forked from KwaiVGI/LivePortrait
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
240 lines (218 loc) · 9.35 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# coding: utf-8
"""
The entrance of the gradio
"""
import tyro
import subprocess
import gradio as gr
import os.path as osp
from src.utils.helper import load_description, is_video
from src.gradio_pipeline import GradioPipeline
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
def update_source_preview(file):
if file is None:
return None, None
if is_video(file.name):
return None, file.name
else:
return file.name, None
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
if not fast_check_ffmpeg():
raise ImportError(
"FFmpeg is not installed. Please install FFmpeg before running this script. https://ffmpeg.org/download.html"
)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
gradio_pipeline = GradioPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
def gpu_wrapped_execute_image(*args, **kwargs):
return gradio_pipeline.execute_image(*args, **kwargs)
# assets
title_md = "assets/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples = [
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s2.jpg"), osp.join(example_video_dir, "d13.mp4"), True, True, True, True],
]
#################### interface logic ####################
# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
output_video = gr.Video()
output_video_concat = gr.Video()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(load_description(title_md))
gr.Markdown(load_description("assets/gradio_description_upload.md"))
with gr.Row():
with gr.Accordion(open=True, label="Source Portrait (Image or Video)"):
source_input = gr.File(label="Upload Image or Video")
source_image_preview = gr.Image(type="filepath", visible=False)
source_video_preview = gr.Video(visible=False)
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[source_input],
cache_examples=False,
)
with gr.Accordion(open=True, label="Driving Video"):
video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d0.mp4")],
[osp.join(example_video_dir, "d18.mp4")],
[osp.join(example_video_dir, "d19.mp4")],
[osp.join(example_video_dir, "d14.mp4")],
[osp.join(example_video_dir, "d6.mp4")],
],
inputs=[video_input],
cache_examples=False,
)
with gr.Row():
with gr.Accordion(open=False, label="Animation Instructions and Options"):
gr.Markdown(load_description("assets/gradio_description_animation.md"))
with gr.Row():
flag_relative_input = gr.Checkbox(value=True, label="relative motion")
flag_do_crop_input = gr.Checkbox(value=True, label="do crop (source)")
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving video)")
with gr.Row():
with gr.Column():
process_button_animation = gr.Button("🚀 Animate", variant="primary")
with gr.Column():
process_button_reset = gr.ClearButton([source_input, video_input, output_video, output_video_concat], value="🧹 Clear")
with gr.Row():
with gr.Column():
with gr.Accordion(open=True, label="The animated video in the original image space"):
output_video.render()
with gr.Column():
with gr.Accordion(open=True, label="The animated video"):
output_video_concat.render()
with gr.Row():
# Examples
gr.Markdown("## You could also choose the examples below by one click ⬇️")
with gr.Row():
gr.Examples(
examples=data_examples,
fn=gpu_wrapped_execute_video,
inputs=[
source_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_crop_driving_video_input
],
outputs=[output_image, output_image_paste_back],
examples_per_page=len(data_examples),
cache_examples=False,
)
gr.Markdown(load_description("assets/gradio_description_retargeting.md"), visible=True)
with gr.Row(visible=True):
eye_retargeting_slider.render()
lip_retargeting_slider.render()
with gr.Row(visible=True):
process_button_retargeting = gr.Button("🚗 Retargeting", variant="primary")
process_button_reset_retargeting = gr.ClearButton(
[
eye_retargeting_slider,
lip_retargeting_slider,
retargeting_input_image,
output_image,
output_image_paste_back
],
value="🧹 Clear"
)
with gr.Row(visible=True):
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Input"):
retargeting_input_image.render()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[retargeting_input_image],
cache_examples=False,
)
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Result"):
output_image.render()
with gr.Column():
with gr.Accordion(open=True, label="Paste-back Result"):
output_image_paste_back.render()
# binding functions for buttons
process_button_retargeting.click(
# fn=gradio_pipeline.execute_image,
fn=gpu_wrapped_execute_image,
inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input],
outputs=[output_image, output_image_paste_back],
show_progress=True
)
# Update the source preview when a file is uploaded
source_input.change(
fn=update_source_preview,
inputs=[source_input],
outputs=[source_image_preview, source_video_preview]
)
# Update visibility of previews
source_input.change(
fn=lambda file: [gr.update(visible=file is not None and not is_video(file.name)),
gr.update(visible=file is not None and is_video(file.name))],
inputs=[source_input],
outputs=[source_image_preview, source_video_preview]
)
# Update the process_button_animation click event
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
source_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_crop_driving_video_input
],
outputs=[output_video, output_video_concat],
show_progress=True
)
demo.launch(
server_port=args.server_port,
share=args.share,
server_name=args.server_name
)