Welcome to the voxelwise modeling tutorial from the GallantLab.
If you use these tutorials for your work, consider citing the corresponding paper:
Dupré La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024). The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data. https://doi.org/10.31234/osf.io/t975e
You can find a copy of the paper here.
This repository contains tutorials describing how to use the voxelwise modeling framework. Voxelwise modeling is a framework to perform functional magnetic resonance imaging (fMRI) data analysis, fitting encoding models at the voxel level.
To explore these tutorials, one can:
- read the rendered examples in the tutorials website (recommended)
- run the Python scripts (tutorials directory)
- run the Jupyter notebooks (tutorials/notebooks directory)
- run the merged notebook in Colab.
The tutorials are best explored in order, starting with the "Shortclips" tutorial.
To run the tutorials, this repository contains a small Python package
called voxelwise_tutorials
, with useful functions to download the
data sets, load the files, process the data, and visualize the results.
To install the voxelwise_tutorials
package, run:
pip install voxelwise_tutorials
To also download the tutorial scripts and notebooks, clone the repository via:
git clone https://github.com/gallantlab/voxelwise_tutorials.git
cd voxelwise_tutorials
pip install .
Developers can also install the package in editable mode via:
pip install --editable .
The package voxelwise_tutorials
has the following dependencies:
numpy,
scipy,
h5py,
scikit-learn,
matplotlib,
networkx,
nltk,
pycortex,
himalaya,
pymoten,
datalad.
If you use one of our packages in your work (voxelwise_tutorials
[1],
himalaya
[2], pycortex
[3], or pymoten
[4]), please cite the
corresponding publications:
[1] | Dupré La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024). The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data. https://doi.org/10.31234/osf.io/t975e |
[2] | Dupré La Tour, T., Eickenberg, M., Nunez-Elizalde, A.O., & Gallant, J. L. (2022). Feature-space selection with banded ridge regression. NeuroImage. https://doi.org/10.1016/j.neuroimage.2022.119728 |
[3] | Gao, J. S., Huth, A. G., Lescroart, M. D., & Gallant, J. L. (2015). Pycortex: an interactive surface visualizer for fMRI. Frontiers in neuroinformatics, 23. https://doi.org/10.3389/fninf.2015.00023 |
[4] | Nunez-Elizalde, A.O., Deniz, F., Dupré la Tour, T., Visconti di Oleggio Castello, M., and Gallant, J.L. (2021). pymoten: scientific python package for computing motion energy features from video. Zenodo. https://doi.org/10.5281/zenodo.6349625 |