-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_conv.py
84 lines (65 loc) · 2.83 KB
/
test_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers, utils
from tensorflow.keras.datasets import mnist
from kviz.conv import ConvGraph
def test_conv_input():
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_train = X_train.astype('float32')
X_train /= 255
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
X_test = X_test.astype('float32')
X_test /= 255
number_of_classes = 10
Y_train = utils.to_categorical(y_train, number_of_classes)
Y_test = utils.to_categorical(y_test, number_of_classes)
ACTIVATION = "relu"
model = keras.models.Sequential()
model.add(layers.Conv2D(32, 5, input_shape=(28, 28, 1), activation=ACTIVATION))
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(64, 5, activation=ACTIVATION))
model.add(layers.MaxPooling2D())
model.add(layers.Flatten())
model.add(layers.Dense(100, activation=ACTIVATION))
model.add(layers.Dense(10, activation="softmax"))
model.compile(loss="categorical_crossentropy", metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=100, epochs=5)
score = model.evaluate(X_test, Y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
dg = ConvGraph(model)
X = []
for i in range(number_of_classes):
X.append(np.expand_dims(X_train[np.where(y_train == i)[0][0]], axis=0))
dg.render(X, filename='test_input_mnist')
def test_conv_animate():
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_train = X_train.astype('float32')
X_train /= 255
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
X_test = X_test.astype('float32')
X_test /= 255
number_of_classes = 10
Y_train = utils.to_categorical(y_train, number_of_classes)
Y_test = utils.to_categorical(y_test, number_of_classes)
ACTIVATION = "relu"
model = keras.models.Sequential()
model.add(layers.Conv2D(32, 5, input_shape=(28, 28, 1), activation=ACTIVATION))
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(64, 5, activation=ACTIVATION))
model.add(layers.MaxPooling2D())
model.add(layers.Flatten())
model.add(layers.Dense(100, activation=ACTIVATION))
model.add(layers.Dense(10, activation="softmax"))
model.compile(loss="categorical_crossentropy", metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=100, epochs=5)
score = model.evaluate(X_test, Y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
dg = ConvGraph(model)
X = []
for i in range(min(50, len(np.where(y_train == 0)[0]))):
X.append(np.expand_dims(X_train[np.where(y_train == 0)[0][i]], axis=0))
dg.animate(X, filename='test_animate_mnist')