- [Research Blog: Inceptionism: Going Deeper into Neural Networks] (http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html)
- [Inceptionism: Going deeper into Neural Networks - Google Photos] (https://photos.google.com/share/AF1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB)
- [Photos by Michael Tyka - Google Photos] (https://photos.google.com/share/AF1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ/photo/AF1QipPVTpDfh2LrPA9ui0CH1Xof_RByCyaa9ce_U60h?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB)
- [Tewkesbury_Medieval_Festival_2008_-_Mounted_knight.jpg (640×480)] (https://upload.wikimedia.org/wikipedia/commons/5/5d/Tewkesbury_Medieval_Festival_2008_-_Mounted_knight.jpg)
- [Deep Mind images and Picasso - Google Search] (https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=Deep+Mind+images+and+Picasso)
- [LSD neural net - Jonas Degrave] (http://317070.github.io/LSD/)
- [Home Page of Matthew Zeiler] (http://www.matthewzeiler.com/)
- [Gizem Küçükoğlu] (https://gizemkucukoglu.com/)
- [Yann LeCun's Home Page] (http://yann.lecun.com/)
- [Home - Andrew Ng] (http://www.andrewng.org/)
- [karpathy (Andrej)] (https://github.com/karpathy)
- [Dr Nicholas Lambert] (https://www.ravensbourne.ac.uk/staff/dr-nicholas-lambert/)
- [[1311.2901] Visualizing and Understanding Convolutional Networks] (http://arxiv.org/abs/1311.2901)
- [LNCS 8689 - Visualizing and Understanding Convolutional Networks] (http://www.matthewzeiler.com/pubs/arxive2013/eccv2014.pdf)
- [matthewzeiler.com/phdthesis] (http://www.matthewzeiler.com/pubs/phdthesis/main.pdf)
- [Bringing Semantics into Focus Using Visual Abstraction] (http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zitnick_Bringing_Semantics_into_2013_CVPR_paper.pdf)
- [Visual Abstraction] (https://people.cs.pitt.edu/~chang/365/diag.html)
- [visual abstraction - Google Search] (https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=visual%20abstraction)
- [yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf] (http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)
- [1508.06576v2.pdf] (http://arxiv.org/pdf/1508.06576v2.pdf)
- [Zero-Shot Learning via Visual Abstraction] (https://computing.ece.vt.edu/~santol/projects/zsl_via_visual_abstraction/)
- [IEEE Xplore Abstract - Bringing Semantics into Focus Using Visual Abstraction] (http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6619231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6619231)
- [Magic for Dogs, and What That Says about Vision and Consciousness | Neuroanthropology] (http://blogs.plos.org/neuroanthropology/2014/04/09/magic-dogs-says-vision-consciousness/)
- [[1112.6209] Building high-level features using large scale unsupervised learning] (http://arxiv.org/abs/1112.6209)
- [Caffe | Deep Learning Framework] (http://caffe.berkeleyvision.org/)
- [Clarifai | Visual recognition API and services] (http://www.clarifai.com/)
- [Introduction] (https://www.tensorflow.org/versions/master/get_started/index.html)
- [tensorflow/tensorflow: Computation using data flow graphs for scalable machine learning] (https://github.com/tensorflow/tensorflow)
- [google/deepdream] (https://github.com/google/deepdream)
- [perborgen/LogisticRegression · GitHub] (https://github.com/perborgen/LogisticRegression)
- [2. Using the Python Interpreter — Python 2.7.10 documentation] (https://docs.python.org/2/tutorial/interpreter.html#invoking-the-interpreter)
- [A Neural Network in 11 lines of Python (Part 1) - i am trask] (http://iamtrask.github.io/2015/07/12/basic-python-network/)
- [Dreamception - Free DeepDream - Android Apps on Google Play] (https://play.google.com/store/apps/details?id=nezibo.com.dreamception&hl=en)
- [Dreamception - Free DeepDream inspired images in a snap! on the App Store] (https://itunes.apple.com/app/apple-store/id1025466051?mt=8)
- [Installation of DeepDream on Ubuntu Linux | Knight of Pi] (http://www.knight-of-pi.org/installing-the-google-deepdream-software/)
- [ConvNet: Deep Convolutional Networks] (http://libccv.org/doc/doc-convnet/)
- [Deep dream • Dream Deeply] (https://dreamdeeply.com/)
- [opencl vs cuda - Google Search] (https://www.google.com/search?q=opencl+vs+cuda&cad=h)
- [hpssjellis/tensorflow-udacity-deep-learning: An attempt to setup tensorflow deep learning with udacity online instead of on your own computer] (https://github.com/hpssjellis/tensorflow-udacity-deep-learning)
- [JMLR Machine Learning Open Source Software] (http://www.jmlr.org/mloss/)
- [Choosing the right estimator — scikit-learn 0.18.dev0 documentation] (http://scikit-learn.org/dev/tutorial/machine_learning_map/index.html)
- [Best python library for neural networks - Data Science Stack Exchange] (http://datascience.stackexchange.com/questions/694/best-python-library-for-neural-networks)
- [deepdream/dream.ipynb at master · google/deepdream] (https://github.com/google/deepdream/blob/master/dream.ipynb)
- [OpenAI] (https://openai.com/blog/introducing-openai/)
- [Machine learning for artists — Medium] (https://medium.com/@genekogan/machine-learning-for-artists-e93d20fdb097#.k3d5uk5bb)
- [In a Big Network of Computers, Evidence of Machine Learning - The New York Times] (http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html)
- [Google's DeepDream Computers Make Thousands as Artists - Fortune] (http://fortune.com/2016/03/01/google-deepdream-art/)
- [Hardware Startups: The VC Perspective] (http://www.slideshare.net/mjft01/hardware-startups-the-vc-perspective?next_slideshow=4)
- [Inside Deep Dreams: How Google Made Its Computers Go Crazy — Backchannel — Medium] (https://medium.com/backchannel/inside-deep-dreams-how-google-made-its-computers-go-crazy-83b9d24e66df#.v3ss7apkk)
- [New algorithm gives photos Picasso-style makeovers] (http://mashable.com/2015/08/29/computer-photos/#GZTY_P4.Pmqn)
- [The Astonishing Resurrection of AI (A Primer on Artificial Intelligen…] (http://www.slideshare.net/mjft01/the-astonishing-resurrection-of-ai-a-primer-on-artificial-intelligence?next_slideshow=3)
- [This Google Dream Bot-Inspired Artwork Is Mind Blowing] (http://gizmodo.com/this-google-dream-bot-inspired-artwork-is-mind-blowing-1761049728)
- [Why a deep-learning genius left Google & joined Chinese tech shop Baidu (interview) | VentureBeat | Big Data | by Jordan Novet] (http://venturebeat.com/2014/07/30/andrew-ng-baidu/)
- [TensorFlow for poets - O'Reilly Media] (https://www.oreilly.com/learning/tensorflow-for-poets?imm_mid=0e167a&cmp=em-data-na-na-newsltr_20160309)
- [Neural networks and deep learning] (http://neuralnetworksanddeeplearning.com/)
- [Abstraction (art) - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Abstraction_(art))
- [Artificial neural network - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Artificial_neural_network)
- [Deep learning - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Deep_learning)
- [Types of artificial neural networks - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks)
- [Recurrent neural network - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Recurrent_neural_network)
- [Convolutional neural network - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Convolutional_neural_network)
- [Torch (machine learning) - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Torch_(machine_learning))
- [Theano (software) - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Theano_(software))
- [Google DeepMind - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Google_DeepMind)
- [https://en.wikipedia.org/wiki/Deep_learning - Google Search] (https://www.google.com/search?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDeep_learning&oq=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDeep_learning&aqs=chrome..69i58j69i57.2562j0j7&sourceid=chrome&es_sm=122&ie=UTF-8)
- [Who is Afraid of Non-Convex Loss Functions? - VideoLectures.NET] (http://videolectures.net/eml07_lecun_wia/)
- [lecun-20150610-cvpr-keynote.pdf - Google Drive] (https://drive.google.com/file/d/0BxKBnD5y2M8NVHRiVXBnOVpiYUk/view)
- [Machine Learning] (http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning)
- [DeepLearning-NYC.pdf] (http://files.meetup.com/1516886/DeepLearning-NYC.pdf)
- [Machine learning for artists — Medium] (https://medium.com/@genekogan/machine-learning-for-artists-e93d20fdb097#.y1h7t2c7f)
- [Machine Learning in a Week — Learning New Stuff — Medium] (https://medium.com/learning-new-stuff/machine-learning-in-a-week-a0da25d59850#.y8u31yfpk)
- [Neural Networks Demystified [Part 1: Data and Architecture] - YouTube] (https://www.youtube.com/watch?v=bxe2T-V8XRs)
- [UFLDL Tutorial - Ufldl] (http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial)
- [A Step by Step Backpropagation Example – Matt Mazur] (http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/)
- [Hacker's guide to Neural Networks] (http://karpathy.github.io/neuralnets/)
- [Machine Learning in a Week — Learning New Stuff — Medium] (https://medium.com/learning-new-stuff/machine-learning-in-a-week-a0da25d59850#.bx7girxk1)
- [Implementing a Neural Network from Scratch in Python – An Introduction – WildML] (http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/)
- [stephencwelch/Neural-Networks-Demystified · GitHub] (https://github.com/stephencwelch/Neural-Networks-Demystified/tree/master/)
- [PowerPoint Presentation] (http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf)
- [beginner_tutorial2_train – EBLearn] (http://eblearn.sourceforge.net/beginner_tutorial2_train.html)
- [Classroom - Udacity] (https://www.udacity.com/course/viewer#!/c-ud730/l-6452084188/m-6560586345)
- [MIT Places Database for Scene Recognition] (http://places.csail.mit.edu/)
- [Datasets] (http://www.datasets.co/)
- [ImageNet Large Scale Visual Recognition Competition 2013 (ILSVRC2013)] (http://image-net.org/challenges/LSVRC/2013/results)
- [Research Blog] (http://googleresearch.blogspot.com/)
- [Research Blog: Building a deeper understanding of images] (http://googleresearch.blogspot.com/2014/09/building-deeper-understanding-of-images.html?m=1)
- [Research Blog: DeepDream - a code example for visualizing Neural Networks] (http://googleresearch.blogspot.com/2015/07/deepdream-code-example-for-visualizing.html)
- [Research Blog: How to Classify Images with TensorFlow] (http://googleresearch.blogspot.com/2015/12/how-to-classify-images-with-tensorflow.html)
- [Research Blog: Image Classification] (http://googleresearch.blogspot.com/search/label/Image%20Classification)
- [Research Blog: TensorFlow - Google’s latest machine learning system, open sourced for everyone] (http://googleresearch.blogspot.com/2015/11/tensorflow-googles-latest-machine_9.html)
- [Google+] (https://plus.google.com/explore/dreamdeeply)
- [Search - Google+] (https://plus.google.com/s/%23neuronalnetworking/top)
- [Search - Google+] (https://plus.google.com/s/%23deepdream/top)
- [Search - Google+] (https://plus.google.com/s/%23dreamdeeply/top)
- [Allegorithmic Tools - Off topic / Chill out - Community - Google+] (https://plus.google.com/u/0/wm/1/communities/108955098539774060748/stream/8f66cd46-94a0-4c32-b478-88fa50d878f3)
- [mloss | All entries] (http://mloss.org/software/downloads/)
- [mloss | Project details:mldata-utils] (http://mloss.org/software/view/262/)
- [10_Advice_for_applying_machine_learning] (http://holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html)
- [Machine Learning - complete course notes] (http://holehouse.org/mlclass/)
- [udibr (Ehud Ben-Reuven)] (https://github.com/udibr?tab=repositories)
- [noppanit (Noppanit Charassinvichai)] (https://github.com/noppanit)
- [Jonas Degrave] (http://317070.github.io/)
- [ebenolson (Eben Olson)] (https://github.com/ebenolson)
- [Lasagne/Recipes] (https://github.com/Lasagne/Recipes)
- [Lasagne] (https://github.com/lasagne)
- [Theano/Theano] (https://github.com/Theano/Theano)
- [Software links « Deep Learning] (http://deeplearning.net/software_links/)
- [(7) Ehud Ben-Reuven (@Udibr) | Twitter] (https://twitter.com/Udibr)
- [aihubco/training-ai-dl] (https://github.com/aihubco/training-ai-dl)
- [training-ai-dl/01-ml-python-intro-theano.ipynb at master · aihubco/training-ai-dl] (https://github.com/aihubco/training-ai-dl/blob/master/01-ml-python-intro-theano.ipynb)
- [Deep Learning Tutorials — DeepLearning 0.1 documentation] (http://deeplearning.net/tutorial/)
- [Machine Learning with Python: Intro - NYC Artificial Intelligence & Deep Learning (New York, NY) - Meetup] (http://www.meetup.com/NYC-Artificial-Intelligence-Deep-Learning/events/223409567/)
- [Base: Machine Learning Intro | NYC AI & Deep Learning Community] (http://www.aihub.co/ml-python-intro/)
- [NYC AI & Deep Learning Community | NYC Artificial Intelligence & Deep Learning Community] (http://www.aihub.co/)
- [In-depth introduction to machine learning in 15 hours of expert videos | R-bloggers] (http://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/)
- [Introduction to Statistical Learning] (http://www-bcf.usc.edu/~gareth/ISL/)
- [Recursive neural network - Wikipedia, the free encyclopedia] (https://en.wikipedia.org/wiki/Recursive_neural_network)
- [Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank] (http://nlp.stanford.edu/sentiment/)
- [MetaMind] (https://www.metamind.io/about)
- [Description - Sentiment Analysis on Movie Reviews | Kaggle] (https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews)
- [nycdssg_talks/kaggle_movies_word2vec_demo.ipynb at master · Eric-Xu/nycdssg_talks · GitHub] (https://github.com/Eric-Xu/nycdssg_talks/blob/master/06_08_2015_word2vec/kaggle_movies_word2vec_demo.ipynb)
- [Outbrain - The Most Trusted Content Discovery Platform] (http://www.outbrain.com/)
- [amueller/ml_meetup_nyc_2016: Material for Machine Learning Meetup "Machine Learning with Scikit-learn"] (https://github.com/amueller/ml_meetup_nyc_2016)
- [SNAP: Web data: Amazon movie reviews] (https://snap.stanford.edu/data/web-Movies.html)
- [Map-Reduce for Machine Learning on Multicore - Andrew Ng] (http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/)
- [Map-Reduce for Machine Learning on Multicore] (http://papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf)
- [w2vexp.pdf] (http://www-personal.umich.edu/~ronxin/pdf/w2vexp.pdf)