forked from huawei-noah/HEBO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_plot.py
173 lines (143 loc) · 6.75 KB
/
utils_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional, Dict, Any
import os
import glob
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.axes import Axes
from typing import List, Union, Tuple
def cummax(X: np.ndarray, return_ind=False) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
""" Return array containing at index `i` the value max(X)[:i] """
cmaxind: List[int] = [0]
cmax: List[float] = [X[0]]
for i, x in enumerate(X[1:]):
i += 1
if x > cmax[-1]:
cmax.append(x)
cmaxind.append(i)
else:
cmax.append(cmax[-1])
cmaxind.append(cmaxind[-1])
cmax_np = np.array(cmax)
assert np.all(X[cmaxind] == cmax_np), (X, X[cmaxind], cmax_np)
if return_ind:
return cmax_np, np.array(cmaxind)
return cmax_np
def get_cummax(scores: List[np.ndarray]) -> List[np.ndarray]:
""" Compute cumulative max for each array in a list
Args:
scores: list of the arrays on which `cummax` will be applied
Returns:
cmaxs:
"""
if isinstance(scores, list) and isinstance(scores[0], np.ndarray):
scores = np.atleast_2d(scores)
else:
raise TypeError(f'Expected List[np.ndarray] or np.ndarray, got {type(scores)}')
cmaxs: List[np.ndarray] = []
for score in scores:
cmaxs.append(cummax(score))
return cmaxs
def get_cummin(scores: List[np.ndarray]) -> List[np.ndarray]:
""" Compute cumulative min for each array in a list
Args:
scores: list of the arrays on which `cummin` will be applied
Returns:
cmins:
"""
if isinstance(scores, list) and isinstance(scores[0], np.ndarray):
scores = np.atleast_2d(scores)
else:
raise TypeError(f'Expected List[np.ndarray] or np.ndarray, got {type(scores)}')
cmins: List[np.ndarray] = []
for score in scores:
cmins.append(-cummax(-score))
return cmins
def plot_mean_std(*args, n_std: Optional[int] = 1,
ax: Optional[Axes] = None, alpha: float = .3, label: Optional[str] = None,
stop_plot_at_level: Optional[float] = None,
top_one_percent: Optional[bool] = False, minimisation: Optional[bool] = False,
**plot_mean_kwargs):
""" Plot mean and std (with fill between) of sequentiql data Y of shape (n_trials, lenght_of_a_trial)
Args:
X: x-values (if None, we will take `range(0, len(Y))`)
Y: y-values
n_std: number of std to plot around the mean (if `0` only the mean is plotted)
label: label to use for the mean
ax: axis on which to plot the curves
color: color of the curve
alpha: parameter for `fill_between`
Returns:
The axis.
"""
if len(args) == 1:
Y = args[0]
X = None
elif len(args) == 2:
X, Y = args
else:
raise RuntimeError('Wrong number of arguments (should be [X], Y,...)')
assert len(Y) > 0, 'Y should be a non-empty array, nothing to plot'
Y = np.atleast_2d(Y)
if X is None:
X = np.arange(Y.shape[1])
assert X.ndim == 1, f'X should be of rank 1, got {X.ndim}'
if not top_one_percent:
mean = Y.mean(0)
std = Y.std(0)
if stop_plot_at_level is not None:
idx = np.where(mean <= stop_plot_at_level)[0]
std = std[idx]
mean = mean[idx]
# print(f"stop level reached at {len(idx)}")
else:
idx = X
if ax is None:
ax = plt.subplot()
line_plot = ax.plot(X[idx], mean, label=label, **plot_mean_kwargs)
if n_std > 0 and Y.shape[0] > 1:
ax.fill_between(X[idx], mean - n_std * std, mean + n_std * std, alpha=alpha, color=line_plot[0].get_c())
else:
if minimisation:
Y_top = Y.min(0)
else:
Y_top = Y.max(0)
if ax is None:
ax = plt.subplot()
line_plot = ax.plot(X, Y_top, label=label, **plot_mean_kwargs)
return ax
def plot_results(path_to_res, maximisation: bool, n_acqs: Optional[int] = None, ax: Optional[Axes] = None,
seeds: List[int] = None, **plt_kwargs):
"""
Args:
path_to_res: name to directory where results are saved in subdirectories corresponding to seeds
maximisation: whether the task is a maximisation or minimisation
n_acqs: number of acquisition steps over which to plot the results (if None all acquisitions are considered)
ax: axis object
seeds: list of seeds to consider (all if `None`)
**plt_kwargs: plot options
Returns:
"""
results: List[np.array] = []
if seeds is not None:
paths: List[str] = [os.path.join(path_to_res, f"seed{i}") for i in seeds]
else:
paths: List[str] = glob.glob(path_to_res + '/seed*')
for path_to_res in paths:
path = os.path.join(path_to_res, 'results.npz')
result = np.load(path, allow_pickle=True)
results.append(result['opt_point_properties'][:n_acqs])
if maximisation:
regret = get_cummax(results)
else:
regret = get_cummin(results)
return plot_mean_std(regret, ax=ax, **plt_kwargs)