-
Notifications
You must be signed in to change notification settings - Fork 0
/
precip_plotting.html
498 lines (420 loc) · 15.7 KB
/
precip_plotting.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>making precipitation plots with the rnoaa package</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-5.1.0/css/all.css" rel="stylesheet" />
<link href="site_libs/font-awesome-5.1.0/css/v4-shims.css" rel="stylesheet" />
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 51px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 56px;
margin-top: -56px;
}
.section h2 {
padding-top: 56px;
margin-top: -56px;
}
.section h3 {
padding-top: 56px;
margin-top: -56px;
}
.section h4 {
padding-top: 56px;
margin-top: -56px;
}
.section h5 {
padding-top: 56px;
margin-top: -56px;
}
.section h6 {
padding-top: 56px;
margin-top: -56px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html"></a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li>
<a href="research.html">Research</a>
</li>
<li>
<a href="updates.html">Updates</a>
</li>
<li>
<a href="waterpage.html">Current Water Conditions</a>
</li>
<li>
<a href="contact.html">Contact</a>
</li>
<li>
<a href="files/Gorski_CV.pdf">CV</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="http://github.com/galengorski">
<span class="fa fa-github fa-lg"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">making precipitation plots with the rnoaa package</h1>
</div>
<p>Install packages</p>
<pre class="r"><code>#install.packages('rnoaa')
library(rnoaa)
#install.packages('dplyr')
library(dplyr)
#install.packages('tidyverse')
library(tidyverse)</code></pre>
<div id="downloading-the-data" class="section level3">
<h3>Downloading the data</h3>
<p>List your sites of interest</p>
<pre class="r"><code>#Sites of interest, these can be vectors of sites, I'll just do Santa Cruz here
sites <- c('USC00047916')
cities <- c('Santa Cruz')
#get the current year
current.year <- format(Sys.Date(), format = '%Y')
#get the current month
current.month <- format(Sys.Date(), format = '%m')
#set the current water year
if(current.month == '10' | current.month == '11'|current.month == '12'){
current.wateryear <- as.character(as.numeric(current.year)+1)
}else{
current.wateryear <- current.year
}</code></pre>
<p>Use the <code>meteo_pull_monitors</code> fucntion from the rnoaa package to download both the historical data and the data for just water year 2020</p>
<pre class="r"><code>#clear your cache, this is where the data will be stored
meteo_clear_cache()
#pull the precip data for both sites at once for 1980 to the present day
all.stat <- meteo_pull_monitors(sites, keep_flags = FALSE, date_min = '1980-10-01', date_max = Sys.Date(), var = 'PRCP')
#pull the precip data for both sites at once for just the last water year -- sort of redundant but keeps it cleaner I think
ytd <- meteo_pull_monitors(sites, keep_flags = FALSE, date_min = '2019-10-01', date_max = Sys.Date(), var = 'PRCP')</code></pre>
</div>
<div id="plotting-the-data" class="section level3">
<h3>Plotting the data</h3>
<p>I orginally wrote this in a for loop as I was comparing several sites, right now there is only one site, but I left the for loop structure in case it might be useful to see how it could be adapted to more sites.</p>
<pre class="r"><code>#make two rows with one column
par(mfrow = c(1,1), mgp = c(2,0.5,0), mar = c(4,6,4,4))
#loop through the sites
for(i in 1:length(sites)){
#subset the sites
site <- all.stat %>% filter(id == unique(all.stat$id)[i])
#create a julian day column
site$jday <- format(strptime(site$date, format = '%Y-%m-%d'), format = '%j')
#convert NAs to zeros
site[which(is.na(site$prcp)),'prcp'] <- 0
#take average from 1980-2020 by day
site.jday.mean <- aggregate(site$prcp, by = list(site$jday), FUN = 'mean')
#convert julian day to water day
site.jday.mean$wday <- c(94:366,1:93)
#take the mean of each day
site.jday.mean <- site.jday.mean[order(site.jday.mean$wday),]
#now deal with the year to date data -- subset by site and date
site.ytd <- all.stat %>% filter(id == unique(all.stat$id)[i] & date > as.POSIXct('2019-10-01'))
#generate a julian day
site.ytd$jday <- format(strptime(site.ytd$date, format = '%Y-%m-%d'), format = '%j')
#convert any nas to 0
site.ytd[which(is.na(site.ytd$prcp)),'prcp'] <- 0
#now deal with water year 2019 -- subset by site and date
site.2019 <- all.stat %>% filter(id == unique(all.stat$id)[i] & date > as.POSIXct('2018-10-01') & date <= as.POSIXct('2019-10-01'))
#create a julian day
site.2019$jday <- format(strptime(site.2019$date, format = '%Y-%m-%d'), format = '%j')
#convert nas to 0
site.2019[which(is.na(site.2019$prcp)),'prcp'] <- 0
#now plot first the mean data
plot(cumsum(site.jday.mean$x)/10, main = paste0(cities[i],', CA'), typ = 'l', lwd = 3, ylim = c(0,1000), las = 1, xlab = 'Water Day', ylab = 'Precipitation (mm)', axes = F)
#then add water year 2020
lines(cumsum(site.ytd$prcp/10), col = 'dodgerblue', lwd = 3)
#then add water year 2019
lines(cumsum(site.2019$prcp/10), col = '#65B59A', lwd = 3)
#add a legend
legend('topleft', col = c('dodgerblue','#65B59A', 'black'), lty = c(1,1,1), lwd = c(3,3,3), bty = 'n', legend = c(paste('WY-2020 (through ',Sys.Date(),')',sep = ''),'WY-2019', 'Average'))
#add custom axes for fun
axis(1, labels = T, tck = 0.02)
axis(2, labels = T, tck = 0.02, las = 1)
axis(3, at = c(1,32,61,92,124,152,183,213,244,274,304,336,365),
labels = c('','Nov.','','Jan.','','Mar.','','May','','Jul.','','Sep.',''), tck = 0.02)
axis(4, at = c(0,254,508,762,1016), labels = seq(0,40,10), tck = 0.02, las = 1)
#add an axis label on the secondary y-axis
mtext(side = 4, line = 1.5, 'Precipitation (in)', cex = 1)
box()
}</code></pre>
<p><img src="precip_plotting_files/figure-html/unnamed-chunk-3-1.png" width="672" /></p>
<p>I split up the records by month, to look at the data in a different way</p>
<pre class="r"><code>#create a tibble for just Santa Cruz
site <- all.stat %>% filter(id == unique(all.stat$id)[1])
#make column for the month and year
site$myr <- format(strptime(site$date, format = '%Y-%m-%d'), format = '%m-%Y')
#convert nas to 0s
site[which(is.na(site$prcp)),'prcp'] <- 0
#take the mean by each year.month
site.myr.mean <- aggregate(site$prcp, by = list(site$myr), FUN = 'sum')
#split them into their own tibbles, done manually here, probably could improve with an lapply function
oct.myr <- site.myr.mean[grepl('10-',site.myr.mean$Group.1),]
nov.myr <- site.myr.mean[grepl('11-',site.myr.mean$Group.1),]
dec.myr <- site.myr.mean[grepl('12-',site.myr.mean$Group.1),]
jan.myr <- site.myr.mean[grepl('01-',site.myr.mean$Group.1),]
feb.myr <- site.myr.mean[grepl('02-',site.myr.mean$Group.1),]
mar.myr <- site.myr.mean[grepl('03-',site.myr.mean$Group.1),]
apr.myr <- site.myr.mean[grepl('04-',site.myr.mean$Group.1),]
may.myr <- site.myr.mean[grepl('05-',site.myr.mean$Group.1),]
jun.myr <- site.myr.mean[grepl('06-',site.myr.mean$Group.1),]
jul.myr <- site.myr.mean[grepl('07-',site.myr.mean$Group.1),]
aug.myr <- site.myr.mean[grepl('08-',site.myr.mean$Group.1),]
sep.myr <- site.myr.mean[grepl('09-',site.myr.mean$Group.1),]
#plot them up
par(mgp = c(3,1,0), mfrow = c(1,1))
boxplot(oct.myr$x, nov.myr$x, dec.myr$x,jan.myr$x,feb.myr$x, mar.myr$x,
apr.myr$x, may.myr$x, jun.myr$x, jul.myr$x, aug.myr$x, sep.myr$x,
names = c('October','November','December','January','February','March',
'April','May','June','July','August','September'), las = 1, axes = F,
main = 'Average Monthly Precipitation \n 1980-2020', ylim = c(0,5000), ylab = 'Precipitation (mm)',
colMed = 'lightgray',
col = 'transparent')
points(1,oct.myr[grepl(paste('-',as.numeric(current.wateryear)-1, sep = '') , oct.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
points(2,nov.myr[grepl(paste('-',as.numeric(current.wateryear)-1, sep = '') , nov.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
points(3,dec.myr[grepl(paste('-',as.numeric(current.wateryear)-1, sep = '') , dec.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
points(4,jan.myr[grepl(current.wateryear, jan.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
points(5,feb.myr[grepl(current.wateryear, feb.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
points(6,mar.myr[grepl(current.wateryear, mar.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
points(7,apr.myr[grepl(current.wateryear, apr.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
points(8,may.myr[grepl(current.wateryear, may.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
points(9,jun.myr[grepl(current.wateryear, jun.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
# points(10,jul.myr[grepl(current.wateryear, jul.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
# points(11,aug.myr[grepl(current.wateryear, aug.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
# points(12,sep.myr[grepl(current.wateryear, sep.myr$Group.1),]$x, bg = 'dodgerblue', pch = 21, cex = 1.5)
axis(2, tck = 0.02, labels = T, las = 1)
axis(1, tck = 0.02, labels = c('Oct','Nov','Dec','Jan','Feb','Mar',
'Apr','May','Jun','Jul','Aug','Sep'), at = c(1:12))
legend('topleft', pch = 16, col = 'dodgerblue', cex = 1, legend = 'Water Year-2020', bty = 'n')
box()</code></pre>
<p><img src="precip_plotting_files/figure-html/unnamed-chunk-4-1.png" width="672" /></p>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
</body>
</html>