forked from cnr-isti-vclab/TagLab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstall_conda_windows.py
320 lines (272 loc) · 10.9 KB
/
install_conda_windows.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import re
import sys
import shutil
import platform
import subprocess
from pathlib import Path
import urllib.request
import importlib.util as importutil
# ----------------------------------------------
# OS
# ----------------------------------------------
osused = platform.system()
if osused != 'Windows':
raise Exception("This install script is only for Windows")
# ----------------------------------------------
# Conda
# ----------------------------------------------
# Need conda to install NVCC if it isn't already
console_output = subprocess.getstatusoutput('conda --version')
# Returned 1; conda not installed
if console_output[0]:
raise Exception("This install script is only for Windows with Conda already installed")
conda_exe = shutil.which('conda')
# ----------------------------------------------
# Python version
# ----------------------------------------------
python_v = f"{sys.version_info[0]}{sys.version_info[1]}"
python_sub_v = int(sys.version_info[1])
# check python version
if python_sub_v < 8 or python_sub_v > 10:
raise Exception(f"Python 3.{python_sub_v} not supported. "
f"Please see https://github.com/cnr-isti-vclab/TagLab/wiki/Install-TagLab")
# ----------------------------------------------
# Pytorch version
# ----------------------------------------------
something_wrong_with_nvcc = False
flag_install_pytorch_cpu = False
nvcc_version = ''
torch_package = 'torch'
torchvision_package = 'torchvision'
torch_extra_argument1 = ''
torch_extra_argument2 = ''
# If the user wants to install CPU torch
if len(sys.argv) == 2 and sys.argv[1] == 'cpu':
flag_install_pytorch_cpu = True
# If user wants to install GPU torch
elif not flag_install_pytorch_cpu:
# Get the version of NVCC
console_output = subprocess.getstatusoutput('nvcc --version')
# Returned 1; NVCC not installed, install 11.8 cuda nvcc
if console_output[0]:
try:
# Command for installing cuda nvcc
conda_command = [conda_exe, "install", "-c", f"nvidia/label/cuda-11.8.0", "cuda-nvcc", "-y"]
# Run the conda command
subprocess.run(conda_command, check=True)
# Set the nvcc version
nvcc_version = "11.8.0"
except Exception as e:
print("There was an issue installing CUDA NVCC with conda")
something_wrong_with_nvcc = True
else:
# Search for the pattern in the text
pattern = re.compile(r'release (\d+\.\d+),')
match = pattern.search(console_output[1])
# Extract the version if a match is found
if match:
nvcc_version = match.group(1)
print(f"NVCC version: {nvcc_version}")
else:
print(f"NVCC version could not be found, exiting")
something_wrong_with_nvcc = True
# Install pytorch using nvcc version
if '9.2' in nvcc_version:
nvcc_version = '9.2'
print('Torch 1.7.1 for CUDA 9.2')
torch_package += '==1.7.1+cu92'
torchvision_package += '==0.8.2+cu92'
torch_extra_argument1 = '-f'
torch_extra_argument2 = 'https://download.pytorch.org/whl/torch_stable.html'
elif nvcc_version == '10.1':
print('Torch 1.7.1 for CUDA 10.1')
torch_package += '==1.7.1+cu101'
torchvision_package += '==0.8.2+cu101'
torch_extra_argument1 = '-f'
torch_extra_argument2 = 'https://download.pytorch.org/whl/torch_stable.html'
elif nvcc_version == '10.2':
print('Torch 1.11.0 for CUDA 10.2')
torch_package += '==1.11.0+cu102'
torchvision_package += '==0.12.0+cu102'
torch_extra_argument1 = '--extra-index-url'
torch_extra_argument2 = 'https://download.pytorch.org/whl/cu102'
elif '11.0' in nvcc_version:
print('Torch 1.7.1 for CUDA 11.0')
torch_package += '==1.7.1+cu110'
torchvision_package += '0.8.2+cu110'
torch_extra_argument1 = '-f'
torch_extra_argument2 = 'https://download.pytorch.org/whl/torch_stable.html'
elif '11.1' in nvcc_version:
print('Torch 1.8.0 for CUDA 11.1')
torch_package += '==1.8.0+cu111'
torchvision_package += '==0.9.0+cu111'
torch_extra_argument1 = '-f'
torch_extra_argument2 = 'https://download.pytorch.org/whl/torch_stable.html'
elif '11.3' in nvcc_version:
print('Torch 1.12.1 for CUDA 11.3')
torch_package += '==1.12.1+cu113'
torchvision_package += '==0.13.1+cu113'
torch_extra_argument1 = '--extra-index-url'
torch_extra_argument2 = 'https://download.pytorch.org/whl/cu113'
elif '11.6' in nvcc_version:
print('Torch 1.13.1 for CUDA 11.6')
torch_package += '==1.13.1+cu116'
torchvision_package += '==0.14.1+cu116'
torch_extra_argument1 = '--extra-index-url'
torch_extra_argument2 = 'https://download.pytorch.org/whl/cu116'
elif '11.7' in nvcc_version:
print('Torch 1.13.1 for CUDA 11.7')
torch_package += '==1.13.1+cu117'
torchvision_package += '==0.14.1+cu117'
torch_extra_argument1 = '--extra-index-url'
torch_extra_argument2 = 'https://download.pytorch.org/whl/cu117'
elif '11.8' in nvcc_version:
print("Torch 2.0.0 for CUDA 11.8")
torch_package += '==2.0.0+cu118'
torchvision_package += '==0.15.1+cu118'
torch_extra_argument1 = '--extra-index-url'
torch_extra_argument2 = 'https://download.pytorch.org/whl/cu118'
elif '12.1' in nvcc_version or (nvcc_version and not something_wrong_with_nvcc):
print("Torch 2.1.0 for CUDA")
torch_extra_argument1 = '--index-url'
torch_extra_argument2 = 'https://download.pytorch.org/whl/cu121'
# if the user tried to run the installer but there were issues on finding a supported
if something_wrong_with_nvcc == True and flag_install_pytorch_cpu == False:
ans = input('Something is wrong with NVCC. '
'Do you want to install the CPU version of pytorch? [Y/n]')
if ans.lower().strip() == "y":
flag_install_pytorch_cpu = True
else:
raise Exception('Installation aborted. '
'Install a proper NVCC version or set the pytorch CPU version.')
# The user choose to install for CPU
if flag_install_pytorch_cpu == True:
print('Torch will be installed in its CPU version.')
torch_extra_argument1 = '--extra-index-url'
torch_extra_argument2 = 'https://download.pytorch.org/whl/cpu'
# ----------------------------------------------
# Other dependencies
# ----------------------------------------------
install_requires = [
'msvc-runtime',
'wheel',
'pyqt5',
'scikit-image',
'scikit-learn',
'pandas',
'opencv-python',
'matplotlib',
'albumentations',
'shapely',
'numpy',
'qhoptim',
# CoralNet Toolbox
'Requests',
'beautifulsoup4',
'selenium',
'webdriver_manager',
# SAM
'segment-anything',
]
if python_sub_v < 9:
install_requires.append('pycocotools-windows')
else:
# Jesus, take the wheel
install_requires.append('pycocotools')
# Installing all the packages
for package in install_requires:
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
except Exception as e:
print(f"There was an issue installing the necessary packages.\n{e}")
print(f"The error came from installing {package}")
print(f"If you're not already, please try using a conda environment with python 3.8")
sys.exit(1)
# Setting Torch, Torchvision versions
list_args = [sys.executable, "-m", "pip", "install", torch_package, torchvision_package]
if torch_extra_argument1 != "":
list_args.extend([torch_extra_argument1, torch_extra_argument2])
# Installing Torch, Torchvision
subprocess.check_call(list_args)
# ----------------------------------------------
# GDAL Version
# ----------------------------------------------
# Locally stored wheels
base_url = './packages/'
# Compute gdal urls download
gdal_win_version = '3.4.3'
filename_gdal = 'gdal-' + gdal_win_version + '-cp' + python_v + '-cp' + python_v
filename_gdal += '-win_amd64.whl'
base_url_gdal = base_url + filename_gdal
if not os.path.exists(base_url_gdal):
raise Exception(f"Could not find {base_url_gdal}; aborting")
# See if rasterio and gdal are already installed
try:
gdal_is_installed = importutil.find_spec("osgeo.gdal")
except:
gdal_is_installed = None
if gdal_is_installed is not None:
import osgeo.gdal
print("GDAL ", osgeo.gdal.__version__, " is installed. "
"Version ", gdal_win_version, "is required.")
else:
# retrieve GDAL from packages
print('GET GDAL FROM URL: ' + base_url_gdal)
# install gdal from packages
subprocess.check_call([sys.executable, "-m", "pip", "install", base_url_gdal])
# ----------------------------------------------
# Rasterio Version
# ----------------------------------------------
# Compute rasterio urls download
rasterio_win_version = '1.2.10'
filename_rasterio = 'rasterio-' + rasterio_win_version + '-cp' + python_v + '-cp' + python_v
filename_rasterio += '-win_amd64.whl'
base_url_rasterio = base_url + filename_rasterio
if not os.path.exists(base_url_rasterio):
raise Exception(f"Could not find {base_url_rasterio}; aborting")
try:
rasterio_is_installed = importutil.find_spec("rasterio")
except:
rasterio_is_installed = None
# if so, check versions
if rasterio_is_installed is not None:
import rasterio
print("RASTERIO ", rasterio.__version__, " is installed. "
"Version ", rasterio_win_version, " is required.")
else:
# retrieve rasterio from packages
print('GET RASTERIO FROM URL: ' + base_url_rasterio)
# install rasterio
subprocess.check_call([sys.executable, "-m", "pip", "install", base_url_rasterio])
# ----------------------------------------------
# Model Weights
# ----------------------------------------------
print('Downloading networks...')
this_directory = os.path.abspath(os.path.dirname(__file__))
# ---------------
# TagLab Weights
# ---------------
base_url = 'http://taglab.isti.cnr.it/models/'
net_file_names = ['dextr_corals.pth',
'deeplab-resnet.pth.tar',
'ritm_corals.pth',
'pocillopora.net',
'porites.net',
'pocillopora_porite_montipora.net']
for net_name in net_file_names:
filename_dextr_corals = 'dextr_corals.pth'
net_file = Path('models/' + net_name)
if not net_file.is_file(): # if file not exists
try:
url_dextr = base_url + net_name
print('Downloading ' + url_dextr + '...')
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
urllib.request.urlretrieve(url_dextr, 'models/' + net_name)
except:
raise Exception("Cannot download " + net_name + ".")
else:
print(net_name + ' already exists.')
print("Done.")