Skip to content

Latest commit

 

History

History
52 lines (34 loc) · 1.39 KB

README.md

File metadata and controls

52 lines (34 loc) · 1.39 KB

Medical mining

This tool allows you to create and control topic models. It works best with LDA and lets you visualize the results using LDAvis.

First setup:

  • Checkout the project
  • install all packages required
  • start the shiny application by run app

Import your data

To import your own data, all it needs is to be a list of documents.

Minimal example:

data <- list("this is my example text","here i talk about the weather")

Edit this in the file tmscriptFacade.R

Installation

  • on linux (ubuntu 14.04) apt-get install libxml2-dev libmpfr4 libmpfr-dev

  • install gnu mp

  • install gnu scientific library gsl

  • devtools::install_github("kshirley/LDAtools")

  • devtools::install_github("cpsievert/LDAvis")

  • devtools::install_github("benmarwick/LDAviz")

  • install.packages("shiny")

  • install.packages("shinydashboard")

  • install.packages("topicmodels")

  • install.packages("servr")

  • install.packages("tm")

  • install.packages("Rmpfr")

  • install.packages("SnowballC")

  • install.packages("RJSONIO")

  • install.packages("RCurl")

  • install.packages("XML")

  • install.packages("stringr")

  • install.packages("rmongodb") # (only if you want to use MongoDB)

Note: on a mac you have to install gsl (brew install gsl)

You can also try to use the started streamgraph visualization to visualize topics along time, but this is under development.

  • devtools::install_github("hrbrmstr/streamgraph")