Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

关于AIIB2023数据集的处理 #48

Open
wakakaFF opened this issue Aug 22, 2024 · 3 comments
Open

关于AIIB2023数据集的处理 #48

wakakaFF opened this issue Aug 22, 2024 · 3 comments

Comments

@wakakaFF
Copy link

你好,前辈。
我想请教一下,如何用你的训练框架处理AIIB2023数据集。
我尝试性的试了一下。以下是我的处理以及报错详情。
image
image

@ge-xing
Copy link
Owner

ge-xing commented Aug 22, 2024

你代码 有点问题,用我这个

from light_training.preprocessing.preprocessors.default_preprocessor import DefaultPreprocessor 
import numpy as np 
import pickle 
import json 

base_dir = "/data/xingzhaohu/aiib23/data/raw_data/AIIB23_Train_T1"
image_dir = "img"
gt_dir = "gt"

def process_train():
    # fullres spacing is [0.5        0.70410156 0.70410156]
    # median_shape is [602.5 516.5 516.5]
    preprocessor = DefaultPreprocessor(base_dir=base_dir, 
                                    image_dir=image_dir,
                                    label_dir=gt_dir,
                                   )

    out_spacing = [0.5, 0.70410156, 0.70410156]
    output_dir = "./data/fullres/train/"
    
    with open("./data_analysis_result.txt", "r") as f:
        content = f.read().strip("\n")
        print(content)
    content = eval(content)
    foreground_intensity_properties_per_channel = content["intensity_statistics_per_channel"]

    preprocessor.run(output_spacing=out_spacing, 
                     output_dir=output_dir, 
                     all_labels=[1],
                     foreground_intensity_properties_per_channel=foreground_intensity_properties_per_channel
    )

def plan():
    
    preprocessor = DefaultPreprocessor(base_dir=base_dir, 
                                    image_dir=image_dir,
                                    label_dir=gt_dir,
                                   )
    preprocessor.run_plan()


if __name__ == "__main__":
# 
    # plan()

    process_train()
    # process_val()
    # process_test()
    

@ge-xing
Copy link
Owner

ge-xing commented Aug 22, 2024

你先运行plan函数会在当前目录下得到 data_analysis_result.txt 第二步预处理 会用到这个文件。

@wakakaFF
Copy link
Author

你先运行plan函数会在当前目录下得到 data_analysis_result.txt 第二步预处理 会用到这个文件。

非常感谢。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants