forked from huggingface/datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
272 lines (245 loc) · 9.33 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Lint as: python3
"""HuggingFace/Datasets is an open library of datasets.
Note:
VERSION needs to be formatted following the MAJOR.MINOR.PATCH convention
(we need to follow this convention to be able to retrieve versioned scripts)
Simple check list for release from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
Steps to make a release:
0. Prerequisites:
- Dependencies:
- twine: `pip install twine`
- Create an account in (and join the 'datasets' project):
- PyPI: https://pypi.org/
- Test PyPI: https://test.pypi.org/
- Don't break `transformers`: run the `transformers` CI using the `main` branch and make sure it's green.
- In `transformers`, use `datasets @ git+https://github.com/huggingface/datasets@main#egg=datasets`
Add a step to install `datasets@main` after `save_cache` in .circleci/create_circleci_config.py:
```
steps.append({"run": {"name": "Install `datasets@main`", "command": 'pip uninstall datasets -y && pip install "datasets @ git+https://github.com/huggingface/datasets@main#egg=datasets"'}})
```
- and then run the CI
1. Create the release branch from main branch:
```
git checkout main
git pull upstream main
git checkout -b release-VERSION
```
2. Change the version to the release VERSION in:
- __init__.py
- setup.py
3. Commit these changes, push and create a Pull Request:
```
git add -u
git commit -m "Release: VERSION"
git push upstream release-VERSION
```
- Go to: https://github.com/huggingface/datasets/pull/new/release-VERSION
- Create pull request
4. From your local release branch, build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
- First, delete any building directories that may exist from previous builds:
- build
- dist
- From the top level directory, build the wheel and the sources:
```
python setup.py bdist_wheel
python setup.py sdist
```
- You should now have a /dist directory with both .whl and .tar.gz source versions.
5. Check that everything looks correct by uploading the package to the test PyPI server:
```
twine upload dist/* -r testpypi
```
Check that you can install it in a virtualenv/notebook by running:
```
pip install huggingface-hub fsspec aiohttp
pip install -U tqdm pyarrow
pip install -i https://testpypi.python.org/pypi datasets
```
6. Upload the final version to the actual PyPI:
```
twine upload dist/* -r pypi
```
7. Make the release on GitHub once everything is looking hunky-dory:
- Merge the release Pull Request
- Create a new release: https://github.com/huggingface/datasets/releases/new
- Choose a tag: Introduce the new VERSION as tag, that will be created when you publish the release
- Create new tag VERSION on publish
- Release title: Introduce the new VERSION as well
- Describe the release
- Use "Generate release notes" button for automatic generation
- Publish release
8. Set the dev version
- Create the dev-version branch from the main branch:
```
git checkout main
git pull upstream main
git branch -D dev-version
git checkout -b dev-version
```
- Change the version to X.X.X+1.dev0 (e.g. VERSION=1.18.3 -> 1.18.4.dev0) in:
- __init__.py
- setup.py
- Commit these changes, push and create a Pull Request:
```
git add -u
git commit -m "Set dev version"
git push upstream dev-version
```
- Go to: https://github.com/huggingface/datasets/pull/new/dev-version
- Create pull request
- Merge the dev version Pull Request
"""
from setuptools import find_packages, setup
REQUIRED_PKGS = [
# For file locking
"filelock",
# We use numpy>=1.17 to have np.random.Generator (Dataset shuffling)
"numpy>=1.17",
# Backend and serialization.
# Minimum 15.0.0 to be able to cast dictionary types to their underlying types
"pyarrow>=15.0.0",
# For smart caching dataset processing
"dill>=0.3.0,<0.3.9", # tmp pin until dill has official support for determinism see https://github.com/uqfoundation/dill/issues/19
# For performance gains with apache arrow
"pandas",
# for downloading datasets over HTTPS
"requests>=2.32.2",
# progress bars in download and scripts
"tqdm>=4.66.3",
# for fast hashing
"xxhash",
# for better multiprocessing
"multiprocess<0.70.17", # to align with dill<0.3.9 (see above)
# to save datasets locally or on any filesystem
# minimum 2023.1.0 to support protocol=kwargs in fsspec's `open`, `get_fs_token_paths`, etc.: see https://github.com/fsspec/filesystem_spec/pull/1143
"fsspec[http]>=2023.1.0,<=2024.9.0",
# for data streaming via http
"aiohttp",
# To get datasets from the Datasets Hub on huggingface.co
"huggingface-hub>=0.22.0",
# Utilities from PyPA to e.g., compare versions
"packaging",
# To parse YAML metadata from dataset cards
"pyyaml>=5.1",
]
AUDIO_REQUIRE = [
"soundfile>=0.12.1",
"librosa",
"soxr>=0.4.0; python_version>='3.9'", # Supports numpy-2
]
VISION_REQUIRE = [
"Pillow>=9.4.0", # When PIL.Image.ExifTags was introduced
]
BENCHMARKS_REQUIRE = [
"tensorflow==2.12.0",
"torch==2.0.1",
"transformers==4.30.1",
]
TESTS_REQUIRE = [
# test dependencies
"absl-py",
"decorator",
"joblib<1.3.0", # joblibspark doesn't support recent joblib versions
"joblibspark",
"pytest",
"pytest-datadir",
"pytest-xdist",
# optional dependencies
"elasticsearch<8.0.0", # 8.0 asks users to provide hosts or cloud_id when instantiating ElasticSearch()
"faiss-cpu>=1.8.0.post1", # Pins numpy < 2
"jax>=0.3.14; sys_platform != 'win32'",
"jaxlib>=0.3.14; sys_platform != 'win32'",
"lz4",
"moto[server]",
"pyspark>=3.4", # https://issues.apache.org/jira/browse/SPARK-40991 fixed in 3.4.0
"py7zr",
"rarfile>=4.0",
"sqlalchemy",
"s3fs>=2021.11.1", # aligned with fsspec[http]>=2021.11.1; test only on python 3.7 for now
"protobuf<4.0.0", # 4.0.0 breaks compatibility with tensorflow<2.12
"tensorflow>=2.6.0; python_version<'3.10'", # numpy-2 is not supported for Python < 3.10
"tensorflow>=2.16.0; python_version>='3.10'", # Pins numpy < 2
"tiktoken",
"torch>=2.0.0",
"torchdata",
"soundfile>=0.12.1",
"transformers>=4.42.0", # Pins numpy < 2
"zstandard",
"polars[timezone]>=0.20.0",
]
TESTS_REQUIRE.extend(VISION_REQUIRE)
TESTS_REQUIRE.extend(AUDIO_REQUIRE)
NUMPY2_INCOMPATIBLE_LIBRARIES = [
"faiss-cpu",
"librosa", # librosa -> numba-0.60.0 requires numpy < 2.1 (see GH-7111)
"tensorflow",
]
TESTS_NUMPY2_REQUIRE = [
library for library in TESTS_REQUIRE if library.partition(">")[0] not in NUMPY2_INCOMPATIBLE_LIBRARIES
]
QUALITY_REQUIRE = ["ruff>=0.3.0"]
DOCS_REQUIRE = [
# Might need to add doc-builder and some specific deps in the future
"s3fs",
# Following dependencies are required for the Python reference to be built properly
"transformers",
"torch",
"tensorflow>=2.6.0",
]
EXTRAS_REQUIRE = {
"audio": AUDIO_REQUIRE,
"vision": VISION_REQUIRE,
"tensorflow": [
"tensorflow>=2.6.0",
],
"tensorflow_gpu": ["tensorflow>=2.6.0"],
"torch": ["torch"],
"jax": ["jax>=0.3.14", "jaxlib>=0.3.14"],
"s3": ["s3fs"],
"streaming": [], # for backward compatibility
"dev": TESTS_REQUIRE + QUALITY_REQUIRE + DOCS_REQUIRE,
"tests": TESTS_REQUIRE,
"tests_numpy2": TESTS_NUMPY2_REQUIRE,
"quality": QUALITY_REQUIRE,
"benchmarks": BENCHMARKS_REQUIRE,
"docs": DOCS_REQUIRE,
}
setup(
name="datasets",
version="3.0.2.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="HuggingFace community-driven open-source library of datasets",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",
author="HuggingFace Inc.",
author_email="[email protected]",
url="https://github.com/huggingface/datasets",
download_url="https://github.com/huggingface/datasets/tags",
license="Apache 2.0",
package_dir={"": "src"},
packages=find_packages("src"),
package_data={
"datasets": ["py.typed"],
"datasets.utils.resources": ["*.json", "*.yaml", "*.tsv"],
},
entry_points={"console_scripts": ["datasets-cli=datasets.commands.datasets_cli:main"]},
python_requires=">=3.8.0",
install_requires=REQUIRED_PKGS,
extras_require=EXTRAS_REQUIRE,
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
keywords="datasets machine learning datasets",
zip_safe=False, # Required for mypy to find the py.typed file
)