forked from Shivi91/Rosalind-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path067_CTEA.py
59 lines (45 loc) · 1.96 KB
/
067_CTEA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
'''
A solution to a ROSALIND bioinformatics problem.
Problem Title: Counting Optimal Alignments
Rosalind ID: CTEA
Rosalind #: 067
URL: http://rosalind.info/problems/ctea/
'''
from scripts import ReadFASTA
def count_alignment(v, w):
'''Returns the number of optimal edit alignments of strings v and w.'''
from numpy import zeros
# Initialize the matrices and modulus.
S = zeros((len(v)+1, len(w)+1), dtype=int)
dynamic_count = zeros((len(v)+1, len(w)+1), dtype=int)
modulus = 2**27 - 1 # It may be a good idea to only compute this once...
# Initialize the first row and column of the matrices.
for i in xrange(0, len(v)+1):
S[i][0] = i
dynamic_count[i][0] = 1
for j in xrange(1, len(w)+1):
S[0][j] = j
dynamic_count[0][j] = 1
# Fill in the Score and Dynamic Count matrices.
for i in xrange(1, len(v)+1):
for j in xrange(1, len(w)+1):
# Get the score for each possible alignment at the given iteration.
scores = [S[i-1][j-1] + (v[i-1] != w[j-1]), S[i-1][j]+1, S[i][j-1]+1]
S[i][j] = min(scores)
# Add the preceeding number of alignments if the score matches the minumum score.
dynamic_count[i][j] += [0, dynamic_count[i-1][j-1]][scores[0] == S[i][j]]
dynamic_count[i][j] += [0, dynamic_count[i-1][j]][scores[1] == S[i][j]]
dynamic_count[i][j] += [0, dynamic_count[i][j-1]][scores[2] == S[i][j]]
# Take the count modulo 2**27 - 1.
dynamic_count[i][j] = dynamic_count[i][j] % modulus
return dynamic_count[len(v)][len(w)]
if __name__ == '__main__':
# Parse the two input protein strings.
s, t = [fasta[1] for fasta in ReadFASTA('data/rosalind_ctea.txt')]
# Get number of optimal alignments.
count = str(count_alignment(s, t))
# Print and save the answer.
print count
with open('output/067_CTEA.txt', 'w') as output_data:
output_data.write(count)