-
Notifications
You must be signed in to change notification settings - Fork 0
/
04-mnist-cnn.py
116 lines (91 loc) · 2.94 KB
/
04-mnist-cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# -*- coding: utf-8 -*-
#pytorch.__version__ = 0.4.0
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
import time
#begin time
start = time.clock()
#Hyper parameters
num_epochs = 50
batch_size = 1000
learning_rate = 0.001
#load data
train_dataset = dsets.MNIST(root='mnist-data',
train =True,
transform = transforms.ToTensor(),
download= True)
test_dataset = dsets.MNIST(root='mnist-data',
train = False,
transform = transforms.ToTensor())
# Dataset Loader (Input Pipline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
'''
torch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递
的顺序添加到模块中。
使用torch.nn.Sequential会自动加入激励函数
'''
#model
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size = 5, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2))
self.fc = nn.Linear(7*7*32, 10)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
cnn = CNN()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(), learning_rate)
#traing the model
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images)
labels = Variable(labels)
#forward + backward + optimizer
optimizer.zero_grad()
outputs = cnn(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.8f'
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
#Test the model
if ((epoch+1) %5 ==0):
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images)
labels = Variable(labels)
outputs = cnn(images)
_, pred = torch.max(outputs.data,1)
total += labels.size(0)
correct += (pred == labels).sum()
print('Epoch is %d Accuracy test images: %d %%' %( epoch+1,(100 * correct / total)))
#end time
end = time.clock()
second = end-start
minute = int(second /60)
second = int(second - minute*60)
print ("time is {0} minute {1} second ".format(minute, second))