forked from Shivi91/Rosalind-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
095_FOUN.py
43 lines (36 loc) · 1.7 KB
/
095_FOUN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/env python
'''
A solution to a ROSALIND bioinformatics problem.
Problem Title: The Founder Effect and Genetic Drift
Rosalind ID: FOUN
Rosalind #: 095
URL: http://rosalind.info/problems/foun/
'''
from math import log10
from numpy import zeros
from scipy.misc import comb
with open('data/rosalind_foun.txt') as input_data:
A = [int(num) for num in input_data.read().strip().split()]
m, N = A.pop(1), A.pop(0)
M = zeros((m, len(A)))
for index, rec_allele in enumerate(A):
# Calculate the probability of the number of each rec allele in the first# generation.
p_rec = rec_allele/(2.0*N)
p = [comb(2*N, i)*(p_rec**i)*(1.0-p_rec)**(2*N-i) for i in xrange(0, 2*N+1)]
M[0][index] = log10(p[0])
# Use the previous generation to calculate the next.
for gen in xrange(1, m-1):
temp_p = []
for j in range(0, 2*N+1):
temp_term = [comb(2*N, j)*((x/(2.0*N))**j)*(1.0 - (x/(2.0*N)))**(2*N-j) for x in xrange(0, 2*N+1)]
temp_p.append(sum([temp_term[i]*p[i] for i in xrange(len(temp_term))]))
p = temp_p
M[gen][index] = log10(p[0])
# Only need the 0th term from the last generation. We could use the previous loop to determine this.
# However, the previous loop calculates all additional terms. This ends up being more code, but less compuatations.
temp_term = [(1.0 - (x/(2.0*N)))**(2*N) for x in xrange(0, 2*N+1)]
M[m-1][index] = log10(sum([temp_term[i]*p[i] for i in xrange(len(temp_term))]))
# Print and save the output.
print '\n'.join([' '.join(map(str, M[i])) for i in xrange(len(M))])
with open('output/095_FOUN.txt', 'w') as output_file:
output_file.write('\n'.join([' '.join(map(str, M[i])) for i in xrange(len(M))]))