-
Notifications
You must be signed in to change notification settings - Fork 1
/
nota.aux
639 lines (639 loc) · 78 KB
/
nota.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
\relax
\providecommand\hyper@newdestlabel[2]{}
\catcode `"\active
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\AC@reset@newl@bel
\citation{supplementaryNote}
\select@language{british}
\@writefile{toc}{\select@language{british}}
\@writefile{lof}{\select@language{british}}
\@writefile{lot}{\select@language{british}}
\AC@undonewlabel{acro:RP}
\newlabel{acro:RP}{{}{1}{}{Doc-Start}{}}
\newlabel{acro:RP@cref}{{}{1}}
\acronymused{RP}
\AC@undonewlabel{acro:TPC}
\newlabel{acro:TPC}{{}{1}{}{Doc-Start}{}}
\newlabel{acro:TPC@cref}{{}{1}}
\acronymused{TPC}
\@writefile{toc}{\contentsline {chapter}{List of contributions}{2}{section*.1}}
\@writefile{toc}{\contentsline {chapter}{Change log}{2}{section*.2}}
\select@language{british}
\@writefile{toc}{\select@language{british}}
\@writefile{lof}{\select@language{british}}
\@writefile{lot}{\select@language{british}}
\newlabel{chapter:acronyms}{{}{II}{Acronyms}{chapter*.4}{}}
\newlabel{chapter:acronyms@cref}{{}{II}}
\newacro{CD}[\AC@hyperlink{CD}{CD}]{Central Diffraction}
\newacro{DD}[\AC@hyperlink{DD}{DD}]{Double Diffraction}
\newacro{MBR}[\AC@hyperlink{MBR}{MBR}]{Minimum Bias Rockefeller}
\newacro{MC}[\AC@hyperlink{MC}{MC}]{Monte Carlo}
\newacro{ND}[\AC@hyperlink{ND}{ND}]{Non-Diffractive}
\newacro{QCD}[\AC@hyperlink{QCD}{QCD}]{Quantum Chromodynamics}
\newacro{RP}[\AC@hyperlink{RP}{RP}]{Roman Pot}
\newacro{SaS}[\AC@hyperlink{SaS}{SaS}]{Schuler and Sj{\"o}strand}
\newacro{SD}[\AC@hyperlink{SD}{SD}]{Single Diffraction}
\newacro{TPC}[\AC@hyperlink{TPC}{TPC}]{Time Projection Chamber}
\citation{Kopeliovich:1988qm}
\citation{Bopp:2000vg}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{1}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chapter:introduction}{{1}{1}{Introduction}{chapter.1}{}}
\newlabel{chapter:introduction@cref}{{[chapter][1][]1}{1}}
\AC@undonewlabel{acro:QCD}
\newlabel{acro:QCD}{{1}{1}{Introduction}{chapter.1}{}}
\newlabel{acro:QCD@cref}{{[chapter][1][]1}{1}}
\acronymused{QCD}
\AC@undonewlabel{acro:MC}
\newlabel{acro:MC}{{1}{1}{Introduction}{chapter.1}{}}
\newlabel{acro:MC@cref}{{[chapter][1][]1}{1}}
\acronymused{MC}
\AC@undonewlabel{acro:SD}
\newlabel{acro:SD}{{1}{1}{Introduction}{chapter.1}{}}
\newlabel{acro:SD@cref}{{[chapter][1][]1}{1}}
\acronymused{SD}
\citation{STAR:tpc}
\citation{Sjostrand:2006za,MBR:intro}
\citation{Sjostrand:2006za}
\citation{MBR:intro}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Monte Carlo Samples }{2}{chapter.2}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{section:star_mc}{{2}{2}{Monte Carlo Samples}{chapter.2}{}}
\newlabel{section:star_mc@cref}{{[chapter][2][]2}{2}}
\acronymused{MC}
\acronymused{MC}
\acronymused{MC}
\AC@undonewlabel{acro:SaS}
\newlabel{acro:SaS}{{2}{2}{Monte Carlo Samples}{Item.2}{}}
\newlabel{acro:SaS@cref}{{[enumi][2][]2}{2}}
\acronymused{SaS}
\acronymused{MC}
\acronymused{SaS}
\acronymused{SaS}
\AC@undonewlabel{acro:MBR}
\newlabel{acro:MBR}{{2}{2}{Monte Carlo Samples}{Item.2}{}}
\newlabel{acro:MBR@cref}{{[chapter][2][]2}{2}}
\acronymused{MBR}
\AC@undonewlabel{acro:ND}
\newlabel{acro:ND}{{2}{2}{Monte Carlo Samples}{Item.2}{}}
\newlabel{acro:ND@cref}{{[chapter][2][]2}{2}}
\acronymused{ND}
\acronymused{ND}
\acronymused{SaS}
\acronymused{MBR}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces (left) $\xi $ distribution for various MC generators and (right) ratios of different MCs to PYTHIA~8 (MBR) predictions as a~function of $|t|$ at $\sqrt {s} = 200$~GeV.\relax }}{3}{figure.caption.5}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:STARtrueMC}{{2.1}{3}{(left) $\xi $ distribution for various MC generators and (right) ratios of different MCs to PYTHIA~8 (MBR) predictions as a~function of $|t|$ at $\sqrt {s} = 200$~GeV.\relax }{figure.caption.5}{}}
\newlabel{fig:STARtrueMC@cref}{{[figure][1][2]2.1}{3}}
\citation{pp2ppTrigers,runLogBrowser}
\citation{pp2ppTrigers,runLogBrowser}
\citation{RHIC:rhicRunLuminosity}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Data Sample and Event Selection}{4}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{section:star_data_sample}{{3}{4}{Data Sample and Event Selection}{chapter.3}{}}
\newlabel{section:star_data_sample@cref}{{[chapter][3][]3}{4}}
\newlabel{section:star_trigger_selection}{{3}{4}{Data Sample and Event Selection}{chapter.3}{}}
\newlabel{section:star_trigger_selection@cref}{{[chapter][3][]3}{4}}
\@writefile{toc}{\contentsline {subsubsection}{Event Selection}{4}{section*.7}}
\newlabel{section:star_event_selection}{{3}{4}{Event Selection}{section*.7}{}}
\newlabel{section:star_event_selection@cref}{{[chapter][3][]3}{4}}
\acronymused{RP}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Cumulative number of events collected for each trigger in the~\ac {RP} data stream during Run 15~\cite {pp2ppTrigers,runLogBrowser}. \relax }}{4}{figure.caption.6}}
\acronymused{RP}
\newlabel{fig:lumiRHIC}{{3.1}{4}{Cumulative number of events collected for each trigger in the~\ac {RP} data stream during Run 15~\cite {pp2ppTrigers,runLogBrowser}. \relax }{figure.caption.6}{}}
\newlabel{fig:lumiRHIC@cref}{{[figure][1][3]3.1}{4}}
\@writefile{toc}{\contentsline {subsubsection}{ZDC Veto}{5}{section*.9}}
\newlabel{section:star_zdc_selection}{{3}{5}{ZDC Veto}{section*.9}{}}
\newlabel{section:star_zdc_selection@cref}{{[chapter][3][]3}{5}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Track Selection}{5}{section.3.1}}
\newlabel{section:star_track_selection}{{3.1}{5}{Track Selection}{section.3.1}{}}
\newlabel{section:star_track_selection@cref}{{[section][1][3]3.1}{5}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces (left) Vertex multiplicity and (right) the~$z$-position of reconstructed vertices in single TOF vertex events before applying the~cut on the~quantity shown. Blue lines indicate regions accepted in the analysis.\relax }}{5}{figure.caption.8}}
\newlabel{fig:vertexSTAR}{{3.2}{5}{(left) Vertex multiplicity and (right) the~$z$-position of reconstructed vertices in single TOF vertex events before applying the~cut on the~quantity shown. Blue lines indicate regions accepted in the analysis.\relax }{figure.caption.8}{}}
\newlabel{fig:vertexSTAR@cref}{{[figure][2][3]3.2}{5}}
\citation{supplementaryNote}
\citation{starLumi}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Total energy of neutral particles ($n$, $\gamma $, $\pi ^{0}$) produced within ZDC acceptance ($|\eta |>6$) for events in which forward-scattered proton is on (top) west and (bottom) east side of the~IP. Distributions are presented separately for neutral particles produced on (left) the proton and (right) opposite side of the IP. PYTHIA~8 predictions for different processes are shown as colour histograms. \relax }}{6}{figure.caption.10}}
\newlabel{fig:zdcSTAR}{{3.3}{6}{Total energy of neutral particles ($n$, $\gamma $, $\pi ^{0}$) produced within ZDC acceptance ($|\eta |>6$) for events in which forward-scattered proton is on (top) west and (bottom) east side of the~IP. Distributions are presented separately for neutral particles produced on (left) the proton and (right) opposite side of the IP. PYTHIA~8 predictions for different processes are shown as colour histograms. \relax }{figure.caption.10}{}}
\newlabel{fig:zdcSTAR@cref}{{[figure][3][3]3.3}{6}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Number of the TPC hits used in the helix fit (a) and number of the TPC hits used to determine the $dE/dx$ (b), the radial component (c) and the absolute magnitude of the longitudinal component (d) of the distance of the closest approach between the global helix and the vertex, transverse impact parameter w.r.t. beam-line (e). All distributions are shown before applying the corresponding cuts. Blue lines indicate regions accepted in the analysis.\relax }}{7}{figure.caption.11}}
\newlabel{fig:dca_nhitsSTAR}{{3.4}{7}{Number of the TPC hits used in the helix fit (a) and number of the TPC hits used to determine the $dE/dx$ (b), the radial component (c) and the absolute magnitude of the longitudinal component (d) of the distance of the closest approach between the global helix and the vertex, transverse impact parameter w.r.t. beam-line (e). All distributions are shown before applying the corresponding cuts. Blue lines indicate regions accepted in the analysis.\relax }{figure.caption.11}{}}
\newlabel{fig:dca_nhitsSTAR@cref}{{[figure][4][3]3.4}{7}}
\citation{STARelastic2015}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Pseudorapidity of the~reconstructed tracks for events in which forward proton is on west (a) and east (b) side of the IP, track azimuthal angle for runs $\leq 16073050$ (c) and $>16073050$ (d) and track transverse momentum (e). All distributions are shown before applying the~corresponding cuts. Blue lines indicate regions accepted in the analysis.\relax }}{8}{figure.caption.12}}
\newlabel{fig:ptEtaPhiSTAR}{{3.5}{8}{Pseudorapidity of the~reconstructed tracks for events in which forward proton is on west (a) and east (b) side of the IP, track azimuthal angle for runs $\leq 16073050$ (c) and $>16073050$ (d) and track transverse momentum (e). All distributions are shown before applying the~corresponding cuts. Blue lines indicate regions accepted in the analysis.\relax }{figure.caption.12}{}}
\newlabel{fig:ptEtaPhiSTAR@cref}{{[figure][5][3]3.5}{8}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Fiducial Region of the Measurement}{8}{section.3.2}}
\newlabel{section:star_fiducial}{{3.2}{8}{Fiducial Region of the Measurement}{section.3.2}{}}
\newlabel{section:star_fiducial@cref}{{[section][2][3]3.2}{8}}
\AC@undonewlabel{acro:DD}
\newlabel{acro:DD}{{3.2}{8}{Fiducial Region of the Measurement}{figure.caption.13}{}}
\newlabel{acro:DD@cref}{{[section][2][3]3.2}{8}}
\acronymused{DD}
\acronymused{ND}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces $\epsilon _{ n_\textrm {ch} \geq 2}$ as a function of $\qopname \relax o{log}_{10}\xi $ calculated from PYTHIA~8 (MBR).\relax }}{9}{figure.caption.13}}
\newlabel{fig:STARtrueMCfiducial}{{3.6}{9}{$\epsilon _{ n_\textrm {ch} \geq 2}$ as a function of $\log _{10}\xi $ calculated from PYTHIA~8 (MBR).\relax }{figure.caption.13}{}}
\newlabel{fig:STARtrueMCfiducial@cref}{{[figure][6][3]3.6}{9}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces RP acceptance and track reconstruction efficiency as a~function $-t$ in three ranges of $\xi $, calculated using PYTHIA~8 4C (SaS). Magenta lines indicate region accepted in the~analysis.\relax }}{10}{figure.caption.14}}
\newlabel{fig:STARAcceptance}{{3.7}{10}{RP acceptance and track reconstruction efficiency as a~function $-t$ in three ranges of $\xi $, calculated using PYTHIA~8 4C (SaS). Magenta lines indicate region accepted in the~analysis.\relax }{figure.caption.14}{}}
\newlabel{fig:STARAcceptance@cref}{{[figure][7][3]3.7}{10}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Background Contribution}{11}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{section:star_background}{{4}{11}{Background Contribution}{chapter.4}{}}
\newlabel{section:star_background@cref}{{[chapter][4][]4}{11}}
\@writefile{toc}{\contentsline {subsubsection}{Accidental Background}{11}{section*.15}}
\newlabel{section:star_accidentals}{{4}{11}{Accidental Background}{section*.15}{}}
\newlabel{section:star_accidentals@cref}{{[chapter][4][]4}{11}}
\acronymused{RP}
\acronymused{SD}
\AC@undonewlabel{acro:CD}
\newlabel{acro:CD}{{4}{11}{Accidental Background}{section*.15}{}}
\newlabel{acro:CD@cref}{{[chapter][4][]4}{11}}
\acronymused{CD}
\acronymused{ND}
\newlabel{eq:accidentalSTAR_N}{{4.1}{11}{Accidental Background}{equation.4.0.1}{}}
\newlabel{eq:accidentalSTAR_N@cref}{{[equation][1][4]4.1}{11}}
\newlabel{eq:bkg_acc_norm}{{4.4}{12}{Accidental Background}{equation.4.0.4}{}}
\newlabel{eq:bkg_acc_norm@cref}{{[equation][4][4]4.4}{12}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Uncorrected distributions of the reconstructed $\xi $ for events with proton reconstructed in (top left) EU, (top right) ED, (bottom left) WU and (bottom right) WD arms. Data is shown as black markers, whereas the~accidental background contribution is shown as yellow histogram. The ratio of accidental background and data is shown in the bottom panels.\relax }}{12}{figure.caption.16}}
\newlabel{fig:STARaccidentalsXi}{{4.1}{12}{Uncorrected distributions of the reconstructed $\xi $ for events with proton reconstructed in (top left) EU, (top right) ED, (bottom left) WU and (bottom right) WD arms. Data is shown as black markers, whereas the~accidental background contribution is shown as yellow histogram. The ratio of accidental background and data is shown in the bottom panels.\relax }{figure.caption.16}{}}
\newlabel{fig:STARaccidentalsXi@cref}{{[figure][1][4]4.1}{12}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Background from Non-Primary Tracks}{13}{section.4.1}}
\newlabel{section:star_background_primary}{{4.1}{13}{Background from Non-Primary Tracks}{section.4.1}{}}
\newlabel{section:star_background_primary@cref}{{[section][1][4]4.1}{13}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Distribution of fraction of selected tracks associated with non-primary particles in the~range $0.02<\xi <0.2$ as predicted by (left) PYTHIA~8 4C (SaS) embedding and (right) EPOS SD+SD$^\prime $.\relax }}{13}{figure.caption.17}}
\newlabel{fig:bkg_fake_charged}{{4.2}{13}{Distribution of fraction of selected tracks associated with non-primary particles in the~range $0.02<\xi <0.2$ as predicted by (left) PYTHIA~8 4C (SaS) embedding and (right) EPOS SD+SD$^\prime $.\relax }{figure.caption.17}{}}
\newlabel{fig:bkg_fake_charged@cref}{{[figure][2][4]4.2}{13}}
\citation{STAR:spectra}
\citation{supplementaryNote}
\citation{supplementaryNote}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces PYTHIA~8 SD and EPOS SD+SD$^\prime $ predictions of fraction of selected tracks associated with non-primary particles as a~function of (left) $p_\textrm {T}$ and (right) $\eta $. The~ratio of EPOS and PYTHIA~8 predictions is shown in the~bottom panels.\relax }}{14}{figure.caption.18}}
\newlabel{fig:bkg_epos_charged_1D}{{4.3}{14}{PYTHIA~8 SD and EPOS SD+SD$^\prime $ predictions of fraction of selected tracks associated with non-primary particles as a~function of (left) $p_\textrm {T}$ and (right) $\eta $. The~ratio of EPOS and PYTHIA~8 predictions is shown in the~bottom panels.\relax }{figure.caption.18}{}}
\newlabel{fig:bkg_epos_charged_1D@cref}{{[figure][3][4]4.3}{14}}
\@writefile{toc}{\contentsline {subsubsection}{Proton Background}{14}{section*.19}}
\newlabel{section:star_background_proton}{{4.1}{14}{Proton Background}{section*.19}{}}
\newlabel{section:star_background_proton@cref}{{[section][1][4]4.1}{14}}
\acronymused{MC}
\acronymused{MC}
\acronymused{MC}
\acronymused{MC}
\citation{supplementaryNote}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces The $\textrm {DCA}$ distributions of protons for $0.4<p_T<0.5$~GeV/c shown for single range of $0.02<\xi <0.05$ (shown in log and linear scale in left and right column, respectively). The MC contributions are shown after scaling the dead-material template to the~tail of large $\textrm {DCA}$ values, $2<\textrm {DCA}<15$~cm. (top) Background enriched samples were used in the normalization procedure, whereas (bottom) the proton background was estimated from the nominal sample.\relax }}{15}{figure.caption.20}}
\newlabel{fig:bkg_proton}{{4.4}{15}{The $\textrm {DCA}$ distributions of protons for $0.4<p_T<0.5$~GeV/c shown for single range of $0.02<\xi <0.05$ (shown in log and linear scale in left and right column, respectively). The MC contributions are shown after scaling the dead-material template to the~tail of large $\textrm {DCA}$ values, $2<\textrm {DCA}<15$~cm. (top) Background enriched samples were used in the normalization procedure, whereas (bottom) the proton background was estimated from the nominal sample.\relax }{figure.caption.20}{}}
\newlabel{fig:bkg_proton@cref}{{[figure][4][4]4.4}{15}}
\newlabel{eq:protonBkgParametrization}{{4.5}{15}{Proton Background}{equation.4.1.5}{}}
\newlabel{eq:protonBkgParametrization@cref}{{[equation][5][4]4.5}{15}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces The $\textrm {DCA}$ distributions of antiprotons for $0.4<p_\textrm {T}<0.5$~GeV/c shown for one range of $0.02<\xi <0.05$ (log and linear scale in left and right column, respectively). The MC controbutions are shown as colour histograms. (top) Background enriched and (bottom) nominal samples were used.\relax }}{16}{figure.caption.21}}
\newlabel{fig:bkg_proton_bar}{{4.5}{16}{The $\textrm {DCA}$ distributions of antiprotons for $0.4<p_\textrm {T}<0.5$~GeV/c shown for one range of $0.02<\xi <0.05$ (log and linear scale in left and right column, respectively). The MC controbutions are shown as colour histograms. (top) Background enriched and (bottom) nominal samples were used.\relax }{figure.caption.21}{}}
\newlabel{fig:bkg_proton_bar@cref}{{[figure][5][4]4.5}{16}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces The fraction of knock-out proton background as a function of $p_\textrm {T}$ in three ranges of $\xi $ with fitted parametrizations. Full markers represent fitted knock-out background and open markers represent PYTHIA~8 SD predictions.\relax }}{17}{figure.caption.22}}
\newlabel{fig:bkg_proton_fit}{{4.6}{17}{The fraction of knock-out proton background as a function of $p_\textrm {T}$ in three ranges of $\xi $ with fitted parametrizations. Full markers represent fitted knock-out background and open markers represent PYTHIA~8 SD predictions.\relax }{figure.caption.22}{}}
\newlabel{fig:bkg_proton_fit@cref}{{[figure][6][4]4.6}{17}}
\@writefile{toc}{\contentsline {subsubsection}{Systematic Uncertainty Related to Proton Background}{17}{section*.23}}
\acronymused{MC}
\newlabel{eq:slopeBkgFit}{{4.6}{17}{Systematic Uncertainty Related to Proton Background}{equation.4.1.6}{}}
\newlabel{eq:slopeBkgFit@cref}{{[equation][6][4]4.6}{17}}
\acronymused{MC}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces (top left) Data to MC ratio of the number of events in the background dominated region in three ranges of $\xi $ with fitted functional form given by Eq.~\textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:slopeBkgFit}\unskip \@@italiccorr )}}. (top right and bottom) Components of the systematic uncertainty related to the knock-out background protons contribution in three $\xi $ ranges. \relax }}{18}{figure.caption.24}}
\newlabel{fig:protonBkgSyst}{{4.7}{18}{(top left) Data to MC ratio of the number of events in the background dominated region in three ranges of $\xi $ with fitted functional form given by Eq.~\eqref {eq:slopeBkgFit}. (top right and bottom) Components of the systematic uncertainty related to the knock-out background protons contribution in three $\xi $ ranges. \relax }{figure.caption.24}{}}
\newlabel{fig:protonBkgSyst@cref}{{[figure][7][4]4.7}{18}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces The fraction of knock-out proton background as a function of $p_\textrm {T}$ with fitted parametrizations in three ranges of $\xi $: (top left) $0.02 < \xi < 0.05$, (top right) $0.05<\xi <0.1$ and (bottom) $0.1<\xi <0.2$. Gray bands represent total systematic uncertainties.\relax }}{18}{figure.caption.25}}
\newlabel{fig:protonBkgSystSummary}{{4.8}{18}{The fraction of knock-out proton background as a function of $p_\textrm {T}$ with fitted parametrizations in three ranges of $\xi $: (top left) $0.02 < \xi < 0.05$, (top right) $0.05<\xi <0.1$ and (bottom) $0.1<\xi <0.2$. Gray bands represent total systematic uncertainties.\relax }{figure.caption.25}{}}
\newlabel{fig:protonBkgSystSummary@cref}{{[figure][8][4]4.8}{18}}
\@writefile{toc}{\contentsline {subsubsection}{Pion Background}{19}{section*.26}}
\newlabel{section:star_background_pion}{{4.1}{19}{Pion Background}{section*.26}{}}
\newlabel{section:star_background_pion@cref}{{[section][1][4]4.1}{19}}
\acronymused{SD}
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Pion background fraction as a function of $p_\textrm {T}$ shown separately for (left) negatively and (right) positively charged pions in three ranges of $\xi $: (red) $0.02<\xi <0.05$, (green) $0.05<\xi <0.1$, (blue) $0.1<\xi <0.2$. (full black points) The pion background averaged over three ranges of $\xi $ with fitted parametrization is also shown. Open black points represent EPOS predictions for the full $\xi $ range.\relax }}{19}{figure.caption.27}}
\newlabel{fig:bkg_pion}{{4.9}{19}{Pion background fraction as a function of $p_\textrm {T}$ shown separately for (left) negatively and (right) positively charged pions in three ranges of $\xi $: (red) $0.02<\xi <0.05$, (green) $0.05<\xi <0.1$, (blue) $0.1<\xi <0.2$. (full black points) The pion background averaged over three ranges of $\xi $ with fitted parametrization is also shown. Open black points represent EPOS predictions for the full $\xi $ range.\relax }{figure.caption.27}{}}
\newlabel{fig:bkg_pion@cref}{{[figure][9][4]4.9}{19}}
\citation{Acosta:2003xi}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Control Plots}{20}{section.4.2}}
\newlabel{section:star_nonSD}{{4.2}{20}{Control Plots}{section.4.2}{}}
\newlabel{section:star_nonSD@cref}{{[section][2][4]4.2}{20}}
\acronymused{ND}
\acronymused{DD}
\acronymused{SD}
\acronymused{CD}
\acronymused{RP}
\acronymused{SD}
\acronymused{CD}
\acronymused{DD}
\acronymused{ND}
\acronymused{MC}
\acronymused{MC}
\acronymused{SD}
\acronymused{ND}
\acronymused{DD}
\acronymused{CD}
\acronymused{CD}
\acronymused{CD}
\acronymused{SaS}
\acronymused{DD}
\acronymused{ND}
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Uncorrected distributions of data compared to various MC models: (a-b) PYTHIA~8 A2 (MBR), (c-d) PYTHIA~8 A2 (MBR-tuned), (e-f) PYTHIA~8 4C (SaS) and (g-h) EPOS, as a~function of (left column) $\xi $ and (right column) $|t|$. The~ratio of MC predictions and data is shown in the~bottom panels.\relax }}{21}{figure.caption.28}}
\newlabel{fig:nonSDxit}{{4.10}{21}{Uncorrected distributions of data compared to various MC models: (a-b) PYTHIA~8 A2 (MBR), (c-d) PYTHIA~8 A2 (MBR-tuned), (e-f) PYTHIA~8 4C (SaS) and (g-h) EPOS, as a~function of (left column) $\xi $ and (right column) $|t|$. The~ratio of MC predictions and data is shown in the~bottom panels.\relax }{figure.caption.28}{}}
\newlabel{fig:nonSDxit@cref}{{[figure][10][4]4.10}{21}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Uncorrected distributions of data compared to various MC models: (top left) PYTHIA~8 A2 (MBR), (top right) PYTHIA~8 A2 (MBR-tuned), (bottom left) PYTHIA~8 4C (SaS) and (bottom right) EPOS, as a function of $n_{\mathrm {sel}}$. The~ratio of MC predictions and data is shown in the~bottom panels.\relax }}{22}{figure.caption.29}}
\newlabel{fig:nonSDnsel}{{4.11}{22}{Uncorrected distributions of data compared to various MC models: (top left) PYTHIA~8 A2 (MBR), (top right) PYTHIA~8 A2 (MBR-tuned), (bottom left) PYTHIA~8 4C (SaS) and (bottom right) EPOS, as a function of $n_{\mathrm {sel}}$. The~ratio of MC predictions and data is shown in the~bottom panels.\relax }{figure.caption.29}{}}
\newlabel{fig:nonSDnsel@cref}{{[figure][11][4]4.11}{22}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Uncorrected distributions of data compared to various MC models: (top left) PYTHIA~8 A2 (MBR), (top right) PYTHIA~8 A2 (MBR-tuned), (bottom left) PYTHIA~8 4C (SaS) and (bottom right) EPOS, as a function of $p_{\mathrm {T}}$. The~ratio of MC predictions and data is shown in the~bottom panels.\relax }}{22}{figure.caption.29}}
\newlabel{fig:nonSDpt}{{4.12}{22}{Uncorrected distributions of data compared to various MC models: (top left) PYTHIA~8 A2 (MBR), (top right) PYTHIA~8 A2 (MBR-tuned), (bottom left) PYTHIA~8 4C (SaS) and (bottom right) EPOS, as a function of $p_{\mathrm {T}}$. The~ratio of MC predictions and data is shown in the~bottom panels.\relax }{figure.caption.29}{}}
\newlabel{fig:nonSDpt@cref}{{[figure][12][4]4.12}{22}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Uncorrected distributions of data compared to various MC models: (top left) PYTHIA~8 A2 (MBR), (top right) PYTHIA~8 A2 (MBR-tuned), (bottom left) PYTHIA~8 4C (SaS) and (bottom right) EPOS, as a function of $\mathaccentV {bar}016{\eta }$. The~ratio of MC predictions and data is shown in the~bottom panels.\relax }}{23}{figure.caption.30}}
\newlabel{fig:nonSDera}{{4.13}{23}{Uncorrected distributions of data compared to various MC models: (top left) PYTHIA~8 A2 (MBR), (top right) PYTHIA~8 A2 (MBR-tuned), (bottom left) PYTHIA~8 4C (SaS) and (bottom right) EPOS, as a function of $\bar {\eta }$. The~ratio of MC predictions and data is shown in the~bottom panels.\relax }{figure.caption.30}{}}
\newlabel{fig:nonSDera@cref}{{[figure][13][4]4.13}{23}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Selection Efficiencies}{24}{chapter.5}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{section:star_efficiencies}{{5}{24}{Selection Efficiencies}{chapter.5}{}}
\newlabel{section:star_efficiencies@cref}{{[chapter][5][]5}{24}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Vertex Reconstruction}{24}{section.5.1}}
\newlabel{section:star_vertex}{{5.1}{24}{Vertex Reconstruction}{section.5.1}{}}
\newlabel{section:star_vertex@cref}{{[section][1][5]5.1}{24}}
\acronymused{SD}
\acronymused{MC}
\newlabel{eq:vertexVetoEq}{{5.3}{25}{Vertex Reconstruction}{equation.5.1.3}{}}
\newlabel{eq:vertexVetoEq@cref}{{[equation][3][5]5.3}{25}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Vertex-finding efficiency in three ranges of $\xi $ as a function of (left) $n^\textrm {global}_\textrm {vrt}$ and (right) with respect to the $|\Delta z_0|$ between reconstructed tracks in events with $n^\textrm {global}_\textrm {vrt}=2$. \relax }}{25}{figure.caption.31}}
\newlabel{fig:vertexEffi}{{5.1}{25}{Vertex-finding efficiency in three ranges of $\xi $ as a function of (left) $n^\textrm {global}_\textrm {vrt}$ and (right) with respect to the $|\Delta z_0|$ between reconstructed tracks in events with $n^\textrm {global}_\textrm {vrt}=2$. \relax }{figure.caption.31}{}}
\newlabel{fig:vertexEffi@cref}{{[figure][1][5]5.1}{25}}
\acronymused{MC}
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Fraction of multi-vertex events with respect to the $n_\textrm {vrt}^\textrm {global}$ in three ranges of $\xi $. Each contribution is shown separately: (top left) more than one additional vertices, (top right) additional secondary vertex from the interactions with the detector dead-material, (middle left) additional fake vertex, (middle right) additional primary vertex and (bottom) additional decay vertex.\relax }}{26}{figure.caption.32}}
\newlabel{fig:vertexVeto}{{5.2}{26}{Fraction of multi-vertex events with respect to the $n_\textrm {vrt}^\textrm {global}$ in three ranges of $\xi $. Each contribution is shown separately: (top left) more than one additional vertices, (top right) additional secondary vertex from the interactions with the detector dead-material, (middle left) additional fake vertex, (middle right) additional primary vertex and (bottom) additional decay vertex.\relax }{figure.caption.32}{}}
\newlabel{fig:vertexVeto@cref}{{[figure][2][5]5.2}{26}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces Total fraction of multi-vertex events as a function of (left) $n_\textrm {vrt}^\textrm {global}$ for events with $n^\textrm {global}_\textrm {vrt}>2$ and (right) $|\Delta z_0|$ for events with $n^\textrm {global}_\textrm {vrt}=2$ in three ranges of $\xi $.\relax }}{27}{figure.caption.33}}
\newlabel{fig:vertexVetoDZ}{{5.3}{27}{Total fraction of multi-vertex events as a function of (left) $n_\textrm {vrt}^\textrm {global}$ for events with $n^\textrm {global}_\textrm {vrt}>2$ and (right) $|\Delta z_0|$ for events with $n^\textrm {global}_\textrm {vrt}=2$ in three ranges of $\xi $.\relax }{figure.caption.33}{}}
\newlabel{fig:vertexVetoDZ@cref}{{[figure][3][5]5.3}{27}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces Normalized charged-particle multiplicity distributions in three ranges of $\xi $ calculated from PYTHIA~8 SD embedding MC for (full points) all generated events and (open points) events without reconstructed fake vertices.\relax }}{27}{figure.caption.33}}
\newlabel{fig:nchVertex}{{5.4}{27}{Normalized charged-particle multiplicity distributions in three ranges of $\xi $ calculated from PYTHIA~8 SD embedding MC for (full points) all generated events and (open points) events without reconstructed fake vertices.\relax }{figure.caption.33}{}}
\newlabel{fig:nchVertex@cref}{{[figure][4][5]5.4}{27}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces Vertex-finding efficiency in three ranges of $\xi $ as a~function of (left) $n^\textrm {global}_\textrm {vrt}$ and (right) with respect to the $|\Delta z_0|$ between reconstructed tracks in events with $n^\textrm {global}_\textrm {vrt}=2$. Only events that do not contain additional fake vertices were used. \relax }}{27}{figure.caption.33}}
\newlabel{fig:vertexEffi_noFake}{{5.5}{27}{Vertex-finding efficiency in three ranges of $\xi $ as a~function of (left) $n^\textrm {global}_\textrm {vrt}$ and (right) with respect to the $|\Delta z_0|$ between reconstructed tracks in events with $n^\textrm {global}_\textrm {vrt}=2$. Only events that do not contain additional fake vertices were used. \relax }{figure.caption.33}{}}
\newlabel{fig:vertexEffi_noFake@cref}{{[figure][5][5]5.5}{27}}
\acronymused{MC}
\acronymused{MC}
\@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces Fraction of multi-vertex events with respect to the $n_\textrm {vrt}^\textrm {global}$ in three ranges of $\xi $. Each contribution is shown separately: (top left) more than one additional vertices, (top right) additional secondary vertex from the interactions with the detector dead-material, (bottom left) additional primary vertex and (bottom right) additional decay vertex. Only events that do not contain additional fake vertices were used.\relax }}{28}{figure.caption.34}}
\newlabel{fig:vertexVeto_noFake}{{5.6}{28}{Fraction of multi-vertex events with respect to the $n_\textrm {vrt}^\textrm {global}$ in three ranges of $\xi $. Each contribution is shown separately: (top left) more than one additional vertices, (top right) additional secondary vertex from the interactions with the detector dead-material, (bottom left) additional primary vertex and (bottom right) additional decay vertex. Only events that do not contain additional fake vertices were used.\relax }{figure.caption.34}{}}
\newlabel{fig:vertexVeto_noFake@cref}{{[figure][6][5]5.6}{28}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.7}{\ignorespaces Total fraction of multi-vertex events as a function of (left) $n_\textrm {vrt}^\textrm {global}$ for events with $n^\textrm {global}_\textrm {vrt}>2$ and (right) $|\Delta z_0|$ for events with $n^\textrm {global}_\textrm {vrt}=2$ in three ranges of $\xi $. Only events that do not contain additional fake vertices were used. \relax }}{28}{figure.caption.35}}
\newlabel{fig:vertexVetoDZ_noFake}{{5.7}{28}{Total fraction of multi-vertex events as a function of (left) $n_\textrm {vrt}^\textrm {global}$ for events with $n^\textrm {global}_\textrm {vrt}>2$ and (right) $|\Delta z_0|$ for events with $n^\textrm {global}_\textrm {vrt}=2$ in three ranges of $\xi $. Only events that do not contain additional fake vertices were used. \relax }{figure.caption.35}{}}
\newlabel{fig:vertexVetoDZ_noFake@cref}{{[figure][7][5]5.7}{28}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Correction to BBC-Small }{29}{section.5.2}}
\newlabel{section:star_bbc}{{5.2}{29}{Correction to BBC-Small}{section.5.2}{}}
\newlabel{section:star_bbc@cref}{{[section][2][5]5.2}{29}}
\acronymused{DD}
\acronymused{ND}
\acronymused{MC}
\@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces Number of true-level MC events which fulfill BBC-small selection criteria as a function of $n_\textrm {ch}$ in three ranges of $\xi $. The fraction of such events is shown in the bottom panels.\relax }}{29}{figure.caption.36}}
\newlabel{fig:bbcCorection_nch}{{5.8}{29}{Number of true-level MC events which fulfill BBC-small selection criteria as a function of $n_\textrm {ch}$ in three ranges of $\xi $. The fraction of such events is shown in the bottom panels.\relax }{figure.caption.36}{}}
\newlabel{fig:bbcCorection_nch@cref}{{[figure][8][5]5.8}{29}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.9}{\ignorespaces Number of true-level MC events which fulfill BBC-small selection criteria as a function of $p_\textrm {T}$ in three ranges of $\xi $. The fraction of such events is shown in the bottom panels.\relax }}{30}{figure.caption.37}}
\newlabel{fig:bbcCorection_pt}{{5.9}{30}{Number of true-level MC events which fulfill BBC-small selection criteria as a function of $p_\textrm {T}$ in three ranges of $\xi $. The fraction of such events is shown in the bottom panels.\relax }{figure.caption.37}{}}
\newlabel{fig:bbcCorection_pt@cref}{{[figure][9][5]5.9}{30}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.10}{\ignorespaces Number of true-level MC events which fulfill BBC-small selection criteria as a function of $\mathaccentV {bar}016{\eta }$ in three ranges of $\xi $. The fraction of such events is shown in the bottom panels.\relax }}{30}{figure.caption.37}}
\newlabel{fig:bbcCorection_eta}{{5.10}{30}{Number of true-level MC events which fulfill BBC-small selection criteria as a function of $\bar {\eta }$ in three ranges of $\xi $. The fraction of such events is shown in the bottom panels.\relax }{figure.caption.37}{}}
\newlabel{fig:bbcCorection_eta@cref}{{[figure][10][5]5.10}{30}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.11}{\ignorespaces PYTHIA~8 4C (SaS), \unhbox \voidb@x \hbox {HERWIG} and EPOS SD+SD$^\prime $ predictions on (top left) veto, (top right) signal and (bottom) joined BBC-small efficiencies as a~function of $\xi $ calculated separately for BBCs on EAST and WEST side of the~IP.\relax }}{31}{figure.caption.38}}
\newlabel{fig:bbcAcceptance}{{5.11}{31}{PYTHIA~8 4C (SaS), \mbox {HERWIG} and EPOS SD+SD$^\prime $ predictions on (top left) veto, (top right) signal and (bottom) joined BBC-small efficiencies as a~function of $\xi $ calculated separately for BBCs on EAST and WEST side of the~IP.\relax }{figure.caption.38}{}}
\newlabel{fig:bbcAcceptance@cref}{{[figure][11][5]5.11}{31}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.12}{\ignorespaces PYTHIA~8 4C (SaS) prediction on BBC efficiency divided by the~HERWIG prediction as a function of (top left) $n_\textrm {ch}$, (top right) $p_\textrm {T}$ and (bottom) $\mathaccentV {bar}016{\eta }$ in three ranges of $\xi $\relax }}{31}{figure.caption.38}}
\newlabel{fig:bbcCorection_syst}{{5.12}{31}{PYTHIA~8 4C (SaS) prediction on BBC efficiency divided by the~HERWIG prediction as a function of (top left) $n_\textrm {ch}$, (top right) $p_\textrm {T}$ and (bottom) $\bar {\eta }$ in three ranges of $\xi $\relax }{figure.caption.38}{}}
\newlabel{fig:bbcCorection_syst@cref}{{[figure][12][5]5.12}{31}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.13}{\ignorespaces PYTHIA~8 4C (SaS) prediction on BBC efficiency divided by the~EPOS prediction as a function of (top left) $n_\textrm {ch}$, (top right) $p_\textrm {T}$ and (bottom) $\mathaccentV {bar}016{\eta }$ in three ranges of $\xi $\relax }}{32}{figure.caption.39}}
\newlabel{fig:bbcCorection_syst_EPOS}{{5.13}{32}{PYTHIA~8 4C (SaS) prediction on BBC efficiency divided by the~EPOS prediction as a function of (top left) $n_\textrm {ch}$, (top right) $p_\textrm {T}$ and (bottom) $\bar {\eta }$ in three ranges of $\xi $\relax }{figure.caption.39}{}}
\newlabel{fig:bbcCorection_syst_EPOS@cref}{{[figure][13][5]5.13}{32}}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Migrations into and out of the~Fiducial Region}{33}{chapter.6}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{section:star_migrations}{{6}{33}{Migrations into and out of the~Fiducial Region}{chapter.6}{}}
\newlabel{section:star_migrations@cref}{{[chapter][6][]6}{33}}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Migrations of Tracks into and out of the~Fiducial Region}{33}{section.6.1}}
\newlabel{section:star_okr}{{6.1}{33}{Migrations of Tracks into and out of the~Fiducial Region}{section.6.1}{}}
\newlabel{section:star_okr@cref}{{[section][1][6]6.1}{33}}
\acronymused{SD}
\acronymused{MC}
\@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces (top left) Fraction of selected tracks migrating from outside of the kinematic range to the signal region, (top right) fraction of particles for which the corresponding reconstructed track is outside the~kinematic range of the measurement and (bottom) the correction factor for migrations of tracks.\relax }}{33}{figure.caption.40}}
\newlabel{fig:okr}{{6.1}{33}{(top left) Fraction of selected tracks migrating from outside of the kinematic range to the signal region, (top right) fraction of particles for which the corresponding reconstructed track is outside the~kinematic range of the measurement and (bottom) the correction factor for migrations of tracks.\relax }{figure.caption.40}{}}
\newlabel{fig:okr@cref}{{[figure][1][6]6.1}{33}}
\@writefile{toc}{\contentsline {section}{\numberline {6.2}Migrations in $\xi $}{34}{section.6.2}}
\newlabel{section:star_xi}{{6.2}{34}{Migrations in $\xi $}{section.6.2}{}}
\newlabel{section:star_xi@cref}{{[section][2][6]6.2}{34}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.2}{\ignorespaces The resolution of $\xi $ as a function of $\xi _\textrm {true}$. The zeroth order polynomial, shown as red line, was fitted.\relax }}{34}{figure.caption.41}}
\newlabel{fig:xi_correction_resolution}{{6.2}{34}{The resolution of $\xi $ as a function of $\xi _\textrm {true}$. The zeroth order polynomial, shown as red line, was fitted.\relax }{figure.caption.41}{}}
\newlabel{fig:xi_correction_resolution@cref}{{[figure][2][6]6.2}{34}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.3}{\ignorespaces Fraction of events (red) $f_{\xi }^-$ and (blue) $f_{\xi }^+$ as a function of $n_\textrm {ch}$ in three ranges of $\xi $. The~values of $f_{\xi }$ are shown in the~bottom panels.\relax }}{35}{figure.caption.42}}
\newlabel{fig:xi_correction_nch}{{6.3}{35}{Fraction of events (red) $f_{\xi }^-$ and (blue) $f_{\xi }^+$ as a function of $n_\textrm {ch}$ in three ranges of $\xi $. The~values of $f_{\xi }$ are shown in the~bottom panels.\relax }{figure.caption.42}{}}
\newlabel{fig:xi_correction_nch@cref}{{[figure][3][6]6.3}{35}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.4}{\ignorespaces (red) Fraction of events $f_{\xi }^-$ and (blue) $f_{\xi }^+$ as a function of $p_\textrm {T}$ in three ranges of $\xi $. The~values of $f_{\xi }$ are shown in the~bottom panels.\relax }}{35}{figure.caption.42}}
\newlabel{fig:xi_correction_pt}{{6.4}{35}{(red) Fraction of events $f_{\xi }^-$ and (blue) $f_{\xi }^+$ as a function of $p_\textrm {T}$ in three ranges of $\xi $. The~values of $f_{\xi }$ are shown in the~bottom panels.\relax }{figure.caption.42}{}}
\newlabel{fig:xi_correction_pt@cref}{{[figure][4][6]6.4}{35}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.5}{\ignorespaces (red) Fraction of events $f_{\xi }^-$ and (blue) $f_{\xi }^+$ as a function of $\mathaccentV {bar}016{\eta }$ in three ranges of $\xi $. The~values of $f_{\xi }$ are shown in the~bottom panels.\relax }}{36}{figure.caption.43}}
\newlabel{fig:xi_correction_eta}{{6.5}{36}{(red) Fraction of events $f_{\xi }^-$ and (blue) $f_{\xi }^+$ as a function of $\bar {\eta }$ in three ranges of $\xi $. The~values of $f_{\xi }$ are shown in the~bottom panels.\relax }{figure.caption.43}{}}
\newlabel{fig:xi_correction_eta@cref}{{[figure][5][6]6.5}{36}}
\citation{supplementaryNote}
\citation{supplementaryNote}
\citation{unfolding:2016mok,unfolding:DAgostini}
\@writefile{toc}{\contentsline {chapter}{\numberline {7}Event Corrections and Unfolding Procedure}{37}{chapter.7}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{section:star_corrections}{{7}{37}{Event Corrections and Unfolding Procedure}{chapter.7}{}}
\newlabel{section:star_corrections@cref}{{[chapter][7][]7}{37}}
\acronymused{DD}
\acronymused{CD}
\acronymused{ND}
\newlabel{eq:vertexCorrection}{{7.1}{37}{Event Corrections and Unfolding Procedure}{equation.7.0.1}{}}
\newlabel{eq:vertexCorrection@cref}{{[equation][1][7]7.1}{37}}
\newlabel{eq:trackCorrection}{{7.2}{37}{Event Corrections and Unfolding Procedure}{equation.7.0.2}{}}
\newlabel{eq:trackCorrection@cref}{{[equation][2][7]7.2}{37}}
\newlabel{eq:bbcCorrection}{{7.3}{37}{Event Corrections and Unfolding Procedure}{equation.7.0.3}{}}
\newlabel{eq:bbcCorrection@cref}{{[equation][3][7]7.3}{37}}
\@writefile{toc}{\contentsline {section}{\numberline {7.1}Correction to $dN/dn_\textrm {sel}$}{37}{section.7.1}}
\newlabel{section:star_dNdnch}{{7.1}{37}{Correction to $dN/dn_\textrm {sel}$}{section.7.1}{}}
\newlabel{section:star_dNdnch@cref}{{[section][1][7]7.1}{37}}
\acronymused{TPC}
\@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces $\epsilon _{m}(n_\textrm {ch})$ calculated separately in three ranges of $\xi $ using PYTHIA~8 embedding MC.\relax }}{39}{figure.caption.44}}
\newlabel{fig:correctionSTAR}{{7.1}{39}{$\epsilon _{m}(n_\textrm {ch})$ calculated separately in three ranges of $\xi $ using PYTHIA~8 embedding MC.\relax }{figure.caption.44}{}}
\newlabel{fig:correctionSTAR@cref}{{[figure][1][7]7.1}{39}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Comparison of $\epsilon _{m}(n_\textrm {ch})$ calculated separately in three ranges of $\xi $ using PYTHIA~8 SD and EPOS SD+SD$^\prime $ no-pile-up MCs. The~ratios of EPOS to PYTHIA~8 predictions are shown in the~bottom panel.\relax }}{39}{figure.caption.45}}
\newlabel{fig:correctionSTAR_syst}{{7.2}{39}{Comparison of $\epsilon _{m}(n_\textrm {ch})$ calculated separately in three ranges of $\xi $ using PYTHIA~8 SD and EPOS SD+SD$^\prime $ no-pile-up MCs. The~ratios of EPOS to PYTHIA~8 predictions are shown in the~bottom panel.\relax }{figure.caption.45}{}}
\newlabel{fig:correctionSTAR_syst@cref}{{[figure][2][7]7.2}{39}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.3}{\ignorespaces The unfolding matrices calculated from PYTHIA~8 embedding MC for three ranges of $\xi $ separately.\relax }}{39}{figure.caption.46}}
\newlabel{fig:responseSTAR}{{7.3}{39}{The unfolding matrices calculated from PYTHIA~8 embedding MC for three ranges of $\xi $ separately.\relax }{figure.caption.46}{}}
\newlabel{fig:responseSTAR@cref}{{[figure][3][7]7.3}{39}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.4}{\ignorespaces Comparison of uncertainties related to data and PYTHIA~8 statistics for the~charged particle multiplicity in three $\xi $ regions. The~error bars represent uncertainty due to data statistics, while the~red band shows uncertainty of the~unfolding matrices.\relax }}{40}{figure.caption.47}}
\newlabel{fig:responseSTAR_uncert}{{7.4}{40}{Comparison of uncertainties related to data and PYTHIA~8 statistics for the~charged particle multiplicity in three $\xi $ regions. The~error bars represent uncertainty due to data statistics, while the~red band shows uncertainty of the~unfolding matrices.\relax }{figure.caption.47}{}}
\newlabel{fig:responseSTAR_uncert@cref}{{[figure][4][7]7.4}{40}}
\@writefile{toc}{\contentsline {section}{\numberline {7.2}Correction to Transverse Momentum and Pseudorapidity Distributions}{40}{section.7.2}}
\newlabel{section:star_dNdeta_dNdpt}{{7.2}{40}{Correction to Transverse Momentum and Pseudorapidity Distributions}{section.7.2}{}}
\newlabel{section:star_dNdeta_dNdpt@cref}{{[section][2][7]7.2}{40}}
\@writefile{toc}{\contentsline {section}{\numberline {7.3}Closure Tests}{41}{section.7.3}}
\newlabel{section:star_closure}{{7.3}{41}{Closure Tests}{section.7.3}{}}
\newlabel{section:star_closure@cref}{{[section][3][7]7.3}{41}}
\acronymused{MC}
\@writefile{toc}{\contentsline {section}{\numberline {7.4}EAST-WEST asymmetry}{41}{section.7.4}}
\newlabel{section:star_eastWest}{{7.4}{41}{EAST-WEST asymmetry}{section.7.4}{}}
\newlabel{section:star_eastWest@cref}{{[section][4][7]7.4}{41}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.5}{\ignorespaces Closure tests of (top left) multiplicity, (top right) transverse momentum and (bottom) pseudorapidity distributions for three ranges of $\xi $ using PYTHIA~8 SD embedding MC. The~ratios of corrected to true-level distributions are shown in the~bottom panels.\relax }}{41}{figure.caption.48}}
\newlabel{fig:closure_star}{{7.5}{41}{Closure tests of (top left) multiplicity, (top right) transverse momentum and (bottom) pseudorapidity distributions for three ranges of $\xi $ using PYTHIA~8 SD embedding MC. The~ratios of corrected to true-level distributions are shown in the~bottom panels.\relax }{figure.caption.48}{}}
\newlabel{fig:closure_star@cref}{{[figure][5][7]7.5}{41}}
\citation{Bichsel:2006cs}
\citation{supplementaryNote}
\citation{supplementaryNote}
\citation{supplementaryNote}
\citation{supplementaryNote}
\citation{supplementaryNote}
\@writefile{lof}{\contentsline {figure}{\numberline {7.6}{\ignorespaces (top left) Primary charged-particle multiplicity, (top right) transverse momentum and (bottom) psuedorapidity distributions for three ranges of $\xi $. Particle densities are presented separately for events with forward scattered protons on (open circles) WEST and (full circles) EAST side of the IP. Both statistical uncertainty components, due to input data and due to unfolding matrix, are added in quadrature for $n_\textrm {ch}$ distributions.\relax }}{42}{figure.caption.49}}
\newlabel{fig:eastWest_star}{{7.6}{42}{(top left) Primary charged-particle multiplicity, (top right) transverse momentum and (bottom) psuedorapidity distributions for three ranges of $\xi $. Particle densities are presented separately for events with forward scattered protons on (open circles) WEST and (full circles) EAST side of the IP. Both statistical uncertainty components, due to input data and due to unfolding matrix, are added in quadrature for $n_\textrm {ch}$ distributions.\relax }{figure.caption.49}{}}
\newlabel{fig:eastWest_star@cref}{{[figure][6][7]7.6}{42}}
\@writefile{toc}{\contentsline {section}{\numberline {7.5}Particle Identification}{42}{section.7.5}}
\newlabel{section:star_PIDdEdx}{{7.5}{42}{Particle Identification}{section.7.5}{}}
\newlabel{section:star_PIDdEdx@cref}{{[section][5][7]7.5}{42}}
\acronymused{TPC}
\newlabel{eq:nsigma}{{7.10}{42}{Particle Identification}{equation.7.5.10}{}}
\newlabel{eq:nsigma@cref}{{[equation][10][7]7.10}{42}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.7}{\ignorespaces Specific ionization energy loss $dE/dx$ as a function of rigidity $q\times p$ for particles in $|\eta | < 0.7$}}{43}{figure.caption.50}}
\newlabel{fig:star_dedx}{{7.7}{43}{Specific ionization energy loss $dE/dx$ as a function of rigidity $q\times p$ for particles in $|\eta | < 0.7$}{figure.caption.50}{}}
\newlabel{fig:star_dedx@cref}{{[figure][7][7]7.7}{43}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.8}{\ignorespaces The $n\sigma ^{i}_{dE/dx}$ variable for particle $i^\pm $ versus $p_\textrm {T}$. Particles are restricted in $|\eta | < 0.7$ and corrected for the energy loss (mass of $i^\pm $-particle was taken)~\cite {supplementaryNote} and vertexing.\relax }}{44}{figure.caption.51}}
\newlabel{fig:dEdx_nsigma}{{7.8}{44}{The $n\sigma ^{i}_{dE/dx}$ variable for particle $i^\pm $ versus $p_\textrm {T}$. Particles are restricted in $|\eta | < 0.7$ and corrected for the energy loss (mass of $i^\pm $-particle was taken)~\cite {supplementaryNote} and vertexing.\relax }{figure.caption.51}{}}
\newlabel{fig:dEdx_nsigma@cref}{{[figure][8][7]7.8}{44}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.9}{\ignorespaces Distributions of (top left) $n\sigma ^{\pi ^\pm }_{dE/dx}$ for $\pi ^\pm $, (top right) $n\sigma ^{K^\pm }_{dE/dx}$ for $K^\pm $ and (bottom left) $n\sigma ^{\mathaccentV {bar}016{p}/p}_{dE/dx}$ for $\mathaccentV {bar}016{p}/p$ in sample $p_\textrm {T}$ bin and sample $\xi $ range shown for each particle species. Particles are corrected for energy loss~\cite {supplementaryNote} and vertexing. The curves represent the Gaussian fits to the $n\sigma ^{i}_{dE/dx}$ distributions.\relax }}{45}{figure.caption.52}}
\newlabel{fig:dEdx_fit_example}{{7.9}{45}{Distributions of (top left) $n\sigma ^{\pi ^\pm }_{dE/dx}$ for $\pi ^\pm $, (top right) $n\sigma ^{K^\pm }_{dE/dx}$ for $K^\pm $ and (bottom left) $n\sigma ^{\bar {p}/p}_{dE/dx}$ for $\bar {p}/p$ in sample $p_\textrm {T}$ bin and sample $\xi $ range shown for each particle species. Particles are corrected for energy loss~\cite {supplementaryNote} and vertexing. The curves represent the Gaussian fits to the $n\sigma ^{i}_{dE/dx}$ distributions.\relax }{figure.caption.52}{}}
\newlabel{fig:dEdx_fit_example@cref}{{[figure][9][7]7.9}{45}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.10}{\ignorespaces Means, widths and electron yields of each $n\sigma ^{\pi ^\pm }_{dE/dx}$ fit as a function of $p_\textrm {T}$. The red line on each plot is a~fit function to stabilize and constrain the Gaussian fit parameters for the final fitting step.\relax }}{46}{figure.caption.53}}
\newlabel{fig:dEdx_fit_parametersPi}{{7.10}{46}{Means, widths and electron yields of each $n\sigma ^{\pi ^\pm }_{dE/dx}$ fit as a function of $p_\textrm {T}$. The red line on each plot is a~fit function to stabilize and constrain the Gaussian fit parameters for the final fitting step.\relax }{figure.caption.53}{}}
\newlabel{fig:dEdx_fit_parametersPi@cref}{{[figure][10][7]7.10}{46}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.11}{\ignorespaces Means, widths and electron yields of each $n\sigma ^{K^\pm }_{dE/dx}$ fit as a function of $p_\textrm {T}$. The red line on each plot is a~fit function to stabilize and constrain the Gaussian fit parameters for the final fitting step.\relax }}{47}{figure.caption.54}}
\newlabel{fig:dEdx_fit_parametersK}{{7.11}{47}{Means, widths and electron yields of each $n\sigma ^{K^\pm }_{dE/dx}$ fit as a function of $p_\textrm {T}$. The red line on each plot is a~fit function to stabilize and constrain the Gaussian fit parameters for the final fitting step.\relax }{figure.caption.54}{}}
\newlabel{fig:dEdx_fit_parametersK@cref}{{[figure][11][7]7.11}{47}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.12}{\ignorespaces Means and widths of each $n\sigma ^{\mathaccentV {bar}016{p}/p}_{dE/dx}$ fit as a function of $p_\textrm {T}$. The red line on each plot is a~fit function to stabilize and constrain the Gaussian fit parameters for the final fitting step.\relax }}{47}{figure.caption.55}}
\newlabel{fig:dEdx_fit_parameters_P}{{7.12}{47}{Means and widths of each $n\sigma ^{\bar {p}/p}_{dE/dx}$ fit as a function of $p_\textrm {T}$. The red line on each plot is a~fit function to stabilize and constrain the Gaussian fit parameters for the final fitting step.\relax }{figure.caption.55}{}}
\newlabel{fig:dEdx_fit_parameters_P@cref}{{[figure][12][7]7.12}{47}}
\citation{supplementaryNote}
\citation{supplementaryNote}
\@writefile{toc}{\contentsline {section}{\numberline {7.6}Antiparticle-to-Particle Ratios}{48}{section.7.6}}
\newlabel{section:star_ratios}{{7.6}{48}{Antiparticle-to-Particle Ratios}{section.7.6}{}}
\newlabel{section:star_ratios@cref}{{[section][6][7]7.6}{48}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.13}{\ignorespaces Ratio of particle to antiparticle TPC-TOF efficiencies for $0.02<\xi <0.05$.\relax }}{48}{figure.caption.56}}
\newlabel{fig:ratios_efficiency}{{7.13}{48}{Ratio of particle to antiparticle TPC-TOF efficiencies for $0.02<\xi <0.05$.\relax }{figure.caption.56}{}}
\newlabel{fig:ratios_efficiency@cref}{{[figure][13][7]7.13}{48}}
\citation{supplementaryNote}
\citation{supplementaryNote}
\citation{supplementaryNote}
\citation{supplementaryNote}
\citation{supplementaryNote}
\@writefile{toc}{\contentsline {chapter}{\numberline {8}Systematic Uncertainties}{49}{chapter.8}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{section:star_systematics}{{8}{49}{Systematic Uncertainties}{chapter.8}{}}
\newlabel{section:star_systematics@cref}{{[chapter][8][]8}{49}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.1}{\ignorespaces Components of the systematic uncertainties for the charged particle multiplicity in three $\xi $ regions and for the average charged particle multiplicity. \relax }}{50}{figure.caption.57}}
\newlabel{fig:results_star_nch_syst}{{8.1}{50}{Components of the systematic uncertainties for the charged particle multiplicity in three $\xi $ regions and for the average charged particle multiplicity. \relax }{figure.caption.57}{}}
\newlabel{fig:results_star_nch_syst@cref}{{[figure][1][8]8.1}{50}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.2}{\ignorespaces Components of the systematic uncertainties for $p_\textrm {T}$ distributions in three $\xi $ regions and for an average $p_\textrm {T}$ distribution. \relax }}{51}{figure.caption.58}}
\newlabel{fig:results_star_pt_syst}{{8.2}{51}{Components of the systematic uncertainties for $p_\textrm {T}$ distributions in three $\xi $ regions and for an average $p_\textrm {T}$ distribution. \relax }{figure.caption.58}{}}
\newlabel{fig:results_star_pt_syst@cref}{{[figure][2][8]8.2}{51}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.3}{\ignorespaces Components of the systematic uncertainties for $\mathaccentV {bar}016{\eta }$ distributions in three $\xi $ regions and for an average $\mathaccentV {bar}016{\eta }$ distribution. \relax }}{51}{figure.caption.59}}
\newlabel{fig:results_star_eta_syst}{{8.3}{51}{Components of the systematic uncertainties for $\bar {\eta }$ distributions in three $\xi $ regions and for an average $\bar {\eta }$ distribution. \relax }{figure.caption.59}{}}
\newlabel{fig:results_star_eta_syst@cref}{{[figure][3][8]8.3}{51}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.4}{\ignorespaces Components of the systematic uncertainties of $\pi ^-/\pi ^+$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties.\relax }}{52}{figure.caption.60}}
\newlabel{fig:results_star_syst_pi}{{8.4}{52}{Components of the systematic uncertainties of $\pi ^-/\pi ^+$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties.\relax }{figure.caption.60}{}}
\newlabel{fig:results_star_syst_pi@cref}{{[figure][4][8]8.4}{52}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.5}{\ignorespaces Components of the systematic uncertainties of $K^-/K^+$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties.\relax }}{52}{figure.caption.61}}
\newlabel{fig:results_star_syst_K}{{8.5}{52}{Components of the systematic uncertainties of $K^-/K^+$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties.\relax }{figure.caption.61}{}}
\newlabel{fig:results_star_syst_K@cref}{{[figure][5][8]8.5}{52}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.6}{\ignorespaces Components of the systematic uncertainties of $\mathaccentV {bar}016{p}/p$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties.\relax }}{53}{figure.caption.62}}
\newlabel{fig:results_star_syst_p}{{8.6}{53}{Components of the systematic uncertainties of $\bar {p}/p$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties.\relax }{figure.caption.62}{}}
\newlabel{fig:results_star_syst_p@cref}{{[figure][6][8]8.6}{53}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.7}{\ignorespaces Components of the systematic uncertainties of average antiparticle-to-particle multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties\relax }}{53}{figure.caption.63}}
\newlabel{fig:results_star_syst_xi_part}{{8.7}{53}{Components of the systematic uncertainties of average antiparticle-to-particle multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties\relax }{figure.caption.63}{}}
\newlabel{fig:results_star_syst_xi_part@cref}{{[figure][7][8]8.7}{53}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.8}{\ignorespaces Components of the systematic uncertainties of $\left (K^-+K^+\right )/\left (\pi ^-+\pi ^+\right )$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties.\relax }}{54}{figure.caption.64}}
\newlabel{fig:results_star_syst_Kpi}{{8.8}{54}{Components of the systematic uncertainties of $\left (K^-+K^+\right )/\left (\pi ^-+\pi ^+\right )$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties.\relax }{figure.caption.64}{}}
\newlabel{fig:results_star_syst_Kpi@cref}{{[figure][8][8]8.8}{54}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.9}{\ignorespaces Components of the systematic uncertainties of average $\left (K^-+K^+\right )/\left (\pi ^-+\pi ^+\right )$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties\relax }}{54}{figure.caption.65}}
\newlabel{fig:results_star_syst_xi_part_Kpi}{{8.9}{54}{Components of the systematic uncertainties of average $\left (K^-+K^+\right )/\left (\pi ^-+\pi ^+\right )$ multiplicity ratios in three $\xi $ regions. The gray band in the~bottom pad represents statistical uncertainties\relax }{figure.caption.65}{}}
\newlabel{fig:results_star_syst_xi_part_Kpi@cref}{{[figure][9][8]8.9}{54}}
\@writefile{toc}{\contentsline {chapter}{\numberline {9}Results}{55}{chapter.9}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{section:star_results}{{9}{55}{Results}{chapter.9}{}}
\newlabel{section:star_results@cref}{{[chapter][9][]9}{55}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.1}{\ignorespaces Primary charged-particle multiplicity shown separately for the~three ranges of $\xi $: (top left) $0.02<\xi <0.05$, (top right) $0.05<\xi <0.1$, (bottom left) $0.1<\xi <0.2$ and (bottom right) the mean multiplicity $\delimiter "426830A n_\textrm {ch}\delimiter "526930B $ as a function of $\xi $.\relax }}{55}{figure.caption.66}}
\newlabel{fig:results_star_nch}{{9.1}{55}{Primary charged-particle multiplicity shown separately for the~three ranges of $\xi $: (top left) $0.02<\xi <0.05$, (top right) $0.05<\xi <0.1$, (bottom left) $0.1<\xi <0.2$ and (bottom right) the mean multiplicity $\langle n_\textrm {ch}\rangle $ as a function of $\xi $.\relax }{figure.caption.66}{}}
\newlabel{fig:results_star_nch@cref}{{[figure][1][9]9.1}{55}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.2}{\ignorespaces Primary charged-particle multiplicities as a function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top left) $0.02<\xi <0.05$, (top right) $0.05<\xi <0.1$, (bottom left) $0.1<\xi <0.2$ and (bottom right) the mean transverse momentum $\delimiter "426830A p_\textrm {T}\delimiter "526930B $ as a function of $\xi $.\relax }}{56}{figure.caption.67}}
\newlabel{fig:results_star_pt}{{9.2}{56}{Primary charged-particle multiplicities as a function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top left) $0.02<\xi <0.05$, (top right) $0.05<\xi <0.1$, (bottom left) $0.1<\xi <0.2$ and (bottom right) the mean transverse momentum $\langle p_\textrm {T}\rangle $ as a function of $\xi $.\relax }{figure.caption.67}{}}
\newlabel{fig:results_star_pt@cref}{{[figure][2][9]9.2}{56}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.3}{\ignorespaces Primary charged-particle multiplicity as a function of $\mathaccentV {bar}016{\eta }$ shown separately for the~three ranges of $\xi $: (top left) $0.02<\xi <0.05$, (top right) $0.05<\xi <0.1$, (bottom left) $0.1<\xi <0.2$ and (bottom right) the mean pseudorapidity $\delimiter "426830A \mathaccentV {bar}016{\eta }\delimiter "526930B $ as a function of $\xi $.\relax }}{57}{figure.caption.68}}
\newlabel{fig:results_star_eta}{{9.3}{57}{Primary charged-particle multiplicity as a function of $\bar {\eta }$ shown separately for the~three ranges of $\xi $: (top left) $0.02<\xi <0.05$, (top right) $0.05<\xi <0.1$, (bottom left) $0.1<\xi <0.2$ and (bottom right) the mean pseudorapidity $\langle \bar {\eta }\rangle $ as a function of $\xi $.\relax }{figure.caption.68}{}}
\newlabel{fig:results_star_eta@cref}{{[figure][3][9]9.3}{57}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.4}{\ignorespaces Ratio of production yields of $\pi ^-/\pi ^+$ as a function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top) $0.02<\xi <0.05$, (middle) $0.05<\xi <0.1$, (bottom) $0.1<\xi <0.2$.\relax }}{58}{figure.caption.69}}
\newlabel{fig:results_star_pion}{{9.4}{58}{Ratio of production yields of $\pi ^-/\pi ^+$ as a function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top) $0.02<\xi <0.05$, (middle) $0.05<\xi <0.1$, (bottom) $0.1<\xi <0.2$.\relax }{figure.caption.69}{}}
\newlabel{fig:results_star_pion@cref}{{[figure][4][9]9.4}{58}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.5}{\ignorespaces Ratio of production yields of $K^-/K^+$ as a function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top) $0.02<\xi <0.05$, (middle) $0.05<\xi <0.1$, (bottom) $0.1<\xi <0.2$.\relax }}{59}{figure.caption.70}}
\newlabel{fig:results_star_kaon}{{9.5}{59}{Ratio of production yields of $K^-/K^+$ as a function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top) $0.02<\xi <0.05$, (middle) $0.05<\xi <0.1$, (bottom) $0.1<\xi <0.2$.\relax }{figure.caption.70}{}}
\newlabel{fig:results_star_kaon@cref}{{[figure][5][9]9.5}{59}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.6}{\ignorespaces Ratio of production yields of $\mathaccentV {bar}016{p}/p$ as a function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top) $0.02<\xi <0.05$, (middle) $0.05<\xi <0.1$, (bottom) $0.1<\xi <0.2$.\relax }}{60}{figure.caption.71}}
\newlabel{fig:results_star_proton}{{9.6}{60}{Ratio of production yields of $\bar {p}/p$ as a function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top) $0.02<\xi <0.05$, (middle) $0.05<\xi <0.1$, (bottom) $0.1<\xi <0.2$.\relax }{figure.caption.71}{}}
\newlabel{fig:results_star_proton@cref}{{[figure][6][9]9.6}{60}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.7}{\ignorespaces Ratio of production yields of $\pi ^-/\pi ^+$, $K^-/K^+$ and $\mathaccentV {bar}016{p}/p$ as a~function of $\xi $. \relax }}{61}{figure.caption.72}}
\newlabel{fig:results_mean_ratio_star}{{9.7}{61}{Ratio of production yields of $\pi ^-/\pi ^+$, $K^-/K^+$ and $\bar {p}/p$ as a~function of $\xi $. \relax }{figure.caption.72}{}}
\newlabel{fig:results_mean_ratio_star@cref}{{[figure][7][9]9.7}{61}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.8}{\ignorespaces Ratio of production yields of $\left (K^-+K^+\right )/\left (\pi ^-+\pi ^+\right )$ as a~function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top) $0.02<\xi <0.05$, (middle) $0.05<\xi <0.1$, (bottom) $0.1<\xi <0.2$. \relax }}{62}{figure.caption.73}}
\newlabel{fig:results_Kpi_ratio}{{9.8}{62}{Ratio of production yields of $\left (K^-+K^+\right )/\left (\pi ^-+\pi ^+\right )$ as a~function of $p_\textrm {T}$ shown separately for the~three ranges of $\xi $: (top) $0.02<\xi <0.05$, (middle) $0.05<\xi <0.1$, (bottom) $0.1<\xi <0.2$. \relax }{figure.caption.73}{}}
\newlabel{fig:results_Kpi_ratio@cref}{{[figure][8][9]9.8}{62}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.9}{\ignorespaces Ratio of production yields of $\left (K^-+K^+\right )/\left (\pi ^-+\pi ^+\right )$ as a~function of $\xi $. \relax }}{63}{figure.caption.74}}
\newlabel{fig:results_Kpi_xi}{{9.9}{63}{Ratio of production yields of $\left (K^-+K^+\right )/\left (\pi ^-+\pi ^+\right )$ as a~function of $\xi $. \relax }{figure.caption.74}{}}
\newlabel{fig:results_Kpi_xi@cref}{{[figure][9][9]9.9}{63}}
\citation{CMS:intro_3,UA1:intro_1,UA5:comparison,ISR:comparison,CDF:intro_2,ALICE:comparison,STAR:spectra,CMS:intro_1}
\citation{CMS:intro_3}
\citation{ISR:comparison}
\citation{CMS:intro_3,UA1:intro_1,UA5:comparison,ISR:comparison,CDF:intro_2,ALICE:comparison,STAR:spectra,CMS:intro_1}
\citation{CMS:intro_3}
\citation{ISR:comparison}
\@writefile{toc}{\contentsline {section}{\numberline {9.1}Comparison of Charged-Particle Densities at Central Rapidities}{64}{section.9.1}}
\newlabel{chapter:discussion}{{9.1}{64}{Comparison of Charged-Particle Densities at Central Rapidities}{section.9.1}{}}
\newlabel{chapter:discussion@cref}{{[section][1][9]9.1}{64}}
\newlabel{sec:comparison_eta}{{9.1}{64}{Comparison of Charged-Particle Densities at Central Rapidities}{section.9.1}{}}
\newlabel{sec:comparison_eta@cref}{{[section][1][9]9.1}{64}}
\acronymused{SD}
\acronymused{SD}
\acronymused{SD}
\acronymused{SD}
\@writefile{lot}{\contentsline {table}{\numberline {9.1}{\ignorespaces Values of $\delimiter "426830A M_X \delimiter "526930B $ and $\eta _m=\qopname \relax o{ln}(\sqrt {s}/M_X)$ for three ranges of $\xi $ and position of gap edge $\eta _\textrm {edge}$.\relax }}{64}{table.caption.75}}
\newlabel{tab:etabarComparison}{{9.1}{64}{Values of $\langle M_X \rangle $ and $\eta _m=\ln (\sqrt {s}/M_X)$ for three ranges of $\xi $ and position of gap edge $\eta _\textrm {edge}$.\relax }{table.caption.75}{}}
\newlabel{tab:etabarComparison@cref}{{[table][1][9]9.1}{64}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.10}{\ignorespaces Primary charged particle densities at mid-rapidity as a function of $\sqrt {s}$ and $M_X$ for inelastic (non single diffractive (NSD) enhanced)~\cite {CMS:intro_3,UA1:intro_1,UA5:comparison,ISR:comparison,CDF:intro_2,ALICE:comparison,STAR:spectra,CMS:intro_1} and SD measurements respectively. The dashed line represents power-law fit to the NSD-enhanced measurements~\cite {CMS:intro_3} excluding ACHM measurements~\cite {ISR:comparison} at ISR. The~results from this analysis are shown in red. \relax }}{65}{figure.caption.76}}
\newlabel{fig:comparison_eta}{{9.10}{65}{Primary charged particle densities at mid-rapidity as a function of $\sqrt {s}$ and $M_X$ for inelastic (non single diffractive (NSD) enhanced)~\cite {CMS:intro_3,UA1:intro_1,UA5:comparison,ISR:comparison,CDF:intro_2,ALICE:comparison,STAR:spectra,CMS:intro_1} and SD measurements respectively. The dashed line represents power-law fit to the NSD-enhanced measurements~\cite {CMS:intro_3} excluding ACHM measurements~\cite {ISR:comparison} at ISR. The~results from this analysis are shown in red. \relax }{figure.caption.76}{}}
\newlabel{fig:comparison_eta@cref}{{[figure][10][9]9.10}{65}}
\citation{ua4_diff1,UA4:intro,ua4_diff3}
\citation{Bopp:2000vg}
\bibstyle{atlasBibStyleWithTitle}
\bibdata{literatur}
\@writefile{toc}{\contentsline {chapter}{\numberline {10}Summary and Conclusions}{66}{chapter.10}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chapter:summary}{{10}{66}{Summary and Conclusions}{chapter.10}{}}
\newlabel{chapter:summary@cref}{{[chapter][10][]10}{66}}
\bibcite{supplementaryNote}{{1}{}{{}}{{}}}
\bibcite{Kopeliovich:1988qm}{{2}{}{{}}{{}}}
\bibcite{Bopp:2000vg}{{3}{}{{}}{{}}}
\bibcite{STAR:tpc}{{4}{}{{}}{{}}}
\bibcite{Sjostrand:2006za}{{5}{}{{}}{{}}}
\bibcite{MBR:intro}{{6}{}{{}}{{}}}
\bibcite{pp2ppTrigers}{{7}{}{{}}{{}}}
\bibcite{runLogBrowser}{{8}{}{{}}{{}}}
\bibcite{RHIC:rhicRunLuminosity}{{9}{}{{}}{{}}}
\bibcite{starLumi}{{10}{}{{}}{{}}}
\bibcite{STARelastic2015}{{11}{}{{}}{{}}}
\bibcite{STAR:spectra}{{12}{}{{}}{{}}}
\bibcite{Acosta:2003xi}{{13}{}{{}}{{}}}
\bibcite{unfolding:2016mok}{{14}{}{{}}{{}}}
\bibcite{unfolding:DAgostini}{{15}{}{{}}{{}}}
\bibcite{Bichsel:2006cs}{{16}{}{{}}{{}}}
\bibcite{CMS:intro_3}{{17}{}{{}}{{}}}
\bibcite{UA1:intro_1}{{18}{}{{}}{{}}}
\bibcite{UA5:comparison}{{19}{}{{}}{{}}}
\bibcite{ISR:comparison}{{20}{}{{}}{{}}}
\bibcite{CDF:intro_2}{{21}{}{{}}{{}}}
\bibcite{ALICE:comparison}{{22}{}{{}}{{}}}
\bibcite{CMS:intro_1}{{23}{}{{}}{{}}}
\bibcite{ua4_diff1}{{24}{}{{}}{{}}}
\bibcite{UA4:intro}{{25}{}{{}}{{}}}
\bibcite{ua4_diff3}{{26}{}{{}}{{}}}
\@writefile{toc}{\contentsline {chapter}{Appendices}{69}{section*.78}}
\@writefile{toc}{\contentsline {chapter}{\numberline {A}Proton and Antiproton DCA Distributions}{70}{Appendix.1.A}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{appendix:DCA_proton}{{A}{70}{Proton and Antiproton DCA Distributions}{Appendix.1.A}{}}
\newlabel{appendix:DCA_proton@cref}{{[chapter][1][]A}{70}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.1}{\ignorespaces Distributions of DCA for protons in SD interactions with $0.02 < \xi <0.05$ and loose selection.\relax }}{71}{figure.caption.79}}
\newlabel{fig:dca_proton_0}{{A.1}{71}{Distributions of DCA for protons in SD interactions with $0.02 < \xi <0.05$ and loose selection.\relax }{figure.caption.79}{}}
\newlabel{fig:dca_proton_0@cref}{{[figure][1][1]A.1}{71}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.2}{\ignorespaces Distributions of DCA for protons in SD interactions with $0.02 < \xi <0.05$ and normal selection.\relax }}{72}{figure.caption.80}}
\newlabel{fig:dca_proton_0t}{{A.2}{72}{Distributions of DCA for protons in SD interactions with $0.02 < \xi <0.05$ and normal selection.\relax }{figure.caption.80}{}}
\newlabel{fig:dca_proton_0t@cref}{{[figure][2][1]A.2}{72}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.3}{\ignorespaces Distributions of DCA for protons in SD interactions with $0.05 < \xi <0.1$ and loose selection.\relax }}{73}{figure.caption.81}}
\newlabel{fig:dca_proton_1}{{A.3}{73}{Distributions of DCA for protons in SD interactions with $0.05 < \xi <0.1$ and loose selection.\relax }{figure.caption.81}{}}
\newlabel{fig:dca_proton_1@cref}{{[figure][3][1]A.3}{73}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.4}{\ignorespaces Distributions of DCA for protons in SD interactions with $0.05< \xi <0.1$ and normal selection.\relax }}{74}{figure.caption.82}}
\newlabel{fig:dca_proton_1t}{{A.4}{74}{Distributions of DCA for protons in SD interactions with $0.05< \xi <0.1$ and normal selection.\relax }{figure.caption.82}{}}
\newlabel{fig:dca_proton_1t@cref}{{[figure][4][1]A.4}{74}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.5}{\ignorespaces Distributions of DCA for protons in SD interactions with $0.1 < \xi <0.2$ and loose selection.\relax }}{75}{figure.caption.83}}
\newlabel{fig:dca_proton_2}{{A.5}{75}{Distributions of DCA for protons in SD interactions with $0.1 < \xi <0.2$ and loose selection.\relax }{figure.caption.83}{}}
\newlabel{fig:dca_proton_2@cref}{{[figure][5][1]A.5}{75}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.6}{\ignorespaces Distributions of DCA for protons in SD interactions with $0.1< \xi <0.2$ and normal selection.\relax }}{76}{figure.caption.84}}
\newlabel{fig:dca_proton_2t}{{A.6}{76}{Distributions of DCA for protons in SD interactions with $0.1< \xi <0.2$ and normal selection.\relax }{figure.caption.84}{}}
\newlabel{fig:dca_proton_2t@cref}{{[figure][6][1]A.6}{76}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.7}{\ignorespaces Distributions of DCA for antiprotons in SD interactions with $0.02 < \xi <0.05$ and loose selection.\relax }}{77}{figure.caption.85}}
\newlabel{fig:dca_proton_bar_0}{{A.7}{77}{Distributions of DCA for antiprotons in SD interactions with $0.02 < \xi <0.05$ and loose selection.\relax }{figure.caption.85}{}}
\newlabel{fig:dca_proton_bar_0@cref}{{[figure][7][1]A.7}{77}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.8}{\ignorespaces Distributions of DCA for antiprotons in SD interactions with $0.02 < \xi <0.05$ and normal selection.\relax }}{78}{figure.caption.86}}
\newlabel{fig:dca_proton_bar_t}{{A.8}{78}{Distributions of DCA for antiprotons in SD interactions with $0.02 < \xi <0.05$ and normal selection.\relax }{figure.caption.86}{}}
\newlabel{fig:dca_proton_bar_t@cref}{{[figure][8][1]A.8}{78}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.9}{\ignorespaces Distributions of DCA for antiprotons in SD interactions with $0.05 < \xi <0.1$ and loose selection.\relax }}{79}{figure.caption.87}}
\newlabel{fig:dca_proton_bar_1}{{A.9}{79}{Distributions of DCA for antiprotons in SD interactions with $0.05 < \xi <0.1$ and loose selection.\relax }{figure.caption.87}{}}
\newlabel{fig:dca_proton_bar_1@cref}{{[figure][9][1]A.9}{79}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.10}{\ignorespaces Distributions of DCA for antiprotons in SD interactions with $0.05 < \xi <0.1$ and normal selection.\relax }}{80}{figure.caption.88}}
\newlabel{fig:dca_proton_bar_1t}{{A.10}{80}{Distributions of DCA for antiprotons in SD interactions with $0.05 < \xi <0.1$ and normal selection.\relax }{figure.caption.88}{}}
\newlabel{fig:dca_proton_bar_1t@cref}{{[figure][10][1]A.10}{80}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.11}{\ignorespaces Distributions of DCA for antiprotons in SD interactions with $0.1 < \xi <0.2$ and loose selection.\relax }}{81}{figure.caption.89}}
\newlabel{fig:dca_proton_bar_2}{{A.11}{81}{Distributions of DCA for antiprotons in SD interactions with $0.1 < \xi <0.2$ and loose selection.\relax }{figure.caption.89}{}}
\newlabel{fig:dca_proton_bar_2@cref}{{[figure][11][1]A.11}{81}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.12}{\ignorespaces Distributions of DCA for antiprotons in SD interactions with $0.1 < \xi <0.2$ and normal selection.\relax }}{82}{figure.caption.90}}
\newlabel{fig:dca_proton_bar_2t}{{A.12}{82}{Distributions of DCA for antiprotons in SD interactions with $0.1 < \xi <0.2$ and normal selection.\relax }{figure.caption.90}{}}
\newlabel{fig:dca_proton_bar_2t@cref}{{[figure][12][1]A.12}{82}}
\providecommand\NAT@force@numbers{}\NAT@force@numbers
\@writefile{toc}{\contentsline {chapter}{\numberline {B}Distributions of $n\sigma ^{i}_{dE/dx}$ in SD}{83}{Appendix.1.B}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{appendix:dEdxFits}{{B}{83}{Distributions of $n\sigma ^{i}_{dE/dx}$ in SD}{Appendix.1.B}{}}
\newlabel{appendix:dEdxFits@cref}{{[chapter][2][]B}{83}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.1}{\ignorespaces Distributions of $n\sigma ^{\pi ^\pm }_{dE/dx}$ for $\pi ^\pm $ in SD interactions with $0.02 < \xi <0.05$}}{83}{figure.caption.91}}
\newlabel{fig:nsigmapifit_0}{{B.1}{83}{Distributions of $n\sigma ^{\pi ^\pm }_{dE/dx}$ for $\pi ^\pm $ in SD interactions with $0.02 < \xi <0.05$}{figure.caption.91}{}}
\newlabel{fig:nsigmapifit_0@cref}{{[figure][1][2]B.1}{83}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.2}{\ignorespaces Distributions of $n\sigma ^{\pi ^\pm }_{dE/dx}$ for $\pi ^\pm $ in SD interactions with $0.05 < \xi <0.1$}}{84}{figure.caption.92}}
\newlabel{fig:nsigmapifit_1}{{B.2}{84}{Distributions of $n\sigma ^{\pi ^\pm }_{dE/dx}$ for $\pi ^\pm $ in SD interactions with $0.05 < \xi <0.1$}{figure.caption.92}{}}
\newlabel{fig:nsigmapifit_1@cref}{{[figure][2][2]B.2}{84}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.3}{\ignorespaces Distributions of $n\sigma ^{\pi ^\pm }_{dE/dx}$ for $\pi ^\pm $ in SD interactions with $0.1 < \xi <0.2$}}{85}{figure.caption.93}}
\newlabel{fig:nsigmapifit_2}{{B.3}{85}{Distributions of $n\sigma ^{\pi ^\pm }_{dE/dx}$ for $\pi ^\pm $ in SD interactions with $0.1 < \xi <0.2$}{figure.caption.93}{}}
\newlabel{fig:nsigmapifit_2@cref}{{[figure][3][2]B.3}{85}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.4}{\ignorespaces Distributions of $n\sigma ^{K^\pm }_{dE/dx}$ for $K^\pm $ in SD interactions with $0.02 < \xi <0.5$}}{86}{figure.caption.94}}
\newlabel{fig:nsigmaKfit_0}{{B.4}{86}{Distributions of $n\sigma ^{K^\pm }_{dE/dx}$ for $K^\pm $ in SD interactions with $0.02 < \xi <0.5$}{figure.caption.94}{}}
\newlabel{fig:nsigmaKfit_0@cref}{{[figure][4][2]B.4}{86}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.5}{\ignorespaces Distributions of $n\sigma ^{K^\pm }_{dE/dx}$ for $K^\pm $ in SD interactions with $0.05 < \xi <0.1$}}{87}{figure.caption.95}}
\newlabel{fig:nsigmaKfit_1}{{B.5}{87}{Distributions of $n\sigma ^{K^\pm }_{dE/dx}$ for $K^\pm $ in SD interactions with $0.05 < \xi <0.1$}{figure.caption.95}{}}
\newlabel{fig:nsigmaKfit_1@cref}{{[figure][5][2]B.5}{87}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.6}{\ignorespaces Distributions of $n\sigma ^{K^\pm }_{dE/dx}$ for $K^\pm $ in SD interactions with $0.1 < \xi <0.2$}}{88}{figure.caption.96}}
\newlabel{fig:nsigmaKfit_2}{{B.6}{88}{Distributions of $n\sigma ^{K^\pm }_{dE/dx}$ for $K^\pm $ in SD interactions with $0.1 < \xi <0.2$}{figure.caption.96}{}}
\newlabel{fig:nsigmaKfit_2@cref}{{[figure][6][2]B.6}{88}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.7}{\ignorespaces Distributions of $n\sigma ^{\mathaccentV {bar}016{p},p}_{dE/dx}$ for $\mathaccentV {bar}016{p},p$ in SD interactions with $0.02 < \xi <0.05$}}{89}{figure.caption.97}}
\newlabel{fig:nsigmapfit_0}{{B.7}{89}{Distributions of $n\sigma ^{\bar {p},p}_{dE/dx}$ for $\bar {p},p$ in SD interactions with $0.02 < \xi <0.05$}{figure.caption.97}{}}
\newlabel{fig:nsigmapfit_0@cref}{{[figure][7][2]B.7}{89}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.8}{\ignorespaces Distributions of $n\sigma ^{\mathaccentV {bar}016{p},p}_{dE/dx}$ for $\mathaccentV {bar}016{p},p$ in SD interactions with $0.05 < \xi <0.1$}}{90}{figure.caption.98}}
\newlabel{fig:nsigmapfit_1}{{B.8}{90}{Distributions of $n\sigma ^{\bar {p},p}_{dE/dx}$ for $\bar {p},p$ in SD interactions with $0.05 < \xi <0.1$}{figure.caption.98}{}}
\newlabel{fig:nsigmapfit_1@cref}{{[figure][8][2]B.8}{90}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.9}{\ignorespaces Distributions of $n\sigma ^{\mathaccentV {bar}016{p},p}_{dE/dx}$ for $\mathaccentV {bar}016{p},p$ in SD interactions with $0.1 < \xi <0.2$}}{91}{figure.caption.99}}
\newlabel{fig:nsigmapfit_2}{{B.9}{91}{Distributions of $n\sigma ^{\bar {p},p}_{dE/dx}$ for $\bar {p},p$ in SD interactions with $0.1 < \xi <0.2$}{figure.caption.99}{}}
\newlabel{fig:nsigmapfit_2@cref}{{[figure][9][2]B.9}{91}}