-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathcarlini.py
202 lines (166 loc) · 8.12 KB
/
carlini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
## li_attack.py -- attack a network optimizing for l_infinity distance
##
## Adapted from https://github.com/carlini/nn_robust_attacks
##
## Copyright (C) 2016, Nicholas Carlini <[email protected]>.
##
## This program is licenced under the BSD 2-Clause licence,
## contained in the LICENCE file in this directory.
import tensorflow as tf
import numpy as np
from tensorflow.python.platform import flags
import keras.backend as K
MAX_ITERATIONS = 1000 # number of iterations to perform gradient descent
ABORT_EARLY = True # abort gradient descent upon first valid solution
INITIAL_CONST = 1e-3 # the first value of c to start at
LEARNING_RATE = 5e-3 # larger values converge faster to less accurate results
LARGEST_CONST = 2e+1 # the largest value of c to go up to before giving up
TARGETED = True # should we target one specific class? or just be wrong?
CONST_FACTOR = 10.0 # f>1, rate at which we increase constant, smaller better
CONFIDENCE = 0 # how strong the adversarial example should be
EPS = 0.3
FLAGS = flags.FLAGS
class CarliniLi:
def __init__(self, sess, model,
targeted = TARGETED, learning_rate = LEARNING_RATE,
max_iterations = MAX_ITERATIONS, abort_early = ABORT_EARLY,
initial_const = INITIAL_CONST, largest_const = LARGEST_CONST,
const_factor = CONST_FACTOR, confidence = CONFIDENCE, eps=EPS):
"""
The L_infinity optimized attack.
Returns adversarial examples for the supplied model.
targeted: True if we should perform a targetted attack, False otherwise.
learning_rate: The learning rate for the attack algorithm. Smaller values
produce better results but are slower to converge.
max_iterations: The maximum number of iterations. Larger values are more
accurate; setting too small will require a large learning rate and will
produce poor results.
abort_early: If true, allows early aborts if gradient descent gets stuck.
initial_const: The initial tradeoff-constant to use to tune the relative
importance of distance and confidence. Should be set to a very small
value (but positive).
largest_const: The largest constant to use until we report failure. Should
be set to a very large value.
reduce_const: If true, after each successful attack, make const smaller.
decrease_factor: Rate at which we should decrease tau, less than one.
Larger produces better quality results.
const_factor: The rate at which we should increase the constant, when the
previous constant failed. Should be greater than one, smaller is better.
"""
self.model = model
self.sess = sess
self.TARGETED = targeted
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
self.ABORT_EARLY = abort_early
self.INITIAL_CONST = initial_const
self.LARGEST_CONST = largest_const
self.const_factor = const_factor
self.CONFIDENCE = confidence
self.EPS = eps
self.grad = self.gradient_descent(sess, model)
def gradient_descent(self, sess, model):
def compare(outputs, labels):
y = np.argmax(labels)
pred = np.argmax(outputs)
if self.TARGETED:
return (pred == y)
else:
return (pred != y)
shape = (1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS)
# the variable to optimize over
modifier = tf.Variable(np.zeros(shape,dtype=np.float32))
tau = tf.placeholder(tf.float32, [])
simg = tf.placeholder(tf.float32, shape)
timg = tf.placeholder(tf.float32, shape)
tlab = tf.placeholder(tf.float32, (1, FLAGS.NUM_CLASSES))
const = tf.placeholder(tf.float32, [])
newimg = tf.clip_by_value(simg + modifier, 0, 1)
output = model(newimg)
orig_output = model(timg)
real = tf.reduce_sum((tlab)*output)
other = tf.reduce_max((1-tlab)*output - (tlab*10000))
if self.TARGETED:
# if targetted, optimize for making the other class most likely
loss1 = tf.maximum(0.0,other-real+self.CONFIDENCE)
else:
# if untargeted, optimize for making this class least likely.
loss1 = tf.maximum(0.0,real-other+self.CONFIDENCE)
# sum up the losses
loss2 = tf.reduce_sum(tf.maximum(0.0, tf.abs(newimg-timg)-tau))
loss = const*loss1+loss2
# setup the adam optimizer and keep track of variables we're creating
start_vars = set(x.name for x in tf.global_variables())
optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE)
train = optimizer.minimize(loss, var_list=[modifier])
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]
init = tf.variables_initializer(var_list=[modifier]+new_vars)
def doit(oimgs, labs, starts, tt, CONST):
prev_scores = None
imgs = np.array(oimgs)
starts = np.array(starts)
# initialize the variables
sess.run(init)
while CONST < self.LARGEST_CONST:
# try solving for each value of the constant
#print('try const', CONST)
for step in range(self.MAX_ITERATIONS):
feed_dict={timg: imgs,
tlab:labs,
tau: tt,
simg: starts,
const: CONST,
K.learning_phase(): 0}
#if step % (self.MAX_ITERATIONS//10) == 0:
# print(step, sess.run((loss,loss1,loss2),feed_dict=feed_dict))
# perform the update step
_, works, linf_slack = sess.run([train, loss, loss2], feed_dict=feed_dict)
# it worked
if works < .0001*CONST and (self.ABORT_EARLY or step == CONST-1):
get = sess.run(K.softmax(output), feed_dict=feed_dict)
works = compare(get, labs)
if works:
scores, origscores, nimg = sess.run((output,orig_output,newimg),feed_dict=feed_dict)
return scores, origscores, nimg, CONST
# we didn't succeed, increase constant and try again
if linf_slack >= 0.1 * self.EPS:
# perturbation is too large
if prev_scores is None:
return prev_scores
return prev_scores, prev_origscores, prev_nimg, CONST
else:
# didn't reach target confidence
CONST *= self.const_factor
prev_scores, prev_origscores, prev_nimg = sess.run((output,orig_output,newimg),feed_dict=feed_dict)
scores, origscores, nimg = sess.run((output,orig_output,newimg),feed_dict=feed_dict)
return scores, origscores, nimg, CONST
return doit
def attack(self, imgs, targets):
"""
Perform the L_0 attack on the given images for the given targets.
If self.targeted is true, then the targets represents the target labels.
If self.targeted is false, then targets are the original class labels.
"""
r = []
i = 0
for img,target in zip(imgs, targets):
print i
r.extend(self.attack_single(img, target))
i += 1
return np.array(r)
def attack_single(self, img, target):
"""
Run the attack on a single image and label
"""
# the previous image
prev = np.copy(img).reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
tau = self.EPS
const = self.INITIAL_CONST
res = self.grad([np.copy(img)], [target], np.copy(prev), tau, const)
if res is None:
# the attack failed, we return this as our final answer
return prev
scores, origscores, nimg, const = res
prev = nimg
return prev