreshold); + + return; + } + + //javadoc: HOGDescriptor::detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride, padding, scale) + public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale) + { + Mat foundLocations_mat = foundLocations; + Mat foundWeights_mat = foundWeights; + detectMultiScale_2(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height, scale); + + return; + } + + //javadoc: HOGDescriptor::detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride, padding) + public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding) + { + Mat foundLocations_mat = foundLocations; + Mat foundWeights_mat = foundWeights; + detectMultiScale_3(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height, padding.width, padding.height); + + return; + } + + //javadoc: HOGDescriptor::detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride) + public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride) + { + Mat foundLocations_mat = foundLocations; + Mat foundWeights_mat = foundWeights; + detectMultiScale_4(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold, winStride.width, winStride.height); + + return; + } + + //javadoc: HOGDescriptor::detectMultiScale(img, foundLocations, foundWeights, hitThreshold) + public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold) + { + Mat foundLocations_mat = foundLocations; + Mat foundWeights_mat = foundWeights; + detectMultiScale_5(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj, hitThreshold); + + return; + } + + //javadoc: HOGDescriptor::detectMultiScale(img, foundLocations, foundWeights) + public void detectMultiScale(Mat img, MatOfRect foundLocations, MatOfDouble foundWeights) + { + Mat foundLocations_mat = foundLocations; + Mat foundWeights_mat = foundWeights; + detectMultiScale_6(nativeObj, img.nativeObj, foundLocations_mat.nativeObj, foundWeights_mat.nativeObj); + + return; + } + + + // + // C++: void cv::HOGDescriptor::save(String filename, String objname = String()) + // + + //javadoc: HOGDescriptor::save(filename, objname) + public void save(String filename, String objname) + { + + save_0(nativeObj, filename, objname); + + return; + } + + //javadoc: HOGDescriptor::save(filename) + public void save(String filename) + { + + save_1(nativeObj, filename); + + return; + } + + + // + // C++: void cv::HOGDescriptor::setSVMDetector(Mat _svmdetector) + // + + //javadoc: HOGDescriptor::setSVMDetector(_svmdetector) + public void setSVMDetector(Mat _svmdetector) + { + + setSVMDetector_0(nativeObj, _svmdetector.nativeObj); + + return; + } + + + // + // C++: Size HOGDescriptor::winSize + // + + //javadoc: HOGDescriptor::get_winSize() + public Size get_winSize() + { + + Size retVal = new Size(get_winSize_0(nativeObj)); + + return retVal; + } + + + // + // C++: Size HOGDescriptor::blockSize + // + + //javadoc: HOGDescriptor::get_blockSize() + public Size get_blockSize() + { + + Size retVal = new Size(get_blockSize_0(nativeObj)); + + return retVal; + } + + + // + // C++: Size HOGDescriptor::blockStride + // + + //javadoc: HOGDescriptor::get_blockStride() + public Size get_blockStride() + { + + Size retVal = new Size(get_blockStride_0(nativeObj)); + + return retVal; + } + + + // + // C++: Size HOGDescriptor::cellSize + // + + //javadoc: HOGDescriptor::get_cellSize() + public Size get_cellSize() + { + + Size retVal = new Size(get_cellSize_0(nativeObj)); + + return retVal; + } + + + // + // C++: int HOGDescriptor::nbins + // + + //javadoc: HOGDescriptor::get_nbins() + public int get_nbins() + { + + int retVal = get_nbins_0(nativeObj); + + return retVal; + } + + + // + // C++: int HOGDescriptor::derivAperture + // + + //javadoc: HOGDescriptor::get_derivAperture() + public int get_derivAperture() + { + + int retVal = get_derivAperture_0(nativeObj); + + return retVal; + } + + + // + // C++: double HOGDescriptor::winSigma + // + + //javadoc: HOGDescriptor::get_winSigma() + public double get_winSigma() + { + + double retVal = get_winSigma_0(nativeObj); + + return retVal; + } + + + // + // C++: int HOGDescriptor::histogramNormType + // + + //javadoc: HOGDescriptor::get_histogramNormType() + public int get_histogramNormType() + { + + int retVal = get_histogramNormType_0(nativeObj); + + return retVal; + } + + + // + // C++: double HOGDescriptor::L2HysThreshold + // + + //javadoc: HOGDescriptor::get_L2HysThreshold() + public double get_L2HysThreshold() + { + + double retVal = get_L2HysThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: bool HOGDescriptor::gammaCorrection + // + + //javadoc: HOGDescriptor::get_gammaCorrection() + public boolean get_gammaCorrection() + { + + boolean retVal = get_gammaCorrection_0(nativeObj); + + return retVal; + } + + + // + // C++: vector_float HOGDescriptor::svmDetector + // + + //javadoc: HOGDescriptor::get_svmDetector() + public MatOfFloat get_svmDetector() + { + + MatOfFloat retVal = MatOfFloat.fromNativeAddr(get_svmDetector_0(nativeObj)); + + return retVal; + } + + + // + // C++: int HOGDescriptor::nlevels + // + + //javadoc: HOGDescriptor::get_nlevels() + public int get_nlevels() + { + + int retVal = get_nlevels_0(nativeObj); + + return retVal; + } + + + // + // C++: bool HOGDescriptor::signedGradient + // + + //javadoc: HOGDescriptor::get_signedGradient() + public boolean get_signedGradient() + { + + boolean retVal = get_signedGradient_0(nativeObj); + + return retVal; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::HOGDescriptor::HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture = 1, double _winSigma = -1, int _histogramNormType = HOGDescriptor::L2Hys, double _L2HysThreshold = 0.2, bool _gammaCorrection = false, int _nlevels = HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient = false) + private static native long HOGDescriptor_0(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels, boolean _signedGradient); + private static native long HOGDescriptor_1(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels); + private static native long HOGDescriptor_2(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection); + private static native long HOGDescriptor_3(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold); + private static native long HOGDescriptor_4(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType); + private static native long HOGDescriptor_5(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture, double _winSigma); + private static native long HOGDescriptor_6(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins, int _derivAperture); + private static native long HOGDescriptor_7(double _winSize_width, double _winSize_height, double _blockSize_width, double _blockSize_height, double _blockStride_width, double _blockStride_height, double _cellSize_width, double _cellSize_height, int _nbins); + + // C++: cv::HOGDescriptor::HOGDescriptor(String filename) + private static native long HOGDescriptor_8(String filename); + + // C++: cv::HOGDescriptor::HOGDescriptor() + private static native long HOGDescriptor_9(); + + // C++: bool cv::HOGDescriptor::checkDetectorSize() + private static native boolean checkDetectorSize_0(long nativeObj); + + // C++: bool cv::HOGDescriptor::load(String filename, String objname = String()) + private static native boolean load_0(long nativeObj, String filename, String objname); + private static native boolean load_1(long nativeObj, String filename); + + // C++: double cv::HOGDescriptor::getWinSigma() + private static native double getWinSigma_0(long nativeObj); + + // C++: size_t cv::HOGDescriptor::getDescriptorSize() + private static native long getDescriptorSize_0(long nativeObj); + + // C++: static vector_float cv::HOGDescriptor::getDaimlerPeopleDetector() + private static native long getDaimlerPeopleDetector_0(); + + // C++: static vector_float cv::HOGDescriptor::getDefaultPeopleDetector() + private static native long getDefaultPeopleDetector_0(); + + // C++: void cv::HOGDescriptor::compute(Mat img, vector_float& descriptors, Size winStride = Size(), Size padding = Size(), vector_Point locations = std::vector()) + private static native void compute_0(long nativeObj, long img_nativeObj, long descriptors_mat_nativeObj, double winStride_width, double winStride_height, double padding_width, double padding_height, long locations_mat_nativeObj); + private static native void compute_1(long nativeObj, long img_nativeObj, long descriptors_mat_nativeObj, double winStride_width, double winStride_height, double padding_width, double padding_height); + private static native void compute_2(long nativeObj, long img_nativeObj, long descriptors_mat_nativeObj, double winStride_width, double winStride_height); + private static native void compute_3(long nativeObj, long img_nativeObj, long descriptors_mat_nativeObj); + + // C++: void cv::HOGDescriptor::computeGradient(Mat img, Mat& grad, Mat& angleOfs, Size paddingTL = Size(), Size paddingBR = Size()) + private static native void computeGradient_0(long nativeObj, long img_nativeObj, long grad_nativeObj, long angleOfs_nativeObj, double paddingTL_width, double paddingTL_height, double paddingBR_width, double paddingBR_height); + private static native void computeGradient_1(long nativeObj, long img_nativeObj, long grad_nativeObj, long angleOfs_nativeObj, double paddingTL_width, double paddingTL_height); + private static native void computeGradient_2(long nativeObj, long img_nativeObj, long grad_nativeObj, long angleOfs_nativeObj); + + // C++: void cv::HOGDescriptor::detect(Mat img, vector_Point& foundLocations, vector_double& weights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), vector_Point searchLocations = std::vector()) + private static native void detect_0(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height, long searchLocations_mat_nativeObj); + private static native void detect_1(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height); + private static native void detect_2(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height); + private static native void detect_3(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj, double hitThreshold); + private static native void detect_4(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long weights_mat_nativeObj); + + // C++: void cv::HOGDescriptor::detectMultiScale(Mat img, vector_Rect& foundLocations, vector_double& foundWeights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), double scale = 1.05, double finalThreshold = 2.0, bool useMeanshiftGrouping = false) + private static native void detectMultiScale_0(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height, double scale, double finalThreshold, boolean useMeanshiftGrouping); + private static native void detectMultiScale_1(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height, double scale, double finalThreshold); + private static native void detectMultiScale_2(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height, double scale); + private static native void detectMultiScale_3(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height, double padding_width, double padding_height); + private static native void detectMultiScale_4(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold, double winStride_width, double winStride_height); + private static native void detectMultiScale_5(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj, double hitThreshold); + private static native void detectMultiScale_6(long nativeObj, long img_nativeObj, long foundLocations_mat_nativeObj, long foundWeights_mat_nativeObj); + + // C++: void cv::HOGDescriptor::save(String filename, String objname = String()) + private static native void save_0(long nativeObj, String filename, String objname); + private static native void save_1(long nativeObj, String filename); + + // C++: void cv::HOGDescriptor::setSVMDetector(Mat _svmdetector) + private static native void setSVMDetector_0(long nativeObj, long _svmdetector_nativeObj); + + // C++: Size HOGDescriptor::winSize + private static native double[] get_winSize_0(long nativeObj); + + // C++: Size HOGDescriptor::blockSize + private static native double[] get_blockSize_0(long nativeObj); + + // C++: Size HOGDescriptor::blockStride + private static native double[] get_blockStride_0(long nativeObj); + + // C++: Size HOGDescriptor::cellSize + private static native double[] get_cellSize_0(long nativeObj); + + // C++: int HOGDescriptor::nbins + private static native int get_nbins_0(long nativeObj); + + // C++: int HOGDescriptor::derivAperture + private static native int get_derivAperture_0(long nativeObj); + + // C++: double HOGDescriptor::winSigma + private static native double get_winSigma_0(long nativeObj); + + // C++: int HOGDescriptor::histogramNormType + private static native int get_histogramNormType_0(long nativeObj); + + // C++: double HOGDescriptor::L2HysThreshold + private static native double get_L2HysThreshold_0(long nativeObj); + + // C++: bool HOGDescriptor::gammaCorrection + private static native boolean get_gammaCorrection_0(long nativeObj); + + // C++: vector_float HOGDescriptor::svmDetector + private static native long get_svmDetector_0(long nativeObj); + + // C++: int HOGDescriptor::nlevels + private static native int get_nlevels_0(long nativeObj); + + // C++: bool HOGDescriptor::signedGradient + private static native boolean get_signedGradient_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/objdetect/Objdetect.java b/openCVLibrary3/src/main/java/org/opencv/objdetect/Objdetect.java new file mode 100644 index 00000000000..7e555a0ad20 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/objdetect/Objdetect.java @@ -0,0 +1,56 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.objdetect; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfInt; +import org.opencv.core.MatOfRect; +import org.opencv.utils.Converters; + +// C++: class Objdetect +//javadoc: Objdetect + +public class Objdetect { + + public static final int + CASCADE_DO_CANNY_PRUNING = 1, + CASCADE_SCALE_IMAGE = 2, + CASCADE_FIND_BIGGEST_OBJECT = 4, + CASCADE_DO_ROUGH_SEARCH = 8; + + + // + // C++: void cv::groupRectangles(vector_Rect& rectList, vector_int& weights, int groupThreshold, double eps = 0.2) + // + + //javadoc: groupRectangles(rectList, weights, groupThreshold, eps) + public static void groupRectangles(MatOfRect rectList, MatOfInt weights, int groupThreshold, double eps) + { + Mat rectList_mat = rectList; + Mat weights_mat = weights; + groupRectangles_0(rectList_mat.nativeObj, weights_mat.nativeObj, groupThreshold, eps); + + return; + } + + //javadoc: groupRectangles(rectList, weights, groupThreshold) + public static void groupRectangles(MatOfRect rectList, MatOfInt weights, int groupThreshold) + { + Mat rectList_mat = rectList; + Mat weights_mat = weights; + groupRectangles_1(rectList_mat.nativeObj, weights_mat.nativeObj, groupThreshold); + + return; + } + + + + + // C++: void cv::groupRectangles(vector_Rect& rectList, vector_int& weights, int groupThreshold, double eps = 0.2) + private static native void groupRectangles_0(long rectList_mat_nativeObj, long weights_mat_nativeObj, int groupThreshold, double eps); + private static native void groupRectangles_1(long rectList_mat_nativeObj, long weights_mat_nativeObj, int groupThreshold); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/osgi/OpenCVInterface.java b/openCVLibrary3/src/main/java/org/opencv/osgi/OpenCVInterface.java new file mode 100644 index 00000000000..83ffee1a1d0 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/osgi/OpenCVInterface.java @@ -0,0 +1,8 @@ +package org.opencv.osgi; + +/** + * Dummy interface to allow some integration testing within OSGi implementation. + */ +public interface OpenCVInterface +{ +} diff --git a/openCVLibrary3/src/main/java/org/opencv/osgi/OpenCVNativeLoader.java b/openCVLibrary3/src/main/java/org/opencv/osgi/OpenCVNativeLoader.java new file mode 100644 index 00000000000..b2ccc676ba5 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/osgi/OpenCVNativeLoader.java @@ -0,0 +1,18 @@ +package org.opencv.osgi; + +import java.util.logging.Level; +import java.util.logging.Logger; + +/** + * This class is intended to provide a convenient way to load OpenCV's native + * library from the Java bundle. If Blueprint is enabled in the OSGi container + * this class will be instantiated automatically and the init() method called + * loading the native library. + */ +public class OpenCVNativeLoader implements OpenCVInterface { + + public void init() { + System.loadLibrary("opencv_java3"); + Logger.getLogger("org.opencv.osgi").log(Level.INFO, "Successfully loaded OpenCV native library."); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/AlignExposures.java b/openCVLibrary3/src/main/java/org/opencv/photo/AlignExposures.java new file mode 100644 index 00000000000..a50870a0f06 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/AlignExposures.java @@ -0,0 +1,50 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.utils.Converters; + +// C++: class AlignExposures +//javadoc: AlignExposures + +public class AlignExposures extends Algorithm { + + protected AlignExposures(long addr) { super(addr); } + + // internal usage only + public static AlignExposures __fromPtr__(long addr) { return new AlignExposures(addr); } + + // + // C++: void cv::AlignExposures::process(vector_Mat src, vector_Mat dst, Mat times, Mat response) + // + + //javadoc: AlignExposures::process(src, dst, times, response) + public void process(List src, List dst, Mat times, Mat response) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + Mat dst_mat = Converters.vector_Mat_to_Mat(dst); + process_0(nativeObj, src_mat.nativeObj, dst_mat.nativeObj, times.nativeObj, response.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: void cv::AlignExposures::process(vector_Mat src, vector_Mat dst, Mat times, Mat response) + private static native void process_0(long nativeObj, long src_mat_nativeObj, long dst_mat_nativeObj, long times_nativeObj, long response_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/AlignMTB.java b/openCVLibrary3/src/main/java/org/opencv/photo/AlignMTB.java new file mode 100644 index 00000000000..69e8de58fd5 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/AlignMTB.java @@ -0,0 +1,222 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.Point; +import org.opencv.photo.AlignExposures; +import org.opencv.utils.Converters; + +// C++: class AlignMTB +//javadoc: AlignMTB + +public class AlignMTB extends AlignExposures { + + protected AlignMTB(long addr) { super(addr); } + + // internal usage only + public static AlignMTB __fromPtr__(long addr) { return new AlignMTB(addr); } + + // + // C++: Point cv::AlignMTB::calculateShift(Mat img0, Mat img1) + // + + //javadoc: AlignMTB::calculateShift(img0, img1) + public Point calculateShift(Mat img0, Mat img1) + { + + Point retVal = new Point(calculateShift_0(nativeObj, img0.nativeObj, img1.nativeObj)); + + return retVal; + } + + + // + // C++: bool cv::AlignMTB::getCut() + // + + //javadoc: AlignMTB::getCut() + public boolean getCut() + { + + boolean retVal = getCut_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AlignMTB::getExcludeRange() + // + + //javadoc: AlignMTB::getExcludeRange() + public int getExcludeRange() + { + + int retVal = getExcludeRange_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::AlignMTB::getMaxBits() + // + + //javadoc: AlignMTB::getMaxBits() + public int getMaxBits() + { + + int retVal = getMaxBits_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::AlignMTB::computeBitmaps(Mat img, Mat& tb, Mat& eb) + // + + //javadoc: AlignMTB::computeBitmaps(img, tb, eb) + public void computeBitmaps(Mat img, Mat tb, Mat eb) + { + + computeBitmaps_0(nativeObj, img.nativeObj, tb.nativeObj, eb.nativeObj); + + return; + } + + + // + // C++: void cv::AlignMTB::process(vector_Mat src, vector_Mat dst, Mat times, Mat response) + // + + //javadoc: AlignMTB::process(src, dst, times, response) + public void process(List src, List dst, Mat times, Mat response) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + Mat dst_mat = Converters.vector_Mat_to_Mat(dst); + process_0(nativeObj, src_mat.nativeObj, dst_mat.nativeObj, times.nativeObj, response.nativeObj); + + return; + } + + + // + // C++: void cv::AlignMTB::process(vector_Mat src, vector_Mat dst) + // + + //javadoc: AlignMTB::process(src, dst) + public void process(List src, List dst) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + Mat dst_mat = Converters.vector_Mat_to_Mat(dst); + process_1(nativeObj, src_mat.nativeObj, dst_mat.nativeObj); + + return; + } + + + // + // C++: void cv::AlignMTB::setCut(bool value) + // + + //javadoc: AlignMTB::setCut(value) + public void setCut(boolean value) + { + + setCut_0(nativeObj, value); + + return; + } + + + // + // C++: void cv::AlignMTB::setExcludeRange(int exclude_range) + // + + //javadoc: AlignMTB::setExcludeRange(exclude_range) + public void setExcludeRange(int exclude_range) + { + + setExcludeRange_0(nativeObj, exclude_range); + + return; + } + + + // + // C++: void cv::AlignMTB::setMaxBits(int max_bits) + // + + //javadoc: AlignMTB::setMaxBits(max_bits) + public void setMaxBits(int max_bits) + { + + setMaxBits_0(nativeObj, max_bits); + + return; + } + + + // + // C++: void cv::AlignMTB::shiftMat(Mat src, Mat& dst, Point shift) + // + + //javadoc: AlignMTB::shiftMat(src, dst, shift) + public void shiftMat(Mat src, Mat dst, Point shift) + { + + shiftMat_0(nativeObj, src.nativeObj, dst.nativeObj, shift.x, shift.y); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Point cv::AlignMTB::calculateShift(Mat img0, Mat img1) + private static native double[] calculateShift_0(long nativeObj, long img0_nativeObj, long img1_nativeObj); + + // C++: bool cv::AlignMTB::getCut() + private static native boolean getCut_0(long nativeObj); + + // C++: int cv::AlignMTB::getExcludeRange() + private static native int getExcludeRange_0(long nativeObj); + + // C++: int cv::AlignMTB::getMaxBits() + private static native int getMaxBits_0(long nativeObj); + + // C++: void cv::AlignMTB::computeBitmaps(Mat img, Mat& tb, Mat& eb) + private static native void computeBitmaps_0(long nativeObj, long img_nativeObj, long tb_nativeObj, long eb_nativeObj); + + // C++: void cv::AlignMTB::process(vector_Mat src, vector_Mat dst, Mat times, Mat response) + private static native void process_0(long nativeObj, long src_mat_nativeObj, long dst_mat_nativeObj, long times_nativeObj, long response_nativeObj); + + // C++: void cv::AlignMTB::process(vector_Mat src, vector_Mat dst) + private static native void process_1(long nativeObj, long src_mat_nativeObj, long dst_mat_nativeObj); + + // C++: void cv::AlignMTB::setCut(bool value) + private static native void setCut_0(long nativeObj, boolean value); + + // C++: void cv::AlignMTB::setExcludeRange(int exclude_range) + private static native void setExcludeRange_0(long nativeObj, int exclude_range); + + // C++: void cv::AlignMTB::setMaxBits(int max_bits) + private static native void setMaxBits_0(long nativeObj, int max_bits); + + // C++: void cv::AlignMTB::shiftMat(Mat src, Mat& dst, Point shift) + private static native void shiftMat_0(long nativeObj, long src_nativeObj, long dst_nativeObj, double shift_x, double shift_y); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateCRF.java b/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateCRF.java new file mode 100644 index 00000000000..53d7501d4d0 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateCRF.java @@ -0,0 +1,49 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.utils.Converters; + +// C++: class CalibrateCRF +//javadoc: CalibrateCRF + +public class CalibrateCRF extends Algorithm { + + protected CalibrateCRF(long addr) { super(addr); } + + // internal usage only + public static CalibrateCRF __fromPtr__(long addr) { return new CalibrateCRF(addr); } + + // + // C++: void cv::CalibrateCRF::process(vector_Mat src, Mat& dst, Mat times) + // + + //javadoc: CalibrateCRF::process(src, dst, times) + public void process(List src, Mat dst, Mat times) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + process_0(nativeObj, src_mat.nativeObj, dst.nativeObj, times.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: void cv::CalibrateCRF::process(vector_Mat src, Mat& dst, Mat times) + private static native void process_0(long nativeObj, long src_mat_nativeObj, long dst_nativeObj, long times_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateDebevec.java b/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateDebevec.java new file mode 100644 index 00000000000..4411d000e87 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateDebevec.java @@ -0,0 +1,130 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import org.opencv.photo.CalibrateCRF; + +// C++: class CalibrateDebevec +//javadoc: CalibrateDebevec + +public class CalibrateDebevec extends CalibrateCRF { + + protected CalibrateDebevec(long addr) { super(addr); } + + // internal usage only + public static CalibrateDebevec __fromPtr__(long addr) { return new CalibrateDebevec(addr); } + + // + // C++: bool cv::CalibrateDebevec::getRandom() + // + + //javadoc: CalibrateDebevec::getRandom() + public boolean getRandom() + { + + boolean retVal = getRandom_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::CalibrateDebevec::getLambda() + // + + //javadoc: CalibrateDebevec::getLambda() + public float getLambda() + { + + float retVal = getLambda_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::CalibrateDebevec::getSamples() + // + + //javadoc: CalibrateDebevec::getSamples() + public int getSamples() + { + + int retVal = getSamples_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::CalibrateDebevec::setLambda(float lambda) + // + + //javadoc: CalibrateDebevec::setLambda(lambda) + public void setLambda(float lambda) + { + + setLambda_0(nativeObj, lambda); + + return; + } + + + // + // C++: void cv::CalibrateDebevec::setRandom(bool random) + // + + //javadoc: CalibrateDebevec::setRandom(random) + public void setRandom(boolean random) + { + + setRandom_0(nativeObj, random); + + return; + } + + + // + // C++: void cv::CalibrateDebevec::setSamples(int samples) + // + + //javadoc: CalibrateDebevec::setSamples(samples) + public void setSamples(int samples) + { + + setSamples_0(nativeObj, samples); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: bool cv::CalibrateDebevec::getRandom() + private static native boolean getRandom_0(long nativeObj); + + // C++: float cv::CalibrateDebevec::getLambda() + private static native float getLambda_0(long nativeObj); + + // C++: int cv::CalibrateDebevec::getSamples() + private static native int getSamples_0(long nativeObj); + + // C++: void cv::CalibrateDebevec::setLambda(float lambda) + private static native void setLambda_0(long nativeObj, float lambda); + + // C++: void cv::CalibrateDebevec::setRandom(bool random) + private static native void setRandom_0(long nativeObj, boolean random); + + // C++: void cv::CalibrateDebevec::setSamples(int samples) + private static native void setSamples_0(long nativeObj, int samples); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateRobertson.java b/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateRobertson.java new file mode 100644 index 00000000000..5cd0d9a3fc8 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/CalibrateRobertson.java @@ -0,0 +1,114 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import org.opencv.core.Mat; +import org.opencv.photo.CalibrateCRF; + +// C++: class CalibrateRobertson +//javadoc: CalibrateRobertson + +public class CalibrateRobertson extends CalibrateCRF { + + protected CalibrateRobertson(long addr) { super(addr); } + + // internal usage only + public static CalibrateRobertson __fromPtr__(long addr) { return new CalibrateRobertson(addr); } + + // + // C++: Mat cv::CalibrateRobertson::getRadiance() + // + + //javadoc: CalibrateRobertson::getRadiance() + public Mat getRadiance() + { + + Mat retVal = new Mat(getRadiance_0(nativeObj)); + + return retVal; + } + + + // + // C++: float cv::CalibrateRobertson::getThreshold() + // + + //javadoc: CalibrateRobertson::getThreshold() + public float getThreshold() + { + + float retVal = getThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::CalibrateRobertson::getMaxIter() + // + + //javadoc: CalibrateRobertson::getMaxIter() + public int getMaxIter() + { + + int retVal = getMaxIter_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::CalibrateRobertson::setMaxIter(int max_iter) + // + + //javadoc: CalibrateRobertson::setMaxIter(max_iter) + public void setMaxIter(int max_iter) + { + + setMaxIter_0(nativeObj, max_iter); + + return; + } + + + // + // C++: void cv::CalibrateRobertson::setThreshold(float threshold) + // + + //javadoc: CalibrateRobertson::setThreshold(threshold) + public void setThreshold(float threshold) + { + + setThreshold_0(nativeObj, threshold); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: Mat cv::CalibrateRobertson::getRadiance() + private static native long getRadiance_0(long nativeObj); + + // C++: float cv::CalibrateRobertson::getThreshold() + private static native float getThreshold_0(long nativeObj); + + // C++: int cv::CalibrateRobertson::getMaxIter() + private static native int getMaxIter_0(long nativeObj); + + // C++: void cv::CalibrateRobertson::setMaxIter(int max_iter) + private static native void setMaxIter_0(long nativeObj, int max_iter); + + // C++: void cv::CalibrateRobertson::setThreshold(float threshold) + private static native void setThreshold_0(long nativeObj, float threshold); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/MergeDebevec.java b/openCVLibrary3/src/main/java/org/opencv/photo/MergeDebevec.java new file mode 100644 index 00000000000..8ac00d11fc5 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/MergeDebevec.java @@ -0,0 +1,66 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.photo.MergeExposures; +import org.opencv.utils.Converters; + +// C++: class MergeDebevec +//javadoc: MergeDebevec + +public class MergeDebevec extends MergeExposures { + + protected MergeDebevec(long addr) { super(addr); } + + // internal usage only + public static MergeDebevec __fromPtr__(long addr) { return new MergeDebevec(addr); } + + // + // C++: void cv::MergeDebevec::process(vector_Mat src, Mat& dst, Mat times, Mat response) + // + + //javadoc: MergeDebevec::process(src, dst, times, response) + public void process(List src, Mat dst, Mat times, Mat response) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + process_0(nativeObj, src_mat.nativeObj, dst.nativeObj, times.nativeObj, response.nativeObj); + + return; + } + + + // + // C++: void cv::MergeDebevec::process(vector_Mat src, Mat& dst, Mat times) + // + + //javadoc: MergeDebevec::process(src, dst, times) + public void process(List src, Mat dst, Mat times) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + process_1(nativeObj, src_mat.nativeObj, dst.nativeObj, times.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: void cv::MergeDebevec::process(vector_Mat src, Mat& dst, Mat times, Mat response) + private static native void process_0(long nativeObj, long src_mat_nativeObj, long dst_nativeObj, long times_nativeObj, long response_nativeObj); + + // C++: void cv::MergeDebevec::process(vector_Mat src, Mat& dst, Mat times) + private static native void process_1(long nativeObj, long src_mat_nativeObj, long dst_nativeObj, long times_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/MergeExposures.java b/openCVLibrary3/src/main/java/org/opencv/photo/MergeExposures.java new file mode 100644 index 00000000000..68ba61fcd0d --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/MergeExposures.java @@ -0,0 +1,49 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; +import org.opencv.utils.Converters; + +// C++: class MergeExposures +//javadoc: MergeExposures + +public class MergeExposures extends Algorithm { + + protected MergeExposures(long addr) { super(addr); } + + // internal usage only + public static MergeExposures __fromPtr__(long addr) { return new MergeExposures(addr); } + + // + // C++: void cv::MergeExposures::process(vector_Mat src, Mat& dst, Mat times, Mat response) + // + + //javadoc: MergeExposures::process(src, dst, times, response) + public void process(List src, Mat dst, Mat times, Mat response) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + process_0(nativeObj, src_mat.nativeObj, dst.nativeObj, times.nativeObj, response.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: void cv::MergeExposures::process(vector_Mat src, Mat& dst, Mat times, Mat response) + private static native void process_0(long nativeObj, long src_mat_nativeObj, long dst_nativeObj, long times_nativeObj, long response_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/MergeMertens.java b/openCVLibrary3/src/main/java/org/opencv/photo/MergeMertens.java new file mode 100644 index 00000000000..fd9e85b3aa4 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/MergeMertens.java @@ -0,0 +1,168 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.photo.MergeExposures; +import org.opencv.utils.Converters; + +// C++: class MergeMertens +//javadoc: MergeMertens + +public class MergeMertens extends MergeExposures { + + protected MergeMertens(long addr) { super(addr); } + + // internal usage only + public static MergeMertens __fromPtr__(long addr) { return new MergeMertens(addr); } + + // + // C++: float cv::MergeMertens::getContrastWeight() + // + + //javadoc: MergeMertens::getContrastWeight() + public float getContrastWeight() + { + + float retVal = getContrastWeight_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::MergeMertens::getExposureWeight() + // + + //javadoc: MergeMertens::getExposureWeight() + public float getExposureWeight() + { + + float retVal = getExposureWeight_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::MergeMertens::getSaturationWeight() + // + + //javadoc: MergeMertens::getSaturationWeight() + public float getSaturationWeight() + { + + float retVal = getSaturationWeight_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::MergeMertens::process(vector_Mat src, Mat& dst, Mat times, Mat response) + // + + //javadoc: MergeMertens::process(src, dst, times, response) + public void process(List src, Mat dst, Mat times, Mat response) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + process_0(nativeObj, src_mat.nativeObj, dst.nativeObj, times.nativeObj, response.nativeObj); + + return; + } + + + // + // C++: void cv::MergeMertens::process(vector_Mat src, Mat& dst) + // + + //javadoc: MergeMertens::process(src, dst) + public void process(List src, Mat dst) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + process_1(nativeObj, src_mat.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::MergeMertens::setContrastWeight(float contrast_weiht) + // + + //javadoc: MergeMertens::setContrastWeight(contrast_weiht) + public void setContrastWeight(float contrast_weiht) + { + + setContrastWeight_0(nativeObj, contrast_weiht); + + return; + } + + + // + // C++: void cv::MergeMertens::setExposureWeight(float exposure_weight) + // + + //javadoc: MergeMertens::setExposureWeight(exposure_weight) + public void setExposureWeight(float exposure_weight) + { + + setExposureWeight_0(nativeObj, exposure_weight); + + return; + } + + + // + // C++: void cv::MergeMertens::setSaturationWeight(float saturation_weight) + // + + //javadoc: MergeMertens::setSaturationWeight(saturation_weight) + public void setSaturationWeight(float saturation_weight) + { + + setSaturationWeight_0(nativeObj, saturation_weight); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: float cv::MergeMertens::getContrastWeight() + private static native float getContrastWeight_0(long nativeObj); + + // C++: float cv::MergeMertens::getExposureWeight() + private static native float getExposureWeight_0(long nativeObj); + + // C++: float cv::MergeMertens::getSaturationWeight() + private static native float getSaturationWeight_0(long nativeObj); + + // C++: void cv::MergeMertens::process(vector_Mat src, Mat& dst, Mat times, Mat response) + private static native void process_0(long nativeObj, long src_mat_nativeObj, long dst_nativeObj, long times_nativeObj, long response_nativeObj); + + // C++: void cv::MergeMertens::process(vector_Mat src, Mat& dst) + private static native void process_1(long nativeObj, long src_mat_nativeObj, long dst_nativeObj); + + // C++: void cv::MergeMertens::setContrastWeight(float contrast_weiht) + private static native void setContrastWeight_0(long nativeObj, float contrast_weiht); + + // C++: void cv::MergeMertens::setExposureWeight(float exposure_weight) + private static native void setExposureWeight_0(long nativeObj, float exposure_weight); + + // C++: void cv::MergeMertens::setSaturationWeight(float saturation_weight) + private static native void setSaturationWeight_0(long nativeObj, float saturation_weight); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/MergeRobertson.java b/openCVLibrary3/src/main/java/org/opencv/photo/MergeRobertson.java new file mode 100644 index 00000000000..536907d2074 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/MergeRobertson.java @@ -0,0 +1,66 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.photo.MergeExposures; +import org.opencv.utils.Converters; + +// C++: class MergeRobertson +//javadoc: MergeRobertson + +public class MergeRobertson extends MergeExposures { + + protected MergeRobertson(long addr) { super(addr); } + + // internal usage only + public static MergeRobertson __fromPtr__(long addr) { return new MergeRobertson(addr); } + + // + // C++: void cv::MergeRobertson::process(vector_Mat src, Mat& dst, Mat times, Mat response) + // + + //javadoc: MergeRobertson::process(src, dst, times, response) + public void process(List src, Mat dst, Mat times, Mat response) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + process_0(nativeObj, src_mat.nativeObj, dst.nativeObj, times.nativeObj, response.nativeObj); + + return; + } + + + // + // C++: void cv::MergeRobertson::process(vector_Mat src, Mat& dst, Mat times) + // + + //javadoc: MergeRobertson::process(src, dst, times) + public void process(List src, Mat dst, Mat times) + { + Mat src_mat = Converters.vector_Mat_to_Mat(src); + process_1(nativeObj, src_mat.nativeObj, dst.nativeObj, times.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: void cv::MergeRobertson::process(vector_Mat src, Mat& dst, Mat times, Mat response) + private static native void process_0(long nativeObj, long src_mat_nativeObj, long dst_nativeObj, long times_nativeObj, long response_nativeObj); + + // C++: void cv::MergeRobertson::process(vector_Mat src, Mat& dst, Mat times) + private static native void process_1(long nativeObj, long src_mat_nativeObj, long dst_nativeObj, long times_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/Photo.java b/openCVLibrary3/src/main/java/org/opencv/photo/Photo.java new file mode 100644 index 00000000000..6d00154f8d3 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/Photo.java @@ -0,0 +1,1197 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfFloat; +import org.opencv.core.Point; +import org.opencv.photo.AlignMTB; +import org.opencv.photo.CalibrateDebevec; +import org.opencv.photo.CalibrateRobertson; +import org.opencv.photo.MergeDebevec; +import org.opencv.photo.MergeMertens; +import org.opencv.photo.MergeRobertson; +import org.opencv.photo.Tonemap; +import org.opencv.photo.TonemapDrago; +import org.opencv.photo.TonemapDurand; +import org.opencv.photo.TonemapMantiuk; +import org.opencv.photo.TonemapReinhard; +import org.opencv.utils.Converters; + +// C++: class Photo +//javadoc: Photo + +public class Photo { + + private static final int + CV_INPAINT_NS = 0, + CV_INPAINT_TELEA = 1; + + + public static final int + INPAINT_NS = 0, + INPAINT_TELEA = 1, + NORMAL_CLONE = 1, + MIXED_CLONE = 2, + MONOCHROME_TRANSFER = 3, + RECURS_FILTER = 1, + NORMCONV_FILTER = 2, + LDR_SIZE = 256; + + + // + // C++: Ptr_AlignMTB cv::createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true) + // + + //javadoc: createAlignMTB(max_bits, exclude_range, cut) + public static AlignMTB createAlignMTB(int max_bits, int exclude_range, boolean cut) + { + + AlignMTB retVal = AlignMTB.__fromPtr__(createAlignMTB_0(max_bits, exclude_range, cut)); + + return retVal; + } + + //javadoc: createAlignMTB(max_bits, exclude_range) + public static AlignMTB createAlignMTB(int max_bits, int exclude_range) + { + + AlignMTB retVal = AlignMTB.__fromPtr__(createAlignMTB_1(max_bits, exclude_range)); + + return retVal; + } + + //javadoc: createAlignMTB(max_bits) + public static AlignMTB createAlignMTB(int max_bits) + { + + AlignMTB retVal = AlignMTB.__fromPtr__(createAlignMTB_2(max_bits)); + + return retVal; + } + + //javadoc: createAlignMTB() + public static AlignMTB createAlignMTB() + { + + AlignMTB retVal = AlignMTB.__fromPtr__(createAlignMTB_3()); + + return retVal; + } + + + // + // C++: Ptr_CalibrateDebevec cv::createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false) + // + + //javadoc: createCalibrateDebevec(samples, lambda, random) + public static CalibrateDebevec createCalibrateDebevec(int samples, float lambda, boolean random) + { + + CalibrateDebevec retVal = CalibrateDebevec.__fromPtr__(createCalibrateDebevec_0(samples, lambda, random)); + + return retVal; + } + + //javadoc: createCalibrateDebevec(samples, lambda) + public static CalibrateDebevec createCalibrateDebevec(int samples, float lambda) + { + + CalibrateDebevec retVal = CalibrateDebevec.__fromPtr__(createCalibrateDebevec_1(samples, lambda)); + + return retVal; + } + + //javadoc: createCalibrateDebevec(samples) + public static CalibrateDebevec createCalibrateDebevec(int samples) + { + + CalibrateDebevec retVal = CalibrateDebevec.__fromPtr__(createCalibrateDebevec_2(samples)); + + return retVal; + } + + //javadoc: createCalibrateDebevec() + public static CalibrateDebevec createCalibrateDebevec() + { + + CalibrateDebevec retVal = CalibrateDebevec.__fromPtr__(createCalibrateDebevec_3()); + + return retVal; + } + + + // + // C++: Ptr_CalibrateRobertson cv::createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f) + // + + //javadoc: createCalibrateRobertson(max_iter, threshold) + public static CalibrateRobertson createCalibrateRobertson(int max_iter, float threshold) + { + + CalibrateRobertson retVal = CalibrateRobertson.__fromPtr__(createCalibrateRobertson_0(max_iter, threshold)); + + return retVal; + } + + //javadoc: createCalibrateRobertson(max_iter) + public static CalibrateRobertson createCalibrateRobertson(int max_iter) + { + + CalibrateRobertson retVal = CalibrateRobertson.__fromPtr__(createCalibrateRobertson_1(max_iter)); + + return retVal; + } + + //javadoc: createCalibrateRobertson() + public static CalibrateRobertson createCalibrateRobertson() + { + + CalibrateRobertson retVal = CalibrateRobertson.__fromPtr__(createCalibrateRobertson_2()); + + return retVal; + } + + + // + // C++: Ptr_MergeDebevec cv::createMergeDebevec() + // + + //javadoc: createMergeDebevec() + public static MergeDebevec createMergeDebevec() + { + + MergeDebevec retVal = MergeDebevec.__fromPtr__(createMergeDebevec_0()); + + return retVal; + } + + + // + // C++: Ptr_MergeMertens cv::createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f) + // + + //javadoc: createMergeMertens(contrast_weight, saturation_weight, exposure_weight) + public static MergeMertens createMergeMertens(float contrast_weight, float saturation_weight, float exposure_weight) + { + + MergeMertens retVal = MergeMertens.__fromPtr__(createMergeMertens_0(contrast_weight, saturation_weight, exposure_weight)); + + return retVal; + } + + //javadoc: createMergeMertens(contrast_weight, saturation_weight) + public static MergeMertens createMergeMertens(float contrast_weight, float saturation_weight) + { + + MergeMertens retVal = MergeMertens.__fromPtr__(createMergeMertens_1(contrast_weight, saturation_weight)); + + return retVal; + } + + //javadoc: createMergeMertens(contrast_weight) + public static MergeMertens createMergeMertens(float contrast_weight) + { + + MergeMertens retVal = MergeMertens.__fromPtr__(createMergeMertens_2(contrast_weight)); + + return retVal; + } + + //javadoc: createMergeMertens() + public static MergeMertens createMergeMertens() + { + + MergeMertens retVal = MergeMertens.__fromPtr__(createMergeMertens_3()); + + return retVal; + } + + + // + // C++: Ptr_MergeRobertson cv::createMergeRobertson() + // + + //javadoc: createMergeRobertson() + public static MergeRobertson createMergeRobertson() + { + + MergeRobertson retVal = MergeRobertson.__fromPtr__(createMergeRobertson_0()); + + return retVal; + } + + + // + // C++: Ptr_Tonemap cv::createTonemap(float gamma = 1.0f) + // + + //javadoc: createTonemap(gamma) + public static Tonemap createTonemap(float gamma) + { + + Tonemap retVal = Tonemap.__fromPtr__(createTonemap_0(gamma)); + + return retVal; + } + + //javadoc: createTonemap() + public static Tonemap createTonemap() + { + + Tonemap retVal = Tonemap.__fromPtr__(createTonemap_1()); + + return retVal; + } + + + // + // C++: Ptr_TonemapDrago cv::createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f) + // + + //javadoc: createTonemapDrago(gamma, saturation, bias) + public static TonemapDrago createTonemapDrago(float gamma, float saturation, float bias) + { + + TonemapDrago retVal = TonemapDrago.__fromPtr__(createTonemapDrago_0(gamma, saturation, bias)); + + return retVal; + } + + //javadoc: createTonemapDrago(gamma, saturation) + public static TonemapDrago createTonemapDrago(float gamma, float saturation) + { + + TonemapDrago retVal = TonemapDrago.__fromPtr__(createTonemapDrago_1(gamma, saturation)); + + return retVal; + } + + //javadoc: createTonemapDrago(gamma) + public static TonemapDrago createTonemapDrago(float gamma) + { + + TonemapDrago retVal = TonemapDrago.__fromPtr__(createTonemapDrago_2(gamma)); + + return retVal; + } + + //javadoc: createTonemapDrago() + public static TonemapDrago createTonemapDrago() + { + + TonemapDrago retVal = TonemapDrago.__fromPtr__(createTonemapDrago_3()); + + return retVal; + } + + + // + // C++: Ptr_TonemapDurand cv::createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float saturation = 1.0f, float sigma_space = 2.0f, float sigma_color = 2.0f) + // + + //javadoc: createTonemapDurand(gamma, contrast, saturation, sigma_space, sigma_color) + public static TonemapDurand createTonemapDurand(float gamma, float contrast, float saturation, float sigma_space, float sigma_color) + { + + TonemapDurand retVal = TonemapDurand.__fromPtr__(createTonemapDurand_0(gamma, contrast, saturation, sigma_space, sigma_color)); + + return retVal; + } + + //javadoc: createTonemapDurand(gamma, contrast, saturation, sigma_space) + public static TonemapDurand createTonemapDurand(float gamma, float contrast, float saturation, float sigma_space) + { + + TonemapDurand retVal = TonemapDurand.__fromPtr__(createTonemapDurand_1(gamma, contrast, saturation, sigma_space)); + + return retVal; + } + + //javadoc: createTonemapDurand(gamma, contrast, saturation) + public static TonemapDurand createTonemapDurand(float gamma, float contrast, float saturation) + { + + TonemapDurand retVal = TonemapDurand.__fromPtr__(createTonemapDurand_2(gamma, contrast, saturation)); + + return retVal; + } + + //javadoc: createTonemapDurand(gamma, contrast) + public static TonemapDurand createTonemapDurand(float gamma, float contrast) + { + + TonemapDurand retVal = TonemapDurand.__fromPtr__(createTonemapDurand_3(gamma, contrast)); + + return retVal; + } + + //javadoc: createTonemapDurand(gamma) + public static TonemapDurand createTonemapDurand(float gamma) + { + + TonemapDurand retVal = TonemapDurand.__fromPtr__(createTonemapDurand_4(gamma)); + + return retVal; + } + + //javadoc: createTonemapDurand() + public static TonemapDurand createTonemapDurand() + { + + TonemapDurand retVal = TonemapDurand.__fromPtr__(createTonemapDurand_5()); + + return retVal; + } + + + // + // C++: Ptr_TonemapMantiuk cv::createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f) + // + + //javadoc: createTonemapMantiuk(gamma, scale, saturation) + public static TonemapMantiuk createTonemapMantiuk(float gamma, float scale, float saturation) + { + + TonemapMantiuk retVal = TonemapMantiuk.__fromPtr__(createTonemapMantiuk_0(gamma, scale, saturation)); + + return retVal; + } + + //javadoc: createTonemapMantiuk(gamma, scale) + public static TonemapMantiuk createTonemapMantiuk(float gamma, float scale) + { + + TonemapMantiuk retVal = TonemapMantiuk.__fromPtr__(createTonemapMantiuk_1(gamma, scale)); + + return retVal; + } + + //javadoc: createTonemapMantiuk(gamma) + public static TonemapMantiuk createTonemapMantiuk(float gamma) + { + + TonemapMantiuk retVal = TonemapMantiuk.__fromPtr__(createTonemapMantiuk_2(gamma)); + + return retVal; + } + + //javadoc: createTonemapMantiuk() + public static TonemapMantiuk createTonemapMantiuk() + { + + TonemapMantiuk retVal = TonemapMantiuk.__fromPtr__(createTonemapMantiuk_3()); + + return retVal; + } + + + // + // C++: Ptr_TonemapReinhard cv::createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f) + // + + //javadoc: createTonemapReinhard(gamma, intensity, light_adapt, color_adapt) + public static TonemapReinhard createTonemapReinhard(float gamma, float intensity, float light_adapt, float color_adapt) + { + + TonemapReinhard retVal = TonemapReinhard.__fromPtr__(createTonemapReinhard_0(gamma, intensity, light_adapt, color_adapt)); + + return retVal; + } + + //javadoc: createTonemapReinhard(gamma, intensity, light_adapt) + public static TonemapReinhard createTonemapReinhard(float gamma, float intensity, float light_adapt) + { + + TonemapReinhard retVal = TonemapReinhard.__fromPtr__(createTonemapReinhard_1(gamma, intensity, light_adapt)); + + return retVal; + } + + //javadoc: createTonemapReinhard(gamma, intensity) + public static TonemapReinhard createTonemapReinhard(float gamma, float intensity) + { + + TonemapReinhard retVal = TonemapReinhard.__fromPtr__(createTonemapReinhard_2(gamma, intensity)); + + return retVal; + } + + //javadoc: createTonemapReinhard(gamma) + public static TonemapReinhard createTonemapReinhard(float gamma) + { + + TonemapReinhard retVal = TonemapReinhard.__fromPtr__(createTonemapReinhard_3(gamma)); + + return retVal; + } + + //javadoc: createTonemapReinhard() + public static TonemapReinhard createTonemapReinhard() + { + + TonemapReinhard retVal = TonemapReinhard.__fromPtr__(createTonemapReinhard_4()); + + return retVal; + } + + + // + // C++: void cv::colorChange(Mat src, Mat mask, Mat& dst, float red_mul = 1.0f, float green_mul = 1.0f, float blue_mul = 1.0f) + // + + //javadoc: colorChange(src, mask, dst, red_mul, green_mul, blue_mul) + public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul, float green_mul, float blue_mul) + { + + colorChange_0(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul, green_mul, blue_mul); + + return; + } + + //javadoc: colorChange(src, mask, dst, red_mul, green_mul) + public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul, float green_mul) + { + + colorChange_1(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul, green_mul); + + return; + } + + //javadoc: colorChange(src, mask, dst, red_mul) + public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul) + { + + colorChange_2(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul); + + return; + } + + //javadoc: colorChange(src, mask, dst) + public static void colorChange(Mat src, Mat mask, Mat dst) + { + + colorChange_3(src.nativeObj, mask.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::decolor(Mat src, Mat& grayscale, Mat& color_boost) + // + + //javadoc: decolor(src, grayscale, color_boost) + public static void decolor(Mat src, Mat grayscale, Mat color_boost) + { + + decolor_0(src.nativeObj, grayscale.nativeObj, color_boost.nativeObj); + + return; + } + + + // + // C++: void cv::denoise_TVL1(vector_Mat observations, Mat result, double lambda = 1.0, int niters = 30) + // + + //javadoc: denoise_TVL1(observations, result, lambda, niters) + public static void denoise_TVL1(List observations, Mat result, double lambda, int niters) + { + Mat observations_mat = Converters.vector_Mat_to_Mat(observations); + denoise_TVL1_0(observations_mat.nativeObj, result.nativeObj, lambda, niters); + + return; + } + + //javadoc: denoise_TVL1(observations, result, lambda) + public static void denoise_TVL1(List observations, Mat result, double lambda) + { + Mat observations_mat = Converters.vector_Mat_to_Mat(observations); + denoise_TVL1_1(observations_mat.nativeObj, result.nativeObj, lambda); + + return; + } + + //javadoc: denoise_TVL1(observations, result) + public static void denoise_TVL1(List observations, Mat result) + { + Mat observations_mat = Converters.vector_Mat_to_Mat(observations); + denoise_TVL1_2(observations_mat.nativeObj, result.nativeObj); + + return; + } + + + // + // C++: void cv::detailEnhance(Mat src, Mat& dst, float sigma_s = 10, float sigma_r = 0.15f) + // + + //javadoc: detailEnhance(src, dst, sigma_s, sigma_r) + public static void detailEnhance(Mat src, Mat dst, float sigma_s, float sigma_r) + { + + detailEnhance_0(src.nativeObj, dst.nativeObj, sigma_s, sigma_r); + + return; + } + + //javadoc: detailEnhance(src, dst, sigma_s) + public static void detailEnhance(Mat src, Mat dst, float sigma_s) + { + + detailEnhance_1(src.nativeObj, dst.nativeObj, sigma_s); + + return; + } + + //javadoc: detailEnhance(src, dst) + public static void detailEnhance(Mat src, Mat dst) + { + + detailEnhance_2(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::edgePreservingFilter(Mat src, Mat& dst, int flags = 1, float sigma_s = 60, float sigma_r = 0.4f) + // + + //javadoc: edgePreservingFilter(src, dst, flags, sigma_s, sigma_r) + public static void edgePreservingFilter(Mat src, Mat dst, int flags, float sigma_s, float sigma_r) + { + + edgePreservingFilter_0(src.nativeObj, dst.nativeObj, flags, sigma_s, sigma_r); + + return; + } + + //javadoc: edgePreservingFilter(src, dst, flags, sigma_s) + public static void edgePreservingFilter(Mat src, Mat dst, int flags, float sigma_s) + { + + edgePreservingFilter_1(src.nativeObj, dst.nativeObj, flags, sigma_s); + + return; + } + + //javadoc: edgePreservingFilter(src, dst, flags) + public static void edgePreservingFilter(Mat src, Mat dst, int flags) + { + + edgePreservingFilter_2(src.nativeObj, dst.nativeObj, flags); + + return; + } + + //javadoc: edgePreservingFilter(src, dst) + public static void edgePreservingFilter(Mat src, Mat dst) + { + + edgePreservingFilter_3(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21) + // + + //javadoc: fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize) + public static void fastNlMeansDenoising(Mat src, Mat dst, float h, int templateWindowSize, int searchWindowSize) + { + + fastNlMeansDenoising_0(src.nativeObj, dst.nativeObj, h, templateWindowSize, searchWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoising(src, dst, h, templateWindowSize) + public static void fastNlMeansDenoising(Mat src, Mat dst, float h, int templateWindowSize) + { + + fastNlMeansDenoising_1(src.nativeObj, dst.nativeObj, h, templateWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoising(src, dst, h) + public static void fastNlMeansDenoising(Mat src, Mat dst, float h) + { + + fastNlMeansDenoising_2(src.nativeObj, dst.nativeObj, h); + + return; + } + + //javadoc: fastNlMeansDenoising(src, dst) + public static void fastNlMeansDenoising(Mat src, Mat dst) + { + + fastNlMeansDenoising_3(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2) + // + + //javadoc: fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize, normType) + public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize, int searchWindowSize, int normType) + { + Mat h_mat = h; + fastNlMeansDenoising_4(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize, searchWindowSize, normType); + + return; + } + + //javadoc: fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize) + public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize, int searchWindowSize) + { + Mat h_mat = h; + fastNlMeansDenoising_5(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize, searchWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoising(src, dst, h, templateWindowSize) + public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize) + { + Mat h_mat = h; + fastNlMeansDenoising_6(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoising(src, dst, h) + public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h) + { + Mat h_mat = h; + fastNlMeansDenoising_7(src.nativeObj, dst.nativeObj, h_mat.nativeObj); + + return; + } + + + // + // C++: void cv::fastNlMeansDenoisingColored(Mat src, Mat& dst, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21) + // + + //javadoc: fastNlMeansDenoisingColored(src, dst, h, hColor, templateWindowSize, searchWindowSize) + public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor, int templateWindowSize, int searchWindowSize) + { + + fastNlMeansDenoisingColored_0(src.nativeObj, dst.nativeObj, h, hColor, templateWindowSize, searchWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoisingColored(src, dst, h, hColor, templateWindowSize) + public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor, int templateWindowSize) + { + + fastNlMeansDenoisingColored_1(src.nativeObj, dst.nativeObj, h, hColor, templateWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoisingColored(src, dst, h, hColor) + public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor) + { + + fastNlMeansDenoisingColored_2(src.nativeObj, dst.nativeObj, h, hColor); + + return; + } + + //javadoc: fastNlMeansDenoisingColored(src, dst, h) + public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h) + { + + fastNlMeansDenoisingColored_3(src.nativeObj, dst.nativeObj, h); + + return; + } + + //javadoc: fastNlMeansDenoisingColored(src, dst) + public static void fastNlMeansDenoisingColored(Mat src, Mat dst) + { + + fastNlMeansDenoisingColored_4(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::fastNlMeansDenoisingColoredMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21) + // + + //javadoc: fastNlMeansDenoisingColoredMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, hColor, templateWindowSize, searchWindowSize) + public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingColoredMulti_0(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor, templateWindowSize, searchWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoisingColoredMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, hColor, templateWindowSize) + public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingColoredMulti_1(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor, templateWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoisingColoredMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, hColor) + public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingColoredMulti_2(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor); + + return; + } + + //javadoc: fastNlMeansDenoisingColoredMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h) + public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingColoredMulti_3(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h); + + return; + } + + //javadoc: fastNlMeansDenoisingColoredMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize) + public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingColoredMulti_4(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize); + + return; + } + + + // + // C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21) + // + + //javadoc: fastNlMeansDenoisingMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize) + public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingMulti_0(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoisingMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize) + public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingMulti_1(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoisingMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h) + public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingMulti_2(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h); + + return; + } + + //javadoc: fastNlMeansDenoisingMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize) + public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + fastNlMeansDenoisingMulti_3(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize); + + return; + } + + + // + // C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2) + // + + //javadoc: fastNlMeansDenoisingMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize, normType) + public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize, int searchWindowSize, int normType) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + Mat h_mat = h; + fastNlMeansDenoisingMulti_4(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize, searchWindowSize, normType); + + return; + } + + //javadoc: fastNlMeansDenoisingMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize) + public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize, int searchWindowSize) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + Mat h_mat = h; + fastNlMeansDenoisingMulti_5(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize, searchWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoisingMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize) + public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + Mat h_mat = h; + fastNlMeansDenoisingMulti_6(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize); + + return; + } + + //javadoc: fastNlMeansDenoisingMulti(srcImgs, dst, imgToDenoiseIndex, temporalWindowSize, h) + public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h) + { + Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); + Mat h_mat = h; + fastNlMeansDenoisingMulti_7(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj); + + return; + } + + + // + // C++: void cv::illuminationChange(Mat src, Mat mask, Mat& dst, float alpha = 0.2f, float beta = 0.4f) + // + + //javadoc: illuminationChange(src, mask, dst, alpha, beta) + public static void illuminationChange(Mat src, Mat mask, Mat dst, float alpha, float beta) + { + + illuminationChange_0(src.nativeObj, mask.nativeObj, dst.nativeObj, alpha, beta); + + return; + } + + //javadoc: illuminationChange(src, mask, dst, alpha) + public static void illuminationChange(Mat src, Mat mask, Mat dst, float alpha) + { + + illuminationChange_1(src.nativeObj, mask.nativeObj, dst.nativeObj, alpha); + + return; + } + + //javadoc: illuminationChange(src, mask, dst) + public static void illuminationChange(Mat src, Mat mask, Mat dst) + { + + illuminationChange_2(src.nativeObj, mask.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::inpaint(Mat src, Mat inpaintMask, Mat& dst, double inpaintRadius, int flags) + // + + //javadoc: inpaint(src, inpaintMask, dst, inpaintRadius, flags) + public static void inpaint(Mat src, Mat inpaintMask, Mat dst, double inpaintRadius, int flags) + { + + inpaint_0(src.nativeObj, inpaintMask.nativeObj, dst.nativeObj, inpaintRadius, flags); + + return; + } + + + // + // C++: void cv::pencilSketch(Mat src, Mat& dst1, Mat& dst2, float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f) + // + + //javadoc: pencilSketch(src, dst1, dst2, sigma_s, sigma_r, shade_factor) + public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s, float sigma_r, float shade_factor) + { + + pencilSketch_0(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s, sigma_r, shade_factor); + + return; + } + + //javadoc: pencilSketch(src, dst1, dst2, sigma_s, sigma_r) + public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s, float sigma_r) + { + + pencilSketch_1(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s, sigma_r); + + return; + } + + //javadoc: pencilSketch(src, dst1, dst2, sigma_s) + public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s) + { + + pencilSketch_2(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s); + + return; + } + + //javadoc: pencilSketch(src, dst1, dst2) + public static void pencilSketch(Mat src, Mat dst1, Mat dst2) + { + + pencilSketch_3(src.nativeObj, dst1.nativeObj, dst2.nativeObj); + + return; + } + + + // + // C++: void cv::seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat& blend, int flags) + // + + //javadoc: seamlessClone(src, dst, mask, p, blend, flags) + public static void seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat blend, int flags) + { + + seamlessClone_0(src.nativeObj, dst.nativeObj, mask.nativeObj, p.x, p.y, blend.nativeObj, flags); + + return; + } + + + // + // C++: void cv::stylization(Mat src, Mat& dst, float sigma_s = 60, float sigma_r = 0.45f) + // + + //javadoc: stylization(src, dst, sigma_s, sigma_r) + public static void stylization(Mat src, Mat dst, float sigma_s, float sigma_r) + { + + stylization_0(src.nativeObj, dst.nativeObj, sigma_s, sigma_r); + + return; + } + + //javadoc: stylization(src, dst, sigma_s) + public static void stylization(Mat src, Mat dst, float sigma_s) + { + + stylization_1(src.nativeObj, dst.nativeObj, sigma_s); + + return; + } + + //javadoc: stylization(src, dst) + public static void stylization(Mat src, Mat dst) + { + + stylization_2(src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::textureFlattening(Mat src, Mat mask, Mat& dst, float low_threshold = 30, float high_threshold = 45, int kernel_size = 3) + // + + //javadoc: textureFlattening(src, mask, dst, low_threshold, high_threshold, kernel_size) + public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold, float high_threshold, int kernel_size) + { + + textureFlattening_0(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold, high_threshold, kernel_size); + + return; + } + + //javadoc: textureFlattening(src, mask, dst, low_threshold, high_threshold) + public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold, float high_threshold) + { + + textureFlattening_1(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold, high_threshold); + + return; + } + + //javadoc: textureFlattening(src, mask, dst, low_threshold) + public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold) + { + + textureFlattening_2(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold); + + return; + } + + //javadoc: textureFlattening(src, mask, dst) + public static void textureFlattening(Mat src, Mat mask, Mat dst) + { + + textureFlattening_3(src.nativeObj, mask.nativeObj, dst.nativeObj); + + return; + } + + + + + // C++: Ptr_AlignMTB cv::createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true) + private static native long createAlignMTB_0(int max_bits, int exclude_range, boolean cut); + private static native long createAlignMTB_1(int max_bits, int exclude_range); + private static native long createAlignMTB_2(int max_bits); + private static native long createAlignMTB_3(); + + // C++: Ptr_CalibrateDebevec cv::createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false) + private static native long createCalibrateDebevec_0(int samples, float lambda, boolean random); + private static native long createCalibrateDebevec_1(int samples, float lambda); + private static native long createCalibrateDebevec_2(int samples); + private static native long createCalibrateDebevec_3(); + + // C++: Ptr_CalibrateRobertson cv::createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f) + private static native long createCalibrateRobertson_0(int max_iter, float threshold); + private static native long createCalibrateRobertson_1(int max_iter); + private static native long createCalibrateRobertson_2(); + + // C++: Ptr_MergeDebevec cv::createMergeDebevec() + private static native long createMergeDebevec_0(); + + // C++: Ptr_MergeMertens cv::createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f) + private static native long createMergeMertens_0(float contrast_weight, float saturation_weight, float exposure_weight); + private static native long createMergeMertens_1(float contrast_weight, float saturation_weight); + private static native long createMergeMertens_2(float contrast_weight); + private static native long createMergeMertens_3(); + + // C++: Ptr_MergeRobertson cv::createMergeRobertson() + private static native long createMergeRobertson_0(); + + // C++: Ptr_Tonemap cv::createTonemap(float gamma = 1.0f) + private static native long createTonemap_0(float gamma); + private static native long createTonemap_1(); + + // C++: Ptr_TonemapDrago cv::createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f) + private static native long createTonemapDrago_0(float gamma, float saturation, float bias); + private static native long createTonemapDrago_1(float gamma, float saturation); + private static native long createTonemapDrago_2(float gamma); + private static native long createTonemapDrago_3(); + + // C++: Ptr_TonemapDurand cv::createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float saturation = 1.0f, float sigma_space = 2.0f, float sigma_color = 2.0f) + private static native long createTonemapDurand_0(float gamma, float contrast, float saturation, float sigma_space, float sigma_color); + private static native long createTonemapDurand_1(float gamma, float contrast, float saturation, float sigma_space); + private static native long createTonemapDurand_2(float gamma, float contrast, float saturation); + private static native long createTonemapDurand_3(float gamma, float contrast); + private static native long createTonemapDurand_4(float gamma); + private static native long createTonemapDurand_5(); + + // C++: Ptr_TonemapMantiuk cv::createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f) + private static native long createTonemapMantiuk_0(float gamma, float scale, float saturation); + private static native long createTonemapMantiuk_1(float gamma, float scale); + private static native long createTonemapMantiuk_2(float gamma); + private static native long createTonemapMantiuk_3(); + + // C++: Ptr_TonemapReinhard cv::createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f) + private static native long createTonemapReinhard_0(float gamma, float intensity, float light_adapt, float color_adapt); + private static native long createTonemapReinhard_1(float gamma, float intensity, float light_adapt); + private static native long createTonemapReinhard_2(float gamma, float intensity); + private static native long createTonemapReinhard_3(float gamma); + private static native long createTonemapReinhard_4(); + + // C++: void cv::colorChange(Mat src, Mat mask, Mat& dst, float red_mul = 1.0f, float green_mul = 1.0f, float blue_mul = 1.0f) + private static native void colorChange_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul, float green_mul, float blue_mul); + private static native void colorChange_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul, float green_mul); + private static native void colorChange_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul); + private static native void colorChange_3(long src_nativeObj, long mask_nativeObj, long dst_nativeObj); + + // C++: void cv::decolor(Mat src, Mat& grayscale, Mat& color_boost) + private static native void decolor_0(long src_nativeObj, long grayscale_nativeObj, long color_boost_nativeObj); + + // C++: void cv::denoise_TVL1(vector_Mat observations, Mat result, double lambda = 1.0, int niters = 30) + private static native void denoise_TVL1_0(long observations_mat_nativeObj, long result_nativeObj, double lambda, int niters); + private static native void denoise_TVL1_1(long observations_mat_nativeObj, long result_nativeObj, double lambda); + private static native void denoise_TVL1_2(long observations_mat_nativeObj, long result_nativeObj); + + // C++: void cv::detailEnhance(Mat src, Mat& dst, float sigma_s = 10, float sigma_r = 0.15f) + private static native void detailEnhance_0(long src_nativeObj, long dst_nativeObj, float sigma_s, float sigma_r); + private static native void detailEnhance_1(long src_nativeObj, long dst_nativeObj, float sigma_s); + private static native void detailEnhance_2(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::edgePreservingFilter(Mat src, Mat& dst, int flags = 1, float sigma_s = 60, float sigma_r = 0.4f) + private static native void edgePreservingFilter_0(long src_nativeObj, long dst_nativeObj, int flags, float sigma_s, float sigma_r); + private static native void edgePreservingFilter_1(long src_nativeObj, long dst_nativeObj, int flags, float sigma_s); + private static native void edgePreservingFilter_2(long src_nativeObj, long dst_nativeObj, int flags); + private static native void edgePreservingFilter_3(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21) + private static native void fastNlMeansDenoising_0(long src_nativeObj, long dst_nativeObj, float h, int templateWindowSize, int searchWindowSize); + private static native void fastNlMeansDenoising_1(long src_nativeObj, long dst_nativeObj, float h, int templateWindowSize); + private static native void fastNlMeansDenoising_2(long src_nativeObj, long dst_nativeObj, float h); + private static native void fastNlMeansDenoising_3(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2) + private static native void fastNlMeansDenoising_4(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize, int normType); + private static native void fastNlMeansDenoising_5(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize); + private static native void fastNlMeansDenoising_6(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize); + private static native void fastNlMeansDenoising_7(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj); + + // C++: void cv::fastNlMeansDenoisingColored(Mat src, Mat& dst, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21) + private static native void fastNlMeansDenoisingColored_0(long src_nativeObj, long dst_nativeObj, float h, float hColor, int templateWindowSize, int searchWindowSize); + private static native void fastNlMeansDenoisingColored_1(long src_nativeObj, long dst_nativeObj, float h, float hColor, int templateWindowSize); + private static native void fastNlMeansDenoisingColored_2(long src_nativeObj, long dst_nativeObj, float h, float hColor); + private static native void fastNlMeansDenoisingColored_3(long src_nativeObj, long dst_nativeObj, float h); + private static native void fastNlMeansDenoisingColored_4(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::fastNlMeansDenoisingColoredMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21) + private static native void fastNlMeansDenoisingColoredMulti_0(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize); + private static native void fastNlMeansDenoisingColoredMulti_1(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize); + private static native void fastNlMeansDenoisingColoredMulti_2(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor); + private static native void fastNlMeansDenoisingColoredMulti_3(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h); + private static native void fastNlMeansDenoisingColoredMulti_4(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize); + + // C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21) + private static native void fastNlMeansDenoisingMulti_0(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize); + private static native void fastNlMeansDenoisingMulti_1(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize); + private static native void fastNlMeansDenoisingMulti_2(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h); + private static native void fastNlMeansDenoisingMulti_3(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize); + + // C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2) + private static native void fastNlMeansDenoisingMulti_4(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize, int normType); + private static native void fastNlMeansDenoisingMulti_5(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize); + private static native void fastNlMeansDenoisingMulti_6(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize); + private static native void fastNlMeansDenoisingMulti_7(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj); + + // C++: void cv::illuminationChange(Mat src, Mat mask, Mat& dst, float alpha = 0.2f, float beta = 0.4f) + private static native void illuminationChange_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float alpha, float beta); + private static native void illuminationChange_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float alpha); + private static native void illuminationChange_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj); + + // C++: void cv::inpaint(Mat src, Mat inpaintMask, Mat& dst, double inpaintRadius, int flags) + private static native void inpaint_0(long src_nativeObj, long inpaintMask_nativeObj, long dst_nativeObj, double inpaintRadius, int flags); + + // C++: void cv::pencilSketch(Mat src, Mat& dst1, Mat& dst2, float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f) + private static native void pencilSketch_0(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s, float sigma_r, float shade_factor); + private static native void pencilSketch_1(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s, float sigma_r); + private static native void pencilSketch_2(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s); + private static native void pencilSketch_3(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj); + + // C++: void cv::seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat& blend, int flags) + private static native void seamlessClone_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj, double p_x, double p_y, long blend_nativeObj, int flags); + + // C++: void cv::stylization(Mat src, Mat& dst, float sigma_s = 60, float sigma_r = 0.45f) + private static native void stylization_0(long src_nativeObj, long dst_nativeObj, float sigma_s, float sigma_r); + private static native void stylization_1(long src_nativeObj, long dst_nativeObj, float sigma_s); + private static native void stylization_2(long src_nativeObj, long dst_nativeObj); + + // C++: void cv::textureFlattening(Mat src, Mat mask, Mat& dst, float low_threshold = 30, float high_threshold = 45, int kernel_size = 3) + private static native void textureFlattening_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold, float high_threshold, int kernel_size); + private static native void textureFlattening_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold, float high_threshold); + private static native void textureFlattening_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold); + private static native void textureFlattening_3(long src_nativeObj, long mask_nativeObj, long dst_nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/Tonemap.java b/openCVLibrary3/src/main/java/org/opencv/photo/Tonemap.java new file mode 100644 index 00000000000..e816a0345ee --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/Tonemap.java @@ -0,0 +1,80 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; + +// C++: class Tonemap +//javadoc: Tonemap + +public class Tonemap extends Algorithm { + + protected Tonemap(long addr) { super(addr); } + + // internal usage only + public static Tonemap __fromPtr__(long addr) { return new Tonemap(addr); } + + // + // C++: float cv::Tonemap::getGamma() + // + + //javadoc: Tonemap::getGamma() + public float getGamma() + { + + float retVal = getGamma_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::Tonemap::process(Mat src, Mat& dst) + // + + //javadoc: Tonemap::process(src, dst) + public void process(Mat src, Mat dst) + { + + process_0(nativeObj, src.nativeObj, dst.nativeObj); + + return; + } + + + // + // C++: void cv::Tonemap::setGamma(float gamma) + // + + //javadoc: Tonemap::setGamma(gamma) + public void setGamma(float gamma) + { + + setGamma_0(nativeObj, gamma); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: float cv::Tonemap::getGamma() + private static native float getGamma_0(long nativeObj); + + // C++: void cv::Tonemap::process(Mat src, Mat& dst) + private static native void process_0(long nativeObj, long src_nativeObj, long dst_nativeObj); + + // C++: void cv::Tonemap::setGamma(float gamma) + private static native void setGamma_0(long nativeObj, float gamma); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/TonemapDrago.java b/openCVLibrary3/src/main/java/org/opencv/photo/TonemapDrago.java new file mode 100644 index 00000000000..15d2ef2b37b --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/TonemapDrago.java @@ -0,0 +1,96 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import org.opencv.photo.Tonemap; + +// C++: class TonemapDrago +//javadoc: TonemapDrago + +public class TonemapDrago extends Tonemap { + + protected TonemapDrago(long addr) { super(addr); } + + // internal usage only + public static TonemapDrago __fromPtr__(long addr) { return new TonemapDrago(addr); } + + // + // C++: float cv::TonemapDrago::getBias() + // + + //javadoc: TonemapDrago::getBias() + public float getBias() + { + + float retVal = getBias_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::TonemapDrago::getSaturation() + // + + //javadoc: TonemapDrago::getSaturation() + public float getSaturation() + { + + float retVal = getSaturation_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::TonemapDrago::setBias(float bias) + // + + //javadoc: TonemapDrago::setBias(bias) + public void setBias(float bias) + { + + setBias_0(nativeObj, bias); + + return; + } + + + // + // C++: void cv::TonemapDrago::setSaturation(float saturation) + // + + //javadoc: TonemapDrago::setSaturation(saturation) + public void setSaturation(float saturation) + { + + setSaturation_0(nativeObj, saturation); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: float cv::TonemapDrago::getBias() + private static native float getBias_0(long nativeObj); + + // C++: float cv::TonemapDrago::getSaturation() + private static native float getSaturation_0(long nativeObj); + + // C++: void cv::TonemapDrago::setBias(float bias) + private static native void setBias_0(long nativeObj, float bias); + + // C++: void cv::TonemapDrago::setSaturation(float saturation) + private static native void setSaturation_0(long nativeObj, float saturation); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/TonemapDurand.java b/openCVLibrary3/src/main/java/org/opencv/photo/TonemapDurand.java new file mode 100644 index 00000000000..89d0025e77d --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/TonemapDurand.java @@ -0,0 +1,164 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import org.opencv.photo.Tonemap; + +// C++: class TonemapDurand +//javadoc: TonemapDurand + +public class TonemapDurand extends Tonemap { + + protected TonemapDurand(long addr) { super(addr); } + + // internal usage only + public static TonemapDurand __fromPtr__(long addr) { return new TonemapDurand(addr); } + + // + // C++: float cv::TonemapDurand::getContrast() + // + + //javadoc: TonemapDurand::getContrast() + public float getContrast() + { + + float retVal = getContrast_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::TonemapDurand::getSaturation() + // + + //javadoc: TonemapDurand::getSaturation() + public float getSaturation() + { + + float retVal = getSaturation_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::TonemapDurand::getSigmaColor() + // + + //javadoc: TonemapDurand::getSigmaColor() + public float getSigmaColor() + { + + float retVal = getSigmaColor_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::TonemapDurand::getSigmaSpace() + // + + //javadoc: TonemapDurand::getSigmaSpace() + public float getSigmaSpace() + { + + float retVal = getSigmaSpace_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::TonemapDurand::setContrast(float contrast) + // + + //javadoc: TonemapDurand::setContrast(contrast) + public void setContrast(float contrast) + { + + setContrast_0(nativeObj, contrast); + + return; + } + + + // + // C++: void cv::TonemapDurand::setSaturation(float saturation) + // + + //javadoc: TonemapDurand::setSaturation(saturation) + public void setSaturation(float saturation) + { + + setSaturation_0(nativeObj, saturation); + + return; + } + + + // + // C++: void cv::TonemapDurand::setSigmaColor(float sigma_color) + // + + //javadoc: TonemapDurand::setSigmaColor(sigma_color) + public void setSigmaColor(float sigma_color) + { + + setSigmaColor_0(nativeObj, sigma_color); + + return; + } + + + // + // C++: void cv::TonemapDurand::setSigmaSpace(float sigma_space) + // + + //javadoc: TonemapDurand::setSigmaSpace(sigma_space) + public void setSigmaSpace(float sigma_space) + { + + setSigmaSpace_0(nativeObj, sigma_space); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: float cv::TonemapDurand::getContrast() + private static native float getContrast_0(long nativeObj); + + // C++: float cv::TonemapDurand::getSaturation() + private static native float getSaturation_0(long nativeObj); + + // C++: float cv::TonemapDurand::getSigmaColor() + private static native float getSigmaColor_0(long nativeObj); + + // C++: float cv::TonemapDurand::getSigmaSpace() + private static native float getSigmaSpace_0(long nativeObj); + + // C++: void cv::TonemapDurand::setContrast(float contrast) + private static native void setContrast_0(long nativeObj, float contrast); + + // C++: void cv::TonemapDurand::setSaturation(float saturation) + private static native void setSaturation_0(long nativeObj, float saturation); + + // C++: void cv::TonemapDurand::setSigmaColor(float sigma_color) + private static native void setSigmaColor_0(long nativeObj, float sigma_color); + + // C++: void cv::TonemapDurand::setSigmaSpace(float sigma_space) + private static native void setSigmaSpace_0(long nativeObj, float sigma_space); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/TonemapMantiuk.java b/openCVLibrary3/src/main/java/org/opencv/photo/TonemapMantiuk.java new file mode 100644 index 00000000000..49f24a75ff9 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/TonemapMantiuk.java @@ -0,0 +1,96 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import org.opencv.photo.Tonemap; + +// C++: class TonemapMantiuk +//javadoc: TonemapMantiuk + +public class TonemapMantiuk extends Tonemap { + + protected TonemapMantiuk(long addr) { super(addr); } + + // internal usage only + public static TonemapMantiuk __fromPtr__(long addr) { return new TonemapMantiuk(addr); } + + // + // C++: float cv::TonemapMantiuk::getSaturation() + // + + //javadoc: TonemapMantiuk::getSaturation() + public float getSaturation() + { + + float retVal = getSaturation_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::TonemapMantiuk::getScale() + // + + //javadoc: TonemapMantiuk::getScale() + public float getScale() + { + + float retVal = getScale_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::TonemapMantiuk::setSaturation(float saturation) + // + + //javadoc: TonemapMantiuk::setSaturation(saturation) + public void setSaturation(float saturation) + { + + setSaturation_0(nativeObj, saturation); + + return; + } + + + // + // C++: void cv::TonemapMantiuk::setScale(float scale) + // + + //javadoc: TonemapMantiuk::setScale(scale) + public void setScale(float scale) + { + + setScale_0(nativeObj, scale); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: float cv::TonemapMantiuk::getSaturation() + private static native float getSaturation_0(long nativeObj); + + // C++: float cv::TonemapMantiuk::getScale() + private static native float getScale_0(long nativeObj); + + // C++: void cv::TonemapMantiuk::setSaturation(float saturation) + private static native void setSaturation_0(long nativeObj, float saturation); + + // C++: void cv::TonemapMantiuk::setScale(float scale) + private static native void setScale_0(long nativeObj, float scale); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/photo/TonemapReinhard.java b/openCVLibrary3/src/main/java/org/opencv/photo/TonemapReinhard.java new file mode 100644 index 00000000000..354e233f64f --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/photo/TonemapReinhard.java @@ -0,0 +1,130 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.photo; + +import org.opencv.photo.Tonemap; + +// C++: class TonemapReinhard +//javadoc: TonemapReinhard + +public class TonemapReinhard extends Tonemap { + + protected TonemapReinhard(long addr) { super(addr); } + + // internal usage only + public static TonemapReinhard __fromPtr__(long addr) { return new TonemapReinhard(addr); } + + // + // C++: float cv::TonemapReinhard::getColorAdaptation() + // + + //javadoc: TonemapReinhard::getColorAdaptation() + public float getColorAdaptation() + { + + float retVal = getColorAdaptation_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::TonemapReinhard::getIntensity() + // + + //javadoc: TonemapReinhard::getIntensity() + public float getIntensity() + { + + float retVal = getIntensity_0(nativeObj); + + return retVal; + } + + + // + // C++: float cv::TonemapReinhard::getLightAdaptation() + // + + //javadoc: TonemapReinhard::getLightAdaptation() + public float getLightAdaptation() + { + + float retVal = getLightAdaptation_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::TonemapReinhard::setColorAdaptation(float color_adapt) + // + + //javadoc: TonemapReinhard::setColorAdaptation(color_adapt) + public void setColorAdaptation(float color_adapt) + { + + setColorAdaptation_0(nativeObj, color_adapt); + + return; + } + + + // + // C++: void cv::TonemapReinhard::setIntensity(float intensity) + // + + //javadoc: TonemapReinhard::setIntensity(intensity) + public void setIntensity(float intensity) + { + + setIntensity_0(nativeObj, intensity); + + return; + } + + + // + // C++: void cv::TonemapReinhard::setLightAdaptation(float light_adapt) + // + + //javadoc: TonemapReinhard::setLightAdaptation(light_adapt) + public void setLightAdaptation(float light_adapt) + { + + setLightAdaptation_0(nativeObj, light_adapt); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: float cv::TonemapReinhard::getColorAdaptation() + private static native float getColorAdaptation_0(long nativeObj); + + // C++: float cv::TonemapReinhard::getIntensity() + private static native float getIntensity_0(long nativeObj); + + // C++: float cv::TonemapReinhard::getLightAdaptation() + private static native float getLightAdaptation_0(long nativeObj); + + // C++: void cv::TonemapReinhard::setColorAdaptation(float color_adapt) + private static native void setColorAdaptation_0(long nativeObj, float color_adapt); + + // C++: void cv::TonemapReinhard::setIntensity(float intensity) + private static native void setIntensity_0(long nativeObj, float intensity); + + // C++: void cv::TonemapReinhard::setLightAdaptation(float light_adapt) + private static native void setLightAdaptation_0(long nativeObj, float light_adapt); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/utils/Converters.java b/openCVLibrary3/src/main/java/org/opencv/utils/Converters.java new file mode 100644 index 00000000000..c0575a66656 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/utils/Converters.java @@ -0,0 +1,773 @@ +package org.opencv.utils; + +import java.util.ArrayList; +import java.util.List; + +import org.opencv.core.CvType; +import org.opencv.core.Mat; +import org.opencv.core.MatOfByte; +import org.opencv.core.MatOfDMatch; +import org.opencv.core.MatOfKeyPoint; +import org.opencv.core.MatOfPoint; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.MatOfPoint3f; +import org.opencv.core.Point; +import org.opencv.core.Point3; +import org.opencv.core.Rect; +import org.opencv.core.Rect2d; +import org.opencv.core.DMatch; +import org.opencv.core.KeyPoint; + +public class Converters { + + public static Mat vector_Point_to_Mat(List pts) { + return vector_Point_to_Mat(pts, CvType.CV_32S); + } + + public static Mat vector_Point2f_to_Mat(List pts) { + return vector_Point_to_Mat(pts, CvType.CV_32F); + } + + public static Mat vector_Point2d_to_Mat(List pts) { + return vector_Point_to_Mat(pts, CvType.CV_64F); + } + + public static Mat vector_Point_to_Mat(List pts, int typeDepth) { + Mat res; + int count = (pts != null) ? pts.size() : 0; + if (count > 0) { + switch (typeDepth) { + case CvType.CV_32S: { + res = new Mat(count, 1, CvType.CV_32SC2); + int[] buff = new int[count * 2]; + for (int i = 0; i < count; i++) { + Point p = pts.get(i); + buff[i * 2] = (int) p.x; + buff[i * 2 + 1] = (int) p.y; + } + res.put(0, 0, buff); + } + break; + + case CvType.CV_32F: { + res = new Mat(count, 1, CvType.CV_32FC2); + float[] buff = new float[count * 2]; + for (int i = 0; i < count; i++) { + Point p = pts.get(i); + buff[i * 2] = (float) p.x; + buff[i * 2 + 1] = (float) p.y; + } + res.put(0, 0, buff); + } + break; + + case CvType.CV_64F: { + res = new Mat(count, 1, CvType.CV_64FC2); + double[] buff = new double[count * 2]; + for (int i = 0; i < count; i++) { + Point p = pts.get(i); + buff[i * 2] = p.x; + buff[i * 2 + 1] = p.y; + } + res.put(0, 0, buff); + } + break; + + default: + throw new IllegalArgumentException("'typeDepth' can be CV_32S, CV_32F or CV_64F"); + } + } else { + res = new Mat(); + } + return res; + } + + public static Mat vector_Point3i_to_Mat(List pts) { + return vector_Point3_to_Mat(pts, CvType.CV_32S); + } + + public static Mat vector_Point3f_to_Mat(List pts) { + return vector_Point3_to_Mat(pts, CvType.CV_32F); + } + + public static Mat vector_Point3d_to_Mat(List pts) { + return vector_Point3_to_Mat(pts, CvType.CV_64F); + } + + public static Mat vector_Point3_to_Mat(List pts, int typeDepth) { + Mat res; + int count = (pts != null) ? pts.size() : 0; + if (count > 0) { + switch (typeDepth) { + case CvType.CV_32S: { + res = new Mat(count, 1, CvType.CV_32SC3); + int[] buff = new int[count * 3]; + for (int i = 0; i < count; i++) { + Point3 p = pts.get(i); + buff[i * 3] = (int) p.x; + buff[i * 3 + 1] = (int) p.y; + buff[i * 3 + 2] = (int) p.z; + } + res.put(0, 0, buff); + } + break; + + case CvType.CV_32F: { + res = new Mat(count, 1, CvType.CV_32FC3); + float[] buff = new float[count * 3]; + for (int i = 0; i < count; i++) { + Point3 p = pts.get(i); + buff[i * 3] = (float) p.x; + buff[i * 3 + 1] = (float) p.y; + buff[i * 3 + 2] = (float) p.z; + } + res.put(0, 0, buff); + } + break; + + case CvType.CV_64F: { + res = new Mat(count, 1, CvType.CV_64FC3); + double[] buff = new double[count * 3]; + for (int i = 0; i < count; i++) { + Point3 p = pts.get(i); + buff[i * 3] = p.x; + buff[i * 3 + 1] = p.y; + buff[i * 3 + 2] = p.z; + } + res.put(0, 0, buff); + } + break; + + default: + throw new IllegalArgumentException("'typeDepth' can be CV_32S, CV_32F or CV_64F"); + } + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_Point2f(Mat m, List pts) { + Mat_to_vector_Point(m, pts); + } + + public static void Mat_to_vector_Point2d(Mat m, List pts) { + Mat_to_vector_Point(m, pts); + } + + public static void Mat_to_vector_Point(Mat m, List pts) { + if (pts == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + int count = m.rows(); + int type = m.type(); + if (m.cols() != 1) + throw new java.lang.IllegalArgumentException("Input Mat should have one column\n" + m); + + pts.clear(); + if (type == CvType.CV_32SC2) { + int[] buff = new int[2 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + pts.add(new Point(buff[i * 2], buff[i * 2 + 1])); + } + } else if (type == CvType.CV_32FC2) { + float[] buff = new float[2 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + pts.add(new Point(buff[i * 2], buff[i * 2 + 1])); + } + } else if (type == CvType.CV_64FC2) { + double[] buff = new double[2 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + pts.add(new Point(buff[i * 2], buff[i * 2 + 1])); + } + } else { + throw new java.lang.IllegalArgumentException( + "Input Mat should be of CV_32SC2, CV_32FC2 or CV_64FC2 type\n" + m); + } + } + + public static void Mat_to_vector_Point3i(Mat m, List pts) { + Mat_to_vector_Point3(m, pts); + } + + public static void Mat_to_vector_Point3f(Mat m, List pts) { + Mat_to_vector_Point3(m, pts); + } + + public static void Mat_to_vector_Point3d(Mat m, List pts) { + Mat_to_vector_Point3(m, pts); + } + + public static void Mat_to_vector_Point3(Mat m, List pts) { + if (pts == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + int count = m.rows(); + int type = m.type(); + if (m.cols() != 1) + throw new java.lang.IllegalArgumentException("Input Mat should have one column\n" + m); + + pts.clear(); + if (type == CvType.CV_32SC3) { + int[] buff = new int[3 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + pts.add(new Point3(buff[i * 3], buff[i * 3 + 1], buff[i * 3 + 2])); + } + } else if (type == CvType.CV_32FC3) { + float[] buff = new float[3 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + pts.add(new Point3(buff[i * 3], buff[i * 3 + 1], buff[i * 3 + 2])); + } + } else if (type == CvType.CV_64FC3) { + double[] buff = new double[3 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + pts.add(new Point3(buff[i * 3], buff[i * 3 + 1], buff[i * 3 + 2])); + } + } else { + throw new java.lang.IllegalArgumentException( + "Input Mat should be of CV_32SC3, CV_32FC3 or CV_64FC3 type\n" + m); + } + } + + public static Mat vector_Mat_to_Mat(List mats) { + Mat res; + int count = (mats != null) ? mats.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_32SC2); + int[] buff = new int[count * 2]; + for (int i = 0; i < count; i++) { + long addr = mats.get(i).nativeObj; + buff[i * 2] = (int) (addr >> 32); + buff[i * 2 + 1] = (int) (addr & 0xffffffff); + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_Mat(Mat m, List mats) { + if (mats == null) + throw new java.lang.IllegalArgumentException("mats == null"); + int count = m.rows(); + if (CvType.CV_32SC2 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_32SC2 != m.type() || m.cols()!=1\n" + m); + + mats.clear(); + int[] buff = new int[count * 2]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + long addr = (((long) buff[i * 2]) << 32) | (((long) buff[i * 2 + 1]) & 0xffffffffL); + mats.add(new Mat(addr)); + } + } + + public static Mat vector_float_to_Mat(List fs) { + Mat res; + int count = (fs != null) ? fs.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_32FC1); + float[] buff = new float[count]; + for (int i = 0; i < count; i++) { + float f = fs.get(i); + buff[i] = f; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_float(Mat m, List fs) { + if (fs == null) + throw new java.lang.IllegalArgumentException("fs == null"); + int count = m.rows(); + if (CvType.CV_32FC1 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_32FC1 != m.type() || m.cols()!=1\n" + m); + + fs.clear(); + float[] buff = new float[count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + fs.add(buff[i]); + } + } + + public static Mat vector_uchar_to_Mat(List bs) { + Mat res; + int count = (bs != null) ? bs.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_8UC1); + byte[] buff = new byte[count]; + for (int i = 0; i < count; i++) { + byte b = bs.get(i); + buff[i] = b; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_uchar(Mat m, List us) { + if (us == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + int count = m.rows(); + if (CvType.CV_8UC1 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_8UC1 != m.type() || m.cols()!=1\n" + m); + + us.clear(); + byte[] buff = new byte[count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + us.add(buff[i]); + } + } + + public static Mat vector_char_to_Mat(List bs) { + Mat res; + int count = (bs != null) ? bs.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_8SC1); + byte[] buff = new byte[count]; + for (int i = 0; i < count; i++) { + byte b = bs.get(i); + buff[i] = b; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static Mat vector_int_to_Mat(List is) { + Mat res; + int count = (is != null) ? is.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_32SC1); + int[] buff = new int[count]; + for (int i = 0; i < count; i++) { + int v = is.get(i); + buff[i] = v; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_int(Mat m, List is) { + if (is == null) + throw new java.lang.IllegalArgumentException("is == null"); + int count = m.rows(); + if (CvType.CV_32SC1 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_32SC1 != m.type() || m.cols()!=1\n" + m); + + is.clear(); + int[] buff = new int[count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + is.add(buff[i]); + } + } + + public static void Mat_to_vector_char(Mat m, List bs) { + if (bs == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + int count = m.rows(); + if (CvType.CV_8SC1 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_8SC1 != m.type() || m.cols()!=1\n" + m); + + bs.clear(); + byte[] buff = new byte[count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + bs.add(buff[i]); + } + } + + public static Mat vector_Rect_to_Mat(List rs) { + Mat res; + int count = (rs != null) ? rs.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_32SC4); + int[] buff = new int[4 * count]; + for (int i = 0; i < count; i++) { + Rect r = rs.get(i); + buff[4 * i] = r.x; + buff[4 * i + 1] = r.y; + buff[4 * i + 2] = r.width; + buff[4 * i + 3] = r.height; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_Rect(Mat m, List rs) { + if (rs == null) + throw new java.lang.IllegalArgumentException("rs == null"); + int count = m.rows(); + if (CvType.CV_32SC4 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_32SC4 != m.type() || m.rows()!=1\n" + m); + + rs.clear(); + int[] buff = new int[4 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + rs.add(new Rect(buff[4 * i], buff[4 * i + 1], buff[4 * i + 2], buff[4 * i + 3])); + } + } + + public static Mat vector_Rect2d_to_Mat(List rs) { + Mat res; + int count = (rs != null) ? rs.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_64FC4); + double[] buff = new double[4 * count]; + for (int i = 0; i < count; i++) { + Rect2d r = rs.get(i); + buff[4 * i] = r.x; + buff[4 * i + 1] = r.y; + buff[4 * i + 2] = r.width; + buff[4 * i + 3] = r.height; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_Rect2d(Mat m, List rs) { + if (rs == null) + throw new java.lang.IllegalArgumentException("rs == null"); + int count = m.rows(); + if (CvType.CV_64FC4 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_64FC4 != m.type() || m.rows()!=1\n" + m); + + rs.clear(); + double[] buff = new double[4 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + rs.add(new Rect2d(buff[4 * i], buff[4 * i + 1], buff[4 * i + 2], buff[4 * i + 3])); + } + } + + public static Mat vector_KeyPoint_to_Mat(List kps) { + Mat res; + int count = (kps != null) ? kps.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_64FC(7)); + double[] buff = new double[count * 7]; + for (int i = 0; i < count; i++) { + KeyPoint kp = kps.get(i); + buff[7 * i] = kp.pt.x; + buff[7 * i + 1] = kp.pt.y; + buff[7 * i + 2] = kp.size; + buff[7 * i + 3] = kp.angle; + buff[7 * i + 4] = kp.response; + buff[7 * i + 5] = kp.octave; + buff[7 * i + 6] = kp.class_id; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_KeyPoint(Mat m, List kps) { + if (kps == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + int count = m.rows(); + if (CvType.CV_64FC(7) != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_64FC(7) != m.type() || m.cols()!=1\n" + m); + + kps.clear(); + double[] buff = new double[7 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + kps.add(new KeyPoint((float) buff[7 * i], (float) buff[7 * i + 1], (float) buff[7 * i + 2], (float) buff[7 * i + 3], + (float) buff[7 * i + 4], (int) buff[7 * i + 5], (int) buff[7 * i + 6])); + } + } + + // vector_vector_Point + public static Mat vector_vector_Point_to_Mat(List pts, List mats) { + Mat res; + int lCount = (pts != null) ? pts.size() : 0; + if (lCount > 0) { + for (MatOfPoint vpt : pts) + mats.add(vpt); + res = vector_Mat_to_Mat(mats); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_vector_Point(Mat m, List pts) { + if (pts == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + + if (m == null) + throw new java.lang.IllegalArgumentException("Input Mat can't be null"); + + List mats = new ArrayList(m.rows()); + Mat_to_vector_Mat(m, mats); + for (Mat mi : mats) { + MatOfPoint pt = new MatOfPoint(mi); + pts.add(pt); + mi.release(); + } + mats.clear(); + } + + // vector_vector_Point2f + public static void Mat_to_vector_vector_Point2f(Mat m, List pts) { + if (pts == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + + if (m == null) + throw new java.lang.IllegalArgumentException("Input Mat can't be null"); + + List mats = new ArrayList(m.rows()); + Mat_to_vector_Mat(m, mats); + for (Mat mi : mats) { + MatOfPoint2f pt = new MatOfPoint2f(mi); + pts.add(pt); + mi.release(); + } + mats.clear(); + } + + // vector_vector_Point2f + public static Mat vector_vector_Point2f_to_Mat(List pts, List mats) { + Mat res; + int lCount = (pts != null) ? pts.size() : 0; + if (lCount > 0) { + for (MatOfPoint2f vpt : pts) + mats.add(vpt); + res = vector_Mat_to_Mat(mats); + } else { + res = new Mat(); + } + return res; + } + + // vector_vector_Point3f + public static void Mat_to_vector_vector_Point3f(Mat m, List pts) { + if (pts == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + + if (m == null) + throw new java.lang.IllegalArgumentException("Input Mat can't be null"); + + List mats = new ArrayList(m.rows()); + Mat_to_vector_Mat(m, mats); + for (Mat mi : mats) { + MatOfPoint3f pt = new MatOfPoint3f(mi); + pts.add(pt); + mi.release(); + } + mats.clear(); + } + + // vector_vector_Point3f + public static Mat vector_vector_Point3f_to_Mat(List pts, List mats) { + Mat res; + int lCount = (pts != null) ? pts.size() : 0; + if (lCount > 0) { + for (MatOfPoint3f vpt : pts) + mats.add(vpt); + res = vector_Mat_to_Mat(mats); + } else { + res = new Mat(); + } + return res; + } + + // vector_vector_KeyPoint + public static Mat vector_vector_KeyPoint_to_Mat(List kps, List mats) { + Mat res; + int lCount = (kps != null) ? kps.size() : 0; + if (lCount > 0) { + for (MatOfKeyPoint vkp : kps) + mats.add(vkp); + res = vector_Mat_to_Mat(mats); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_vector_KeyPoint(Mat m, List kps) { + if (kps == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + + if (m == null) + throw new java.lang.IllegalArgumentException("Input Mat can't be null"); + + List mats = new ArrayList(m.rows()); + Mat_to_vector_Mat(m, mats); + for (Mat mi : mats) { + MatOfKeyPoint vkp = new MatOfKeyPoint(mi); + kps.add(vkp); + mi.release(); + } + mats.clear(); + } + + public static Mat vector_double_to_Mat(List ds) { + Mat res; + int count = (ds != null) ? ds.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_64FC1); + double[] buff = new double[count]; + for (int i = 0; i < count; i++) { + double v = ds.get(i); + buff[i] = v; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_double(Mat m, List ds) { + if (ds == null) + throw new java.lang.IllegalArgumentException("ds == null"); + int count = m.rows(); + if (CvType.CV_64FC1 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_64FC1 != m.type() || m.cols()!=1\n" + m); + + ds.clear(); + double[] buff = new double[count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + ds.add(buff[i]); + } + } + + public static Mat vector_DMatch_to_Mat(List matches) { + Mat res; + int count = (matches != null) ? matches.size() : 0; + if (count > 0) { + res = new Mat(count, 1, CvType.CV_64FC4); + double[] buff = new double[count * 4]; + for (int i = 0; i < count; i++) { + DMatch m = matches.get(i); + buff[4 * i] = m.queryIdx; + buff[4 * i + 1] = m.trainIdx; + buff[4 * i + 2] = m.imgIdx; + buff[4 * i + 3] = m.distance; + } + res.put(0, 0, buff); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_DMatch(Mat m, List matches) { + if (matches == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + int count = m.rows(); + if (CvType.CV_64FC4 != m.type() || m.cols() != 1) + throw new java.lang.IllegalArgumentException( + "CvType.CV_64FC4 != m.type() || m.cols()!=1\n" + m); + + matches.clear(); + double[] buff = new double[4 * count]; + m.get(0, 0, buff); + for (int i = 0; i < count; i++) { + matches.add(new DMatch((int) buff[4 * i], (int) buff[4 * i + 1], (int) buff[4 * i + 2], (float) buff[4 * i + 3])); + } + } + + // vector_vector_DMatch + public static Mat vector_vector_DMatch_to_Mat(List lvdm, List mats) { + Mat res; + int lCount = (lvdm != null) ? lvdm.size() : 0; + if (lCount > 0) { + for (MatOfDMatch vdm : lvdm) + mats.add(vdm); + res = vector_Mat_to_Mat(mats); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_vector_DMatch(Mat m, List lvdm) { + if (lvdm == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + + if (m == null) + throw new java.lang.IllegalArgumentException("Input Mat can't be null"); + + List mats = new ArrayList(m.rows()); + Mat_to_vector_Mat(m, mats); + lvdm.clear(); + for (Mat mi : mats) { + MatOfDMatch vdm = new MatOfDMatch(mi); + lvdm.add(vdm); + mi.release(); + } + mats.clear(); + } + + // vector_vector_char + public static Mat vector_vector_char_to_Mat(List lvb, List mats) { + Mat res; + int lCount = (lvb != null) ? lvb.size() : 0; + if (lCount > 0) { + for (MatOfByte vb : lvb) + mats.add(vb); + res = vector_Mat_to_Mat(mats); + } else { + res = new Mat(); + } + return res; + } + + public static void Mat_to_vector_vector_char(Mat m, List> llb) { + if (llb == null) + throw new java.lang.IllegalArgumentException("Output List can't be null"); + + if (m == null) + throw new java.lang.IllegalArgumentException("Input Mat can't be null"); + + List mats = new ArrayList(m.rows()); + Mat_to_vector_Mat(m, mats); + for (Mat mi : mats) { + List lb = new ArrayList(); + Mat_to_vector_char(mi, lb); + llb.add(lb); + mi.release(); + } + mats.clear(); + } +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractor.java b/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractor.java new file mode 100644 index 00000000000..88b672459a7 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractor.java @@ -0,0 +1,73 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; + +// C++: class BackgroundSubtractor +//javadoc: BackgroundSubtractor + +public class BackgroundSubtractor extends Algorithm { + + protected BackgroundSubtractor(long addr) { super(addr); } + + // internal usage only + public static BackgroundSubtractor __fromPtr__(long addr) { return new BackgroundSubtractor(addr); } + + // + // C++: void cv::BackgroundSubtractor::apply(Mat image, Mat& fgmask, double learningRate = -1) + // + + //javadoc: BackgroundSubtractor::apply(image, fgmask, learningRate) + public void apply(Mat image, Mat fgmask, double learningRate) + { + + apply_0(nativeObj, image.nativeObj, fgmask.nativeObj, learningRate); + + return; + } + + //javadoc: BackgroundSubtractor::apply(image, fgmask) + public void apply(Mat image, Mat fgmask) + { + + apply_1(nativeObj, image.nativeObj, fgmask.nativeObj); + + return; + } + + + // + // C++: void cv::BackgroundSubtractor::getBackgroundImage(Mat& backgroundImage) + // + + //javadoc: BackgroundSubtractor::getBackgroundImage(backgroundImage) + public void getBackgroundImage(Mat backgroundImage) + { + + getBackgroundImage_0(nativeObj, backgroundImage.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: void cv::BackgroundSubtractor::apply(Mat image, Mat& fgmask, double learningRate = -1) + private static native void apply_0(long nativeObj, long image_nativeObj, long fgmask_nativeObj, double learningRate); + private static native void apply_1(long nativeObj, long image_nativeObj, long fgmask_nativeObj); + + // C++: void cv::BackgroundSubtractor::getBackgroundImage(Mat& backgroundImage) + private static native void getBackgroundImage_0(long nativeObj, long backgroundImage_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractorKNN.java b/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractorKNN.java new file mode 100644 index 00000000000..fa6028b702e --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractorKNN.java @@ -0,0 +1,266 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.video.BackgroundSubtractor; + +// C++: class BackgroundSubtractorKNN +//javadoc: BackgroundSubtractorKNN + +public class BackgroundSubtractorKNN extends BackgroundSubtractor { + + protected BackgroundSubtractorKNN(long addr) { super(addr); } + + // internal usage only + public static BackgroundSubtractorKNN __fromPtr__(long addr) { return new BackgroundSubtractorKNN(addr); } + + // + // C++: bool cv::BackgroundSubtractorKNN::getDetectShadows() + // + + //javadoc: BackgroundSubtractorKNN::getDetectShadows() + public boolean getDetectShadows() + { + + boolean retVal = getDetectShadows_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorKNN::getDist2Threshold() + // + + //javadoc: BackgroundSubtractorKNN::getDist2Threshold() + public double getDist2Threshold() + { + + double retVal = getDist2Threshold_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorKNN::getShadowThreshold() + // + + //javadoc: BackgroundSubtractorKNN::getShadowThreshold() + public double getShadowThreshold() + { + + double retVal = getShadowThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::BackgroundSubtractorKNN::getHistory() + // + + //javadoc: BackgroundSubtractorKNN::getHistory() + public int getHistory() + { + + int retVal = getHistory_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::BackgroundSubtractorKNN::getNSamples() + // + + //javadoc: BackgroundSubtractorKNN::getNSamples() + public int getNSamples() + { + + int retVal = getNSamples_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::BackgroundSubtractorKNN::getShadowValue() + // + + //javadoc: BackgroundSubtractorKNN::getShadowValue() + public int getShadowValue() + { + + int retVal = getShadowValue_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::BackgroundSubtractorKNN::getkNNSamples() + // + + //javadoc: BackgroundSubtractorKNN::getkNNSamples() + public int getkNNSamples() + { + + int retVal = getkNNSamples_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::BackgroundSubtractorKNN::setDetectShadows(bool detectShadows) + // + + //javadoc: BackgroundSubtractorKNN::setDetectShadows(detectShadows) + public void setDetectShadows(boolean detectShadows) + { + + setDetectShadows_0(nativeObj, detectShadows); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorKNN::setDist2Threshold(double _dist2Threshold) + // + + //javadoc: BackgroundSubtractorKNN::setDist2Threshold(_dist2Threshold) + public void setDist2Threshold(double _dist2Threshold) + { + + setDist2Threshold_0(nativeObj, _dist2Threshold); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorKNN::setHistory(int history) + // + + //javadoc: BackgroundSubtractorKNN::setHistory(history) + public void setHistory(int history) + { + + setHistory_0(nativeObj, history); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorKNN::setNSamples(int _nN) + // + + //javadoc: BackgroundSubtractorKNN::setNSamples(_nN) + public void setNSamples(int _nN) + { + + setNSamples_0(nativeObj, _nN); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorKNN::setShadowThreshold(double threshold) + // + + //javadoc: BackgroundSubtractorKNN::setShadowThreshold(threshold) + public void setShadowThreshold(double threshold) + { + + setShadowThreshold_0(nativeObj, threshold); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorKNN::setShadowValue(int value) + // + + //javadoc: BackgroundSubtractorKNN::setShadowValue(value) + public void setShadowValue(int value) + { + + setShadowValue_0(nativeObj, value); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorKNN::setkNNSamples(int _nkNN) + // + + //javadoc: BackgroundSubtractorKNN::setkNNSamples(_nkNN) + public void setkNNSamples(int _nkNN) + { + + setkNNSamples_0(nativeObj, _nkNN); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: bool cv::BackgroundSubtractorKNN::getDetectShadows() + private static native boolean getDetectShadows_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorKNN::getDist2Threshold() + private static native double getDist2Threshold_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorKNN::getShadowThreshold() + private static native double getShadowThreshold_0(long nativeObj); + + // C++: int cv::BackgroundSubtractorKNN::getHistory() + private static native int getHistory_0(long nativeObj); + + // C++: int cv::BackgroundSubtractorKNN::getNSamples() + private static native int getNSamples_0(long nativeObj); + + // C++: int cv::BackgroundSubtractorKNN::getShadowValue() + private static native int getShadowValue_0(long nativeObj); + + // C++: int cv::BackgroundSubtractorKNN::getkNNSamples() + private static native int getkNNSamples_0(long nativeObj); + + // C++: void cv::BackgroundSubtractorKNN::setDetectShadows(bool detectShadows) + private static native void setDetectShadows_0(long nativeObj, boolean detectShadows); + + // C++: void cv::BackgroundSubtractorKNN::setDist2Threshold(double _dist2Threshold) + private static native void setDist2Threshold_0(long nativeObj, double _dist2Threshold); + + // C++: void cv::BackgroundSubtractorKNN::setHistory(int history) + private static native void setHistory_0(long nativeObj, int history); + + // C++: void cv::BackgroundSubtractorKNN::setNSamples(int _nN) + private static native void setNSamples_0(long nativeObj, int _nN); + + // C++: void cv::BackgroundSubtractorKNN::setShadowThreshold(double threshold) + private static native void setShadowThreshold_0(long nativeObj, double threshold); + + // C++: void cv::BackgroundSubtractorKNN::setShadowValue(int value) + private static native void setShadowValue_0(long nativeObj, int value); + + // C++: void cv::BackgroundSubtractorKNN::setkNNSamples(int _nkNN) + private static native void setkNNSamples_0(long nativeObj, int _nkNN); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractorMOG2.java b/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractorMOG2.java new file mode 100644 index 00000000000..4717040358f --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/BackgroundSubtractorMOG2.java @@ -0,0 +1,464 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.core.Mat; +import org.opencv.video.BackgroundSubtractor; + +// C++: class BackgroundSubtractorMOG2 +//javadoc: BackgroundSubtractorMOG2 + +public class BackgroundSubtractorMOG2 extends BackgroundSubtractor { + + protected BackgroundSubtractorMOG2(long addr) { super(addr); } + + // internal usage only + public static BackgroundSubtractorMOG2 __fromPtr__(long addr) { return new BackgroundSubtractorMOG2(addr); } + + // + // C++: bool cv::BackgroundSubtractorMOG2::getDetectShadows() + // + + //javadoc: BackgroundSubtractorMOG2::getDetectShadows() + public boolean getDetectShadows() + { + + boolean retVal = getDetectShadows_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorMOG2::getBackgroundRatio() + // + + //javadoc: BackgroundSubtractorMOG2::getBackgroundRatio() + public double getBackgroundRatio() + { + + double retVal = getBackgroundRatio_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorMOG2::getComplexityReductionThreshold() + // + + //javadoc: BackgroundSubtractorMOG2::getComplexityReductionThreshold() + public double getComplexityReductionThreshold() + { + + double retVal = getComplexityReductionThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorMOG2::getShadowThreshold() + // + + //javadoc: BackgroundSubtractorMOG2::getShadowThreshold() + public double getShadowThreshold() + { + + double retVal = getShadowThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorMOG2::getVarInit() + // + + //javadoc: BackgroundSubtractorMOG2::getVarInit() + public double getVarInit() + { + + double retVal = getVarInit_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorMOG2::getVarMax() + // + + //javadoc: BackgroundSubtractorMOG2::getVarMax() + public double getVarMax() + { + + double retVal = getVarMax_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorMOG2::getVarMin() + // + + //javadoc: BackgroundSubtractorMOG2::getVarMin() + public double getVarMin() + { + + double retVal = getVarMin_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorMOG2::getVarThreshold() + // + + //javadoc: BackgroundSubtractorMOG2::getVarThreshold() + public double getVarThreshold() + { + + double retVal = getVarThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::BackgroundSubtractorMOG2::getVarThresholdGen() + // + + //javadoc: BackgroundSubtractorMOG2::getVarThresholdGen() + public double getVarThresholdGen() + { + + double retVal = getVarThresholdGen_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::BackgroundSubtractorMOG2::getHistory() + // + + //javadoc: BackgroundSubtractorMOG2::getHistory() + public int getHistory() + { + + int retVal = getHistory_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::BackgroundSubtractorMOG2::getNMixtures() + // + + //javadoc: BackgroundSubtractorMOG2::getNMixtures() + public int getNMixtures() + { + + int retVal = getNMixtures_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::BackgroundSubtractorMOG2::getShadowValue() + // + + //javadoc: BackgroundSubtractorMOG2::getShadowValue() + public int getShadowValue() + { + + int retVal = getShadowValue_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::apply(Mat image, Mat& fgmask, double learningRate = -1) + // + + //javadoc: BackgroundSubtractorMOG2::apply(image, fgmask, learningRate) + public void apply(Mat image, Mat fgmask, double learningRate) + { + + apply_0(nativeObj, image.nativeObj, fgmask.nativeObj, learningRate); + + return; + } + + //javadoc: BackgroundSubtractorMOG2::apply(image, fgmask) + public void apply(Mat image, Mat fgmask) + { + + apply_1(nativeObj, image.nativeObj, fgmask.nativeObj); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setBackgroundRatio(double ratio) + // + + //javadoc: BackgroundSubtractorMOG2::setBackgroundRatio(ratio) + public void setBackgroundRatio(double ratio) + { + + setBackgroundRatio_0(nativeObj, ratio); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setComplexityReductionThreshold(double ct) + // + + //javadoc: BackgroundSubtractorMOG2::setComplexityReductionThreshold(ct) + public void setComplexityReductionThreshold(double ct) + { + + setComplexityReductionThreshold_0(nativeObj, ct); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setDetectShadows(bool detectShadows) + // + + //javadoc: BackgroundSubtractorMOG2::setDetectShadows(detectShadows) + public void setDetectShadows(boolean detectShadows) + { + + setDetectShadows_0(nativeObj, detectShadows); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setHistory(int history) + // + + //javadoc: BackgroundSubtractorMOG2::setHistory(history) + public void setHistory(int history) + { + + setHistory_0(nativeObj, history); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setNMixtures(int nmixtures) + // + + //javadoc: BackgroundSubtractorMOG2::setNMixtures(nmixtures) + public void setNMixtures(int nmixtures) + { + + setNMixtures_0(nativeObj, nmixtures); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setShadowThreshold(double threshold) + // + + //javadoc: BackgroundSubtractorMOG2::setShadowThreshold(threshold) + public void setShadowThreshold(double threshold) + { + + setShadowThreshold_0(nativeObj, threshold); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setShadowValue(int value) + // + + //javadoc: BackgroundSubtractorMOG2::setShadowValue(value) + public void setShadowValue(int value) + { + + setShadowValue_0(nativeObj, value); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setVarInit(double varInit) + // + + //javadoc: BackgroundSubtractorMOG2::setVarInit(varInit) + public void setVarInit(double varInit) + { + + setVarInit_0(nativeObj, varInit); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setVarMax(double varMax) + // + + //javadoc: BackgroundSubtractorMOG2::setVarMax(varMax) + public void setVarMax(double varMax) + { + + setVarMax_0(nativeObj, varMax); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setVarMin(double varMin) + // + + //javadoc: BackgroundSubtractorMOG2::setVarMin(varMin) + public void setVarMin(double varMin) + { + + setVarMin_0(nativeObj, varMin); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setVarThreshold(double varThreshold) + // + + //javadoc: BackgroundSubtractorMOG2::setVarThreshold(varThreshold) + public void setVarThreshold(double varThreshold) + { + + setVarThreshold_0(nativeObj, varThreshold); + + return; + } + + + // + // C++: void cv::BackgroundSubtractorMOG2::setVarThresholdGen(double varThresholdGen) + // + + //javadoc: BackgroundSubtractorMOG2::setVarThresholdGen(varThresholdGen) + public void setVarThresholdGen(double varThresholdGen) + { + + setVarThresholdGen_0(nativeObj, varThresholdGen); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: bool cv::BackgroundSubtractorMOG2::getDetectShadows() + private static native boolean getDetectShadows_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorMOG2::getBackgroundRatio() + private static native double getBackgroundRatio_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorMOG2::getComplexityReductionThreshold() + private static native double getComplexityReductionThreshold_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorMOG2::getShadowThreshold() + private static native double getShadowThreshold_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorMOG2::getVarInit() + private static native double getVarInit_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorMOG2::getVarMax() + private static native double getVarMax_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorMOG2::getVarMin() + private static native double getVarMin_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorMOG2::getVarThreshold() + private static native double getVarThreshold_0(long nativeObj); + + // C++: double cv::BackgroundSubtractorMOG2::getVarThresholdGen() + private static native double getVarThresholdGen_0(long nativeObj); + + // C++: int cv::BackgroundSubtractorMOG2::getHistory() + private static native int getHistory_0(long nativeObj); + + // C++: int cv::BackgroundSubtractorMOG2::getNMixtures() + private static native int getNMixtures_0(long nativeObj); + + // C++: int cv::BackgroundSubtractorMOG2::getShadowValue() + private static native int getShadowValue_0(long nativeObj); + + // C++: void cv::BackgroundSubtractorMOG2::apply(Mat image, Mat& fgmask, double learningRate = -1) + private static native void apply_0(long nativeObj, long image_nativeObj, long fgmask_nativeObj, double learningRate); + private static native void apply_1(long nativeObj, long image_nativeObj, long fgmask_nativeObj); + + // C++: void cv::BackgroundSubtractorMOG2::setBackgroundRatio(double ratio) + private static native void setBackgroundRatio_0(long nativeObj, double ratio); + + // C++: void cv::BackgroundSubtractorMOG2::setComplexityReductionThreshold(double ct) + private static native void setComplexityReductionThreshold_0(long nativeObj, double ct); + + // C++: void cv::BackgroundSubtractorMOG2::setDetectShadows(bool detectShadows) + private static native void setDetectShadows_0(long nativeObj, boolean detectShadows); + + // C++: void cv::BackgroundSubtractorMOG2::setHistory(int history) + private static native void setHistory_0(long nativeObj, int history); + + // C++: void cv::BackgroundSubtractorMOG2::setNMixtures(int nmixtures) + private static native void setNMixtures_0(long nativeObj, int nmixtures); + + // C++: void cv::BackgroundSubtractorMOG2::setShadowThreshold(double threshold) + private static native void setShadowThreshold_0(long nativeObj, double threshold); + + // C++: void cv::BackgroundSubtractorMOG2::setShadowValue(int value) + private static native void setShadowValue_0(long nativeObj, int value); + + // C++: void cv::BackgroundSubtractorMOG2::setVarInit(double varInit) + private static native void setVarInit_0(long nativeObj, double varInit); + + // C++: void cv::BackgroundSubtractorMOG2::setVarMax(double varMax) + private static native void setVarMax_0(long nativeObj, double varMax); + + // C++: void cv::BackgroundSubtractorMOG2::setVarMin(double varMin) + private static native void setVarMin_0(long nativeObj, double varMin); + + // C++: void cv::BackgroundSubtractorMOG2::setVarThreshold(double varThreshold) + private static native void setVarThreshold_0(long nativeObj, double varThreshold); + + // C++: void cv::BackgroundSubtractorMOG2::setVarThresholdGen(double varThresholdGen) + private static native void setVarThresholdGen_0(long nativeObj, double varThresholdGen); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/DenseOpticalFlow.java b/openCVLibrary3/src/main/java/org/opencv/video/DenseOpticalFlow.java new file mode 100644 index 00000000000..760534cdd3a --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/DenseOpticalFlow.java @@ -0,0 +1,63 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; + +// C++: class DenseOpticalFlow +//javadoc: DenseOpticalFlow + +public class DenseOpticalFlow extends Algorithm { + + protected DenseOpticalFlow(long addr) { super(addr); } + + // internal usage only + public static DenseOpticalFlow __fromPtr__(long addr) { return new DenseOpticalFlow(addr); } + + // + // C++: void cv::DenseOpticalFlow::calc(Mat I0, Mat I1, Mat& flow) + // + + //javadoc: DenseOpticalFlow::calc(I0, I1, flow) + public void calc(Mat I0, Mat I1, Mat flow) + { + + calc_0(nativeObj, I0.nativeObj, I1.nativeObj, flow.nativeObj); + + return; + } + + + // + // C++: void cv::DenseOpticalFlow::collectGarbage() + // + + //javadoc: DenseOpticalFlow::collectGarbage() + public void collectGarbage() + { + + collectGarbage_0(nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: void cv::DenseOpticalFlow::calc(Mat I0, Mat I1, Mat& flow) + private static native void calc_0(long nativeObj, long I0_nativeObj, long I1_nativeObj, long flow_nativeObj); + + // C++: void cv::DenseOpticalFlow::collectGarbage() + private static native void collectGarbage_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/DualTVL1OpticalFlow.java b/openCVLibrary3/src/main/java/org/opencv/video/DualTVL1OpticalFlow.java new file mode 100644 index 00000000000..279bd632a24 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/DualTVL1OpticalFlow.java @@ -0,0 +1,574 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.video.DenseOpticalFlow; +import org.opencv.video.DualTVL1OpticalFlow; + +// C++: class DualTVL1OpticalFlow +//javadoc: DualTVL1OpticalFlow + +public class DualTVL1OpticalFlow extends DenseOpticalFlow { + + protected DualTVL1OpticalFlow(long addr) { super(addr); } + + // internal usage only + public static DualTVL1OpticalFlow __fromPtr__(long addr) { return new DualTVL1OpticalFlow(addr); } + + // + // C++: static Ptr_DualTVL1OpticalFlow cv::DualTVL1OpticalFlow::create(double tau = 0.25, double lambda = 0.15, double theta = 0.3, int nscales = 5, int warps = 5, double epsilon = 0.01, int innnerIterations = 30, int outerIterations = 10, double scaleStep = 0.8, double gamma = 0.0, int medianFiltering = 5, bool useInitialFlow = false) + // + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations, scaleStep, gamma, medianFiltering, useInitialFlow) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations, double scaleStep, double gamma, int medianFiltering, boolean useInitialFlow) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_0(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations, scaleStep, gamma, medianFiltering, useInitialFlow)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations, scaleStep, gamma, medianFiltering) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations, double scaleStep, double gamma, int medianFiltering) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_1(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations, scaleStep, gamma, medianFiltering)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations, scaleStep, gamma) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations, double scaleStep, double gamma) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_2(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations, scaleStep, gamma)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations, scaleStep) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations, double scaleStep) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_3(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations, scaleStep)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_4(tau, lambda, theta, nscales, warps, epsilon, innnerIterations, outerIterations)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales, warps, epsilon, innnerIterations) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_5(tau, lambda, theta, nscales, warps, epsilon, innnerIterations)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales, warps, epsilon) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales, int warps, double epsilon) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_6(tau, lambda, theta, nscales, warps, epsilon)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales, warps) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales, int warps) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_7(tau, lambda, theta, nscales, warps)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta, nscales) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta, int nscales) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_8(tau, lambda, theta, nscales)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda, theta) + public static DualTVL1OpticalFlow create(double tau, double lambda, double theta) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_9(tau, lambda, theta)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau, lambda) + public static DualTVL1OpticalFlow create(double tau, double lambda) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_10(tau, lambda)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create(tau) + public static DualTVL1OpticalFlow create(double tau) + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_11(tau)); + + return retVal; + } + + //javadoc: DualTVL1OpticalFlow::create() + public static DualTVL1OpticalFlow create() + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(create_12()); + + return retVal; + } + + + // + // C++: bool cv::DualTVL1OpticalFlow::getUseInitialFlow() + // + + //javadoc: DualTVL1OpticalFlow::getUseInitialFlow() + public boolean getUseInitialFlow() + { + + boolean retVal = getUseInitialFlow_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::DualTVL1OpticalFlow::getEpsilon() + // + + //javadoc: DualTVL1OpticalFlow::getEpsilon() + public double getEpsilon() + { + + double retVal = getEpsilon_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::DualTVL1OpticalFlow::getGamma() + // + + //javadoc: DualTVL1OpticalFlow::getGamma() + public double getGamma() + { + + double retVal = getGamma_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::DualTVL1OpticalFlow::getLambda() + // + + //javadoc: DualTVL1OpticalFlow::getLambda() + public double getLambda() + { + + double retVal = getLambda_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::DualTVL1OpticalFlow::getScaleStep() + // + + //javadoc: DualTVL1OpticalFlow::getScaleStep() + public double getScaleStep() + { + + double retVal = getScaleStep_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::DualTVL1OpticalFlow::getTau() + // + + //javadoc: DualTVL1OpticalFlow::getTau() + public double getTau() + { + + double retVal = getTau_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::DualTVL1OpticalFlow::getTheta() + // + + //javadoc: DualTVL1OpticalFlow::getTheta() + public double getTheta() + { + + double retVal = getTheta_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::DualTVL1OpticalFlow::getInnerIterations() + // + + //javadoc: DualTVL1OpticalFlow::getInnerIterations() + public int getInnerIterations() + { + + int retVal = getInnerIterations_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::DualTVL1OpticalFlow::getMedianFiltering() + // + + //javadoc: DualTVL1OpticalFlow::getMedianFiltering() + public int getMedianFiltering() + { + + int retVal = getMedianFiltering_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::DualTVL1OpticalFlow::getOuterIterations() + // + + //javadoc: DualTVL1OpticalFlow::getOuterIterations() + public int getOuterIterations() + { + + int retVal = getOuterIterations_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::DualTVL1OpticalFlow::getScalesNumber() + // + + //javadoc: DualTVL1OpticalFlow::getScalesNumber() + public int getScalesNumber() + { + + int retVal = getScalesNumber_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::DualTVL1OpticalFlow::getWarpingsNumber() + // + + //javadoc: DualTVL1OpticalFlow::getWarpingsNumber() + public int getWarpingsNumber() + { + + int retVal = getWarpingsNumber_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setEpsilon(double val) + // + + //javadoc: DualTVL1OpticalFlow::setEpsilon(val) + public void setEpsilon(double val) + { + + setEpsilon_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setGamma(double val) + // + + //javadoc: DualTVL1OpticalFlow::setGamma(val) + public void setGamma(double val) + { + + setGamma_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setInnerIterations(int val) + // + + //javadoc: DualTVL1OpticalFlow::setInnerIterations(val) + public void setInnerIterations(int val) + { + + setInnerIterations_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setLambda(double val) + // + + //javadoc: DualTVL1OpticalFlow::setLambda(val) + public void setLambda(double val) + { + + setLambda_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setMedianFiltering(int val) + // + + //javadoc: DualTVL1OpticalFlow::setMedianFiltering(val) + public void setMedianFiltering(int val) + { + + setMedianFiltering_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setOuterIterations(int val) + // + + //javadoc: DualTVL1OpticalFlow::setOuterIterations(val) + public void setOuterIterations(int val) + { + + setOuterIterations_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setScaleStep(double val) + // + + //javadoc: DualTVL1OpticalFlow::setScaleStep(val) + public void setScaleStep(double val) + { + + setScaleStep_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setScalesNumber(int val) + // + + //javadoc: DualTVL1OpticalFlow::setScalesNumber(val) + public void setScalesNumber(int val) + { + + setScalesNumber_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setTau(double val) + // + + //javadoc: DualTVL1OpticalFlow::setTau(val) + public void setTau(double val) + { + + setTau_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setTheta(double val) + // + + //javadoc: DualTVL1OpticalFlow::setTheta(val) + public void setTheta(double val) + { + + setTheta_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setUseInitialFlow(bool val) + // + + //javadoc: DualTVL1OpticalFlow::setUseInitialFlow(val) + public void setUseInitialFlow(boolean val) + { + + setUseInitialFlow_0(nativeObj, val); + + return; + } + + + // + // C++: void cv::DualTVL1OpticalFlow::setWarpingsNumber(int val) + // + + //javadoc: DualTVL1OpticalFlow::setWarpingsNumber(val) + public void setWarpingsNumber(int val) + { + + setWarpingsNumber_0(nativeObj, val); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_DualTVL1OpticalFlow cv::DualTVL1OpticalFlow::create(double tau = 0.25, double lambda = 0.15, double theta = 0.3, int nscales = 5, int warps = 5, double epsilon = 0.01, int innnerIterations = 30, int outerIterations = 10, double scaleStep = 0.8, double gamma = 0.0, int medianFiltering = 5, bool useInitialFlow = false) + private static native long create_0(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations, double scaleStep, double gamma, int medianFiltering, boolean useInitialFlow); + private static native long create_1(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations, double scaleStep, double gamma, int medianFiltering); + private static native long create_2(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations, double scaleStep, double gamma); + private static native long create_3(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations, double scaleStep); + private static native long create_4(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations, int outerIterations); + private static native long create_5(double tau, double lambda, double theta, int nscales, int warps, double epsilon, int innnerIterations); + private static native long create_6(double tau, double lambda, double theta, int nscales, int warps, double epsilon); + private static native long create_7(double tau, double lambda, double theta, int nscales, int warps); + private static native long create_8(double tau, double lambda, double theta, int nscales); + private static native long create_9(double tau, double lambda, double theta); + private static native long create_10(double tau, double lambda); + private static native long create_11(double tau); + private static native long create_12(); + + // C++: bool cv::DualTVL1OpticalFlow::getUseInitialFlow() + private static native boolean getUseInitialFlow_0(long nativeObj); + + // C++: double cv::DualTVL1OpticalFlow::getEpsilon() + private static native double getEpsilon_0(long nativeObj); + + // C++: double cv::DualTVL1OpticalFlow::getGamma() + private static native double getGamma_0(long nativeObj); + + // C++: double cv::DualTVL1OpticalFlow::getLambda() + private static native double getLambda_0(long nativeObj); + + // C++: double cv::DualTVL1OpticalFlow::getScaleStep() + private static native double getScaleStep_0(long nativeObj); + + // C++: double cv::DualTVL1OpticalFlow::getTau() + private static native double getTau_0(long nativeObj); + + // C++: double cv::DualTVL1OpticalFlow::getTheta() + private static native double getTheta_0(long nativeObj); + + // C++: int cv::DualTVL1OpticalFlow::getInnerIterations() + private static native int getInnerIterations_0(long nativeObj); + + // C++: int cv::DualTVL1OpticalFlow::getMedianFiltering() + private static native int getMedianFiltering_0(long nativeObj); + + // C++: int cv::DualTVL1OpticalFlow::getOuterIterations() + private static native int getOuterIterations_0(long nativeObj); + + // C++: int cv::DualTVL1OpticalFlow::getScalesNumber() + private static native int getScalesNumber_0(long nativeObj); + + // C++: int cv::DualTVL1OpticalFlow::getWarpingsNumber() + private static native int getWarpingsNumber_0(long nativeObj); + + // C++: void cv::DualTVL1OpticalFlow::setEpsilon(double val) + private static native void setEpsilon_0(long nativeObj, double val); + + // C++: void cv::DualTVL1OpticalFlow::setGamma(double val) + private static native void setGamma_0(long nativeObj, double val); + + // C++: void cv::DualTVL1OpticalFlow::setInnerIterations(int val) + private static native void setInnerIterations_0(long nativeObj, int val); + + // C++: void cv::DualTVL1OpticalFlow::setLambda(double val) + private static native void setLambda_0(long nativeObj, double val); + + // C++: void cv::DualTVL1OpticalFlow::setMedianFiltering(int val) + private static native void setMedianFiltering_0(long nativeObj, int val); + + // C++: void cv::DualTVL1OpticalFlow::setOuterIterations(int val) + private static native void setOuterIterations_0(long nativeObj, int val); + + // C++: void cv::DualTVL1OpticalFlow::setScaleStep(double val) + private static native void setScaleStep_0(long nativeObj, double val); + + // C++: void cv::DualTVL1OpticalFlow::setScalesNumber(int val) + private static native void setScalesNumber_0(long nativeObj, int val); + + // C++: void cv::DualTVL1OpticalFlow::setTau(double val) + private static native void setTau_0(long nativeObj, double val); + + // C++: void cv::DualTVL1OpticalFlow::setTheta(double val) + private static native void setTheta_0(long nativeObj, double val); + + // C++: void cv::DualTVL1OpticalFlow::setUseInitialFlow(bool val) + private static native void setUseInitialFlow_0(long nativeObj, boolean val); + + // C++: void cv::DualTVL1OpticalFlow::setWarpingsNumber(int val) + private static native void setWarpingsNumber_0(long nativeObj, int val); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/FarnebackOpticalFlow.java b/openCVLibrary3/src/main/java/org/opencv/video/FarnebackOpticalFlow.java new file mode 100644 index 00000000000..e1c9a4bc022 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/FarnebackOpticalFlow.java @@ -0,0 +1,398 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.video.DenseOpticalFlow; +import org.opencv.video.FarnebackOpticalFlow; + +// C++: class FarnebackOpticalFlow +//javadoc: FarnebackOpticalFlow + +public class FarnebackOpticalFlow extends DenseOpticalFlow { + + protected FarnebackOpticalFlow(long addr) { super(addr); } + + // internal usage only + public static FarnebackOpticalFlow __fromPtr__(long addr) { return new FarnebackOpticalFlow(addr); } + + // + // C++: static Ptr_FarnebackOpticalFlow cv::FarnebackOpticalFlow::create(int numLevels = 5, double pyrScale = 0.5, bool fastPyramids = false, int winSize = 13, int numIters = 10, int polyN = 5, double polySigma = 1.1, int flags = 0) + // + + //javadoc: FarnebackOpticalFlow::create(numLevels, pyrScale, fastPyramids, winSize, numIters, polyN, polySigma, flags) + public static FarnebackOpticalFlow create(int numLevels, double pyrScale, boolean fastPyramids, int winSize, int numIters, int polyN, double polySigma, int flags) + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_0(numLevels, pyrScale, fastPyramids, winSize, numIters, polyN, polySigma, flags)); + + return retVal; + } + + //javadoc: FarnebackOpticalFlow::create(numLevels, pyrScale, fastPyramids, winSize, numIters, polyN, polySigma) + public static FarnebackOpticalFlow create(int numLevels, double pyrScale, boolean fastPyramids, int winSize, int numIters, int polyN, double polySigma) + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_1(numLevels, pyrScale, fastPyramids, winSize, numIters, polyN, polySigma)); + + return retVal; + } + + //javadoc: FarnebackOpticalFlow::create(numLevels, pyrScale, fastPyramids, winSize, numIters, polyN) + public static FarnebackOpticalFlow create(int numLevels, double pyrScale, boolean fastPyramids, int winSize, int numIters, int polyN) + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_2(numLevels, pyrScale, fastPyramids, winSize, numIters, polyN)); + + return retVal; + } + + //javadoc: FarnebackOpticalFlow::create(numLevels, pyrScale, fastPyramids, winSize, numIters) + public static FarnebackOpticalFlow create(int numLevels, double pyrScale, boolean fastPyramids, int winSize, int numIters) + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_3(numLevels, pyrScale, fastPyramids, winSize, numIters)); + + return retVal; + } + + //javadoc: FarnebackOpticalFlow::create(numLevels, pyrScale, fastPyramids, winSize) + public static FarnebackOpticalFlow create(int numLevels, double pyrScale, boolean fastPyramids, int winSize) + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_4(numLevels, pyrScale, fastPyramids, winSize)); + + return retVal; + } + + //javadoc: FarnebackOpticalFlow::create(numLevels, pyrScale, fastPyramids) + public static FarnebackOpticalFlow create(int numLevels, double pyrScale, boolean fastPyramids) + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_5(numLevels, pyrScale, fastPyramids)); + + return retVal; + } + + //javadoc: FarnebackOpticalFlow::create(numLevels, pyrScale) + public static FarnebackOpticalFlow create(int numLevels, double pyrScale) + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_6(numLevels, pyrScale)); + + return retVal; + } + + //javadoc: FarnebackOpticalFlow::create(numLevels) + public static FarnebackOpticalFlow create(int numLevels) + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_7(numLevels)); + + return retVal; + } + + //javadoc: FarnebackOpticalFlow::create() + public static FarnebackOpticalFlow create() + { + + FarnebackOpticalFlow retVal = FarnebackOpticalFlow.__fromPtr__(create_8()); + + return retVal; + } + + + // + // C++: bool cv::FarnebackOpticalFlow::getFastPyramids() + // + + //javadoc: FarnebackOpticalFlow::getFastPyramids() + public boolean getFastPyramids() + { + + boolean retVal = getFastPyramids_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::FarnebackOpticalFlow::getPolySigma() + // + + //javadoc: FarnebackOpticalFlow::getPolySigma() + public double getPolySigma() + { + + double retVal = getPolySigma_0(nativeObj); + + return retVal; + } + + + // + // C++: double cv::FarnebackOpticalFlow::getPyrScale() + // + + //javadoc: FarnebackOpticalFlow::getPyrScale() + public double getPyrScale() + { + + double retVal = getPyrScale_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::FarnebackOpticalFlow::getFlags() + // + + //javadoc: FarnebackOpticalFlow::getFlags() + public int getFlags() + { + + int retVal = getFlags_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::FarnebackOpticalFlow::getNumIters() + // + + //javadoc: FarnebackOpticalFlow::getNumIters() + public int getNumIters() + { + + int retVal = getNumIters_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::FarnebackOpticalFlow::getNumLevels() + // + + //javadoc: FarnebackOpticalFlow::getNumLevels() + public int getNumLevels() + { + + int retVal = getNumLevels_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::FarnebackOpticalFlow::getPolyN() + // + + //javadoc: FarnebackOpticalFlow::getPolyN() + public int getPolyN() + { + + int retVal = getPolyN_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::FarnebackOpticalFlow::getWinSize() + // + + //javadoc: FarnebackOpticalFlow::getWinSize() + public int getWinSize() + { + + int retVal = getWinSize_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::FarnebackOpticalFlow::setFastPyramids(bool fastPyramids) + // + + //javadoc: FarnebackOpticalFlow::setFastPyramids(fastPyramids) + public void setFastPyramids(boolean fastPyramids) + { + + setFastPyramids_0(nativeObj, fastPyramids); + + return; + } + + + // + // C++: void cv::FarnebackOpticalFlow::setFlags(int flags) + // + + //javadoc: FarnebackOpticalFlow::setFlags(flags) + public void setFlags(int flags) + { + + setFlags_0(nativeObj, flags); + + return; + } + + + // + // C++: void cv::FarnebackOpticalFlow::setNumIters(int numIters) + // + + //javadoc: FarnebackOpticalFlow::setNumIters(numIters) + public void setNumIters(int numIters) + { + + setNumIters_0(nativeObj, numIters); + + return; + } + + + // + // C++: void cv::FarnebackOpticalFlow::setNumLevels(int numLevels) + // + + //javadoc: FarnebackOpticalFlow::setNumLevels(numLevels) + public void setNumLevels(int numLevels) + { + + setNumLevels_0(nativeObj, numLevels); + + return; + } + + + // + // C++: void cv::FarnebackOpticalFlow::setPolyN(int polyN) + // + + //javadoc: FarnebackOpticalFlow::setPolyN(polyN) + public void setPolyN(int polyN) + { + + setPolyN_0(nativeObj, polyN); + + return; + } + + + // + // C++: void cv::FarnebackOpticalFlow::setPolySigma(double polySigma) + // + + //javadoc: FarnebackOpticalFlow::setPolySigma(polySigma) + public void setPolySigma(double polySigma) + { + + setPolySigma_0(nativeObj, polySigma); + + return; + } + + + // + // C++: void cv::FarnebackOpticalFlow::setPyrScale(double pyrScale) + // + + //javadoc: FarnebackOpticalFlow::setPyrScale(pyrScale) + public void setPyrScale(double pyrScale) + { + + setPyrScale_0(nativeObj, pyrScale); + + return; + } + + + // + // C++: void cv::FarnebackOpticalFlow::setWinSize(int winSize) + // + + //javadoc: FarnebackOpticalFlow::setWinSize(winSize) + public void setWinSize(int winSize) + { + + setWinSize_0(nativeObj, winSize); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_FarnebackOpticalFlow cv::FarnebackOpticalFlow::create(int numLevels = 5, double pyrScale = 0.5, bool fastPyramids = false, int winSize = 13, int numIters = 10, int polyN = 5, double polySigma = 1.1, int flags = 0) + private static native long create_0(int numLevels, double pyrScale, boolean fastPyramids, int winSize, int numIters, int polyN, double polySigma, int flags); + private static native long create_1(int numLevels, double pyrScale, boolean fastPyramids, int winSize, int numIters, int polyN, double polySigma); + private static native long create_2(int numLevels, double pyrScale, boolean fastPyramids, int winSize, int numIters, int polyN); + private static native long create_3(int numLevels, double pyrScale, boolean fastPyramids, int winSize, int numIters); + private static native long create_4(int numLevels, double pyrScale, boolean fastPyramids, int winSize); + private static native long create_5(int numLevels, double pyrScale, boolean fastPyramids); + private static native long create_6(int numLevels, double pyrScale); + private static native long create_7(int numLevels); + private static native long create_8(); + + // C++: bool cv::FarnebackOpticalFlow::getFastPyramids() + private static native boolean getFastPyramids_0(long nativeObj); + + // C++: double cv::FarnebackOpticalFlow::getPolySigma() + private static native double getPolySigma_0(long nativeObj); + + // C++: double cv::FarnebackOpticalFlow::getPyrScale() + private static native double getPyrScale_0(long nativeObj); + + // C++: int cv::FarnebackOpticalFlow::getFlags() + private static native int getFlags_0(long nativeObj); + + // C++: int cv::FarnebackOpticalFlow::getNumIters() + private static native int getNumIters_0(long nativeObj); + + // C++: int cv::FarnebackOpticalFlow::getNumLevels() + private static native int getNumLevels_0(long nativeObj); + + // C++: int cv::FarnebackOpticalFlow::getPolyN() + private static native int getPolyN_0(long nativeObj); + + // C++: int cv::FarnebackOpticalFlow::getWinSize() + private static native int getWinSize_0(long nativeObj); + + // C++: void cv::FarnebackOpticalFlow::setFastPyramids(bool fastPyramids) + private static native void setFastPyramids_0(long nativeObj, boolean fastPyramids); + + // C++: void cv::FarnebackOpticalFlow::setFlags(int flags) + private static native void setFlags_0(long nativeObj, int flags); + + // C++: void cv::FarnebackOpticalFlow::setNumIters(int numIters) + private static native void setNumIters_0(long nativeObj, int numIters); + + // C++: void cv::FarnebackOpticalFlow::setNumLevels(int numLevels) + private static native void setNumLevels_0(long nativeObj, int numLevels); + + // C++: void cv::FarnebackOpticalFlow::setPolyN(int polyN) + private static native void setPolyN_0(long nativeObj, int polyN); + + // C++: void cv::FarnebackOpticalFlow::setPolySigma(double polySigma) + private static native void setPolySigma_0(long nativeObj, double polySigma); + + // C++: void cv::FarnebackOpticalFlow::setPyrScale(double pyrScale) + private static native void setPyrScale_0(long nativeObj, double pyrScale); + + // C++: void cv::FarnebackOpticalFlow::setWinSize(int winSize) + private static native void setWinSize_0(long nativeObj, int winSize); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/KalmanFilter.java b/openCVLibrary3/src/main/java/org/opencv/video/KalmanFilter.java new file mode 100644 index 00000000000..91771b7e837 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/KalmanFilter.java @@ -0,0 +1,469 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.core.Mat; + +// C++: class KalmanFilter +//javadoc: KalmanFilter + +public class KalmanFilter { + + protected final long nativeObj; + protected KalmanFilter(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static KalmanFilter __fromPtr__(long addr) { return new KalmanFilter(addr); } + + // + // C++: cv::KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F) + // + + //javadoc: KalmanFilter::KalmanFilter(dynamParams, measureParams, controlParams, type) + public KalmanFilter(int dynamParams, int measureParams, int controlParams, int type) + { + + nativeObj = KalmanFilter_0(dynamParams, measureParams, controlParams, type); + + return; + } + + //javadoc: KalmanFilter::KalmanFilter(dynamParams, measureParams, controlParams) + public KalmanFilter(int dynamParams, int measureParams, int controlParams) + { + + nativeObj = KalmanFilter_1(dynamParams, measureParams, controlParams); + + return; + } + + //javadoc: KalmanFilter::KalmanFilter(dynamParams, measureParams) + public KalmanFilter(int dynamParams, int measureParams) + { + + nativeObj = KalmanFilter_2(dynamParams, measureParams); + + return; + } + + + // + // C++: cv::KalmanFilter::KalmanFilter() + // + + //javadoc: KalmanFilter::KalmanFilter() + public KalmanFilter() + { + + nativeObj = KalmanFilter_3(); + + return; + } + + + // + // C++: Mat cv::KalmanFilter::correct(Mat measurement) + // + + //javadoc: KalmanFilter::correct(measurement) + public Mat correct(Mat measurement) + { + + Mat retVal = new Mat(correct_0(nativeObj, measurement.nativeObj)); + + return retVal; + } + + + // + // C++: Mat cv::KalmanFilter::predict(Mat control = Mat()) + // + + //javadoc: KalmanFilter::predict(control) + public Mat predict(Mat control) + { + + Mat retVal = new Mat(predict_0(nativeObj, control.nativeObj)); + + return retVal; + } + + //javadoc: KalmanFilter::predict() + public Mat predict() + { + + Mat retVal = new Mat(predict_1(nativeObj)); + + return retVal; + } + + + // + // C++: Mat KalmanFilter::statePre + // + + //javadoc: KalmanFilter::get_statePre() + public Mat get_statePre() + { + + Mat retVal = new Mat(get_statePre_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::statePre + // + + //javadoc: KalmanFilter::set_statePre(statePre) + public void set_statePre(Mat statePre) + { + + set_statePre_0(nativeObj, statePre.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::statePost + // + + //javadoc: KalmanFilter::get_statePost() + public Mat get_statePost() + { + + Mat retVal = new Mat(get_statePost_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::statePost + // + + //javadoc: KalmanFilter::set_statePost(statePost) + public void set_statePost(Mat statePost) + { + + set_statePost_0(nativeObj, statePost.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::transitionMatrix + // + + //javadoc: KalmanFilter::get_transitionMatrix() + public Mat get_transitionMatrix() + { + + Mat retVal = new Mat(get_transitionMatrix_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::transitionMatrix + // + + //javadoc: KalmanFilter::set_transitionMatrix(transitionMatrix) + public void set_transitionMatrix(Mat transitionMatrix) + { + + set_transitionMatrix_0(nativeObj, transitionMatrix.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::controlMatrix + // + + //javadoc: KalmanFilter::get_controlMatrix() + public Mat get_controlMatrix() + { + + Mat retVal = new Mat(get_controlMatrix_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::controlMatrix + // + + //javadoc: KalmanFilter::set_controlMatrix(controlMatrix) + public void set_controlMatrix(Mat controlMatrix) + { + + set_controlMatrix_0(nativeObj, controlMatrix.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::measurementMatrix + // + + //javadoc: KalmanFilter::get_measurementMatrix() + public Mat get_measurementMatrix() + { + + Mat retVal = new Mat(get_measurementMatrix_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::measurementMatrix + // + + //javadoc: KalmanFilter::set_measurementMatrix(measurementMatrix) + public void set_measurementMatrix(Mat measurementMatrix) + { + + set_measurementMatrix_0(nativeObj, measurementMatrix.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::processNoiseCov + // + + //javadoc: KalmanFilter::get_processNoiseCov() + public Mat get_processNoiseCov() + { + + Mat retVal = new Mat(get_processNoiseCov_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::processNoiseCov + // + + //javadoc: KalmanFilter::set_processNoiseCov(processNoiseCov) + public void set_processNoiseCov(Mat processNoiseCov) + { + + set_processNoiseCov_0(nativeObj, processNoiseCov.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::measurementNoiseCov + // + + //javadoc: KalmanFilter::get_measurementNoiseCov() + public Mat get_measurementNoiseCov() + { + + Mat retVal = new Mat(get_measurementNoiseCov_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::measurementNoiseCov + // + + //javadoc: KalmanFilter::set_measurementNoiseCov(measurementNoiseCov) + public void set_measurementNoiseCov(Mat measurementNoiseCov) + { + + set_measurementNoiseCov_0(nativeObj, measurementNoiseCov.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::errorCovPre + // + + //javadoc: KalmanFilter::get_errorCovPre() + public Mat get_errorCovPre() + { + + Mat retVal = new Mat(get_errorCovPre_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::errorCovPre + // + + //javadoc: KalmanFilter::set_errorCovPre(errorCovPre) + public void set_errorCovPre(Mat errorCovPre) + { + + set_errorCovPre_0(nativeObj, errorCovPre.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::gain + // + + //javadoc: KalmanFilter::get_gain() + public Mat get_gain() + { + + Mat retVal = new Mat(get_gain_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::gain + // + + //javadoc: KalmanFilter::set_gain(gain) + public void set_gain(Mat gain) + { + + set_gain_0(nativeObj, gain.nativeObj); + + return; + } + + + // + // C++: Mat KalmanFilter::errorCovPost + // + + //javadoc: KalmanFilter::get_errorCovPost() + public Mat get_errorCovPost() + { + + Mat retVal = new Mat(get_errorCovPost_0(nativeObj)); + + return retVal; + } + + + // + // C++: void KalmanFilter::errorCovPost + // + + //javadoc: KalmanFilter::set_errorCovPost(errorCovPost) + public void set_errorCovPost(Mat errorCovPost) + { + + set_errorCovPost_0(nativeObj, errorCovPost.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F) + private static native long KalmanFilter_0(int dynamParams, int measureParams, int controlParams, int type); + private static native long KalmanFilter_1(int dynamParams, int measureParams, int controlParams); + private static native long KalmanFilter_2(int dynamParams, int measureParams); + + // C++: cv::KalmanFilter::KalmanFilter() + private static native long KalmanFilter_3(); + + // C++: Mat cv::KalmanFilter::correct(Mat measurement) + private static native long correct_0(long nativeObj, long measurement_nativeObj); + + // C++: Mat cv::KalmanFilter::predict(Mat control = Mat()) + private static native long predict_0(long nativeObj, long control_nativeObj); + private static native long predict_1(long nativeObj); + + // C++: Mat KalmanFilter::statePre + private static native long get_statePre_0(long nativeObj); + + // C++: void KalmanFilter::statePre + private static native void set_statePre_0(long nativeObj, long statePre_nativeObj); + + // C++: Mat KalmanFilter::statePost + private static native long get_statePost_0(long nativeObj); + + // C++: void KalmanFilter::statePost + private static native void set_statePost_0(long nativeObj, long statePost_nativeObj); + + // C++: Mat KalmanFilter::transitionMatrix + private static native long get_transitionMatrix_0(long nativeObj); + + // C++: void KalmanFilter::transitionMatrix + private static native void set_transitionMatrix_0(long nativeObj, long transitionMatrix_nativeObj); + + // C++: Mat KalmanFilter::controlMatrix + private static native long get_controlMatrix_0(long nativeObj); + + // C++: void KalmanFilter::controlMatrix + private static native void set_controlMatrix_0(long nativeObj, long controlMatrix_nativeObj); + + // C++: Mat KalmanFilter::measurementMatrix + private static native long get_measurementMatrix_0(long nativeObj); + + // C++: void KalmanFilter::measurementMatrix + private static native void set_measurementMatrix_0(long nativeObj, long measurementMatrix_nativeObj); + + // C++: Mat KalmanFilter::processNoiseCov + private static native long get_processNoiseCov_0(long nativeObj); + + // C++: void KalmanFilter::processNoiseCov + private static native void set_processNoiseCov_0(long nativeObj, long processNoiseCov_nativeObj); + + // C++: Mat KalmanFilter::measurementNoiseCov + private static native long get_measurementNoiseCov_0(long nativeObj); + + // C++: void KalmanFilter::measurementNoiseCov + private static native void set_measurementNoiseCov_0(long nativeObj, long measurementNoiseCov_nativeObj); + + // C++: Mat KalmanFilter::errorCovPre + private static native long get_errorCovPre_0(long nativeObj); + + // C++: void KalmanFilter::errorCovPre + private static native void set_errorCovPre_0(long nativeObj, long errorCovPre_nativeObj); + + // C++: Mat KalmanFilter::gain + private static native long get_gain_0(long nativeObj); + + // C++: void KalmanFilter::gain + private static native void set_gain_0(long nativeObj, long gain_nativeObj); + + // C++: Mat KalmanFilter::errorCovPost + private static native long get_errorCovPost_0(long nativeObj); + + // C++: void KalmanFilter::errorCovPost + private static native void set_errorCovPost_0(long nativeObj, long errorCovPost_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/SparseOpticalFlow.java b/openCVLibrary3/src/main/java/org/opencv/video/SparseOpticalFlow.java new file mode 100644 index 00000000000..dba7b724bd6 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/SparseOpticalFlow.java @@ -0,0 +1,56 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.core.Algorithm; +import org.opencv.core.Mat; + +// C++: class SparseOpticalFlow +//javadoc: SparseOpticalFlow + +public class SparseOpticalFlow extends Algorithm { + + protected SparseOpticalFlow(long addr) { super(addr); } + + // internal usage only + public static SparseOpticalFlow __fromPtr__(long addr) { return new SparseOpticalFlow(addr); } + + // + // C++: void cv::SparseOpticalFlow::calc(Mat prevImg, Mat nextImg, Mat prevPts, Mat& nextPts, Mat& status, Mat& err = cv::Mat()) + // + + //javadoc: SparseOpticalFlow::calc(prevImg, nextImg, prevPts, nextPts, status, err) + public void calc(Mat prevImg, Mat nextImg, Mat prevPts, Mat nextPts, Mat status, Mat err) + { + + calc_0(nativeObj, prevImg.nativeObj, nextImg.nativeObj, prevPts.nativeObj, nextPts.nativeObj, status.nativeObj, err.nativeObj); + + return; + } + + //javadoc: SparseOpticalFlow::calc(prevImg, nextImg, prevPts, nextPts, status) + public void calc(Mat prevImg, Mat nextImg, Mat prevPts, Mat nextPts, Mat status) + { + + calc_1(nativeObj, prevImg.nativeObj, nextImg.nativeObj, prevPts.nativeObj, nextPts.nativeObj, status.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: void cv::SparseOpticalFlow::calc(Mat prevImg, Mat nextImg, Mat prevPts, Mat& nextPts, Mat& status, Mat& err = cv::Mat()) + private static native void calc_0(long nativeObj, long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_nativeObj, long nextPts_nativeObj, long status_nativeObj, long err_nativeObj); + private static native void calc_1(long nativeObj, long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_nativeObj, long nextPts_nativeObj, long status_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/SparsePyrLKOpticalFlow.java b/openCVLibrary3/src/main/java/org/opencv/video/SparsePyrLKOpticalFlow.java new file mode 100644 index 00000000000..9f1a122872d --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/SparsePyrLKOpticalFlow.java @@ -0,0 +1,268 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import org.opencv.core.Size; +import org.opencv.core.TermCriteria; +import org.opencv.video.SparseOpticalFlow; +import org.opencv.video.SparsePyrLKOpticalFlow; + +// C++: class SparsePyrLKOpticalFlow +//javadoc: SparsePyrLKOpticalFlow + +public class SparsePyrLKOpticalFlow extends SparseOpticalFlow { + + protected SparsePyrLKOpticalFlow(long addr) { super(addr); } + + // internal usage only + public static SparsePyrLKOpticalFlow __fromPtr__(long addr) { return new SparsePyrLKOpticalFlow(addr); } + + // + // C++: static Ptr_SparsePyrLKOpticalFlow cv::SparsePyrLKOpticalFlow::create(Size winSize = Size(21, 21), int maxLevel = 3, TermCriteria crit = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) + // + + //javadoc: SparsePyrLKOpticalFlow::create(winSize, maxLevel, crit, flags, minEigThreshold) + public static SparsePyrLKOpticalFlow create(Size winSize, int maxLevel, TermCriteria crit, int flags, double minEigThreshold) + { + + SparsePyrLKOpticalFlow retVal = SparsePyrLKOpticalFlow.__fromPtr__(create_0(winSize.width, winSize.height, maxLevel, crit.type, crit.maxCount, crit.epsilon, flags, minEigThreshold)); + + return retVal; + } + + //javadoc: SparsePyrLKOpticalFlow::create(winSize, maxLevel, crit, flags) + public static SparsePyrLKOpticalFlow create(Size winSize, int maxLevel, TermCriteria crit, int flags) + { + + SparsePyrLKOpticalFlow retVal = SparsePyrLKOpticalFlow.__fromPtr__(create_1(winSize.width, winSize.height, maxLevel, crit.type, crit.maxCount, crit.epsilon, flags)); + + return retVal; + } + + //javadoc: SparsePyrLKOpticalFlow::create(winSize, maxLevel, crit) + public static SparsePyrLKOpticalFlow create(Size winSize, int maxLevel, TermCriteria crit) + { + + SparsePyrLKOpticalFlow retVal = SparsePyrLKOpticalFlow.__fromPtr__(create_2(winSize.width, winSize.height, maxLevel, crit.type, crit.maxCount, crit.epsilon)); + + return retVal; + } + + //javadoc: SparsePyrLKOpticalFlow::create(winSize, maxLevel) + public static SparsePyrLKOpticalFlow create(Size winSize, int maxLevel) + { + + SparsePyrLKOpticalFlow retVal = SparsePyrLKOpticalFlow.__fromPtr__(create_3(winSize.width, winSize.height, maxLevel)); + + return retVal; + } + + //javadoc: SparsePyrLKOpticalFlow::create(winSize) + public static SparsePyrLKOpticalFlow create(Size winSize) + { + + SparsePyrLKOpticalFlow retVal = SparsePyrLKOpticalFlow.__fromPtr__(create_4(winSize.width, winSize.height)); + + return retVal; + } + + //javadoc: SparsePyrLKOpticalFlow::create() + public static SparsePyrLKOpticalFlow create() + { + + SparsePyrLKOpticalFlow retVal = SparsePyrLKOpticalFlow.__fromPtr__(create_5()); + + return retVal; + } + + + // + // C++: Size cv::SparsePyrLKOpticalFlow::getWinSize() + // + + //javadoc: SparsePyrLKOpticalFlow::getWinSize() + public Size getWinSize() + { + + Size retVal = new Size(getWinSize_0(nativeObj)); + + return retVal; + } + + + // + // C++: TermCriteria cv::SparsePyrLKOpticalFlow::getTermCriteria() + // + + //javadoc: SparsePyrLKOpticalFlow::getTermCriteria() + public TermCriteria getTermCriteria() + { + + TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); + + return retVal; + } + + + // + // C++: double cv::SparsePyrLKOpticalFlow::getMinEigThreshold() + // + + //javadoc: SparsePyrLKOpticalFlow::getMinEigThreshold() + public double getMinEigThreshold() + { + + double retVal = getMinEigThreshold_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::SparsePyrLKOpticalFlow::getFlags() + // + + //javadoc: SparsePyrLKOpticalFlow::getFlags() + public int getFlags() + { + + int retVal = getFlags_0(nativeObj); + + return retVal; + } + + + // + // C++: int cv::SparsePyrLKOpticalFlow::getMaxLevel() + // + + //javadoc: SparsePyrLKOpticalFlow::getMaxLevel() + public int getMaxLevel() + { + + int retVal = getMaxLevel_0(nativeObj); + + return retVal; + } + + + // + // C++: void cv::SparsePyrLKOpticalFlow::setFlags(int flags) + // + + //javadoc: SparsePyrLKOpticalFlow::setFlags(flags) + public void setFlags(int flags) + { + + setFlags_0(nativeObj, flags); + + return; + } + + + // + // C++: void cv::SparsePyrLKOpticalFlow::setMaxLevel(int maxLevel) + // + + //javadoc: SparsePyrLKOpticalFlow::setMaxLevel(maxLevel) + public void setMaxLevel(int maxLevel) + { + + setMaxLevel_0(nativeObj, maxLevel); + + return; + } + + + // + // C++: void cv::SparsePyrLKOpticalFlow::setMinEigThreshold(double minEigThreshold) + // + + //javadoc: SparsePyrLKOpticalFlow::setMinEigThreshold(minEigThreshold) + public void setMinEigThreshold(double minEigThreshold) + { + + setMinEigThreshold_0(nativeObj, minEigThreshold); + + return; + } + + + // + // C++: void cv::SparsePyrLKOpticalFlow::setTermCriteria(TermCriteria crit) + // + + //javadoc: SparsePyrLKOpticalFlow::setTermCriteria(crit) + public void setTermCriteria(TermCriteria crit) + { + + setTermCriteria_0(nativeObj, crit.type, crit.maxCount, crit.epsilon); + + return; + } + + + // + // C++: void cv::SparsePyrLKOpticalFlow::setWinSize(Size winSize) + // + + //javadoc: SparsePyrLKOpticalFlow::setWinSize(winSize) + public void setWinSize(Size winSize) + { + + setWinSize_0(nativeObj, winSize.width, winSize.height); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: static Ptr_SparsePyrLKOpticalFlow cv::SparsePyrLKOpticalFlow::create(Size winSize = Size(21, 21), int maxLevel = 3, TermCriteria crit = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) + private static native long create_0(double winSize_width, double winSize_height, int maxLevel, int crit_type, int crit_maxCount, double crit_epsilon, int flags, double minEigThreshold); + private static native long create_1(double winSize_width, double winSize_height, int maxLevel, int crit_type, int crit_maxCount, double crit_epsilon, int flags); + private static native long create_2(double winSize_width, double winSize_height, int maxLevel, int crit_type, int crit_maxCount, double crit_epsilon); + private static native long create_3(double winSize_width, double winSize_height, int maxLevel); + private static native long create_4(double winSize_width, double winSize_height); + private static native long create_5(); + + // C++: Size cv::SparsePyrLKOpticalFlow::getWinSize() + private static native double[] getWinSize_0(long nativeObj); + + // C++: TermCriteria cv::SparsePyrLKOpticalFlow::getTermCriteria() + private static native double[] getTermCriteria_0(long nativeObj); + + // C++: double cv::SparsePyrLKOpticalFlow::getMinEigThreshold() + private static native double getMinEigThreshold_0(long nativeObj); + + // C++: int cv::SparsePyrLKOpticalFlow::getFlags() + private static native int getFlags_0(long nativeObj); + + // C++: int cv::SparsePyrLKOpticalFlow::getMaxLevel() + private static native int getMaxLevel_0(long nativeObj); + + // C++: void cv::SparsePyrLKOpticalFlow::setFlags(int flags) + private static native void setFlags_0(long nativeObj, int flags); + + // C++: void cv::SparsePyrLKOpticalFlow::setMaxLevel(int maxLevel) + private static native void setMaxLevel_0(long nativeObj, int maxLevel); + + // C++: void cv::SparsePyrLKOpticalFlow::setMinEigThreshold(double minEigThreshold) + private static native void setMinEigThreshold_0(long nativeObj, double minEigThreshold); + + // C++: void cv::SparsePyrLKOpticalFlow::setTermCriteria(TermCriteria crit) + private static native void setTermCriteria_0(long nativeObj, int crit_type, int crit_maxCount, double crit_epsilon); + + // C++: void cv::SparsePyrLKOpticalFlow::setWinSize(Size winSize) + private static native void setWinSize_0(long nativeObj, double winSize_width, double winSize_height); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/video/Video.java b/openCVLibrary3/src/main/java/org/opencv/video/Video.java new file mode 100644 index 00000000000..a7bccc2a097 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/video/Video.java @@ -0,0 +1,433 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.video; + +import java.util.ArrayList; +import java.util.List; +import org.opencv.core.Mat; +import org.opencv.core.MatOfByte; +import org.opencv.core.MatOfFloat; +import org.opencv.core.MatOfPoint2f; +import org.opencv.core.Rect; +import org.opencv.core.RotatedRect; +import org.opencv.core.Size; +import org.opencv.core.TermCriteria; +import org.opencv.utils.Converters; +import org.opencv.video.BackgroundSubtractorKNN; +import org.opencv.video.BackgroundSubtractorMOG2; +import org.opencv.video.DualTVL1OpticalFlow; + +// C++: class Video +//javadoc: Video + +public class Video { + + private static final int + CV_LKFLOW_INITIAL_GUESSES = 4, + CV_LKFLOW_GET_MIN_EIGENVALS = 8; + + + public static final int + OPTFLOW_USE_INITIAL_FLOW = 4, + OPTFLOW_LK_GET_MIN_EIGENVALS = 8, + OPTFLOW_FARNEBACK_GAUSSIAN = 256, + MOTION_TRANSLATION = 0, + MOTION_EUCLIDEAN = 1, + MOTION_AFFINE = 2, + MOTION_HOMOGRAPHY = 3; + + + // + // C++: Mat cv::estimateRigidTransform(Mat src, Mat dst, bool fullAffine, int ransacMaxIters, double ransacGoodRatio, int ransacSize0) + // + + //javadoc: estimateRigidTransform(src, dst, fullAffine, ransacMaxIters, ransacGoodRatio, ransacSize0) + public static Mat estimateRigidTransform(Mat src, Mat dst, boolean fullAffine, int ransacMaxIters, double ransacGoodRatio, int ransacSize0) + { + + Mat retVal = new Mat(estimateRigidTransform_0(src.nativeObj, dst.nativeObj, fullAffine, ransacMaxIters, ransacGoodRatio, ransacSize0)); + + return retVal; + } + + + // + // C++: Mat cv::estimateRigidTransform(Mat src, Mat dst, bool fullAffine) + // + + //javadoc: estimateRigidTransform(src, dst, fullAffine) + public static Mat estimateRigidTransform(Mat src, Mat dst, boolean fullAffine) + { + + Mat retVal = new Mat(estimateRigidTransform_1(src.nativeObj, dst.nativeObj, fullAffine)); + + return retVal; + } + + + // + // C++: Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true) + // + + //javadoc: createBackgroundSubtractorKNN(history, dist2Threshold, detectShadows) + public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold, boolean detectShadows) + { + + BackgroundSubtractorKNN retVal = BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_0(history, dist2Threshold, detectShadows)); + + return retVal; + } + + //javadoc: createBackgroundSubtractorKNN(history, dist2Threshold) + public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold) + { + + BackgroundSubtractorKNN retVal = BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_1(history, dist2Threshold)); + + return retVal; + } + + //javadoc: createBackgroundSubtractorKNN(history) + public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history) + { + + BackgroundSubtractorKNN retVal = BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_2(history)); + + return retVal; + } + + //javadoc: createBackgroundSubtractorKNN() + public static BackgroundSubtractorKNN createBackgroundSubtractorKNN() + { + + BackgroundSubtractorKNN retVal = BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_3()); + + return retVal; + } + + + // + // C++: Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true) + // + + //javadoc: createBackgroundSubtractorMOG2(history, varThreshold, detectShadows) + public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold, boolean detectShadows) + { + + BackgroundSubtractorMOG2 retVal = BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_0(history, varThreshold, detectShadows)); + + return retVal; + } + + //javadoc: createBackgroundSubtractorMOG2(history, varThreshold) + public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold) + { + + BackgroundSubtractorMOG2 retVal = BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_1(history, varThreshold)); + + return retVal; + } + + //javadoc: createBackgroundSubtractorMOG2(history) + public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history) + { + + BackgroundSubtractorMOG2 retVal = BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_2(history)); + + return retVal; + } + + //javadoc: createBackgroundSubtractorMOG2() + public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2() + { + + BackgroundSubtractorMOG2 retVal = BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_3()); + + return retVal; + } + + + // + // C++: Ptr_DualTVL1OpticalFlow cv::createOptFlow_DualTVL1() + // + + //javadoc: createOptFlow_DualTVL1() + public static DualTVL1OpticalFlow createOptFlow_DualTVL1() + { + + DualTVL1OpticalFlow retVal = DualTVL1OpticalFlow.__fromPtr__(createOptFlow_DualTVL1_0()); + + return retVal; + } + + + // + // C++: RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria) + // + + //javadoc: CamShift(probImage, window, criteria) + public static RotatedRect CamShift(Mat probImage, Rect window, TermCriteria criteria) + { + double[] window_out = new double[4]; + RotatedRect retVal = new RotatedRect(CamShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon)); + if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } + return retVal; + } + + + // + // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat()) + // + + //javadoc: findTransformECC(templateImage, inputImage, warpMatrix, motionType, criteria, inputMask) + public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask) + { + + double retVal = findTransformECC_0(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj); + + return retVal; + } + + //javadoc: findTransformECC(templateImage, inputImage, warpMatrix, motionType, criteria) + public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria) + { + + double retVal = findTransformECC_1(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon); + + return retVal; + } + + //javadoc: findTransformECC(templateImage, inputImage, warpMatrix, motionType) + public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType) + { + + double retVal = findTransformECC_2(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType); + + return retVal; + } + + //javadoc: findTransformECC(templateImage, inputImage, warpMatrix) + public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix) + { + + double retVal = findTransformECC_3(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj); + + return retVal; + } + + + // + // C++: int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true) + // + + //javadoc: buildOpticalFlowPyramid(img, pyramid, winSize, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage) + public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage) + { + Mat pyramid_mat = new Mat(); + int retVal = buildOpticalFlowPyramid_0(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage); + Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); + pyramid_mat.release(); + return retVal; + } + + //javadoc: buildOpticalFlowPyramid(img, pyramid, winSize, maxLevel, withDerivatives, pyrBorder, derivBorder) + public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder) + { + Mat pyramid_mat = new Mat(); + int retVal = buildOpticalFlowPyramid_1(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder); + Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); + pyramid_mat.release(); + return retVal; + } + + //javadoc: buildOpticalFlowPyramid(img, pyramid, winSize, maxLevel, withDerivatives, pyrBorder) + public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder) + { + Mat pyramid_mat = new Mat(); + int retVal = buildOpticalFlowPyramid_2(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder); + Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); + pyramid_mat.release(); + return retVal; + } + + //javadoc: buildOpticalFlowPyramid(img, pyramid, winSize, maxLevel, withDerivatives) + public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives) + { + Mat pyramid_mat = new Mat(); + int retVal = buildOpticalFlowPyramid_3(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives); + Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); + pyramid_mat.release(); + return retVal; + } + + //javadoc: buildOpticalFlowPyramid(img, pyramid, winSize, maxLevel) + public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel) + { + Mat pyramid_mat = new Mat(); + int retVal = buildOpticalFlowPyramid_4(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel); + Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); + pyramid_mat.release(); + return retVal; + } + + + // + // C++: int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria) + // + + //javadoc: meanShift(probImage, window, criteria) + public static int meanShift(Mat probImage, Rect window, TermCriteria criteria) + { + double[] window_out = new double[4]; + int retVal = meanShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon); + if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } + return retVal; + } + + + // + // C++: void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) + // + + //javadoc: calcOpticalFlowFarneback(prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags) + public static void calcOpticalFlowFarneback(Mat prev, Mat next, Mat flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) + { + + calcOpticalFlowFarneback_0(prev.nativeObj, next.nativeObj, flow.nativeObj, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags); + + return; + } + + + // + // C++: void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) + // + + //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err, winSize, maxLevel, criteria, flags, minEigThreshold) + public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold) + { + Mat prevPts_mat = prevPts; + Mat nextPts_mat = nextPts; + Mat status_mat = status; + Mat err_mat = err; + calcOpticalFlowPyrLK_0(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags, minEigThreshold); + + return; + } + + //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err, winSize, maxLevel, criteria, flags) + public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags) + { + Mat prevPts_mat = prevPts; + Mat nextPts_mat = nextPts; + Mat status_mat = status; + Mat err_mat = err; + calcOpticalFlowPyrLK_1(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags); + + return; + } + + //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err, winSize, maxLevel, criteria) + public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria) + { + Mat prevPts_mat = prevPts; + Mat nextPts_mat = nextPts; + Mat status_mat = status; + Mat err_mat = err; + calcOpticalFlowPyrLK_2(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon); + + return; + } + + //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err, winSize, maxLevel) + public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel) + { + Mat prevPts_mat = prevPts; + Mat nextPts_mat = nextPts; + Mat status_mat = status; + Mat err_mat = err; + calcOpticalFlowPyrLK_3(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel); + + return; + } + + //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err, winSize) + public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize) + { + Mat prevPts_mat = prevPts; + Mat nextPts_mat = nextPts; + Mat status_mat = status; + Mat err_mat = err; + calcOpticalFlowPyrLK_4(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height); + + return; + } + + //javadoc: calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err) + public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err) + { + Mat prevPts_mat = prevPts; + Mat nextPts_mat = nextPts; + Mat status_mat = status; + Mat err_mat = err; + calcOpticalFlowPyrLK_5(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj); + + return; + } + + + + + // C++: Mat cv::estimateRigidTransform(Mat src, Mat dst, bool fullAffine, int ransacMaxIters, double ransacGoodRatio, int ransacSize0) + private static native long estimateRigidTransform_0(long src_nativeObj, long dst_nativeObj, boolean fullAffine, int ransacMaxIters, double ransacGoodRatio, int ransacSize0); + + // C++: Mat cv::estimateRigidTransform(Mat src, Mat dst, bool fullAffine) + private static native long estimateRigidTransform_1(long src_nativeObj, long dst_nativeObj, boolean fullAffine); + + // C++: Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true) + private static native long createBackgroundSubtractorKNN_0(int history, double dist2Threshold, boolean detectShadows); + private static native long createBackgroundSubtractorKNN_1(int history, double dist2Threshold); + private static native long createBackgroundSubtractorKNN_2(int history); + private static native long createBackgroundSubtractorKNN_3(); + + // C++: Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true) + private static native long createBackgroundSubtractorMOG2_0(int history, double varThreshold, boolean detectShadows); + private static native long createBackgroundSubtractorMOG2_1(int history, double varThreshold); + private static native long createBackgroundSubtractorMOG2_2(int history); + private static native long createBackgroundSubtractorMOG2_3(); + + // C++: Ptr_DualTVL1OpticalFlow cv::createOptFlow_DualTVL1() + private static native long createOptFlow_DualTVL1_0(); + + // C++: RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria) + private static native double[] CamShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon); + + // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat()) + private static native double findTransformECC_0(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, long inputMask_nativeObj); + private static native double findTransformECC_1(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon); + private static native double findTransformECC_2(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType); + private static native double findTransformECC_3(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj); + + // C++: int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true) + private static native int buildOpticalFlowPyramid_0(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage); + private static native int buildOpticalFlowPyramid_1(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder); + private static native int buildOpticalFlowPyramid_2(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder); + private static native int buildOpticalFlowPyramid_3(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives); + private static native int buildOpticalFlowPyramid_4(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel); + + // C++: int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria) + private static native int meanShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon); + + // C++: void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) + private static native void calcOpticalFlowFarneback_0(long prev_nativeObj, long next_nativeObj, long flow_nativeObj, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags); + + // C++: void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) + private static native void calcOpticalFlowPyrLK_0(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags, double minEigThreshold); + private static native void calcOpticalFlowPyrLK_1(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags); + private static native void calcOpticalFlowPyrLK_2(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon); + private static native void calcOpticalFlowPyrLK_3(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel); + private static native void calcOpticalFlowPyrLK_4(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height); + private static native void calcOpticalFlowPyrLK_5(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/videoio/VideoCapture.java b/openCVLibrary3/src/main/java/org/opencv/videoio/VideoCapture.java new file mode 100644 index 00000000000..9cede4ac619 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/videoio/VideoCapture.java @@ -0,0 +1,297 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.videoio; + +import java.lang.String; +import org.opencv.core.Mat; + +// C++: class VideoCapture +//javadoc: VideoCapture + +public class VideoCapture { + + protected final long nativeObj; + protected VideoCapture(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static VideoCapture __fromPtr__(long addr) { return new VideoCapture(addr); } + + // + // C++: cv::VideoCapture::VideoCapture(String filename, int apiPreference) + // + + //javadoc: VideoCapture::VideoCapture(filename, apiPreference) + public VideoCapture(String filename, int apiPreference) + { + + nativeObj = VideoCapture_0(filename, apiPreference); + + return; + } + + + // + // C++: cv::VideoCapture::VideoCapture(String filename) + // + + //javadoc: VideoCapture::VideoCapture(filename) + public VideoCapture(String filename) + { + + nativeObj = VideoCapture_1(filename); + + return; + } + + + // + // C++: cv::VideoCapture::VideoCapture(int index) + // + + //javadoc: VideoCapture::VideoCapture(index) + public VideoCapture(int index) + { + + nativeObj = VideoCapture_2(index); + + return; + } + + + // + // C++: cv::VideoCapture::VideoCapture() + // + + //javadoc: VideoCapture::VideoCapture() + public VideoCapture() + { + + nativeObj = VideoCapture_3(); + + return; + } + + + // + // C++: bool cv::VideoCapture::grab() + // + + //javadoc: VideoCapture::grab() + public boolean grab() + { + + boolean retVal = grab_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::VideoCapture::isOpened() + // + + //javadoc: VideoCapture::isOpened() + public boolean isOpened() + { + + boolean retVal = isOpened_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::VideoCapture::open(String filename, int apiPreference) + // + + //javadoc: VideoCapture::open(filename, apiPreference) + public boolean open(String filename, int apiPreference) + { + + boolean retVal = open_0(nativeObj, filename, apiPreference); + + return retVal; + } + + + // + // C++: bool cv::VideoCapture::open(String filename) + // + + //javadoc: VideoCapture::open(filename) + public boolean open(String filename) + { + + boolean retVal = open_1(nativeObj, filename); + + return retVal; + } + + + // + // C++: bool cv::VideoCapture::open(int cameraNum, int apiPreference) + // + + //javadoc: VideoCapture::open(cameraNum, apiPreference) + public boolean open(int cameraNum, int apiPreference) + { + + boolean retVal = open_2(nativeObj, cameraNum, apiPreference); + + return retVal; + } + + + // + // C++: bool cv::VideoCapture::open(int index) + // + + //javadoc: VideoCapture::open(index) + public boolean open(int index) + { + + boolean retVal = open_3(nativeObj, index); + + return retVal; + } + + + // + // C++: bool cv::VideoCapture::read(Mat& image) + // + + //javadoc: VideoCapture::read(image) + public boolean read(Mat image) + { + + boolean retVal = read_0(nativeObj, image.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::VideoCapture::retrieve(Mat& image, int flag = 0) + // + + //javadoc: VideoCapture::retrieve(image, flag) + public boolean retrieve(Mat image, int flag) + { + + boolean retVal = retrieve_0(nativeObj, image.nativeObj, flag); + + return retVal; + } + + //javadoc: VideoCapture::retrieve(image) + public boolean retrieve(Mat image) + { + + boolean retVal = retrieve_1(nativeObj, image.nativeObj); + + return retVal; + } + + + // + // C++: bool cv::VideoCapture::set(int propId, double value) + // + + //javadoc: VideoCapture::set(propId, value) + public boolean set(int propId, double value) + { + + boolean retVal = set_0(nativeObj, propId, value); + + return retVal; + } + + + // + // C++: double cv::VideoCapture::get(int propId) + // + + //javadoc: VideoCapture::get(propId) + public double get(int propId) + { + + double retVal = get_0(nativeObj, propId); + + return retVal; + } + + + // + // C++: void cv::VideoCapture::release() + // + + //javadoc: VideoCapture::release() + public void release() + { + + release_0(nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::VideoCapture::VideoCapture(String filename, int apiPreference) + private static native long VideoCapture_0(String filename, int apiPreference); + + // C++: cv::VideoCapture::VideoCapture(String filename) + private static native long VideoCapture_1(String filename); + + // C++: cv::VideoCapture::VideoCapture(int index) + private static native long VideoCapture_2(int index); + + // C++: cv::VideoCapture::VideoCapture() + private static native long VideoCapture_3(); + + // C++: bool cv::VideoCapture::grab() + private static native boolean grab_0(long nativeObj); + + // C++: bool cv::VideoCapture::isOpened() + private static native boolean isOpened_0(long nativeObj); + + // C++: bool cv::VideoCapture::open(String filename, int apiPreference) + private static native boolean open_0(long nativeObj, String filename, int apiPreference); + + // C++: bool cv::VideoCapture::open(String filename) + private static native boolean open_1(long nativeObj, String filename); + + // C++: bool cv::VideoCapture::open(int cameraNum, int apiPreference) + private static native boolean open_2(long nativeObj, int cameraNum, int apiPreference); + + // C++: bool cv::VideoCapture::open(int index) + private static native boolean open_3(long nativeObj, int index); + + // C++: bool cv::VideoCapture::read(Mat& image) + private static native boolean read_0(long nativeObj, long image_nativeObj); + + // C++: bool cv::VideoCapture::retrieve(Mat& image, int flag = 0) + private static native boolean retrieve_0(long nativeObj, long image_nativeObj, int flag); + private static native boolean retrieve_1(long nativeObj, long image_nativeObj); + + // C++: bool cv::VideoCapture::set(int propId, double value) + private static native boolean set_0(long nativeObj, int propId, double value); + + // C++: double cv::VideoCapture::get(int propId) + private static native double get_0(long nativeObj, int propId); + + // C++: void cv::VideoCapture::release() + private static native void release_0(long nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/videoio/VideoWriter.java b/openCVLibrary3/src/main/java/org/opencv/videoio/VideoWriter.java new file mode 100644 index 00000000000..3f2fd0a7937 --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/videoio/VideoWriter.java @@ -0,0 +1,260 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.videoio; + +import java.lang.String; +import org.opencv.core.Mat; +import org.opencv.core.Size; + +// C++: class VideoWriter +//javadoc: VideoWriter + +public class VideoWriter { + + protected final long nativeObj; + protected VideoWriter(long addr) { nativeObj = addr; } + + public long getNativeObjAddr() { return nativeObj; } + + // internal usage only + public static VideoWriter __fromPtr__(long addr) { return new VideoWriter(addr); } + + // + // C++: cv::VideoWriter::VideoWriter(String filename, int apiPreference, int fourcc, double fps, Size frameSize, bool isColor = true) + // + + //javadoc: VideoWriter::VideoWriter(filename, apiPreference, fourcc, fps, frameSize, isColor) + public VideoWriter(String filename, int apiPreference, int fourcc, double fps, Size frameSize, boolean isColor) + { + + nativeObj = VideoWriter_0(filename, apiPreference, fourcc, fps, frameSize.width, frameSize.height, isColor); + + return; + } + + //javadoc: VideoWriter::VideoWriter(filename, apiPreference, fourcc, fps, frameSize) + public VideoWriter(String filename, int apiPreference, int fourcc, double fps, Size frameSize) + { + + nativeObj = VideoWriter_1(filename, apiPreference, fourcc, fps, frameSize.width, frameSize.height); + + return; + } + + + // + // C++: cv::VideoWriter::VideoWriter(String filename, int fourcc, double fps, Size frameSize, bool isColor = true) + // + + //javadoc: VideoWriter::VideoWriter(filename, fourcc, fps, frameSize, isColor) + public VideoWriter(String filename, int fourcc, double fps, Size frameSize, boolean isColor) + { + + nativeObj = VideoWriter_2(filename, fourcc, fps, frameSize.width, frameSize.height, isColor); + + return; + } + + //javadoc: VideoWriter::VideoWriter(filename, fourcc, fps, frameSize) + public VideoWriter(String filename, int fourcc, double fps, Size frameSize) + { + + nativeObj = VideoWriter_3(filename, fourcc, fps, frameSize.width, frameSize.height); + + return; + } + + + // + // C++: cv::VideoWriter::VideoWriter() + // + + //javadoc: VideoWriter::VideoWriter() + public VideoWriter() + { + + nativeObj = VideoWriter_4(); + + return; + } + + + // + // C++: bool cv::VideoWriter::isOpened() + // + + //javadoc: VideoWriter::isOpened() + public boolean isOpened() + { + + boolean retVal = isOpened_0(nativeObj); + + return retVal; + } + + + // + // C++: bool cv::VideoWriter::open(String filename, int apiPreference, int fourcc, double fps, Size frameSize, bool isColor = true) + // + + //javadoc: VideoWriter::open(filename, apiPreference, fourcc, fps, frameSize, isColor) + public boolean open(String filename, int apiPreference, int fourcc, double fps, Size frameSize, boolean isColor) + { + + boolean retVal = open_0(nativeObj, filename, apiPreference, fourcc, fps, frameSize.width, frameSize.height, isColor); + + return retVal; + } + + //javadoc: VideoWriter::open(filename, apiPreference, fourcc, fps, frameSize) + public boolean open(String filename, int apiPreference, int fourcc, double fps, Size frameSize) + { + + boolean retVal = open_1(nativeObj, filename, apiPreference, fourcc, fps, frameSize.width, frameSize.height); + + return retVal; + } + + + // + // C++: bool cv::VideoWriter::open(String filename, int fourcc, double fps, Size frameSize, bool isColor = true) + // + + //javadoc: VideoWriter::open(filename, fourcc, fps, frameSize, isColor) + public boolean open(String filename, int fourcc, double fps, Size frameSize, boolean isColor) + { + + boolean retVal = open_2(nativeObj, filename, fourcc, fps, frameSize.width, frameSize.height, isColor); + + return retVal; + } + + //javadoc: VideoWriter::open(filename, fourcc, fps, frameSize) + public boolean open(String filename, int fourcc, double fps, Size frameSize) + { + + boolean retVal = open_3(nativeObj, filename, fourcc, fps, frameSize.width, frameSize.height); + + return retVal; + } + + + // + // C++: bool cv::VideoWriter::set(int propId, double value) + // + + //javadoc: VideoWriter::set(propId, value) + public boolean set(int propId, double value) + { + + boolean retVal = set_0(nativeObj, propId, value); + + return retVal; + } + + + // + // C++: double cv::VideoWriter::get(int propId) + // + + //javadoc: VideoWriter::get(propId) + public double get(int propId) + { + + double retVal = get_0(nativeObj, propId); + + return retVal; + } + + + // + // C++: static int cv::VideoWriter::fourcc(char c1, char c2, char c3, char c4) + // + + //javadoc: VideoWriter::fourcc(c1, c2, c3, c4) + public static int fourcc(char c1, char c2, char c3, char c4) + { + + int retVal = fourcc_0(c1, c2, c3, c4); + + return retVal; + } + + + // + // C++: void cv::VideoWriter::release() + // + + //javadoc: VideoWriter::release() + public void release() + { + + release_0(nativeObj); + + return; + } + + + // + // C++: void cv::VideoWriter::write(Mat image) + // + + //javadoc: VideoWriter::write(image) + public void write(Mat image) + { + + write_0(nativeObj, image.nativeObj); + + return; + } + + + @Override + protected void finalize() throws Throwable { + delete(nativeObj); + } + + + + // C++: cv::VideoWriter::VideoWriter(String filename, int apiPreference, int fourcc, double fps, Size frameSize, bool isColor = true) + private static native long VideoWriter_0(String filename, int apiPreference, int fourcc, double fps, double frameSize_width, double frameSize_height, boolean isColor); + private static native long VideoWriter_1(String filename, int apiPreference, int fourcc, double fps, double frameSize_width, double frameSize_height); + + // C++: cv::VideoWriter::VideoWriter(String filename, int fourcc, double fps, Size frameSize, bool isColor = true) + private static native long VideoWriter_2(String filename, int fourcc, double fps, double frameSize_width, double frameSize_height, boolean isColor); + private static native long VideoWriter_3(String filename, int fourcc, double fps, double frameSize_width, double frameSize_height); + + // C++: cv::VideoWriter::VideoWriter() + private static native long VideoWriter_4(); + + // C++: bool cv::VideoWriter::isOpened() + private static native boolean isOpened_0(long nativeObj); + + // C++: bool cv::VideoWriter::open(String filename, int apiPreference, int fourcc, double fps, Size frameSize, bool isColor = true) + private static native boolean open_0(long nativeObj, String filename, int apiPreference, int fourcc, double fps, double frameSize_width, double frameSize_height, boolean isColor); + private static native boolean open_1(long nativeObj, String filename, int apiPreference, int fourcc, double fps, double frameSize_width, double frameSize_height); + + // C++: bool cv::VideoWriter::open(String filename, int fourcc, double fps, Size frameSize, bool isColor = true) + private static native boolean open_2(long nativeObj, String filename, int fourcc, double fps, double frameSize_width, double frameSize_height, boolean isColor); + private static native boolean open_3(long nativeObj, String filename, int fourcc, double fps, double frameSize_width, double frameSize_height); + + // C++: bool cv::VideoWriter::set(int propId, double value) + private static native boolean set_0(long nativeObj, int propId, double value); + + // C++: double cv::VideoWriter::get(int propId) + private static native double get_0(long nativeObj, int propId); + + // C++: static int cv::VideoWriter::fourcc(char c1, char c2, char c3, char c4) + private static native int fourcc_0(char c1, char c2, char c3, char c4); + + // C++: void cv::VideoWriter::release() + private static native void release_0(long nativeObj); + + // C++: void cv::VideoWriter::write(Mat image) + private static native void write_0(long nativeObj, long image_nativeObj); + + // native support for java finalize() + private static native void delete(long nativeObj); + +} diff --git a/openCVLibrary3/src/main/java/org/opencv/videoio/Videoio.java b/openCVLibrary3/src/main/java/org/opencv/videoio/Videoio.java new file mode 100644 index 00000000000..314e2f841bc --- /dev/null +++ b/openCVLibrary3/src/main/java/org/opencv/videoio/Videoio.java @@ -0,0 +1,718 @@ +// +// This file is auto-generated. Please don't modify it! +// +package org.opencv.videoio; + + + +// C++: class Videoio +//javadoc: Videoio + +public class Videoio { + + public static final int + CV_CAP_ANY = 0, + CV_CAP_MIL = 100, + CV_CAP_VFW = 200, + CV_CAP_V4L = 200, + CV_CAP_V4L2 = 200, + CV_CAP_FIREWARE = 300, + CV_CAP_FIREWIRE = 300, + CV_CAP_IEEE1394 = 300, + CV_CAP_DC1394 = 300, + CV_CAP_CMU1394 = 300, + CV_CAP_STEREO = 400, + CV_CAP_TYZX = 400, + CV_TYZX_LEFT = 400, + CV_TYZX_RIGHT = 401, + CV_TYZX_COLOR = 402, + CV_TYZX_Z = 403, + CV_CAP_QT = 500, + CV_CAP_UNICAP = 600, + CV_CAP_DSHOW = 700, + CV_CAP_MSMF = 1400, + CV_CAP_PVAPI = 800, + CV_CAP_OPENNI = 900, + CV_CAP_OPENNI_ASUS = 910, + CV_CAP_ANDROID = 1000, + CV_CAP_ANDROID_BACK = CV_CAP_ANDROID+99, + CV_CAP_ANDROID_FRONT = CV_CAP_ANDROID+98, + CV_CAP_XIAPI = 1100, + CV_CAP_AVFOUNDATION = 1200, + CV_CAP_GIGANETIX = 1300, + CV_CAP_INTELPERC = 1500, + CV_CAP_OPENNI2 = 1600, + CV_CAP_GPHOTO2 = 1700, + CV_CAP_GSTREAMER = 1800, + CV_CAP_FFMPEG = 1900, + CV_CAP_IMAGES = 2000, + CV_CAP_ARAVIS = 2100, + CV_CAP_PROP_DC1394_OFF = -4, + CV_CAP_PROP_DC1394_MODE_MANUAL = -3, + CV_CAP_PROP_DC1394_MODE_AUTO = -2, + CV_CAP_PROP_DC1394_MODE_ONE_PUSH_AUTO = -1, + CV_CAP_PROP_POS_MSEC = 0, + CV_CAP_PROP_POS_FRAMES = 1, + CV_CAP_PROP_POS_AVI_RATIO = 2, + CV_CAP_PROP_FRAME_WIDTH = 3, + CV_CAP_PROP_FRAME_HEIGHT = 4, + CV_CAP_PROP_FPS = 5, + CV_CAP_PROP_FOURCC = 6, + CV_CAP_PROP_FRAME_COUNT = 7, + CV_CAP_PROP_FORMAT = 8, + CV_CAP_PROP_MODE = 9, + CV_CAP_PROP_BRIGHTNESS = 10, + CV_CAP_PROP_CONTRAST = 11, + CV_CAP_PROP_SATURATION = 12, + CV_CAP_PROP_HUE = 13, + CV_CAP_PROP_GAIN = 14, + CV_CAP_PROP_EXPOSURE = 15, + CV_CAP_PROP_CONVERT_RGB = 16, + CV_CAP_PROP_WHITE_BALANCE_BLUE_U = 17, + CV_CAP_PROP_RECTIFICATION = 18, + CV_CAP_PROP_MONOCHROME = 19, + CV_CAP_PROP_SHARPNESS = 20, + CV_CAP_PROP_AUTO_EXPOSURE = 21, + CV_CAP_PROP_GAMMA = 22, + CV_CAP_PROP_TEMPERATURE = 23, + CV_CAP_PROP_TRIGGER = 24, + CV_CAP_PROP_TRIGGER_DELAY = 25, + CV_CAP_PROP_WHITE_BALANCE_RED_V = 26, + CV_CAP_PROP_ZOOM = 27, + CV_CAP_PROP_FOCUS = 28, + CV_CAP_PROP_GUID = 29, + CV_CAP_PROP_ISO_SPEED = 30, + CV_CAP_PROP_MAX_DC1394 = 31, + CV_CAP_PROP_BACKLIGHT = 32, + CV_CAP_PROP_PAN = 33, + CV_CAP_PROP_TILT = 34, + CV_CAP_PROP_ROLL = 35, + CV_CAP_PROP_IRIS = 36, + CV_CAP_PROP_SETTINGS = 37, + CV_CAP_PROP_BUFFERSIZE = 38, + CV_CAP_PROP_AUTOFOCUS = 39, + CV_CAP_PROP_SAR_NUM = 40, + CV_CAP_PROP_SAR_DEN = 41, + CV_CAP_PROP_AUTOGRAB = 1024, + CV_CAP_PROP_SUPPORTED_PREVIEW_SIZES_STRING = 1025, + CV_CAP_PROP_PREVIEW_FORMAT = 1026, + CV_CAP_OPENNI_DEPTH_GENERATOR = 1 << 31, + CV_CAP_OPENNI_IMAGE_GENERATOR = 1 << 30, + CV_CAP_OPENNI_IR_GENERATOR = 1 << 29, + CV_CAP_OPENNI_GENERATORS_MASK = CV_CAP_OPENNI_DEPTH_GENERATOR + CV_CAP_OPENNI_IMAGE_GENERATOR + CV_CAP_OPENNI_IR_GENERATOR, + CV_CAP_PROP_OPENNI_OUTPUT_MODE = 100, + CV_CAP_PROP_OPENNI_FRAME_MAX_DEPTH = 101, + CV_CAP_PROP_OPENNI_BASELINE = 102, + CV_CAP_PROP_OPENNI_FOCAL_LENGTH = 103, + CV_CAP_PROP_OPENNI_REGISTRATION = 104, + CV_CAP_PROP_OPENNI_REGISTRATION_ON = CV_CAP_PROP_OPENNI_REGISTRATION, + CV_CAP_PROP_OPENNI_APPROX_FRAME_SYNC = 105, + CV_CAP_PROP_OPENNI_MAX_BUFFER_SIZE = 106, + CV_CAP_PROP_OPENNI_CIRCLE_BUFFER = 107, + CV_CAP_PROP_OPENNI_MAX_TIME_DURATION = 108, + CV_CAP_PROP_OPENNI_GENERATOR_PRESENT = 109, + CV_CAP_PROP_OPENNI2_SYNC = 110, + CV_CAP_PROP_OPENNI2_MIRROR = 111, + CV_CAP_OPENNI_IMAGE_GENERATOR_PRESENT = CV_CAP_OPENNI_IMAGE_GENERATOR + CV_CAP_PROP_OPENNI_GENERATOR_PRESENT, + CV_CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE = CV_CAP_OPENNI_IMAGE_GENERATOR + CV_CAP_PROP_OPENNI_OUTPUT_MODE, + CV_CAP_OPENNI_DEPTH_GENERATOR_PRESENT = CV_CAP_OPENNI_DEPTH_GENERATOR + CV_CAP_PROP_OPENNI_GENERATOR_PRESENT, + CV_CAP_OPENNI_DEPTH_GENERATOR_BASELINE = CV_CAP_OPENNI_DEPTH_GENERATOR + CV_CAP_PROP_OPENNI_BASELINE, + CV_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH = CV_CAP_OPENNI_DEPTH_GENERATOR + CV_CAP_PROP_OPENNI_FOCAL_LENGTH, + CV_CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION = CV_CAP_OPENNI_DEPTH_GENERATOR + CV_CAP_PROP_OPENNI_REGISTRATION, + CV_CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION_ON = CV_CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION, + CV_CAP_OPENNI_IR_GENERATOR_PRESENT = CV_CAP_OPENNI_IR_GENERATOR + CV_CAP_PROP_OPENNI_GENERATOR_PRESENT, + CV_CAP_GSTREAMER_QUEUE_LENGTH = 200, + CV_CAP_PROP_PVAPI_MULTICASTIP = 300, + CV_CAP_PROP_PVAPI_FRAMESTARTTRIGGERMODE = 301, + CV_CAP_PROP_PVAPI_DECIMATIONHORIZONTAL = 302, + CV_CAP_PROP_PVAPI_DECIMATIONVERTICAL = 303, + CV_CAP_PROP_PVAPI_BINNINGX = 304, + CV_CAP_PROP_PVAPI_BINNINGY = 305, + CV_CAP_PROP_PVAPI_PIXELFORMAT = 306, + CV_CAP_PROP_XI_DOWNSAMPLING = 400, + CV_CAP_PROP_XI_DATA_FORMAT = 401, + CV_CAP_PROP_XI_OFFSET_X = 402, + CV_CAP_PROP_XI_OFFSET_Y = 403, + CV_CAP_PROP_XI_TRG_SOURCE = 404, + CV_CAP_PROP_XI_TRG_SOFTWARE = 405, + CV_CAP_PROP_XI_GPI_SELECTOR = 406, + CV_CAP_PROP_XI_GPI_MODE = 407, + CV_CAP_PROP_XI_GPI_LEVEL = 408, + CV_CAP_PROP_XI_GPO_SELECTOR = 409, + CV_CAP_PROP_XI_GPO_MODE = 410, + CV_CAP_PROP_XI_LED_SELECTOR = 411, + CV_CAP_PROP_XI_LED_MODE = 412, + CV_CAP_PROP_XI_MANUAL_WB = 413, + CV_CAP_PROP_XI_AUTO_WB = 414, + CV_CAP_PROP_XI_AEAG = 415, + CV_CAP_PROP_XI_EXP_PRIORITY = 416, + CV_CAP_PROP_XI_AE_MAX_LIMIT = 417, + CV_CAP_PROP_XI_AG_MAX_LIMIT = 418, + CV_CAP_PROP_XI_AEAG_LEVEL = 419, + CV_CAP_PROP_XI_TIMEOUT = 420, + CV_CAP_PROP_XI_EXPOSURE = 421, + CV_CAP_PROP_XI_EXPOSURE_BURST_COUNT = 422, + CV_CAP_PROP_XI_GAIN_SELECTOR = 423, + CV_CAP_PROP_XI_GAIN = 424, + CV_CAP_PROP_XI_DOWNSAMPLING_TYPE = 426, + CV_CAP_PROP_XI_BINNING_SELECTOR = 427, + CV_CAP_PROP_XI_BINNING_VERTICAL = 428, + CV_CAP_PROP_XI_BINNING_HORIZONTAL = 429, + CV_CAP_PROP_XI_BINNING_PATTERN = 430, + CV_CAP_PROP_XI_DECIMATION_SELECTOR = 431, + CV_CAP_PROP_XI_DECIMATION_VERTICAL = 432, + CV_CAP_PROP_XI_DECIMATION_HORIZONTAL = 433, + CV_CAP_PROP_XI_DECIMATION_PATTERN = 434, + CV_CAP_PROP_XI_TEST_PATTERN_GENERATOR_SELECTOR = 587, + CV_CAP_PROP_XI_TEST_PATTERN = 588, + CV_CAP_PROP_XI_IMAGE_DATA_FORMAT = 435, + CV_CAP_PROP_XI_SHUTTER_TYPE = 436, + CV_CAP_PROP_XI_SENSOR_TAPS = 437, + CV_CAP_PROP_XI_AEAG_ROI_OFFSET_X = 439, + CV_CAP_PROP_XI_AEAG_ROI_OFFSET_Y = 440, + CV_CAP_PROP_XI_AEAG_ROI_WIDTH = 441, + CV_CAP_PROP_XI_AEAG_ROI_HEIGHT = 442, + CV_CAP_PROP_XI_BPC = 445, + CV_CAP_PROP_XI_WB_KR = 448, + CV_CAP_PROP_XI_WB_KG = 449, + CV_CAP_PROP_XI_WB_KB = 450, + CV_CAP_PROP_XI_WIDTH = 451, + CV_CAP_PROP_XI_HEIGHT = 452, + CV_CAP_PROP_XI_REGION_SELECTOR = 589, + CV_CAP_PROP_XI_REGION_MODE = 595, + CV_CAP_PROP_XI_LIMIT_BANDWIDTH = 459, + CV_CAP_PROP_XI_SENSOR_DATA_BIT_DEPTH = 460, + CV_CAP_PROP_XI_OUTPUT_DATA_BIT_DEPTH = 461, + CV_CAP_PROP_XI_IMAGE_DATA_BIT_DEPTH = 462, + CV_CAP_PROP_XI_OUTPUT_DATA_PACKING = 463, + CV_CAP_PROP_XI_OUTPUT_DATA_PACKING_TYPE = 464, + CV_CAP_PROP_XI_IS_COOLED = 465, + CV_CAP_PROP_XI_COOLING = 466, + CV_CAP_PROP_XI_TARGET_TEMP = 467, + CV_CAP_PROP_XI_CHIP_TEMP = 468, + CV_CAP_PROP_XI_HOUS_TEMP = 469, + CV_CAP_PROP_XI_HOUS_BACK_SIDE_TEMP = 590, + CV_CAP_PROP_XI_SENSOR_BOARD_TEMP = 596, + CV_CAP_PROP_XI_CMS = 470, + CV_CAP_PROP_XI_APPLY_CMS = 471, + CV_CAP_PROP_XI_IMAGE_IS_COLOR = 474, + CV_CAP_PROP_XI_COLOR_FILTER_ARRAY = 475, + CV_CAP_PROP_XI_GAMMAY = 476, + CV_CAP_PROP_XI_GAMMAC = 477, + CV_CAP_PROP_XI_SHARPNESS = 478, + CV_CAP_PROP_XI_CC_MATRIX_00 = 479, + CV_CAP_PROP_XI_CC_MATRIX_01 = 480, + CV_CAP_PROP_XI_CC_MATRIX_02 = 481, + CV_CAP_PROP_XI_CC_MATRIX_03 = 482, + CV_CAP_PROP_XI_CC_MATRIX_10 = 483, + CV_CAP_PROP_XI_CC_MATRIX_11 = 484, + CV_CAP_PROP_XI_CC_MATRIX_12 = 485, + CV_CAP_PROP_XI_CC_MATRIX_13 = 486, + CV_CAP_PROP_XI_CC_MATRIX_20 = 487, + CV_CAP_PROP_XI_CC_MATRIX_21 = 488, + CV_CAP_PROP_XI_CC_MATRIX_22 = 489, + CV_CAP_PROP_XI_CC_MATRIX_23 = 490, + CV_CAP_PROP_XI_CC_MATRIX_30 = 491, + CV_CAP_PROP_XI_CC_MATRIX_31 = 492, + CV_CAP_PROP_XI_CC_MATRIX_32 = 493, + CV_CAP_PROP_XI_CC_MATRIX_33 = 494, + CV_CAP_PROP_XI_DEFAULT_CC_MATRIX = 495, + CV_CAP_PROP_XI_TRG_SELECTOR = 498, + CV_CAP_PROP_XI_ACQ_FRAME_BURST_COUNT = 499, + CV_CAP_PROP_XI_DEBOUNCE_EN = 507, + CV_CAP_PROP_XI_DEBOUNCE_T0 = 508, + CV_CAP_PROP_XI_DEBOUNCE_T1 = 509, + CV_CAP_PROP_XI_DEBOUNCE_POL = 510, + CV_CAP_PROP_XI_LENS_MODE = 511, + CV_CAP_PROP_XI_LENS_APERTURE_VALUE = 512, + CV_CAP_PROP_XI_LENS_FOCUS_MOVEMENT_VALUE = 513, + CV_CAP_PROP_XI_LENS_FOCUS_MOVE = 514, + CV_CAP_PROP_XI_LENS_FOCUS_DISTANCE = 515, + CV_CAP_PROP_XI_LENS_FOCAL_LENGTH = 516, + CV_CAP_PROP_XI_LENS_FEATURE_SELECTOR = 517, + CV_CAP_PROP_XI_LENS_FEATURE = 518, + CV_CAP_PROP_XI_DEVICE_MODEL_ID = 521, + CV_CAP_PROP_XI_DEVICE_SN = 522, + CV_CAP_PROP_XI_IMAGE_DATA_FORMAT_RGB32_ALPHA = 529, + CV_CAP_PROP_XI_IMAGE_PAYLOAD_SIZE = 530, + CV_CAP_PROP_XI_TRANSPORT_PIXEL_FORMAT = 531, + CV_CAP_PROP_XI_SENSOR_CLOCK_FREQ_HZ = 532, + CV_CAP_PROP_XI_SENSOR_CLOCK_FREQ_INDEX = 533, + CV_CAP_PROP_XI_SENSOR_OUTPUT_CHANNEL_COUNT = 534, + CV_CAP_PROP_XI_FRAMERATE = 535, + CV_CAP_PROP_XI_COUNTER_SELECTOR = 536, + CV_CAP_PROP_XI_COUNTER_VALUE = 537, + CV_CAP_PROP_XI_ACQ_TIMING_MODE = 538, + CV_CAP_PROP_XI_AVAILABLE_BANDWIDTH = 539, + CV_CAP_PROP_XI_BUFFER_POLICY = 540, + CV_CAP_PROP_XI_LUT_EN = 541, + CV_CAP_PROP_XI_LUT_INDEX = 542, + CV_CAP_PROP_XI_LUT_VALUE = 543, + CV_CAP_PROP_XI_TRG_DELAY = 544, + CV_CAP_PROP_XI_TS_RST_MODE = 545, + CV_CAP_PROP_XI_TS_RST_SOURCE = 546, + CV_CAP_PROP_XI_IS_DEVICE_EXIST = 547, + CV_CAP_PROP_XI_ACQ_BUFFER_SIZE = 548, + CV_CAP_PROP_XI_ACQ_BUFFER_SIZE_UNIT = 549, + CV_CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_SIZE = 550, + CV_CAP_PROP_XI_BUFFERS_QUEUE_SIZE = 551, + CV_CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_COMMIT = 552, + CV_CAP_PROP_XI_RECENT_FRAME = 553, + CV_CAP_PROP_XI_DEVICE_RESET = 554, + CV_CAP_PROP_XI_COLUMN_FPN_CORRECTION = 555, + CV_CAP_PROP_XI_ROW_FPN_CORRECTION = 591, + CV_CAP_PROP_XI_SENSOR_MODE = 558, + CV_CAP_PROP_XI_HDR = 559, + CV_CAP_PROP_XI_HDR_KNEEPOINT_COUNT = 560, + CV_CAP_PROP_XI_HDR_T1 = 561, + CV_CAP_PROP_XI_HDR_T2 = 562, + CV_CAP_PROP_XI_KNEEPOINT1 = 563, + CV_CAP_PROP_XI_KNEEPOINT2 = 564, + CV_CAP_PROP_XI_IMAGE_BLACK_LEVEL = 565, + CV_CAP_PROP_XI_HW_REVISION = 571, + CV_CAP_PROP_XI_DEBUG_LEVEL = 572, + CV_CAP_PROP_XI_AUTO_BANDWIDTH_CALCULATION = 573, + CV_CAP_PROP_XI_FFS_FILE_ID = 594, + CV_CAP_PROP_XI_FFS_FILE_SIZE = 580, + CV_CAP_PROP_XI_FREE_FFS_SIZE = 581, + CV_CAP_PROP_XI_USED_FFS_SIZE = 582, + CV_CAP_PROP_XI_FFS_ACCESS_KEY = 583, + CV_CAP_PROP_XI_SENSOR_FEATURE_SELECTOR = 585, + CV_CAP_PROP_XI_SENSOR_FEATURE_VALUE = 586, + CV_CAP_PROP_ANDROID_FLASH_MODE = 8001, + CV_CAP_PROP_ANDROID_FOCUS_MODE = 8002, + CV_CAP_PROP_ANDROID_WHITE_BALANCE = 8003, + CV_CAP_PROP_ANDROID_ANTIBANDING = 8004, + CV_CAP_PROP_ANDROID_FOCAL_LENGTH = 8005, + CV_CAP_PROP_ANDROID_FOCUS_DISTANCE_NEAR = 8006, + CV_CAP_PROP_ANDROID_FOCUS_DISTANCE_OPTIMAL = 8007, + CV_CAP_PROP_ANDROID_FOCUS_DISTANCE_FAR = 8008, + CV_CAP_PROP_ANDROID_EXPOSE_LOCK = 8009, + CV_CAP_PROP_ANDROID_WHITEBALANCE_LOCK = 8010, + CV_CAP_PROP_IOS_DEVICE_FOCUS = 9001, + CV_CAP_PROP_IOS_DEVICE_EXPOSURE = 9002, + CV_CAP_PROP_IOS_DEVICE_FLASH = 9003, + CV_CAP_PROP_IOS_DEVICE_WHITEBALANCE = 9004, + CV_CAP_PROP_IOS_DEVICE_TORCH = 9005, + CV_CAP_PROP_GIGA_FRAME_OFFSET_X = 10001, + CV_CAP_PROP_GIGA_FRAME_OFFSET_Y = 10002, + CV_CAP_PROP_GIGA_FRAME_WIDTH_MAX = 10003, + CV_CAP_PROP_GIGA_FRAME_HEIGH_MAX = 10004, + CV_CAP_PROP_GIGA_FRAME_SENS_WIDTH = 10005, + CV_CAP_PROP_GIGA_FRAME_SENS_HEIGH = 10006, + CV_CAP_PROP_INTELPERC_PROFILE_COUNT = 11001, + CV_CAP_PROP_INTELPERC_PROFILE_IDX = 11002, + CV_CAP_PROP_INTELPERC_DEPTH_LOW_CONFIDENCE_VALUE = 11003, + CV_CAP_PROP_INTELPERC_DEPTH_SATURATION_VALUE = 11004, + CV_CAP_PROP_INTELPERC_DEPTH_CONFIDENCE_THRESHOLD = 11005, + CV_CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_HORZ = 11006, + CV_CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_VERT = 11007, + CV_CAP_INTELPERC_DEPTH_GENERATOR = 1 << 29, + CV_CAP_INTELPERC_IMAGE_GENERATOR = 1 << 28, + CV_CAP_INTELPERC_GENERATORS_MASK = CV_CAP_INTELPERC_DEPTH_GENERATOR + CV_CAP_INTELPERC_IMAGE_GENERATOR, + CV_CAP_MODE_BGR = 0, + CV_CAP_MODE_RGB = 1, + CV_CAP_MODE_GRAY = 2, + CV_CAP_MODE_YUYV = 3, + CV_CAP_OPENNI_DEPTH_MAP = 0, + CV_CAP_OPENNI_POINT_CLOUD_MAP = 1, + CV_CAP_OPENNI_DISPARITY_MAP = 2, + CV_CAP_OPENNI_DISPARITY_MAP_32F = 3, + CV_CAP_OPENNI_VALID_DEPTH_MASK = 4, + CV_CAP_OPENNI_BGR_IMAGE = 5, + CV_CAP_OPENNI_GRAY_IMAGE = 6, + CV_CAP_OPENNI_IR_IMAGE = 7, + CV_CAP_OPENNI_VGA_30HZ = 0, + CV_CAP_OPENNI_SXGA_15HZ = 1, + CV_CAP_OPENNI_SXGA_30HZ = 2, + CV_CAP_OPENNI_QVGA_30HZ = 3, + CV_CAP_OPENNI_QVGA_60HZ = 4, + CV_CAP_INTELPERC_DEPTH_MAP = 0, + CV_CAP_INTELPERC_UVDEPTH_MAP = 1, + CV_CAP_INTELPERC_IR_MAP = 2, + CV_CAP_INTELPERC_IMAGE = 3, + CV_CAP_PROP_GPHOTO2_PREVIEW = 17001, + CV_CAP_PROP_GPHOTO2_WIDGET_ENUMERATE = 17002, + CV_CAP_PROP_GPHOTO2_RELOAD_CONFIG = 17003, + CV_CAP_PROP_GPHOTO2_RELOAD_ON_CHANGE = 17004, + CV_CAP_PROP_GPHOTO2_COLLECT_MSGS = 17005, + CV_CAP_PROP_GPHOTO2_FLUSH_MSGS = 17006, + CV_CAP_PROP_SPEED = 17007, + CV_CAP_PROP_APERTURE = 17008, + CV_CAP_PROP_EXPOSUREPROGRAM = 17009, + CV_CAP_PROP_VIEWFINDER = 17010, + CAP_ANY = 0, + CAP_VFW = 200, + CAP_V4L = 200, + CAP_V4L2 = CAP_V4L, + CAP_FIREWIRE = 300, + CAP_FIREWARE = CAP_FIREWIRE, + CAP_IEEE1394 = CAP_FIREWIRE, + CAP_DC1394 = CAP_FIREWIRE, + CAP_CMU1394 = CAP_FIREWIRE, + CAP_QT = 500, + CAP_UNICAP = 600, + CAP_DSHOW = 700, + CAP_PVAPI = 800, + CAP_OPENNI = 900, + CAP_OPENNI_ASUS = 910, + CAP_ANDROID = 1000, + CAP_XIAPI = 1100, + CAP_AVFOUNDATION = 1200, + CAP_GIGANETIX = 1300, + CAP_MSMF = 1400, + CAP_WINRT = 1410, + CAP_INTELPERC = 1500, + CAP_OPENNI2 = 1600, + CAP_OPENNI2_ASUS = 1610, + CAP_GPHOTO2 = 1700, + CAP_GSTREAMER = 1800, + CAP_FFMPEG = 1900, + CAP_IMAGES = 2000, + CAP_ARAVIS = 2100, + CAP_OPENCV_MJPEG = 2200, + CAP_INTEL_MFX = 2300, + CAP_XINE = 2400, + CAP_PROP_POS_MSEC = 0, + CAP_PROP_POS_FRAMES = 1, + CAP_PROP_POS_AVI_RATIO = 2, + CAP_PROP_FRAME_WIDTH = 3, + CAP_PROP_FRAME_HEIGHT = 4, + CAP_PROP_FPS = 5, + CAP_PROP_FOURCC = 6, + CAP_PROP_FRAME_COUNT = 7, + CAP_PROP_FORMAT = 8, + CAP_PROP_MODE = 9, + CAP_PROP_BRIGHTNESS = 10, + CAP_PROP_CONTRAST = 11, + CAP_PROP_SATURATION = 12, + CAP_PROP_HUE = 13, + CAP_PROP_GAIN = 14, + CAP_PROP_EXPOSURE = 15, + CAP_PROP_CONVERT_RGB = 16, + CAP_PROP_WHITE_BALANCE_BLUE_U = 17, + CAP_PROP_RECTIFICATION = 18, + CAP_PROP_MONOCHROME = 19, + CAP_PROP_SHARPNESS = 20, + CAP_PROP_AUTO_EXPOSURE = 21, + CAP_PROP_GAMMA = 22, + CAP_PROP_TEMPERATURE = 23, + CAP_PROP_TRIGGER = 24, + CAP_PROP_TRIGGER_DELAY = 25, + CAP_PROP_WHITE_BALANCE_RED_V = 26, + CAP_PROP_ZOOM = 27, + CAP_PROP_FOCUS = 28, + CAP_PROP_GUID = 29, + CAP_PROP_ISO_SPEED = 30, + CAP_PROP_BACKLIGHT = 32, + CAP_PROP_PAN = 33, + CAP_PROP_TILT = 34, + CAP_PROP_ROLL = 35, + CAP_PROP_IRIS = 36, + CAP_PROP_SETTINGS = 37, + CAP_PROP_BUFFERSIZE = 38, + CAP_PROP_AUTOFOCUS = 39, + CAP_PROP_SAR_NUM = 40, + CAP_PROP_SAR_DEN = 41, + CAP_MODE_BGR = 0, + CAP_MODE_RGB = 1, + CAP_MODE_GRAY = 2, + CAP_MODE_YUYV = 3, + VIDEOWRITER_PROP_QUALITY = 1, + VIDEOWRITER_PROP_FRAMEBYTES = 2, + VIDEOWRITER_PROP_NSTRIPES = 3, + CAP_PROP_DC1394_OFF = -4, + CAP_PROP_DC1394_MODE_MANUAL = -3, + CAP_PROP_DC1394_MODE_AUTO = -2, + CAP_PROP_DC1394_MODE_ONE_PUSH_AUTO = -1, + CAP_PROP_DC1394_MAX = 31, + CAP_OPENNI_DEPTH_GENERATOR = 1 << 31, + CAP_OPENNI_IMAGE_GENERATOR = 1 << 30, + CAP_OPENNI_IR_GENERATOR = 1 << 29, + CAP_OPENNI_GENERATORS_MASK = CAP_OPENNI_DEPTH_GENERATOR + CAP_OPENNI_IMAGE_GENERATOR + CAP_OPENNI_IR_GENERATOR, + CAP_PROP_OPENNI_OUTPUT_MODE = 100, + CAP_PROP_OPENNI_FRAME_MAX_DEPTH = 101, + CAP_PROP_OPENNI_BASELINE = 102, + CAP_PROP_OPENNI_FOCAL_LENGTH = 103, + CAP_PROP_OPENNI_REGISTRATION = 104, + CAP_PROP_OPENNI_REGISTRATION_ON = CAP_PROP_OPENNI_REGISTRATION, + CAP_PROP_OPENNI_APPROX_FRAME_SYNC = 105, + CAP_PROP_OPENNI_MAX_BUFFER_SIZE = 106, + CAP_PROP_OPENNI_CIRCLE_BUFFER = 107, + CAP_PROP_OPENNI_MAX_TIME_DURATION = 108, + CAP_PROP_OPENNI_GENERATOR_PRESENT = 109, + CAP_PROP_OPENNI2_SYNC = 110, + CAP_PROP_OPENNI2_MIRROR = 111, + CAP_OPENNI_IMAGE_GENERATOR_PRESENT = CAP_OPENNI_IMAGE_GENERATOR + CAP_PROP_OPENNI_GENERATOR_PRESENT, + CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE = CAP_OPENNI_IMAGE_GENERATOR + CAP_PROP_OPENNI_OUTPUT_MODE, + CAP_OPENNI_DEPTH_GENERATOR_PRESENT = CAP_OPENNI_DEPTH_GENERATOR + CAP_PROP_OPENNI_GENERATOR_PRESENT, + CAP_OPENNI_DEPTH_GENERATOR_BASELINE = CAP_OPENNI_DEPTH_GENERATOR + CAP_PROP_OPENNI_BASELINE, + CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH = CAP_OPENNI_DEPTH_GENERATOR + CAP_PROP_OPENNI_FOCAL_LENGTH, + CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION = CAP_OPENNI_DEPTH_GENERATOR + CAP_PROP_OPENNI_REGISTRATION, + CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION_ON = CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION, + CAP_OPENNI_IR_GENERATOR_PRESENT = CAP_OPENNI_IR_GENERATOR + CAP_PROP_OPENNI_GENERATOR_PRESENT, + CAP_OPENNI_DEPTH_MAP = 0, + CAP_OPENNI_POINT_CLOUD_MAP = 1, + CAP_OPENNI_DISPARITY_MAP = 2, + CAP_OPENNI_DISPARITY_MAP_32F = 3, + CAP_OPENNI_VALID_DEPTH_MASK = 4, + CAP_OPENNI_BGR_IMAGE = 5, + CAP_OPENNI_GRAY_IMAGE = 6, + CAP_OPENNI_IR_IMAGE = 7, + CAP_OPENNI_VGA_30HZ = 0, + CAP_OPENNI_SXGA_15HZ = 1, + CAP_OPENNI_SXGA_30HZ = 2, + CAP_OPENNI_QVGA_30HZ = 3, + CAP_OPENNI_QVGA_60HZ = 4, + CAP_PROP_GSTREAMER_QUEUE_LENGTH = 200, + CAP_PROP_PVAPI_MULTICASTIP = 300, + CAP_PROP_PVAPI_FRAMESTARTTRIGGERMODE = 301, + CAP_PROP_PVAPI_DECIMATIONHORIZONTAL = 302, + CAP_PROP_PVAPI_DECIMATIONVERTICAL = 303, + CAP_PROP_PVAPI_BINNINGX = 304, + CAP_PROP_PVAPI_BINNINGY = 305, + CAP_PROP_PVAPI_PIXELFORMAT = 306, + CAP_PVAPI_FSTRIGMODE_FREERUN = 0, + CAP_PVAPI_FSTRIGMODE_SYNCIN1 = 1, + CAP_PVAPI_FSTRIGMODE_SYNCIN2 = 2, + CAP_PVAPI_FSTRIGMODE_FIXEDRATE = 3, + CAP_PVAPI_FSTRIGMODE_SOFTWARE = 4, + CAP_PVAPI_DECIMATION_OFF = 1, + CAP_PVAPI_DECIMATION_2OUTOF4 = 2, + CAP_PVAPI_DECIMATION_2OUTOF8 = 4, + CAP_PVAPI_DECIMATION_2OUTOF16 = 8, + CAP_PVAPI_PIXELFORMAT_MONO8 = 1, + CAP_PVAPI_PIXELFORMAT_MONO16 = 2, + CAP_PVAPI_PIXELFORMAT_BAYER8 = 3, + CAP_PVAPI_PIXELFORMAT_BAYER16 = 4, + CAP_PVAPI_PIXELFORMAT_RGB24 = 5, + CAP_PVAPI_PIXELFORMAT_BGR24 = 6, + CAP_PVAPI_PIXELFORMAT_RGBA32 = 7, + CAP_PVAPI_PIXELFORMAT_BGRA32 = 8, + CAP_PROP_XI_DOWNSAMPLING = 400, + CAP_PROP_XI_DATA_FORMAT = 401, + CAP_PROP_XI_OFFSET_X = 402, + CAP_PROP_XI_OFFSET_Y = 403, + CAP_PROP_XI_TRG_SOURCE = 404, + CAP_PROP_XI_TRG_SOFTWARE = 405, + CAP_PROP_XI_GPI_SELECTOR = 406, + CAP_PROP_XI_GPI_MODE = 407, + CAP_PROP_XI_GPI_LEVEL = 408, + CAP_PROP_XI_GPO_SELECTOR = 409, + CAP_PROP_XI_GPO_MODE = 410, + CAP_PROP_XI_LED_SELECTOR = 411, + CAP_PROP_XI_LED_MODE = 412, + CAP_PROP_XI_MANUAL_WB = 413, + CAP_PROP_XI_AUTO_WB = 414, + CAP_PROP_XI_AEAG = 415, + CAP_PROP_XI_EXP_PRIORITY = 416, + CAP_PROP_XI_AE_MAX_LIMIT = 417, + CAP_PROP_XI_AG_MAX_LIMIT = 418, + CAP_PROP_XI_AEAG_LEVEL = 419, + CAP_PROP_XI_TIMEOUT = 420, + CAP_PROP_XI_EXPOSURE = 421, + CAP_PROP_XI_EXPOSURE_BURST_COUNT = 422, + CAP_PROP_XI_GAIN_SELECTOR = 423, + CAP_PROP_XI_GAIN = 424, + CAP_PROP_XI_DOWNSAMPLING_TYPE = 426, + CAP_PROP_XI_BINNING_SELECTOR = 427, + CAP_PROP_XI_BINNING_VERTICAL = 428, + CAP_PROP_XI_BINNING_HORIZONTAL = 429, + CAP_PROP_XI_BINNING_PATTERN = 430, + CAP_PROP_XI_DECIMATION_SELECTOR = 431, + CAP_PROP_XI_DECIMATION_VERTICAL = 432, + CAP_PROP_XI_DECIMATION_HORIZONTAL = 433, + CAP_PROP_XI_DECIMATION_PATTERN = 434, + CAP_PROP_XI_TEST_PATTERN_GENERATOR_SELECTOR = 587, + CAP_PROP_XI_TEST_PATTERN = 588, + CAP_PROP_XI_IMAGE_DATA_FORMAT = 435, + CAP_PROP_XI_SHUTTER_TYPE = 436, + CAP_PROP_XI_SENSOR_TAPS = 437, + CAP_PROP_XI_AEAG_ROI_OFFSET_X = 439, + CAP_PROP_XI_AEAG_ROI_OFFSET_Y = 440, + CAP_PROP_XI_AEAG_ROI_WIDTH = 441, + CAP_PROP_XI_AEAG_ROI_HEIGHT = 442, + CAP_PROP_XI_BPC = 445, + CAP_PROP_XI_WB_KR = 448, + CAP_PROP_XI_WB_KG = 449, + CAP_PROP_XI_WB_KB = 450, + CAP_PROP_XI_WIDTH = 451, + CAP_PROP_XI_HEIGHT = 452, + CAP_PROP_XI_REGION_SELECTOR = 589, + CAP_PROP_XI_REGION_MODE = 595, + CAP_PROP_XI_LIMIT_BANDWIDTH = 459, + CAP_PROP_XI_SENSOR_DATA_BIT_DEPTH = 460, + CAP_PROP_XI_OUTPUT_DATA_BIT_DEPTH = 461, + CAP_PROP_XI_IMAGE_DATA_BIT_DEPTH = 462, + CAP_PROP_XI_OUTPUT_DATA_PACKING = 463, + CAP_PROP_XI_OUTPUT_DATA_PACKING_TYPE = 464, + CAP_PROP_XI_IS_COOLED = 465, + CAP_PROP_XI_COOLING = 466, + CAP_PROP_XI_TARGET_TEMP = 467, + CAP_PROP_XI_CHIP_TEMP = 468, + CAP_PROP_XI_HOUS_TEMP = 469, + CAP_PROP_XI_HOUS_BACK_SIDE_TEMP = 590, + CAP_PROP_XI_SENSOR_BOARD_TEMP = 596, + CAP_PROP_XI_CMS = 470, + CAP_PROP_XI_APPLY_CMS = 471, + CAP_PROP_XI_IMAGE_IS_COLOR = 474, + CAP_PROP_XI_COLOR_FILTER_ARRAY = 475, + CAP_PROP_XI_GAMMAY = 476, + CAP_PROP_XI_GAMMAC = 477, + CAP_PROP_XI_SHARPNESS = 478, + CAP_PROP_XI_CC_MATRIX_00 = 479, + CAP_PROP_XI_CC_MATRIX_01 = 480, + CAP_PROP_XI_CC_MATRIX_02 = 481, + CAP_PROP_XI_CC_MATRIX_03 = 482, + CAP_PROP_XI_CC_MATRIX_10 = 483, + CAP_PROP_XI_CC_MATRIX_11 = 484, + CAP_PROP_XI_CC_MATRIX_12 = 485, + CAP_PROP_XI_CC_MATRIX_13 = 486, + CAP_PROP_XI_CC_MATRIX_20 = 487, + CAP_PROP_XI_CC_MATRIX_21 = 488, + CAP_PROP_XI_CC_MATRIX_22 = 489, + CAP_PROP_XI_CC_MATRIX_23 = 490, + CAP_PROP_XI_CC_MATRIX_30 = 491, + CAP_PROP_XI_CC_MATRIX_31 = 492, + CAP_PROP_XI_CC_MATRIX_32 = 493, + CAP_PROP_XI_CC_MATRIX_33 = 494, + CAP_PROP_XI_DEFAULT_CC_MATRIX = 495, + CAP_PROP_XI_TRG_SELECTOR = 498, + CAP_PROP_XI_ACQ_FRAME_BURST_COUNT = 499, + CAP_PROP_XI_DEBOUNCE_EN = 507, + CAP_PROP_XI_DEBOUNCE_T0 = 508, + CAP_PROP_XI_DEBOUNCE_T1 = 509, + CAP_PROP_XI_DEBOUNCE_POL = 510, + CAP_PROP_XI_LENS_MODE = 511, + CAP_PROP_XI_LENS_APERTURE_VALUE = 512, + CAP_PROP_XI_LENS_FOCUS_MOVEMENT_VALUE = 513, + CAP_PROP_XI_LENS_FOCUS_MOVE = 514, + CAP_PROP_XI_LENS_FOCUS_DISTANCE = 515, + CAP_PROP_XI_LENS_FOCAL_LENGTH = 516, + CAP_PROP_XI_LENS_FEATURE_SELECTOR = 517, + CAP_PROP_XI_LENS_FEATURE = 518, + CAP_PROP_XI_DEVICE_MODEL_ID = 521, + CAP_PROP_XI_DEVICE_SN = 522, + CAP_PROP_XI_IMAGE_DATA_FORMAT_RGB32_ALPHA = 529, + CAP_PROP_XI_IMAGE_PAYLOAD_SIZE = 530, + CAP_PROP_XI_TRANSPORT_PIXEL_FORMAT = 531, + CAP_PROP_XI_SENSOR_CLOCK_FREQ_HZ = 532, + CAP_PROP_XI_SENSOR_CLOCK_FREQ_INDEX = 533, + CAP_PROP_XI_SENSOR_OUTPUT_CHANNEL_COUNT = 534, + CAP_PROP_XI_FRAMERATE = 535, + CAP_PROP_XI_COUNTER_SELECTOR = 536, + CAP_PROP_XI_COUNTER_VALUE = 537, + CAP_PROP_XI_ACQ_TIMING_MODE = 538, + CAP_PROP_XI_AVAILABLE_BANDWIDTH = 539, + CAP_PROP_XI_BUFFER_POLICY = 540, + CAP_PROP_XI_LUT_EN = 541, + CAP_PROP_XI_LUT_INDEX = 542, + CAP_PROP_XI_LUT_VALUE = 543, + CAP_PROP_XI_TRG_DELAY = 544, + CAP_PROP_XI_TS_RST_MODE = 545, + CAP_PROP_XI_TS_RST_SOURCE = 546, + CAP_PROP_XI_IS_DEVICE_EXIST = 547, + CAP_PROP_XI_ACQ_BUFFER_SIZE = 548, + CAP_PROP_XI_ACQ_BUFFER_SIZE_UNIT = 549, + CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_SIZE = 550, + CAP_PROP_XI_BUFFERS_QUEUE_SIZE = 551, + CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_COMMIT = 552, + CAP_PROP_XI_RECENT_FRAME = 553, + CAP_PROP_XI_DEVICE_RESET = 554, + CAP_PROP_XI_COLUMN_FPN_CORRECTION = 555, + CAP_PROP_XI_ROW_FPN_CORRECTION = 591, + CAP_PROP_XI_SENSOR_MODE = 558, + CAP_PROP_XI_HDR = 559, + CAP_PROP_XI_HDR_KNEEPOINT_COUNT = 560, + CAP_PROP_XI_HDR_T1 = 561, + CAP_PROP_XI_HDR_T2 = 562, + CAP_PROP_XI_KNEEPOINT1 = 563, + CAP_PROP_XI_KNEEPOINT2 = 564, + CAP_PROP_XI_IMAGE_BLACK_LEVEL = 565, + CAP_PROP_XI_HW_REVISION = 571, + CAP_PROP_XI_DEBUG_LEVEL = 572, + CAP_PROP_XI_AUTO_BANDWIDTH_CALCULATION = 573, + CAP_PROP_XI_FFS_FILE_ID = 594, + CAP_PROP_XI_FFS_FILE_SIZE = 580, + CAP_PROP_XI_FREE_FFS_SIZE = 581, + CAP_PROP_XI_USED_FFS_SIZE = 582, + CAP_PROP_XI_FFS_ACCESS_KEY = 583, + CAP_PROP_XI_SENSOR_FEATURE_SELECTOR = 585, + CAP_PROP_XI_SENSOR_FEATURE_VALUE = 586, + CAP_PROP_IOS_DEVICE_FOCUS = 9001, + CAP_PROP_IOS_DEVICE_EXPOSURE = 9002, + CAP_PROP_IOS_DEVICE_FLASH = 9003, + CAP_PROP_IOS_DEVICE_WHITEBALANCE = 9004, + CAP_PROP_IOS_DEVICE_TORCH = 9005, + CAP_PROP_GIGA_FRAME_OFFSET_X = 10001, + CAP_PROP_GIGA_FRAME_OFFSET_Y = 10002, + CAP_PROP_GIGA_FRAME_WIDTH_MAX = 10003, + CAP_PROP_GIGA_FRAME_HEIGH_MAX = 10004, + CAP_PROP_GIGA_FRAME_SENS_WIDTH = 10005, + CAP_PROP_GIGA_FRAME_SENS_HEIGH = 10006, + CAP_PROP_INTELPERC_PROFILE_COUNT = 11001, + CAP_PROP_INTELPERC_PROFILE_IDX = 11002, + CAP_PROP_INTELPERC_DEPTH_LOW_CONFIDENCE_VALUE = 11003, + CAP_PROP_INTELPERC_DEPTH_SATURATION_VALUE = 11004, + CAP_PROP_INTELPERC_DEPTH_CONFIDENCE_THRESHOLD = 11005, + CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_HORZ = 11006, + CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_VERT = 11007, + CAP_INTELPERC_DEPTH_GENERATOR = 1 << 29, + CAP_INTELPERC_IMAGE_GENERATOR = 1 << 28, + CAP_INTELPERC_GENERATORS_MASK = CAP_INTELPERC_DEPTH_GENERATOR + CAP_INTELPERC_IMAGE_GENERATOR, + CAP_INTELPERC_DEPTH_MAP = 0, + CAP_INTELPERC_UVDEPTH_MAP = 1, + CAP_INTELPERC_IR_MAP = 2, + CAP_INTELPERC_IMAGE = 3, + CAP_PROP_GPHOTO2_PREVIEW = 17001, + CAP_PROP_GPHOTO2_WIDGET_ENUMERATE = 17002, + CAP_PROP_GPHOTO2_RELOAD_CONFIG = 17003, + CAP_PROP_GPHOTO2_RELOAD_ON_CHANGE = 17004, + CAP_PROP_GPHOTO2_COLLECT_MSGS = 17005, + CAP_PROP_GPHOTO2_FLUSH_MSGS = 17006, + CAP_PROP_SPEED = 17007, + CAP_PROP_APERTURE = 17008, + CAP_PROP_EXPOSUREPROGRAM = 17009, + CAP_PROP_VIEWFINDER = 17010, + CAP_PROP_IMAGES_BASE = 18000, + CAP_PROP_IMAGES_LAST = 19000; + + + // + // C++: String cv::videoio_registry::getBackendName(VideoCaptureAPIs api) + // + + // Unknown type 'VideoCaptureAPIs' (I), skipping the function + + + // + // C++: vector_VideoCaptureAPIs cv::videoio_registry::getBackends() + // + + // Return type 'vector_VideoCaptureAPIs' is not supported, skipping the function + + + // + // C++: vector_VideoCaptureAPIs cv::videoio_registry::getCameraBackends() + // + + // Return type 'vector_VideoCaptureAPIs' is not supported, skipping the function + + + // + // C++: vector_VideoCaptureAPIs cv::videoio_registry::getStreamBackends() + // + + // Return type 'vector_VideoCaptureAPIs' is not supported, skipping the function + + + // + // C++: vector_VideoCaptureAPIs cv::videoio_registry::getWriterBackends() + // + + // Return type 'vector_VideoCaptureAPIs' is not supported, skipping the function + + + + +} diff --git a/openCVLibrary3/src/main/res/values/attrs.xml b/openCVLibrary3/src/main/res/values/attrs.xml new file mode 100644 index 00000000000..6902621f66b --- /dev/null +++ b/openCVLibrary3/src/main/res/values/attrs.xml @@ -0,0 +1,11 @@ + + + + + + + + + + + diff --git a/settings.gradle b/settings.gradle index 9e2cfb3b4b0..90ea347bb74 100644 --- a/settings.gradle +++ b/settings.gradle @@ -1,2 +1,2 @@ -include ':FtcRobotController' +include ':FtcRobotController', ':DogeCV', ':openCVLibrary3', ':bluejay' include ':TeamCode'