diff --git a/jetson/power_logging/model/benchmark_pruned_model.py b/jetson/power_logging/model/benchmark_pruned_model.py index 558f8bf4..b878e43a 100644 --- a/jetson/power_logging/model/benchmark_pruned_model.py +++ b/jetson/power_logging/model/benchmark_pruned_model.py @@ -180,7 +180,7 @@ def benchmark(args: argparse.Namespace) -> None: # amount=0.5, # ) # Thus should load the pruned yolo model - model = torch.load("pruned_30_yolov5su.pt") + model = torch.load("yolov5su.pt") model.eval().to(DEVICE) dtype = torch.float32 diff --git a/jetson/power_logging/run_experiment.sh b/jetson/power_logging/run_experiment.sh index ec9d7f1f..61b06752 100755 --- a/jetson/power_logging/run_experiment.sh +++ b/jetson/power_logging/run_experiment.sh @@ -23,7 +23,7 @@ sleep 120 # NOTE : fcn_resnet50 is a object detection model and does not work with TorchTensorRT library # TODO: Revisit fcn_resnet50 once this issue is addressed: https://github.com/pytorch/TensorRT/issues/3295 #models=("alexnet" "vgg11" "vgg13" "vgg16" "vgg19" "mobilenet_v2" "mobilenet_v3_small" "mobilenet_v3_large" "resnet18" "resnet34" "resnet50" "resnet101" "resnet152" "lenet" "resnext50_32x4d" "resnext101_32x8d" "resnext101_64x4d" "convnext_tiny" "convnext_small" "convnext_base") -models=("lenet") +models=("yolov5s") # Number of inference cycles RUNS=30000 @@ -36,7 +36,7 @@ do if [ "$model" == "lenet" ]; then INPUT_SHAPE='--input-shape 1 1 32 32' else - INPUT_SHAPE='--input-shape 1 3 224 224' + INPUT_SHAPE='--input-shape 1 3 640 640' fi # Run the measure_inference_power.py script