-
Notifications
You must be signed in to change notification settings - Fork 0
/
wrapper_sparse_gap_factor.h
437 lines (401 loc) · 20.5 KB
/
wrapper_sparse_gap_factor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright 2018 Ghislain Durif
//
// This file is part of the `pCMF' library for R and related languages.
// It is made available under the terms of the GNU General Public
// License, version 2, or at your option, any later version,
// incorporated herein by reference.
//
// This program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA
/*!
* \brief wrapper template for variational EM algorithm for matrix factorization
* (such as sparse Gamma-Poisson factor model)
* \author Ghislain Durif
* \version 1.0
* \date 10/04/2018
*/
#ifndef SPARSE_GAP_FACTOR_WRAPPER_H
#define SPARSE_GAP_FACTOR_WRAPPER_H
#if defined(_OPENMP)
#include <omp.h>
// [[Rcpp::plugins(openmp)]]
#endif
#include <Rcpp.h>
#include <RcppEigen.h>
#include <stdio.h>
#include <string>
#include "utils/random.h"
// [[Rcpp::depends(RcppEigen)]]
using Eigen::MatrixXd; // variable size matrix, double precision
using Eigen::MatrixXi; // variable size matrix, integer
using Eigen::Map; // 'map' rather than copy
using Eigen::VectorXd; // variable size vector, double precision
using std::string;
/*!
* \fn template wrapper to run a matrix factorization algorithm based on the
* hierarchical Gamma Poisson factor model (and derivatives)
* in its sparse version (over factor V)
*
* \tparam model the statistical model considered for the inference framework
* \tparam algo an inference/optimization algorithm
*
* \param X a count data matrix of dimension \code{n x p}.
* \param K integer, required dimension of the subspace for the latent
* representation.
* \param sel_bound real value in [0,1] used to threshold sparsity probabilities
* for factor V
* \param U matrix of dimension \code{n x K}, initial values for the factor
* matrix \code{U}. It is used to intialized the variational parameter of the
* varitional distribution over the factor \code{U}. Default is NULL and
* variational parameters over \code{U} are intialized otherwise.
* Note: if you supply \code{U} input parameter, you should supply
* \code{V} input parameter.
* \param V matrix of dimension \code{p x K}, initial values for the factor
* matrix \code{V}. It is used to intialized the variational parameter of the
* varitional distribution over the factor \code{V}. Default is NULL and
* variational parameters over \code{V} are intialized otherwise.
* Note: if you supply \code{V} input parameter, you should supply
* \code{U} input parameter.
* \param verbose boolean indicating verbosity. Default is True.
* \param monitor boolean indicating if model related measures
* (log-likelihood, deviance, Bregman divergence between \eqn{X}
* and \eqn{UV^t}) should be computed. Default is True.
* \param iter_max integer, maximum number of iterations after which the
* optimization is stopped even when the algorithm did not converge.
* Default is 1000.
* \param iter_min integer, minimum number of iterations without checking
* convergence. Default is 500.
* \param init_mode string, intialization mode to choose between "random",
* "nmf". Default value is "random". Unused if initial values are given
* for U and V or a1, a2, b1 and b2.
* \param epsilon double precision parameter to assess convergence, i.e.
* the convergence is reached when the gap (absolute or normalized) between
* two iterates becomes smaller than epsilon. Default is 1e-2.
* \param additional_iter integer, number of successive iterations during
* which the convergence criterion should be verified to assess convergence.
* \param conv_mode \{0,1,2\}-valued indicator setting how to assess
* convergence: 0 for absolute gap, 1 for normalized gap between
* two iterates and 2 for custom criterion (depends on the considered
* method/model). Default is 1.
* \param ninit integer, number of initialization to consider. In multiple
* initialization mode (>1), the algorithm is run for \code{iter_init}
* iterations with mutliple seeds and the best one (regarding the optimization
* criterion) is kept. Default value is 1.
* \param iter_init integer, number of iterations during which the algorithms is
* run in multi-initialization mode. Default value is 100.
* \param ncores integer indicating the number of cores to use for
* parallel computation. Default is 1 and no multi-threading is used.
* \param reorder_factor boolean indicating if factors should be reordered
* according to the model-related deviance criterion. Default value is True.
* \param seed positive integer, seed value for random number generator.
* Default is NULL and the seed is set based on the current time.
* \param a1 matrix of dimension \code{n x K}, initial values for the
* variational shape parameter of the Gamma variational distribution over the
* factor \code{U}. Default is NULL and each row \code{i} in \code{a1} is
* randomly initialized from a Gamma distribution of parameters
* \code{(1,K/mean(X)_i)} where \code{mean(X)_i} is the rowwise mean of
* the corresponding row in the input data matrix \code{X}.
* This input parameter is not used if the input parameter \code{U} is not NULL.
* \param a2 matrix of dimension \code{n x K}, initial values for the
* variational rate parameter of the Gamma variational distribution over the
* factor \code{U}. Default is NULL and \code{a2} is intialized with
* a matrix of 1. This input parameter is not used if the input
* parameter \code{U} is not NULL.
* \param b1 matrix of dimension \code{p x K}, initial values for the
* variational shape parameter of the Gamma variational distribution over the
* factor \code{V}. Default is NULL and each row \code{j} in \code{b1} is
* randomly initialized from a Gamma distribution of parameters
* \code{(1,K/mean(X)_j)} where \code{mean(X)_j} is the colwise mean of
* the corresponding column in the input data matrix \code{X}.
* This input parameter is not used if the input parameter \code{V} is not NULL.
* \param a2 matrix of dimension \code{p x K}, initial values for the
* variational rate parameter of the Gamma variational distribution over the
* factor \code{V}. Default is NULL and \code{a2} is intialized with
* a matrix of 1. This input parameter is not used if the input
* parameter \code{V} is not NULL.
* \param alpha1 matrix of dimension \code{n x K}, initial values for the
* prior shape parameter of the Gamma variational distribution over the
* factor \code{U}. Default is NULL and \code{alpha1} is initialized based
* on update rules derived in Durif et al. (2018). This input parameter is
* not used if the input parameter \code{U} is not NULL.
* \param alpha2 matrix of dimension \code{n x K}, initial values for the
* prior rate parameter of the Gamma variational distribution over the
* factor \code{U}. Default is NULL and \code{alpha2} is initialized based
* on update rules derived in Durif et al. (2018). This input parameter is
* not used if the input parameter \code{U} is not NULL.
* \param beta1 matrix of dimension \code{p x K}, initial values for the
* prior shape parameter of the Gamma variational distribution over the
* factor \code{V}. Default is NULL and \code{beta1} is initialized based
* on update rules derived in Durif et al. (2018). This input parameter is
* not used if the input parameter \code{U} is not NULL.
* \param beta2 matrix of dimension \code{p x K}, initial values for the
* prior rate parameter of the Gamma variational distribution over the
* factor \code{V}. Default is NULL and \code{beta2} is initialized based
* on update rules derived in Durif et al. (2018). This input parameter is
* not used if the input parameter \code{U} is not NULL.
* \param prob_S matrix of dimension \code{p x K}, initial values for the
* variational probability parameter for the sparsity indicator matrix \code{S}
* over the factor \code{V}. Default is NULL and \code{prob_S} is initialized
* randomly.
* \param prior_S vector of length \code{p}, initial values for the
* prior probability parameter for the sparsity indicator matrix \code{S} over
* the factor \code{V}. Default is NULL and \code{prior_S} is initialized
* randomly.
* \param prob_D matrix of dimension \code{n x p}, initial values for the
* variational probability parameter for the drop-out indicator matrix \code{D}
* accounting for zero-inflation in \code{X}. Default is NULL
* and \code{prob_D} is initialized by the frequence of zero in the
* corresponding column of \code{X}. This parameter is not used for model
* without zero-inflation.
* \param prior_D vector of length \code{p}, initial values for the
* prior probability parameter for the drop-out indicator matrix \code{D}
* accounting for zero-inflation in \code{X}. Default is NULL and
* \code{prior_D} is initialized by the frequence of zero in the
* corresponding column of \code{X}. This parameter is not used for model
* without zero-inflation.
*
* Note: input parameters \code{a1}, \code{a2}, \code{b1}, \code{b2} should
* be all set to be used.
*/
template <class model, template<typename> class algo>
SEXP wrapper_sparse_gap_factor(SEXP X, int K, double sel_bound,
Rcpp::Nullable<MatrixXd> U = R_NilValue,
Rcpp::Nullable<MatrixXd> V = R_NilValue,
bool verbose = true, bool monitor = true,
int iter_max = 1000, int iter_min = 500,
Rcpp::CharacterVector init_mode = "random",
double epsilon = 1e-2, int additional_iter = 10,
int conv_mode = 1, int ninit = 1,
int iter_init = 100, int ncores = 1,
bool reorder_factor = true,
Rcpp::Nullable<uint32_t> seed = R_NilValue,
Rcpp::Nullable<MatrixXd> a1 = R_NilValue,
Rcpp::Nullable<MatrixXd> a2 = R_NilValue,
Rcpp::Nullable<MatrixXd> b1 = R_NilValue,
Rcpp::Nullable<MatrixXd> b2 = R_NilValue,
Rcpp::Nullable<MatrixXd> alpha1 = R_NilValue,
Rcpp::Nullable<MatrixXd> alpha2 = R_NilValue,
Rcpp::Nullable<MatrixXd> beta1 = R_NilValue,
Rcpp::Nullable<MatrixXd> beta2 = R_NilValue,
Rcpp::Nullable<MatrixXd> prob_S = R_NilValue,
Rcpp::Nullable<VectorXd> prior_S = R_NilValue,
Rcpp::Nullable<MatrixXd> prob_D = R_NilValue,
Rcpp::Nullable<VectorXd> prior_D = R_NilValue) {
MatrixXd Xin;
MatrixXd Uin;
MatrixXd Vin;
MatrixXd a1in;
MatrixXd a2in;
MatrixXd b1in;
MatrixXd b2in;
MatrixXd alpha1in;
MatrixXd alpha2in;
MatrixXd beta1in;
MatrixXd beta2in;
MatrixXd prob_Sin;
MatrixXd prior_Sin;
MatrixXd prob_Din;
MatrixXd prior_Din;
std::string init_mode_st = Rcpp::as<std::string>(init_mode);
// check input
if(TYPEOF(X) == INTSXP) {
MatrixXi Xtmp = Rcpp::as< Map<MatrixXi> >(X);
Xin = Xtmp.cast<double>();
} else if(TYPEOF(X) == REALSXP) {
Xin = Rcpp::as< Map<MatrixXd> >(X);
} else {
Rcpp::stop("Input matrix X should be integer or real valued.");
}
int n = Xin.rows();
int p = Xin.cols();
if(K>std::min(n, p)) {
Rcpp::stop("Input paramter K should be lower than min(n,p) where n and p are the number of rows and columns in input matrix X");
}
if(sel_bound<0 || sel_bound>1) {
Rcpp::stop("Input parameter sel_bound should be a real value between 0 and 1");
}
if((U.isNotNull() && !V.isNotNull()) || (!U.isNotNull() && V.isNotNull())) {
Rcpp::stop("You should supply initial values for both U and V or for neither of them");
}
if(U.isNotNull() && V.isNotNull()) {
Uin = Rcpp::as< Map<MatrixXd> >(U);
Vin = Rcpp::as< Map<MatrixXd> >(V);
if((Uin.rows() != n) || (Uin.cols() != K) || (Vin.rows() != p) || (Vin.cols() != K)) {
Rcpp::stop("Wrong dimension for U and/or V input matrices");
}
}
if(a1.isNotNull() || a2.isNotNull() || b1.isNotNull() || b2.isNotNull()) {
if(!(a1.isNotNull() && a2.isNotNull() && b1.isNotNull() && b2.isNotNull())) {
Rcpp::stop("You should supply initial values for all a1, a2, b1, b2 or for none of them");
} else {
a1in = Rcpp::as< Map<MatrixXd> >(a1);
a2in = Rcpp::as< Map<MatrixXd> >(a2);
b1in = Rcpp::as< Map<MatrixXd> >(b1);
b2in = Rcpp::as< Map<MatrixXd> >(b2);
if((a1in.rows() != n) || (a1in.cols() != K) || (a2in.rows() != n) || (a2in.cols() != K)
|| (b1in.rows() != p) || (b1in.cols() != K) || (b2in.rows() != p) || (b2in.cols() != K)) {
Rcpp::stop("Wrong dimension for a1, a2, b1 and/or b2 input matrices");
}
}
}
if(alpha1.isNotNull() || alpha2.isNotNull() || beta1.isNotNull() || beta2.isNotNull()) {
if(!(alpha1.isNotNull() && alpha2.isNotNull() && beta1.isNotNull() && beta2.isNotNull())) {
Rcpp::stop("You should supply initial values for all alpha1, alpha2, beta1, beta2 or for none of them");
} else {
alpha1in = Rcpp::as< Map<MatrixXd> >(alpha1);
alpha2in = Rcpp::as< Map<MatrixXd> >(alpha2);
beta1in = Rcpp::as< Map<MatrixXd> >(beta1);
beta2in = Rcpp::as< Map<MatrixXd> >(beta2);
if((alpha1in.rows() != n) || (alpha1in.cols() != K) || (alpha2in.rows() != n) || (alpha2in.cols() != K)
|| (beta1in.rows() != p) || (beta1in.cols() != K) || (beta2in.rows() != p) || (beta2in.cols() != K)) {
Rcpp::stop("Wrong dimension for alpha1, alpha2, beta1 and/or beta2 input matrices");
}
}
}
if(prob_S.isNotNull() && prior_S.isNotNull()) {
prob_Sin = Rcpp::as< Map<MatrixXd> >(prob_S);
prior_Sin = Rcpp::as< Map<VectorXd> >(prior_S);
// Rcpp::Rcout << "prob_S dim = = " << prob_Sin.rows() << ", " << prob_Sin.cols() << std::endl;
// Rcpp::Rcout << "prior_S size = " << prior_Sin.size() << std::endl;
if((prob_Sin.rows() != p) || (prob_Sin.cols() != K) || (prior_Sin.size() != p)) {
Rcpp::stop("Wrong dimension for prob_S and/or prior_S input matrix/vector");
}
}
if(prob_D.isNotNull() && prior_D.isNotNull()) {
prob_Din = Rcpp::as< Map<MatrixXd> >(prob_D);
prior_Din = Rcpp::as< Map<VectorXd> >(prior_D);
if((prob_Din.rows() != n) || (prob_Din.cols() != p) || (prior_Din.size() != p)) {
Rcpp::stop("Wrong dimension for prob_D and/or prior_D input matrix/vector");
}
}
// parallelizing
#if defined(_OPENMP)
omp_set_num_threads(ncores);
Eigen::initParallel();
#endif
// random number generator
myRandom::RNGType rng;
if(seed.isNotNull()) {
uint32_t mySeed = Rcpp::as<uint32_t>(seed);
rng = myRandom::rngInit(mySeed);
} else {
rng = myRandom::rngInit();
}
// set algo
if(verbose) Rcpp::Rcout << "Declaration" << std::endl;
algo<model> my_model(n, p, K, Xin,
verbose, monitor, iter_max, iter_min,
epsilon, additional_iter, conv_mode);
// init algo
if(verbose) Rcpp::Rcout << "Initialization" << std::endl;
// multiple init ?
if(ninit > 1) {
if(verbose) Rcpp::Rcout << "Multiple initialization run" << std::endl;
algo<model> tmp_model(n, p, K, Xin,
verbose, monitor, iter_max, iter_min,
epsilon, additional_iter, conv_mode);
tmp_model.set_iter(iter_init, iter_init, 1e-6);
tmp_model.set_verbosity(false);
double best_loss;
for(int nrun=0; nrun<ninit; nrun++) {
if(verbose) Rcpp::Rcout << "Run " << nrun << std::endl;
if(prob_S.isNotNull() && prior_S.isNotNull()) {
tmp_model.init_sparse_param_gap(sel_bound, prob_Sin, prior_Sin);
} else {
tmp_model.init_sparse_param_gap(sel_bound, rng);
}
if(prob_D.isNotNull() && prior_D.isNotNull()) {
tmp_model.init_zi_param_gap(prob_Din, prior_Din);
} else {
tmp_model.init_zi_param_gap();
}
if(U.isNotNull() && V.isNotNull()) {
tmp_model.init(Uin, Vin);
tmp_model.perturb_param(rng, std::max(Uin.maxCoeff(), Vin.maxCoeff())/K);
} else if(a1.isNotNull() && a2.isNotNull() && b1.isNotNull() && b2.isNotNull()) {
tmp_model.init_variational_param_gap(a1in, a2in, b1in, b2in);
tmp_model.perturb_param(rng, std::max(Uin.maxCoeff(), Vin.maxCoeff())/K);
} else if(alpha1.isNotNull() && alpha2.isNotNull() && beta1.isNotNull() && beta2.isNotNull()) {
tmp_model.init_hyper_param_gap(alpha1in, alpha2in, beta1in, beta2in);
tmp_model.perturb_param(rng, std::max(Uin.maxCoeff(), Vin.maxCoeff())/K);
} else if(a1.isNotNull() && a2.isNotNull() && b1.isNotNull() && b2.isNotNull()
&& alpha1.isNotNull() && alpha2.isNotNull() && beta1.isNotNull() && beta2.isNotNull()) {
tmp_model.init_all_param_gap(alpha1in, alpha2in, beta1in, beta2in,
a1in, a2in, b1in, b2in);
tmp_model.perturb_param(rng, std::max(Uin.maxCoeff(), Vin.maxCoeff())/K);
} else if(init_mode_st == "random") {
tmp_model.init_random(rng);
} else if(init_mode_st == "nmf") {
Rcpp::stop("FixMe not implemented yet");
} else {
Rcpp::stop("`init_mode` input parameter should be 'random' or 'nmf'");
}
tmp_model.set_current_iter(0);
tmp_model.optimize();
double tmp_loss = tmp_model.get_loss();
if(verbose) Rcpp::Rcout << "loss " << tmp_loss << std::endl;
if(nrun==0) {
best_loss = tmp_loss;
my_model = tmp_model;
} else {
if(tmp_loss < best_loss) {
best_loss = tmp_loss;
my_model = tmp_model;
}
}
}
my_model.set_iter(iter_min, iter_max, epsilon);
my_model.set_verbosity(verbose);
} else {
if(prob_S.isNotNull() && prior_S.isNotNull()) {
my_model.init_sparse_param_gap(sel_bound, prob_Sin, prior_Sin);
} else {
my_model.init_sparse_param_gap(sel_bound, rng);
}
if(prob_D.isNotNull() && prior_D.isNotNull()) {
my_model.init_zi_param_gap(prob_Din, prior_Din);
} else {
my_model.init_zi_param_gap();
}
if(U.isNotNull() && V.isNotNull()) {
my_model.init(Uin, Vin);
} else if(a1.isNotNull() && a2.isNotNull() && b1.isNotNull() && b2.isNotNull()) {
my_model.init_variational_param_gap(a1in, a2in, b1in, b2in);
} else if(alpha1.isNotNull() && alpha2.isNotNull() && beta1.isNotNull() && beta2.isNotNull()) {
my_model.init_hyper_param_gap(alpha1in, alpha2in, beta1in, beta2in);
} else if(a1.isNotNull() && a2.isNotNull() && b1.isNotNull() && b2.isNotNull()
&& alpha1.isNotNull() && alpha2.isNotNull() && beta1.isNotNull() && beta2.isNotNull()) {
my_model.init_all_param_gap(alpha1in, alpha2in, beta1in, beta2in,
a1in, a2in, b1in, b2in);
} else if(init_mode_st == "random") {
my_model.init_random(rng);
} else if(init_mode_st == "nmf") {
Rcpp::stop("FixMe not implemented yet");
} else {
Rcpp::stop("`init_mode` input parameter should be 'random' or 'nmf'");
}
}
// run algo
if(verbose) Rcpp::Rcout << "Optimization" << std::endl;
my_model.optimize();
// order factor
if(reorder_factor) {
if(verbose) Rcpp::Rcout << "Order factor" << std::endl;
my_model.order_factor();
}
// Return
if(verbose) Rcpp::Rcout << "Output" << std::endl;
Rcpp::List output;
my_model.get_output(output);
output.push_back(seed, "seed");
return output;
};
#endif // SPARSE_GAP_FACTOR_WRAPPER_H