-
Notifications
You must be signed in to change notification settings - Fork 0
/
modes.nb
6818 lines (6540 loc) · 289 KB
/
modes.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 295605, 6808]
NotebookOptionsPosition[ 278523, 6413]
NotebookOutlinePosition[ 278879, 6429]
CellTagsIndexPosition[ 278836, 6426]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"Gaussian", "[",
RowBox[{"x_", ",", "s_"}], "]"}], ":=",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"x", "^", "2"}]}], "/",
RowBox[{"(",
RowBox[{"2",
RowBox[{"s", "^", "2"}]}], ")"}]}], "]"}], "/",
RowBox[{"(",
RowBox[{"s", "*",
RowBox[{"Sqrt", "[",
RowBox[{"2", "*", "Pi"}], "]"}]}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.8187624808999577`*^9, 3.8187624866847973`*^9}, {
3.818762568798214*^9, 3.818762576143766*^9}, {3.818763181951271*^9,
3.8187631919130363`*^9}, {3.818763233219809*^9, 3.818763242709773*^9}, {
3.818763278486889*^9,
3.818763314422843*^9}},ExpressionUUID->"d55d9856-58f4-4987-9c39-\
190cd6e0b900"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "1"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.818763297908482*^9,
3.8187633420451603`*^9}},ExpressionUUID->"38f0fe7b-8d58-471e-87d4-\
ea75b489a85c"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[{
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJw1mnc4l2/0x+09PqOEllFkJiIVz7mpaChSSVE2FSUyo0UkSXZZfe1ZFCkk
z21nZGR+MhKSlSIrws/vun6/f+7nel3XOfe5zn3e5zn3H7e4paOhDQsTE1Pz
2vK/31s/jk+vrtLxXG2DoP1UITHsJTTb/Y+O6XuGugVPFxEnKF/n3/2l47D7
A6OyhUWE2N7ry45/6HjX1zkuxv1iojwwjKt/mI4lVHU5cpRKCC7Fzi34Ex1b
ivWehU6ScCr/Tzyujo7nY3WN52Qw8cXo0jaPGjrOkpJfVbuMiew7f2WUyuhY
MwKb+I5h4kTLRtWEN3Q8dtArPm2hjIhwMT92N5aOzXWLxnbqVBLLXDInTJ/R
ccz9C401EZWEbfyUgXokHRfuE/f2Haok9lT7GP0OpmPeozPmbg+qiC8bUi3M
fehYICrHrbS7mhB7P+qOLtNxhPgVr/SyWuKhft7NTbZ0bPvehX57Wx0xPXjz
1oIlHR9fSn5GBtQRFXx8vq9M6Th2ukf36Zl6wvaiYrCYAR37WjwclGb+RGQz
30hh2kPHLZZ2jZqGzYT6qSyOaJW1/Eoa99yKbCaqU75d2qW0Zj+bcKeK0Uz0
6xooWMrQceiii8pdmxZCKFjhbcVGOj4weO8Xf+BnIuWrtbCpMB2/f/wvj7Xj
M7FrV9zNmXV0vPcPT6uEZCuh18YD2wXo+Gy7g9ckbiV8REdq/JnouCLtOoc6
bztBcdgqu3WZhl1v9fbPmLcT8R+Mgt79peHOpBn91XftRKF5lcHINA3v8G5R
p1zpIH6mJTGOfKfhno/pqy/6OgljlQvjfHU0LM7cYG4p0E0M3484nlpNwxMa
n56YeXUTNzrqczUraPg/U5Xg1dFuIthzn8u1EhqObH7fBw09RAW5Ybkph4ZL
X4xHXk3tIwyo+maXsmn4RG6ot7zYV6LP0r+MKYOGu1ltNuG4r8QC+6zfrkQa
1hST5sXH+wlFvc8C4eE0vCB9ZIRi/I0oied2kguh4Z+jjywl4r8RR36h1oog
Gka9u//sHfxGWIflPp3xo+GClatCgc4DRExXkJiRBw2zbl4wEn4+SLDb6CqL
XKDhM2GGk7byw8Tni7vOjp+j4Sb5bTw9t4aJ58YbvT8Y0bBR48ulq83DhJre
ryoLAxpeev5i87zHD8JW5em5rAM0nDZsJ8jVNUJ8ZP5xd78sDbPs11aMbhkn
IpaaU/mlaTjKtlc7R22CMJ8trvsqScMJ+52eiMVPEH9Hgtfd30zDn6ltKYrX
fhKyzWoZDRQalggrDLwu/osIeu7fdGGeirNpxJzJpSnC+Nn1mZ0zVJw80rRr
LG2K2BZ2XoRliopFPOjjx4eniA9+ilZpY1ScNVYWlWA3TUw6dMxN9lJxhNPd
LtLlD2GwX2rL3UoqFjrc8/Ly+1likyrlgGEZFce5T3smc80RI4qLdttKqXgQ
UNQ3ozninkTj64/vqFiD2eKF+9wckcftdoiaTcWdOn39dtoLBL2ryiEplIr1
Jx65XqAsEVguMeB+MBXv+XW0JfzqEuFwxzvF9hEVdxseNlqsXyKqpVR6ZP2o
uLZWxMU26B9x0zXhWL4HFZs47XOU3LRCDNC8ZCvNqNjn5c+nxz4wwRNbI500
Uyqm/4rlODHHBBrFuywDzlGx5+fNilxKzBBlMRKtd4qKm8udjF+kMsPRV2e4
23Wo+HBQ9aHpaBbIO6408l2Bihs8fPxuZrCBWSIv20dZKm4N+yPDM8kGfLPD
W7OkqVjZ31zGfTc72MbFn70mTsXsv/Y9+lPBDqLjPDVz66i49DNLBvmTA3wC
vqdy/qPglFajKl5HbtjZg8tGFyhYKfR0Y0EFN/TsjOutn6XgHqpP62URHlDr
NFwf8ouCFSLLeP7V8MDYdnxfeJCCv9gs+4sp84FhRYyVTB0F9z0RfYg0BWFb
21BfTTUFR9J/WTa9EIS5IcXzthUU/Bq7dYwJUCCao8IguYSCd2Za3FPwoUD/
kXHNzbkU/Iu503TYiQpXm/cLUyPW/AclGvQ86EB88wvPDaHgEx5v702X0IEy
3SRw4jEFf3c8POvFsg7e0K3ZH/lTcKzG0Q2HQtbBolHQNJsnBT+StmJefbse
Anp7GhYuUHDWz6mkRBVhOD8pdfjpeQoW6g3u6n0gDPKr1ytUz1Lw3HraTYVe
YWgSYy92NqDghRtIaN0jERCyVkif0KZg/53vD5nOiELy2K17/dIULFn8snpw
dTO4LNX8u72Ngj8um3tO224BHT6ax2ZxCo6+EbPreNMWGFNIu3ZelIKBWUtl
LnkrKDk1mrTxUXDawcy08hwx8Pql6RAyKIg1PsisPguUgDiLPSOoVxB/fTwu
o1ElASWtStZTHYLY3/P1dBCTJKy8kzQ1rBPEL9xPNhCekuBzl1tv3WtBPPR7
PFn4xjYIpLbLPbstiEundgWYBkpBtm9j+mEPQVxnd1K5vFkKGmZrJP86CeJ0
6vy52Q3SIPCleON5G0E8vuFBTUOGNIQlJfBu0hPE+tOXam+17YAYFYfx/0QE
8Xb0886PM3LwPtXGzoAuiM/zOd5TyZKDng1mg0z8gvhfFRuv86ocbPl3stuC
SRBvnX9T2vxCHpIq99RL/hDArrEFO03pipB5hjU7/Y0AHtp0glwOUIK6mn9S
xjkC+MznvqrT75VgbO9cEleGAF5W5vfbN6kE8ltGYy7HCuAmO+PFd2d2wavh
xkA5HwGcUcMQTpFThkL3mCu5+gKYPOWy9+mMCkhYO6V2HRbA4bL0mljV3fDY
4HA/s7YAlv0op2bjvhssZebOnN4tgFPm/Aj95d3A231S66+wADYxCa8qoanB
RYJb+MAAP1YItyZnbdTho2y/oUM3P76aeFv81Bt1UN7w7nFkGz9mN/45Gc26
Fzh/W7OOVPPjTZHu+T9T9sKrRDwZlM2Pg2a8/Gam9wEru0dVhws/No9bOv2x
VBOuTZ1gYrrGj6/J3hGe3kRAV+/2/TJ2/Fh/TCF7pzcBL962vvI6x49P7C4s
mNIEMLq0M06M4McxTWOPnewQZNQPO1/h5Mf3gssqnqzTBlrhh5fhTPxY7HaZ
4pyeNtxKiRgp+cuH/WTI1RU/bTC8pX1RcIIPa7Bdu77yVxuWFJ8fedPMh7tP
l6YPjh6AE2FnxFai+bBFmmJvw9ghuKkseEQ3nA8nn7xcNi6vA2mfPzqFBPFh
40b/k+WOOrBC06iQuMOH70o3psTP68DLcAlbXWs+rMA8pIEoh4Ev8ld2iCIf
tluqsey2PQrqqpltDGk+/Ih0J08XHAXrdstlCXE+PG1fcyqF7RiUrO84UUDn
w9Ud/kaNqcfAPqpkirHAi2Pkj24KmNaDuqcP90hW8OKvbn6NN97pw9yeA+YO
Jbx48SowpHkMQKLrX0BBAS8mlGSP0/YawE3h6190M3ixm/KKlcUzA5CJNrrl
8JgXq5Q0OXNfOAkBMZIVBWd5sTFrqFzYqiHoxn84cXiCB+v06u8IyzOC3497
/rEN8+CeVTpr+qQRxNxeyir7yoNPVbu80ZM7CxNmezn3t/JghS2u1/TTzkKY
RAGpUMyDi4XE75xONoa+9BdK9AAefGj01S634vMQ8Ky+r+keD7bv73mnwGQC
ux6OBQV58WA/VapZoI4J3L+yY5TdcS1epYWTersJyCqkJC6c4cFUhwsNjxdN
wS0vltYnyYPP97tqGtmagVhyMY7ZzIMjjp5YZX9nBrXhjGtnN/DgD89zitXZ
zGGT64b6Zh4evHjM+T02MofyPeG+FVPc+MXmVLoxkwUIfAicySC5saef1rOT
tpaQVuPZccOEG7f6bxbY6msD0cpuBzJPc+OC578LdT/YQFC886u+49yY/y9Z
tzxvA8437AOPIG4s9sLno5CjLWhuvUBs3c6N8+6Xb9psbQdtbiitbpILW1oQ
Ag+vXIaabxp0phEunKasGbgh5zIU6+29q/qNC/u+cx/Smb4MCRLK5xNaufBO
4D372PsK2DdKCrgVcuESntvPe5/ZA4sUp5u4DxdOVdxXXjB1FWZDWAeNvLjw
qYtX/H/DNRhZWtUPcuHCmv/JpX4LvgaNLQsy87Zc2KMsOmZC0RGib431Nhzj
wqxjM8XD+6+DUvunQx7ruXDn2TxgfuoEF+9HrG/K4MRS7KdMXGJdoBHmOD2S
OPHWpTGRP/UuAEtnF8XiOHFeUHptxz8XEHPe+NX5CScO3NT+vsnMFQbMkjKE
3Djxm2R5o1hZN7Dd/2r/xQOcOIBiG7anzR065qiKnJqc2LjK5Ok5Xg/Qzbsh
9kqNE7c/Gp0c1/aAHTJ72FlkOXHogZgg63wPGBMqbUylcGI37QHn4mhPuDZd
b/GzlwNn7Tyun+ztBX0vFU5HdXLgPLeKvdvfe4H+5Sc60MKBi9oT3kkueoFS
v6FcaCUHNvnkGRft6Q3Tnxgzu7M5MKVW/v6d27fALfPHA28PDlxl9d5jLOEO
3DZnzeGlc+CT7ubbKNI+8KpJN7iNjwPvvybzZMsJHxgggq7Fc3Dgzo1Nva6u
PqCzef3OnYvseHvR5BemKp+1+SH1yvAbOx7iVTKOsPOF56eO5kXnsuMHHxYr
aO/vA6kT+lZab82ee++7oOcPYLqgPer3IXZczV+yL6zpAWzbLupeBOx45K/b
6iRTAASwJu85psKOw/xld72yDgAD/Kbwmig7tlT1e3hR6SH07+0qLhhhw9d3
5LV2dAUCk8JW8oAfG949GfEh1SkYvIW0LvrdZsNzX66uFOQHw/yq5XK1Oxs2
c8qLgblgmPyctv/oFTbcC+v8y7yfQLeHYqGBPhtuTz9yslY3BN5War6+IMKG
nTIE7t+xDYWrpqbJ7i9ZcZHb8kJveziMHLqtXZTGipV9HZUlVsPBemfCt8X/
WHGi9fo/L3dEwHmWoa23w1ix+Wd7x3jvCDicYR93350Vby0XEB+WjoRtMzcj
Q7VY8YeSbrmrQVHw5VH0g+x2Fnzg12xDw5NoaK0Se2HexILfSqFnOmQ0NKym
N6+vZcENZlf9uH5FQ+mNtyJ3S1gwkr7yy0Y/BpJMWrNPJ7PgoprDO57QY+GK
HH/z8nUWPCghbNGTGQdLdXeFDfhYsP4w46QqVwLMsHFpsnOw4KwfA1dKtiXA
JPHEoniVGff7pqo7aCVAf1581rY/zHisXsZPxysBKmOKNf4ymPHPHpfB0d8J
EHRlxjwpnRmfqwiJ5B1KhE08lzJntJmx0bGi1LdjyXCxtCFIQoMZC2TXjLoI
pkCi867rBqrMGG8Y0Lm0OwWkuhfVXkgzY/ErGUuTt1Ng54vHlVZ8zDicw5N+
TygVtE/kf/3czoRD7bbG9eqnweWwlfWvLzHhA9WjtLiJDHihY/W3z4IJV56+
Yq4vnAmTizU9fCZM+P12nl8aBzPB2So0+dJxJpxAXbSticsE793bdokpM2G/
ij2d8QZZsOVl+LMt86tk4l2HkOsV2WCvKsvevWmVvCmQlh3fkQPO7EXpboKr
5FPBm5MTXLlws133KI1llbSUE7Dy2J8Lga42T478WCEv1QgfP5iYC1kFCSKF
r1fIVpaBe4w9r2BUdYNipM4KSdUsGmfiew12amxn9a8vkw7LL8Lu1ueB1Z6+
jIqKJbLBfDcHX+ZbsM3YY6Tzbolkj/jVUF/zFq6IhLLWZi2RIvIc59KH38L1
pQMXG0OXSJmcIvx62zvwJjPpDLMlkmPHTpKe9A4idF1vTy4tkpET06d5kwqh
+izfaZHdi2TYqHTlm7fFIOuxb/VaygL58dQm18hdJODeE7KDUQsk/6Re8Mnz
JBgdsDpz9uECeQonaMv7kuAjEJQN1xbIxthVJc12EhgpvWcp6gtkq6bLHRtN
DAEtd1+9rp8n7z8SYi3/jmFYtsZiZnqOvLXb/p+lVjkk9p6q9NSaJVPSe6Vp
4lXw4956DV3haVL5mVeVz+86KI7ccWjE6Cep3T9pf7iqGZRGGTM744fJDVe6
yNnBVnD5rSCz4f4waZ36smNhshUK5+9dWLkyTA6m5pXM/m0FLQ7Z6gb1YVLr
3oO8HsE2MJS8+fRy23dSTP6+/YX9beB6QXRfMu93csIq9/jG0DYobjl/R+jm
IDkr9N6LvqcdVrpy8pfNB8mOjxY/dmq1g3Y/y8iQ7iDZ0PMf78Fj7VA/mWWQ
v36QFGcJ0zhl1g49vEviBq8HyGsTbR68D9ph9VBs5cORb+QWx5h97W3tcLC4
m3vZqJ+U+53fcvFyB+Rkpe6t2d9Prs7tHqff6ADhWMfLoWL9ZPG9orkS7w7o
mOcIO9b2ldwTq/x07EkHbPcyosQv9pFLkrmjrws6oPzeLB/S7SW/Z/926l/p
gH/BKhz+/QxyirNIhXjQCc2ONTaiWQxS4cu/seNPOiHZwKQq5waD1FpMNNJ/
2glHab73OzkYZOdhG27p9E6IjvzMIqPQRa4q1QntqO4EtTin1XrPDpLXvnve
krkLrmfmLlDpraQ6w/SDoUMXKAlc89Xu/0yOa1VvpTt3wZSzvMCNl59J2mzf
9Sr3LnDWyJRs0/1MMv6YFqz6dIFrU9KJKO8WMm/js4zaZ13wZ0zuiGpDEylZ
VRKaVdYFLm8yLkbZNpF/kh8r+FV3wdyt7S7zTE1kSsfRTSfru2CBsvW/ItVG
MrJhXVNJWxf8U6PNav7XQHLeuvp0YLgLOHwXEnSca0mrHX5u5lwMeKDn+jad
r5bkvyhloMfHAC6h6Xqu9I/k3OLE4g4KA3gyx+fqumtIx/2K6W82MECwqU9P
/1A1uVh19ek6KQaEPDOxfPW1inRKtlXzl2EAzbLLnXqzivyQ0e84Is+AdbMt
Sa05leQru43Rt1UYILyxauGscAWp81JddAoYED2kJVCUV04m+bIMDGszQDSn
VFL0eDkZ8rBw3adDDNisVXii514ZyXILUq8cY8CBRqMjZR0kWSZg/230DAN0
LAxcfHlJksF/55qlMQMOzxz57xAqJafztxD15xmgJ6o5W5tZQt41WQq7asYA
I1vJxM/eReTslHPsjB0DAp1uBIQVFJL/5oYXhy4z4IN3haPh5DtyuWxEpNqe
AdvCrYjPZm/JzH20h+cdGWD8PH972LMC0uJvyWd+JwY8ymTlN2x5Q1blLzW+
dmbANJnc3aKdT/bnX2mtd2WAVP2f8lCvPHJwfLFdy50B5zoOZJ1885qUW//1
ToYHA/DEoEfL9lfkvfURpK4XA0Z+2WGJDzmkZHOSwV1vBuhzcD1JUnxJRp68
dyfzFgO2qByWT6JmkYrZJjmf7jDA78jIorhvBnmdcMn6eJexdp8OqE2cSSNd
RaM03txjwCm3Hc/EbVPJlOvrrUJ8GFAc9NE2sTOZlLpiuemCLwPEky+pih9J
IlPkue1E7zMgoIiLLbE4gXzd91rr4xr3/XcyVcv4OdmcLZZt68eAlw2h2lr7
Y0mNj6pJs2vs9bflK9ryjDzi8nO7qz8DjkjRbiHmSNJt1Uz1+xpvOGUoioZC
SaX6sqZDDxhQv7rN8U7wY1L1uNVM1BpfOpeaefv0AzKT+jqpa43Z8rcP3RK9
R3aWqHzhCWAAEtHTXMSu5DO+kBiFNf79LNp6KtqSvMTwH0Rr7M0SUaWjfgSk
N8y+ObjGijFWNevUHOFue6vA3jXuE3k9ySvoDUxIfWrzGp9S6Srx17oPnfGn
TP+sxXvLOOvzwCsQtE7eMChaY348Lll5PgSiO5gaHdcYwrP9K93DQaziXrvQ
GjvZ2o9WRkSBdcVTu5y1/JL2yulVvY4Go2gmP7U1buMbz6lqjAMB0SjF3LXz
4ejPolaP/wdqcidshNc47pzqPqv7ibAV75N1Xjtf1QOR9oO0ZAjoeHi7ZK0e
jfKzcVaJKcB9w89qfq1eTEwFq1al6aBkovadWKtn9Oi6XUN6a3P4Ja/fsbV6
K7e6WFp3Z8Hbh5/eH17Tg3Xa7irrhZcgZRE4u25NL8tPIuaG/HMBvt3/N7im
r3qNxfC8wFcwM3IlKfnmmr3U+SplkTyY5ZVrm1nTp9JGnj7n/jzovDRo7e+2
5i9YPJeXng+1ZQeec63pOeqvyA4VtQI4Jjm2/uua/msaGIEqpwrhWPd5+7Yr
a/X0+FJjIlcErNfzrMsurf1PtnWz3Wcthg8Z+lfjbBlw1Kvndlv+e9g7Xlu6
yZIBDTJfnV3XkbArSmBCZ61/Hdq/5sZPkBCSwfiRstbf/uj6nKUlhsPpzzdO
GTJAeuK6yqN9ZeDG2Kd9+vhavAPOL7vHyoFhOKCqo8UA9ejp+l9GFUCaxsUI
EWvxfzmPsVZUQMZrs8vt+xiQGXNDWj62EsoLasy37GbA2JRLovexapDa6nOv
b/ta/AT3yM0vamHFK+H0Fg4GaMzN5+8SroMP3OrDXcwM4NPz+Hzofh0MZepb
+Cx3wct5D8FrpvXA2FqknjTTBZMnbj4s5fsElxolXYUGuqDwdmlprlozlPRY
fmEUdUFC5sqnIodmOOTCGv3gTRcEtBG9FUnNoHbg8eC23C4wliWXOgVawE85
8IhiShf8bSfVmX60wL8HPnG3HnfBPoWyPIOnrbBDnntA+EIXqLZ1RJXWtsJh
uJu06+zavPGauCn/rxWSx9kKNU52gVTthgNcFm3w544Wv+yhLqDbXGslZdsh
ULU8zFK+CybiNs4olnbA6VM+Q6cXOuE/PjdV/u8M6KznZYT6d0JM/iMRrw1f
YIcWby7vnU6IOp+4PHLkC6QF7jDxdO+EoIyGqsqcLxC8k2avdKkTPA5KGnl7
dANX5M8BgSOdYOjd7DbO2wvSY1/Uork6gcVtfY+1SD9waRst6NzpgPPmWZ8L
d/eDq8Re2yjXDsg7CrV8Bv0gmHY6jWHfAZZbL799498PLhTZ8f3Ga/P8Y0kI
20w/3Bvte+Gk1AG+G60PpTR+A2/C0yW/rx3YyvJyBn0HwSXC/NwWlXbg5DO4
Zzk5DHdsRM7J4Vbw7e844Jz8E5jg7IJnQjO8ivU3uD09BecvNgkHqteDY5I1
ZchoFryrWMjgpUq4eCVm84N7CyC4ryi1LoaEJQZ349TjBYi/M52u40rCsyOe
t01jFuB7/SejHn0SWnYYf92VvwDHE/v+nGYn4eCP9Yk9QwvgcbMw19upFGSs
Q7cpH/4L1mqPfF6f+AAzFwLkegUWodOFeLyy6T2EfJrv1t24COo7B8xqFotB
QdMuKE96ER6r0FWzu4rBdpPOzwdoEVaU9rNURhQD4wtrrrLzImyYm+naJ1AM
pWfvKAe0L8Khyy5HtDmK4OFJt70qcUtgY87l1crzDsIaZB1eZC5ByKOkVrvR
txCn+/X59ndLYMyZd2vTx7fwSvMwm/DnJWhzuVQ97PcWumREm/5x/gOHt5Wb
Vlnewg6WUuvqG//gaHJepCZrAVTnsYecO7YMfdarml825kOzQnH5Z+Nl4K3/
zu6ykgdfMq7NHrNdhm+bcarCtzyYfN55nri3DM3rzp9gSs8DoUeZ2yXfLQNN
69RFid15YGN1/P2ExApE/FBOOnn6NbCtixy+s7gCaXP/MUkb5wJt8rYAjXMV
pkLFVMJ35IL4x0tqKfRVUHgTcnv33xwgvDX8P8qvgs2WsxxCsTngOTS4nWq2
Chtz9I0Mv72EyTfKNkkVqyDoeXt9rPsLmJAdcbLUYUIGbLIKxXWZMLOh1y9b
jwk5Hkh/Ep2YCUtsn6NnDJmQIvXdpyyPTOD5+r7M34wJ/eqztbOUzgTp8CfU
bA8m5H9MtVXiQQZYLqm9/pPFhKiUSmqjfvpaH/n9vi/IjOyjAw9Os6VCBBF/
6IwQM5oVL7/7tS8FDF+/idm+mRmd/Xc0m6UoBRqjBg9WyzKjYwYVW8aupkC1
hVY0pw4zKq9VJ9W/JMPb+X9agd7MyNtC3DmnJAmiJF3Cn4wyowMahu/K0hPg
dNSjEbPfzOhb+c4PQgEJQONO1lSaZ0ZF3VtpcZcSIHiy5UczGwsKuaP6S002
AfyLdmrQxFiQ8tPcIgOz/8BNf3wowogFBbMKiCX5x8MZL0u1mAoWZMpk5tUv
HANR8es45mtZ0H87Vn8YjURDB1ndfqqZBT2WmTqzoXBtDrLJufL3sqAkRg2z
q3E0GD/+k393jgXJaWkqxsY9g/P/3d9lJ8OKsnbkR+srPwXzijT53U9YUbta
Fp9WaAQkfDf+FxLJimab/CSsLkfAN07ehp+xrEjMojunSisCLPUc7dMzWNFf
fYOVo3/Cwap9T5ZoOSuyHbty6MS5cLD98VGaeZYV2Zgpq84phYED77hE43k2
9K3euKmGLwTGPYvZeC3Y0Kr1NhWhL0/gysjDYV07NvTyncA6ztgnYFe1I6vs
BhsyY+gnb9/yBCzv2O4qCGJDxxMGzHRlguHcn28QV8qGXNodgzMNg0Cnu8v0
igQ7ulv9RcRkMgCqjmQQ6TvY0ePDTTYK7wPgYKG72JAiO3q3KanjXEAAaEUK
DV3Yz454tO3VSckA0NA/bX/yNDvaYmH1KOfiA1CuaPJU92dHYruTNhQM+cHW
7OoojjF2ZCLrnC6h6Aun/yssqvu9Zs9dd/krsy8Ehmf1BM+zo5zEvV0z7T4w
4xUssYGdA/Efj74rfccH6vSMcqTFOFDbfG1IXPs9cJv8XnXYiAPpsFzg0wu7
Cy8GOkf4LnCgsgIHAUP7u/Cto5a3xYoDbf3yVSTj4F3QI1+ePOfEgahqxY73
f98BiRDX3stBHOjp1efqqPo2fNrFPhtYzoFO/op4IB7sDSxS8xv0aznQvEbq
1jdHvEFddHQfvZkDBd8wSu1g94Yklk93Y3s5EP4j+qzmjhd4tEbwvVjgQIee
OSoRN2/CNtdt2z4pcqJnVV1hWQEe4FV44JRgLCeqZA5d2MLuCsqmzb/NEjkR
q6FpgUmbC4ytmga/SudE+RJv3/xLdoHzum61J99wokxaysdLB11gX0cGRHzi
XOu3x+EdD2/Awh9+eREmLnRzefSHq5QzvHoaU3uZgwvNv65NTF9ygkv7pe2K
+bhQZE+xqkqLE3T5oCQTES4kIlZ/7cwtJ3hHvSH8XJkLrX/iPPKGcR3cdnax
SdpwIaaTpl6vDzqCYqt10g17LiRr+/NQ6d9rMOw2BZVOXEjVzDnaPvcanCnl
8bK5zYVC+SYOJ2+6BruPa06lP+VCK91O4nYrDvDnSlKvfB0XekeYJBzuuwLX
0xzequ3kRna/PHRYueygr2ljpIAaN2p0c2Y+UmcLx//W3RjW4Eaj4u9fSD62
BVk9mV1RR7lRhuPXpbB1tjA09T171oYbMf5aMavL2sBZTbPEN3Hc6JfamYNR
jlZQbStwNyiZG71UjS2N32cFu0M+XLTO4kZ7PxzOluawAsrgxk3rCrnRN/GE
O6XPLaEuoCvqRis36v1zbp7RbgFE28kgZR4eZHnN5EjveXN4scxkz0PlQeUd
m38HKZjDRulXRwY28KC0no9Xc5jMYcFTgDNsOw9Cyp94/Q3MIG9r/b0pxIM2
057a7vx7AbbbH3R/5c6DCl+K/9zrbAJ8LHssFb/zIPsV3/ySOSMocmc9NTzO
g0wDXy3vfWsEtj+bDjyf5kEP9pVlmroZAe66tF2AiRdlFProBS2cgRu5MSM/
RXmR/7alcw5sZ+CL6cq1lwa8qO+bvP2s+il48LnOzOYsL7olZNe4heUU7D78
1GDzRV50+9R9i856QwhWUVJ+bM+LzrmuDP82NwQtHstZB39e5IuGMxNDT0LG
uyov+RJeZEC9QxniNYAzCmEOQ+W8KHpRc7C1WB9Yki9eiKvlRUGCS7jjoj6Y
Bs8TfJ28iItKSyvMPAGCNjIsE1O8SKpYYenl0ePgRnsckC3Nh35mTza5vDsK
h66ejpQN50N99YlznIo64BL2nskxmg/lUdab6P4+BCnvJBzy/+NDH105Tbfn
HwIWliltjRd8qCPgu8e7fYcARz3+fbyKD3EcXEzhO3kQ9uHqY07zfOiHUZ3c
4WhtuPxd4V3BMh8qDPtlUG+tDc94IiUWWfnRjhN6Dp1K2jB/2uqvD4Uf/dZ8
ctOvTgvejK6mRcjwo7u3KepCbFqgSN/LUmjCjzR+8qn+3QxwQT3h6j8LfvQq
0lJ5sZKAoAucDHSJH6nlV/H+cCBgPL09t9aFHyV/G/DwIjUhQ8P5QvdjfuTO
/++YoaMGSNpmF66Q/Oi7zS/Nr/N7wfARbduBan60d0vsRPyLveDzyvPJgwZ+
pPnbYbO05V7oX9S1pTD40fh/vbqhTerw/MkQXWKaH+ndjPR8kr8HhIs2Ox7a
JoAqs9Q9o56rwopV+kaqnAAy2XYkt/6cKgwJ7PrYs0sA5d6RCG9YrwqvrA+K
u4AA4iysbNgRsht0KfatSecF0Iv1gyyUYBVwsyvcwxQqgJwsR4paXuwCU5r2
UP1TAfTT5Zx73Y1doP2hPuTpcwHkEDtRdW3/LhCgfx1VfCGA3Gek3uY1KEFa
KXvchRoBFPzH9ObYz53Qvv4U0/tlASSXevJASYs8FOOeF/5sgijpj1O8+w15
SLC3PWfIK4h6e634TwnJg0OZZ96osCD6IGcXcsFMDtiuJlgL7xZEn+RbAq6s
yMDuyp8fXa+s8a8d2R+vSoOoo7urlpMgIlYPMUTFpIFJlFmC30MQ7T6+JHqx
VQoaHNd5pfgJovGs88IvNaTAauN+hdYEQTRzIVVNUnQ7hDkHhCp1CiLaJFfn
nhUJWGx4URjQK4h8LlurxJdLgKV0y9f+QUFEKV0/+/qBBKj0iCiG/hZErGkH
1QfoEjCWdOb7AhsFCbOzZ8vuFocgvh/3zm2hoJz5ROuk7VsB7/WM9BOnIM8f
wr9elm+BGVvezNfbKMgh+gbuN98CpmU7m7nlKGj1Qdit3ITNoODmsaV4DwVt
95XniFHYBI1fud+LnqQgw+VfDcw3RYCFP65R5zQFrXAQPOt2iIDaPsUB57MU
dOL5fbEtncLwPMKQu/4CBY34yiwLqAuD45HYs15XKChfMXZZmH0DUPLlZ7p9
KYh5OvVMSO06ONhfysn1YI0L626O+K0DD/6TG3cHUlDkgw465cA66Ldz1Q4K
oaCwqxvsKkk6vN5UGqIRT0FacELXp5wGhv76CvFvKQh8WtLsxymQdu73kaIi
CtLdYS9Y+4YCf+VDbdtLKGhH5tvxhtsUSGj9/B9/BQXFXlyfgNdR4KeYEe12
EwVdYl5uOhoiAAHvTecvjlDQVmniVGkUL/QEL9O9xilI7HXb0wQNXthp+Vzp
6SQF3a5Jn3s2yAMdXP2Xm2YoSMhwxIfczQOSRlY9wExFu59tkwge5ILS35fL
xESpaBYUNzy/zgG0Sp4+jc1U9O0dV7qXFAfYPM1eNBajotxjT8dQLzvwET9V
QqWoSF2+eMn9ODuce3Q9jVmFit5rzX3RV2eDme3ujwaOUdHXo+c+eKqywOG/
GzJWTlAR38Km7uQFZohtKKwUNVzb75X13eASZtC+sbhsaExFVs/9PON0mOEJ
vnW9wpqKrhZwSly0YgJZk/tnUm5R0dGe5Gkdr2XinNNbGts9KqLX/lbSFVwm
Ah6MNFndp6IzLo65pSn/iO/5ekclH1ERj85nI6a2JSKBbz0kPaMikwiTjmMH
Fon1pak7EvKpSG6kBTZbzBMH2zq/r76lIokC1mYnnnnCeYw72ayYijC/p+/8
mzmiWeja5q1lVDRO0wv3558jAh3VaM8bqSjJ4WSebsMMwSResxQ7SkVtewzH
t9yaJnbu+Vu4NEFFMU7/GVftmSYuHpdzM/m95i+aLmb1Z4p47/nkt+g8FX1c
9q13vzpFuH0++z2ajYa2MuJ5Xjr8JsZ9RxqfbqUhq2Ohy4dkfhKiMaJB8xI0
VMusgeKLJ4jDr/SOnJWiIV7hgWP3j08QaT2vKoQUaOgGVN2ecB8nzFU9CyP3
0dBIsvGBiL5RomOYOyn8DA0VPukZ+Dk5TFSffhhXZLzGrs/ZyLhh4m0519Ov
JjTU5h7XlXFsmIh6zhkkZ0lDLDONboUvvhNnjNjdKq7RkLxd3V9bryGirYrp
6J8HNKQykCO85fAAUaly96DIIxqK0WwZ/8E+QLxJXCUgmIaUQlQCoyq/ERG3
VlQeRazt9/LS7aiD34hTqv82SybSUNbmwMctJ/qJzynzU4bFNHTvt6FRKr2X
KKe5T3h8oKHQnocH9mX2EHl354af47X8wUvuAOohwkxnu8eqaSi9hFEQ79xN
nFz3p8qnlYYapAiv6R8Motl3Mjpvgoa4qlp+7aR2EnjqakTXLxpSTpjYOvC+
g3hl9jN4ZZqGEm28hsrsOoiQ/RO+R//SUNMBR5vF8nZC/8/o1QF2Omoqawgf
9G8jGi2/a9G20pGt0eHN5lqfiW9s6QuREnRUM756T2+2hZhJu5QrIkVHx0uU
j1/KaiFExsc3iSvQUVs6lt8k3EJY35ie37mfjrxVssSWmJoJ9/VvcvIJOjJS
knrR7NVEBL5ztdmjTUecPQftquYbidylhc/EETq6UHL4U+/sJ2LRd/Xl8bN0
lCPi+uQ3dwPBL1Vm3XKejn4NcAyVh9cTYh99Np65SEeNM30WzlvriUN8HA9N
beiIOhFxRE+jjgiJ4LO2v0FHifknPGQefSSkUkVEHz6hI/EtQY9q3KuIvbrd
zXzhdFSp81VId1MVoTca9yAkio7WQ1ecRnkl4aQgNvs0no5M+T+MONMqiZIC
qea0bDpqLS7Y41xRTjSdHfGXzaUjkdbuQo4b5cTA30zNnDw6Uq1PG/4uWU5w
EgrZBUV09I3vmdD1h2WEYbWKf2UNHSWfu+4ta4UJm0uzGofr6Wh7rkBI4CZM
ePC8+1PfSEcTypkhm3NIIv7EPovWdjpyMqBbDT4vJUY6kMbAIB21zHtnnogp
IRY9WP7Y/KAjdRtpdtMtJQT/xsrM0TE66hYX33E15T2hbKa7YWqKjkTbrb/c
fFtMHGLmbnSZpSMZ6VHSTruYME6uu7+wQEcniAvCe5uLiCuHgvZ7/6OjTcf4
jH+YFRH/994Z/f975/8B3qlo3A==
"]]}},
Annotation[#, "Charting`Private`Tag$2540#1"]& ]}}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {0., 0.39894216224307616`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.818763302204872*^9, 3.81876334288626*^9},
3.818771804817512*^9, 3.818783152933613*^9,
3.818785457106214*^9},ExpressionUUID->"3ac566bb-b393-4920-8a7d-\
571acc67167f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "s"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "Infinity"}], ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"s", ">", "0"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.818763348096627*^9,
3.818763437679378*^9}},ExpressionUUID->"2358a683-711f-411b-95f9-\
3307725fc142"],
Cell[BoxData["1"], "Output",
CellChangeTimes->{3.818771809243147*^9, 3.81878315617281*^9,
3.818785460389119*^9},ExpressionUUID->"0382d824-17fb-416f-a035-\
d375e920405f"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"Decay", "[",
RowBox[{"x_", ",", "tau_"}], "]"}], ":=",
RowBox[{
RowBox[{"UnitStep", "[", "x", "]"}], "*",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "x"}], "/", "tau"}], "]"}], "/", "tau"}]}]}]], "Input",
CellChangeTimes->{{3.8187634477128353`*^9, 3.818763500108698*^9}, {
3.8187666148982487`*^9,
3.81876661731859*^9}},ExpressionUUID->"98f9c59f-182b-46ff-9f08-\
5598b8c4a162"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Decay", "[",
RowBox[{"x", ",", "1"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "1"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8187634832269506`*^9, 3.818763486700314*^9}, {
3.818763542318842*^9,
3.818763542457288*^9}},ExpressionUUID->"62d13b6f-837a-490c-b8fb-\
feec812c1bad"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[{
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGBQA2IQ3bXXad///+/3M0CB35vsGW8+IPiC0lOLbj5E8GdU
PFfbfBjBX2bc05/WjuAfXHk14Swfgv9jagbzbNl3cH56Xp+HmfUbOL+uTnmf
q+oLOD/Kwd92acgTOF/Z2VdQd/oDON/LS3OhtOBNOP9m4VOj2rqLcP729Rlm
ipMPwfnfvH6ErQlC8E2etZebCyH4m2SW7/CdeBDOX9f51Kqq/wCc73n8SN0y
8b1wvor+jglcnFvh/EWp1y8qdGyB8xXmfBMyZ0fwpTlNpyazbobzhR5vnLmH
cSOc/0833PXul5Vw/q9ZU49zfl4B539lv+Jp9nE5nP/mYYBf/9ulCP9P9Qp3
fLYQzs/4XX3Ja/1kON9J78ht73MT4XyzQxKnZt7qh/Pn9Fq+nxvWAef7fz7J
uGBKC5zPFBklsuhSA5x/weNbkc/cIjg/R0PPYKFRGpx/rf3YrwsR8XA+AL/W
qjQ=
"]], LineBox[CompressedData["
1:eJwVkHs01HkchkfJuAyG32kWIWEtteos65bq81WJoaUkKuWWGAqlVObGhFBG
Q3WqSUJh12WGyGVUmMSIyhJ1yHVFxAxySXbM2j/e857nv/d5NwVGepxag8Ph
PFbzf3cnNf1oP+IHcfz4cO9pCVi8ONWZtRAFrqF2lmY9Emib3cvjUqlAsn+U
YN0qARxPzoLckACJboXbgksk8IfzuY1O8ckgSS+/kpwlAe7wIMHRMRWaR56+
K7uxyiqD57NH0mGZn+aiHSWB31GdWyblHoSzHCn2NhKoeL9rjYvtY7gxGx7R
IhSDUy2X0WKaB6q+zN6jFWLoyVn47qydD1Z+n9Rm8sQgF8mTOP0oADahtdYy
RQxuSvp9js+KYHKgtUvpgBjmslZ6DbLL4BVVSl7on4K0zr5KXeMaOOOgwhDI
TcE019CblV8DAyT974uzk3AoMGTxs6kATnb1zu8YmQStmWkbvnktoEJiWF/T
JOSoydc42DwH3cKPry+lTkKP8e0Tlnn1UMqVblTXngSxX63fkepG2L4xRpVn
8xXWd+ODcvvbINGU8nQ4ZRzypYZGy8rd4OXRsX5DySiEpT0I84zrg31JW9Kv
bh0B31LhlLR1GBZQXVSfaAgaxh5msjJGwX3zO+GJzAGYqLP0/7VwAgjN1Obh
9l74xXv+LY8nBgLvNbs8+SO46xO509Yz8BujQru6owsihnDeevAN+P4xpRG2
nVDoaqKeazwPghmZV4Tm30BWKDgosFiEGwG3CWT8W4jKfhG6y2YJPsf085Iu
v4bqIWWGjvYyaPsJyZHJzRB4/onONSMpXF/vay1f1QhmxWnlB1VkwOc/vZ5/
Ugg7h3Hpwgs4JJN7oDt+vB7ukCiqJpflUH6vYq551zOIywpNsgpbgxo9v5Qd
y6qB+2/vNqWdXYuO13H2t6dUAi3i5rRelDwyIwB/caAcxgNMtY4GrkOjnQ7k
juIySJFOyPcHKyD3RPnsEgM+VE86SdSO4dHhDFXPC4+LoMj1bGO0syJqUGgT
fOD+Ce0eTb4mrkpoydZcGMrPg4SSyoUrO5TRoZY6Mux7BKGl7w+Z7VZBdK8W
i4sL2dCnwObRrAnIjqMdDLpZQHpDnFtroormDjh7nWnhAsteuNJlpobcAkKc
/O/eAapUFe+pq46+sC0c/pm/BR3leybYGkQUUBxpI4jMgBaD4KbUDCJq+Fo1
peXAgeSqwzlDyhoo2qg2IWEsFfwNP/n6sDVQvZ53iXNUCsgqt23YgtdEiZrr
ZLw7VyFu7XjbbaYm4iwXZKpsSAAdY7uAn3EYCv5k6na4irX6l9eccgyGBgJW
bNPosWBgHSQyoWFIb8Vuz9LpWGiUnsvczcBQN0emGO4TC2ps9l4qC0ME0auK
iO2xkFvUeGs8BUMXdDVVe74zQfTFwkrExZDY3rR5/yUmkE6qX0x8hqGPNL5G
PJUBtZv1XHJeYGjPE5+Of8MY4D+7Wf95PYZOD+DqmT4MKGTta5prxNBPl2TE
+zsYsDObQQp6g6Hol280rGR0COr7Wrm7H0MUL2L3RCIdlPKWrvkOru4RsIM/
X6QD7wzejzqMoZAx88GxEDosLhvin4xiiNi2lSnvQodrOse8N0kwVJhBmrmv
RodtwyFbds5gSFLC9OqS0eD9X9GyI98whK+ajSfN0EDfLr2As7jqF5ZpUtpJ
g5e4h7TiJQzVBOXfVHxFA4qo2F20jKGzE0HVlEoaEDgCoxEphthXmjntBTQo
8xYtymQYGvlQp4Xu0eA/OXNzsQ==
"]]}},
Annotation[#,
"Charting`Private`Tag$3802#1"]& ], {}}, {{}, {}, {}}}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 5}, {0., 0.9980885638192234}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.818763487634568*^9, 3.818763504241798*^9},
3.818763542921977*^9, 3.8187645659087887`*^9, 3.818771815341732*^9,
3.818772183096191*^9, 3.8187831601899567`*^9,
3.818785464161544*^9},ExpressionUUID->"ee884cb9-3e08-4d84-b2c5-\
555a4a4b53a5"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Decay", "[",
RowBox[{"x", ",", "tau"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "Infinity"}], ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"tau", ">", "0"}]}]}], "]"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.818763548725121*^9, 3.8187635931577044`*^9}, {
3.818763624270431*^9, 3.818763685838071*^9}, {3.818763916435192*^9,
3.818763988929138*^9}, {3.818764056904162*^9, 3.818764057030747*^9}, {
3.818764164507718*^9, 3.818764164659268*^9}, {3.81876435299162*^9,
3.818764367545711*^9}, {3.818764406856563*^9, 3.81876449174781*^9}, {
3.818764642113185*^9, 3.818764645899604*^9}, {3.818771830284573*^9,
3.818771863793861*^9}},ExpressionUUID->"c201a04b-16df-48ba-b998-\
d97030509be0"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.818788148041182*^9,
3.818788148060614*^9}},ExpressionUUID->"74d69564-ec79-4912-866f-\
2d4bd78ce490"],
Cell[BoxData[
RowBox[{"\[IndentingNewLine]", "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.818781547710165*^9, 3.8187815477327423`*^9}, {
3.818782664004764*^9, 3.818782665569974*^9}, {3.81878504762709*^9,
3.818785050886108*^9}, {3.8187863993309097`*^9, 3.818786410704112*^9}, {
3.8187866263816833`*^9, 3.818786627404194*^9}, {3.818786795720806*^9,
3.818786820891984*^9},
3.818788146568494*^9},ExpressionUUID->"a4a7e38f-5403-4b15-a9c7-\
02987c285b08"],
Cell[BoxData[
RowBox[{
RowBox[{"erfcx", "[", "x_", "]"}], ":=",
RowBox[{
RowBox[{"2", "/",
RowBox[{"Sqrt", "[", "Pi", "]"}]}], "*",
RowBox[{"HermiteH", "[",
RowBox[{
RowBox[{"-", "1"}], ",", "x"}], "]"}]}]}]], "Input",
CellChangeTimes->{
3.8187868257670927`*^9, {3.8187878475672083`*^9, 3.818787858202849*^9}, {
3.8187885357573833`*^9, 3.818788539717246*^9},
3.81878862621861*^9},ExpressionUUID->"2ec49afa-3117-4d50-a541-\
aa05df105625"],
Cell[BoxData[""], "Input",
CellChangeTimes->{3.818786815976449*^9,
3.8187878513523006`*^9},ExpressionUUID->"51b3c15d-c7a5-49de-b5dd-\
e84552517f68"],
Cell[BoxData[
RowBox[{
RowBox[{"P1", "[",
RowBox[{"t_", ",", "\[Tau]_", ",", "\[Sigma]_"}], "]"}], ":=",
RowBox[{"Evaluate", "[",
RowBox[{"Convolve", "[",
RowBox[{
RowBox[{"Decay", "[",
RowBox[{"x", ",", "\[Tau]"}], "]"}], ",",
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "\[Sigma]"}], "]"}], ",", "x", ",", "t"}], "]"}],
"]"}]}]], "Input",
CellChangeTimes->{
3.818783194507732*^9},ExpressionUUID->"4ad51d7c-dd1f-47b1-aebe-\
5ceaba9dd97a"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"P2", "[",
RowBox[{"t_", ",", "\[Tau]_", ",", "\[Sigma]_"}], "]"}], ":=",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox[
RowBox[{
SuperscriptBox["\[Sigma]", "2"], "-",
RowBox[{"2", " ", "t", " ", "\[Tau]"}]}],
RowBox[{"2", " ",
SuperscriptBox["\[Tau]", "2"]}]]], " ",
RowBox[{"(",
RowBox[{"Erfc", "[",
FractionBox[
RowBox[{" ",
RowBox[{
SuperscriptBox["\[Sigma]", "2"], "-",
RowBox[{"t", " ", "\[Tau]"}]}]}],
RowBox[{
SqrtBox[
RowBox[{"2", " "}]], " ", "\[Tau]", " ", "\[Sigma]"}]], "]"}],
")"}]}],
RowBox[{"2", " ", "\[Tau]"}]]}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.818785247607327*^9, 3.818785264642482*^9}, {
3.818785522343853*^9, 3.8187855612697353`*^9}, {3.81878561424616*^9,
3.818785616290495*^9}, {3.8187856525020514`*^9, 3.818785667109084*^9},
3.818785716445221*^9, {3.818785771106697*^9, 3.818785806489854*^9}, {
3.8187863112107*^9, 3.818786368428698*^9}, {3.8187882144182253`*^9,
3.818788215098894*^9}},ExpressionUUID->"7092e196-775b-4a2e-a31f-\
6719e08b93b0"],
Cell[BoxData[
RowBox[{
RowBox[{"P3", "[",
RowBox[{"t_", ",", "\[Tau]_", ",", "\[Sigma]_"}], "]"}], ":=",
FractionBox[
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[Sigma]", "2"], "-",
RowBox[{"2", " ", "t", " ", "\[Tau]"}]}],
RowBox[{"2", " ",
SuperscriptBox["\[Tau]", "2"]}]], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["\[Sigma]",
RowBox[{
SqrtBox["2"], " ", "\[Tau]"}]], "-",
FractionBox[
RowBox[{"t", " "}],
RowBox[{
SqrtBox["2"], "\[Sigma]"}]]}], ")"}], "2"]}], "]"}], " ",
RowBox[{"erfcx", "[",
RowBox[{
FractionBox["\[Sigma]",
RowBox[{
SqrtBox["2"], " ", "\[Tau]"}]], "-",
FractionBox[
RowBox[{"t", " "}],
RowBox[{
SqrtBox["2"], "\[Sigma]"}]]}], "]"}]}],
RowBox[{"2", " ", "\[Tau]"}]]}]], "Input",
CellChangeTimes->{
3.81878318674611*^9, 3.8187838851445293`*^9, 3.818784141363368*^9, {
3.818784469601295*^9, 3.818784559239622*^9}, {3.81878474118194*^9,
3.818784777033095*^9}, {3.818784837382359*^9, 3.818784872533626*^9}, {
3.818784938843495*^9, 3.8187849394127417`*^9}, 3.818785055671815*^9, {
3.818787878112706*^9, 3.818787879857773*^9}, {3.818788234970701*^9,
3.818788235963393*^9}, {3.8187884922134733`*^9, 3.8187885084629107`*^9}, {
3.818788632009309*^9,
3.8187886416608973`*^9}},ExpressionUUID->"ca75ee9b-bcad-48f8-a760-\
64259784863c"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.818783134625448*^9, 3.818783137840291*^9}, {
3.8187833311512213`*^9,
3.818783355845187*^9}},ExpressionUUID->"fefc484d-3d9e-42bf-b161-\
8fc24d568a3a"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.818783358742876*^9,
3.818783358760659*^9}},ExpressionUUID->"d66a1da2-0915-4d94-b621-\
3c2cca07df5c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"P1", "[",
RowBox[{"t", ",", ".1", ",", "1"}], "]"}], ",",
RowBox[{"P2", "[",
RowBox[{"t", ",", ".1", ",", "1"}], "]"}], ",",
RowBox[{"P3", "[",
RowBox[{"t", ",", ".1", ",", "1"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}]], "Input",
CellChangeTimes->{{3.818763926755157*^9, 3.818763953352244*^9}, {
3.8187639991727457`*^9, 3.818763999328486*^9}, {3.818764168811336*^9,
3.8187641898576117`*^9}, {3.818764500793379*^9, 3.818764557906023*^9}, {
3.818764590749956*^9, 3.818764620150936*^9}, {3.8187646534434643`*^9,
3.818764657059125*^9}, {3.818765091008922*^9, 3.81876509116741*^9}, {
3.818766514646212*^9, 3.818766515114512*^9}, {3.8187718993756227`*^9,
3.8187719326242867`*^9}, {3.818772154543515*^9, 3.818772172490952*^9}, {
3.8187815633844967`*^9, 3.818781609658132*^9}, {3.81878181566399*^9,
3.818781831891889*^9}, {3.818782807112965*^9, 3.8187828351433697`*^9}, {
3.8187830607660437`*^9, 3.8187830608608*^9}, {3.818783219004397*^9,
3.818783225500224*^9}, {3.8187836737124434`*^9, 3.818783737165653*^9}, {
3.818783903374559*^9, 3.8187839283094063`*^9}, {3.8187841492839127`*^9,
3.8187841944321547`*^9}, {3.818784388465526*^9, 3.818784423143606*^9}, {
3.818784537265663*^9, 3.8187845713910427`*^9}, {3.8187846062564287`*^9,
3.818784620655527*^9}, {3.818784668622616*^9, 3.81878471401552*^9}, {
3.8187847836584682`*^9, 3.818784802502389*^9}, {3.818784926534811*^9,
3.818784932243265*^9}, {3.818785196190215*^9, 3.818785231711361*^9}, {
3.818785274133757*^9, 3.818785284588875*^9}, {3.818785333262432*^9,
3.818785338708948*^9}, {3.818785499437976*^9, 3.818785509172326*^9},
3.81878563834116*^9, {3.818785739164236*^9, 3.818785742957065*^9}, {
3.818787885796032*^9, 3.8187878859047422`*^9}, {3.818788228006402*^9,
3.8187882892736*^9}, {3.818788353208149*^9,
3.8187883562808867`*^9}},ExpressionUUID->"a60bfa8b-9be3-43c5-a697-\
6d84c618d469"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[{
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJxF2nc0V2/8AHB7zw8fe3xQRkSFEp97n7dSVJIoKyRZoYiIrGRmlS1JslfZ
K2WPjEQK2VFGJEVfkvHrd87vV88f9zmv89x77nuc+5x7z7lilk561lQUFBT9
fw7/O/vMnv6xsyPRQPF/Y8aL5+fI5j/rcEysVf36Z9Jh5y2nlX9uCothmJz5
Zwb5QZGG1/8cd8Pi1O2H/1xA6ZpJceifaa01D/Cbif8111CrY3q02F/rNSdf
lukk/bXXN8zx/rToX1ffTLYvOiPyL96Y86TtB0J/rfnopY7WosBfZ7d7Drhe
4P9r88A44ptc3r/2taB+xszF89cUe0XrjwZx//Vw+IOQgveEvxZisstbPcL5
1w7Ke2hHhNj/+vKh8dzmZua/3uOhunMtk+Gvn4zpt3iq0/71rD+RrMlH9dfP
46WPzRls1f+/981/WFV49N9fazwfYdwyWP5r57yidU6u6b82sJF48ta746/b
uz+EKeq/Qv9v1b2NpbqJ039N5U4cteJf/mt6Fl1/y6X//tpIyqThIOPaX+cf
sdph2vXPOp4ePmXG/5wwk+ZJ0/rPc5QF1UMT/6wqXLFWuPHP4/odbuf3rf+1
ZOP369kP/9lj9Hfxrcp/7lyjXdbp++dr8gLX1uh+/XXDiV1Pu8T+mWAtv/iY
/M+VD4/Ya7n8M0OVdp5Q5D+bvDWYW87558KvFlKtTf+8zeBg82Dsn3V3uWVd
Xf/ndOT3SZ1rA7nzff1v6nUPWjW5K8Ejv4HsHbQez33oRsfcYy2/aG2gaw/q
9J/QdqGE6EdP6i5voH1i/jFMZzrQXGHOZIzvBsoOfexxpLwdqb4qEbV9sIF2
qGKKgxTbUMR0rbla+QbafnT+zt6uFjS+3fqI/c0Gwnf9onrm2Yz2CfSOTs9v
oCXLlEtxWBN6p/vJJEL0N5p2ogxSo2hAko5LDyxUfyNXY6FnLL9eIo+Q9SGl
87/R0I7AyH3CC9SZTsXH6PwbFe6PYft68jkSqmMxHAv7jWiEH+bJpVWjax94
EkqyfqPnvzo6b3FUoYZV0vught/o7RTVKVJyBSJwyHKbjPxG9SfXh/3VypGV
rLK+/H+/EdscIJGVUlR5HMVQcW4ip/vceRH1JYjB8kTfgOwmGlgbl/F63IBM
fPQ5Co5vIo6weT8TiXpUmGR2xu/SJgpjzv65KvMSbZfZRul7byKK6ff2ybq1
SPfN9ddSiZuo7pB055H4GrRKG3yqt3sTERZTakSuV6LjYvfDMmc3UcMBseZx
mgqURE7u8KDaQtrG3eOVRWXoi2Emw2nhLZTpZKqnlVuLyK7PNMVUtlBI89WE
S7M1KCqqOvin3hYyfjU6tXykGk3mNbV2XN1C5gFOx6RrKtGB1m6a1NAtREdT
RDTUqkABkwNHXTK2kFJaKP/cUhkarzl11ePFFqLxOf8ok6IGqcY2JPi+30LS
d/ZM6wRVoXhH5YbApS2k+Vjp0g1SJVo+lj8fRr+NuPMoqRp6y5G2qChXNGkb
1TtTzC7HlaGc9Vhy4uFt5HlQI+ANXRWiestg80hvGyXuLlS+kVeBzAt87mU4
bKNHFV+0X1uUo+eBP6rzArfRAy6h3DTZMkQ0t50qerSNbh0/Xy2WWYGcD40y
V1Zuo0tzvPe6LpSjbo6zyi/ebCP2V2WTXyTLkPSXVvOmuW1U3tLpYkRTigKa
VUNfUe6g1uWA/6Tb/uSXUlTSI7CD3BsHgiWTS5Gq+66Rd4o7KLSzvWvBrwQl
nHlAM6K9g7695jl9q7cUfZdmk/9ovYM017n06ctKkDZVgOGs7w6iVOtiPFNb
inJH1m5/TdxBB+UkyMKPSxBNhWP+SvEOen+LkHfSoRRdjPrY/6vjz7p53diA
fgl6bmuwtTO1g5AJhQW+VIJ41Lsk6TZ30G2xxU7F8WKkwkqSDmaigKBffRTx
Z0rQjOcwmZGXAiYOo0fftYpR3Ezc2QgJCth9SDewJKkYHdE/Y8O+jwJUhN1+
GvUWo+V6Rq8YMgWItbnM+6UXoVS5lnvEExSQesR8q3qqCGk/8M1MOk8BNqYM
TtPbRegX7eEaQUsKOMCp+JD5dxHKdll5nXqNAir3+/cOEJ+hcxNPp8S8KGBv
6+jdhLWniErbbi0zhAIGVDI3xxufouJqcRbpOApgS3W0jb35FJnvHiMVpFEA
39XxO+cEnyLmmERl+acU8CE/uiuoqBBVb589WVJDAYfC1G31DhYiGweWi0pt
FLB1P7CwpKQAcQ+1uVa9pYAL9o4zuocLUZOGf6jqBAUMftcsC40pQM4lao9e
LlDA0a6bUbtm8pGwyH8lsE4BEXurLzUIFaDOsOK2ZhpK8FHY18N6IR95rNmP
HOekhFLidfMiq3wkabV7uUOYEgaFLWdH4/LQu94JmtN7KEHA+veqhFceuoMl
8/cepISTjUoMN0/noX355+T1j1KCEp90xUm2PDTOw3504AwllBPsd4brc1F4
QIehsSkl7AQd/qBglYtUlgMcR+0o4edX3tNiWzloxhT3v+hGCa3bnwwvROSg
uI71+Cl/SkiKPXY05G4OOnKwLN86ihIY47uPVlHloOX0q/VzyZQQXjrEoDmR
jVLZpd855FBCxyDlVeOCbKTtPfXnMaUEfX/BfKor2ejXXMrW9QZKuOy3WiUp
kI2KHwbr+v6ghLpcn/3TjFmoiyt4lp2CCgRJeXUDRZloJjzI9wkrFagweqQo
nspElDRBREVBKpB3ThFMJGYiIe/AwhZpKhhmNY253ZeBQk3vMDBfpALpD4sM
cjnpyELYtyGxiwqOAn240cM05BXvYyjzgQrwMq39w7ZpKIHVZ+n5DBXUoqpT
PjJpqHvLS2ickhq0o+llCCceI5VxT49dKtTA9Nph3TvsEeJ47LavJJMaXvzW
45XenYxked3aj5RSg36j3tuKmgfo+L0b5u/qqaGht4NmXOcB8vZzjVgbpoa4
Dc54qpgkNHfx+hzGSQMmuS0H3TgSUQPpalqnDw3IKXx/2KoTh0aSHA+ZhtNA
yM/Q5omNWPQfh2PP1yQaMArmLtDOjkVylA6bHOU0INU88tuePhYlfbQzMvxC
A53SN0nhfdHIKd2K45MBLSw3Kva8Vr6HojwfpERdpoUS/bkI4Zoo9Ey3R/qw
My1suDilhpCj0NL2IfWou7RwI79Z5tKpSOR4gdlF5QUtaEi8ov7uG47suUv7
I8To4DiN7nKeTCgKW5i5eEieDj66uwkItYag/CbBxY+qdCARtTfz2OUQNO8c
RHPoHB10Pw1193sSjOxeGyl/DKaDSGxM5otCELIJ3klQXqQDp62A8wshd1Cw
mZLE5Dod/L7CZhChcgdlK10pCqOlh2teDUMaX/zR56m37RMi9ND9RINiUtcf
WaHs9btn6cHNe1Y3VPY2CuQZCVQyp4eIdOKe4Q4/lPmVnXPCnh6+nVamoUJ+
aPqhp4xSID38UnT2fS/viyzXtU3GK+khLsuMhlvKG9154z8T2kwPT+liVNrz
vFB6dqWLYi89qAyOfG+X90Ifz5HCQ+fpISkPRaxjt5BFyUrtASEGiOS+6nrH
xQOZ2ycLh/gzAAMF41NKeTf0+wNjz/dIBtg/x2se13MDJZ3w9DVNZoCx+lGj
HOcbqE/aaGJ/GQNctjDpOl7jijRmiU9GPzHAZDODb+gFFzRpEHRW8zsDDMpl
ZEXRuyCftlXK0i0G8MmjaO8pv44qs/otQ3gYYZ+7/TknrutIxip61wEtRmB4
ZhbUU++E2vop3qecY4TGfTn1IOeELI86B9FfYoSn7IRm+ofXUIr4mZlRT0bo
dtYiFfldRWwfWXJDChjhSmVWsZWVA1o1C5UdY2MCU9LWW5Y4W3T/9dqIpiAT
cG/M3qKTsEV7MduIUikmmIMrNxbKbJCN0PGvIcAE0nW00loj1ujDMHXRARcm
OLTCEl/2p1vuJ10vPvJlAkkeJiQ1dhkRnk+xM4Qzwac9I4H63pf/7O+NzmMZ
TNDyiC7hUb0lqjP0OxD6ngleaf8MczW+hC60L039+MgEY0Oiq03Ul9D6QfNY
s6U/5/eMOCQUWaD9PNjqAXpmSIrkUU1ntkCZ7zYqxlSYwUPpg5NTnhm6e9b9
sGIKMwzU7Gk6oG2MYrr3OBbmMcPEsa5drQ1GKEVzInV3FTMUiTz+TlQxQsWY
Fg3fW2ZQ1DAYfSlviIZkBN5s0rPAy0NtZ8dUz6OpzB5KdyILmGzcXmVtOYcW
RQOUvomzQLAt13bqmXOIgmfxwUeMBT5xKHVUXdVH0lR1Vm2uLFCakbDyqOUs
OuDjkoj8WYD4xCuk8OJZRF6X7KyOYgEBk8ffXm3qIt2lewoFeSzwRFsnmR7T
RTeHL23cm2CBYqa+ZOm806itlPa+8SlWSBBVmn1QrIV69z5vemvECtW5CTSS
JC00nHvt5ykbVph8M0N8GaOJllIHTXB/VrDcIVa+u30c8YTn7ZaoYgUdiwHg
9tNAJDpzo5QWVlANpy5wpNVAe/wJ4cS3rOD/rSvIIuoowm96LdN/ZQV8Xjx3
LucIsr58unZRnA168q2ZBdcBXRunXLLexwZqjGO6K9GAPIwrSRMYGzSevnON
Vh5QxBnR4D4jNnBt5J00+ICjcrXvupVRbND0lZ4tmZaM6iqzAhRS2ODoYvLN
uyZq6NV+k8rcPDa4ezbM6WiZKhqVahZ82MIGj56U/NfudBjRcMfP+G2wQUid
DJmW6xAiLPmyEejZgclv62Zh5EEk9sruYCYXO6ha3jUQYz6IcG9y8Cs5dsjk
UDAisykjz0/TuzkvsoM4j7lPi6IiCq17fTrDgR20+6bVLJsPoISkKjdlD3aI
V7ngZn3+ACrXDm81jmaHVNLeMcfb+9FS+QHr9GZ2eHI0j9ljSgFtRQlFKvWy
Q22LtFrAbgXEcoWuom2UHXputdVmOsojGeFhmoWf7DBk+MVziG4vKm2Ct/zc
HHCiBsm8tduDaoqUZywFOKBk1CDYvFMGNaTs2SggcYBOgMqglYIMeuPOLY7v
5YCLrYmjidTSaHHP3HXL4xzQtcp2ouztbrTKOxZUoM0BXyXKnWR0dqPfNG8f
rOpxQEfIlmdM9y7ENFHbGHyRA1Ri8mCnTwJJxd7jLPDggJwtccGMLTEkfztw
96ovB9ATDdRZ74mhg1c9D2NBHBDcTTf9U1wMaWhevvQmmgOKo/M9WPVIyPL3
wZKVfA74qYGLTyYKoytzsq3kEg4QHTao6p4QQs7vSR+Cqjjg2WWzG0uyQsiv
iImSr4UDXsq5+7r3CqCUy+O65DEOcLF3K1fU4kOZuv1WQdMcwMKTkXupiBcV
YK88euY54PlLuj5+AV70nLc0zeI/DuCherM+/IuIBruClgPZOWEsi+gXP8mF
4vBHx87zcEJ0/lZhsCEX0ispT94tzAlLUiWVK30E1JMwrdG2hxMuXD+q8LWX
E7VdUn9Af5wTXvv4WJ77wo4C3xktDWpzQkN+pGkwMzs6oul8NFefE6YDE93c
D7ChOrnHX7UucYLUiJ4ATTQLqlzbVA/z5oSSlF2fd0cyohv23IkmAZzA1cUy
EjvEgA6MyS7uCeOE8w5yz2qkGdCzJpOErkRO+DFVfaZqgA5lR1Z/YSnjhHfF
Cyx2NjTIiqIXjdVwAtbNH+7zjhqJu87GPW3gBAkHVX3n49Qo1YgH6fRwQqOH
61q4MhVKkLgRe2+eEwZeJmyx4hToXEL43MVlTqAcnVBfv7+DExgzsH1rf+5/
JppxV+E2HrXUN9tLQwAXFxqqV6ubeHCNAplAIoCPxU8q+q5fuIacZvSUJAHG
8jNGhNl+4VSPzWdK9xJAMnK60NBgHfcNjLyvr0YAVuHFE89+/oe7n1n4FGdA
gNZ6m5Urjqu4UhOVqrUZAcyOSigS36/gP5QE7ilbEeBWR/utBfUV/JrAicMD
1wkQd5XmY77UD9zmc3YkbyQBNHyamRNIy/guo7qp2VgCnBv6dsbhzDd8qvP9
oepkAhDs16ftrJZw82KaKaNcApRsn5D98mQRP+9leTC5mQBv+k0JujbzeMIj
brq1DgJMrqyVGZfO4QP1be/1ewmQtyR+Q4J6DjegkXVjHSPArsSP3r6lM7hR
5ErZ7f8I8JpBfVD22Cc8qSgrYGyTACprVFeYyqfxoT5DfVVqLvjNeo6nQ3Ia
N+Z58WOFnQvEyLKLd3incJPHgfttZbggfK38qI7EJJ7ceJCyRYELItoslETM
JvCR6ble0kEu2Pfl18klz3HcVPq08/ARLsgUOin3vnUUNyshFp025YLH3nax
N9I/4Kn97b75ln+uN74qzD87hI//9NShv8IFV7WTy0b2DeHmquNfG9y4ABUd
71fsH8AtmrPllO5xgfeDWJaCM+/wtM9Gm/fjueDu9Q6Oipp+/CM9c/fXh1xw
bHDo3LRUP26p7eSQk8sFOWUNHzCOt/jl94fyBZq4oOgu6SwjWy+euTbvefMV
F6RlFd15JPcG/8SfcuJdDxf0lM7TDh3twa3MKeYjR7jgzlbfRnZQN24z+0qK
8icX0Ds1WKyf7cCzGb3WzH5zwYec3bVHY1/hs7J7259TcgMx7Rzb9w/tuJ1z
tM0NNm5Yjw6WH3dvw6/8Ms6aleKGEM7W73sXmvF8QRY3DXlu4OM3bXqq34x/
weo0nihxg02eNPXthibc/o74JxN1btDTYGTLzG7EHZkXxHtMuMFZXLUm5Wg9
vuD5nIb5EjeY8T+cljCqw+3n7s5o2nLDCdFXJvquL3HbVun8RlduKHhpKbH6
oha39LPZXxHBDRXb8UbeSdX4x6/KXD9iuOESrZyf91gVbmFK+1P+ATcMGmhS
v5Oqws0PZ1bnZnFDhhpd+mpXBW688hGl1P2Jr6qqXEynDB+6VCL2oYUbJD/r
S/6uKcUNem9T83RxQ+iZwSmBPaX4uaei7fcGuYHe+yShgqcE17U10wlY5oZn
xIPSV8nP8Dfv5fY1/McNAaJj6ZjeU1xHY5Nza5Mboks68Y/XCvFTYg/fuzMS
4SA109xEbT5+fGTI1F6cCK56h/TLH+fgrSdy8RxpIsgc20xnnc3GNapvkj7J
EyHujNO+AcVsXD2e55OZGhE+dXF/4RvLxBuoZ1qT1YlQ7ZGbo3k4E8ddKnIG
NYlwn56qWic5AyefOedw9hwRIpDVnLF9Ol77UuJ0lAkRZhUeOQt8eIKryq3I
d1kQwUE1iV1O+wl+iDHmh8ZVIpiOjaq34mn4geY3nirBRGh9mGsrnpWCl+x/
fMEtgggvVy1rZRsf4vvSrmGlMUQ4Ur2oxfIpGd/rw0op95gIZvV5tmHYA7xw
YXTKLosIw7wyPO2uSfgek8KWrAIicFx/KslfnIhLHzoVKlpNhGcToawnVRPw
nCwBe9M6IlQ+XtR+GxKPS3J/OfWghQgExpqipuE4fNf3UHauPiKQ9qc9Ubsf
i4sWtCXQfSGCyqbe9BXlaPzc4+qazmUiIB2pT/ap9/Gw2PzRqDUiaNc0Zjuy
3MdXvaLEeWl54MkxWu+0r5H4Hufbx0aYeYD9vp3Iq88R+EUrF7vHBB6wyenm
rJkJxzu1DZ5JkXjgh/+120OUYTiFulbfgiQPYDV96j6Cd3FlZdXVor08MBJW
WD9IDsXThEVUVdR4gH74KyqJD8bdlz63ahnwgE7vbILHgwC8cGpwjsWMB4pf
eH3Hv9zBPw50MPdd5gGfC5E13+EOrl3/9KzxdR7IqD9lYLRzG79T9viGsAcP
jF9YnXhqcxuvyolO/OjLA2YNbvo22X64+H23sSsRPJCzUxkI7j64UaAthXws
D/SkxcrZO3rjkR7GEj8e8IBn+gWU4+CFr1tgV27l8EBXxK5O2UBP/PV+2p9h
TTyw/OLi4ViiO04lucZ7poMHKqrimby03XAVgXlVrl4eOOVQmHM27AaeTvX6
9sMxHmB4kvp8kt8VH/qvLuPiJx4IIGsnSTu44KwLxW0SCzzQcFZx1afpOu7R
H8dSuM4Db0Rj9ALuOOPP2oMVnHd44FuuCu+T9074dK2HnhIdL3CEUMp1FV/D
dTJNk15w8cL4agtYBzniu9x27XotzwublwXJLql2uMkVHs1oZV7YeKrAofzc
Fr9nxmB/nswLXsrjGltjNvjGscWisRO8MLkePBRKtsb3qY6/faLLC9fbvC+1
u1vh1vK9P60NeSHmav0tyurLeC9PudqSFS+YljcwuutY4nTM2ealDrxwdkPu
NDnjEq62k+jv7sIL+qtSKcRtCzx71qt9248XZguNtk3CLuJe1Uf12R/yQinO
HckmdQE/YNq7fPEJL0QnasXlHDLBv+yYRhXn8AK9zxPJo7rGuImme8fZcl4Y
YOuTuZVkiBMWqGzTn/PC67e/RxLaDfDOqHs0Kw28EHTR2rt66zyuOpCL4l7z
AnvIpr647zn8h6fy2Kd+XhC+dX1zo10fzxduuqU8zAvU/U+Mf/Hq4/zWIxUD
M7xAk+41l9xxFl9fYZXjp+ADn23MxnZUBy9OTO64QscHEvmKmZPtp3E7NSnb
5yx8cOirvHXzC2186A6kX+DnA5ew3J67jSfx+5KvUaEoH2BXuBfe957AtTqN
xzZ388FwBN0p0zktvIrTlS/1AB+sHvIpolLQxK9V7FQsqfCB0O/53Edmx3FJ
4wh9hPigybC10C72GJ6QlhU1eYoPROdN0h5yaeDuCkM0EtZ8QNity6RqoY7L
91uluzrwQZxhQwhzE+Az7t9Ry3U+kJofKjeQAfx8HZOXtS8fWBkcssfZcZzF
MpGvMpAPqKWINUGbZLyFdlclXTgf+LP2hRivqOFKp7HvOYl8YJ75Dr+4eRhf
XO6IWn/EB5e0NoRWWQ/jmXEGcicy+WDmyRu1ESkVnHvUyfZLMR+QeWMK/V0P
4iv26WNynXxQnQB7hi0V8Xw2BS+fXj7YoDilkVx0ALcsreXrGeAD4cfHJPKo
DuBvf73Td5rmA/0fZOLQ83142KNL3+vn+eD0r8+i90T34UfUl6I4lvngcFjY
nSAuBbw0lL6zZJMPFoRyGhpG5HB7uThbKmp+CGjbfXSsRxYX7yXR6jPyg9Kc
1OuArj14NK8qrBL5gfymsZk0KY07ZztWHlTgh0089Bn7td34+BvBeLaD/ADt
YnSmcbvw0786XWfI/DCaELab2CyB79GW2Z9wkh/iSRFvwlXE8SS3IfZrZ/nB
/dnxiiJfMZz+ccjSMSN+aGdX+8TSTcI/ff9c8NOaH54a6RXU/ieC6wnGh712
5Icj88MxyTXCeKOGxpUs1z/xdjO6D4cK4amJ6ZLn/flBD5+cfHxSADfELj4p
T+GHPYcLjHad4cHbbNhuR2Tww8bK59/ddkRc6f5Lc6t8flDYm8IaEs6Nc0wL
CnFX84NQfmBJzxcC7svStbFQxw/PxEnM5ZIE/KvyrQ/NrfyQzd2w28SeE+8M
HUpw7eeH94cUs2voOXCV0hC3U8P8wCO1rNbayIbnjBw8J/HxT30uVEUY+LPi
gfLxnP1L/GA17GakIMmM4+/ORhxgEgDtVLOLEb/o8MItCgcmTgHgZnyrHMJA
hwtKFZ+Y4hWAgQcfFKXFaPF1Tzb6mN0CkMdKkTR+lRq3yXj5+YqcANAGXtjE
nlDh77sdW9QVBYBxfQIGRynxUtEu/+8gAJE1siecHShw0olbFh2aAiBVy+mb
67WD3XORQU90BOBaBrfPDfltzLE1ZFPXVADMeb8tzNX+xnY7aNwsvikAFxZ/
neW3W8Pi4lbOh/oKANdOPGfRtf8wqrp0JYsgAdhc0TV38PuJjXNQ/mCPFYCi
Q09r616uYNqqxb2zDwSgkElkX+yXH1jt5YtF9WkCYF/c/5SB9ANLqnzp6PRM
AA6KMJZ6ZixjdJOOpzQrBOBpBQs59eM3zI1RaI/oCwHwZXJV/RG2hOmZ3prt
6RCAqH1niUfoFzEWqkOW8p//rHdIlNxInMVqblLrzywIgJKxalFdygxm8/XN
0dQfAvBKnq/8UOFnrGHIbjcbhSAQqbLoheemsas6yjxtdILA3UGv3cY1jQm0
UNL7sgpCZdfkQT6tKcy1KHnuq4AgNJn93m3UMYmRdtt+yBIThMBDd4sfEyex
7mTFTjNpQSBoDRoHvR3HJIO7C14rC8ILSgW6jydHsWHT7WtPdQWBeqjrTWP/
IBbytvOitaEgOLyuvNH2dgBT0krUFTYXhHCrZ0Tr0fdYlOK+A5EOgtD3Tedl
Hes7TC1vU/yYiyA0zpxIKlDqx+ZEOri2PAThGMNKS7zVW0ydyfKnY7AgfEli
+bU81ost+cnP7Ir8k9916qBSyV4s+efGwGisIDSQBrR2LfVgq5Ox1dpPBOHo
rTjlaZNuLLeq1UvuhSB806N6e7evHTu/N8bxU5Mg2DHdWfzc3YZRZZibpXQI
Qlk+9xu5/lbMNGoNZxkUhLrqSIOK7WaMkaZFoWVMEKIMUj1FJZqxSs/7JO9P
guBUuJe+VbcJY7eWoVr8LgiK92V11NsasBfDP39krAvC4LVKoUusDZidbtP0
hR1BkO//ZZ1SXYc1qV1o7WIRguus1qyxpBeYOyEytEBKCGpeUSQQoqswiVBj
z8vyQhB4lSHXJ7wS693abS+oLATCanLP6aMrsD3zdafCjwgBy02xpIzaMmzQ
PJx89IQQmHFJPh6YKMUC3xnu/X1GCE5Z3Hhhz1qKjdcvszmYCcHd2PPfpAOK
sXDllzviVkJQ9/L7olx8EaZScHd52F4IrBybTwwqPsNiEsTfnvQQAiwno+zX
owIMsXxrovITAo2ZhbYDdvnYon9t2fMgIaCNY8l7gfKwY1fPxe+JFQLz2h9B
Ydw52I2YWgqnB0KgIuEVPCSWjWVWiTuWPRYC07M0F5dUsjAqqu9HyIVCoF4u
szB/JwM7IGX07HapEJRxGe4jVqRjl7Tr+VurheBz137p2G9PsIaEyOXTrULw
wKuwUsU7DftWu3ohpksIgrhPqd95+BgT+XihfaBPCNITtE7VaqdiPrJ7Ui+O
C0HUgXQ+h8GHmGpD26nra0LAJfDuqb5fInbl896qii0hyPJcUGMLSsCSmOLF
N6iF4XuEbgZlfDy2du7yrzscwsAyLjG30heLSd7qtGrnEQbffmOjvdsxmMHj
/b3MwsJQSa3pwa0Yg5XP72THyQjDxCrIhFXcx6bZbAkfFISB4B8U7Ux1HyMo
9fgIHxQGQQ8aabunUdh135Rz2UeEoavCLv+kdAQmz3WYqvrCH4ttC8pXhmBm
KmlXNy8JQ4mlELtjZTAWYUb/AeyEIcSerwA1BmELOe+LOm4IA/HuM6nV1QBM
4DVZkM1LGKo2eFdohQOwkz8ygvX8hUEMt59l07mD5ZJdzEYihSH1V9xmbMdt
bOjSh1eiccKguOgtacF1G6MPASWrZGFwVNILDO7wxWz62Ji/ZgsDqrgZKaXq
jUnYFFRv1wtDwWN3w4mqm5heOGHX0TZhKLWuPzlc7o7dKfa8F9L9J96z1XIl
L9ywyQ1NG44PwqB2XrB874IrxkEq6js3IQy8Vy32b3K4YugYD/bgszC4CLh+
X0MuWOq9T1ziP4Rh1psgtFbljL0uP+Vnsy4M1l204hoUztjmh9Iv+dvCAEZV
2el/voUu7PJvVGQWAd3f92+8ZnHEwk7MyXlwisBC8EBf7qA99vzamaQXvCKg
JxT16UHRFYyvRtjp2C4R+CiXOxofaIttX84R5JQVgeayl0cUHWywT2z7X43u
FwGrU/PH6s2tsWIrDbEbSARc/9OZ07e/jCWw97xGx0VA3ax87zF/S8z7ueEt
5tMiwIL8u3+mX8I0ORz6001EYJm3kzKXxgKTq131u3ZJBOY+NRv4h5hjBBtf
OVU7EeCx210VwWuGjddGB/W5iUCRj1Xd7ysmWIuN4IFH3iIwmBinNrLHGMvn
zBq3CxABqT6TnPANQ8zdtvoQRbQIvDY06C5tPo+ZEo586koUgS8tZ3Vnas9h
R1523U9MFYGotqmnlxv0MTauiXn5QhHw3rmiSbV4Flt9aZewUSoCXLhZLA/h
LDZs9+NIW40IpK+PnzA5ootl19GmmLWLgCx5U0/O7zQWceWelkyPCLxvTLAy
49XGXLj5f66++1OPW1eGrzacxP68QOlETP2pH6XeRf4jWtguYuWG4bwI+N2o
6gB+TYypAeVILIuAjvGZ4Ivbx7D3RH2K2i0RSI0afb/67Sj2vGG0MJhGFNb2
br4++PsIluZgY6zHLAoWCc2qdIQjmGOjZ+k8nyiMEMJC5C0A03OkvlghKgrr
JbyZbHsRpsIbyewvKQqJXxrLPhRiGM3VNCs+JdE/+19G1qEpVewL7x7OT6qi
sK2l1SeWcBjrbSp7WaQuCj1qX0X7jVWwFL52Hs0zomAXwlCQxnoQu9Os20ww
EIUq2TcrpptKmN21YadxU1FYtLlaLrquiCm1fH3lZi8KLm/+09HhPoAJON10
U78uCicDSssSFPdjFAKU4qweomAYF02VarYP63bi9soMEoXjb8Ok+x/vxUoF
UqWcI0QhJ2Bby1NeDktqlXqnFisKQoO/LAd79mCXBdX29qeJglqqzYCjujSm
1dbyITVHFIZv3kZEghQmf10n2P6ZKFTSJYwbfN+NbbRdmqB8IQovihIn5ock
sMnrC+Gvm0Rhbs/3qO8T4libkJvKgw5RcCs6rrf9QwyLcQmN3jcoCo5PA1Y+
qZKwje7C6tCxP/nIWhuNrolgllJ9E5PTotDhKJusGi6MKY7yy0cv/4knUTfm
9ZQAlnIQPz//nyhoDuuzR2fxYzTRlt7qW3/yfcuj8NKdD/uSfv7zOg0J6M1H
mprUeTCR3tn1XQwk6NCkaLRVJWJ6W54sZ5lJQLz5Y4gZcWO1hqmKeZwkoLBv
ubjPnoAtB+7TfM9Ngirh+SNF9zixXaVNJpR8JOiLRpky9RxYBMusv7EICe7G
8wrG3WDDGg57xgeJkeCrmr7xASZWbNWGOa9kFwmYb8cQHIqZMdNGhV5GWRKQ
D7xWrJBlxO4vNU4ry5PA4vY9KYsdeqxF8Nzapf0kUKkMXhmcpMP2unuIPD9E
gvLWjsiKThrMMoPpwIwqCbqdgpOW+6ixhN6UYwScBI87KIzSP1Fh23saHe01
SOBNYPxlsocSO2CkfztBkwRWNsqbdqYUmE3Q59imkyTYVI+Y+09hh9wzwVgr
cJYEXVZ+i1/1N8kHVeWnXAxJIFjol0V6/oucGqfH2GVGAqfTdqeyTdfIdN/c
90lYkWBo/T5B8OBPstOJh4Ze9n/y0UvKi1NfIQ9l1Pv2O5PA8NvXksRb38mw
PZ0le5MEmoMnyELPv5FzjRheB/iQIKMzrdW7c5HMUSa3OhJAgv+kbvcGi34h
e7CeFVQK+9Ov0R5jprJZ8qSt25GI+3/6IULisvL7TNZqenDlUwIJzmtYc133
myaXCNXdJz8igYTd54SAZx/JAjenquIySOD4PrjKiGGSfKePbmIxjwRKky84
RAhj5C+ysnTHiknwiNOVimwyTNYLPrP3USUJeDo+6aZMDZLT+t8+Zm0mwTW2
7pcNxf3kryQDgu8bEtz/KkF76XAvWfXah8ClERIYz2yGrVd3kkNrTdfM50iQ
LNl6ZXO7lTwatcXltUCCV5b8L4VWWsgKlqn7EpdIEPL0hMjblWbyAMPklTer
JICRR9VP+ZrIEgaXRxGlGKQ2fIyYanpJdpeh+XWBRgysR9uzUg1ekDs3M4ke
9GKQTKhrivz9nOycMaNTzCoG3g6MLR/cqsl1y1caSQJiQBFVlvWDt5xMaGEa
JwuLwezRbpkOUhnZOrFgw4gkBtdl04pMlEvJLPhXxWhJMfh26JrfHb9isnG4
czalohjcuHc9hoe7gLy6+2b41CkxOM9zojtdOZ2s9Ys3d1tHDD4r2PZf139C
fthd3SKgJwZLVXel+L3TyEdcN7b0jMTgmcxbobeDj8j3Gnycm63EIMhF3UL9
ehJ5z4XA85k+YrBZw22qcfE+2fh6JYHGXww0suzfLVLeI4eGzL25HCgG9bjk
qzTTSPLnMu2TEuFi4KwsdlNRP4ycxkJE6Uli0FFSGbYoGUQm1mVJp5WJQaLt
zfQPR73IFGLtvx/Oi4FrwqkFHT8b8sAMY3rseXGo8blG9urHyD2Wn9UJohKQ
fkO2pvHKktpHmpz1eHEJ8NKKkyWkLKqtZtsV8UtKgIdhjXnI/Bc1/oUFIbG9
EkA617CW8WZWzcr1x5qCmgRY6S1rvH8ypbYRsPP0tKEEUG2ZnutpH1CTzOIX
uHtPAg7XKctcXmhQO6w50ssSKwH66j6cHt31atrzKSH3EyRgsIBq0O7jS7Xr
e0k/Ex9JQGzI8Hb1pedqLyoke7MLJCAsDsmXRJWr6bUpBre0S8A2pWKR7tdc
NWu7n2StLgkoThYxu3slR82DqWqlq0cCqicfvt+9laX2SEf1Uv97CTgz9pyT
zjpDbW4AyFPTEuBM7cl1bk+q2oYH1Yr1rAQ8vffu8zH9FDVWwZa8+S8SYC6K
edUlJasduKjJ+/27BGQ67mTecUlUO0bJ2HPjpwQsUzA6PaVOUDPK6AxcX5eA
+xJ8tgIFcWr2xyLUvDcl4Fq16BUX21i1//s/GoSbq3pdDsWo/Q+vBHno
"]]}},
Annotation[#, "Charting`Private`Tag$52360#1"]& ],
TagBox[{
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwUV3k4VV8XNs/jvdc1DxnLlAgVZ+8jZShJSEiZh5CkEhlDkhAZQpQps8yR
+rnbXEgyyzwkUSJCIp/vr/O8z9rrfdd6197nnL3P7pqxIw0VFZUoPRXV/58B
X8/82t2VQB+iHsfkK+tqzPmRf49sSyCb2FlDqWI9DUOuiY2aPxJo/JmlvA12
SkPsqOfOtVUJFPhEU4yr5IxGY+Rjpsk5CeQmKKZjs2mswaQ4KII+SKCRhGK2
tNXLGgk3bU4HP5VA01IEc+8bNzWKqG/kUKlLoOM+xSjUIlOD3lFXmf+SOIo8
7eEudfifBnGoxT0rbh8yMWNStRc6p2nclGp/oF0MXSkvOVhC+1xTsm92vK1V
DL1PeKMc7pihuT6raOnUJIYotkQPolmmZgpDk1H2WzH0iTzWWmKTrTmpv4gJ
l4oh/waLtlDlfM2r3Rp83AliSIMxoze0t0ITTN2LL40VQxk8oa/tZys1uX59
5DCMFkMiSm3Td+iqNauIDvQPw8VQVIzV8/JbNZpbZlG/6HzFUOLsbZc0tf80
O50HrmbfEkNYol/HqZF6zWc+Yt+0vMTQxlL/vuzTSFMrtWoi0E0MBQTXy0gp
NGpGjI12bl4SQ/UPWnhPpbZqfhSjr/MyEkPFjrwGNuROTbKDQt7342KIO/WS
hJ/nJ83X9xrSD2iKoehZP7s3V3s1rfLOJzipiqGfyz21gjn9mlTvv0VmK+75
4WslM88/pJm9EHB3UkYMKbCekRQc+Kypw0bwEd4nhmjPsop5To5pLijkelgK
iKEK2ay/bzImNaPPHnN8QhRDuZhM44W705pK17su9rGJoRXae9oGT2Y1+x7b
GXMz7PXfu/bIdX5Oc8nlR1zaP1E0R3TmkvD7pnm4mCeIvCKKwKofSDL7run3
E3OPnRFFlNgTpLyQn5pve5UcVgZEUeTtrfu3HVY0/9VIWBm3i6KbeHKIm/Kq
Jp5GNq38TxRx+Mp9v3Pwt2ZIMLMBqVwUvdDj8bhks6HZ7LCtfStHFLlFP7HQ
av+jyaD/U2PgiSjKk/pNGvTa1pR5M18THieKJr+tWD+e3NHUU5hWUX8oiha+
GqddstnVjOTul0sOFEU+tVO8QwbUWFFoV56ejyg6yUb0ipKlwTp/t0n8uS6K
HP35XsgSaTGOz3WClo6iqO52YZAuIz120KDqCYu1KNp96fbrK5EBM6ovIb4x
F0U3xro9XykwYo+zMliFDETR1sM/7689ZMYqSan3O0+KojHXHfOabhasLzye
NgCKIo/9DLxfpdgwslv43zFlUeRwQvkjmZYTUx8Luh0jL4pOEH6yX9LhwszP
+q4CaVG0szAV3UrixlJV3Bef84siXoWROc1uAvbmhaOzEVEUqemVV5+sJ2Kj
vNYzVOyiKDH5S9d4DQkT2T43YkslihL8XF13PpIx6HH6AmFLBB1p1Qkv/8mL
2Uye6G1cFUFLxpb1JsL8WFazeofEVxHEaFb8jOuFINakdki3b1IEabWc9k6i
EsZm82Wbwj6LoMzPxPApdxFMOlr4zZcPIugv11fVoP/EMN1dsnpSmwjSoQ9d
1nq0D3O5zlWp0yCCTtCLXhB0E8cKztMW5VWJoAEUkrh7XBJrb9uWNn8pgoo1
PEM5cSls4eh6FlO+CDIfqv2I60tj8iLfUq883atX/VCNWch+7EzsNFkgUQTZ
hP4m3aw8gHnQjD5ujxFBn0ZKfkuuymJlc12RciEiaPxjojR9pgL2yfwdw6jf
Xn95adOFXAexX+0NIVG3RNDdXNuReT0l7HBp1Z0fLiKoNzRqYvPLIez8vpfr
6XZ7eteibpxvUsa84/O8DK1EkIzi2oZykQpWezvVtfSsCJI+F2nslqaKiTtc
fzGkJ4Kmnmqvl/6nhkUb6U1SHxdBmxdOtXf9UMfsDqyfNz0sgtBMwMOsgGNY
J8+H2AAFEfTn1z7T1XENTI0mpyNXes+fdttVM2MMYx05p/WHTwTlj7PY3z2K
Y95t+/3FCSLIKL+cVZRbC5us3H11mlUE5djYf3i9qoVVRZXIP9sRRo4+nkui
o9qYiG+Yc9u6MCqaIITwz5zAHjhezFr+KYxUnWROXN04iV0GzHza03vrXcQd
+07pYe9kJ43dR4SRoL6h1/mH+pgyb010Yp8wejL3c5ht9BTGuOxAO98qjJLd
tnltys9gXqMagBsJoxvOmeRX6mex0XcE32OvhRHLn5DRERcjrCwTLUUVCaOs
H8fCzcSNMYGYJwde5QgjC657fiOcJti9Ox4OE+nCaOeWMfcZZlPM0kTo86FY
YbT90vuYmbgZ1gxXSRcfCKPa7J5TStoXMEX59rNhIcJIQ10v39/LHKOl92kZ
uCmMrjX/IJ/atcQ8VgypqDyE0VCxkqrRZStsaExK44CzMMp/ez62t+sSVvyq
t8zPQhhxsY06zNywwcjZhYs5xsKIoflDL72+LXb30V3prtPC6A9TlM3b/XaY
mcvBNDEgjAKHV0a2mB0wZMowqK8ujIxE/mmnszlislpj3DeUhNFojtJ5ZiEn
bJf/4f0WcWGU/l1ZBdm7YK4Mdo1LgsIo4ugQtXX6Fazv15EdXh5hJG/kpuI5
54rld8x5uTLu+f3OputHwVWMUPtfSTyVMHLeVy+7KnUNC8hJmH/7RwgpnUvt
M7T0xIwDjl/m/C6E6MpEyQ0MXtjbK/wpR74IoS4jbKj3uxcmbbbcazsuhA4f
DJCXGr+B/VV8pl/VLYRaN4d2ymZvYU6Ct8LG3guh8d9jaYS/3lg3owGFoUkI
5dL9KaIW9cFyJv8ctqgWQvweL45IPb6DcXzovhbyUgi55tJOv5n2w3xf5xUW
5QmhP2G3WV5oB2CGj8+L/UvZ43u+WvFOKBi7o8yprxsvhKSjH8mZzAZjuT3v
rsdGCaG6CSkek+q72D+CZpN4kBAKiw0q9L0VislW/l508xFCHFQaobGOYZiZ
SSmp+roQYi+rS9uxuYeVxIs76ToIoZtSDfR//O5jQyqjMbGXhNDzAI31F2kR
GF1fYs2wmRCS9R1Ym2t/gFmRmJnd9YWQl1G/TLFxFBZR1Xio+rgQ0jlyUiG8