forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor_impl.hpp
1153 lines (1016 loc) · 36.8 KB
/
tensor_impl.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief This file contains the definition of Tensor as well as classes/functions most closely associated with it.
For backwards-compatibility, "tensor.hpp" is the "entrypoint" header for a collection of classes and utilities
that are adjacent to Tensor, e.g. fill(). Whereas this file contains the actual definition of Tensor and
a small set of functions central to its usage.
Within the CUTLASS codebase, favor not including "tensor.hpp" wherever possible; instead include "tensor_impl.hpp"
along with other specific headers that you need. This helps to avoid circular includes and to reduce build time.
*/
#pragma once
#include <cute/config.hpp>
#include <cute/util/type_traits.hpp>
#include <cute/numeric/integral_constant.hpp>
#include <cute/numeric/integer_sequence.hpp>
#include <cute/container/tuple.hpp>
#include <cute/container/array_aligned.hpp>
#include <cute/container/array_subbyte.hpp>
#include <cute/pointer.hpp>
#include <cute/layout.hpp>
namespace cute
{
//
// Engine -- owning or non-owning data store
//
// concept Engine {
// using iterator = ;
// using value_type = ;
// using element_type = ;
// using reference = ;
// iterator begin();
// };
template <class T, int N>
struct ArrayEngine
{
using Storage = typename conditional<(sizeof_bits<T>::value % 8 == 0),
array_aligned<T,N>,
array_subbyte<T,N>>::type;
using iterator = typename Storage::iterator;
using reference = typename iterator_traits<iterator>::reference;
using element_type = typename iterator_traits<iterator>::element_type;
using value_type = typename iterator_traits<iterator>::value_type;
Storage storage_;
CUTE_HOST_DEVICE constexpr auto begin() const { return storage_.begin(); }
CUTE_HOST_DEVICE constexpr auto begin() { return storage_.begin(); }
};
template <class Iterator>
struct ViewEngine
{
using iterator = Iterator;
using reference = typename iterator_traits<iterator>::reference;
using element_type = typename iterator_traits<iterator>::element_type;
using value_type = typename iterator_traits<iterator>::value_type;
iterator storage_;
CUTE_HOST_DEVICE constexpr iterator const& begin() const { return storage_; }
CUTE_HOST_DEVICE constexpr iterator & begin() { return storage_; }
};
template <class Iterator>
struct ConstViewEngine
{
using iterator = Iterator;
using reference = typename iterator_traits<iterator>::reference;
using element_type = typename iterator_traits<iterator>::element_type;
using value_type = typename iterator_traits<iterator>::value_type;
iterator storage_;
CUTE_HOST_DEVICE constexpr iterator const& begin() const { return storage_; }
};
//
// Tensor
//
template <class Engine, class Layout>
struct Tensor
{
using iterator = typename Engine::iterator;
using value_type = typename Engine::value_type;
using element_type = typename Engine::element_type;
using reference = typename Engine::reference;
using engine_type = Engine;
using layout_type = Layout;
CUTE_HOST_DEVICE constexpr
Tensor() {}
CUTE_HOST_DEVICE constexpr
Tensor(Engine const& engine, Layout const& layout)
: rep_(layout, engine) {
}
//
// Accessors
//
static constexpr int rank = Layout::rank;
CUTE_HOST_DEVICE constexpr
decltype(auto)
tensor() const {
return *this;
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
engine() const {
return get<1>(rep_);
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
engine() {
return get<1>(rep_);
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
data() const {
return engine().begin();
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
data() {
return engine().begin();
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
layout() const {
return get<0>(rep_);
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
shape() const {
return layout().shape();
}
CUTE_HOST_DEVICE constexpr
auto
size() const {
return cute::size(shape());
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
stride() const {
return layout().stride();
}
//
// Indexing op() and op[]
//
// Index into this tensor like an array by computing the offset via layout()
template <class Coord>
CUTE_HOST_DEVICE constexpr
decltype(auto)
operator[](Coord const& coord) {
return data()[layout()(coord)];
}
template <class Coord>
CUTE_HOST_DEVICE constexpr
decltype(auto)
operator[](Coord const& coord) const {
return data()[layout()(coord)];
}
template <class Coord>
CUTE_HOST_DEVICE constexpr
decltype(auto)
operator()(Coord const& coord) {
if constexpr (has_underscore<Coord>::value) {
auto const& [sliced_layout,offset] = slice_and_offset(coord, layout());
return make_tensor(data() + offset, sliced_layout);
} else {
return data()[layout()(coord)];
}
CUTE_GCC_UNREACHABLE;
}
template <class Coord>
CUTE_HOST_DEVICE constexpr
decltype(auto)
operator()(Coord const& coord) const {
if constexpr (has_underscore<Coord>::value) {
auto const& [sliced_layout,offset] = slice_and_offset(coord, layout());
return make_tensor(data() + offset, sliced_layout);
} else {
return data()[layout()(coord)];
}
CUTE_GCC_UNREACHABLE;
}
// op() convenience function for multi-dimensional coordinates
template <class Coord0, class Coord1, class... Coords>
CUTE_HOST_DEVICE constexpr
decltype(auto)
operator()(Coord0 const& c0, Coord1 const& c1, Coords const&... cs) {
return operator()(make_coord(c0,c1,cs...));
}
template <class Coord0, class Coord1, class... Coords>
CUTE_HOST_DEVICE constexpr
decltype(auto)
operator()(Coord0 const& c0, Coord1 const& c1, Coords const&... cs) const {
return operator()(make_coord(c0,c1,cs...));
}
//
// Compose
//
template <class... Layouts>
CUTE_HOST_DEVICE constexpr
auto
compose(Layouts const&... layouts) {
return make_tensor(data(), layout().compose(layouts...));
}
template <class... Layouts>
CUTE_HOST_DEVICE constexpr
auto
compose(Layouts const&... layouts) const {
return make_tensor(data(), layout().compose(layouts...));
}
//
// Tile
//
template <class... Layouts>
CUTE_HOST_DEVICE constexpr
auto
tile(Layouts const&... layouts) {
return make_tensor(data(), layout().tile(layouts...));
}
template <class... Layouts>
CUTE_HOST_DEVICE constexpr
auto
tile(Layouts const&... layouts) const {
return make_tensor(data(), layout().tile(layouts...));
}
//
// Utility
//
template <class Int,
__CUTE_REQUIRES(is_integral<Int>::value)>
CUTE_HOST_DEVICE constexpr
auto
get_1d_coord(Int const& linear_idx) const {
return layout().get_1d_coord(linear_idx);
}
template <class Int,
__CUTE_REQUIRES(is_integral<Int>::value)>
CUTE_HOST_DEVICE constexpr
auto
get_hier_coord(Int const& linear_idx) const {
return layout().get_hier_coord(linear_idx);
}
template <class Int,
__CUTE_REQUIRES(is_integral<Int>::value)>
CUTE_HOST_DEVICE constexpr
auto
get_flat_coord(Int const& linear_idx) const {
return layout().get_flat_coord(linear_idx);
}
cute::tuple<layout_type, engine_type> rep_;
};
template <class T>
struct is_tensor : false_type {};
template <class Engine, class Layout>
struct is_tensor<Tensor<Engine,Layout>> : true_type {};
template <class T>
constexpr bool is_tensor_v = is_tensor<T>::value;
// Customization point for creation of owning and non-owning Tensors
template <class T>
struct MakeTensor
{
template <class Arg0, class... Args>
CUTE_HOST_DEVICE constexpr auto
operator()(Arg0 const& arg0, Args const&... args) const
{
if constexpr (has_dereference<Arg0>::value) {
// Construct a non-owning Tensor
using Engine = ViewEngine<Arg0>;
if constexpr (sizeof...(Args) == 1 && (is_layout<Args>::value && ...)) {
// Forward a Layout
return Tensor{Engine{arg0}, args...};
} else {
// Construct a Layout from Args
return Tensor{Engine{arg0}, make_layout(args...)};
}
} else {
// Construct an owning Tensor
static_assert((is_static<Arg0>::value && ... && is_static<Args>::value),
"Dynamic owning tensors not supported");
if constexpr (sizeof...(Args) == 0 && is_layout<Arg0>::value) {
// Forward a Layout
using Layout = Arg0;
using Engine = ArrayEngine<T, cosize_v<Layout>>;
return Tensor<Engine,Layout>();
} else {
// Construct a Layout from Args
using Layout = decltype(make_layout(arg0, args...));
using Engine = ArrayEngine<T, cosize_v<Layout>>;
return Tensor<Engine,Layout>();
}
}
}
};
//
// make_tensor
//
// Make an owning Tensor that will allocate a static array
// e.g. make_tensor<float>(Int<12>{})
template <class T, class... Args>
CUTE_HOST_DEVICE constexpr
auto
make_tensor(Args const&... args)
{
static_assert((not has_dereference<Args>::value && ...), "Expected layout args... in make_tensor<T>(args...)");
return MakeTensor<T>{}(args...);
}
// Make a non-owning Tensor that will use a pointer (view)
// e.g. make_tensor(vec.data(), 12)
template <class Iterator, class... Args>
CUTE_HOST_DEVICE constexpr
auto
make_tensor(Iterator const& iter, Args const&... args)
{
static_assert(has_dereference<Iterator>::value, "Expected iterator iter in make_tensor(iter, args...)");
static_assert((not has_dereference<Args>::value && ...), "Expected layout args... in make_tensor(iter, args...)");
return MakeTensor<Iterator>{}(iter, args...);
}
//
// make_tensor_like
// Make a register tensor the same type and shape and (if possible) order as another tensor
//
template <class NewT, class Layout>
CUTE_HOST_DEVICE constexpr
auto
make_tensor_like(Layout const& layout)
{
return make_tensor<NewT>(make_layout_like(layout));
}
template <class NewT, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
make_tensor_like(Tensor<Engine,Layout> const& tensor)
{
return make_tensor_like<NewT>(tensor.layout());
}
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
make_tensor_like(Tensor<Engine,Layout> const& tensor)
{
return make_tensor_like<typename Engine::value_type>(tensor.layout());
}
//
// make_fragment_like
// Make a tensor the same shape and (if possible) order as another tensor, with special
// consideration of the 0th mode. The 0th mode is commonly used for MMA_Atoms or Copy_Atoms
// so this allocates the 0th mode with LayoutLeft regardless of the reference layout.
//
template <class NewT, class Layout>
CUTE_HOST_DEVICE constexpr
auto
make_fragment_like(Layout const& layout)
{
return make_tensor<NewT>(make_fragment_like(layout));
}
template <class NewT, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
make_fragment_like(Tensor<Engine,Layout> const& tensor)
{
return make_fragment_like<NewT>(tensor.layout());
}
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
make_fragment_like(Tensor<Engine,Layout> const& tensor)
{
return make_fragment_like<typename Engine::value_type>(tensor.layout());
}
//
// make_counting_tensor
// Make a tensor from a layout by binding it to a counting iter with 0-offset of the same profile as the codomain.
//
template <class Layout, __CUTE_REQUIRES(is_layout<Layout>::value)>
CUTE_HOST_DEVICE constexpr
auto
make_counting_tensor(Layout const& layout)
{
return make_tensor(make_inttuple_iter(repeat_like(coshape(layout), Int<0>{})), layout);
}
//
// make_identity_tensor
// Make a tensor that maps coordinates within a shape to themselves.
//
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
make_identity_tensor(Shape const& shape)
{
return make_counting_tensor(make_identity_layout(shape));
}
//
// Utilities
//
// Return the subtensor of a mode
template <int... Is, class Tensor>
CUTE_HOST_DEVICE constexpr
auto
tensor(Tensor&& tensor)
{
if constexpr (sizeof...(Is) == 0) {
return tensor;
} else {
return make_tensor(tensor.data(), get<Is...>(tensor.layout()));
}
CUTE_GCC_UNREACHABLE;
}
// Return the layout of a mode
template <int... Is, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
layout(Tensor<Engine,Layout> const& tensor)
{
return layout<Is...>(tensor.layout());
}
// Return the shape of a mode
template <int... Is, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
shape(Tensor<Engine,Layout> const& tensor)
{
return shape<Is...>(tensor.layout());
}
// Return the stride of a mode
template <int... Is, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
stride(Tensor<Engine,Layout> const& tensor)
{
return stride<Is...>(tensor.layout());
}
// Return the number of elements in a mode
template <int... Is, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
size(Tensor<Engine,Layout> const& tensor)
{
return size<Is...>(tensor.layout());
}
// Return the rank of a mode
template <int... Is, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
rank(Tensor<Engine,Layout> const& tensor)
{
return rank<Is...>(tensor.layout());
}
// Return the depth of a mode
template <int... Is, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
depth(Tensor<Engine, Layout> const& tensor)
{
return depth<Is...>(tensor.layout());
}
//
// Operations to manipulate Tensors like a Layout or IntTuple
// These are implemented with explicit modifier overloads because these
// methods likely also have a general IntTuple overload that can shadow.
//
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
flatten(Tensor<Engine,Layout> const& tensor) {
return make_tensor(tensor.data(), flatten(tensor.layout()));
}
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
flatten(Tensor<Engine,Layout>& tensor) {
return make_tensor(tensor.data(), flatten(tensor.layout()));
}
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
flatten(Tensor<Engine,Layout>&& tensor) {
return make_tensor(tensor.data(), flatten(tensor.layout()));
}
template <class Engine, class Layout, class Profile = Int<1>>
CUTE_HOST_DEVICE constexpr
auto
coalesce(Tensor<Engine,Layout> const& tensor, Profile const& profile = {}) {
return make_tensor(tensor.data(), coalesce(tensor.layout(), profile));
}
template <class Engine, class Layout, class Profile = Int<1>>
CUTE_HOST_DEVICE constexpr
auto
coalesce(Tensor<Engine,Layout>& tensor, Profile const& profile = {}) {
return make_tensor(tensor.data(), coalesce(tensor.layout(), profile));
}
template <class Engine, class Layout, class Profile = Int<1>>
CUTE_HOST_DEVICE constexpr
auto
coalesce(Tensor<Engine,Layout>&& tensor, Profile const& profile = {}) {
return make_tensor(tensor.data(), coalesce(tensor.layout(), profile));
}
// Replace the modes in layout that have a 0-stride with a 1-size
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
filter_zeros(Tensor<Engine,Layout> const& tensor) {
return make_tensor(tensor.data(), filter_zeros(tensor.layout()));
}
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
filter_zeros(Tensor<Engine,Layout>& tensor) {
return make_tensor(tensor.data(), filter_zeros(tensor.layout()));
}
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
filter_zeros(Tensor<Engine,Layout>&& tensor) {
return make_tensor(tensor.data(), filter_zeros(tensor.layout()));
}
// Remove all of the 0-strides and 1-sizes
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
filter(Tensor<Engine,Layout> const& tensor) {
return make_tensor(tensor.data(), filter(tensor.layout()));
}
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
filter(Tensor<Engine,Layout>& tensor) {
return make_tensor(tensor.data(), filter(tensor.layout()));
}
template <class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
filter(Tensor<Engine,Layout>&& tensor) {
return make_tensor(tensor.data(), filter(tensor.layout()));
}
// Group the modes [B,E) into a single mode
// e.g. group<2,4>(make_tensor<int>(Layout<Shape<_1,_2,_3,_4,_5,_6>>{}))
// => make_tensor<int>(Layout<Shape<_1,_2,Shape<_3,_4>,_5,_6>>{})
template <int B, int E, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
group_modes(Tensor<Engine,Layout> const& tensor) {
return make_tensor(tensor.data(), group<B,E>(tensor.layout()));
}
template <int B, int E, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
group_modes(Tensor<Engine,Layout>& tensor) {
return make_tensor(tensor.data(), group<B,E>(tensor.layout()));
}
template <int B, int E, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
group_modes(Tensor<Engine,Layout>&& tensor) {
return make_tensor(tensor.data(), group<B,E>(tensor.layout()));
}
// Return the subtensor of a range of modes
template <int B, int E, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
take(Tensor<Engine,Layout> const& tensor) {
return make_tensor(tensor.data(), take<B,E>(tensor.layout()));
}
template <int B, int E, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
take(Tensor<Engine,Layout>& tensor) {
return make_tensor(tensor.data(), take<B,E>(tensor.layout()));
}
template <int B, int E, class Engine, class Layout>
CUTE_HOST_DEVICE constexpr
auto
take(Tensor<Engine,Layout>&& tensor) {
return make_tensor(tensor.data(), take<B,E>(tensor.layout()));
}
// Return a tensor with the same shape as input but offset by a given coordinate
template <class Coord, class Tensor,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
domain_offset(Coord const& coord, Tensor&& tensor)
{
auto [layout, ptr_offset] = domain_offset(coord, tensor.layout());
return make_tensor(static_cast<Tensor&&>(tensor).data() + ptr_offset, layout);
}
//
// Recast
//
// NOTE: This is very dangerous to do
// -- doesn't check dynamic integer divisibility
// -- doesn't check alignment
template <class NewType, class Tensor>
CUTE_HOST_DEVICE constexpr
auto
recast(Tensor&& tensor)
{
using OldType = typename remove_cvref_t<Tensor>::value_type;
auto old_layout = tensor.layout();
auto new_layout = recast_layout<OldType,NewType>(old_layout);
// If this is an upcast of a normal Layout with static negative strides, then offset as well
if constexpr (sizeof(OldType) < sizeof(NewType) && not is_composed_layout<decltype(old_layout)>::value) {
auto shape_diff = transform(flatten(old_layout.shape()), flatten(new_layout.shape()), minus{});
auto extent_diff = transform(shape_diff, flatten(old_layout.stride()), multiplies{});
auto offset = fold(extent_diff, Int<0>{}, [](auto const& i, auto const& a) { return i + cute::min(a,Int<0>{}); });
return make_tensor(recast_ptr<NewType>(static_cast<Tensor&&>(tensor).data() + offset), new_layout);
} else {
return make_tensor(recast_ptr<NewType>(static_cast<Tensor&&>(tensor).data() ), new_layout);
}
CUTE_GCC_UNREACHABLE;
}
//
// max_common_vector
//
/* Return Int<N> such that N is the maximum number of contiguous elements
* that logically correspond in the tensors of @a a and @a b. This is,
* the number of elements that could reasonably be vectorized into a single load/store.
*
* @returns Int<N> with N >= 0
*
* A return value of Int<0> indicates that no such conclusion can be made and no
* vectorization should be attempted.
*
* Note that the return value does NOT include alignment concerns such as the pointer value and
* the divisbility of dynamic strides.
*/
template <class SrcEngine, class SrcLayout,
class DstEngine, class DstLayout>
CUTE_HOST_DEVICE constexpr
auto
max_common_vector(Tensor<SrcEngine,SrcLayout> const& a,
Tensor<DstEngine,DstLayout> const& b)
{
using SrcType = typename Tensor<SrcEngine,SrcLayout>::value_type;
using DstType = typename Tensor<DstEngine,DstLayout>::value_type;
using SrcRef = typename Tensor<SrcEngine,SrcLayout>::reference;
using DstRef = typename Tensor<SrcEngine,SrcLayout>::reference;
// Determine if vectorization candidates at all
if constexpr (// Should be the same value_types, else the copy is also performing a cast
cute::is_same<SrcType, DstType>::value &&
// The types should be trivially copyable so that vectorization is valid
is_trivially_copyable<SrcType>::value &&
is_trivially_copyable<DstType>::value &&
// Should be load/storing real data, rather than implicit iterators or such
is_reference<SrcRef>::value &&
is_reference<DstRef>::value)
{
return max_common_vector(a.layout(), b.layout());
} else {
return Int<0>{};
}
CUTE_GCC_UNREACHABLE;
}
/* Return a layout that points to the maximum number of contiguous elements
* that logically correspond in the tensors of @a a and @a b. This is,
* the elements that could reasonably be "vectorized" into a single load/store.
*
* @returns Layout R such that composition(a.layout(), R) and composition(b.layout(), R)
* are both identity Layouts.
*
* Note that the returned layout does NOT include alignment concerns such as the pointer value and
* the divisbility of dynamic strides.
*/
template <class SrcEngine, class SrcLayout,
class DstEngine, class DstLayout>
CUTE_HOST_DEVICE constexpr
auto
max_common_layout(Tensor<SrcEngine,SrcLayout> const& a,
Tensor<DstEngine,DstLayout> const& b)
{
using SrcType = typename Tensor<SrcEngine,SrcLayout>::value_type;
using DstType = typename Tensor<DstEngine,DstLayout>::value_type;
using SrcRef = typename Tensor<SrcEngine,SrcLayout>::reference;
using DstRef = typename Tensor<SrcEngine,SrcLayout>::reference;
// Determine if vectorization candidates at all
if constexpr (// Should be the same value_types, else the copy is also performing a cast
cute::is_same<SrcType, DstType>::value &&
// The types should be trivially copyable so that vectorization is valid
is_trivially_copyable<SrcType>::value &&
is_trivially_copyable<DstType>::value &&
// Should be load/storing real data, rather than implicit iterators or such
is_reference<SrcRef>::value &&
is_reference<DstRef>::value)
{
return max_common_layout(a.layout(), b.layout());
} else {
return Layout<_1,_0>{};
}
CUTE_GCC_UNREACHABLE;
}
//
// Key algebraic operations -- Composition, Divide, and Product
//
// Apply a Tiler to the Tensor via composition.
template <class Tensor, class Tiler,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
composition(Tensor && tensor,
Tiler const& tiler) // Layout or Tile<Layout...> or Shape
{
return make_tensor(static_cast<Tensor&&>(tensor).data(),
composition(tensor.layout(), tiler));
}
// Apply a Tiler to the Tensor.
//
// Consider a Tensor with shape (A,B,x,y)
// And a Tiler that is:
//
// * A Layout with shape (BLK_A,BLK_B)
// ** Result Tensor shape ((BLK_A,BLK_B),Rest).
// ** That is, the Tensor and Tile are treated as 1D for the tiling.
// ** See logical_divide(Layout,Layout)
//
// * A Tile<Layout...> with shape <BLK_A,BLK_B>
// ** Result Tensor shape ((BLK_A,a),(BLK_B,b),x,y).
// ** Each mode of the Tile<Layout...> is applied to the corresponding mode of the Tensor.
// ** See logical_divide(Layout,Tuple)
//
// * A Shape (BLK_A,BLK_B)
// ** Result Tensor shape ((BLK_A,a),(BLK_B,b),x,y).
// ** Equivalent to applying Tile<BLK_A:_1,BLK_B:_1>.
// ** See logical_divide(Layout,Tuple) and logical_divide(Layout,Int)
//
// Note that the Tile<Layout...>/Shape Tilers must be weakly_congruent to the Tensor
template <class Tensor, class Tiler,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
logical_divide(Tensor && tensor,
Tiler const& tiler) // Layout or Tile<Layout...> or Shape
{
return make_tensor(static_cast<Tensor&&>(tensor).data(),
logical_divide(tensor.layout(), tiler));
}
// zipped_divide is logical_divide with Tiler modes and Rest modes gathered together: (Tiler,Rest)
// When Tiler is Layout, this has no effect as logical_divide results in the same.
// When Tiler is Tile<Layout...> or Shape, this zips modes into standard form ((BLK_A,BLK_B),(a,b,x,y))
template <class Tensor, class Tiler,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
zipped_divide(Tensor && tensor,
Tiler const& tiler) // Layout or Tile<Layout...> or Shape
{
return make_tensor(static_cast<Tensor&&>(tensor).data(),
zipped_divide(tensor.layout(), tiler));
}
// tiled_divide is zipped_divide with the second output mode flattened ((BLK_A,BLK_B),a,b,x,y)
template <class Tensor, class Tiler,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
tiled_divide(Tensor && tensor,
Tiler const& tiler) // Layout or Tile<Layout...> or Shape
{
return make_tensor(static_cast<Tensor&&>(tensor).data(),
tiled_divide(tensor.layout(), tiler));
}
// flat_divide is zipped_divide with the both modes flattened (BLK_A,BLK_B,a,b,x,y)
template <class Tensor, class Tiler,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
flat_divide(Tensor && tensor,
Tiler const& tiler) // Layout or Tile<Layout...> or Shape
{
return make_tensor(static_cast<Tensor&&>(tensor).data(),
flat_divide(tensor.layout(), tiler));
}
// logical_product on a Tensor doesn't make sense since it often increases cosize
// though this might make sense for creating Tensors with broadcasted (stride-0) modes
//
// Tensor partitioning utilities
//
// Apply a Tiler to the Tensor, then slice out one of those tiles by slicing into the "Rest" modes.
// With an inner_partition, you get everything that's inside the Tiler. Everything that the Tiler is pointing to.
// Split the modes of tensor according to the Tiler
// zipped_divide returns something like ((BLK_A,BLK_B,...),(a,b,...,x,y))
// Then slice into the second mode (the "Rest" mode) with Coord
template <class Tensor, class Tiler, class Coord,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
inner_partition(Tensor && tensor,
Tiler const& tiler,
Coord const& coord)
{
auto tensor_tiled = zipped_divide(static_cast<Tensor&&>(tensor), tiler);
constexpr int R0 = decltype(rank<0>(tensor_tiled))::value;
// The coord slices into the second mode (the "rest" mode), flatten the first
if constexpr (is_tuple<Coord>::value) {
// Append trailing modes if coord is tuple
constexpr int R1 = decltype(rank<1>(tensor_tiled))::value;
return tensor_tiled(repeat<R0>(_), append<R1>(coord,_));
} else {
// Flat indexing if coord is not tuple
return tensor_tiled(repeat<R0>(_), coord);
}
}
// Apply a Tiler to the Tensor, then slice out the remainder by slicing into the "Tile" modes.
// With an outer_partition, you get everything that's outside the Tiler. The layout of the Tile in the Tensor.
// Split the modes of tensor according to the Tiler
// zipped_divide returns something like ((BLK_A,BLK_B,...),(a,b,...,x,y))
// Then slice into the first mode (the "Tile" mode) with Coord
template <class Tensor, class Tiler, class Coord,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
outer_partition(Tensor && tensor,
Tiler const& tiler,
Coord const& coord)
{
auto tensor_tiled = zipped_divide(static_cast<Tensor&&>(tensor), tiler);
constexpr int R1 = decltype(rank<1>(tensor_tiled))::value;
// The coord slices into the first mode (the "tile" mode), flatten the second
if constexpr (is_tuple<Coord>::value) {
// Append trailing modes if coord is tuple
constexpr int R0 = decltype(rank<0>(tensor_tiled))::value;
return tensor_tiled(append<R0>(coord,_), repeat<R1>(_));
} else {
// Flat indexing if coord is not tuple
return tensor_tiled(coord, repeat<R1>(_));
}
}
// Tile a tensor according to @a tiler and use @a coord to index into the remainder, keeping the tile.
// This is typical at the CTA level where tiles of data are extracted:
// Tensor data = ... // ( M, N)
// Tensor cta_data = local_tile(data, Shape<_32,_64>{}, make_coord(blockIdx.x,blockIdx.y)); // (_32,_64)
template <class Tensor, class Tiler, class Coord,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE constexpr
auto
local_tile(Tensor && tensor,
Tiler const& tiler, // tiler to apply
Coord const& coord) // coord to slice into "remainder"
{
return inner_partition(static_cast<Tensor&&>(tensor),
tiler,
coord);
}
// Same as above, but with a projection parameter to strip out unwanted tiling modes for convenience
// when using projections of the same tiler.
// This is typical at the CTA level where tiles of data are extracted as projections:
// Tensor dataA = ... // (M,K)
// Tensor dataB = ... // (N,K)
// Tensor dataC = ... // (M,N)
// auto cta_tiler = Shape<_32, _64, _4>{};
// auto cta_coord = make_coord(blockIdx.x, blockIdx.y, _);
// Tensor ctaA = local_tile(dataA, cta_tiler, cta_coord, Step<_1, X,_1>{}); // (_32,_4,k)
// Tensor ctaB = local_tile(dataA, cta_tiler, cta_coord, Step< X,_1,_1>{}); // (_64,_4,k)
// Tensor ctaC = local_tile(dataA, cta_tiler, cta_coord, Step<_1,_1, X>{}); // (_32,_64)
template <class Tensor, class Tiler, class Coord, class Proj,
__CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)>
CUTE_HOST_DEVICE
auto
local_tile(Tensor && tensor,