-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
396 lines (333 loc) · 14.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn.functional as F
import sys
import pickle as pkl
import networkx as nx
import json
from networkx.readwrite import json_graph
import pdb
sys.setrecursionlimit(99999)
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
rowsum = (rowsum==0)*1+rowsum
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def sys_normalized_adjacency(adj, add_self_loop=True):
adj = sp.coo_matrix(adj)
if add_self_loop: adj = adj + sp.eye(adj.shape[0])
row_sum = np.array(adj.sum(1))
row_sum=(row_sum==0)*1+row_sum
d_inv_sqrt = np.power(row_sum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt).tocoo()
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
# adapted from tkipf/gcn
def load_citation(dataset_str="cora"):
"""
Load Citation Networks Datasets.
"""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str.lower(), names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500)
features = normalize(features)
# porting to pytorch
features = torch.FloatTensor(np.array(features.todense())).float()
labels = torch.LongTensor(labels)
labels = torch.max(labels, dim=1)[1]
# adj = sparse_mx_to_torch_sparse_tensor(adj).float()
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
adj = sys_normalized_adjacency(adj)
adj = sparse_mx_to_torch_sparse_tensor(adj)
return adj, features, labels, idx_train, idx_val, idx_test
# adapted from PetarV/GAT
def run_dfs(adj, msk, u, ind, nb_nodes):
if msk[u] == -1:
msk[u] = ind
#for v in range(nb_nodes):
for v in adj[u,:].nonzero()[1]:
#if adj[u,v]== 1:
run_dfs(adj, msk, v, ind, nb_nodes)
def dfs_split(adj):
# Assume adj is of shape [nb_nodes, nb_nodes]
nb_nodes = adj.shape[0]
ret = np.full(nb_nodes, -1, dtype=np.int32)
graph_id = 0
for i in range(nb_nodes):
if ret[i] == -1:
run_dfs(adj, ret, i, graph_id, nb_nodes)
graph_id += 1
return ret
def test(adj, mapping):
nb_nodes = adj.shape[0]
for i in range(nb_nodes):
#for j in range(nb_nodes):
for j in adj[i, :].nonzero()[1]:
if mapping[i] != mapping[j]:
# if adj[i,j] == 1:
return False
return True
def find_split(adj, mapping, ds_label):
nb_nodes = adj.shape[0]
dict_splits={}
for i in range(nb_nodes):
#for j in range(nb_nodes):
for j in adj[i, :].nonzero()[1]:
if mapping[i]==0 or mapping[j]==0:
dict_splits[0]=None
elif mapping[i] == mapping[j]:
if ds_label[i]['val'] == ds_label[j]['val'] and ds_label[i]['test'] == ds_label[j]['test']:
if mapping[i] not in dict_splits.keys():
if ds_label[i]['val']:
dict_splits[mapping[i]] = 'val'
elif ds_label[i]['test']:
dict_splits[mapping[i]]='test'
else:
dict_splits[mapping[i]] = 'train'
else:
if ds_label[i]['test']:
ind_label='test'
elif ds_label[i]['val']:
ind_label='val'
else:
ind_label='train'
if dict_splits[mapping[i]]!= ind_label:
print ('inconsistent labels within a graph exiting!!!')
return None
else:
print ('label of both nodes different, exiting!!')
return None
return dict_splits
def load_ppi():
print ('Loading G...')
with open('ppi/ppi-G.json') as jsonfile:
g_data = json.load(jsonfile)
# print (len(g_data))
G = json_graph.node_link_graph(g_data)
#Extracting adjacency matrix
adj=nx.adjacency_matrix(G)
prev_key=''
for key, value in g_data.items():
if prev_key!=key:
# print (key)
prev_key=key
# print ('Loading id_map...')
with open('ppi/ppi-id_map.json') as jsonfile:
id_map = json.load(jsonfile)
# print (len(id_map))
id_map = {int(k):int(v) for k,v in id_map.items()}
for key, value in id_map.items():
id_map[key]=[value]
# print (len(id_map))
print ('Loading features...')
features_=np.load('ppi/ppi-feats.npy')
# print (features_.shape)
#standarizing features
from sklearn.preprocessing import StandardScaler
#train_ids = np.array([id_map[n] for n in G.nodes() if not G.node[n]['val'] and not G.node[n]['test']]) #ORIGINAL depricated
train_ids = np.array([id_map[n] for n in G.nodes() if not G.nodes[n]['val'] and not G.nodes[n]['test']])
#GAYAN If you are using NetworkX 2.4, use G.nodes[] instead of G.node[]
train_feats = features_[train_ids[:,0]]
scaler = StandardScaler()
scaler.fit(train_feats)
features_ = scaler.transform(features_)
features = sp.csr_matrix(features_).tolil()
print ('Loading class_map...')
class_map = {}
with open('ppi/ppi-class_map.json') as jsonfile:
class_map = json.load(jsonfile)
# print (len(class_map))
#pdb.set_trace()
#Split graph into sub-graphs
# print ('Splitting graph...')
splits=dfs_split(adj)
#Rearrange sub-graph index and append sub-graphs with 1 or 2 nodes to bigger sub-graphs
# print ('Re-arranging sub-graph IDs...')
list_splits=splits.tolist()
group_inc=1
for i in range(np.max(list_splits)+1):
if list_splits.count(i)>=3:
splits[np.array(list_splits) == i] =group_inc
group_inc+=1
else:
#splits[np.array(list_splits) == i] = 0
ind_nodes=np.argwhere(np.array(list_splits) == i)
ind_nodes=ind_nodes[:,0].tolist()
split=None
for ind_node in ind_nodes:
if g_data['nodes'][ind_node]['val']:
if split is None or split=='val':
splits[np.array(list_splits) == i] = 21
split='val'
else:
raise ValueError('new node is VAL but previously was {}'.format(split))
elif g_data['nodes'][ind_node]['test']:
if split is None or split=='test':
splits[np.array(list_splits) == i] = 23
split='test'
else:
raise ValueError('new node is TEST but previously was {}'.format(split))
else:
if split is None or split == 'train':
splits[np.array(list_splits) == i] = 1
split='train'
else:
pdb.set_trace()
raise ValueError('new node is TRAIN but previously was {}'.format(split))
#counting number of nodes per sub-graph
list_splits=splits.tolist()
nodes_per_graph=[]
for i in range(1,np.max(list_splits) + 1):
nodes_per_graph.append(list_splits.count(i))
#Splitting adj matrix into sub-graphs
subgraph_nodes=np.max(nodes_per_graph)
adj_sub=np.empty((len(nodes_per_graph), subgraph_nodes, subgraph_nodes))
feat_sub = np.empty((len(nodes_per_graph), subgraph_nodes, features.shape[1]))
labels_sub = np.empty((len(nodes_per_graph), subgraph_nodes, 121))
for i in range(1, np.max(list_splits) + 1):
#Creating same size sub-graphs
indexes = np.where(splits == i)[0]
subgraph_=adj[indexes,:][:,indexes]
if subgraph_.shape[0]<subgraph_nodes or subgraph_.shape[1]<subgraph_nodes:
subgraph=np.identity(subgraph_nodes)
feats=np.zeros([subgraph_nodes, features.shape[1]])
labels=np.zeros([subgraph_nodes,121])
#adj
subgraph = sp.csr_matrix(subgraph).tolil()
subgraph[0:subgraph_.shape[0],0:subgraph_.shape[1]]=subgraph_
adj_sub[i-1,:,:]=subgraph.todense()
#feats
feats[0:len(indexes)]=features[indexes,:].todense()
feat_sub[i-1,:,:]=feats
#labels
for j,node in enumerate(indexes):
labels[j,:]=np.array(class_map[str(node)])
labels[indexes.shape[0]:subgraph_nodes,:]=np.zeros([121])
labels_sub[i - 1, :, :] = labels
else:
adj_sub[i - 1, :, :] = subgraph_.todense()
feat_sub[i - 1, :, :]=features[indexes,:].todense()
for j,node in enumerate(indexes):
labels[j,:]=np.array(class_map[str(node)])
labels_sub[i-1, :, :] = labels
# Get relation between id sub-graph and tran,val or test set
dict_splits = find_split(adj, splits, g_data['nodes'])
# Testing if sub graphs are isolated
# print ('Are sub-graphs isolated?')
# print (test(adj, splits))
#Splitting tensors into train,val and test
train_split=[]
val_split=[]
test_split=[]
for key, value in dict_splits.items():
if dict_splits[key]=='train':
train_split.append(int(key)-1)
elif dict_splits[key] == 'val':
val_split.append(int(key)-1)
elif dict_splits[key] == 'test':
test_split.append(int(key)-1)
train_adj=adj_sub[train_split,:,:]
val_adj=adj_sub[val_split,:,:]
test_adj=adj_sub[test_split,:,:]
train_feat=feat_sub[train_split,:,:]
val_feat = feat_sub[val_split, :, :]
test_feat = feat_sub[test_split, :, :]
train_labels = labels_sub[train_split, :, :]
val_labels = labels_sub[val_split, :, :]
test_labels = labels_sub[test_split, :, :]
train_nodes=np.array(nodes_per_graph[train_split[0]:train_split[-1]+1])
val_nodes = np.array(nodes_per_graph[val_split[0]:val_split[-1]+1])
test_nodes = np.array(nodes_per_graph[test_split[0]:test_split[-1]+1])
#Masks with ones
tr_msk = np.zeros((len(nodes_per_graph[train_split[0]:train_split[-1]+1]), subgraph_nodes))
vl_msk = np.zeros((len(nodes_per_graph[val_split[0]:val_split[-1] + 1]), subgraph_nodes))
ts_msk = np.zeros((len(nodes_per_graph[test_split[0]:test_split[-1]+1]), subgraph_nodes))
for i in range(len(train_nodes)):
for j in range(train_nodes[i]):
tr_msk[i][j] = 1
for i in range(len(val_nodes)):
for j in range(val_nodes[i]):
vl_msk[i][j] = 1
for i in range(len(test_nodes)):
for j in range(test_nodes[i]):
ts_msk[i][j] = 1
train_adj_list = []
val_adj_list = []
test_adj_list = []
for i in range(train_adj.shape[0]):
adj = sp.coo_matrix(train_adj[i])
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
tmp = sys_normalized_adjacency(adj)
train_adj_list.append(sparse_mx_to_torch_sparse_tensor(tmp))
for i in range(val_adj.shape[0]):
adj = sp.coo_matrix(val_adj[i])
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
tmp = sys_normalized_adjacency(adj)
val_adj_list.append(sparse_mx_to_torch_sparse_tensor(tmp))
adj = sp.coo_matrix(test_adj[i])
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
tmp = sys_normalized_adjacency(adj)
test_adj_list.append(sparse_mx_to_torch_sparse_tensor(tmp))
train_feat = torch.FloatTensor(train_feat)
val_feat = torch.FloatTensor(val_feat)
test_feat = torch.FloatTensor(test_feat)
train_labels = torch.FloatTensor(train_labels)
val_labels = torch.FloatTensor(val_labels)
test_labels = torch.FloatTensor(test_labels)
tr_msk = torch.LongTensor(tr_msk)
vl_msk = torch.LongTensor(vl_msk)
ts_msk = torch.LongTensor(ts_msk)
return train_adj_list,val_adj_list,test_adj_list,train_feat,val_feat,test_feat,train_labels,val_labels, test_labels, train_nodes, val_nodes, test_nodes