-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
363 lines (301 loc) · 12.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem, Descriptors
def smiles2fp(smiles_string):
mol = Chem.MolFromSmiles(smiles_string)
Chem.SanitizeMol(mol)
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048)
features = np.zeros((1,))
DataStructs.ConvertToNumpyArray(fp, features)
fingerprint = torch.from_numpy(features).float().view(1,-1)
return fingerprint ### [1,2048] torch.Tensor
class Ligand2D(nn.Module):
"""
input: SMILES
output: scalar
"""
def __init__(self, ):
super(Ligand2D, self).__init__()
self.input_mlp = nn.Linear(2048, 100)
self.output_mlp = nn.Linear(100, 1)
def forward(self, smiles_):
"""
:param smiles_
- list of SMILES string
- SMILES string
"""
if type(smiles_) == list:
fps = [smiles2fp(s) for s in smiles_]
fps = torch.cat(fps, 0)
hidden_state = F.relu(self.input_mlp(fps))
output = self.output_mlp(hidden_state)
output = output.view(-1)
log_output = F.log_softmax(output)
prob_output = F.softmax(output)
return log_output, prob_output.tolist()
else:
### smiles string
fingerprint = smiles2fp(smiles_)
hidden_state = F.relu(self.input_mlp(fingerprint))
output = self.output_mlp(hidden_state)
return output ### [1,1]
class Ligand2D_product(nn.Module):
'''
input: ligand2d & product_smiles
output: scalar
'''
def __init__(self, ):
super(Ligand2D_product, self).__init__()
self.ligand_mlp = nn.Linear(2048, 100)
self.product_mlp = nn.Linear(2048, 100)
self.output_mlp = nn.Linear(200, 1)
def forward(self, ligand_smiles, product_smiles_list):
n = len(product_smiles_list)
ligand_fp = smiles2fp(ligand_smiles)
ligand_embedding = F.relu(self.ligand_mlp(ligand_fp))
ligand_embedding = ligand_embedding.repeat(n,1)
product_fps = [smiles2fp(smiles) for smiles in product_smiles_list]
product_fps = torch.cat(product_fps, 0)
product_embeddings = F.relu(self.product_mlp(product_fps))
latent_variable = torch.cat([ligand_embedding, product_embeddings], 1)
output = self.output_mlp(latent_variable).view(-1)
log_output = F.log_softmax(output)
prob_output = F.softmax(output)
return log_output, prob_output.tolist()
def atom2int(atom):
atom_list = ['C', 'N', 'S', 'O', 'H', 'unknown']
if atom in atom_list:
return atom_list.index(atom)
return len(atom_list)-1
def pdbtofeature(pdbfile, centers, pocket_size):
""" centers=(center_x, center_y, center_z); pocket_size=(size_x, size_y, size_z) """
with open(pdbfile, 'r') as fin:
lines = fin.readlines()
def featurize(line):
if line.split()[0]!='ATOM':
return None
if int(line.split()[1])!=float(line.split()[1]):
return None
center_x, center_y, center_z = centers
size_x, size_y, size_z = pocket_size
# xx, yy, zz = float(line.split()[6]), float(line.split()[7]), float(line.split()[8])
xx = float(line[30:38])
yy = float(line[38:46])
zz = float(line[46:54])
# print('>>>> ', xx, yy, zz)
if xx < center_x-size_x/2 or xx > center_x+size_x/2:
return None
# print('<<<< ', xx, yy, zz)
if yy < center_y-size_y/2 or yy > center_y+size_y/2:
return None
# print('++++ ', xx, yy, zz)
if zz < center_z-size_z/2 or zz > center_z+size_z/2:
return None
# print('----- ', xx, yy, zz)
atom_type = line.split()[-1]
atom_type = atom2int(atom_type)
coordinates = torch.FloatTensor([xx, yy, zz]).view(1, -1)
return atom_type, coordinates
lines = list(map(featurize, lines))
features = list(filter(lambda x:x is not None, lines))
atom_idx = torch.LongTensor([feature[0] for feature in features]).view(1,-1) #### (1,N)
mask = torch.ByteTensor([True for feature in features]).view(1,-1) ##### (1,N)
positions = torch.cat([feature[1] for feature in features], dim=0) ##### (N,3)
return atom_idx, positions, mask
receptor_info_list = [
('4r6e', './pdb/4r6e.pdb', -70.76, 21.82, 28.33, 15.0, 15.0, 15.0),
('3pbl', './pdb/3pbl.pdb', 9, 22.5, 26, 15, 15, 15),
('1iep', './pdb/1iep.pdb', 15.6138918, 53.38013513, 15.454837, 15, 15, 15),
('2rgp', './pdb/2rgp.pdb', 16.29212, 34.870818, 92.0353, 15, 15, 15),
('3eml', './pdb/3eml.pdb', -9.06363, -7.1446, 55.86259999, 15, 15, 15),
('3ny8', './pdb/3ny8.pdb', 2.2488, 4.68495, 51.39820000000001, 15, 15, 15),
('4rlu', './pdb/4rlu.pdb', -0.73599, 22.75547, -31.23689, 15, 15, 15),
('4unn', './pdb/4unn.pdb', 5.684346153, 18.1917, -7.3715, 15, 15, 15),
('5mo4', './pdb/5mo4.pdb', -44.901, 20.490354, 8.48335, 15, 15, 15),
('7l11', './pdb/7l11.pdb', -21.81481, -4.21606, -27.98378, 15, 15, 15), ]
receptor2pdbfeature = dict()
for receptor_info in receptor_info_list:
name_of_receptor, filename_of_receptor, center_x, center_y, center_z, size_x, size_y, size_z = receptor_info
# print('------ ' + name_of_receptor + ' --------')
atom_idx, positions, mask = pdbtofeature(pdbfile=filename_of_receptor,
centers=(center_x, center_y, center_z),
pocket_size=(size_x, size_y, size_z))
receptor2pdbfeature[name_of_receptor] = (atom_idx, positions, mask)
def pdbqtvina2feature(pdbqt_file):
with open(pdbqt_file, 'r') as fin:
lines = fin.readlines()
lines = [line.strip() for line in lines]
line_indx = lines.index("MODEL 2")
lines = lines[1:line_indx]
def featurize(line):
if line.split()[0]!='HETATM':
return None
atom = line.split()[2] #### 'C12'
atom = [i for i in atom if i > '9'] #### 'C'
atom = ''.join(atom)
atom = atom2int(atom)
coordinates = torch.FloatTensor([float(i) for i in line.split()[6:9]]).view(1, -1)
return atom, coordinates
### 2, torch.Tensor([-82.905, 15.268, 40.501])
lines = list(map(featurize, lines))
features = list(filter(lambda x:x is not None, lines))
atom_idx = torch.LongTensor([feature[0] for feature in features]).view(1,-1) #### (1,N)
mask = torch.ByteTensor([True for feature in features]).view(1,-1) #### (1,N)
positions = torch.cat([feature[1] for feature in features], dim=0) #### (N,3)
return atom_idx, positions, mask
def featurize_receptor_and_ligand(name_of_receptor, pdbqt_file):
# receptor_atom_idx, receptor_positions, receptor_mask = pdbtofeature(pdbfile, centers, pocket_size)
receptor_atom_idx, receptor_positions, receptor_mask = receptor2pdbfeature[name_of_receptor]
ligand_atom_idx, ligand_positions, ligand_mask = pdbqtvina2feature(pdbqt_file)
atom_idx = torch.cat([receptor_atom_idx, ligand_atom_idx], dim=1) #### (1,N)
positions = torch.cat([receptor_positions, ligand_positions], dim=0)
positions = torch.unsqueeze(positions, 0) ##### (1,N,3)
mask = torch.cat([receptor_mask, ligand_mask], dim=1) ###### (1,N)
return atom_idx, positions, mask
def featurize_receptor_and_ligand_list(name_of_receptor, pdbqt_file_list):
""" TODO """
# receptor_atom_idx, receptor_positions, receptor_mask = pdbtofeature(pdbfile, centers, pocket_size)
receptor_atom_idx, receptor_positions, receptor_mask = receptor2pdbfeature[name_of_receptor]
feature_list = []
for pdbqt_file in pdbqt_file_list:
ligand_atom_idx, ligand_positions, ligand_mask = pdbqtvina2feature(pdbqt_file)
atom_idx = torch.cat([receptor_atom_idx, ligand_atom_idx], dim=1) #### (1,N)
positions = torch.cat([receptor_positions, ligand_positions], dim=0)
positions = torch.unsqueeze(positions, 0) ##### (1,N,3)
mask = torch.cat([receptor_mask, ligand_mask], dim=1) ###### (1,N)
feature_list.append((atom_idx, positions, mask))
return feature_list
"""https://arxiv.org/pdf/2105.09016.pdf
TODO
- test equivariance
"""
class ENN(nn.Module):
"""Args:
1. amino's categories
2. amino's position
"""
def __init__(self, latent_dim = 50, device = torch.device('cpu'), is_one_hot = True, layer = 1, vocab_size=6, coordinate_dim = 3):
super(ENN, self).__init__()
self.latent_dim = latent_dim
self.layer = layer
self.is_one_hot = is_one_hot
self.vocab_size = vocab_size
self.coordinate_dim = 3
self.device = device
self.aggregate = torch.mean
if is_one_hot:
self.node_embedding = nn.Embedding(vocab_size, latent_dim).to(device)
self.phi_e = nn.Sequential(
nn.Linear(2*self.latent_dim+1, self.latent_dim),
nn.Tanh(),
nn.Linear(self.latent_dim, self.latent_dim),
nn.Tanh()).to(device) ## 2d+1 -> d
self.phi_x = nn.Sequential(
nn.Linear(self.latent_dim, self.latent_dim),
nn.Tanh(),
nn.Linear(self.latent_dim, 1),
nn.Tanh(),
).to(device) ### d->1
self.phi_h = nn.Sequential(
nn.Linear(self.latent_dim, self.latent_dim),
nn.Tanh(),
nn.Linear(self.latent_dim, self.latent_dim),
nn.Tanh(),
).to(device) ### d->d
self.phi_inf = nn.Sequential(
nn.Linear(self.latent_dim, 1),
nn.Sigmoid(),
).to(device) ## d->1
self.output_mlp = nn.Linear(self.latent_dim, 1)
# self.output_mlp = nn.Sequential(
# nn.Linear(self.latent_dim, 1),
# nn.Sigmoid(),
# )
def forward(self, input_data, coordinate, mask):
"""
Args:
input_data: LongTensor(b,N) & FloatTensor(b,N,d)
coordinate: b,N,3
mask: b,N
where b = batchsize, N = max_num_of_atom
Returns:
(b,1)
"""
transform = False
H = self.node_embedding(input_data) if self.is_one_hot else input_data
if H.dim() == 4: ##### (a1,a2,N,d)
transform = True
a1,a2,a3,a4 = H.shape
H = H.view(-1,a3,a4) ## b,N,d
b1,b2,b3,b4 = coordinate.shape
coordinate = coordinate.view(-1,b3,b4) ### b,N,3
d1,d2,d3 = mask.shape
mask = mask.view(-1,d3) ## b,N
b, N = H.shape[0], H.shape[1]
X = coordinate ### b,N,3
mask_expand = mask.unsqueeze(-1) #### b,N,1
mask_expand2 = mask_expand.permute(0,2,1) ### b,1,N
mask_square = mask_expand * mask_expand2 ### b,N,N
mask_square = mask_square.unsqueeze(-1) ### b,N,N,1
for l in range(self.layer):
### 1. m_ij = phi_e(h_i, h_j, ||x_i^l - x_j^l||^2)
H1 = H.unsqueeze(2).repeat(1,1,N,1) ### b,N,N,d
H2 = H.unsqueeze(1).repeat(1,N,1,1) ### b,N,N,d
x1 = X.unsqueeze(2).repeat(1,1,N,1) ### b,N,N,3
x2 = X.unsqueeze(1).repeat(1,N,1,1) ### b,N,N,3
x12 = torch.sum((x1-x2)**2 * mask_square, dim=-1, keepdim=True) ### b,N,N,1
H12x = torch.cat([H1,H2,x12], -1) ### b,N,N,2d+1
M = self.phi_e(H12x)*mask_square ### b,N,N,d
### 2. e_ij = phi_inf(m_ij)
E = self.phi_inf(M) ### b,N,N,1
### 3. m_i = \sum e_ij m_ij
M2 = torch.sum(M*E,1) ## b,N,d
### 4. x_i^{l+1} = x_i^l + \sum_{j\neq i} (x_i^l - x_j^l) phi_x(m_ij)
X = X + torch.sum((x1 - x2) * mask_square * self.phi_x(M), dim=1) ## b,N,3
### 5. h_i^{l+1} = phi_h(h_i^l, m_i)
H = self.phi_h(M2) + H ### b,N,d
H = H * mask_expand ### b,N,d
if transform:
H = H.view(a1,a2,a3,a4)
mask = mask.view(d1,d2,d3)
H = self.aggregate(H*mask.unsqueeze(-1), dim = -2)
H = nn.ReLU()(H)
H = self.output_mlp(H)
return H
def forward_ligand_list(self, name_of_receptor, pdbqtvina_list):
feature_list = featurize_receptor_and_ligand_list(name_of_receptor, pdbqtvina_list)
output_list = []
for atom_idx, positions, mask in feature_list:
output = self.forward(atom_idx, positions, mask) #### [1,1]
output_list.append(output)
outputs = torch.cat(output_list, dim=0).view(-1)
log_output = F.log_softmax(outputs, 0)
prob_output = F.softmax(outputs, 0)
# print("output probability", prob_output.tolist()[:3])
return log_output, prob_output.tolist()
if __name__ == "__main__":
# model = Ligand2D()
# smiles = ['CCC', 'CCC']
# output = model(smiles)
# print(output.shape, output)
# output = model(smiles[0])
# model = Ligand2D_product()
# output = model(smiles[0], smiles)
# print(output)
# atom_idx, positions, mask = pdbqtvina2feature(pdbqt_file='4r6e_example.pdbqt.vina')
# print(atom_idx, positions, atom_idx.shape, positions.shape)
# atom_idx, positions, mask = pdbtofeature(pdbfile='./pdb/4r6e.pdb', centers=(-70.76, 21.82, 28.33), pocket_size=(18.0, 18.0, 18.0))
# print(atom_idx.shape, positions.shape)
# atom_idx, positions, mask = featurize_receptor_and_ligand(pdbfile='./pdb/4r6e.pdb',
# centers=(-70.76, 21.82, 28.33),
# pocket_size=(18.0, 18.0, 18.0),
# pdbqt_file='4r6e_example.pdbqt.vina')
# enn = ENN()
# output = enn(input_data = atom_idx, coordinate = positions, mask = mask)
# print(output.shape, output)
# output = enn(input_data = atom_idx, coordinate = positions+2, mask = mask)
# print(output.shape, output)
pass