From 38c94c9cec62763b3302d108ff981dbf64a13fd7 Mon Sep 17 00:00:00 2001 From: StefanTodoran Date: Mon, 30 Oct 2023 05:21:49 +0000 Subject: [PATCH] deploy: 3dcd46bc911a14aad1d069ba59edf3439269e577 --- .../2.10_dimensionality_reduction.html | 33 +- .../3.3_binary_classification.html | 78 ++-- .../3.4_multiclass_classification.html | 301 ++++++++++++++-- .../2.10_dimensionality_reduction_10_0.png | Bin 45707 -> 45748 bytes .../2.10_dimensionality_reduction_12_1.png | Bin 0 -> 55852 bytes _images/3.3_binary_classification_10_2.png | Bin 38015 -> 41456 bytes _images/3.3_binary_classification_11_1.png | Bin 0 -> 41456 bytes ...png => 3.3_binary_classification_14_2.png} | Bin 38726 -> 38726 bytes _images/3.3_binary_classification_15_2.png | Bin 38015 -> 0 bytes _images/3.3_binary_classification_5_0.png | Bin 38914 -> 38914 bytes _images/3.3_binary_classification_8_1.png | Bin 0 -> 39829 bytes .../3.4_multiclass_classification_13_0.png | Bin 0 -> 5676 bytes .../3.4_multiclass_classification_14_1.png | Bin 0 -> 30233 bytes .../3.4_multiclass_classification_15_1.png | Bin 0 -> 28324 bytes .../3.4_multiclass_classification_16_2.png | Bin 0 -> 28908 bytes .../3.4_multiclass_classification_18_1.png | Bin 0 -> 63486 bytes _images/3.4_multiclass_classification_7_0.png | Bin 0 -> 4777 bytes .../2.10_dimensionality_reduction.ipynb | 113 +++--- .../3.3_binary_classification.ipynb | 169 ++++----- .../3.4_multiclass_classification.ipynb | 335 ++++++++++++++++-- reports/3.4_multiclass_classification.log | 3 +- searchindex.js | 2 +- 22 files changed, 742 insertions(+), 292 deletions(-) create mode 100644 _images/2.10_dimensionality_reduction_12_1.png create mode 100644 _images/3.3_binary_classification_11_1.png rename _images/{3.3_binary_classification_13_2.png => 3.3_binary_classification_14_2.png} (99%) delete mode 100644 _images/3.3_binary_classification_15_2.png create mode 100644 _images/3.3_binary_classification_8_1.png create mode 100644 _images/3.4_multiclass_classification_13_0.png create mode 100644 _images/3.4_multiclass_classification_14_1.png create mode 100644 _images/3.4_multiclass_classification_15_1.png create mode 100644 _images/3.4_multiclass_classification_16_2.png create mode 100644 _images/3.4_multiclass_classification_18_1.png create mode 100644 _images/3.4_multiclass_classification_7_0.png diff --git a/Chapter2-DataManipulation/2.10_dimensionality_reduction.html b/Chapter2-DataManipulation/2.10_dimensionality_reduction.html index 8a740a1..56fe74d 100644 --- a/Chapter2-DataManipulation/2.10_dimensionality_reduction.html +++ b/Chapter2-DataManipulation/2.10_dimensionality_reduction.html @@ -908,7 +908,7 @@

2.10.1 Feature selection via parameter exploration @@ -1006,21 +1014,6 @@

Step two: Determine the SVD of the covariance matrix -
[[ 0.42469643  0.747179    0.85328813 ...  0.88246352 -1.884191
-  -1.32403592]
- [-0.18730514  0.80047482  1.11341706 ... -0.09048239 -2.95497644
-  -0.18146037]]
-[[ 0.42469643 -0.18730514]
- [ 0.747179    0.80047482]
- [ 0.85328813  1.11341706]
- ...
- [ 0.88246352 -0.09048239]
- [-1.884191   -2.95497644]
- [-1.32403592 -0.18146037]]
-
-
-
@@ -1198,7 +1191,7 @@

2.10.3 PCA on 3D data. -

SVD can be computationally intensive for larger dimensions.

diff --git a/Chapter3-MachineLearning/3.3_binary_classification.html b/Chapter3-MachineLearning/3.3_binary_classification.html index 7092d9b..7070101 100644 --- a/Chapter3-MachineLearning/3.3_binary_classification.html +++ b/Chapter3-MachineLearning/3.3_binary_classification.html @@ -747,16 +747,10 @@

1.1 Synthetic Data -
---------------------------------------------------------------------------
-ImportError                               Traceback (most recent call last)
-Cell In [7], line 1
-----> 1 from sklearn.inspection import DecisionBoundaryDisplay
-      2 ax = plt.subplot()
-      3 # plot the decision boundary as a background
-
-ImportError: cannot import name 'DecisionBoundaryDisplay' from 'sklearn.inspection' (/Users/marinedenolle/opt/miniconda3/envs/mlgeo_sk/lib/python3.9/site-packages/sklearn/inspection/__init__.py)
+
<matplotlib.collections.PathCollection at 0x7f7c5ef8fdf0>
 
+../_images/3.3_binary_classification_8_1.png

The results shows a not-too bad classification, but a low confidence.

@@ -779,11 +773,6 @@

1.1 Synthetic Data# calculate the mean accuracy on the given test data and labels. score = clf.score(X_test, y_test) print("The mean accuracy on the given test and labels is %f" %score) - -# plot the decision boundary as a background -ax = plt.subplot() -# DecisionBoundaryDisplay.from_estimator(clf, X, cmap='PiYG', alpha=0.8, ax=ax, eps=0.5) -ax.scatter(X[:, 0], X[:, 1], c=y, cmap='PiYG', alpha=0.6, edgecolors="k")

@@ -791,68 +780,44 @@

1.1 Synthetic Data
The mean accuracy on the given test and labels is 0.975000
 
-
<matplotlib.collections.PathCollection at 0x151ada520>
+
<matplotlib.collections.PathCollection at 0x7f7c5ad06230>
 
../_images/3.3_binary_classification_10_2.png
-

Now we will test the effect of data normalization before the classification. We will stretch the first axis of the data to see the effects.

-
-
-
# make a data set
-X, y = make_moons(noise=0.3, random_state=0)
-X[:,0] = 10*X[:,0] 
-
-
-
-
-
# define ML
-K = 5
-clf= KNeighborsClassifier(K)
-
-# normalize data.
-# X = StandardScaler().fit_transform(X)
-
-# split data between train and test set.
-X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
-
-# Fit the model.
-clf.fit(X_train, y_train)
-
-# calculate the mean accuracy on the given test data and labels.
-score = clf.score(X_test, y_test)
-print("The mean accuracy on the given test and labels is %f" %score)
-
-# plot the decision boundary as a background
+
# plot the decision boundary as a background
 ax = plt.subplot()
-# DecisionBoundaryDisplay.from_estimator(clf, X, cmap='PiYG', alpha=0.8, ax=ax, eps=0.5)
+DecisionBoundaryDisplay.from_estimator(clf, X, cmap='PiYG', alpha=0.8, ax=ax, eps=0.5)
 ax.scatter(X[:, 0], X[:, 1], c=y, cmap='PiYG', alpha=0.6, edgecolors="k")
 

2. Classifier Performance Metrics#

-

In a binary classifier, we label one of the two classes as positive, the other class is negative. Let’s consider N data samples.

+

In a binary classifier, we label one of the two classes as positive, the other class as negative. Let’s consider N data samples.

@@ -922,10 +888,10 @@

2. Classifier Performance Metrics\(err = \frac{FP+FN}{N}\) -> 0

-
  • accuracy: the fraction of the data that was correctly classified:

    +
  • Accuracy: the fraction of the data that was correctly classified:

    \(acc = \frac{TP+TN}{N} = 1 - err \) –> 1

  • TP-rate: the ratio of samples predicted in the positive class that are correctly classified:

    diff --git a/Chapter3-MachineLearning/3.4_multiclass_classification.html b/Chapter3-MachineLearning/3.4_multiclass_classification.html index 61a87e0..54f8aae 100644 --- a/Chapter3-MachineLearning/3.4_multiclass_classification.html +++ b/Chapter3-MachineLearning/3.4_multiclass_classification.html @@ -658,42 +658,59 @@

    3.4 Multiclass Classification
    -
    import numpy as np
    +
    import numpy as np
     from sklearn.datasets import load_digits,fetch_openml
    +from sklearn.metrics import ConfusionMatrixDisplay
     digits = load_digits()
     digits.keys()
     
    +
    +
    dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'images', 'DESCR'])
    +
    +
    +

    The data is vector of floats. The target is an integer that is the attribute of the data. How are the data balanced between the classes? How many samples are there per class?

    -
    # explore data type
    +
    # explore data type
     data,y = digits["data"].copy(),digits["target"].copy()
     print(type(data[0][:]),type(y[0]))
     # note that we do not modify the raw data that is stored on the digits dictionary.
     
    +
    +
    <class 'numpy.ndarray'> <class 'numpy.int64'>
    +
    +
    +

    how many classes are there? Since the classes are integers, we can count the number of classes using the function “unique”

    -
    Nclasses = len(np.unique(y))
    +
    Nclasses = len(np.unique(y))
     print(np.unique(y))
     print(Nclasses)
     
    +
    +
    [0 1 2 3 4 5 6 7 8 9]
    +10
    +
    +
    +

    3.1 Data preparation#

    First print and plot the data.

    -
    # plot the data
    +
    # plot the data
     import matplotlib.pyplot as plt
     # plot the first 4 data and their labels.
     _, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))
    @@ -704,6 +721,9 @@ 

    3.1 Data preparation +../_images/3.4_multiclass_classification_7_0.png +

    @@ -713,7 +733,7 @@

    3.2 Data re-scalinghere

    3.3 Train-test split#

    -
    # Split data into 50% train and 50% test subsets
    +
     
    -
    import sklearn
    +
     
    -
    _, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))
    +
     
    -
    print("Support Vector Machine")
    +
    print("Support Vector Machine")
     print(f"Classification report for classifier {clf}:\n"
           f"{metrics.classification_report(y_test, svc_prediction)}\n")
    -disp = metrics.plot_confusion_matrix(clf, X_test, y_test)
    +
    +disp = ConfusionMatrixDisplay.from_estimator(clf, X_test, y_test)
     disp.figure_.suptitle("Confusion Matrix")
    -print(f"Confusion matrix:\n{disp.confusion_matrix}")
    +# print(f"Confusion matrix:\n{disp.confusion_matrix}")
     plt.show()
     
    +
    +
    Support Vector Machine
    +Classification report for classifier SVC(gamma=0.001):
    +              precision    recall  f1-score   support
    +
    +           0       1.00      0.99      0.99        88
    +           1       0.99      0.97      0.98        91
    +           2       0.99      0.99      0.99        86
    +           3       0.98      0.87      0.92        91
    +           4       0.99      0.96      0.97        92
    +           5       0.95      0.97      0.96        91
    +           6       0.99      0.99      0.99        91
    +           7       0.96      0.99      0.97        89
    +           8       0.94      1.00      0.97        88
    +           9       0.93      0.98      0.95        92
    +
    +    accuracy                           0.97       899
    +   macro avg       0.97      0.97      0.97       899
    +weighted avg       0.97      0.97      0.97       899
    +
    +
    +../_images/3.4_multiclass_classification_14_1.png +
    -
    print("K-nearest neighbors")
    +
    print("K-nearest neighbors")
     print(f"Classification report for classifier {knn_clf}:\n"
           f"{metrics.classification_report(y_test, knn_prediction)}\n")
    -disp = metrics.plot_confusion_matrix(knn_clf, X_test, y_test)
    +disp = ConfusionMatrixDisplay.from_estimator(knn_clf, X_test, y_test)
     disp.figure_.suptitle("Confusion Matrix")
    -print(f"Confusion matrix:\n{disp.confusion_matrix}")
    +# print(f"Confusion matrix:\n{disp.confusion_matrix}")
     plt.show()
     
    +
    +
    K-nearest neighbors
    +Classification report for classifier KNeighborsClassifier():
    +              precision    recall  f1-score   support
    +
    +           0       0.99      1.00      0.99        88
    +           1       0.95      0.98      0.96        91
    +           2       0.98      0.93      0.95        86
    +           3       0.89      0.90      0.90        91
    +           4       1.00      0.95      0.97        92
    +           5       0.96      0.98      0.97        91
    +           6       0.99      1.00      0.99        91
    +           7       0.95      1.00      0.97        89
    +           8       0.95      0.90      0.92        88
    +           9       0.91      0.92      0.92        92
    +
    +    accuracy                           0.96       899
    +   macro avg       0.96      0.96      0.96       899
    +weighted avg       0.96      0.96      0.96       899
    +
    +
    +../_images/3.4_multiclass_classification_15_1.png +
    -
    print("Random Forest")
    +
    print("Random Forest")
     print(f"Classification report for classifier {rf_clf}:\n"
           f"{metrics.classification_report(y_test, rf_prediction)}\n")
    -disp = metrics.plot_confusion_matrix(rf_clf, X_test, y_test)
    +disp = ConfusionMatrixDisplay.from_estimator(rf_clf, X_test, y_test)
     disp.figure_.suptitle("Confusion Matrix")
    -print(f"Confusion matrix:\n{disp.confusion_matrix}")
    +# print(f"Confusion matrix:\n{disp.confusion_matrix}")
     plt.show()
     
    +
    +
    Random Forest
    +Classification report for classifier RandomForestClassifier(random_state=42, verbose=True):
    +              precision    recall  f1-score   support
    +
    +           0       0.97      0.99      0.98        88
    +           1       0.95      0.89      0.92        91
    +           2       1.00      0.90      0.94        86
    +           3       0.87      0.84      0.85        91
    +           4       0.99      0.91      0.95        92
    +           5       0.91      0.96      0.93        91
    +           6       0.98      1.00      0.99        91
    +           7       0.93      0.98      0.95        89
    +           8       0.88      0.90      0.89        88
    +           9       0.84      0.93      0.89        92
    +
    +    accuracy                           0.93       899
    +   macro avg       0.93      0.93      0.93       899
    +weighted avg       0.93      0.93      0.93       899
    +
    +
    +
    [Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
    +
    +
    +../_images/3.4_multiclass_classification_16_2.png +
    -
    from sklearn.metrics import roc_curve,roc_auc_score, precision_recall_curve, RocCurveDisplay, PrecisionRecallDisplay
    +
    from sklearn.metrics import roc_curve,roc_auc_score, precision_recall_curve, RocCurveDisplay, PrecisionRecallDisplay
     
    -
    
    -from sklearn.multiclass import OneVsRestClassifier
    +
    from sklearn.multiclass import OneVsRestClassifier
     from sklearn.preprocessing import label_binarize
     from sklearn import svm
     
    @@ -870,11 +994,144 @@ 

    3.3 Train-test split +
    <matplotlib.legend.Legend at 0x7fd65cb311b0>
    +
    +
    +../_images/3.4_multiclass_classification_18_1.png +

    -
    from sklearn.model_selection import cross_val_predict
    -y_train_pred = cross_val_predict(clf,X_train,y_train,cv=3) # predict using K-fold cross validation
    +
    from sklearn.model_selection import cross_val_predict
    +y_train_pred = cross_val_predict(clf, X_train, y_train, cv=3) # predict using K-fold cross validation
    +
    +
    +
    +
    +
    ---------------------------------------------------------------------------
    +ValueError                                Traceback (most recent call last)
    +/workspaces/mlgeo-instructor/book/Chapter3-MachineLearning/3.4_multiclass_classification.ipynb Cell 20 line 2
    +      <a href='vscode-notebook-cell://codespaces%2Bcurly-winner-7647wqr96rhr49q/workspaces/mlgeo-instructor/book/Chapter3-MachineLearning/3.4_multiclass_classification.ipynb#X25sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a> from sklearn.model_selection import cross_val_predict
    +----> <a href='vscode-notebook-cell://codespaces%2Bcurly-winner-7647wqr96rhr49q/workspaces/mlgeo-instructor/book/Chapter3-MachineLearning/3.4_multiclass_classification.ipynb#X25sdnNjb2RlLXJlbW90ZQ%3D%3D?line=1'>2</a> y_train_pred = cross_val_predict(clf,X_train,y_train,cv=3) # predict using K-fold cross validation
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:1033, in cross_val_predict(estimator, X, y, groups, cv, n_jobs, verbose, fit_params, pre_dispatch, method)
    +   1030 # We clone the estimator to make sure that all the folds are
    +   1031 # independent, and that it is pickle-able.
    +   1032 parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
    +-> 1033 predictions = parallel(
    +   1034     delayed(_fit_and_predict)(
    +   1035         clone(estimator), X, y, train, test, verbose, fit_params, method
    +   1036     )
    +   1037     for train, test in splits
    +   1038 )
    +   1040 inv_test_indices = np.empty(len(test_indices), dtype=int)
    +   1041 inv_test_indices[test_indices] = np.arange(len(test_indices))
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/utils/parallel.py:65, in Parallel.__call__(self, iterable)
    +     60 config = get_config()
    +     61 iterable_with_config = (
    +     62     (_with_config(delayed_func, config), args, kwargs)
    +     63     for delayed_func, args, kwargs in iterable
    +     64 )
    +---> 65 return super().__call__(iterable_with_config)
    +
    +File ~/.local/lib/python3.10/site-packages/joblib/parallel.py:1863, in Parallel.__call__(self, iterable)
    +   1861     output = self._get_sequential_output(iterable)
    +   1862     next(output)
    +-> 1863     return output if self.return_generator else list(output)
    +   1865 # Let's create an ID that uniquely identifies the current call. If the
    +   1866 # call is interrupted early and that the same instance is immediately
    +   1867 # re-used, this id will be used to prevent workers that were
    +   1868 # concurrently finalizing a task from the previous call to run the
    +   1869 # callback.
    +   1870 with self._lock:
    +
    +File ~/.local/lib/python3.10/site-packages/joblib/parallel.py:1792, in Parallel._get_sequential_output(self, iterable)
    +   1790 self.n_dispatched_batches += 1
    +   1791 self.n_dispatched_tasks += 1
    +-> 1792 res = func(*args, **kwargs)
    +   1793 self.n_completed_tasks += 1
    +   1794 self.print_progress()
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/utils/parallel.py:127, in _FuncWrapper.__call__(self, *args, **kwargs)
    +    125     config = {}
    +    126 with config_context(**config):
    +--> 127     return self.function(*args, **kwargs)
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:1115, in _fit_and_predict(estimator, X, y, train, test, verbose, fit_params, method)
    +   1113     estimator.fit(X_train, **fit_params)
    +   1114 else:
    +-> 1115     estimator.fit(X_train, y_train, **fit_params)
    +   1116 func = getattr(estimator, method)
    +   1117 predictions = func(X_test)
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/base.py:1152, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)
    +   1145     estimator._validate_params()
    +   1147 with config_context(
    +   1148     skip_parameter_validation=(
    +   1149         prefer_skip_nested_validation or global_skip_validation
    +   1150     )
    +   1151 ):
    +-> 1152     return fit_method(estimator, *args, **kwargs)
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/svm/_base.py:190, in BaseLibSVM.fit(self, X, y, sample_weight)
    +    188     check_consistent_length(X, y)
    +    189 else:
    +--> 190     X, y = self._validate_data(
    +    191         X,
    +    192         y,
    +    193         dtype=np.float64,
    +    194         order="C",
    +    195         accept_sparse="csr",
    +    196         accept_large_sparse=False,
    +    197     )
    +    199 y = self._validate_targets(y)
    +    201 sample_weight = np.asarray(
    +    202     [] if sample_weight is None else sample_weight, dtype=np.float64
    +    203 )
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/base.py:622, in BaseEstimator._validate_data(self, X, y, reset, validate_separately, cast_to_ndarray, **check_params)
    +    620         y = check_array(y, input_name="y", **check_y_params)
    +    621     else:
    +--> 622         X, y = check_X_y(X, y, **check_params)
    +    623     out = X, y
    +    625 if not no_val_X and check_params.get("ensure_2d", True):
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/utils/validation.py:1162, in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
    +   1142     raise ValueError(
    +   1143         f"{estimator_name} requires y to be passed, but the target y is None"
    +   1144     )
    +   1146 X = check_array(
    +   1147     X,
    +   1148     accept_sparse=accept_sparse,
    +   (...)
    +   1159     input_name="X",
    +   1160 )
    +-> 1162 y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator)
    +   1164 check_consistent_length(X, y)
    +   1166 return X, y
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/utils/validation.py:1183, in _check_y(y, multi_output, y_numeric, estimator)
    +   1181 else:
    +   1182     estimator_name = _check_estimator_name(estimator)
    +-> 1183     y = column_or_1d(y, warn=True)
    +   1184     _assert_all_finite(y, input_name="y", estimator_name=estimator_name)
    +   1185     _ensure_no_complex_data(y)
    +
    +File ~/.local/lib/python3.10/site-packages/sklearn/utils/validation.py:1244, in column_or_1d(y, dtype, warn)
    +   1233         warnings.warn(
    +   1234             (
    +   1235                 "A column-vector y was passed when a 1d array was"
    +   (...)
    +   1240             stacklevel=2,
    +   1241         )
    +   1242     return _asarray_with_order(xp.reshape(y, (-1,)), order="C", xp=xp)
    +-> 1244 raise ValueError(
    +   1245     "y should be a 1d array, got an array of shape {} instead.".format(shape)
    +   1246 )
    +
    +ValueError: y should be a 1d array, got an array of shape (598, 10) instead.
     
    diff --git a/_images/2.10_dimensionality_reduction_10_0.png b/_images/2.10_dimensionality_reduction_10_0.png index 595e2b3b435b87b647415a48dc4b1ab89b7c1913..a74390c8a68a39ab19ef69941a0cb7bfb61311ad 100644 GIT binary patch literal 45748 zcmbq*cRZH;8@76SB8ifaL{wIibXSs5lD$(=MmCkbcO?lSNjAw&5oND3vO=gNB=gP= z+3P(n&$~YFzwaNv&#x!B@9X+r=QxhzJkHBcRas^SH48Nb1;q|ISt)f2icM+w-wUd( z_?sMF^%VTy8T*Tx_Lr1{nZ3QW zoyf6c7XSMn2w2&g9y^(xn}HA6W-Y5_M?pcSPyBCFnnbEOKA%HQ>b!^ z*u;7vAXIqk{p@Lu<1~j3{&TSTk@ShE!Jl!3V)jLY4J)!0o-AwVS?lzQ?pb=>)5ql5%QUgP znWnL#X-q5o;>b)PN&T! z;Yx@q zGM7xw4BJO3a@j?x%%=Ai3G`Y=D00nom2CQYGS(w5e{_?B5;>6WM9P`VkuIrig_ECJ z$TP=TX;o(QiSwUgwSKw(i`QKIs_9C<*Gh0?Z0z8V+*>QZWhDCYJxB8wtkyf%=Sb{V z@B|o|H>F;CzE)knz_jA+^@na@)N3`%&e^$kVBpYtx7U2n6y18SglMBL4&0x~|HF;< zHw52L&iBv9j|9)A)~D;r@iX=}=&cFqtxbpH`-yPzsm`--baEP=b=~59-o(V@p>$&N zlDXKfr%ds9=rNbJdT%N&E*1{DaEShc4eQ+895c<<=B0G8T^e`Q@hx`sHw2%zkM0VT zK2GCpM)L0$etB*q44d)qR7!;xRz2^1IFM)2UnG!cVHh=Jcf!|IJaZ$QIGS(L4$Ln{ zMn>veSp_>5Ds5l;IS>u#YaESJR~x= z&*xm-hh}!-2K|{fAEuP>O1mnZpjsj*%6n#EhGnPoH&rJ*rV>^6FE3s^y`w_sP(@s9 z@I&>@;yV8wmy8terg(vkBdR_~{2Qjr&xxn7>x{+WUpUF0$&8>eiG=zx9D(T8RAZW3 zou~Hg+c!2oo?TQ_-`Cf-{aBgmeq5xgD3@pXdPwlxR__m#P3b}Y#}wN%`U2MPk8FJ2 zQ)dmiCABG^X7X9CGUpKT^_Skn)4Fs+koiqvpZZXHI(Btu^RTu>R&dc z8m#b{$h*0@AsmGwHBKbc-7UI~)6<@M9-A;YXuRUN?&niWQd+b^u;f|1&CRVgBN+%X z*Ea886=x4?yY|~7WFu5;GM&FSefIA9xWA^bc_6pjvTfL2`Rl^04WsL1skE_Vh6v)x zrfKI)?3IkeP7nH~gmKtX`BRR?I}Xf0lFDcBlVT2(t`TRV_K8DIk2`AV=okyLvW-&c zRVj~E7pmi+v=0oOjgF44aeVO0lH5D9IB`TI#k@Z9vs&oYUuDgHlJor36?o$6>A!?& z(>16&^9ntdPu)FtM>os2XVTQubIoVh^^HE!wBMlYZB9q+|iBoCFy1)dGYv~Jd4eDDONq>jfDJ0 zi;hX%RhMxmo{rrYvsrxu-$c8^Q&XiE$JEN(OGQV1eobWE^FWg0S$KF0Nr~;uwPzP| zuN{t5qz|Y@2|9LPvv09nk~l^?d)~S8y!kQ#KEFk!j*DCqW*c@g-)xa`~LB+nJfKKy&S>LOh;Mr=4Bc(Dlo|*QZLWm7ncAJ~lb2P*^-#q;jZdxKdy>&Qv$%2nz7ALqYwj z{EUOz=^eM}X?>GLCeEKok?HWE_cGODj8v5NXO>RfwdfuvpFCYFw^;4aQT)e5OYD@05!0~Yld!6ux zVjsy~DMPJcfH{^590_{l%}_d_(Ytq2UF-?rX0Zku*6w-9Pt8)SnEL zK4`C#s+(mP#f85$i;@;)Ly(oNuTF+4rw)#p+1Z5-51ZEy=4e0pm&&(NQBhI!%^RYR znVN1Ih>;!R6B}ch800TgW)BOtJ^I6p#3J^AZ2KtVYS#1#iJ229t5Y>zD>aHrN>lB) zU~;(UaJcfylHTf9y+H-NrB;vl_4=!2lESRwuT#?zN}CYerKMtuZB^u%UKh5YenBy@ zqv7i8bMwLS`JKtvUbkB2r+>XUV0)&bS1?f8JAP$=`%!T4Za=AqHT@L$lildIqi5oO z^z_sS(jXKo(6|#+f0s?_rE6I0FjWc;yckc^?hiPZ+SW_C@a~d6{sJ>PP6UE#r=U z)ds=tJLYW}^-_c7k;?JSUTK>hUdp&v_C5~wTIpX|%32qp$SPkGIc@dR{l;DDt=?O_ zKP-z|F@Ln1G1&IyWGr1={w)!Oc0=Z^0RaI*S-fn)Cvd#Q!E{T@i9O`sCu5V!MrU0$ z`1U-g_@NZ`jzVU1RVQpj=Z_w~R`$w?&&!Pp=vp;zARPZ?0Kd5=qyPXXI?2iHMIk6=eQA z?pSB?*1lK=4IeQbc4S}!e1|TtKea-6no82F66Jz z^-Q-a9GkjTK6lG~u|aPrYbC7QcB3xE?UuUw#WH_t(H+kN_nBheC)||1`S2&beSuqJ zm3@^{FC?q$8yb2`C*I8*9UB|_Y?%+vBOFxO)I=L1yQPhETq#tF^Me`bg?c&)G_DSH zLp5DP`IFz~h{#9|#(?9@G!Lr{>W}wrvmJ4oBB;?qVf=Donzq=x|F2O3lN>y@(`6e_?P(F zRPapqq-S_#<%LY$()wFjrP8OOldoiKdaRr}dBW@RiIlbr-EwHwCcAV(`h^dL%JGHy z+uw|W zTl#hfaq`kXJ<$yM z2JS?kwJqcy9Ihz0va}4kl5sIzos|8nUAU; znsKq$F}-ywz_IwKsp_hy-h|p^zCAx($op}5fzlU>WHmA_)6&uwSody5;l7z$KR0(O zu|<~gRCU|={Zl~kCjuibXg%|>=+u1Xz+W)=d#z2)N2k0eJmLPTCwqLeOsOvFG;2+- z%KBfG^eY+nEA?;YvY-9!2tciQq#s@GELt5>gXL~$YaCf&(ryGmSU5_Ylr zbNgoK|c1dF^W6? zjZkLTyNjMjBnf~|pP8uUCaQ*ph5#OhyoChaCJ=7J>Wi;Cb?OwrG~(PKn;BVxyx?!xe1P6BZD++LNrDa9jEKIX@YD21!8eaG zi*mfZYc7daZtQ?Vu?|4bURqxQJKd(-_J5&vUdDh&(g$%;ep2_qVUyJpdL}Okgd1}l32#8W z;CI1SkYTiRbdmA#-1L5r8%^QEek4hRI@Gix?^=7WM&b(&J*_(1-Cg+D830lq-ih?DVYNzj@k?}Q2;l8m} z$?9Au(UYisoJU{hPn^x$Ex;HeJ8(CXUdH8nc1oYO8o|?IMCeBDNzH#5os~^(!{Kvr zae=Yd%mwm=QIC#}QdITZKn)n^L3-#jtFvs^-rHZJs(9^ z@dviSMYNCh3eyJlf|qdJ_NA+^WDeHFq5jgHG-Veo%A? z9rMfLfxU%2ljQoaBfpE3GrsnHdwt!#e_zk@Zp%vl}1` zO}LNfUbSt=`QF`aY-Odw7=ePO$`^)^U}a-_BA-mP)tmXjd12O}!En8luQ%%=oI3M( z!yBf5|54lCAXj#$B1&#gYR&(O-mwCOhlh~P-#a@KTg=dRxA|5g2U>?o*RNkkjHRTc zpfRF&$|uv0J4VYMssO79>PPX%&tGL_0oZt!$1A5EWIwi(YNwx6?Vv5%_TRtn_}Ng0 zuDzBPk2eJX{qajK4EPOl-_SaSBv9BS=n$=f|^ZX%t4z}QiezE46-;Tw& zZIM_LXsh!*Uh$|&Xq6qepKWInsO{^p%x51J!S~i}eDA_%(I)y4x%$&BVtXH)2l8bL zhT0XClAV_)jmon5p=Ex<&!23B2HTpf0PO_N1)3zJl3y-tVCWD^!33)f)EH9%OCVSR zKmB0bYAO-{t+?0E52M*G= z(m9ShAeKr@TU*=c_U%W&Fh$)0&@-=O`1A{J*}TbJoc-&~up5F8&7)fTe%oZOt2rhy zAjoea$g^D@^BoIsK#OAIJ6t|b>BblKqTBNA+qac~gGHH%qeTqdsLl9@7BdacW-uqq zp0Y+H-UIzN#l-=}S_lQ#(l~pzU@6Xl8JE7P0*zr%KBz_v)VqRfjL*Nbh=#1g8A4@! z^*+%E-Kr9`*Qcka501<7vh4_?gd)Kf9cprPL+f$Sv;L*lJ{4N=@6iU%=*AbLBDfND zsunX69w!bNy<*s21f56DO02x+ST{RB3PqjK6QKFM*&IP#_w)5~uT=}ue5|Pf!$yju zmTU0oGjB~$rK+)EruB_T;oaU`TByRUv);mbL|;9_zfI;sw-_+t_ZZTx<23)YJFwq; z!RPrVI)yjjPQS2ooJ>}G<>dTsT3_R>8k`|F+}&AgY^-&zGBN-tn~|PO+uPjdHc^a9 z*+sQQ_7FW}x8cVECfYzk_99RmTC9$ zK3TF>s4{*@`98i)rdNsTWI)e3b(u`Q`>_;JG^ z)C)`vKs_Vk;y&82qNSJWsyJGqOSNWYX$$nvETT-Yva+H%%cN^mkY^A($CY;Lv;+1R zWGaZndOlw+h&mZ7J`%*o;4d?D$mU$KdPt5%c~3LsK?8$(IBkng?Q+jpKplukh<7AB zBO~MQ`DKVZmv|V^8384=+l_G}A8wpGuoG+<#{d#~?!Y;SsUfneS?zV?nZK@LkVkT? zZN6}q%vyF8+%?uxZ!OEokwljcZ;-q2y~XU%(LmN3U~xIqS<8F{enz(&Q))iL_G*N3 zEGk5IP0E3lvNKOhPtVlDBNlyjbqtaSSj2SN*souA0E<)GLi)DYbhY0;)#4Bfa%V^a zsbi+8@2@b(#!2bx>)*xIBZ(7RsM<(q%Jw4raZ^A+$a~S|#E#nroq6t=2z_7sQ_BG%xnNKoa- z$V=+|?prrhQnpC9>P-*y(R4bxyOVn+QG(GkKHNAk_>1Y7?$cI_&O9J&oW;_rcu^*j zuxdJ>yd;`b#=v!C>rl<1)2i2OqMK<#@9t^F6 zqK{miE)WDyJbk(b^%_Et>>>lgytK2gP@w`6`|dz=A)r0) zumEEKZiNETg|vQm?I`9~Tqokbefy@Vsd*q$(bn4f9P(spJjEQS09yOg24j#)+&6$L zm@}Xtd1-cZY+^!)mDW7J6S{!>^@D)$397%Q2OBh>`J|ZR`}ZidL8rNaFmoW<9}tAL z0N4zqw6~?DM-TrYD0=qP)YNhiDfq`eUS&!LQ!qC}yDvFBthE0)9Sz`bsL0`mtZ<;e zU8g-v=3a#o>ja~SPWkAbKR<3|p{5qt^lu%s-HT8_J;%t)U0kKO`(vI3I*Y_&oeEkj z01Bee`n1w%W}3d4MdY;lDFJmG2OaMCW@yt0NNAELaD?^s)RQGMw09T`Fj{Na8~yv` z=DT+u{X)o1JF8cl#|VsA@-Z9}rkiOho}UbwIPsxd@-TzTty{M~H8nk{GkPe+i9P~i z7OA*Zr+x5vWQzH13kw7o!U_Bm)E2>nlJ=iAt;!=sVu1*Ps*(2fCeCZL2tjIY4oUyd zqC2`nT@!fpGqjzkMlLWsAD@4LU)rgKU2$NKTz$|{*Ee!(G_wSJY@iA_fp|7J3xJ*xJ&?vZ7UCYRXud^9+YbVeyNdCPk?4)WP(5gw~Nw_ii}v9`(iLfb)V5DE-#gFXKq z{OK{TgUOWfd;LOfE(Yr3XU{fR3qOr#+MlF)oaF(kEkLGX+aYF}mt(2ikBS1QtGCxz zR?JfT7(WG8NS;KY69^Ce;EBjM>okE$SRInXs%()9k*w5KfbV*JMZs|&XfObGw&qiR z@!n3%c!C^`peKNSl3gI};sh6a>AZMQ+`0wORRP+N0)w_%jBi~_o2mntz}x;VdzcGl zjH2nPHl;&?NYmg0pzaf<#Y4r=7(85+r#6V@hMQY-b@j!ZjIa7Uo1+!f366X-$zkXpndh6Md%ZRRRK9Wgo=6eSxglVDXtgd<> zT!Z@Gl$WbyYZ@UX0t0uLlkGLC3ov5(6s)>9C8qTymI$LD$A6$!RSE*xQveC8r$4oy zn-dMbs^@{JMe+%6s>R*QN^#^m9WD-QP=)V#jp!qY6UJ&qu1Z|&Wcj){`daf0R7cxF z#n)F3G6tw+wcD`Dh$x}?qP9b3sBd-90an5_4cbOp3qQ&nZC%u6z39I%C&kHe$+3T` zpyX7gAP-{z7*YKCjF&FUm#7pRFfoS4XrO*EW+4uvy2sMVeQwif#p$Xg@2T1?6JGB2 z!6@g6a%yBm#Csc7^NOg3L82TJpg!Ot5El3WqU!VH{31*eO8ksOtJPve_er{vG4($s zKgoohXy!S!+d2>S(sLB$qnnv~B$=~xTV7?G^pWJi&+nc)Cw&_kg6l8JL;^vRS0_|p z+)Q%vVF(Hdst@r!6vS~K*!kE8v~VX{1+6c1h@6gB3{s+0mm`$v9IhgMB7jyBR3A%x zrlX@X&W2_RwkaQfw&n0c!)(+>-Z&K5M}dJD-`5!l;fdeqJO$u}A_mM25&*=G&NR^P zD6$_ooq-deEb{q2u+^?EFpc_8TsrMw5K^4G7Og07Vd&^6pvR9N2MY@0^u>3diZ-^j zeFD_OJ_D@~pNlxPv$MmMV%m!+YNZ5(Of+W!QlBo`qe6#iI4(L-avMi9quT|LBXtVQ zSy1ZL{b@gs&Y}$qt)5~F28CYuIbX(27Kb+h+8aJ(Fa~5$KHS$@nBVZnMY9|EoyHIt z(El&&@afXF*Lsn*?Rp|`30Zs|!f_V4?14$aoP?0=W`q?qW9n=le9LcqazN+iu z10*P*SN7@4m#5mKASupI&CL?F;eX$h3RU+fOvFh}ZMM_kvC%knG^hv_9TSdTYo3EY zta{3h+Qr=NOz9kd(oCLOURD1tc>MSWgfI{;&==Yv#7oAPi7me+GcyT6kD|r~ow7BV z6U5U{dTJ305_DWZILOWMp^=vWE!5Kwh2I*T6~W_2umH&cpyME^eKz-6Ggk^Cml61j zV(2=W*RJ)!Ix_7desli6OHHJHic6gl?06@v-r3!KcqbLOHmVyK!GDSss42#x`Bpt# z@y+Onf;1QEn|*k10Yy9LApW4Kng~L1>^Ota)RIC6MeIRGL}~O@p)U@7s5fE%+bgfw7u$Y8zOM*2;b3U0s*w;CGP`I90DXSC=U9nsSMI zeIWk1Ig8h_)%tkq>|+qhT|0Az!*yN#@_)JpC~_UN@UYjZAHeLV|Xp-ZBf z!B>QGTXYg#VPu34GBw7M+U;R^7bX2pv(iEr%lQn|QJ)zDH|SM3q1GwU5Lt@a;EQVX zZd!O+^2rtWMJU)wsyxtVU+PsjDmR-SAX}#&%e+eQS7!dQ+r>9q7NWk=KA8+ zzCdXp6!c5f2yt#e`mZ+u22$HTOwPl$fDtdU(p;Y*xCZPNL59p-bk{XeyvVsr*K5@Q zdHaY8<1i#CRF7C?nQL5r7yI18BiNs1Evm>*yq z1L9Wqa2{hVhzA(R4K|+cA+*6plfCThm~?c^y2RBWm4L~tg%$Z3L+|>%pzt8Ze_wB+ z1qAQe*W0vqz_ySTdMjX^c@(BP?!U?x-(7@#`+>f8ALLqn@|K!au~wmKYXGw6?F;XRT1{ zt@JSs)}Z5K3`dyYkR8gS=Hg(sgSYgSS@aevm;`D1wIpJ>?-9e|L~UX&zu_o=A_55o zH6Gn5rDJV?TOz~<0wQlEildN8;+2f-H*YAqVi%#+q8Otov@)r*kwAu@$-g*DFJpkV z%$9YAud2KWnEkj>;!6& zXYvCVbddsoTl{1ye&JNK$IB;Ew#rQMZ@Og+Dlzs$pU8;!EI$_Dn_})9=Q~=I^AI%-D28$>x>E2b-^@|eTbCH_qImR(#mP;>F9fP+KxWWSK#G9} zajoDlF&tlSo=pF7i^PHm*>US^Y|uM1IMxVRwVBMGe#^C0RAsU_*mi&FmFJmyX3pI%H$Twt=SDvw(?mXA?ck z=?<8xg1X(z^#^4Fp1hrg(XrMc^3V|A6-Iw5A~FvJ($&*t!=77zR&Cka{OnTkjMvn$ zwTl3mrH1j#)p{!zi8k4@?B=Diha0Zf-uY$dAg^A(t~2U@g=NE606PJ%#|Y{YpkHU6 zIXs|XS!aT*6G2VT9sH|bXcz7A0V`~vn(wuiecSPLGgZq)zk^kHM#g;*Dsa%aE93zq zw++qr$@#%uKf##L8|_6JQB>g;0Pfdy86=DWP_58R6QR$_`)Kk@V_+WL_(YM**eS)? zG3G~iaJ2yuUp3;~P3e=XB^XT1VXlZ7q`v-nw#Zy!fK*PiXA62594m4O_ae4~w4rZ9 z6k$yNaN|zqC~7fge;v24NE;Vq9tjAJkV^&>7U!`|M15^BV`!d%e+fU)slT{uchGNO z7=jEW92&ZeAjvs`lt76<{X3(KQJHq3tq4iVBSBsFkOUybZcEP_DRpf8MWJ7Xh;J6-K({Fpa0Ue;f99}X( z=BGXvt85+yzwO}1DXEK;mzOuA_JeGoSSv~Y2&n2x^pV?JE`I&X{;NE?2b8A+uImx= zaEQFgZy?*+fa+r00HsD<%n5%k{3F6lQ{cHOBC*m-H)x~twj)Vfz%VN1ksk~r5O!Cm zaobcIW28HV|H|E`qfUOV`WZcRxS0t<9_Iw4lkp2oKs4#5tg4O=(s}+t)SwJ5Zo^}3 z-8>8q?mluU{>d{bnSjSao*r|ADphi>Ym_O~oCOw663Y%;TcPvR3vJ8S?W52oVIDx2 z%&r6qCAsVmlop!k5~KmSJR>SvH96n#Tmle)FYJjz834<<1Aop1i|Di)*Cd-q*3^eBLR% z`}#N`sx*78&6F%p6r*i`0b8G@lp8qi*VIo`GLY1)cH;-TS0dG3@o+uRNAtN`oGI8R zt1_Svd;f95tthTyevTJ#xr!ug-{m8`)t=Q?JzYv591wNGN2Bo3`C$$1md(OJ-sVy0 zUVoNGv+SU9Q*;E5PfWnig#jc8&(`DnkhOxNC0Gw zlC`B#=eU}y?9Q@b97uy|ZDj(OFaX! zpY2STaBDuRhJ*xbia!U`I4IMPWqjBNxTXrSeEOzTom3NqO+}S$Z)Ix^V2k4es@#<; z&WnTL!HpJBH=!rowzQPrp5X2M59Vu1391KJX?Iimpol|7aQVbNbQNY8w&87RRcd5k zI&bUCr)j)z2=aLE;O62oVkmV+Hy}`Upft)vdhHPgY9Z5lK^kC~ceiimUc;s0>kwv9 zb<&Ay5QrdX7m?*Jy zP<$>s7;ZES)P-_?kY@nbQKoL(x}_jc0fQdSpa47w%x7r`9k}p7r)7Q%X-6AruuE2x zL2N=TTy=e0Hq2az)7Ig4+F$mlu^Ai}j#X~ROz$C_pxGADAf>{rL_OUGLDCdL4u;ES zBu>VFUYEEME}LWQ4iEmO;WR4~CSFL|(C(5i@#U?l8k5yrz)i#Q@Sl41w!;XD9DIQA zbvFL|8K>B=$KXDQ4aT_2JNhD&YCrmH%aBbGyLs!-q5j}DCBJU2smc4Fx=Bjt)MLL# zW{VhZ;LOd}qU4hSp`hcM%Ui+=5z2RX=B$?@nb*v0q=QoDl_Li6ggI=7Srf5rNqQr(&Rh zev!?u!1xV*tbJA`=gWK0K}DP4*{`b&GRWrXK7o_Lg=*+-uZBfM4ft+a&FL2UUO)S~ zumqff#B;+(NvxCCMN#jBs07)9-@>9U%!*L}&gAK{fW2W6T049%z_dg|`Ka2U_0CDg z0N6zVQF7j9TP$bCzf~RjpmPi(S(QTVkKnY>4fJoGif&Cq6MCk~bKg7))_{f>9*(2s z_QOwTPLx2thSa8;RrBKq3%Ua;#*?}v`qMGzzZ?NNIX}_;8iut{pON43bbJPd+Ck0k zLnm6N+$=3=??6mpx)t4+5;KX}L%&O0jD%lOhjJ=PKPIf`UNYvK^KuM_IrcDhH}`Xv zOjXVAdZyTGt!Z)&LL_~lv~g|1?>B^|iUS3`r^cs4n1n-t;Uf5)uIHjLTvPR^xtCtNjygwoGD7`3h&qV>K3dJ38}d zSpR}jb;A|3i)QPfkj?8Wp>N-?uP@YK#s-`jBKxMGfak0zCMEM&y$Q)2lJBxUrIz(T z(&nRZ(RG}O{V$YwLUvvf=oErw4@|`VCaDh2i)$bIgeEkhEj5S_Cg4)UJ*_@G>(~bh=g(7h84=kf&-2LKV`Bu_MuLO_tb*Xw z($N9rl23jTo-bebpsD<|9rQa}`6Y}qW+WrZ!)5V=E%9)eh2$2SC!*S# z?E7QydN3e$F{*?%7HH0Q|`=IfiyROiFFA zV*{{71|4B=hhTyEAjIk#cSvf(_Bas)b$VNl zif-%^4q7?8Vb(Pgl6%`Ru)e&$CUG-2O8ce*t4vce=8RC901jT5M?KPqfdtKASmtWF zMpAP(lsC?BtBbPFttq|KAMWRFo_S+&opG<4b=4;Y2BCt{<1qoe2J#)> zY7x*}qLofDtySp#B5E*dFUmhqG9n40@PF*#>C|||iODokH(^$|Mi<@LYHYs${P|4A zN@ZU{QJaHKeHDT_&ti9Q4XC=%hpPn-xkKfEVDbFmvBK^UTt^!k4h7r~hRhG1JdNM| z zRbP2ivBkv1K=OW@pI_4$eVUl$7%{$aj_3I|Y+5jv9POyZ?t6;t-v5v*87$V_#) zX}4_Jm$oZpWY9WGh!E315B1Nzr8XwMy4VrAEvdX zac*?WcU{z9c}FO1yB?1Qfo&`c3pll)^tg{1vR6863_v;PTSi`7*p;4(rL7v9B-LJ< z{Tysey=*q`4p5s?h14I>7Pw#2GdA|>Q_f8i3+|9uHi6k=Q0*6t-H=o;-xi-uSE+Mz z{30n|*VrsRa#@WhZr8l)gx0faBtK*nks*8Qr*6fsFhe=}5)~&PRG%4Cp4#W$Q-keZ zBIjOqSB-rXq}do5UV7Q1d?D9~A>r5VHRl&Rg_%d3UQ~6-fpY8!k(Daaf%*(0gt17& zpiu&2+ ztDP_%K(z-*yDspa*7riko`1d16D9-gi5*VcdqXupt{%8A_xksURBggTYbKL-aGW&c zP@s*WI)LjW3BI`YdU`g?D;85%bJrsi@dey{QI|!R7tfapQCFXkq+;i9z&}yXYKQ7y zkh%OhF%_0kEMZ+pYGTxbwaW;OJq}1QDzU)PJF5~Ny?Rf^@4o*LlVmj>ay_4&q z^Y&g2=H8BOysa0{!!6XJ=k;`pW%jD;Jl&H8w%} z6Z|Dp`#PE_N5Y85Ai03yY>=@QRtE@%wq-M&sH-ijuhUN#Ux+_uY5L?=A1=l)6hlC!MO5bYJj7 zl`(oBG(cEUP&0PB`CKT3J&^ie+#fNL{@&5i8+KLq!;B~j5r(hJ|HKH}-IK5zQnj6V z8|Zo&$??cM3ZP9wRnpTc$CAVn_Awi+>fC|%0Mmqdl91K*p2GOXNPlG36?Wj^QEuuE zHI!GtB*PDFQugMEsDm;}ZP>*^ICPxEOv{{>I0NvqPcHOqo>3_vDL5*lw;jF{L1IC! z>QiIHQmgPkRND%9SY=A*tLU!ir!Bz&L+DHV4SlfpBC#>Vf(D5|wT4zQF(Ckrd`M!} zRSaxer?RD^t@Po+%25CIP?*7t zuh|=mXbgz0!4P2Mi%KDIzrD!x?^jnc>L%pvdFe!ob~n+h+*&&n7tEv1dEQBw6+?vt zRoSNJ6kr6AQBi1Y_)Uq~OA;5w z2`K~?v~t43Cs$aIVh%Gi3MQCUSs78rOig7z%A*rj|t9w?Q938=An+&D&p~b5|SS59F zu!ScsU%~F|etw;HxCT+UoeJ)6vnHWy}Fbo1%qA|FK%qZ+1*sw`X`FMvrVjCVH7beINZ-I~^Vt{=nc5T&pPr+5yyI*FT5px3ShF0H-Q)#m^q* z73U;2!c8eSTz6g(CpyFUI84DfdvFw3sfpD>gbD_$cqIZ=*KCR%t1qM-rw2GIxS`L< zxBuJB*DrTqNS~V{=y0_ijc+AHZs15Tu@PBsX}5!uodJYVlYzwMy%P;-8}}vCswrRx1mNtbYi1}3CTPv$1L{Cd9hn; z_V3a*b`;P+tLZB^E(~1NftALy94kMMXHJ3d@-RGkS^eS0a}Af~ZK+GtYagvvwyrm? z&#b?JWt4}ZuPuI!w6RZ{tPoDD3HqO?lbiTA#r!8zVRm*l{OSo%(4s!~&Gd`s%!& z6ldzVGbQun@O3!%+_*f4Qn%>WP* z3xx2o+7`y}*Ta|WFNbWvA-Z{ zx|z#&VMn!^F4jX>0$}lJ1tm z@&{ie3TxR+?Bt*6hGTCxc1zC8xo#Ux`}*}Vavx0%K;LsZG`?1=UF(FuN8GyJlAu{) zs{J`JR@y}(QnjxY#Z>)2Q*#bh+W5Ik8a&GIbiv^8jGzBMGb=kg$bD_|RlYq?c8osV ze`tIxOkPOQ+R6$cYZRVaUhbur*`_5^)fyZetdL4oDVStyg*SpMQL@21H?vsaI?G3x z^^$}JnunQO&r&s8Hx270RFw_ z7Slv?H_u|ncU{bD!Pl#n;Gn}i?#H+tRADo;4PA42@1RpQmzy=^bIg4cX2`Q`E}Ut% zTuImh#7a&?iXZ5v^g(SwiEkE1!&e`AS3i zCxSDV6XRsp8#ecft$y4PbnYQn|N849snfRjOHMbm_6R+P3#cGoxy_*8%a@(jgNQo^tcn?`M7fWmjC@MHsTvu91s*(X3}`={p_hA${{qL`SV~i9-;$tu zRs~-NXTBf}uk+5#p*#ybPXJDIo^1F$F{#WPl@FhTQwUW9uc<-v*cDJ6v?n5Q{)Y`K z-ee?;XHb5CC-M8thx9T&uYRkQ9c9yDS$`(iSIfEKGUR961la;=aGSfCPoJV~mK-nk z==lH-uoU#Cl6~zlEY|3B-Iga#os!1xkcEYkd^2{E0l+5bp>%53)m6LJVeLaFUigLL zA^P7-I&P}}E!VQep6oYnd%iumO& za*)TG-ukFlqu%l@uW=IlwFF@%*0A^hOLH`&4HG+(miP6~A3t6|OB#1fuFvWm7avt{ zHo6~LB;3?SQfi7LDPelWySLpT7W-`2eZYqQhVvdbiqR14ln+jR8=a*TAM&Pt%%@29 zz9i9iiAQ&f^0h4<4A&E((H-9( zERiX^{arqPJMt{dDWc_*v5^Ky1SbKM0yqWmIw%FG)#RDjj6w)6Pj(&P?37ERy%(L&z~J9`Gfg9rpE#RY>tqeZ}aMgWd<4J;$%j0#)rXRzka)a98E8oCk~7N~}>M>d!p7B9Ps90GvwvGWl$faQjpxjJtX>*mVVj2A)T5A+tdmK~^x#DLi{PY5Aq9m|oh|OL%1x)tQCZ zvreEL>N@#A9od?Pq8srJmRchr{E~P)d3C-A1VAC0Q-7-)-ZX`XM^Uq7l5cl76TYih zg*@(zUALNN>#PT$P9zXH^@T=?l-u>f7G?jRNg+EsA51y#vm;clzC1RQJl{3D1<0U9V zLknGG@tTDNVNgPzWvobIO9jLa3&X5699X(CBYpqzL*#1p^(ku&Y?--BRkf(U?Z8_< zkR7-R^yE61kT)%`coL}tnpR)$|M!bRvO20dPy^8Gj{_Kbz~=ExG;>s3FmR5aV@Mw0 zmaE%8NKV@jv1`K$OCMw~SUGqfVj*;6c{rr!QX2^#Huy-|9e|XCgY3qfXR-K$+5+3t zgR5E2>S?s{cy2&nm@&f~0h9wHAqG3PA2|(3L5{?Z4Au&!KvLy$b+M6$GY>i!k#y~u z!>7cFpA#4kHVl4yD~-u4>cxgf2e!bro4N1`SqoP==!nDy*@wUhYNF*Jvft$?7L68L zf<56Q;s}$!c5XpDC`@hoFObTYuA6Gx3LngR7JXbzmagd#s>ub!x0lrDv2Ds%4s zXh+`B;5dv6?PZ~#V1lF&Stv}sGT~Hyr1Te|jSs7e!+j*N=S)SX zvz{+dHp2TCIF?q+Vszk8#(NG(EV07}BnzTfxq`;ffV<&=eq#Os7lh-`IfS#$v#`TX zJ5E1yREU{oV}&Utin=EvkEv1+?_S!^8S?OxGrg|+iw62- zeMp`gYqaQvvKRG4*|;MW>zxD9TsA~3Vj-nAQMUVXv1&8ZNSFps9EFURAV$CN44_8V zcv9fR;SU+G)WEwtAV)-{d~%=dH={CXp8p=aw-hc|20-EUGLLE8Xr; z_%No<2!#qY0q+%vDK~zr#rp)KQlY3rJE_1KvHOO42Qf0YNn)n&&)lXAAEoPV%b&T;*b#`Zo#;|NDM@f z5AYOVP?b1ZQ&WStY+$(5I_?-eDCQT$#}XJ<{9L-a-^TOj6lS}eEP=Lo`BEWe@~8-q zkkIzmcqbGFQNESxvy8zt$yG~9J1b`XdTWYa-PjD}WTt^q3P>jO5Ee-QbHc)bg95Zg zAw`&&ye0Y|#{2=*Xt~cSwsXj02o8ZRlR6)cfvi`OHu4YIV_=Pj!DKY6Tv;F-=6AJ> zujmyxE+in}6E<$_p2RT`CbJd1u+cW?3O^%|hY?=K5yb^U4{Z(aCnD@kjKkRfMoX=C zbICe@eS@^kv#g1_T0VUYXINx;w*15SZ+?rJpoGM+w@-rDW@1gz0isf{vH+nO44f>V ztS%Q-;@=Un^9&Afl2dV1@(PfgCt2ozETA=mq?d@}OZL-@ujNB&+$bsT1 z2z*=D0y^^7-dneHo!l^oJO#W>XqESPwG|4ZfhA*;Ac^sC(23Cwj(^lJ&FX<%PG8@) zk#?a^%ee2hGcVMRw)n;vb%nRhX-@eWO1t8qjbRSen_rj2LuzdRV$0pzJj&M&r*2 zQ`|j!R*pZz-GFb&;D!hxFOlsaI!5Z-y)Xm#qtp>_Adv+xe!eAk5Jc48Adqy}pn9ZO zyAnrF&k&2LF0V|NIjmNdt;{o4R*)Xy4*hv*H)DNk)De7oMEQg=7$_61CWFj66?>S> z-vz`lcyPCc6T%ygY#ubVUY%Ou!6e3kU3`tP@)CmnkIc?ZaQ_n@nh~cm?kXRb`H=|8 zoH;4Hzgsbn#t(bDdU%PS;HQ$YWu%dPe!ieP(eNMjdVPAyWMWVHWap+Lr?sZ0TacT8 zDgayH9;Kr*>8#Cy@RO^OFNyXG7aj57B5xJcq-ZzyhKll+CsTb|CKnnmfmwVIjT1E3 z%L|w-CnEJ*FgCCR*-B!u=SAKXH5F4J=1{+W#Z_K4lX`#a_HwQ6O$ut|4KB?3ES}PB zpbdbE%e)|+3I_x(E)G^ERRz>gNH$BxmQTHT#6fr6W$&Nux5KwzIPI%AaX!Q`Y(AE* z8_b76yw4YV_dpp6`0@GWvER@}g0XY7c^q9u;h27&VBdNJR$n#~7e0Zz2p{UkRO9Jx(#0u{KjDafrrE1fB10j zSen2ma^ZgoBb1F{IoFr`>wwpY(r8~)g5a02h^s-x;%{)FBU)eXt#gz$+P4o+Tr!gI>4i8yO920%ZTRpWAcfD@h4Ua_J(oUfXP4!fY{atkhy0bWX=W<# zCqy}Kc9C&7SEli9Ms^p!nJ%3-$1_S=x*#=jVQLX(6kW1O>~o&Q_gk@V(4YJ&2a2?E zyOs}4vxY2jHim4JKDny|dkwEx;7SO+4AWf4)q*fJq{5bQ$-1b2Jsb`7oTtv5DX0eh z%kXUkBU?Wya+SNPGFKw`gx2>DHOgFUboQtep}AV2saDAB)x8@tApRDn1A>Z?CWE{R zMObciho>%CP(?73y_Lt{iN=UJk1~gmmxcVSVAXk{*R~U|;Q%>zH0HNJI2E91YI|(1 z&_E6nU)(_O_^0Y2f`^|F@w%L)mQNBKttg=gH)xT91}_Y$*j$*P^#I8RssjSnQGLB@ zuR`u#cMA$=)gO%wU`1($A9w;Yd7(jzUrSHr;SpQ(SSopZJ5 z1NPp^8_%0@P4VA;0Z$B=ufnk9VYKYH+%RL1jqkay~ z&I?n_l%)DFT4pXF_(xQ@Q2fwJ5WgRXc7)l~w%4xscF!aae4}T5pE_t%bOZV3Woi)&s_OA`GMtlxbvs^9q=% zxGGuWy2<+bG`n~8C!3=liUyEfusP_4 z^LK-wMOQVw?o`;SbKTkYZD^x3PMZTtn^k4RN;Len{xU)U3I%p}k)Qh4;e1t3r-wJV zN_1|7Fwf6%DqJd>1bR=X53BAnjsEiU^;w0(A9_j0!~4;riN$D@`4>g^;(25#9GQfR z91)mwF7xQyv=W;mP^RKS{ojag$WN)Q9Y}IrZK7N=N4_)a_U${#$;TjGA@ScXH0c&f zlYzAGBy-sCUypeq^J9X?t5$G}0&VCIdk02g`b0HBXEbgTZ{uCa4TxE%KXI6%t6(o- z$b~HpFfYy~UCJt$HrMj2iXy+SwA-7p;{C1Y-B@)6RU^4mxw#<6hnN1qQ4=^J)Ev6wvse3OjQN)s9=vE@&S?Qe_$H6EDjrh z)dd$Htcxgz1Yr{;3?Wu&z)_rnEMyjN3Q4~0k@5Z-H>EQ#F^+j=enfZVL?_N>z5_1_ zF)^VNC4WVHXvgiJN9govQr=WTgX>1M(mT zQ$VPu{2oAp5Ku^b%lSCCA6@t+Dywuz?=o6V+n$-W=p?ZHc{wjv;J>%GCr@+0RGu=5 zhb@q~N1t765HSEUV3$M+y8G6|5wh#E=kEX2;+{FcuB;yW<=JMiqB)Z@O_?tfRzJHp z2ooKsN38>bvbNsKzv{e8@T2x09;8nxRX&BDU#P`!B7ph<9RN&%yujr4-n}tpSwy4< z(KI2WJDT+6@T0M~iv^a|tU38u+d!lC2|1DO*K?CFPb~6#X)*PG>_V9zkRA!H%=@M- zB`)&0s;7@r7}_YYLiw*W<686BBiFY7n$gZ9HLHI8%7|&52*?qLT0q3t5P=Z;A5kAeqlx50-Y>CTY!rya;mv~T&yEQ)*+37- zeA#{aYtu&g*$}V|&KNugFx|-_*7XIACX4XS1$h z+m(U7nKY<&#CRHXq0WK$NdpTT11J~c3HB5SGc`wRQI;*5EVBncc-)|sbUQgVwq8H9siE%C!?P7XEjE4j9&+$H(ij(e?FI;(HUUf-qemt6tUGOW%0#;TELvx=G;7i{U{Z~p&# z91nYHw;PoKbG6y?Pphh`5<0Gy=h$d4b^|P~R3DM`83xAg;;@I5n|4htt2FXD z_oCNVZ2OSe9MD;>`!X9m`fnKZrOy6S+Vf<>k<7^Cg;@3-JmYWCF94-;j?;7CCcIyK^0sq?!AEr#5nC6r~nZLTBO zKB^;HQq1pCi>(|T|LDYM<7b6G{?@IBsHJuldd@ewrLiZtwSTc(YV$mnb$IR<{Gr_$ zGk+D9Q_!^vmt3pb$5>hCgq!qwRkLK}fHpAC`fsJ@44YrjPZ2yqD)6ci!BvKESJ~J) zB{qAlf^$EoM&QsMLpbPbOija!c4yV>0o|c{M>i$3x0H&M%_KLn9FZK;Wb8XKXI*t0 z^=V?3Inf^f$8ou9GDPhvdsU|Xjp^Kp`%-6};@`Q{d_w)vS)$wS)8;KLmJwKL>mTSp z_WpmW7{S%1(3)DF0vUt}^1Ow3J6uch90en!U?1J~5rk42;F)f-RR42DE!p4YSXCZ< z>V!9Z03aAzHK>+j%E?SjO@64@?#Y?i+HZDhapbxv*ckxKFgLdjx#g_9Y~JYlET+8e zzf?Pa!i`Q3yo+BmQN#jJx{9 zUibHOGimRRodgjTHh7@ZneDer4=%42&)A!ulDTNXrFeEL#MrcScqVC#fAo#69O#MX z4$}fJCa`j^n(U65lm+42;e z*{+O02Z>+3n=JUc1pPcAu&x*uZd3yipdj?!eu1e!jlUqPnA*x@1=iHj3?VC# z;gW)f_UU=Yy6x$KYs=;5rD)1z|I_p)@TugSFKbG0KoFXoz|;;!hz>3aSkvpy1w&T| zFlefW|3Vk_^B5v5*bZ!DxUnh>^jN(2(af^nZ5;u3Pdl$W5@DKC(D!^hPiK%gw2rIU zA;q*p?S|5sHkziZ@kh{wqjvN4JHrr|%$FKX3zUZmhG!EaKifpq}f;~6CzAshn-x0KK4 zWfu0yKrm~kB+P5xKy%8l4Xt`Wiw1bj>jW19a{A;(t@!I)^!iD#3wzb=-=4(as=T~> zWucFemKU{JX;SGN-JSum(FlUa2A-_>x}f|${|dD6gYG&3*S4b~2hhe@qRSV!%U&h= zlTV!W(51O=ENr{`C!KN&QS#_s620+SU6I<-m7f#2QDz>EtN9cm6=)AznBnvqE_Zrj zRv0|0LA_BroqT7vdb5$1MCGM0=Nc*9o*6ngH|rYT|59_Zm@PvSiWC{BQt6-=4%`%Z z?b;fuMz`WN1zlXd8P_rVBwWy|cacnuJSPP|&K?j}DD8KTi%b85b!%-C-gDpWXHi>} zJc$0OWo2b0h$#OX5CC#9_k=OA_Ir>0f;T0Y>#lE+-jcpbhg{{xg%~J|o*}2JQS4my z5B0oYhD6wb6pKqqxn3m_4b<3#x2_Y8aS%(GsvMYqOgk~KZFZV%$?XvqwUB3O#-ms# zg7Qnp0Kpt@?~E&NZ{=4JNC(Gs`(*Nc#*7)Y7h7(WUS-(mbgDF|Y_r|o`t+6dz0)ce z$d@3CHDXXuTwDQW!lfhB_a5%isDJG6^0f2UTr8VHQ1ozBrc4>pYnULF@F*?A7>ieK zpUx<5s$5o_3OtbYA3fgY+!&yv95Su)(pBdg=M$gWKZoOQ0sx9Nq$qxoqaX)b6fE;EUfg0ONo4`t6M(lg;>C2$Xw7l_9meH z8_=y7tjxnt+q%&1&E8u1%C*;ih?TKR1Cd{lzhu~35IRb324D;k1aTv36xzkE z-DIaujvCo^6IxPM`6^o@t?BPIm)3u>dzX{DsPa*l$NZ^jZrU0ev-2I`k5J8i|F1)^GKVGh;w7BJs6O%zeVfxJ4z23{kv@@l}4BDy?_i zE!C&O<$knZ)q{68FvUl<2%CX-A%cpJre}8|!+xs!m(C~Gs61o%;=9#EYb9?qc!GjM z-=;Y<&Aq|sy?cLxJ9WmhAjvM*;r2P58eGTJ zity5=wsQa6gSXFk=N?)v*ZrN8alV64@!P<6vC$aKlvTVpqYJ^1SqT^sr5~w}uKS!e z?pk+qxLTxp+?MbGE0*in5|lAGAbjf)HcW_fI_kO?;oTpSU~ftd6YL6BkL9cIBRiA`*1s!ecOcC18OPr@jNH5N{j+d|M(v+F75-gK-;MbDcaP-6zyb5{rRT#wd-(3nENe|=KuZk_J)Nis0kX?E-kGTi z@D?f0hbbn5K-iiB!wJ)u)Z(*qyn)l`g!>(=dSK*?rlJc&3_WrWcjCasDS;2pVNX&v z)qmuyB_;i_nBZL5^_?N>CyZ49IYK+zD}<2?)GGMy!bTM2#10$8)0Z10`C9qAHjR5T zCSZc9T%2vDEu$s)lyr20#7=X`$d_6&VlUor0IlnL8><~#dDzecjxKb-L-EA0;~MMQ zuICH|zM7>Gyz25(+py(DeM`LWD-p3-1kz>A^J3u%RO1+93VKSx{0tj32_M>A+V!tn zWW{=6-M3t;pKxg16t*fYmhs1&qhcNd7v3P|D1fz7YuuSj;8f!?+EPRBo|3*;nA?Dp zKT2yA?r9vA_&#T&uDpa|vy*4)MxEktJDdL13IUlI9Fw$}kMJP*1^0zmq}v*Fi__O0f1+UfV)5rLI4ObpL&^LE>N|j8-1<8*`XSFs(SK)@h2hXf+f;oSr zYqr6F1Y$j2H`F`uu>`j=%4Z+ECl7DNZ7^W)Q{VG}%IX2GPo3`O3ecnPNvTDBS{`T^ z%LHs4bXcpm%-(C*bd4TxvS4Z2TpP4~`3@WuxbwpD5B8oJ-@?To_6qi4L_cXOXUDtRX=V zoM^_t5?gMBwvMAkhN4fx6x6N+P{GNL?v4b+EYM*CnND!Oqn+j+PV}eIDL2dsd>}DJ zb3pIt*Om?E5<`^_glQbjl-=(QGlok|j5wP`5N4o+YMf&VIz!6T>G-ism;s&dH(gV6 z!ll>R+2OfA1OqhT=h9T2o_U)40Af`41Mpx`b5@yq>}5*PIyWIN$v5 z=rA>Zu?bHr4nDcuuCpMb1}dFEK`6hMZ&p^dv2zwqt%7kt7ipPQZg*m11tUjdlA2mN zjDK;yhW>LmHVBSF`VXoC>S8*z6PMYEOZC6}_yN?+;tLK7%zSf1zXS&I|q4c4}@|A_R zJ8dc8BvK37Db7={_3P~H24PiFE?gA)5B#{(p`fC1k85T`L#Bc^*Go7GYKL5v#=jY+ zci!Yyp5TPU7yh+vH?bJzFB-zGO7|&ae88R3z|eMKeO;Fyo6xCf07+sg0@@!Cr*r)^DGU|NTTi*K@N=w`m=|ww=MljW^PJuP;~bIebIjp@{yU&cyUEYMms$ zslzk%Se8`w+E*8aiNrWLCwZ!TC-ZJb4-I|eeaA2N-J6l}G6jK5l<^iK2CmjXPYtI* zB0}5tdKoHQI+~0elZhF{4+SI6Jam2Mhd>V&Hcl*8<{GcJ8@Ry3zwDFAv6?eS73V4c z(vR)mOYg{J{T%6T2Sq6ByB5Px{FK%=$Bvp~`}?e6qyTDn>62JO0xcTX7!nbSFa$q& zOht0G1(!}h2nEWrFIde*BshRikIrekY2J7WcOFBD{o@T&ud&{(|#u_V+ zY|*$<*{^5!$3RkXpOs)4(U(bL5J`4mZskbnrB61ieu+u3Xruei35A*}aOr zVsDLp?`-Zkrl-`tpXZ(i8)%skk2XLj>VD$$K29vr9sSa!^P2}Dee0VQ$J`NYl~WG% z3ig378?__60`u4pf$odgJvx_SSgqVPys*|mEt@eBoR>GocqR-s)CpZy(_?MWnCc_D z3diE5&jNtNLJA%cC(RJSm=o6y?PkW1Ki4bFs9p5RmymaN$$*T?&nn8S%v-W}y%kX$ zDnz3hlNp>;-%OD8qiE=6F++oq7CxTLmXaIZXmVOek%Ck6q(i024BSf3*KZClRQzh` zx#wdv4qt z$&LfNi(V;}HXL9sJLc6oe4+V?UCIw!s$X>P<>Y6?L0T8Z07qb!2u9NdyJYcBN3ms# z`=23OLonvJd-p1zY5f)9gVn7FD=e{?(co6Gk~hf=8wQ{8twl}VynVq@pp1*zv8&p2c-#0SOw@Xga>dC+E$&#MN2I&VUD;D64r*H(Lx_lNUy7 zS9TvEc2?tpc+c)ew;Akhy%}>~kgk6E6ujhp$4@I=zvwFB7}rPS>Qfxi)_z}_`*hlC zrEjh{sV)^7Iq8~#nnyNV4Tu|EsUZP?iE9e8HbxC38Hxc?7Rx3WxM$iQ-i*bCu>MQ1 zdWHX}A`AX&=VG$30NNOroIs|VzdJGF>IRjX)(+3sj=!6ZNyV)y;-odsYvbKjJEh}uA@G4<{~QB1ncuR zCpezfyK-Wh1A3x&Oa7SYcauJ}=>8n!2=qIIGNwTQo=j;d{TSEKQL=q<)p(*louL5z zA}fLMnPE=*h0L1c%ben^TjORcFM3m)=`+;IxQ>d4%QOgI@HPNxyKHcTrOO<%?aCKl zTcW^2Yq+If(uHgFq?yeCpXQjK{M`3cArM5sY_zQP^rfTZB@Ct5+9cjXBkFdSUk=vAL^nPSQY=-XwQYqSsA1lTI4VNAuy@n$mDF+c%K z1G+~>je9NRCgL@G)Af^B-$0X&5f>gG!sW(r#O+Y}l{Se^qc_ z1*fqi{ckW8;Zu_mwX(}l{c}fDWVayOgB{7ZOjznSKjzHhURiNh7lv_lf|X9jj$Y+D zQrkqsHYwH}h^D zb6}ntc8OIJjwBhekvmG{2RWcLDl?nsCA;)PusD@96^|RfT53N9aKEhaY zv6Jg2{J9AMQROz=quDomVn@m>?qr%MTVvEOPPO3>AvnW9K5m=GiJ>ilAsypnB46A{ znE(($Io)1U`*#w3fH1n;*c!2sjYJLEe+zUqqkL8etLeO2^7Z?a)wG)#^Pi?j_U`fH zHQVtZEK)_H1XWA8qs?jLzlWD_j`Og$E8F=m?j=uv)^wp~-pXyF2G zx7$(sDzu{@wA{+;k5zdlV#`lB=N130E;jD9ctp!&wUgnQtGbkv+~pGs+(-j#JEM>w zQSG>g15)~AMBiV8QcYkfLJ7e}nbMEi@V{9oxS-?Ak=K_Wk=Gwl4I8M#-N{KV-$7`N zG_V;U^;*W7tFL0+7Y0R+tP6u`OduGn7W%>h{1A&uprE*4Abm^>m{?}oiqKU&whhkI zxwi7qB3lLLo3(G}hu1GZgnBLT+xdO#gJiN!X7?za6>_#}e}Lms^91JW0k8F+#(q2~ zRr3`|o~~{-hzc``K0SpEK#x33-|PpTqHqE<&Rjxejz-K#~Tub;n`=`s)?ZS z0##;^qorkU!B0-*{1RruBWep4HE1D>J=cBPNA zkvgQm@b#gjTh6+)n#9;+JMctstr0}y5OPTRL=x^*SN}I)gP?hWAP6(`>#OL(YP^%b zE>XGoTIXE~%3EPOY<6dRc2+@MS>1!@i?x^LecD{ld=QvUz4obHN2-RTTDn1 zaA*jwq-*jnk%0n>%gzY#ooP&QtuPmZ01TVaT_+n2H&B$|;t5_1kE+`pm43LJ(bFm~ zeQGSA6GM(;%`oYgSpO3?9#WT_ zg+qOBCDw@JY<9^IarjnYxkY(>an9~lS_^o?ZCU~OtD=kpj-FNU$h#t2;kl zDJWh4^L^0P4a!GHj$2&X;o0Ht={2aLee~K>^A=4T_rs;z{NWeQHXL23qf?<(;ZoP$ zkiDlxBcUZ(K~u`*#M|jb?H`QU%E3|LUTVlo=%llG2MGa)HPAK@nC)1^F4{8o5HlSB zvbj@O&29Q#U41BT2Rp+uA3qk+Ujga8#N#}L1M^#^cYCf}$=OEp%zrwcT+0>$dR<;o zD6c?IswetJ{vOhRXPwFTGijFb^@C+h705*2)NpC{-ID3QdE2%=ymow!2Mr!vB6^Tk zFngbhte=gBe7n<=ms6r@OWpYN4v9tU7i4vNxjQj^cjBI^M~K>*KJAq>4AnU6$#a0glme-YuF=)k1i1-p_jTC2z&%rM^%hA{q2 z>66j?8}X|x;|DXLnRK=vFbL+TV*~qAp`@p$i--ii=t^}W7ESdkK6B>DEHu0 zqe;*H_aVoA^W;JFTbY65IRDUc*H4mjb#=9AZ?=UnATA*h784`MXn~b&<<>Ly4RzDM z9o*lb+_Jz)<#qC^@oW#nhvCc5g7`b@qIf&JeJV!Y`|?|Pv`YebM`GABpM$|(LG-sd z`T0KaR@uMCqAR?lWX!CzURK^PQra^9yi$J%6beW9Y|CWUdOZ6v-1|E_Ci=04=p?oJ#EadN@b^OQiDCr2%i5<7I~&YgW_nE~OEk)r&) z^gC?H+@H4tQCwL?2zm#mtU{L${m{&3S$Ga5UcGmppxvLhP2&|~aM68*jEjR^&=T;J z9=Gy*1C^FB)<&RN#u!KIdfx*`9z`!1iV{8{LNY!*d9wc}3~aSp^kA>9i_#0v!B(Hy zL^srT?ecj?rInoD-eMia^NSK#P`v}5vu#Q<0dYv7!Nt_<%3uAF?x=Y_?A%(DIKqRdwA zJTb98_D>_nA0ixd2QocHIoGv4)?2>k@9YWhraQWBbF#5Hk+_pxS(7im<_07ugc#lM z&i&!NWbDBg7HNoyRcl^O6pf$btZca<%zM>)*trELX0Jm}~sg5zd?( z7cZVKBNP05zg{rf#2xXIV zuf1GLMwPsA&)wJ3MH@&G~ZPjqi^yEOI7Y^vcdN*861~uuBq; z$@e405qZoM7SZS?CZ4tG7PNQ_t<1UCmY&Bsff$|f0AE-PkoD_Dm+SOm`uQd8_pXnh zIdhwGl)wEy#?M!U=iDy%8nbFVRkg5Kl+4IU+wBU)%ZJXw%S-q0;lqRk;A@w>I`C7R zy?UfE?*#Bc4x#JyG_G+?x3$J4-R__K5Z`)P_13;8K~ih;j_~hI&=p7z7RFLN*F+i1 z&$R0~>8xL5c>KOoynDQTlx3QC#+7T+i-K#Ge9s9_PP&p^agfUI%5t`1R4f|Kc zYx!>Vzj9N1VRC%Kw8ntQPFUwJ>~rAp!~DbPoB0_`S$_Zd^J`2By)5;*-j(IIZ)iOE z6G$P$KcCqQ&EpjR=btA#?wND;!<4xV^?zi4+7ia7lBn{T#eJ`>tthfCn7U>BnFGeR z%44jio@WfqJ3=ekO$1gmNrIkY=c#%A!!#2tWtm;y;6c9qUbN)Fo64=pizDJJHv%{y zsW_kba81XdD5D$B0~?^rWQj)@jr08C;OaVrcS6t%Q^u|BeB{aagO7e%IVzt$qia5J zxQcAQU_&LaX|`n%AenD)pq%IJ4Vulva=G=7vBbDR;(C}J>{1UW?D0l3%=_~Ndi3Za z42&R?x->TC&2ec|kX}7TNpx6B_#zY26xG#}&ep%ttYvh7xoQ0@huhCCAu+%fjwaok z>w56X@nMmFNy%pNr?{kK!vhyA6&WG~y%;HT z?)jYgwY%QseR%Yq$SF|Qk-#yKq+Q#Lvl|UAx$VAt%Tz!T?rQD&os$QNd|ESgONJ=~ z4>}|+LTwI=S4Q@eCr`$I@i5X27>9fT4*#RyKq$>2fy9&@_cR=T4*Kb+$y=t_B6@H1 zw{TkoD%Nz){LH8iyN=&GlfP{m;<@BEp{T|2uX=L+!RJ%yM?TkIt%_Cuc6+Y1`o(fJ zUu1$u!bl$b$@qTpaVghvw|bau8NZgB##g5B=NF%kof!5B%Pi6|Nrq^pb%%8ptSZ8F zncw?R?HD|BZ*N{4BX5$=0vh5cCwmP6(P~>5Tl0W?$=L`G2a}cIlP70r6>7#8R?isY zw|w77pMO%yUOaj%5zWt}rV(D%y!~4%XI?U-oF#$rn0bQy_9u^~BJdlO#Hvc2;=IV;)&J-;zamWHsp3LDjn_0035jV##u#vSsOux9)Q(=7Ii#oMs>KFfE zv6*7`H;@GEybG)6#}|0#SAmBeUN!!ZvM=%7CTTtYe6Ol1GjQ(c=t!14qwMRx{luAd zAIDp}M^-QDQ?Ts&rKJ!4ZB^YIkeNQ=SpE*YetUn|rEZplt}(sZG2LP+=af`0%+dJy zBKsaa(%~e}VY=M;x3=?g&Ngm5tgmBhR4DBv$)A`Ukl1(z3MxFc*4EZ$6|Qw%kB2H5 zmsb0eAP5S{!yb~e3ah_ea$Q?HHt5px9jkZG*qVIC^^o^ZE1Am+O+J1%xSyIDT3f+` ze55L@;cMJalEeFkVZX(EJn&BGb6ybB3#js11os4*XT*i}fhtzF#1(jtsNhj*xd??z?-P~c?|%Vyq%==EQ|I7>j?RH$uQDo zGJw;aH7exd_G7|)dw3u2B*g=N0d0cGl})Q(LlDrN_DU>OLR|bZ@tfaPlvTg@nxN7i z8>XD_Y3T7WCd-eGvK#dF;f1>yyZG&8UG$c?g2<++?tzZAT$ZZ339DhcSxbgV$?5v4XuRrZSQ-wSA(LB*@%tepB@#?id z-%i}=_Qq0;^slY0E%JDRI`N0FL-^yeapDMfO#gVXA!DOgjc<8%xK|KahITe5X9YP1 zT1BviZFdQu9vF3tIA2O(Rj4oufzzrGV70VR+;P~bQKO`K?l(D3b*6PB@j!R!nd0Av z8GbZZ{j*q|N1~=|JSVNJ{&7{Kz*o;tyBHF3_&-Jgoh?s*wkLE$Y(?IVdxM4zJ2box zT26gR@F$zTsNDn%;im8)Im%xDLTVd5p#96Fi{0>lVZDK1OevH>bbmA&x@vgJJHLiS zEE)L1o9w>b!STX~lj;7STdq$07;BOi^pA`R~a<@*xy2>rhs8?lrxLw-pG!MWmO{Kum}{rp8c?6&a)+D-o0r`ofFc>LWXlsV557{+s2$x;>n%KhaHT=3fTx8xy%Uda@ zQl8iJ;G}2z#l?B|F!oX<|J&OD;6nuc{Mn48L?LCiR$e6LiKqxEl`@fks7*K*ltfxT zXeIS-&qJL!emr?4dFuJ=c~4Hwb?p1ssQo2*wWr+!EN+ zS{}iT_U59lBrej97b2wt1Uc4`wRfkAcP>_z{XpFmx;=LIx|sZyE2S`RnUekU`1sSK z^r0CU85iTE*KQv@t3qF5lxt>S;SLYSjbj4^!u??%pBb+#O?7iCYipUL$b;az%t}=D z<(80tg=sGV|BGFcVC7C&w>AJSDA9sS+@JKQv=gK5x#iXn3+qy@v=0 z8O3t%-o5c9YA#SB)tt@B=$9I|%H`jXkm|Xy5vhwKx^r*N4qYppFdk+;57S{M`$6~9 zZt+fphQ)27>7{VCjtkA$c#SM6evj0he3OJX`TP=UY-+5-e3Dh;%Wr%IaNwXN8%#2t zWU>7l6#&65F>BK>=ZUiY_AGpU)07Vg6i(~@Xxj7cHS;&v%lE53GPkXFVa=kvK2EW=8L4GJ@6on9QlVHMg%Ed@!6asD6dHw1C1(G8wV zFU~=~*Vl5l-!Iw?MECjhiC)3S4@jHFSyaz44hYpg{4T3+(te$87A8bC?ljyMTC3&( zAC1XL9J~>}BV)Qh`WyV-vf{c(-FfMqE1v{q1Ex^&QvCB4XtLhMA^_XZqgXJ!8x|m;*L8QYRN$q^mX_f3pH$h%Rd6nZ@XT z1*AgO?~qr{3~HcN5F=$%BSdE!E61Q4{Mi=3p)Hc zKVOt4fbf4~)yt+Z3LFp+-o_XESuS!#l+;8kym0+Xmh`<+{rk)qD8Hxf9C;8nk z1E{6G=3y-t_KQFD%eXZwFN*7}Q>y+g^8D{T*TMb~oA=~hb5BA0_+R@TveXGt+vnQ8 z_hW+-`Kw@mHT1ZBd!w{Lh2;~xZGIWcQ8ds;itLvEwzXPq%`7Kn8MMw=QD<;gH$Ga) zj`YY}L7EK}Yjb=7=m~IR%K)=UXGs%}dEUjT2(g7gucg2>GLycY->J4M`^sYK&hBq3J5An?J$Rz}$}-V{feGR>ke1O0ggk%i`?_^h)J9n#eXMxC zMfkn4RFm9I1K@PsA!$ARnERfa#uhU+#l?ITDmq}~}kf4Er-?TsX$JbtF zqy~f@RL`(r5vd68HNR?e>>2>GG}E_kDP|l50Dy!ItoL_ zZ6U3a@|l+x$8Y(0H(7dw&){Cl@21?=J%xQ;>>6*wNGJmv<5es<31WwYzdNgZvW5nw z{(erW{>W~r#i^FYMu5LFW{A=lP}S15L>Rqr)8rTgYr6^PMrMFwMLeQiv4G5jL=gmj zI2>ZZZoX;LKBeiD^)dNb2gN5i$cXoLIWcXJ_|6Lx;&v8nZ)@wdMvyBmj8|phQGcUYTXVVQ>_RQKDS-Z{|f7QwyRm%ot!dXoalek9D_J z#?M>fjS3}pjsD1!`(V7Y*@!Zk^v|dO3yj7N0#VGYH;aeS%F%^~)MuK_r5(1l70v(+ zJ>Q8;Z}kh*1Z0F(l8^tq{MYnF5>=8aa$>zWn3SPr4~{szi{QH^1n7*o8lJFY{ryK5 zyh*LRGJYuOj@3QXC{!e5IbtlJ5Lq7tgiewqw$_<2$d3YIxfby>&%j2)=b)|+Na$I?bJHCogH>;i2=}t@k8{-)39-|JG|r==+ofcs=%Cv~qR1JG z%%x!x;V{pU0=A63fBy)crIODsytWM1@wjky-p89YiiIZhKZ)xvn07kTTv^5^T@!s@ znLpBdm!!wK=h4=yUbh=hEK1xF8Jp9A)}9CEFF*4DO*T1z01bc=Vhh~XoP-+6A1&dN zYR4`1_A($w92Dr5wSAL{c7J|j?op)6DQCOU-@l%8gw{#Z693j4-x`?dKkVTRDU}gd zr~iI2;$hs1>3c;Ig9qO;x)^PALx63^+~p5Inivd}eDL7G_Mf17X-pboesOjL91NJ8 z5c%jQyum5cryl|j0T$TI1<8K@p(?&ddZG6Ehkxs3PWLI$UVLh}X2Oc;4M5%`$uPhG zg+*k}r5@Uw+V1@z5I{7f=@JSB7zP$o`_d+oxvAOX3tshD9A!K=c1=$auppi>_jO%V z?~AW{lho<)MY!SAb?)v}fr^x3)C-f@s1>t!LY3mOJ_W;CN1q&4c>RJ4_OT*}!J2!G!dRaY#1(JIi zf&I(CH~8r+8Jl}};D@!(6eeuZ_u1JusbhDRIE19quP*|LwfF6RysLIzWH)rzs@Lly zbLZU3+kI=t3{%;m46>?oOty4f;`)Nr`77#5&@1uNn*#Ve{KJu>-0V&b9KIlcC{FKL z`uj)j{W5<|3IPFE_RIM9YSI!LJ=))><5ixnT=7yR( zJD(HPB%yPFqm1G4ktJp z5Qtwu zEsZcIi*ltMlGZ^!YL**ekALVIIo!B#{nvsE_(#wEGgRy~Op3Xme7~BmSH0W_#ZE66c zq211%!uY+p(j?V2w;KPU&Yn@mh0&W&6o#rR60uuPu@kt!}b^8!dWy=SNlk z%TK$T{JXEpGH_p}-6#{{^6mV@T4AH5AXuVXZ!VQfy&kmdOPcq8Jy8hZu>KBC+alHR)OSR&m?3CfaQJd5HQ{hnS-Dko% zW!5ZgU7naeiWiei+;PYGt>-e)YFCj5*LEjftlBnnw)WrVGUqS*MH7-)1@&0ct9h=l zkY`4(U^S~ZU$B(O?5CRiw$dQbV~0b6Vqxx-i?4<0=8aVZlAUh`MMXcp^T2y~gpshV zbX>))i?ZE2y*@r9jpzQ*A1(!ND&6E*q2l-_quo{N8Z7B@eeQ76zC zI^_Y8ianZ2BF>tnefY5Ema4&@aY2Jh93MgjV~j%sAoKvfBRLH{=RC$BicX-Lh*`|p z+6hs*6PSWw>DFCjP3o)^oy$kV`rOK6Pxi!KWA*+7BzPF5nAKhgElAz8cAe_X=6~f5 zIy@}m8&Ea~RW3yk`Ig)}ZO9>-Ol4ncAO2gdh5txM{8C#8PzU6eoYGpE9$z@K-Jnl_ z?)N~0kLKa#cgX03dU{Xy8&Nsi1h_fbAPN(3^@|%;dK{SE<5jsGQ-vx;jgy7~4JY{Gz^zC7#i?WkH38)8^E zanIA6>z2jHo{c|E*mHAxfxBGP{3?k7_(BDFpN4+C4kV>nQk0nCLx1 zZpY@Vjmm3EUG3LjZ{f~uy#agT&F|bgTfN4BUh7SKH5q8ilqpXnf1oy)OHn?%qN&Yg zaJb{9vRipOOcTV{dUcxK8#KcE?qSR2SEJNFN`BnsD;9LMV1si$`I++-JT z>1(OW zG_|yJg$T+i^V$_pB=}HCM`e>vZ6F!0IG=)5Kka^(tce6u1fhcENY|l|0S( zf?Ypc)HP%77RYr}8|raCY#tT~MW?Z%@+_};&p(GR>%aZQ{I-ebms~3s>9s3a_g;=% zN9AP(`T)Dsp;M+#efRHdlKHxIH^U$6KmQ!2t^DrP>p!M{;!NJPc8rykq5MILA?R{u z&OEwgY`j&>qCP)#K<5oUcxF}J-4l?R`>&-Z5rU*eP^Kh2FkIw*PTNtVq`ounZ__?- zcUK4OYlAhcw4>!0r~&zj1-o{h8rx@tsH8{S3;)}n_u!ps?WIk!yK-d&RFHE^t}U&q z>#rvvv95Gf+X32k%2hI=uD-#IPu}voe*YNT);q#Z+V1{arQn|vWX|=OskQBBfRx@s z6Pmd`Bd$(Zv2Uce)Vnjvvrk6rZP?y-gm|@jVDuc}SGRJ+eeHWyE;i`1HlVxA53!-E z7ez+s=t;~FTYh!Ia+7s>&s~Ml!-w08TjzK49WbuXO!@Djkym%_iagzajFFU`^IQJ> zna0;*CgJ*GdJ=MC%Pop8|6hK!ZOq97QgNL*N*8}lcrWdHBK@FF(bohnotx|`<;nf+ zG~PxA-yIflSX$5Vz@N(tO;_yD7-12~2TllkZ=?6zkZ)i;??#FDiA#K?kG@9feMe}{ zD;{vQT6ub~RGjqhrE_-o6IGu;t1~((fZwd|IhFLameMrEF+L+GDv0w>~4Ol zq?7aJ>?m(3yM1>jMpfdS_H3@CwzuFcnxXo)RA_Mo?6BH(rXKHSiD`G{+>gTpbbPHs zJ!BJBIj~_*K3b;;2kP({~=@YN?{lbIdIS&=~ zMQ=~tR9p;F-~J(?=XD6olB94Nx=6!IdRhvZF9Mb7f5vB*HrJP3)TwE2Y51SC%MIS1 zIl1o$?@wbvSH}k4h{#;{^pf{IQ|I~&xq8#oMpH6A`Qfp-=>^jEON(kRZ;+gwe|IBjp>v8E z75ur^-+~kh--%b=hzv=5qlo>|wnM8vx*D1pbgQh-RLtxl zsdcB^gED~9vfJ&Vy>RIesuQ0lN}iI^dtQ=jv@edyL}7JeaxwJ@Y;YU!5qCVudfRMi z*n?jLC6m>tF}%a;cgHMZ@oZ^{kK(i3WxB^H2KdHWZ9n5h_F<+LSm>!h2NxOY>6*SZ zwZk`hyO+kc{Qoa^JMLX-z37z4?pNmoH>Og-+=(Ip=2M+eX)ym?qiN>P2kMraAY3Z% zpS|-+IXJ?t>aW-5$6}ew{HFaFvE|-UdJo<`5?d~M&tn1RX}nO_Lu~4aFqE{)1YxTC za!`_{S%gN5In^@Vj%h6Vjr95VRBA_I>Y?IVYWZgfI8cdI8%l1^d=si0AnEaaE-?>^ zmvCbD0|_~~u5qhmJw-OWm%0yI0vueGA0lw57fht+PC4EhwxvCpiC;35+_?a{&EM|< zf49AMdZO4_ub8-ga)NcW`k#+;b{A6{FT2bz0G)Tu@8ynLF>E_9{7X_rNcxvA!v%=f zN5NGHV;ehL^EI`TtzFm`RwwFJCn{{8dL1zT6J%-u;+B_K5b2X2H>22HIza1JAD!P< zB}E`Krx6u15v27ybk0{YV-zGM6L zzLMI%r5?2v)iM)tbk(pX^UR1cE4HQr6_iV#+-g(W)tL|Sf93Y1G#ZO8NN`#caIfQ+ zX2Hu*0a^zHyPln%8{6^(SEsU9=hXy%NW_@?S4J9^)c&ohouz$ym?opW&lpv3|GSH@ zG4>djv-3$N`zwP&tTy%(KJ9j(Hx&%ryY)Ibc{yn<|X#W|6Cq?4c zjR_rJGUPTsc6w96s zGrXh$a%iYD94ciL+0U( z4ps2n`^;|tvCQkiw?6{Mwv;oGcV$KOB_Bo4HNRWjOViT$ba4~#d!nBzrGIR(Zu2<0 z40~=?+UTZ!OUU-9*;`uVR9tkWfAt$-m26H~{gL9%zfBn=huQ5uUd^Jhk&z49-#9(W zeb-<=ZBgm)gxU`^(>v;Xbf22;NpV=&E#rR*@YbtLoyn&b&J2{ zR1c%GXUrQB5ivbcmA;_d&SBdsw=#?rRm@z<2evn7>K@K4`|;bxv7C>R0b8vmxxvuW zl&8XB+0y>HxcwiR8H=fFMHhUSl~|bat?eHXe+6ydvl~5==8pP!N%-#Wvb{u<41IoZZnLw z)+SXbfaMH9sQO_=V4NZNsfI`EG~pb2dc)~Su75VPnfA4?;7RofWnW%Kr-beIwB^{g zspp?6c6?v3(^HX&ZtmQ|m7E2^$3nK;E~#0`>z7jL`}e1tQ))eyA$}><{adCBvrzNb zjb$E-e^ymVZ{%IsIyxG+pY>{y%fSzAnO42NL3aF}?hGxZ6}{SRb8sZ>eQ=JTYRW*- zZcmK=HoWI`66~%A3+{yqS5PL!EQTpW#>1Ki2JJ#$Dx?VYHV=FsuXKGR?b%1el>cUW zwfi_jZ(RXo$RjKjPSTGN)oUi5l~(lly#l=~G>~=TJ-e5lee`=w?7FCg-&*f?9~4Ta zkGey9lENeg{+G!H^irnu*>JSG%>T2j`oAT>|M_D-I(zimQU3d+<$(_({Li9!hWgQZ Hn-2Uhn8hwG literal 45707 zcmbq*cRbc@8@HyCkR(ZzBqXFO$t;9yk|+`(ls%GJ$qtFg&L&03URhZoNh&KlSs^Ry z{r=p~=l%2j=l$dPJooL+)$cmb<2;V85y-6@xM)};wdI%WLb-sq%NpCM2(l4+||}{ z>{(AQvP(CgSpE>rdQ4R<-!VCCnmZ<|c3^t5;4T`2hi31s$c}msur-r;4s7k|uMX&Y zzrHEzy^nkKP8x=0ulGA>s;Ra&KRG_YtgO6XyYTKyyp)=Dy5@3O*Q=r{3+oro-In#a zc0ELPereOA2=#qqJ=fb8hMbyb#R9AH%no`;#Hny7F*J|3kWmo-%;dqPLi~eZQ0nF+ z6%IPzy*~dRKVZ7^kTI}!rJr|=)z8n*q4Y**Xy{_D?(&(C;%CHP%CS0|o?}^xXz!Tp!yCHMy+> zuB*CEWv=Fydv=Tsm9KTIJ8JW$6MyjZ`z(8v*pUAB9JM^-V4M;^N{L z$v(YPwIs#)`T4ipWA|Bp_>5=@rTcgD;ugMP&4{vOB`KmzqYG-*wnF-=|H)YP|p`QAED z`Cs{R+o+A*KfXPz(W7=Cu5FZN$JSrALa4hdQOpl-l}c3He9G%O?dLr0rz_GNriz{3 z>(@A>Z*L!3S}I!9&2u9&EIj^$i3RbK4ex|y4oS6sa&Mes?H9DbrO%P})~ zyJFULwavTe8h-Hc^Qi5&?rxXVlIvFds#XVyKNCOLox*bEB^^ag_#nsqe3OV*=c8HG zAF6TC-G1giGudh^mC{zhN101)>#MR&E>0!t(&LiOu{p7;_wx<4UfDQFe95FGK6<8P zs9P>^x6m4|+pQrh}{j*&o_>39Y4$@l_wPBO zGJx~)?RzWv1YdbB<{mnW*wzTBDeQU{@S(VfO-zP{- zziYP&yf)69!r?2LD$DjLW6VK>xsdYS7aJBC^*uYb7C6pvMMg$CuP?Zjt4+rd-%W6n zh?!ki0)27qNni4#q-rb2(w=4J0o8b4@_nQ%@_jqDiv6wG86t~Sh$4$g7MfHIz8lLn zJ#TfCq|W|@TvF$lhs1Q({jTQ03nHc+GX>rLKdo3vQWrWqJ1>W;C_mV!&%#-f#ULI` zOjgyIX^&UKV@K;R&rx{CAEnqGb^D^fz+HS0H9%=sgZ=R7GwH5l$^9leHaVQw_)D4b zHw7npXMF&xOZk*>M6&OM1KBHgd>naW|v?cJus5SvFSk z;E|D$z`k)MUQ-|CI2GsA`_CSBC&cKcx2LLez0Sy(8F5=1Au;Y=dQnX7+--ig)mZ%+ zyXc#50Xd$(iL>R!n6+ZWusyhbYZaeCmP1IASY!4t`{H+QzZB@6H%o>iQvTJuUi!2M^Aav(#SHF1eAUc7)OY^Vl4o^@((X zlW$kWt;(Q{;OH*{8g1W;Ubq~hToc&_ujU%d*0Nfc(>EY#N^WC5z$wB ziv&aE!+3BK!WGylw{OAf3|TM5RqkxeHqP(VE^`joNWYlgt}n>+tll6%efE&Zy)$o@ zZ+>}>=GF2f<=ksiE&Atj7kT^@+4piir)Xa}SB5Rt z*mH7nR@SE0%T{{&`}4Q9Z69rnhFE9 z;^u>76EEhYp=)`0c?|y2QVFVeJ3r)^t+{dUWiV9g6HJQ24T%*^Sw@Mc{L=(oVJ528Ohx~hI=RnKac*~2JnBf$+ ze<@38vH#MJvaFvdpE=NC0^b; zbvaEP4`dv{e$~Ldr{og8&D6rcoa0Up34QTCuR;D`D7Jy z27O=rUxK(?&UZFC3Q>TX-19!Y+GT${c>i>)|I;0b>|J4B|HZO;bgdf*V5M4lrCKyl z{FQq|bhM$HTdaeKtG3sY!U2D2=TUjx{@K`dk)jOosjB;2sWw7OQO{>_qEUPbZ3g_| ze`MVL%9Jej`!RSv?47zT!hAWi1K-SfCOB5)%aCShP4QG&V{>x=x6177EO98uIx=%g zOZ}_*Zr-~WrpYZ$VoYi`McYr+NdLR+!XHivq#>77nIsr)v#fytlw1C^2D*ma>B#8L2S$rI+U;zoBi_D# z`H+VYFoTwGN}DS>(2IHl2~4{?cXp+;`6Qdz7VA8!I6TrEeT&41W?XUe&!@tG+FO)W z1n3hXO_3NV>qcf7JTGw2>GOv_Z5go=WHR7CP}#?~fKMYRTTy{EpW5R=EY{?7Wfyz}}Z%la*`rF!L= zvGTRC760<-vkn9PXBP=F;X1Y8I`vmUUPd@7e*(Am19+ zAlX6Yv*cMLKu#QCjQ~k~(++h8{Dao#aI(OM_!CSp1zycawMNFqj`Y{~&D_2odhv}$ zLbrJ%)m=d*vCzKpZV|IfYbHaQE%Uh@HwFUNeg!Ui=q_$sTM}O%;pX9)so`}EVp+~& z5#HDemd({&ZJ$5W@`U+W3VyT{O#FT~8)a(N>E&ro-F$W*#kTlX4j>+-l%u7y;9`7~ zTRQU$7k|#oWZNF1-tPYKyf`PMQo<2op_ z7{sy^G~jvwXynKRx(KBd$t=yS@23{p&_6ZOzl_<%xBiMdqIrIDl)>{z*g*fZU{QvA zig&9qoACbDEC$c%_eZoJXmWd2^}Pf_r|^jJJy22Q=_XF;yx6RX;VjF1aoar=k)P8J znC1kuEGVc0Tm(KdCUK4U3PlHWP)X$O?VNOv?1IGWgu>816Z+K)R zX={l(*QMJwifxHDRl~!{A?CWp_WtNlU%%2fHa2P(S`WoZW-aX1`RiCpozy=msB%>W zsO1WCN6g4%-}TNs5TVCaeUcUKd)US7pFK-YG!IR9@gXuv2 zv>v^%2nqM8vR9q;Cd`0`0LYW&7>yDhi+AUG-Uam z{k6`*4JEH$Z`LmLg}7ZwWb#^^EbP&h`nZ-4LUF~Tr<^X4Q<4H#x< zXlPl;&rd(6yu2m%P6z&e1!d*El-qr32dEW3yL8=&-(Z9y#{#lPM(v9Ox#?*(J=U+E z{AvBI`=J|-<w0sul{AO=bE~@DK|24ULOc+Da)LTbo+E?Mo&iP2x>~* zfz~M|VcuvmOcrgk@xzDhO-7g5yN0dLVOpTqq02)o!P!FxZ76+(jt5}{u<5bHk!x>4 zL&A4WSIhI3O7VmNeqza63T;LLxCOe+uTDNU%+Z3T(r5VslUezK)8{+!i&Ve4u-Uc4 zt{y{HO8Y>@-qySpm?AW$;rv+SBhQE;yK+UWj$l))2}Eigk^V@+jcrD(MJVVa*F`)|Cw zk=gjo@f6L<;p(|>y}ef-`P81**@s%F6M3V!?(THjQ|~RB8l*B#bk+Um)06LNG$uXUHmoP%U0gL! z4*?PQeFaiB1i0Qk;X^RAm{FluR1NosMBi4GQbj2ZGV0C^7Gc(J(GM~Z>U%X+Q8 z&r*f!IlddZB6`Vx=+nr^$iM-=6S~>gwOpBvHm=(okj`b$%CF9TPx-Xqmij=O39<3i z6GWke*Y1o(|m1;Y^s8=$wxZQTX%b@0>O%#MMkv%S?r))22C)?+9QT8v`Znj;)D_hkp8>?fD52 z1vQ3mT5s?S!#Zqmt1_c|9DfWmi=82;@2%<7v%jPhDz28z>_d%bX+AL~`BwE6+-^y_ zk%?}S)-m=iPf;N9xy_|fTgLoO#ltjDH6-@)Xult|{cM^G7GMP3OfHGF`|8Oi+-91YNnh4a8cHrkyeMYNSo ze}1QDHfW`vKm5R~^L1wCWo~-v37PJbIc`jurS2oHf9}+jZtPl&H+gr6VjEj*3n<6n zZf7$ye_J7!UskMQN5dL7p&~4cyRGZ;zTfS)FE%XkY#F&F$P{nFh>i((kM5{>?OK1O z$F4**PDq1jy=rNX+eX=#s0J(r(Sv~cP(qlnA&rKRM?qz;z47dw3X`jF7HfHa;wq{P zEBLCN3tv)AGpoFuw>aIHBv*RF&0w@(X4uJgLl6vXO6W2;qj)r2K|dlnN}QJ8YT6;J z@gkavi%T@LgjUmB167Bmp|As#+cD|8%+CVmgDO959QxxRveLW0>;?(#LL13e=Qhd_ zgOBUEM28(3t*73f)!y}0?3%#Yv!hUP8x6}=CoE1gP!?GBZ3g_jYi5>}l?9~yt0KG7QO7x<@WeUF>@Wd+T$GPRm2MU0J2Nu z>kX`Zi0g1ACDxLkIZ#VWt76C+e^m3v4fb#aTECjqc2f}H?C;!4DSO*UU{+70kAf?n zwdhII-CB1g5<8?at^hz(m>T9SDda3XDKATGljq?S9Ns9qql zNiu#5S|D1fr=Ch?2hfOuqGG*PqO%x?`;j2opVoz%+S&#d7Rp6|zIT0X2!W!G8yn{Owc%bt)|r>4k&e>lxlzJVIwN)O%<0odS64Tb-qVc!K+ayC zk9K)H8ec4%_P6+>(>tf*JbXG9%OiWr-SVw08|}MmC&|9Ao?-O=zf0^(EHPD&L1Ys< zz&aGZr0+6XEExM}o0dY+*fl6as3Rjj2Ecw<_FzVgL}uD zC8KhFeZ~9#@ZnhhuS)hMGy}i&OvdX?cqE1}oyWEpau>E?S z0Iuxwm>0_vX=DpKIIC|Jck_TH*VJ5uTy`TfxN!*05sQsJ@8sl!MFe?7 z!$^Q_Rf^wp@TG{RWbF*JJm4ja{iXT* zazYrz7`rRrXV!@x4lxM-=HaoeVTd1K1&fJ-#0gVipRMbV;`|#U_WKn93j0%)@X6TJ z#HBPttp!_+qKw87>g`)N9XaUzK(yjaBDk4@>mM8Na~8*;u_m;>ROiAEKe}X_MPj0Z zV$tlVyLHfC8f^SPV~hejwhlc7#fZ*{dePe9aj@tc^&Nr8lDV(fohNN#gGXlH8lFq~ z=>s;6H8Sp$^@0tVd!REG?PBlf+! z+YmDz=ex3UGY0NWBO_11N$$pH-B*gcliN*O$L0X~KlgCZ`n-Mn_I*eBnjQEVSQJDs z>p~_7jbPAZ7#sL%SoS2fAm0kFLa{EF=AsNpr!n7`t?B=hl#Fb5JhhOMn_Gj`hm?)(Rrq8fD9~AI z@)p$F8xDQjdhU-LDx^FRSZe}Maq=X1CeQvovqOa^Y^djZ_o3(C!uHx+ zfkv;+l~hg3LS~msKq;I2!5`V&(4e6d;`9GU;2@+MM|=P~#xpyJ1b}L)aQxhmJL&u` zV&@6{e;NNdp>+q$#*VR?foU{{X$KLUKB)T`#b6z5w0#h+U}acinBt5;6a?hGOor+` z1#;D%eih$*7=Hv`nxuG?iK?+5c6m~gnpkXYHaFlc8464~;X>(+uxE4b9^_>S*XTU6 zQ3pyX&o%qEyvzti$7Q8zUIPlsfifuje6XkZ5EYKC@4LE~ za4xOCXSSQd7+7^>Nol*3*-=GO3~w8>F2opvIEHo%a!4SFOt;lB%$DA%ly=kU=b6qP zEiRKb@1uV$p6zuG20of4+!-Jeh~?;<`8|$);Qb)H)DwQu!uKGlaC#hooeEVhHGy{H z(QO5pfQWz36=?^k>-!v+)Hwx?QO%^@v~BaI4Bc{KjZtM&3-_V4K`$Gey}$Y4gAg~~ zlP80eQaI`TpdUl?6k%?RZJSy^DgP%HqZPu(cM$nNQiP+7lbzj$Vn8iwy{!H@sk>66 z3&gLfsri!_#@XDM=HUvSpyNR7FQB>|Wm)o8pG#^p!S}$412@5v^jY$Wib6Ih%aoh? zS*FcF_pI{i`NJ>ApTy8?_-03~)YpPl{_fl)k*;5b6kL-|Op#7n2 z6xb#4pCL0ClMGZ-I|zetbPRtxq*$~ebU$>{4H*nQ7A1Os$_p(3ilT?aCY=t$FP?^4 z+E7zq|8UU71Mn%Opg^JFf>BK^G|s{vMKc9MfT(a+0OqdXXBpyQMVLn#o}W;&&-85z zj?0KZfgBDsY&9lPdHg-}(T0}iXC+VF)WWS!0i~47z6_5&S{+2t&7rkpvry<6V^~&g zo-p;+GmN`2X#jM7(bVqE$n8eCJiPmNyRkCA0-Lg~|k4`+~yB%8x)uK7!#)1e(@W0P`lkpGq(w&Vz9~zS z5|H^OANV8xnKKt*a6$gk>-!@ zSIw-(9vtK(jdFJu<30I^*5@(ZSs+jQd-n_QkZE3w3N@T9bW3gKOUb@>r!5 z7*@A{X}zj00M4S`Lwcqipob)bU@%bP%W0Q7?n5M?^u}$tH`9S`Ou$!#+M)9ofjm(T z&+marfIihbr?_{V-!l|5 z?yQhPtIZm3H@))VE)*?@<#?!u){~8ud1lbDK`Bs)KPK`%deF{HDy3AxZ-jxYUG9oQ za{S6ei6;bWLf=Mwg^3Cz98dWiZLu)(7)A2aH{}p1oyV^C_JiH?AJUv&Q7vag#A4Yx zKNjBOGpfG-=;kWd5_h{n z!S<{^k@R4nQ3g+#{D<5vXiF&KLXb>g{q68N@t`jh*nz3|8J zqYqADgRu{GY{453ib{vLh(-!xJ@EYMjXp28MXyWj!JohPf&6FF?BFa+Hi0h)n@#AD ziNu(tAj=m{pAV4$)*W%cPVIOIk#Fb)9mDZjuUs5bAxe9c*@-zcr zgg3A>b}RxMfm?-co@!$kMg z57Cp&4I`6>Sq8P4^2|Dwr!^=0j=T0BhxWJPw%)s53#V{l25|K;kvfwRo4@Khbak;^ zceUNAY@M*>7oE!nL==!1gKC1O#QXmLo;7bk7zqoV*VvUQ{h zm3pIr9My?iUEr*qdUfIv$%MBCiTWq-CU z*&(@ta9xY*d=8N^6#96(!I;!9ultWSc70`p#VO}sVtn(c0SwY_KYsL|&|RX4T^+wY zMB8~mp=}UdlCW!sBP|+O=_t2@B0+NF4}U_(i{XLhfgT3AE1~uM$ZUOp;`sEAs}`zn z!M+tz_jTm9jlw?!arW{JZyAwnBNb8$Fi}BxLRUv0gC9XPGC4kusSM|f;zs6G`j-mq zN5fXod!ZYY%|m(bDzqv2Q@P7}cx-a;de-aXT_o_dz$@MNLdEXEvHn-xBAT~3x45`b z{GZIaH?Pa6d|(&VF1zOLUq!A)J=_mB{CdF@NIQBA1U}EsW)$$EJZ2F|B>XO6*YmfRR!9s(1Y@QDQ4AM$c4E~UzFCeGM z;qz89zq1K&4!nqgDk!uVEiX&6I-C23<0vvOTQQ9-1)pS$0TY8##_uS&T(YpRkY#rL zniywXb#Yf%E+FIYeh=vZc3XTiWJQ# z_^z(g#2FkTj8hn0g)$I<4P@ZjBkThpCJ!_{eh7aibrCl56%wpI68f;w6WMFZ7AI|eNT#>S*Z2Od#uUNIm{lS@`5%2IsX!g(a_M)V|CR9UkL6I4i9V44xs$I0w>yS-e}0PclMOI z97KR5V+;cjyw`-psJ0bK7@nSI=v;KOq#-;?xk-|sVuZK$S_g&wDG zc})iVM;IuxA*dF2Bf^OltI^-nMjB#P2HVm|N4EqE&mN;0&WQi>EzhOSp9!F~VSqM% zhiXYR?Mqm5f%0s$$OHr3L1%L;g)mE$*ibdnK=)k{amnv>jl`y44R^kWLi?4Jxbob7$aVt>moOOa19(d8Ymm3pKtQrw6aotMJ*gn1!I{$8=TQ_ zf=CPYSuV!#Tmn*eFY2eLIdER;mUo|8K|=Ov#n~9qVE68?*mhc*1rrAzseIcxV%eG3N>a2}j`!X%ny<24ac{d3 zOae=pZ6e_c0KeIHXhWguD|4*@8KE3(h5R@2RG{a8JQX+3r?-PnX6NP}3v47QI*YNu z>NGGk9Qqc;N*A~Rk~xQ8n(_jW!3t&%M#lQ4*4H2>_DW%kTel?F7J#)O6r-9D6HQMi zO1f}lz*Z>fg!|K5`PWXuTT}RaD6kf0-)Q6U`S8ajrPtobnG~x0_NnAZ9Iz}HfG!Fv zkBwH3#8|Iy*qPTA_DUli+j_2iaCV8HUUJ9Ka6q|n&;jFP7psrM^o3zkcUZbJFRAh2 zx4=dN{+1at^)7Ox#(gh0TxjpPu>UdQJ#4h+-rcqiVTsWEvG=|rzB~XQfvIk|t=bWD zW&q4KdtlF&%=n+)5=TB7Q}c9>7V-E2YkmG9%iZ@qPqDn0eA4@9^}?nlLDi2^S+uo6 zOjHn?vn7!kF8TL6UCk1DToXFhc@pCgd`)C^p2;Q2rnFffu!b844O=+1z5PnsFixbY z*3`L#j4}x;ib5yP(aBApmnXu#heRJhN57<%|8@rW$a!^4HwC!k{u~e~KT5p~U<41~HN9xcvK{mYno zwxt}y7cCJae#rWOVjHMN5c4BsB!EQWmu<#Fl68Fjiiv>30fva&2L=at7epp>mh|>#2jnF*5zjP8e)j7HbQRnE``tvC z1G|J#weRm446xq1WP6F+=?L|~!=+A3 zyg{-mY3fj-@EwuyD%7TG%qFa0NYv*Kzn2mJr%JSR2rUG^Mmz{ozexmOb#(LYDkKY_ zY`~lA7{l!SG_`&xY_DjaNE zw(x2fz(|Z&OM7X;2uw%81ZeGAuFKPkAq8<W(uXCVfF93WM zbHz#{9ti*skr_#7!YHNpBV?peTZ6?o?;*(aFz?<%IYR!pa{_LFVMs}~prcr7`Wuy~ z&66qLgiUAHQiqWBg$;^m5y3eR(;(dhObj(M@~j1v7cjK00xQC06l4n3kg5DEYkL|} zxZH=@fm3;Aw{Q_aecRVDJB;m+2tTC}J#UEtc?GZ8*`{IkZcvto$JJ zcnT;R{5GZ=Qcndmtq-UYcn}UEJZ}Q3XCs@ESMC{F{asPHdOc3CPedW>9v#dhiMYcS z8Mv_ZU$CJ@o?{$zp!9~aba-IxE%UB|BS)L>+1tYn1=G(iDnf#I>(ihy{R0z+`|q53 zARMkRSuDaHdQ68W?1>lBJW!?Yb|$wP*HLmnZ{lMJxv0urt`&MLp|5R2JV%>aNCP_r zS;TxP)JBB@%~u+e^!4;EG|Vi_&+{q5nyG}qseYJiU+?S%9V?Ii$FqV#)c1rV{CfZ4 zVW6rL@$b{8CE-(Pq)!8to`R5u`)xq^@Q*pidf*%Z${%!u9h6?BX|Vl1i=pb4_mxqU|P1O2MiGvY5hT- zyF)9KFi@BS$q_ApWQJQZb;mB_8VJkph7)whqh$P@1z)v6I{B7&QuJ4K(|r{92gUb? zItZbhFhT!nr*>C=41T+7vjO>6v?nQTTY0k58`L@-L);-M1BX0hEB85R#UI{ToYa|b z(I|*S53mG|;lR*|=M?_Zl0{)~(m}j1qId1*fdpIVx+;`x(!UXi{X8hZ94LRp=a<~` zrq=ok`#7+8N9mjv{G0^^y=?ELT!FqmNAv#UM@oX1K#`M9D_>t*9v>f9;iiXW1a@^A zne!yIZ+ZSLBf*vAS>?8TH&rYbxP#xa3z_a%n5^A-s=A`~d7~jH90FKyqwaQw2JUl` zgJc7LMT8mBO4-_6CK?ZXL*T`kCJR?YKxMg}voiYk&p8%4FJ(tH(Pkau^8RBG-?P)B zpUzUerl(up5#su&?Vxlyaz`Xaq+uXts6A)T4z1?b&Fl!4%xW^)tJsE9j-CtK2t{gt zzR75|uHr`mO}HBMz~tnsj{Y0OfXMGcv{?%mTw> zKqI=i*Iyda6XG!mV@2aHk*LN;ru|hq{JR_X=62qbuUBj{u(8?Om_7I`=9k7}mli1K zxC7BffpQ<{2;G$ z0vm*EhP7Zp$JnJ-4?YjkUn%+J<z zdy;X2SPvpFg%B?+Gu#C`9`+Zg;@uR8JmLuGsfZIoqYhtE&+Hg_7GoI(3glSYY`_l` zkNYqtx!3shS6v@@58(0{=wzKy4g@&I(wLB!yV8%fkqiSuIw#n%I}6L`Ay}gC7lBR| zCP7Jf74IN}fWwAo%U!VDO!%dO7x6e{^SPOqDx{Fp!l{G1vJFUKXLlmGD8xBY;64p!FVn|0%y#!I%AxJ%4zkVIx1ZV+a((>LGsM@$Y zK;;G5pKxbU&5a{F^(52O@x2=jd0RbvzESjTKO(WksWgV}Mwdl+^N@9Y|NOf>I?ukz z@A8m<8UoVXAYR2c$Ui*MnGgF5iH7Nh6PbU0+{v`+tK9befKR|3+(?1>3bTRM2RQ*2 zlRSm#an-5E5>|3Fa-~Qz1mEhM5I|;;2%@9Y00bF^0WKivM93f@ypY0>Nd{&bO(2&& zyEChWZM$wwNoz&_QISQeAJm5^8JwT3CNG1YwAw{OUA7ctWAvv*!uLTxMvgX*ylOR~ z=~x*MiW~Qb_CYmuP?lkEHj8S| zNpu$kh!JwI{%H@B5-#KFA7W6YsXuF_g>d$Rp(1*6=%#uxSX3Q@{gGvQ=coOHpi@k3 z6^Acwq%R4|jm$t8_rxq2)Vhb}~(bYhwu2~J)7NqFp0tdnP{x82)Hr!Sp`=;FI~)rk54 z#`dAKA$Nio&p94~fb#WgXp|kY>4bOw_&95O&5c0W9*=~oZL!&QaT}va*0=6VRLcI?M*@%NN4tC+(+Hw@s{L_~Scfz^>;UMY ze%s6Um-j7(&IU*n#5k4Sz}CR{2&{F_7=z%oAs5lW2L$j?8k871i)27oSJabzd-}bW z_dO}joD2R#TF9nbh$kLIqQEIfG_olhx+9F$WE1PzVZ{TTt`ONwdUNvf*oAkUdT@=K z9%2)Jwgk7Z&oPcR5<=Bn(~tQiY~@?B`3TDxLQds5Vc`?yF+joYRr>aK1ew$@WIJoH zq-pAMo<}JpyAmiqw9yHO_?L3mw5E!pb#1k@%+X05LC6KI+4_?F<2hKwoJY$McgM-& z>Gt6{!RXH~E*{u2QU%s!D57VA+DMX9;$HWOofX+5fy)j^8xj^%KdeINJp9Oz8(%ueLNpzHiwW>hSP+pLirCanV)Hl&2_p!fppYoMBX_SrMM?4<&h~yWj&HD;;(fRp2?H_c@rl@ONcj2ZN zPE6f<$P^d3EG(v;dd1NSL@9g`j>nDR$^7rkJGK&0Q4H9X%=Ni)GJ{0VKZ7}Dkzg(u zx6lZr6OKH0u5^j-oPgl~nGEHp#Z>LKOSRg{hVR_MOCb=u#!BoOP!&7?JP$+=+-^41 zvNn=0h$`+j7yH*52zLk>+34s)sBXYcerd_Xzs%z*VWFXDeR+TR)GIxMeH>+Qx&G0& zyZfKbxKC5#W9|y8sh~3RCcL(W;U3Dh?0HjY27JZdV->6XC5C!G4=xX2wN*F}sKunW6jZ?6 z?KYR6Dufz{02N|w4R0^@k3*XzWYLjBVY`-A@dsOt*=}c6cRa9tjb1T6IjOG|`tH<> zV<{<8kqnU=XwwrDW&~Ztm+W0|>8Ovpx}3XBfee0*vur=&!IKRmJ3xT`IW zONocL0&x6sv6&72YNTUBJToA3tjC0hBMOH($0NDJsgxP53W$n5*yo)x!Hoo80C@KJDLPILl zR`NWEMv54*p5CVO^%crHe;1AKXe4=0r3eE4{{d89VNC$T|a2)Qh&UIvQ%lmGHRL6vS zamBcJ@SjX$Oo9dqb`F6E+wEA&bJD%q`bW;pH(>|Yc;g=bU#}i31_{nXMbTq`=>w(d zzuY4T6^I>SZOt_Dvi$Z1Tm%xveN6C!P(#jL@&9`kDO}G07W3lvh69eni`Nv4QdnW> zKz1P|A|{9|z!TDbiLF77ofGz_D7S1}Oo9X{a@p$f&kI%WS?kZz`asPXT6tFIW18Q& zaWSMO&kW5J7A3@i;Cch9Qcs2g=!D#A~yQFR(m)eb%2HmJ_ zl#SjmNR|yCAKB0EJ1J@bzM&P$a2@uLQ!WYRQcKx2XO8NpiId$sE7!X=pKmyFxT_Jf z6-FOq;(eA9TaR?@BQtr6tMUdRHM0`7=J$4;ky6nw?K-^ z_VNZSc;M`@eZH4{Xhgse(DDE|%FC5;fdaRwHj-mqMRxMrX&gnE@1Nd($j8$2Ew>+n z=(l}WT+5xKM|7ely+F-ym4w0r{{{2btP{6}#>ZbX{cssg3Uipq?Lg2k`==)%c@QZ@ zj0Pgtj{92errl>J<~hihsDGPgI21A6A)g~M6)UUd>kIesd-y!Jf6D8e;(xY?zh9mz z=Uw+wFHLEW5jPz^IW+!>}bH#=G3#ZreOK`&e+ZAYF=;+PMPKC|<846b&m4&GA2}n3EQ1 z4_qxa)PjBh)P_rN&;|jK3B_g9R-eI>@)q}Vxq|M=qiq}8JQ7~Ew^I28z2BjwsY)(g zTsM3mEFIqBXf#kjGh(IDO#bDZC?_&Vd3n-rG`76dOkr=m4YBJXh zSRu!Sb4MgyUUMt9p~0e(af>5P`DZC?~yb|vS$n2S26<>50hv9x`;RqL9ttW%ZzDaV++vUc1 zvCy?QA21|wR;>%UqgkOW;H53F?dbi!nC41WrT2fpy?#RViB^)Cyb!$|lvUozQx7h^ zK^P*-a9Dx*k#WbpC@4gAn*VT`aIX@US+jI_@+HYdPYu%-=nfuqaNYS-k(|wQ3u`^S1A*&{fgA66LI)2DJh$;ifam3>qPHPfto!eC*y75Fcwoj@ z%d%w*#qTKQkE^~$c#aIUc2$R6tRF+6QDLW1QsF7#x&Ox#&{ zQ$ClEzy%ypgb?4SJ@=2TSq}qD_#qL3I(0pY430ra z4YQO&aO|-!=c1{^ex1__y@;#N@H71X;g%gAL-p94HEy3Mv`KZ?A=U%OBL2xOIHCw2 zH~6nXuf@!B&qo{_P+O0Izp|f1cf5)Zy}(Pm{bb`a`Cx#i4G)_*LH}78OU}$Vc3>qJ zp0H{WgXHw-*-z%9?<_;tbpIV5v3k9&ApV$-W#D!W6`{MwRoQ3D1id0^hVkfKi z!lUz%k{H(5?Inq?149+nVdCI~cpYwT@ZsOtg6k!Jm$d!3z)5BEda8%WPsI|&`IC4n z7)0De6%Mkx``bPGU(fO-z2LYBTH`p{Zh8iFSAPFTo+6Nb`#NWYMSgu6Fls z`{`7^;6&|$_x-FdEOojqTd<7CLtEY4r&5-me=qUNcakDz4Aej%K(>yqrMvFbX=PPztqpn0V3JV9IEudt{73IlREW z4c9wBc@a56J*Br-0!}dpCS5LOSiIt%e|y(l1}B~JL$8x3yLDbXjt+Y2waZGS^u~X| zEiaP@NPUGZ1`OLleHGhaO{YjGO-?&Za;j9`U-`*z#7#edxE*!_aEQ0$&t~u)Tz^1e z^HCxlfj^H12K<_){yQc>eRogH$uGhwD$eJr9E(Knnxt(|bFM851OdkjCNK#A%;4c} zq{Gj%2Hix1f|-j~Xdr50nu}o2i)7AXyo(~gvvkBs-w5VneMLWlqkgLBG~MQ>!xi8F zVg}AX`{t)kG>g!5ZqQw4t3}!o%dR)3bdlvV-Ll3UPEi%pJ z+GiF4SAm3(CI|x3)98f|v>;VEshj67pNpAJfXtcHSkvuoygRl<26^WX`EVd{kwoif zv{Fh}N_xi_T9_=kj{>_*%gu?^(98Q$_RdXm(y=_1nX}E|mM@ZocY#(5ID#v%xL}JE z0Ioo{-4%cc2oVn|H^o^5E_YvlycAvSa{QsC+aA{k_ZolVbxIM*Fx}9gSn>Lp4Nn#u zgl`K@AlEcDSESufXH+N?N744Z&$iAL(D;ewHSim1?Q7PB+E7ZqUvgP$)E)l%<~kt_ za?n8u{(OdbfgBYPp5$NVK&CldA<=K)QvMLsVKqaJBFXcUaWKq)2#PY02}Qz#{{|88 z+t8*l_=)5s-k5;(BBWV(vYnm6XL68Zm0XR$%LukH8=4@6fXJF`dV4?IWZd^TB`Vs4 z>v%BM04l$J{Yu;{<>9f06IOWj40B)>F7E&ONn-HzrE1CM#+C6y!LdJG83#sIv-e?*h*%)@s;VIfk1 zJO2Rj+>Hp66W$#sXKZ-*xoMrmes|)1VR+}($qNgPrMP+omXj3X%pZ<7DkN@2KtK(i zckv@jT^g&&6wIYd8|i>c_vY2Pj_I)CiX7+&LO!>8z@&O-MSGD~#Lb8Q$km1f%6~!A zDvuDw9ekOXzIq5N?ZM5aY$ux0LKH;=JIKZ7@prIQ-)P`6Jcx}&L#2pD+q);C_oEaSrN`b!>Mnq8oBmxxOS813-NNIvJAaG<%YWVy2Z`urty2t^7 z(JA}5M?ZV20pf{{h}3PcmQucX_p??SY$GPa#`T};jCJ#lqA*qA&_I5#*>gO)I8b$5 z*kAhS29X4Tdrd#Su&AfWRAZ*Qm*c$WzHHI5Zw7waAHJaYS$Qe#Z;FJsJ( zJ(K!>G{<8LyUjuS@ZE6HOelJIC`>nWv{HU zZ>Om$0&oQWB&-ozAy`(8L#RQ#iVRxj|LN>a!?En!wr|an(jZL|r3h&*$xu{ipj48g zA{8MdLx~2`EQC`+Dybx)NSfu8R7!({l;Mng>E*}NBunS$| zQ@`is1&X_z1q}e^w@f_DYX<03K_sFE_M{D9m8jB7nXbj})==01N=@!c6$UYtj9yNw4K4ufC1;&2zfH$==A5(1F| z8^8w#MqU~B4k|Y|*W$iurmF8|oPa(U23WxQ!-k+l&WdGxsb8hCS1D3lprXW5pC1dB z36u-DN5-F*B(mZK&~tHz;6rqRvLDRUEJ~TaI{QKUL+=hyt$}y~!+px|vsX8Z$ocS7 zc?vs_HF~jy#$&m#rGP}J>`)cq#M2J?R_EgNbQeDFzu z&b@GC3F{Rn##7vd$!+ts_1{rD{x)??8~v-XA_r$kZc!#)5RJJ(jp@2MTV z;Q6+h;md&M=*xIe0v$7Or#UrxJlrj_m{m#w=Q1QT6hy%NMr!np`GZ}J$mF~a*_4i{VUijUk;| zyz%oGbyTO9+nrknBi=u9G0&{h>oV;7`Yg10cyG^m4jxSmeHQ2E=VK$$MIkTXn9_&G z{=c&o`aLL3jOsW)Jb3YVIwNXa+dLvWtmKXcI$9FJ0sR2XKx|as1iP>5q);ND;Dj** zbsHNXB2!$r+-J_w2dn3ODbU$PdqWSk+ePvru`*IqKh?NGOr7S)YAkUR7~#SEcPRCB zs~JyTv~G-jTjOf9+G()p(DPmWQB`I#V!js_uehyuSZDH`r#jJ&m)izKeAmJ?;0fL%WZ}3MwA5C$l0UTN$j{|`9Nc@)n{Ky zeJftYscH`i2VNwM>}-F~IUAdb{e@Yvs7n|C`YHq<&(a}Lr|vsRbxN{Ky)0A;l7`j4yfU9bf5%8uY z^ITw{6#7aBie5I=!YRQNp>QGKo+6wry&50QO<=YEAm=*;l;|83w0;+<#sAm~w97@oKycSGrrfY! zSG#01^0C%Z%bZe{*CpvR_|W}9V)J@9`#{v3Xj)!a(jgS7C_$Eu2Humvc zTd8Hg+b6#4LXeGw&eQ2pE#lsd3f_+)1AJEXN5E(ESUD`m zDz;bj73QS zW5Gp*UgWrSk)5~q81sD6WMl<%yocr2ulO%QX4bJwYUy1YDKcpGeH4@2HMBPGLj5?x zu+Ki&(nOL}p8nm8w+1<2nPT5ee6y+D>%nnHRN%UnGKe-~J~f_pTGg7%Ut!?goHIE8 zS#?tqxZ1R^@;6Z(Gtl1h6MLQU>$J?~y%*IAFT0sW-(%HS!mIZ-Oz`vm4vp7bFtN~ILl$~buHhtezY0QiW0{A0^;^djdyI$Ty*vv|H z1;50LF>>D_X5cu5CL`nX9hZCkw<5Ir(5(_p1C%B8APJCSf=!K3wumctWWw3z(s<{5R(_~7!p1NYIOa?1RJf!=eqBPSu7A&M2fTwmRe zyJlBNV~9bw!$$kmS zC}rna8RqXIG8{@_d6=UsDhzNl9{B!-A-G7 zQYU&}7u8>2M@<V5KuGE1sQ(oen9YlCJaaad_MLWYwc^Ro=LSs_m`3zW(@TvtA)a7O zJKk>9`Y{5D?T4@$XodaJ0^W$kY~wSve}!<78GSl@h;R2*ePWgu4f`^5wv4~EEm>bCNCVqV&2q-F z(uUjXpHal49_r6K5>g9=p@VlQ;;MPlvet(Z=OsBgp0G z4O5gPof7&EoYOvh`b7IAS~t{T^IEIUxvZa5HnFE5=PR@CLo+Ecxg zRr5OwU{Fa9uv#kx)RI@T{>fdeL2G+QG@n}MoK}Ca%+9jUQ)=h?*uI#tjDiAI5)Q=p zTtSUXU|J)k!0TYY*^lLlPpT6h7+!e2k)0kj*HKAwo8^dH2$jC2f2pMqZn@F)?GQDF zZ%OV85Hbx1z%}BI06P%8!5cnv3BwP#DKz1SEmaI&OpguR5As1jW5}jW6PGK(cA6BF z{nUG|njdTv*eo3H5wQ()-f|Y8ZLYuT9)Jy|Qb@6Dam>XzDn)5kb14<5sa@e-pz{&_ z0{65@%0us8aV<<%FG z;#GS><=yw-$q@+5DcWP~JE-)J-i1La_DibIL)P-!!5=tSuwn@ZV~mkju5a-)7RlQ- zqdd*_%%ar7;I<{;%y*U^e)NfEx`;21ioWBqc1Z_~E%t~lUxH3@krmj7-`!6Gq!bhH z-hzBAn4wjZ@BJK1gq*j*P^Ik1=^}LPzLpq{4YAI47+C9rAY6^^53}>*>{1IsaU4Ns z*ZTO#Vm$=wboP)tB5lFGo(Qwi)I+~s_>0CWBkwcHYpz4Lnk+)K;B^$B7Sgy zjB&Z5&?J2p+s6$chT}kUshCD^a+R*_8G&?5Oms)Vg3X+`cG$vtoD%*)F)fV;=ygNHH9uDD;BmlRCG9;yt??@5b`8 zN`E_}sa4YGPVx5mYZyr+!|=x`LEO;;e4R^a#IXGS+if#oL;$J)`Q?3{Irs>SaiJM_ z&;80h<0 zBiM&VyJc^9(q@%$k@6r`hf;~9=^>(E1KB>_Bqrw$r7kYrWEADqvsO&8k>7 ztX9Ph`33Kc4G4EtH+6AeAN)S{;M9A~TV~6Silh1_xma}O*}|HC>7?4HlUmsS?0N;X zL;*@*m0h__g9)C3eaF2bHc6Dt3R{fZucUr7HZ#%d00aUdL=pNzWgk?!sJ9@c?IrMS zOMd)5IJM`#v-iiGSfsGqtK8{tUCgj@4z{uj=%80dkWgCU2=GQqN!7rkIzAO>hvn?< z2>FTRfy4lwGTxoy!RJ@b#q(1|Hyv{^?w415xYkfI7OiCTRHlgIgQ@5V1=IoMl)X@? zo$ltXb|Na>&nYCg%0TUX_tj`z`)B1jZ-Ah@*4+GFWy6DpQ4b#dPw8v2cS{ZpyH;~w zRz3>7|1+j?uc%SP8&|`w@-&KpVZhgqfnPg{5*__mO3yF-Hk{f(4-uj(E#J3lFF~sJq~5Qe#QOh7@cQnmJrS;k zKj!RGAN^@>vpFaK|A+~|A4WEh9{mGL5AXfrJ4}FEK9rO|ai^by$|6N$D0G(Hx`RjPZKbOkj@Ze=1>UcIJ9d{bthYSTSrLZd z23U9=a!wth_b9Q^Izvc}z_07-#{*M~9ZH&~JEorP+@$fc%;-&J?TR@|Du2#@S!UV~ zO7VX}SB+8UPotJN@1}(AZnF;Yedp<@maxB7<=UM28}1Q}(nu)hN$|hM!owG^Km8ya zh1KpXFx;cmLTiXJ@DPdCQtS~z1olyFj_94dl7A$18+=4RIp0%@A|zH86HPD)^GGRJ zVAT+IB3N72K))RN)GVq_^r=5-efk}@IpeQV>6aDMsr+(Q*8L~VzLP!oNBuq$_4(bJ z4HZ^n+JN>J3Y9m<0R3iqT;bGA<~q&bC;+`gj_Fwtce6KEg>Y{EG$$G zBpNQE|2g1-MFQd_JmyQa2r1H13MXBNo!{9CL|z00+eLj+`V|6@FvYXEl`&~?H`K&> zA7mtnZm&geX0)W%&nbdy;o;Hp^ySyjZ9f$K*POLK**>~6oW5bG>@6`HTE|0h8PoDq zud8Oi$7hIGX7cBAch~FR-$Bd9Z0ChjHjE88b+U*CbAT-LJW-AaTMG6-S;l@hD-ykT z0wa1#GY5?o(-kiS9$tF`po0hxPP>4kkSdckEf_1;dEc{T8k%cBq+OcUBGO7z@KUe| z=m3_H) zQx&)eLQN>$d~r+x0g6y4p&O zqpj77dNrI~st(MgfJ)5gEt<>0BD|V7R_K}h4JLT7<4K95o~+9&x4Mh6hmOuf&EY$b z`^E9_o2tz-M#2JT?O8%y9lymfjj!&VYa2Q|V~Wh$;8=}T$?i=rm0ybcU+7T(difse zUZhdvh(cHmxI{Z{*wQ?QRHwA{)9j3%&q1{UuG{*t8j1?TMxR#ft zfu`F{!;M8OhxaCrhb;k39YN@>%D{8ELWM^w9tc&K3*y~5X^8wmJIQKPFJoM~>} zs~T6{1PlZVgERug8lam05_Dn&ehLh>2mca6YYwADn(jNZ_(;XDv=0(*cA2|+c|90I zHi7CCwIoM1oCd~5=-lr@Skv-d$?A3U8|Ob5c)9xp_mP(um}iE4R&2^Io^Yu-V~RNU zi|Q{Y2_)fX=sF9Fkno=fNMEWQ(7Q*=KLmDYzi*c2SQ%Dkx0d8oI2*(^5^V+F1R&xN z<7j#RdFtDRAt^#@J{1ELb`~;h3E4l2ZT{uG6P9cA{kBG$w>^0I0k?!S6hh-?!!0G_~u$|rq;nv^5K!VbUi zc>P7=daLr_BTpZ_B`>4Z_%ClkDE(2lr3_0p#69LxuUDmL%==K)!!vEAyjbH}vGi^7 zN58xoC$`Pleep`t@-bqm{p1b+Xc8KX7&7+saiTpUk+7ZCYo!R_|A23n;5956($IyO z;RkM{r!TqidikJHM`KU6&Y1X8e9VIO3b->p(`?RwMiCX$qa^UM{s+HAqprOFhVObc zb#;_gVFJ2NJU>rUIV_Fvgic4Ah|`OWgDW9Ar{A_-3&H~A(^V*#G_KlrS&(AAW!g)O z`H4lS--58$pV;Af5Yz_#5IBIAcK8dWIk!u%T+mu}bb4l=g0sU8^xgDpH>A|hhHkrn z@gWNW(ZqD==Yq39qp)6U>|U?2xnivN3jNQS=Nb@52wVE>dmIW7_D7!l@Hv6@8?zK3 zq(0vZ)7ZEGLOJcV0Uq|26K6uf%ic^K^ZeNpyVqNp`j&cKHuBeL=v2GBc&B|eo#?jKXx4$Wbk5Y8iMx{ zC|qL-%#UpAPg`F?{+?RhG`PU7Y6#U4g-`~x>@&!UaL}V6a~M$)xDSR6bz|zEz%(?F z?WcnN1tsOvZ7T>Cn{TNN&R;d+o>Jt5Z!0hSe&zIbM+*fsn225NJ}cth33!O{m8TW) z6c1;Gj}OY$kL@crYv7jT+&KMZ6M}S2mRkO6;4|>drEFq!pm9d@L`F_P`3Q2Bt_Ra{ zl2m~IfIKezpY`dd4kONhi0_#3$-P>I- zUMEw=j3S(KNK0p>Ceg;p9lxDkt{g(2bsPa4x8aO?t> z9AH6#*Eyrq&mWJQ`1AjI|I*Yym?|odKR*viSxD^z_=Y?WWex1YUuGkE9_kU7)~kX| zVL?gwpN*~8h{%yx^nA>5al9~(LJj2jm0=mT1bXwjkQ{5)>2!Yeos(U%go!t9)IZhf zWBv20`x%aLsV>4PH0w7CYK4%ZxCS+@UDP-irhF+iZn2;}1z}Qpq^S&n=AzXOvxb%j zuqo$XUp*#O_g&+>>K&!UR~X>-6dTc1fLq4R<$BJ3bnMEG1H-sPGcG9i)_5a#SL^VJP!1TrYO$;kIgbSAl-q zkLXCfo9S<=VA-J4dHPVltuSGqBSsc+{6iG77qIKc&^BC8Gno+9bhZoqyTk!5=Gs4t zmQLtV)Yrjt`Ii;K6GUriGCFLBNHM^5Vy;+#_0S^==s3fT8&te!8O4v zSXkghp@hV2hkL;q^P*njotH zD7)|b459liZ8FsV=WgE3Zc8c~K!|~g;iXz6_}Led+O!k_4X_Pfo_cc*YcG4^G$+Dv zgz}EHQe7hokbVwI2An=j!3%Yb5WT;(ZQyCy=I0CE?u7^K%e)D?t*zGpLZWcSmbKiw zAf2OqIq0sAllEH$eWyzhdO=KS$ylX?%b;6a7@$H&NSO58ktYPNwwx>ti4jN)U1%2w z1#N;>fcAk?>rkoj+IyDGn={;QcyDYpz>swfpMaSnJokPd?9+0^1@uJj-hBpt*Oi^? zs;45$MOhfJNUGjgAaGc}qvG}YJC`lCxUM$fZLGf2gn?~}A=X53LUobTPxPOT$gdC< zMi@><#EE*plc1|=9ER9D)(x+1eC4$C(|5Zf{^BV~DuV8zOqO7`xm>A`&S;Te|6hi77TnZvF9tt9hwT(^R!W24lrnyWB&@WoKS>{&#<;NG@KVCKp zDt$Zd*IAz*DTf0FnlB(xnVk!ohV(D+1ch1DaVuWcfG@IO%_ZI&7DYY)#uJ*Dph&bN ze>vG~-lZf0F&kT#^cr?L@#bT$pA{PU=k8=42oW*-^aAoF-CX7icVz^n?oE_)w5i+(Fn z98xWAZfjKgi;XJ+PlRO8@=u?B;j|k=Gh5}A3}-&xa@kaci5cC5p69m^=Lx3qIca{4 zD4tXJf#Ag-iHH7*8jmnm?AcS8RY%(_m0gmMwDRU_I%2*`30*@A1ljl+R{(dKkHA1Q zWB^cBs7MjwgXBTd7U);Rse%x}?AZ$aPMNk!COOC4U3qrK+t?LOR|n00EA*bb{{Zm> z=@JTiNP3=`fHfv|#ZyyoCj_RHi;ViG50i2@PAJe7FePQyBF=VK>oK|qHk0JPpBS*{ zs`o%`trb7{J;va*(yv&aD>J|ku3L7?1o98c*wh8E!-=MJxh6pi)zfMm1YcML00iA+ z5FDa1{Q<)Bt?GI{76%xZeE=U4f_XZ}844iC^+x3;r=jBXN#@)v*3Er;ceQcm!C97{(1WXuvO7(0Cf#1Q~hD~99%no-^x ze54-vH70}64ntgBC63hi#diVAQ(>QcHXH;1z=)^JzVtRcDI)%S(7U`j>PfBsbL8uo z7ozqy;>e8kn-(bl3hN?Et@$_%w@P0Y&E%<#0&apW<>EiYV$#|ZUfcI{^6u;$iF{{@$N2GGnbGm4@@ClPtq_+qIi(>@CSqCH3l zq9#BP#47tjV;_ot*3AtUop-LVTW~Vy_c*cBUqAYMdpQMAQxK5jbr`h(Ym!>7c!n^P zq_sLB=YShdOVC0Qfta(|Cq1idg?Uivf(u#^N2l)}E;(AfHzz90b6r9{rd7D(m{-6k z>1~)Ghtz(uzCAf>$aO5+Xs$YpDlHuv&1V@CRxz87x-KO!%~0YQ`D;=;HfD(icB^$eu*)ud(2N(DYq z?qvq@F(+o%Xuphx4{giO4?kixkOC2{MMZ_Q0`M*ACRhp&?mKX-3MI3_;=L&k9-48a zrfIh@=~WV^MlA5mmL#|x@<#4iF>-nq(1azemeBsT@BS=(Nl`7Vyj*GS&egNC0y zUNf;-{%8~#yY>?I&qungi(Vz^RQp&jH^m-t8_p7a2+hw(eJQ{byx9v)(Gxp(A*BZf zPGey|Vlq?*0~oP?63}naedyx999}S%-4$A^bfY37V&F=oMG@gk4I4&@ZWGeP#LiU~ zs_NrX3->B^8Yq5;6{w{3IWe8FwLZvC^mqt?2gtzY3`PuOTHml`+0h~XtqXXv z^EreEAVEhng>;GMOC%pfa%KC5wlgjhhV3!X5tj?;mYR}sF>l%B@&N;~X-+|NeEkH; zgh{`S)n+~N9#U*DE$p9?XTjFJ*)&>QBp zs8G&BBWB4sQ&{$G?Mb3X{#?>K@|qzJ3g3oYQQIYbe5Y`-5Ibi8T&5*U8rF6boh&qa zy74NPPyh>Siq&qn`Lw%wQrg>h+h(vI&QgoNuQ_5pZ67fXI?Ob&TPXgDtX-tiaOAc} z!yh6+Mi?Ou`o%&n5Q-QJ#Jz=@d}IMfUf|L(i-NY5TwDSxqLNbzw~=}+5HLk!VH_Lk zF(WQwlLVu&b>J$mpi-A}!u`!GcB&nlzm3RtN}B;7s+nBhlDPq~@*(9<_9c8xS%N(-W%95sk` z|D+f)q?4qDgdhl!aJ+`;VA@#Y38F4Rx zPxfY7D)_AtIjTBCc9~O+ryBqOl{dW=dr@uWWuqIVZ)Fz@(%Jid+YFL{hY^~=6pbg& zkpT2Bb`ZLWC%%?ilmr(6*LlC?#g4{bg*!mV2-nDUAnoDzxE+iQxpIq~x4H@Ugi%X- zK=t8bT$*S7zwP_`8}$Ay2r{DiZXr& zza`^3kv}0?WBxd8fHa>qw?R-HFXKTOp#f_q+AXQa4|ffcs5yF|rZ`JTs-fR#5x%(I)7EzJ zne;_t2XSQ(8GzM`*dns^!=IPT}O(K=4w=A;U{XwcREsoPi$ zan6YXtyi;~_ZlD)P3hAowZHXWU37bwdFU5Uj)yP{gFq#xh1;pepc5}fC*X+{Do>)O za6ETl+j<=jg`(VruBT0tMj?UuO0??teDCywmE)J%`Fg}-RdV(`7B|sWE_AA zDP#DJp$Q6J!VFF#Zn!;A+{MkMnJw(8g;tidg$b+v=K1vY@>$`_NY(dtnm-Q{1sWmlA(|BctV|EFRygB&M^ z{#!5b_U97;t_-Ma~%>nNthOH=Vch#3^{L}HY z?rzX#gZC#U#Au9pIB#i?U)>S+-(UCU{?PIt0M7?+UXzTB0K;DQvkk~8mzOi+tPlKZ zz>M@%dAHuPhKt`Yix*~j_8oa_`mhSi+s6{dv=;43DfToBe`F9|wentHdUW;tWiof> zYWnq&ao?C(snPUyrF&~tY{H&DZ6%#r=@XZ^h6?mG6}$ydBOZ+-7t$+Lm;^+^IRM=c zja&db{C(20_!EnI0IW8-1-b1Rw+9DJC_j0>(e7$o+_B)*kT0*b9#lN4=3Xz03)tQ)m;1i_ zSq&srx*T~2y2GK|S*(CTu>0P9Ywfu@@4*SXl1O?~o^Sba$RhoVNYj%cMxVpBMy~xa zXWY1P!)0W)ctgqiUGJxToB`3J1a{7vy~T^CE8_FqVIyQD25fS@1~qB+C-)vgJ$$XQ zPlSVVrMzhOMS6Oq=WF!}7%KPW%a_&DUoTkkgsHEBToceBo>}yO2rn~E?EkX>( zFvxB6BhuqvTi;dhdS9Jwd#n3xuOX^?Yh4c&yCc1Xezx1nZnhaqJpHv=6%8ZQZ~eEk zwYBwwcb4VUvl{DPFQ$1#n=l6X)8GjgEn=$i}xwM-O^%I!0M;1sMzV&YVSm3dud&7`FH zw18H*?9NWBjK{O z0jgV)C~eLLpNQO3JLmoS{1D6^l;8Ki zsal{Sr8_H}0U7AM=}rimKP}8Bt871t1^}w7$KnUD6P!U)U$GUE1u}8$lx{+PvUnP2 z<*L!sZ1AWaCUL>`jknC=aY~SNNkp$bhZMuB_R9V7_1ia{E2}Kmx|1-O#0^!Ca4_&t zpsf0>K6{}(jb1aQ<}(`N(kn00KR#o|lV8IcG;()OTDELi;!lr;ylFgz&;D|B0W|7vwG0QQCsV< zbm`I?cJo@?EfR*M7Q2oju*W?+f>9JX=S)*fCh#WzM;+_bjBtgq0c^*FZt&~$iBg)%WJLeaW z%I((V%F_eDCF5L$e4Erqh8emE`QVB@MATfq4n%%9-EYF0Ih7tV>>}HM-$0p@^Tyh$ z?f$8VnF8l62#mfvY>C6FfAr;%>7geir07DAdHwrjU)PJ;mN$4*v1fX4GhAGD&aOq3 z&IX2`jQ`tQb|*bu&H&i7J74{zo#Xn$1)|Q@qtAdFANP>E@GHMAx*QvSIz6|PI6?UN0>O;3Y|zNiJCPOb4mQ;tTgCpoH#C=A zNNfheApGP6U*}DxoPEf)SSxgok_(PgRoSBHY>5bACPo5)0uBJ4g%pQxl=t-P;_xro zeX7u2e87ODJ)4e&)=Kq>&YZsTs+pndbg|`|3*+CW+NAF&o$MvyQ7|dO(8|$qAObpB zTwC(7XBCZsn|sX3F;eaL_M?R^mQBe88)t>{zf-idUMgKcXc6E=H&CA1f~krWw$tn; zwv(m6gnY1@g^>h0c9hQQey->+gEm4ZjWIMb0x1%t*4Kt-S_&gfY-%)eH>A3_P2Y0K z$3;wdrb%^$Hw(glZ!gXWEMbHx%uLy+T&7cCt$X7a&MWGmc4`(+liz_dwUpP42ThVc zn4N9#z2w1|Ey*J^a&-Y2Nj<#01U6*N_Q2}@*2W80CnaD_jB(>uMH$e^XQJco~I zedWgwW9tHzPC(FdZNx(+JTOXnsNaCmmQ9@@eI~RR#cgFF2e+;Y3iL8ajP;zaoD*Kgt$5ck<)zBAHBf^W>WT|i zY@VKg7s8F-zprHyWfUk#w6oVdBAQ7Y#Qpob;qnEe)JH;Qb1&GMcMrpo$4`j}J+p~c zS&q%cZpk4v$9lXhoj0kj=FaQqKeuc)8tgp%Rcz?Z=cVueJ0M$B-*2bp^j;z=?qM&s zaA8Sil1`)&HW9obhrtM`*7hjb2sSWi_6%WXv*Ulo_UB^~{& zHUK-1ZO`v@Hn{t(qE6deVH1llj7{&`OEJ&5y8ZF`x}}>u>c3T2XFPe*vwA^wa~oU1 ztTxB2(Qe3)eJ*w@>6PWA@|u3pr1AHcPB;kt1+fPu9l#N6$UiT(VDE%zz;5E?p~MU( z&-5)W1;sVw1RD!x7C`X*9V<^y>9D1}rL*Q!L^F#oeHE?ywW@0E)X&$XF6&0W+7-69 z@yD8QkHJYpR_q%)Dfv@)>!^r{DuxeF$@e{Y@Swn9O`Lb#8Uh;)3ElQJok2oGWgc@} zz`Y3=WCQex8ItaJ1j>`sKXyn>)>`TuHIY78jviuM0OGaFhKltP@85q@$^E^;8Swg3 zHb$4;c!5q)J=Hq7AVj6CrQM64=yv;l(Hq!@nq1<@|I#eD zF}XlQ1ba`4Z2u&9t2OqRtIE7ox?%*GghxL#xH@Vlb=}-%1FI-IEBE;?c-qj}fp$qI zzvSONke@rK>nWDaF8Ruab??1zeDm#|^Myd_`IhOu`}E=VOr1Tu&kD)4aZQY;+mf99 zF*+xB46Xsw2_#4+KpaBJ4DW!S*)(Oi>7W8K!4TDo_NAmZ#C$LAP_M-${+pFW`y{l= zwUtHOMTi8K)D-6hgsiO--l7-O6r(#ahxksaz0r_f6Oz`wiv8zi(e4LRW+!i0tSYJ82a;dk(41c6 zDx6Cw0Te*_j9eoe3KodYe;}8!Qpe`Un_zgc_K7Fp74{~9y7oTu#g+_U>?KDzG}k`* zyx4Luzj~pOk;L{Ez&IjbY{2U`Z+bvj;d&DGlh^!GpY!^l*_MIMns-L(XRWPUv=RuP zd?9&jE{!h9tsXRFU>(Q}`6M*O5w~tSB1&Axl>;IL^%BBPg4tVUnK+Y^N;0tE(bq74B9sRirNV_10uTcy888>EXj~Uq8{im!eLG zgn9pq7wooNxN$UuqU7`I(gCX3|zfeB~TgVrjs%ty1)6x-R+^ycLK)x#%?;Bb9IzK;a zi{G>~>)yQ-bgt{I=~Xqn(Tl1gGhMS6caINIlg(8JzhAPOH6~kP695GW1X)y?Sx8s_ zqT$F8tOg);1)5ijChoS4e%cKn{T$?!+u}{I1CSeXuz@HsuMcF zGUK-MNu7SzZ^ETvrbQ3TYYr1F5V>QlpLJ@<2y>gW0|8HieQZ85<#AI?MmJKjWh&6;7n16GHli!<%t3$Y-116l{j4B(8>QBk z{88;$-L#wT*biIQ8w8q4ZSwZk#%M)av$|#KETMv0ubJQV*?zM-#(e2!K5Y z7$Z#gmk&9Mdc>hj%T1awyxVuzxm1vN=R_$t=?gwOV{A|P?04J_+_^h%`Z2{%#!u-n@ zf#AP5NHPp?V&xQ&b;qV}tGR=OH;&SM(u+^hZ6+JM7|(PgWeBP2y$3lJgzWp?+4^Rc zF?n;-C-^>O}p2g%d@@3V~B)=IE)-V{2`Yt{ML#^W8|uJ*YruN za(FwH3~ZyVtr+uZ{LOv{GB=V}b_=K+CfK8k)kq?39Y3mOa*llS}$J7vsWd)8eZ#T->UX{J%WaFXr zWCRPwc3UBN#kr?k^*rH8-rHu#r9NXTa4}pT0T+n#L#L3Ol8a8^o`>NJL|w2D2(gR# z656a?BA`s%0#IYtOUNuRIryxvwY3xjbk(F6@u=@?ttY7ygba|;ILs(AgS9fIYTHCKu@kDCrGM(&7|5sHfdKWRbAp)_~E3pPJ!iYFsRalx%c%9*hIR zFH_3ITk$10BL&!wzR0fb3FJ~@@r3v$tBAyWT0KuJvTytno(`wPe2bb46yyyZ~ocoITzh%~+X~$e#z9BC+8`4q&z)I1$hGb)@nf!T>nnL1T)tLs%^w9D8E@-dTp>n%)r>~mCO zz*hfbnFmOFxYGOt7U|xeW=qZxulwQyW*irTkru%z+!%1Hu|19roF^;HOT|GG-g8%9 z%P8oi9PTbzrPz3HT$=Slj1eb=D3fpu;BxBJsgDj&G8agTLe$}L_uATpB zOogKwV?Ib=FfGK%rcnyyiPx{IvW+2M+(>FtqMp^bULYaveuKTnKoYES0M093H|utA zVA52{bNX2W7Y-uO!&uoxEl)IEz|Fy5lCtJ_qWdD)ZJI-fNJ;Te^3v=Zm1rSkw^FrO zv_A5z+}3=eID)?Ov9W#3&CP#jPWIXl8Y!GO{sz3>SKfeR2WthEh|9h>cCbVfZO%bD}9X2I(-C0z@crYp#rsPW1S` zqRRHYLuS8HHF|lf1aKbu!26c>$aYQB2jc^f+Pilz;Q)pnc_Nifx)Wwkw7b*PaAYz-he{}b+KaT*jaBr1e}UE#6I%k=U;C-*M;G6BKne9 zl{KhL9KA{@n9YjLujV!|gPhtKVnXn}L*Le{v!8xLqcC858=9Ip6+Vrt3gCck`yA;3 zL{lP5hRl`fliGAswBTjunz&vY&KLv~`)IwmI8H@XvJk_?5sj=YxOXwrrs}*RQfoI< zQ&5A*R2mS+Ds3IZLol3!kA~SlulV?j6bk3zdk7A*Vv zW~ustyB^Gv2`R2yd*8#Y;k*8QqgxukuesdKT(VQ-!*|{53$SYP29~3p?paL6K4N=& z_wLOnS~I$Nx0%n)($06bk3vuJfUhrFsg&I9w{Nwdsm70h9wJ#zaVF#?m~8o9tHsT!u&q&z3i3n)Is>s+`dc^q^aOtQ4$cVL?; zlQHi+*9iiJ-j?uw)Hx9`DW99&S5H?My|rQ5dR!G{m3J@78q@@gd(?@{`ST4&1fWS-cnCQF_ZwMh<7n$YmU%0D_ieH2m&cSr2dbKQUIm*%883+0mJz&G(V zuJCw!6BLquD@q3oc>==SYazC{Ka3n$^` z^-8$+>*JZ+c#}A;>i0TAH4*lQi@r|%W%xoZ|6*sYdE0YgE0eL71v4NfrDccH(G7nC_?p4P)i%(N!*CuxI=1sMdjN8={24r z>ah`)%9W1|0_E+?OhW`<>h%S^2BD)F8}+rOCNsgSNg0IAJ+o5#f0Y2kxir7b zYPX#+l4=l+RX@-tGBR@Jy4yo^-pBsG6~XOdcPu9LTOKI?Ww!T^*-oWT`U-=KGt0}% z`}cVJe-!{c)5#gfD5wt-UKD0sT&0BB zL3fWH6Nr5Hj;V9z9APE#UBc9GN+?)OuoXf>zHq2yhrj9Uzq{Sb@Ml`#2-mVXF~$?! z?|oX<>vI3e4Vn#4hPeM1w)MT|%coC81p+!Tk0-i~7R`ywp}c8Uv&%p3-8b_e8G*0o z#4mGrr#gGUb3#s5y}rJFS5;A0T@+w%UP8WbCL;`ch*0yPwAAo`L2D#*#O!vnw5CiE z5xJIsn*5zq4mZ^%U7Hg1#$oQ5eJ`)Pv9HjWC4Ek2@6Q!y)pyyxsQlT~^o4fKL8#+L zRCj+V;EpAGn}yDuqOa?MBnEm+mdtV@O88q2xR&I})-HTUSO0BZnqDAFuZhaAD{^oXRI7g}1%6+q_U*N59gh zAb5mm&yYXn4wv4Sl;mDrJS6EuuYVslg z)&_x>8)wVS?P(r!aUA)HV8gBx29WA}2(+@ta0H**X`O#b?Ay6BLrQ5i+QT9^10q=ew-St-uh}(D-2t0crc~>sf(!{f?BWnM{Jc z?vTbkw#_^;M8WieZe-=eIR{RSK6KqA&)79R!rt>%ft_-Q`dY83zU~k1WSE3we@yB% zjO<_cEr|Ylbo`_X1mMX9e`5f=Kf{CG7iG9yxOnu%@%`P0$ju!x-r!V7KxiF4m2zM9 zX0x4P%M7m$?AeX#+O7xYXICXMAfv=p`q)6{ov#u?F2>9XoS>RtQsyCpq1VWrY_s(C zTKp)%+_mK}Uh3{_u?AH+AiJ+j?TqiByxuPF0z%f+O$#RgXVgfd>H55X9F-r7&J2ANuC(^Enmn@3mTf`^WFoig%}% z)n2ror}Om1!s&`hSL0RQ#K+F9HC*3Y-ls@o#=)_1W;S6C<07ngydCWpm!;tI-J$C* z?Y&q!zq`_vT@DK9>_=q~9Rr&-4ay~BdV#@(2)CYq*iOP*W(*1v}pvXc|xr^hdMhL%V zHu7A@5ADt&S^i`EKt*uY3fe8%Cih3P=H?fzo2-R4C5`%rJ%003JOBK<<4^Cu9F=uV zuDpe7SV&Jr5X|}viL!#NQJHA^vdC~r_g1CtKgbrX=-F% zrkvaP&GUcUy-r6*h`dckg1y1MJ2*lxK%CS`={X0$d^7z1zWDwgeN6TiSG|dC`1!_Y zL-TL49 z+QW2rt^u-yUUKy;#Uzp*g!UDo1PXmJ}kX1dB{_x8h!(+rzyv`h*1G zqb3SJdpbnk0H{af_veG|joAv!RHH4w;d^p!cM+|oD@O5cYW%j5R!jNO9Iv@UBi_8c zQTWm(H9}%u<;|6L6=%%?<-6V0wrXt*eQ>?*PK4WWb+U4<7?Q-{%p-rn9W zJSgR*kD538w}8#>A<3djEv@Y(y)`$|zWLOwnx9o~Zr7v~Vx$={-GJEsU>3l>`9{jS z4aiDjQZ*W%j;oP*7DBT2=Tlv~3=s>-zC&7t6hyP@#Tg$@6BP=B$=5cT*T;Id#*R`Q zUYO)Ms?dIRYMuM{#4G`ELcld;kK(#%>gq?gBp<1a@|FRdy^XGfjQi(qK!F;~MLTO` zKHU+h)4!QQFiw~rV7YFbz?l*f4MN)DjKUjHf65iyzef8x7TTv`&;K-x>6|JI8T;}q zSQ!(^D}=POzE6JSYWpATBO$zHVD@H50!o27MGQU?9Q^T@DR#5grTe8!%+>fIE|6_Y ziI$#pw6_UGCeL5VQNEd$kA^+?o!K--|6@1Q7MTrwaff$XA=)%^KN_j?`FI=|J{h8RX^75}@!J_?=6Zl}B& zgQ9NoXeNr17au*EUxoPgDXl+WB$h~M|8Y$ByJ_RE-ErF`-`wrip5cZ64T<{g^OL=6 zTO!jIU(!0M>V8{o;VUQCCxc5Ge~l(q8q@hZ%k7W2Er_RtM!m@Ww&FVQott~qCNVn5 zB;KOL2Dix^NB=#wX?~iQfbDZNn?FameX=Qgn&Mw%Wgq)z>HEf4x)NV_t0#d``G!q( zogH;*uHT0X=Nc+s+0%e=zx}*_`?*SNe^Yz+hoLZ8armfFJwypAW~t6PvAgX2>&rdowMKQe zM2+|Nu3EAo(BVP*uURK-+XVAr%oqsF<44WYlW2kufl2N{KKJW`;f7M$Qu0Q-6(yD@ zPDYX_&rj=T^sE!xwtLkd9HS4qpC{o}-=m5i$x+sUTLH~9}bb_uglti1g*EpO95B#iwi``u6$FI{>lzWMCF=9Sh)ks3!X==qo8 z55jGY->Z^}3k2El9rv?Srr?0+hAMSf&7E6Y z4y3lrc>Uf)kAi_Vw>0MU>lIbBWQMYBlr#%9Z`!}kUgB9jlM#UZ#l`gnO`eND#uE{2 z(4L#gah0b*y=rbr%Sjhn2dgAHK1;~Qy;EZFw{Sd#^J*Z4KsrKPA%CDAIb)gPU0Vm2 z6eMpQPw}%IvEMMs0e&%cd+YWD(yrK171eR2Shw(WE=w6mkCd=eHkOt;t)bp6!?NjE z@YnqH;n2xstL{j}1qrDl;)P2l1R30^jNBtA?WXQAE!;A@=jG{JUtZhoZ>!Mq@9g_> zy}EZ}o~eFniC6kh?$7yR-H$ildC6>jdDf=+RmwX<3G#D;PAsn6Xf?-q)GPAp>u>x- zT<_){{qPV(jQqxUnW6*}NP8hQ^ozo%AmdwR#jl($7x%`aoxHizVcp9{7I%R|S!J diff --git a/_images/2.10_dimensionality_reduction_12_1.png b/_images/2.10_dimensionality_reduction_12_1.png new file mode 100644 index 0000000000000000000000000000000000000000..8925358072f04b098f36b799b81bb8b695531fd3 GIT binary patch literal 55852 zcma%jc{r8p8}&}g7&0ewDoIF^v?KEnqR339P{u-Jj3gu>Bq7NVp-6@dA!H_%$~-3t zsSxq4&G~+Re%E)deL7u^z4!Y*&poVrt@XU2+FB~xs5z(!1j05oRmIZ;0vSJnuqlah zD}EySnw<^*IqIfl;C9COyxSFvOEv^e3pW=BXEz6XOI{C~OPB4PoeqgeiHHgF+PS&8 zT$UCUb^PBih&W%e6+QgCC*KcmT`J@8n_VrIBkH6vbnSM}5BlC=Ij^3LQ z*X#1B&3;lFU)NUcAX)1o_2%bKae>Ls!;$euH}OkPb8}7q)UJQ_iCN~m%{EW-@??Hq zG`qmZ7}>Dt0WnIE-?cGPdE+a+#59>MUcBgYTQ&^u);_i;O7*`BtKMJl<-k(&ROtWj zDjE3yTY_!>@7peaf9?E#ze(5aelS6Ufi5J~{!2P>>woX_tbOLVv-LbvP&Gl0;Y6H` zK#UqQ^%nLUbMidl|9wfh+^3fj|Ni+(-4603(kbbPaYuGex}7s*efjdGSr+?t?v1tU z=e^&$hqFOWBt9rR`;Gurb~b-vYmK|9L}Dx3U(f$`VsLv&9!+z>VA&5F*}Jy&?xwU` zgF>9@BI+#JX}600Dh>O1Ykf;>XT_HUli6Y#$#GRWcMr+t3sNhmZQm2qNaL;X-~PIU z#kZ==l~ab)-m%#+GRK~sEi=0`=SgcAx1BD;{F4=9?vC|M)tW0Heb)U9z61?R367+t zrB1u+*5XU@Dqg`G@p0~Ue5cABaUU~vhs3rdEsEp`3+beqd7_&%m)-pv@~N}(Jdt*- z>yaeZ(EK&cGnxIywcOkTf2wXN?|NHs%RzGgrH$w-aWGTnshh7Cqjhj{3bWQ*zW}ov zwJzL0b=;(r4h6rplaQB8^xeljRrph!NU^aCF8j(`MxF=DZ;G=??V99e4WE18Vkc3? z%u_dYYhx2UhswW?JQq!j9ClaUh}CkJ@dhg@J-yUyA?YMKEWPBBBcd~#hR1&Dl(%gJ zRUlha%&mq>T8g#iS#~p9#oO!QZYDUfBXV2dU@-odmbbN;o`}g!T_Kj0e^qM>QLX1w zr=p5G12Z_XL?ymWPO2{?A;$Kapoo|4NGbol37&!6DF z%s~f{7l*s1e$Rf$_hXTrW0JkLHYdAE@pFmzqwiISo3wA#mHi0q!1#O3+>ySYBMO{3 z*n|}Qrn~*NAt4s~2L73@e){IBc?)%N*8FYdJ-iPmr*Pg2g5 zD2iAS|2$fFOPspwm7vfs5=O(q-!;i>zB0@rn!u(`dFjF7cZ_C5BPZxSsiieecjpFnP9$F zO~G?cjD0rcQmIcA{VCELo!PDLaz!ZH`uRz4AZ%r#q`rB)TKv^@O6Q60Lwk;QlM)h| z3YlHitE;P}dtJvX_Gf3yM+;C7iG>k*N6id(;lxi#8^2X*yx#^yb%5&~o zCfBax`JP_yr;B?WSIgqvum5)2xf|8)rQ@%w$59(TJKSir4)m+4;?3ix@Y4T!m@`5d zMe4J|pY-h(Y}Yn&+F;P0zavGlocQgJ?CPQw;kEZn#g!k+ew`1T(!Q46E-E^V`g1QM z)TuaJV^7f7*w|iH23s%vfEb~c+CAsZta*EtcsDxOy}c19GB?kb597{fytwzoP|2q< z5Zk?9?|1!3Ic39Dli4GPa-7nx5G^n|@8#g^yep=W_Ta{lb)JvPUiXFG z8WQtrbcID!y@&TdolGnEhKO^gv)PKXJKtY zW>5XF2`?HO|AB?)m6esVzwrj{NGr+2YKhk11K(Z;EgK`!GP?F(i&aM_OWsFzsgzT=S^iaD{m-926LzrASJJi5pS!>3 z+iz)H0A6mUDl#c55*%Ax__u0BK5IK)*l^XLEyntM z_iy*R>gjv4n}`vVo+eG-Jc;KEzZnL$6bM_3@3>w&q;Gj7;=fKQm`VRmh3gKWgLBnC zN%i!1HLAIeJ&Uuo^g1H(+antea?(Yq3JjKs49`g+O?(C>K9cFNXmt5J%%06s_%cs? zVRT@0ekqfYFt10~;Hv#Z7rz_%?Olme&WFGWugG66#FKhkJ$;(KMeIBx#!1(Cq3DiQ zCSS97Aa8(;p|&1NsN!&H#z6cAG8<$WwP|dZ%Gq*g&C{W$e!8a^R}rO^xjjPpAaInO zM8}09ZK2qQg4F2Z)WKxo;ReDt&KHJy5^n3BK~2SLV%wupbH04)XC<c0eWCGKKAPb;g<2pB-jvOI+@3DxLdP170M*I~HX_GAx=mX!tBNQP$(TzAOz zc0@M{+^FTlw+Ju}Z8yGuGj-;OCey-?zRfP;_Dpmk+r#VHm|1_Z6WamBuM4Qn66t?m z>6@RZwLAd$0dOjEotFuI} zbx@xEebs@O?!z?r*eIs;d{m?LIrgnUnkZ4{*y~IGjF^z;-(S3^vR?8$w@9_q-3!sY z@Id7av4#Dw6nFQJR4O*K6Lb25N5JcyqH&ztgc3Bcl ztE^8%W@T1^laq5+aMoH}uGHklh}5UgpXCG?ui4*6p;pc8!q%pBQg+&rqN(sRZL|QY z%OhPOK1#CQO5dFX#QZ0Jx#9h&%+cH}l)l_d68Xp0yLR>d*CX%L6?NvQ8onS17Os>nzw=R?h(Ka!_P0CSKU4h|0I#1qa*Ch{d|ZI+@MeLSo}L~gJa!1H9r@r*g2o=s zN$v>c?V*YfvxN}(#C8P+a=gXHUlevoB|xP#mFpufSpM-tuc7Cn;K zOVRrmi+eiUxd3&ZJKpM==5BCZ^qBnS@9)p^`)bmbw;yu!QTmV>v-YDunDcZS9H7u4|4x7z>A7?x{F< zS8zwZj#J-_>@tX}BMVei6N;6WP8y&1>cw4r3DGb-w(fU*4g?LGQm zrX`8(Biky<@?@Xo##e@9^JG4E+ z3d9-$4P_o7^F)^#v2(*>_D^p^g78Goal$9nFVh}F%Q7fyulmN-Sk(>Ca~-%%jf`qM ziORyPBXfPVwF+*pOi6+4?#_asyQi@S7lx2T^+O8bg<%(s694N#8uoi|S?2T;W{mY> z91$He3rAxF5?e)xkzUnBFJIokhatFx4;*l{seS3_w4>E|yC3&V_=$~}-R*T>;dX)8 zTLrlt+{qJiaW-GeR!^i4>Fhbl5w4kj8sFSYM-@^l7~hPfz;b41Kl<$OsLyHS>sLyA z{iohu6mwjefsv8?bAwT(D=I1~Up-#E9lO+fR$YMcQ(vD_aZjC#lp=1-?F`4~-Bw?b zt9d4+WP<{!dT}-;rI)rW`6TBE%(q`7*O%a^n~+`eS{bB}JyH01l>C#OMAP)ch9bl3 zi=LO(sffTMhw!HAOV(wW5LFT{=d*o61qLXxzrFa6;k2ze)!O=0*Kp4?l{nAlOD@kJy zs+O?N*GhNO23+w@6RYR!AG^CP*y|I#EdnSqjR4L3RvP>{$1Ww15SVW^xl#4f21(V= zkX1H2*TA!xfIZR9J=;0$fpLGr8*>%zckEiuTGvRK#8zXGcvl~vTiSweVySAyI-H7K z7k+?t(F8Rmr>FPy>C@M)oO!Q7NL-S)PwRY*5*5I7P&dCjNyqu%Q06{dniiv^}@ekmbnTudZ6S2VJpO*9D~d0uSDDQ!i>}V0RI%zbdt{OtflSzKiQaDgRC^*YZh0W}2G)zKGGgTw!U z4*BF?7gow?rr++h?2-KQ=g+wwN$djH2NWU(@=c(H|)I77{o{y z;>CGIf+O|A1=qSa3%)B$DQicY#>A}+>m4K&fSdBBh&GVq9UZxq(u!}gM+ zGL7=br0@9-kbpUVRDgim_Y~B@2<6RKRYdwsP`!I**FJ}y@sC?m1*scS{eS0}*Zo^w z@Y1JAIIgFsgaAb%sVgy%XLV1Z7@?W~={+bx)##jA0Qfw}PCJ|F|2GqmwYj-jj5f%s zr*=pTv8j`L*6Sb_A+JX2cI^^hPEO8ussyb}QVJsOpBwmmb9@tMyFrvc0=1%kp-mv|}_t>wnfhIy=j7!(#B?!T^N}|4jr2S}d~?sy(n1U~m91L4W^^ z>}*VbNIstw-Q7EAx1vyB!p93W7ZtNWxK@mo?p)f0Lgwz&Z8W~rXs_Sy8)q4Z}56?r?YTM%G?yrX9tT%Vy1 zIu$o>pF~AQ=mQd~l|FU1KehoA9A6HS}j`Y`qQ52MqEyd0I&K3#MJR%x z9GSc4dCrtMJ2cYBZ#l4_#eqo}V%FoODuwDn@jSQZ&gx>$i1g+NSnH_m1CxN_yF?XCn3Aa?~FX6r&j&t!^jcSEr| zgQ0bnoE(y1i$fKW8%}*?bvxbMO(&E*z>JEq529u_S~E5@G@ySgNN|iTyK++89yte? zk9CO_aQ!(2Ktg?I!i)1YD|vO`39t7TeeY-Ho}*&@F9FHMcXgeLyhlcFzV}q@%{kAO zB_2TdPP@Acm7|xA%GkZ?6Zx~SFo&E^J)7gog2GB0q5u|8uG_tB7(EdYEk?V!EYHf( zF@mi}=fXE@@oO3O=xu1?Kq{XG1}4hsO}j~T5CaSfoSSs(F++_m(v0oUvz35G=2z)f z(qMTIT%yJvCJByhiu~JI&tOWyh>vL+x3@mA1SlyJxkDU#W_?rkYg%XNF>e9x1QD^R zsyXenO=#wmb5z`l8y%1e2?hX-?>1-Pe{UHjFnR6qnJ*W`le949VZ@W#@j*iKx;!5k zBGf-jS73K~tNeK|tN9F`xnq#oC5Mzn`IAhn14^3nUz=GA&aekiOg~M9=>}JYR9s z2Vl>e0`vad{tzV@%0GZB?j0eoo=!HfVCc}{8$)OsyF`=B5T?FBjBL${vzfd1IIKTVcR*GP#Xb2q~o-^Y)v7m7Ia)!q&q-cIByGueG?B(U?oG+2#4g1`CZ!&JkgW8i67XcEXnnl@3GZ>(Cu{8I4T4$L!fI z3}KDN#%yrK;3A!(K;YoYk>3c5$6faL3%MMjRt#+)GXdd5w>vf+01cxtrsahJe;(w* zOGn%WVu)4FR!<D%@%PbPAR+_7BIr}g7h<mzNbS6a4!8V&a?^Z_LusiM0`J%F8uoRN7z`rz=ecNm&5yaIwUO4&v|m5JbAKLNLoflSv&!d)|ladfV$x5(>^CFDNd2mzz!!4Lht#o zhLLjZd;{T2br}f4m;A0}>OZp&5)OkYR6fVra8hhu{ya&*E7z2Rrixl8qO{5uUV*C^TiN}rIfk3 ziI*{yH&%U)xfRuW8O;{eOm$BTW(9zb`x$dm4pN-T=yfk|gcgV z3#6h`f()#W*a>`tSo!S0T9#KkPeheOFysj&sj$E6-rztP1n3WCykpkEg}mxB^ZciH z`|VPx3!gYg#4JfYSWFsN;#!&V|CcZN_Xla<3!W9&!5H~!I3u?tNoxZ27%lwOt7b#s z0}xTDDF`^|cULRg$gX)j?MP;Wb{L_&iNq}6N(+SN&33fUe`=ZZ;?}nU3c-YmdWmr# zIe9xWveT(Js(I{LRTaHjG-$jM7Uu9eUNuI90YD2#)rp$|jG@6Tks$EVl@*m}4h;@MFNSRNlm8VMtS$+!mAF6c7>kjnkcy$7 zBd6Prq&D6ME>ab!NxV9-Ymh~0s6AMo?@#a@7mUA{DfIKr>Od)aYhg(pdd|m)P{kL% zq)4grA|Eqk$??L)J?hM2;5*eAOdYkhlCpNlZ#IZ$5JBEwTDfXG@Rzl6snywRRDluq zYdenn1=Q+uil?7!NO$5ODYUs;<^_sQ0@8Z5R%B693u zf`Y~M%-%|{wbfSI9i=*3Vh>y=p76#_0&#n@VFVK^fB}#ik5pE#NovNZ zydj0PO?81VQlqV1D&mnKU@*8S`W3n^cdmbaYuDau8Y!6z#R73aqSqJ8{_t({Cfhp8 z?Z6o%gdCy#)>>R!FSbqvgwHyEivE;5;d=5sn64;QZ0Rt%5|+nipdRz8gl5o$7Z^*y zSoPi-zIMC=AAwNw0?=v%^8l5Qc zKqpB_Tw00KfNr`%-;XA=PlH9nPT*rBiT=p~cfUUkixta|;Stfe>9aT#0_3u|G9lZ} zlc=$0F-CTYX=NFBXvnL7v(x$0sU)gIT;41YJUJkXR%VccWb=77aCWdLq^Iw`&6auK z8MCO?Na6gh$Me&Pm~JtAfC-LlU?Xd@EA7Kz$y#rFyj`Jcz*Z+MTPQpX`~WwFcnCKa z7xoQ32a*RbWl1bkg!1Q+gNdyM=kAo=t#`KHVOsbZJOz**0HN^-!~qh0iInP_j zGR-crBrOyW%+26o0TP~LdR|Kg;o;7OAOMAQKedbxUJUZSIb;J7BSJ3Bm!~^yWMKT>U7gVQDZS9L93d_EWRF2?aAPhuAG6c=c=?9a+|Mj zlCK2r5M7LPlV33_#o4$X4tdk^_pkKUpiPk6ND`lCzRy5N-qeaTQA3J&!HCMUWI^F( zFQ7hqN&}g*oOLrNeiW$F%)6m#?fdk z{?$#IR2Dy6fN2Len>SVC$|)E|2KhTl3vLitI8HsqjPxf7pcpXETSQag-L%dYMLoT| zyV~x1D9J!D&gyDnL{2*V{s!NvdLVa{ZZu0^BK;V_2+8>7=d$BEXHM2EyDpV$^Zo3b z@mo;pPlC~d$i_XsoA)3iC}F2!&|6-UMunf>peJCsg-CoyW6zKj-MZW|Qs*XND$kSl z)vZgy;{G0Rt@w_Rz{81}PWwn>RE1e2y{7t(^d@y8w`~fAP2h$M4?j??*e4!&*Rj^~ zF)B_^sPSHOo1N$O9gfW~&Kd^GW!S5IY!`UI_~z;b-#j}E7!aa8UTv!tGq}^?*tyVg znJfU!yFU(n-10ePxBHUS=w7wVE>tj7L981+S2I}Gz;!Jdx7c_yjAXPK>`b+aoM%Kv z8pH*gh%|VyBR!UUxB)D{y5>#EcVlQHH|_qs$Uzt4I#N%XK+(hp7EnE0raqEV*=KCO zIi`B>8DWne4$Of2h8N@!0AU^l6^D3Cz2(8h%JvUC#Pd(v1iT!5=M)cA-q&ZU#R}FD zv5yfM1eiHbc9=HV1p!79oxVY32&n?b`5x4z;!DMlzvu_r9cwI^XtPOSn*9rh#u@P! zqxs!aLtlz63JZZ5E6#^dip?ZEI2v~>Nel8~IM`sIonRrgC%VJg%yrW=BJ2E0^~FZ7 zZNU=}_WI0QaF^hfXuQu627!Dr7(gRDoAW##Tm!hs;jdqB<`*0%$#~XtCz2zu!qa!1 zieU~z4Ryu+Bjn7;yDtb&1#fo?@y1CWR5u)D_^2H$~C(bFK=ta~Hgm@(+-p$1H#GjQ`p)XaoQzA7hDvo=LaGbK3#~ zf;Eeb#u{>_q@mJ#x~WCO`h-ZFi3BnwjTDar%d2kODnUk}LSL2^Jazr$NVMQ1f%h=q zn1~cVd+ZEXRbaWcAUVOL5$*yKAv#z9O80yREP#LoJC8UGLN6}4GDA`&F}8uy1yajeVcTvPfa#^pYQ5AV`N6t#_>F9 z;Zh6F9<)a^FA~c^TO065kkdrZcTVYr{2{XkZ}`3HvQVoN()ngm@?==z#(kI36+Cr>~L(sFB^nD31~NEiX%=dm+c1lKsaF{STyngZ50{tA@~&I2&+(fRPT8;UGmoILXJ^ z0Bd3RnsjR#1{RsSOXEdU<QaBQ8VHs=`D7%H%Ed$&Uqabo%Tml%ysCHYM zLW}&ZgX9R|Q1-_TEw-z|*m#h!d)-kAVJk&c0?r~rT&BMqMtcO5C&_Ja4acenn>V28 zoG+xp2zcw0*sb8kBp6ga>{QZ0MFEEcMgV`Jl|L&jg{h^j-O;bcRy;xY@gUh=`KEcI zKuqK1-A}2LMK=lv8OQT3OiHW$V^3-C`|J_puMq@hIb8QTT3HzoV_c^6$ z3(mIfQ1{vf6_hocBz1za7mBUf;OZQDFj~;Xf-#NzERFM5BZD z;AXLtV9hZ7>aC`6hp_3Hb{~*3O@7Y0H?y}Xl{!X14H}H+RBmyJC6ZLC{V~iysAQ!k zw=W+B!GKNx%H(s2x=aGv8AOz2uXmHb=y*pqD$Jl<9bXEJ<9x1gS8>otA9^*lkCZtN@)ic zVDg*&@oL5r5*!K{stpnVXpIDz;W+^D4JZzN6)3et577y#F~s#>o%za^V#~8<&!Xj@ z8qv1lPtpQS1R9Z(ho^9p1SJ{Vtc3EZU`0y3Ls?1kXATHRXDJQC9X1578cBZTy3d)A zAJ`JUGu!iyC>*r~r>?K&W(zrYr$5&FqHt(kb3LMJ48E@N|i%c^kv(z zt9||WL-j>i?-5+s8qE3SS1@7q=c5gK?&EN|R8)>gF)nthb~go`iabEx@=~IsB8=g3 zgahqVzP1)-5+FxA2@W6jm?zOPm8GRr?ep3q@wiAJ@nTt@0g?#}H0QD;R0hW$V$DfC z`oFzI0g<;|7(Mj2XPGL+(h_=yH_d9#kJ-~xa(xjnu)DgOG4x^glxy?NmVy^0x0S6` z(zauq!wX3b-4`!_g-G$KvUQs5NzXKzkY9gV=gmTWL1$~w_@G^{{OGNQ0uKNXR>u!` zR`n9o3WlTm83!nD6lU+BXWDm4npMP8e51~8dtt8BB>^s9Mg!#@`IVhr9vS>|cR2CteM**w-^>H9}j1;~0{&Nc2$afuxQkq!0+0Aq8TuAWj_ z=ed-vp>)}KE&AN5gAeL_b_XfDJ(-rDrUl9#8`WtkwzazzZ>DfREVVSM%cm4_Nn|635+b*cbA*&0p-BXgJg;3mxJU$w#>1K_vA>s1m}g*enox zJ_EK2`^P*$<7?@enwiyuk8XIJ*=3K6w-#><5ie2z>;d{O)_7~D#!W8nPd2#tYw7r2 zYop`gUKUVOLXvfQ>RdUstdjEcI(&7^DEsJ&&Ia&=^4@=t+I{cV%e#IUUY7g>)P{vZ zgqzXydgIj6PlGV~{!g2E3r;kk3v<$`M8>lI>C6(Z5V@a`+G#i2jnNci8i~{u72aZQ&?X!u^sVzdjmubKP~$4TCMp}ryamhg7IDnHQ3p?Fe!mKVC8zB z%sa9-;$HoTt7`O{arLI%2Q_1Q_;nBBtHDFm4!OwrXuAgr(a*C4dF9s`j(2+TxpG`c zBn(Q@=_!K^zrVKH72cO+bjW<@;S){{nv4b|GbTpyXn~>W;(;4BhR=kKejm1Uza5J6APd61ue*y88H}!MRppQ)Zjsw{eF7zsA=g5frfbbq+uucE zW-t{Mg?P=4S_=p_RxP@Ysj>p>*q)EOQY^r@$>p@= zURecLD`S7V8JvE!m+P)|lfaNz)lgiT19o&B{#P%L1}cKI_01zQR?Z0 z2QS_ttdX+~b^T^PEV!B9$^G(H^~7 zeBg(7|Nr*m3z}p8v%T$`B9g{09R+-MiF@1k>Iz$4uf0!9Ty@mGn2a+hPADDTT&fy` zz2o}S-KX_p>91ZGxpOYHiMr_cxQh9N@gCg|4;y1c%2264f6!(z0Is6G{6X>~_$<&7hCL$ED$8*ws zE-}VX<{*iqOz>TLMk_@NU=~ExhO+N7dD2{-fjqKxlNU$Zg@xn!J**oD`*K!;EQV)H zY+Vvj?Gq$r^7cN~a0l)5CoDfhI{0LG9x5>j2vCDL8DL#Hp<1rJKloPsXa%n``3`0K zA+91B!F{pWOz-oK9$?f`*!9v@&N4_`WjujxPi7rmXyT+>8L#TNudr?r??H(K4NvNf zPCMQNjp2%g{t=rX^VOg6=(;Y@-1|pg6&BVWI1CkyI%T!vqJr_Qm_`9`kL&Cy{fp7@ z%O{d;%Ktp|7?>|}Tt5ymc(`Gn2z3)uFVyV3Xzd=5kC6LuR)J&@!$gfD42X_H7805= z*KG{Pztxuy!2RG79#XzbS1#4__mZ{lpvn@D+p!l6w~18DCF9F7vL976+ZiIW?`iL$ zI4COpweraqxx@<-bu`C$ep=pn{V1YpJ~ZcU+y!=$^Kix!rK>!)+m(~M`>PM7P*n6r$Y1!WHm^#i*3k&STb)xXo?}nvsd;GfA4Grb*h~LgVj52Q8P8Ar?ptbMQ zekf@P8aN+-BQ?+GqUiLD7WXuZ+g{QZ655^gPEwy*YO~*q&e(dxN!QaN6kI>hU5q71 zUp>s{GrvAnR&FVRApYfQ)ZiN~f8Q)l^pzAx1(=)1}M!*VyssmgDH!q;( z=_j-O38+2IU(uJr{DI3!KRpyR;3ge0)t#SaAT07i3B~Hxc50`z18?6bQIqq@B+ITN zOnpY`Csz$dUrv?5Su@xY8Wgk{Hj6nH>CkH+(jkp4FU%A^#}U2)3Up))E9e~PQp@I9 z+vF%_fl%6YXpa(DS=<)e*RJ%>A57tq4-uvkR5$cBYbm}tUOahv_jREY@8hULYUyu2 zTzbNqz1VS4et?NO7@7;H53q4CdH^_hI|2aUOcO*fk`KFB%7^gbWQJf0zuvz*Y65(okVYQo*?6xz-vktPZZ4o9{7iLo=z6n@9kGb&!D!6mzj6?xD9MmJtUE_@AO2~# zxB6P%9kfSlyus0&{Jl{EPs8r<29I{j{>SS1G*k)L!D2`Dtpg&V`Q8gZs^^JX1?jn! z0=lX%AOu65hn#@1Geq4VxQg`WT?O)!~*Z7Cc#0nb;8j<;pOvT6_(5SPX}y_*C%WmJw3c7esPLKWsMWW!kqV-*TqnW zH#6|HlNC9>J;g{J3>0mf-cfI+r1K1d0wmAR4)wBZII~oicbVm;xZ+n^L9D6{OJqW;I53dAM98AfuFSkt}n7P~>TyJRFZDZb$NKmTkda*6R zc;AgAA!U&I5}IaVY~-6Xx~xa?Z44p9L1n>+1!)SSbF4Z}>}?nUFgpU1ZunTB1e7oI zd#|i^J#K{|KeNj)D~xdJCB5>Zh8c0afK1ecf9pIm>Vc#cinZ(-Uirb);ELSFT`meG zDW3z~XAWzY3ulOPPk}HjJkWzm*_q9?o_~j+vMn9X(EUT2K|TlO6K~ir(Clt~cQX$a zFgX6_Y0ieB%_-Ttbb}wA{j$!W!f9=GGbY}~OU|WZS@8fz`#h`SH?M_i%9O^jbt8+X z2(jhF-xtTPcDt97pK9(3h^fULpr4?o!8^VyN$av*+=x{9$ZiDH_badZU_iwxp!A&p z(SRF-zY$hT#~w`QG@p4$Rar!iVfLljPj~H$!ml2?cp_p2Uu@j^|$GyU|<|7jc;j+Qi1yK%XE{F?~w}>@-=-Y=J07f3) zU)y(TK4Cn)ZaU=&17%}O;kH|g=DTq7@KXkH^XSg#FO2gR=K06&5>965Hf`ez`sUNI zV@pA+%9k@r_@KGv{OoTvpMJi3$LM_t6Hw_EW&508Qdul+S8G6Z!|QiWit|#>ceOv& z#P$@6>X`K-^PcCq&-3nX>q*05xg*Z~Zy-LAU`qQ0lu|&KIi%0!?@N%oc-$n0)%Ime zb@ON!Q}O*tROXzHE4F=r<_M%r|NL`P5l5Pv3@PP`I1-#Z_}({IJ2M+D0$qCoGUp{lD~6)XV4R_ zbbAieYJDzi!}I15+1b$LA@=Wez|SI&*`k03u~2V8Q^hck5!@+%;~1Pmw>xVL$X(DU zoIR%^Be)edSRvbJV&j|U`M*0@iAUFSE#%VG>vK<|l>gq#uqQ^z-?>84guJ|#qC&_V zZPNFTEJf;X*yS3mP`OaSVMs-*1Um$}<=|JG%UsuxTt8eF7sAkQUTPdyw_}%Eov0e) zPCffWKUOS{5NJXlPc%|_eNI(l%T|BDvKwwI6gQREXCAT_J%KP?^Mm7R9||TMI7IG= z3siLR|P>zfU@#DVaz*g@wXXHPGNm#NieE@Os`Nrjh4@C4h9%JK+rH#-5nP7F(Gh_*3u^CH7$~ zgbN+6+hCF#6Fy-BGqds9>%7+#LM+ygLXl$DLDGu;#JXPyjQ~E)=3g21ILSTByv>XL zt&4i+)C<`g+@f41ZY-x*$S%k|aH`g(na~RnVtg;nXWruDe)FA8TBo4sKw5XK@*{hB zl(h|WB@TvRKh_V*J_m?TYjf*)-^6E5QS=T2>*56Db}Mi1L}RNAdrR!Nzfa_LE6?VCL{ke%q+Swe)J1%9Ic>7VvM4$Z>(L1d7l}rBCLypy8dOmwX+n&e z??E2e-QT+IF+?3lH9>;Yg|OVHM$d}OGe^}S}2#jy0TxH5R{uld@3r-90CrrmQ^vVW`=i_Dh~HLZtJhqa+R4-Z3BXL(%yGw;p9@ z{}kBlm<(;Rat84M7Y^j?-qOnyVES%YJnWhrOpBBWBoQ+-`gtZpPw&8k+FRir@4FXv z3*;`O0Mb-lVK$-nQ-WVTG&#=30&Gfm%b93fu=*D4NEG8kzsd)61$Cjhf_`J={nf8S z6Jm5o;u|Mj2qtFzw=f7nOmh*xFa)>)Wci0l=WvrN=ju_8$Oc%*aGZy9Vi~*7WP6R$ zOjAVnrVk!WW4O35^RIsfcHzNVdf7Jvi#z>C_-Bl;;ali;T0Cam!X@?VN>l&61;ZBq z3Sba}JaAgLHt#jSM9g%RGih*@NoaC%am~F@f-4l05d6Y+e{_Ym-~@S970GhD&P!ri z!k`3gZ<2#RbMh;W9j_mThaG{_Oc_r%;28Di+pfZ-0s%bphRi9lpaT6YC1o0t=mpmV z(g}k&jyhucXef{ANaHPSZ6$px0AOVmTtuWtYbZ!2j;Y_DwJYCIt{q94F7WQd2m5jV z)J=no&ra}q9z-R3>?dm)_2p&j62oX6P(A!M#D6DNscXfg_)T#NQHW*3inZ>eLIc4e zwc?(!wSj$ivayLU55lXn?))49y^6bsIU^z(eqm#ZUjyh@@Lv5ElRd0(hI@XKjWfSM zrQo($jgn}A=e(&+tV+Eh@_bp@)S6w3Md?rYugX3tlizvAv8O&|buxu?N)Q$2hN?`8 z%5#G^5G&zNl}VX+=_?Y?#2st_-(IlQ z`#Id6q0ose9ZA&m`8%1paYI-IzwN*wmPu3oN7Lg=ZFmM99Z0nhnSEKe^uNJ!BZ|)Wl?ZY>VZag(lzpym6kS+ z#NQrqG0=nZj3595oT>A1%Du86{W~2a>G=kAmQfYFP@q9;;!z72=+5PD@`AsIs^M0Q z|N3bYzPHET%`C8iJ972xvi!ocwaA7rJ9UWXyYlpb`(~F++2F$5@-Po)juQ%v0k*)_ zLjqckAXOHiSm=PtXVuHn9V_@{{@VslczYo>Bp z1f%F```VH$`p@_M;ILu4#tZF-k_^_qsUHk#zL!>LoefZ7 z{^AHi2Oj#BL#0JUyWhOs`34r@ftA()a)QtFMRViD#hKL~Gs8S9LH;gLR}QRaLCon* zvn(@^Kp>I;%eCw6_Ug5K2DSPqcivP%$|w>Y{U0lSd*rpdsYpW=ph$W7cND0Xj%nRf zbIK-gcqPM4aX@2RV?oOS;cTK>^qT|hYSATSBvlqiFu}NiL%2fo z;lg1vyKWd3P*V_8a7Y7L7WZGJ!HFIkmX~m_o-Yh-ZEZd26HG1|P2-GbO$9cOxSbY) z(tsXIaYpBDw^yEOyAiDY=D~hEtc7HPL#)8XCPvH31y2mJ z1!Wm=bU(vFijyp0_A=2n%Sh?`86z^)l(Yxz9Kj#mla73sz8wTU$iH&2PL#yt2H6;r zjSr3mtC-AVO`UFYW!``9c2!5QFAow`1w6N(1L5CVcK1d0 ze`gThVB7?dLu-Q%QS+66$3AV5n8pW&dQ40b&fKK&DgU7D?)0n46kQT<=wb>L#i;{# zC23iAg)@h}y}hwiFhrs2jxR$#MeTsMA#*>hnwV%y%d6Ipg5sGp_4|_Vx(NyKwewuf zw|{qY&w0BcE6dQ)SG_!nCe={~VCMp#|?!^hMlDuZ7LpT&# zu?IFx><~nG(#ZrhbvzVpx$>>2R}hKM^o%&#+$G1db^S>>aJ_h1aK%nd?9~lms=Wx{ z2)zKOPQh6LKEBs8jAIL|eLD}A45Vd%Md0Ebi{=6sPftpiGG2I?jcWf|Ms3S+ClIxS zq-3K7(CYpCC#~*EoqTm3c!1)b&QoteW_d7RXqjkft#5HR>pphUQ3X7Msq6wgY1ZOH zj;%P?f6eX&o&$%*c7I&{sSn0uT#+!)*AQQ%8_meKDbj;jsxP+LpP~r9S!8qoAPXZe zct%&}l==(BFJCgOn?2`(cvc9=H$0Y&G4xr-!=fJ&2NblG;9bE(Yf!Rrz=tq+U6-0Q z?GJ4Nzx|6Np!yw-@hQHIk@Mo!{Y}v7-|Pp3TZfjB@>@HyKtCe+d38gdWjQ9)x;$(P;qf{lMx~> z;KVDMcXNT~TKKw=8vT!6hVkGd;+lg-X4j!Q&LXp{zj#0l`ab;mgaEd#Z6OLPc&6D7 zNLnB>XgTH^&%olFdc;xMaV7yg8g2wB0`d$E2UZdS#u|8%Nf+;J z0k#GQ=<tTLj!$EpASeVDG0f=kNC&$8mg* zuhWM&`=fJO1%v83W)gE^IVu{-9v+^;Ar)Z*oeqsQFiD`maM0;JyZHMJ#{pPmpdNY9 zzTo1jE^vmkS;-V_t+Mj*ay#XmcQ1!l+DZb=3VzW$X%gtepj_d1P^f`94w%Op4@4DJ zTnxd_Vh9Qg6zj;dPMgg|e1XK17=V?V9T$H~BT8+Y8K853mVnPgPcj~Zhl)D1j0bv6sNpbpf?v#z zRm)Y6ovOFKy%~6c01E;j7V>xOT7dX8VCc%J0aSBn(=;_;j|3@0kxjtqi;Q_l!JoX! zmk7NmEd@Rr!=NP&2Ky3{)obi+IHrc+S!6Yb<0}|=4 zs{Gb7dp5`vI@4}KzXxHZw3q%KyJ5Pfqr!iTJavB_e9MSvf-(s&f{V#KaosoQ z(d2!utHZzah?vAV?mKXHT#?6}e2^H^g}SM00W1R*9Mc## zjqkiABV&@j!=liCL}x|tv3mSpJSG6tsbb;W2_=(&oRHu#Y6r3kCmItw1_d6mZiu`8 zM#&}mkOt8j0A#^~LQn!CfF_?9tgPuWAWcD_49)jP*57+LYBrReHKQ37j@)GF3_Bu@ zgpg-~2ZGWT8UeVC;kFU>E*rov-Xv63(148u3V^=ad7SKHG5RKE>9ok432wfnyoC6c zG3vL#kag9*QtPnJyiY_Cuigora2j*ftDJQ4@AD(1?BW(zC=z0B&q6huDU4A)O0j z@IQv?6Ch?rU54__Pjz$qqbfI@Zbk&3hBiYvy2KSaT0WY+(%MwAo92h`LV;EKekTi< zvWMO-05JolEec%B#_3rSLiILRg8ncoC_|$aM`t9_k-mRC3KC!4J8z+N1-3OVxrHh*l`qp zs4q}S$PYsnjH)bi9Lh%ge@w#Vr_u|YAoq|rMtA%@J@V?X3tg1<@w!1wq%u~iY(z!M~hNQ^Jx>Z1&Fu_2N0O&oj69zCKMc1>3d)G@21ht5~C4jNCm zjZUf-&<$ z#h|zt@uczRU?yYW35531mgM^Ybo>)9x4{YP66lT7Zq#H67v9zJvRW*iT)nvOL8TU8gPVBZZ^ae5+Eu6wLt3$K!cU^7%V^`(;N$u z97#_66aWa6Fkq28gUy6Vzg`ozHN%{j6nM~=nshsS>!KVsEdq#yx*5u2WF2)nofG{R zhQ>_`QHd@!gCNE)Ome`W0W*-d)lzNS7_{$w@sRQx)D#T(+mWDd&BDKO2G4%^EZ?2{ z#amMCA79;BdI(oEXg?21&3|UE@P#t<5`I9}0w572a*fr#E{t=`chSW}c0YK&V%pUZ zL!MlGLTT5R)xSES2Xu?SrxWUk#+_z47W*)f2n{^F3J^GW{5yy<;lQ>(Kjy$A^ z>X&^i@!FR^AXA*NNS2nKmm#_-IIOEuIb85?8O)!M^Nv3QR_IlLYXy`Jp+Jf&aPYZ!#MfH5zei@+HJUkoyt<^FlXc(;C~o|As9?lD z!g~{q8oP?F2-}g;wmT|YdrOKX5w9?k74T^Mabu4h;UsmOdCwkw1 z*f_u!oT|TW(njxe7C2ioc%bxvAyIH}2RqBZ0gC0U^@Y$;j21zJ_BuY_W8RhW!becU zL3^pR8m0xR_lq*q=jF#1-Qs4h{o#5r?>onz6n+1q+pyE-9-Iu;z~gV0|lHpjT8NNWj}4%Oj7?kHdnM??-b}TijDD8P#>rW zt0eWmb|Espb$`Jt1by`DHq75r>vk)l20$f%6a&;7>B2xPOXI;qmeH}-8wri=*0wWu z1r_LHa$R3BYp$_?7$Ved;8Y1G$;n>;8WZd~om0)k*v&MO-FVTCBKi>{<}jloR7 z7($>u(UYPEtx?M#nxR~NTf(fs`)=fGwTyEN!A$w|M+M)ll$5erxN0+AVf z=sFVi4B`-j+WKcfh{hK!KB|wje9WcDcvwqtxP^BxkoOBIXf}?jFs1xAK~@gbq!l4d zIcIV80&17I*M)2dEKmDk#MF07RrAu0fV#-0k*KxJ^fBq;v=m-v-i(VU(Lv9F@&qOB zWcAuvU@NF~AiBd$JHMxX5=klFxKBYu#c=9=X(@qi+&f%wj+c(goG?0X6y5joIS_U{ zd9uS1g<~oZ^=B*)LiVwUN9rg*S_->T>J?KN;iSwk>^g%wb!`{g$QomatPyblba_>x zQXaATOo&~tT&XI>%pD;Sy5uL*NnKjk>JkKQrFpLl|SOjeYD2!4B zmo>CQj!_^F(a}r4U-g}oLboAR2@GTP-F35id$-F=eC_ zoXgeQ9$-(jR5B=s%AP#g1n&nJAHQk)a+>JVmR6BLuek+|q=dp5SO1QWW6FT+{3!-C8=pa%KWHI@n<_piv?$lsBq`*T~; zHa3?S*noq~_F-$XoYFvKt;+jS-=<@%`s zKpZvghEfIW>YE7+EJb&Nw{NL9(Tg7da1jR&-xs~K#>!`Q*!*u>pW8M*XS^|liqipC zTRdg_CKN0GMy^nvBiMH&v2(ODg)#H>XBulzk_Ee6_-~MTgy!kN)=I_t$5$zuTOaRF zQhIEca^)_R0m|vXA2ARE>9-G;2|mF;#Kt3y0ATw18vl()?np(V%#6&ratov$K%?NV zidp|`j4~Sbm#xD9GW~Vz7r*f1gvIi3;;n?H!NEaLWH0{>2tmCAgaaKCW|Wb_ZH-ZR zeDEK50@X0)J7DF9yG&>fsmSq;5&iL<$!3!kc@JQ?z0iNSQQopKE+QEG@*|$R^t_~^ z!c#gH&x<$Or5df>8$-@M=ew3Jfa%6qY0khjJ`SLu9Qe&eBOOuw5?wl*7Zf2p&tn466 zWDqG(u%L#;To0%l*h>OP+c0E@+czTeVG&y%_K#M!o@>Y)pNJCB5RC&SPz#py~=QB+hO})96EHT+1RGKq`pHXvAON zg~k$J7pV~AS4b>?2_T5=J2{`MAf2D?9Iiibi2U-C4r6qpPVVuDI}n`YUZfI@>BP8= zaB__{@IZ9KgbrTYJv@J48biJ4rGgjBvznp#1+$Ks4>*x-U~ve`qb<6^`lKGkbFG(& zqqxzaQ!C1ZvTd>MqvO9)y8nhIyAG&Opc9- z1^Y-Ojo}v@9qn|c`z%kY(b2U(;?fn3pH8$rs(M=+R+1?H?4`Y0Obe``{3blx1rlIt zN4WWd3Ll!m$U2aIILy!pw8IX29g+#+Z9ZMlj%*EGW?m;>UmW^-2!WrFR4m62EpH~~ zPD5D1hSVs%$yKdRySuqy!ESSG?rbD_u+Jx>VT02Xk8&vQ7eF8z$z~dsq0N0hXYTKXn(F>OIZ*14j$XG{9x#}G%@PlSXuw))Y>$NCtnPC zytU@2k^i@OL?C@DQ}h%~PM8AZ{^+bLDyZ#l1{NK}v4^}=BdZ12lT`bLnbC&jC+r~6 zJ>xDB!Z{>B)KyrGphZF*CUn08?v$1mjqQ{x7u>TFj_{}(L5+-TjN|0%O|P_|&J39e zK0HtiqDKfzVoZdf^W0z{jq~zzZpfRuI9P3nu~1^#g#yO@&)0>jd}Kb}|2^~fQ+<={ z-%;67?vN2~0_+^C44JHi#N;orM}hl7FLr6@Km!lk=zn&F2`w2n?eFyvUidE_;f6l_ zbk^}Bx@%l-fS@po3SCJFje$*Cw-SUP0o*2Vh%4wG(ep=7s&~1#SlyI-&3*my@VsCa z)1TXe;={Vv-rQg`ebM@;BggOYfaq;A!U7H72kipdT3i-rJ@F5*-Q>wBLfb;j6#p%k zIwACY{jo=N?<8a{uH}6OUcH>OnKaz?taBH(5m2(m@-XG!TOvlwZCPtZ1YX@o>5N4K zvP%?X-Ac0aBXm@RQzkKOPgOcgrb)i&b|iAFT5>rpHEK4FXIe#UN|ctGg%c8=2u*CzG4_HKuZNzEirs7jJl4v<##ys++V%t%;!?#@O=6o_dpDph}FMWrK1SQhm2u z1oEw8t)LbIj!V$gVo4{D-R@dMB@CCndtO5;o#%*y0>1FfWK@6X0*P5jgGx3n#nbaE zjLI5z*UfGITj`O8!}#olfe1@RLg4oA6ZcH3)36<+@W4ITp9AYGb!oezl4^p;hz|o6 zc_yVyD(;?`U!KE*11o<`y78TAZe1<8)kcXTB$DN+df_9jEnaO7`=8lKFpJPqpbLWV z1Na6I8<(=yfkcePnb*|(StRytG@)6CPphaR45fP%ggIr&S<`&vx1HDuxFvxPqP@HmvBzPk|i0VrlVDKJKe=kd4L9kl08XdyJ?@bS0f zLZwEit^PaY4Njl%xhFCT*H*XCH$Q}6J(T_$??=QaT*L^c41=zKTX5nWgwi)&kuvvS z+6ru>E@rK-WVLYDFY9gC5D+03sFw3`lylWLe8-n8AfeXu%()z87pR?lU^XLP3tz&uS>3NQ4(EJS;Bge7<*n{m;@IlmouS-vJmCXcGQ( z$X8+AiG-wS{YYvIbk<3KQ9J{j8GtJ}lfNnBCcaX(gDD?=9@RRudOnmHw9)#g^BM!P z-bM;PSGRDRhVec{W1LIKjhg|9Ax|f(AvQ!Gf_L*s3Uv`I-f{n7)eN3OI)IEY2PG;z z*zSOh!Y?qx4rb6fL!K8X@mxu34#PkfA9y^hkS|i{TTf zApryt17#|9kXfOMKz2kGjb;g4E1nHZtHX)Mh#ZM;Z%}7l!~tCJ$s4N-6EU<+1bPlY zXTxgub60%JQ5>%6)b45TvWI3qeKjoQ-(~;2lZ`oWWjOC}$c;rQfgaf`?{NsYh$0&^ z<|F1V`G{y(>XXzqo9{4eVEMzd21Rzc|FiSXUAE0+D`aJL)aTd+`rAs$RZGd*D- zd*`jYkU;vQeT6Psyqh^%YC&Ps=b!83hR*=%L@)}t5BR+J2>~MYizLBW;h-$3UL2H zLDxB)z2j#2?=J-dd(avJ{0(%#h)p1Ym7o=b9syYZ01DB^%cPK#VaWmi7t>KU)!V1x zS|pD*f+vE331-Px%tB4YQgM@)Qy@g|=$25TH@njhEblyqWsZkhB;SSB&#H*9FhVeg z6)#}54Xq}Mna%hoH{GN^j@P8b2bW|zv%cf!hW4G#q za0PL@k@z8@=-|Iz-oFPw38-AWenhzt!h-kSPyPMRT@@PP$x{Yzb3s}}IlOjMoa7lc z&hE~PB%Rht^sh72z|G4A+g@~+0#-@q~rN_KSag%SHB zDWJyadhi0F8jdLNBxK3ZJ-4|+)xsU#Dsc0U)}?Q*3W3MMZWGV=3T9FQwg)CsJ1PWc7D_Tgb-P%eCT+CthdU>CnW(5h1?BTTx z$pGIsC(JhC(8c0AJqsi3XK`3Jj7@O~VK*FFb5M%dn^UG_Z>(_*a3~zVhnBcUM=wSn z4^@w+*)Ldil0b(#;f=7oJeKhGq%yqf_w0mA5R_~fe#&I!`;^y)w~J&AbROg?5(Dsv znLos2;`l`}@l5vqV&lPZl#X{&{Gv?t4TN-Mn2G~3zTQ9e^2RmeI)SwNs1IsEcx-Gq zBDh&>J-Iuj!i3z5ABGf(zXG6xVi9I)5Jtg09gB-z|Gkx!4QFp*McvtV1bRQq10x@# z$gM=nfy0PwG$5|jIp9@^K)+4*Pe|70B8XZ`Bgv5>$yIjLGe_%Ooy^~P66P+LeHc&% z-5hBqd9S;1G;q+ZPRg4q;lzd4ajf=IhU{h=2nCk25LU>L!L2D`gAD!^sBuAkqjAIN z!qV!;@Hkyz^g`;JK2H7;m~a!$d`~IL;-E}mRS6AGP6hvbYe48x!jd9(VD|?+iHUuZ zgo`%f5wa{)bOd}~?W#QO|BT-c7&c%XXRR)8_p^@NXbV#A>It)gpRF^Wzmbud%i_TJ zola|riy^V{B9Jt`JF&?Q;jiTWGzPNJLTUc8 z){Kge-^`^u{`zkK8}p5QK7GXemO8FNTijRo{);zn!HQ0q2IL8vXG4*22vHH~t`1(^ z*p7vgsno13*s%RO#v5%_3+J_LOCIk@p`w?5#qJ<*gBNS(DjhI2q@zH6>Gd(i!E0M$ zbXDSB`tn0Y4bQn2U$Qm#Axk6>_@jU_g$aK?{Uw%d;kM)icpAM=>loU*hBhv1zMKa= zo=Ekvxjyfq>B1@y!t?<+hCvP7&IdWQH4-5%(&cUlpI}{n+vAVz06m_7ETIP=Typ-j z2Wkz<8J^6b-a3nEYksEkFkCLU<@TP1XBig;$VAiCZ8*L3a^%1PB0BzbJpfy=}5Vegr|@HI5A8ZC@MoOA^``TmbB0 zKv1#^xKX4xn$q ziATANzaa*B&||^~hccms*kzU)Z8i<5B0F&bj_(uGguAy_B?SK%0NF5g&sZWpEx`87 z5KxA=K{cOCz%T>wQc&2hpXWe3&uVct(q3VqeX4N3aDc`&gJ>sfHr5fJ0HJM>8U+&c zDCcbN8?tn6I3y6nfafmU4?;uB{j(}i9wM* zgIgghyMjUv;%xZsq$feXLFkQvSwyv#Qi*y|fPs7DX!!1p8?w$EZwjI7 z#{SxXwVV2i9*;yf956Fu(I(;iOPRR8-AbK_a(gj@AeJu3HzZIz0!klh@}g2R)NIRz z9j6@=MVMmKcQaa>8A@=tTsPX1h|(Q~IH)ud)|V5`1RPZ2i~8rEQ(+H@y3~HN^0Kl< zwWvZ)Lp2ZG!+RBL;4ocBN7JJmN9$ijB=HpJ{fu{>WT`XvUK8roPun+S>UMCv`;XABhZ zJU!fPe(XwCvNlM90J;T0c z9bqJstd*c{*DJXaYlCKDNl~o*xK@B!&!~EVK%7~vnYHLv!o`@UvQfPqQfQG``h3sT z2=Hb@OM%Xe(^tx*7$EG`zC!C{j8Io&mGNZ^RYby?+n>T$bf>EFN>iP)G_qX#Cx0z# zU}pmo(+19^hrtxwBy6eO*j9m;g_w}RjwT8tZtqR!w*vrBE_(Mqa(G2c_*(dLclt}Y zKg|JAemE)Fu7JWC949U@GCW%Sd=G>G{0P)HUu(6&B1heYy^hW6{{H^dglRv{k_|-; zlN_K~5K#-d=-!Am!BZ7%v@#6H9Hkru7x)_za?6VDn%3XnM%qJ8v=PL>6#zzYArL=s z+;uGRg4P@{oKWXnIfv33h)})<^1_o-XLepvp0RpD8+Fa@X7kbN1pz8tOs~tcQRCd=?aKR8g-IXDsf1SV=gC>&%Kdb=f;F^sak z`m^3G?j72Z>YDDA%oVO-+jwovw|!k0IjuCI%`gSM`s_+qr~s7o>H?VRN9OaT3RM>X zb7%miHUuINxZCu!P+x!h^%G(-BwvG^Z1qqvzla|X{3yvr>$ICV%?cgPTAc|xRtGQ@ zKhmXn|MX~}z|57t4>ffGBuX#BP7s|ilt-Whp%I1scr$jq zp+@vaXA9R1Xqq6S0)Cf$;GS0ZV*@^uwj0o$sLaaXY*kCrO}up%dH$NJR2qrXiT7)% zAcrGZxafMEj>+;^y^7(Dcavt*a`TH8hK|q`-Z(T*=Z3^tQi4r{ z*!?wMbrxX_jy?cRh^z%=5pGpyYL4#@FbT+uixPWZ9fs))wt4|qAk-U3@&n3fYEZ}k zUMc8i9XS@>OYBoEr&(H!wENrlAUU4w9?uQq!xu|NBd#I=RNP&`$+3gX^9Nsy%~6*>%$2}} zthr`!(+$U(uoij_A3X&6Dg{WH!M1=UhCmrG7E;n)T`Y3J!Afa|5znKUZ|a+@?XTKO zCKG@iCPM-Go2Y}OU_ zC}>p51)&T@p@RU2SyuiQm=%vYD*FApFF}tkX?0)W9~YiY1x4?K40G%jk`%(nnVU=5 zZ_vQRNml6Y&G;ic2&Y6Pm>%n9r=MfdfUXAy+Z*fIFyaJ?5E61?Ubz#L13)8`HDD94 z7=SxuF!TN4Vh=tvOBz|BB}Xn$G`7QhEZmmKC=pyFVIuhGqW51i+*X8l3|XF}x?7YA znLc`Iq!*Mp_$wwp@Hb3S17Nf9-qD8S=*^P0Z!Mj+NQF(%F_Q`>vrM|-q zVa;e|&1s|y&wo(Z_gf`?xR{t{F;wWN@u6=L zFjv9EYUD}K-QT}|r_4R4E}&V_XmgplF&%r@@WE9-?l}Bi>2U^t%+2`PFmX`g^G!XE zHimFry|AjxkcgKxv_#-YQ&UsfZ{4xbV7}+Ha(dKw;M8iiQV%A;Vf35CB@zY}eLwA9 z{o;JuO#Yw?ZS6R$+{)iN8QA-ot+CU{&#O*bUx3N(CQgZY1Hnxq2X8DBM`1yjFK%pn zMM-%^X7e9)n9IuO{_5J!m`|~>;%@fU+`|dp@Dg2!cvIcHde3r;9fRvf#0h+39Bc@% zZQ)T+@sK9psZ{nwSW-O-WORji)K|l@%nGKAu4BGp@BUE^bpgj-^sLB;lhspwbLt5O zIXl+k@|{5SqlPCYVFsSq?URfRCuXid7Nd%VBnsdeo+}Ox&`5)7)9%Q84+nXy`h#%A zVL33jCaql3`}tu>mJDX%BJvj$95*}jd;g8UCkB)OD{&OW`8aC`#!E(bht9d=1bIW*qIZcF~2_-Je;QvC5nKnIjQ{YA?J!; zR7Ad$neAX?qm7^nVZVxQ>+`EVO+w>L7!s3Hzd^W4*F{rGslAmKIO+L9NhHnxpku4!nU}DzNSj$*+sl!5_P-km!&>gv z@^sZJ)ED72%-wEzMME^VO$F+^l-v08fHdmRI9u``sP#KfUYd_7`l|p_Ogr==u z0J%t%#q}%c^*bV4w{#|*e0zZl@EH^Wgi!~8a3}x~nDEm9`w-|OZ_gts09BCb+m6Du zVjwynt}$99CNk!eetBh`-FQHCdmEc_e2>!?Z}+D48Qn7Br;6GG71Ua}_7F{mO>rxO zcH9`WUE~-k0b!4S11DO5hU=L1#o_sY9D(bNhXqUIsKz_V18*jef7W^m$9Y_IWZ^F8V=M~ekCX6&Y+BAdAo_)dq|`RY_kRC1^v;T#C<9m=!~oOHqu zKzE=l%+;|p#6`7P~Nhk zm5#v7A55B{S^0=U6{ql3uH|j&MSL0@>`UE+^}LvkS0P{xItR(#2h=su&AP3&!9! z3?pAqd_Zh~?%O}W$RQMNoqx(jS!gpgbNbjf@m+g5V~MglN}K`pQ{7@k=}76Hiuy}K ztF=StKg-UPOA3Pxthwqq8{~W7D(I*Y*LN#rPV|!J-&4UtqZ#KKF&UaaBnqJAs7sOK z!r1Rj5%lpG3>@IDdSn};qn0&iRH6-}x3HXg+_Q51qk-wgw;zgzgWrgtO=|R0jVdk% z=YhQp19CqV%dl$ZtMl*+ZmWAeP%fg0#jq+pU0?`IkD=i~ZyHFsfYQx;0FAfP4+cS& z8vTtalE9LMRXBGjsh$%6l^QZC9zsE=ab};@uRcqt4ZrIn+?d{Iw?`1I-%U4c@|f#= z+ogww2g`pcBkH;q)cN`OhY4xUKgsLU2jWI-#54-H8sM55pW#Cfk;TSJfq!_AdZJo= zMe@x|O9e@ifq=Mzu6tjSRy)Q@4z;@HY;FO3vGWiL??e$mEa0R-58W!rK%IkB$Pn_rQozCI=;2Iphj$5^`yCnc1B z1o0OUmA8Rmq0~h*0+fvJS}9auwS!=_Po2WGrBLypygtiuO7Y_G=_)y)d4tfO21Lh( zJdXRutsx$w#n2i4GAKe2Gb^K8<&ciiFhF($XGU1v;s-+|0f7SK5@@m1bLq%nu<>uh z35@?6)=$iQI=cN?`|A4A$F4nR>Yb;`_AaVEvuhQ*b}ek5uybTKr=cn7?ca-%;T9sr z78m#B<=EsIk|?FE?&TKi73)rzW{2+&qSR`BVE87N>YeNE!Ph0dy=CJed(IsD+VQ1h zCgIOs^Ow&SOO{4&SNy5D+w*d8t|OJVX?$pzp<5 zJ*m6}h>f3P%lr2n4BS~=En;I}w@9ROHpd)gxN*mh-=q!qS=xi=_&LdZ6sc0Z@EP}2 zmiI0b8(JfR6|1oSigwV8m0xSPU0{&q40M@oFjV-M{ zHN{`{)TX>Fzqm7LPre7{0Spi6vxr4brLl^=^g7mK>wJOOGJGp7ExdQqZNUY)-KS^9 zAs3U^)Jy>I20jO0jf+_0gmIYJ)jv2TKrwNAaqvUxw>2JS;g)rJ0jV%-$6{%DkL>ss z8%a}f%Dt!NlNX?kBlWFS->!XItj)1_gy|I$vuEWsIfy)DQW%^{Q--*Q_n!w;0Dfoe zeUUZTnBAh?W;|?{VsnQ(QWenv1B7#!u;QQ=NPzi(do-^NKy{#~pjlw&9KyOr>Ns@yh%>;g4MK&_LL zg^HqLleNOdeMHy*3yOCFCNADP_|8-!Yb2epw(c$3G2!kZ%Fh%*<4_xKj{ru^Q$o1uiqQ1%`n zJO@}fojto@|KYWIWs5`GfUrYc_r&M@RI~QQnAju6nVVgR13?dqS4}STm@DpDX1s(1W6nVrDs8=N`E!FZ8Mpw#5ZYi(8=-Meng7*1m z79ruOIJKwIWBSH3?y6B5U#z^d`h{_U@seOOfJL5^ML71jiwMj3K?FJT@L@xa2fjF7 zM0^p)oL6}tR?lIDnOYm_&HV2~atbT6sa^+% z7kCHx1qFLj&+Wz|625*}s*F8SC!Ch`h`IlQFACrdDV*=88{Ly-z3IA9g10~Beb{#ySuxkW(%v|pH#-JgQN~+Jbs5{a`@0pbl3O*Nf%AcVL1tg?^Gj~ zg|u})ByU+!k@)iSz|k^b(uh!q&A)!wtW-hwP5gjKRfy%!Ya$W-g|QDa!UxQ^aEu7j z;MUS%xyt}0q3knGkvW3&i&BAy5#Y_~U3WmiJiWoxiT-QEhqiLywG&6RGZtG&@D1tc z915KH&CIT}S(mh}a^QlgrxZ!Guo;QQTO@ytDM(sffEj0MVEXG`S*KENxc(1JKdPc^ zIEH;Y*aCAkdRqt&6q&g0vb8_i0GBD54$Pe=&PMwe|Ft@!RXr9aO<~K-XH|)entN#ru*g*7;qPl=`=KCs+gb`k%8AqAu!3WJ)I`?zm=5^*Sw8_hQ8pv~OE{ z+Y%@p0-3*#kHc!8Vfb*3ak!w#CRX9+B~xF<1c5(in2n!mcA0td(`(Hddtw0ffzu`A zf4~M{Yl)FxL6&{+qxDE5R&~J#8mNk`9qdh+W;W4DHpyXHqUtr)dn`k0eDRYP#$;hj zIItPl4#Xi|8HuzKQtEYrUzr>x{F>Yf$%zfQ-_E8T5KfY*9Va6Q!Gso^j^iOP+m9s% z6yx=u=I%m1hWleeOVgd+_ltboK56+QKPQNQj4Y`p=^~=Q^y--i?Q>Tm;J$LwV6xY> zE$xNf?+?R0!NC)^kMJOB!}N$b{jEDyw-Vkd)HE2PTiXh;6reXGT8u?WX|$Rc<+%Di zw0aih^0Mu)Q8Z4-SIR`D@4y|GjL46D&db)x5R4F;E`FMlO?5EVR(wP&H%wB%RVDAk z`Fa003;rtnSV)@idZN1kG0avkyipLg-pW_mzVQJG2|g1St|<0}ms(>iV_ZC$UWsACsg52--dQ}2=QZ7!+&biqWaQ?W% z51i%@a+8LwNPQ1*E%*gJ8A0Ny-FEIIbP!= zi+F=z^K{fkip%m|&xhUbunK^26MkV`TVE2|r$wcLAB(jSi!yYm9$E1&=vGuvef$3S zxCceR@}H27jt)T zQT*Hg{|6y~B1$IrFP%|$CtlIHZMY+6-zvp3$3c*n7c}Z`OniacX5y7cARj8|CinRw zc&F+|9JlQAnI&S`E<+w@U?tP4PhMu9MIv^PbR^=!BdG&5zpcK%iaz7vz%=cq2qX`r za^z7U%fy=yw>gqSPg~*pEqlsO^<%NnH#wRT{tUmZmD}~d{cV{+f9n%9{(V3>-Bjb@ zF4LoT3Q=dGo%tl|%9Gc-i!c89wEx1YUe66w0ARrp0zjX1yna1*>?44N)Kp#w+y<{9 z$&8$Ss*-u3{^RD2@5W7hw;ZbgDXxKE>&xB+9Cfy-w{;EWcwkb9c%>tgGB#jsly&o6 zV678V(|)leG-UAw?^Sc2PzIW|YHD|H`@Ahj&jS?=!D+R$ZP%u7sj+&L9wsqa_{<%8jBpb1b46=Q!Wq#~NH3EMf z-6|OxJNlu?x*h$uBWYGt5bbOP+Jx>(wm`%`}w%)ZJ8Krj;sWQDZfypX1VcU?F zHt~3V8)rRfTi(yU-KJLXh}JZNLcmp>XcancdQD2FEj0emKB@Ny?QFZx6dl369AE#} z|JiM7S~}_Z@@vj|@ZJ!4TcO6!gu$NPAE%!V`#&4;f40Xqim?upMg}Lu`QouOCL23! zp&{65e7rNGadZ@x8=F80AXI?XC>#3q>sPu!{imG~`9SFv_G+;(F(cTL@4`CDH<@0{Ql-1J)@Lb2+O8Zxr`a{R&Wb z5XxSpxL{xKN%8UaDF4nkH=T!fCA2sRM~a<9E{67{d^}+1@!(gkYsayPjPu$(YEIID z)-0_AgG<&JU;GvHG+8f%53b{CZQ~1NJN97D_VWhl&g+DkZr?GIF<8@ zQn*ksmGF`Ntu!>@hq!Q%1+@}-U+MHYy6f!XW|&fgF7AjD-y9Riyy>+7zIc5##(QI< z7hg04+=~qFD-@Qm>pNGIChwJ2%cpShs`=nG%NxZ~H#m&f^%G1vufjeS1sRFZ^g=1O zbVq_d!%Q5-BgI9s^FD|mNNG4__&)d>d^Ges2x1t(SNU^*M9NS-OJ7`^+vADk@O<(Y zHh)6VnxS@%366F_L1|e7udfabN<`?hL^egxvW{GuD&PpYNAuiksTL|B6xnEna4$6) zb|%vk6+h++k=!5&Z|^D8-WS?3<}1J{8d0>tAE4}kw&m{TcseZO%X$o958C7eitft~ zQ3m8noRr(jJSMEAoy!0IB>*B^%F>H3HiexK^OmTO2<90poAatnzbE%N;HuM-@A{^g zhp+@5x4v9EM^Jk%7r-1iKGlgjn?2%Ewr3bWK*P;gH8fm996IBW8Zsot%h0Uj=p*pGHJSG(_b6?K zv3`NGgx)TEH@^5s$MX){n{IW04jgOAhYUO!939<~<_>A8gy0x2HhbmG&i(8ji0K!o zp8-Qg014LC)=-}y28x?y3>y)%iKtFc4-% zQuG>nQ@C^MeGwNjABJd?qA|OzBEm0qs>vLV3R0I`W@Kaa8xm1>Z<5~2{JRc?d9Fmp z_=t~6fSNqXxph*(D@ascyOcGm?0P}uUjQ&ju_30%jvbqQqr>c55%q#2&=B?+XpbOl z$3=pcF_3bmIgY#R;lnT(CXChpdqUHvQ~^ z&K_t;n~-X>7#;R3x7{)#w}&*prZ=)*a?H5jy+(s!1ZvA32$%jg|6!~uCil0_HL^-XA>nmSa_Wong#+$Ap4MQyuI~( zP);l(9k1u)HH$m1=xaBj0tGOGhGgl}xorZWYrX_AeH9fP-1R8Q1fqWUKZ7ZWb34k8 zqdn-tFrkBoTEkLmAwd`+rkY?r3wSJ}JAP__x)RZdxE?!<&HLqJU5Y{{!lf6W*40nrMt3#+3H4G=70D>q*6OTXR z5lim4(Wyv?ltQj!x#{!{zSU_zRR9rcl42sq{3H5hIn?!?lf)y1M_ahxUq?iYTdIQd z#ESSB-Gld+a!xQ&QJ@44{(}Y!wJOF#(D5w|g=&(`wqiW;L1`%liI4jGbD@fb$OT{c z3}MlW+lhKt#-XYqZW`(cIQ}OSMt$PunJ?Os#1WBQ*AB2y;axr`8w$SeSrKHqx~XdP z0fFRnPY}O_yym~^oX4ic6yT_ok7c40TiDTgTaBhkj?7_B(88U^?J(}(;MEhA131`F zzk?}8&<9E?`vDVm{L@Yk4)oRg{2GD^^7UQ3Bz$bVE!YX}WcEAnd15Mgv-aD$pF?BM z99pmJ?-4NV_SYRs+UHqeU$ZM^O_VG^Bo#}x$bm=#7QvVx)V9F?(3{`N%)Erod0<)} zjq!J?X|CJ{E$@}F+6kUH@|0v4^1_#NZA9BxRqIyX2Rs7ayu^@ET=V~Z=d57XtgdKG zBTlCy)}Y`6K|!!tLo;K^woX7<^uR}zX}KUr?X%>76o?oPLEj7CSi@O7+o<(yoNxu*(KZGX^}4j z!Y2aW@H)!oWhdH-@Gw$Tz58zhiuZiw%qjXXal3DOu7Bv4{?l`;9D*7=k$KG<0PvF8a`9k^-g2*@4WEI*ok*dB!Q2Y%;s88ik{R4s*DI!%Fqmy`Jw^^SmD4zgn~P zhOBm5J|GDI8JJz-VSL2vAAEMNY4(*>^}^>08b#XE{D|z*yz`f@*h&~izNwON)cll5 z@u9UqUf?7b;Lj&0+*=Y_4E$P>NaVA(6iH?{Qk7YFk~m#>3n&gzQsIJq{rWX~^7qvY zW)ew$_in6~1Nf%We6#=1&rHe&R10p*R|IKS^&>C)9Qr8XnXdc|^Q_>n0raAKCz199 zIg&`Y&v?gRum+F1l=u0}jp~6GK>UC2S+P~f{&P|`rA$`W49gDiM7AB)oCt6w7H@J& zCVw;K01O+M3kaauOeg7i{R+*s>pVG@hl4awmDGy7AIw%}lYX~_ag#%yps&_Iz_U*> zmA>vLWJx#O6)xM0+&B-#m#q@M6QB~5hT@MTV<}9#tN0)df{zj;DEQInO$fdQjE9AU zpJ^wJG_y&b)tYL2{rJzb5LuM>acnQf7u3cVG~nUhHb!Fug#qxP4TR-Ols^D#Fa#m> zSs#7v^WwSajU1{`e(EgD&a93yZ%T6%Qesjd^dHBmCJF>4(y~2*qZmIYJPYi{=#J|*xjs-~3po{T<7rrRjtV#*) z5_S@_jE(rmw|{YA-$^>?PSETiSah)ethhLMz?U^&f*#PsvE#>AYSD81KjeI9re17( z?E4kw-`IF|)XnWn+T0X!ZbHj;eH$&7k~n0ftAJY1y=Fj71^%cJUnM%`?d9VeSa8_D z^ra&_{71a(xI#_)1R9b(u7SrvRh;$2L(Ll@GKQr;G^uMGLzGVy;Nn@33Ax_Z9r=Fi z?|)>!qNToOc_M=1IVL9rIF6->o!13T@a-3-#s_(V%>1UuEN5?QQpAc{zdJCNR{N{9_uBVQ--{gt!v&Jy!)ZSG}~v@+^dwL0_GOTH6!o>xbkV zZFMgT()Q{Q@33m{;#~=PqRCvDcf$|>CM%*(0_D!JAoFQXfE~}vQ`cc*k$L^})0*v^ zyTHw2%fgv6*u#e5{<)uy-{V4UufY>TKUU2?}Q6(R0ITS>kWTSV}@{#+m7AVZEuL_z-)`1zK;$3(@QjHG>n zVStTc1%*OX@p$L#`9yRaGAY0k*S!G3WN2LAL&34WIrO-fn4@j6aJb+UJpQ+LI!!04 zdGLSiy7+$D-}m=Vk3n9YRYTYT;4y?wpMFa0y+Mx#g5;lI3*{5a&s=B|1JI4U=;&aC zrUlm_UD~6}9&0`XS%&w@q1iy-iN6KjX>2iQZ|73BI?MbS{HuU>!M$)%y?-vGNi*9Y zxtUk9jTXrp<+(*^Z=de|BsJyqc!LW&4&2TJ>~ge8T=WL4kOA$YZB+mL?T!@2T>vB> z^Cf(FcI~1DvlA2vVe|Xa_l5{q}TO{ER3sLExbm0;*)5juYZg{yzu106OY0Pw z|J@?1TYO{$F}kp@fWj9=J5p0eC z)NWj{m*A-4+b125GA{SZ>AmPK%}Xr)(x#fj2hIDds3skR>SZ9$P%MB8G}gA3#E2Og z(eC+dx({?GcvbuRVHUH=f8c$AVZ(_9 z^f)D<_hR}z61kq0K0P#4QuON>lSrBwR>MxQ3YkMA9^L+hFm;&nS356^ON?lbxgHRs zz)sLW$ri!4)1iVVD__W&)<-Ycl7u0v)12WhuRL}eBL!@%D>DG8R1EtbeE1sElt`|M z*l)Xf&)zNwfR+=L2?`fXdMo0+}I^bU6f-i(?qO~1~YDW?g*3^EDXoh#ecTW zoRH!g^F78V>!rkpn+KQ@KlfuvPBCNcOp2`Y|1@{zQ9bY9zyF{^i3XXasFdl55G8e_ zBQj)8Btytp(IAbKPNqtyV@N4Z5}^*AB$cQrLqd`?4Mn2iIDLlq=kX+ z1^`&WDj0j8=^nrtrpSyM(S3!f+;~JYLkhmPxrdFvID0%H7#Sa6^(^hT$lTZG>v(3o z-?!Jl_b{_-dE;%rMV3t$B^QpNg#Wd!ly>wptTqugakf(Wcb63B+I6L5ZXd?}8o%b_ zl!;HhNOX~MF&T7pj7!I=Ra*o1PRE)tW;g$jMG0IOTRt?EiHPPcfg60ErFVzF?!Ji$ zP-%hl>#q4}RLqq-ysrHIVP^NFF+AreEj-hms{)N#(S7OR2bv448wzqfnlDVMd3&?e z>9OVI)yz@=^b*ryG`}R7Y&IW^R4XiRP_!aU`jP>WFAMNjr~ncZbmoF80=;TSC^xe>8D2}WJ1_4c5JvLuaME3{x%aolmGerhWO9OU$%>tM<)kZsH*6Kj% z8JQmM#<&KropoM@+KK}sZZMYgONUF?p$`9kxgNo!N?KbFbV`^iOm-;6v#~99YdI!b z5c4HlU0yTsR;k1t6$#J=>=THJA8f^vFg?OZsf0qmZ`C>Wg@@m1b5GgJzep~=2%Dyw zh>Rb~V5%`0JF*odMe8G!JB~!{!0X^=IZ~9{Z5oO^B8^}Znxi{JRemyZ^u@Wo&B~6Q zHB}GNYf$K(bEt8{vj3_?9Q-89!lRnJ3(>ai+L6GpR|?s^ir~2FXc6= zXot<(BW@K6;rH1>2Z{>?iIi(;o03OkP`E|zU|~PicZyS$H?%%6i)qyv{_CKaob09w z+t;b3PhYQvjX$TZyw+i3$@ZrG2CC`w;#)TisR}@5ZpQZ1g>)*WsiCxH^1*$H&q|}l zII1~dT38Nga=J_vc-zjHH=WM&5=>+*4=jQUL|Q^v*yb>5MUt0O?u(TOv!0U8w-+Uf zYp?8gJav4)dI}gdOCrRx2ll;r=*;bbD~^wqlcW^ub4#gmur+sEEBM5}mSi5}SQaRE zCFx`()U%$441PoyRK$K`Dp1Fl{gt~mv<+8st-BfGzNSZl_1NNCxq|H1JI|>nNPf%} zx7-`hcTCc|sdf>8o7k=P)z2xVN-MV``~np~F_3Uef4>hQI_FP9sR!)wtiHV_d6?YI;>VmK|M`-d&SD z-kc$S-BN1t`X^y%)9;VX5e5`uQr&b9%poH*#s&a{DIwhnKuyk@L6_5vqYC7*z?+Bj zYm4P|WDojC`8_;$`SBkAf&z0gmxGrhng&Zl-;*3oe}Ojx9)U&Jc&0hPL!}#d<2vJ; zsG+6`y-tl(h)Q;sz~&!6etf3;k7?kLHBOE3OCzn_TGvzebRww1B=gR)U^gR-5r(k?Cdph^Z++RY?Qoft`|Oia*1AHMO#ZBaq~#LLW}1N?_Kn9ZRq)b!U>)jUa7i zCd|2`BcnUUF`-zsNlN*S)*qkYQJ%%ql>&mBfEJe`aJmPJuT8*jw7Mx(KR;i2JA-*{ zX0xz*M98FoerEnaODH=8nO%Pwn-C=ZR0Gq%87h0pILfy5;*Cxn z2gXZRvx;Ca=@@cg^U4V^ob{gP9qYKAK2|cj#^G<8825f+lQ`+mUMiAlYJtbHMwi*_ z)=Bv>`N{iz0$CB@*={95`NGhhEnh*eXt*a?c+;bP zO)L@!%GYWCi3D!)G=xStW;8zC!Ettwp_*1qXR#pCGdC|-_EJ)!Ck|fmij%6milo=% zaYjcJd#cC3Uzs~CX7f_RPc4TgYnzr%j32F`V?-f$+Y+MD{3C%RwR! zu7YZBet?-p1%_+lL2`TJ(@+VjXTP55aevS-C|w3^^nMBW0&qRo+?!}o@2r;`yOl<+ zI1Hgfs?_u8qvy zj?LwST_DV%v^6Cn-cU8m$MBGk;;)UQFM!t&Is^DtX|s<@2F^`WyB+$<*%}&(*y2O! z2*2K$AshT+YRQd!@Nq(_#wubzFvk$fdeOrXUU8r>PJIW(uG^E^&&$+k$RA*<$Nm_a<8b>$COSAtHB$-@4eP++ehGR5+Ixjd~1T$m0QdKufLs;(x3d3Uh`eFvh2HC28T0-#e0uk zXyxId6dhd=WzaE>#=x-Ee2bY2D5av;jQTQK^6%D8?D$KV%+!~to%02>3251-H7vPi zv900cp<7nmpbavDA0IH(qN z&1~~ge1zVZ6Ol@^^&+12>^<@pa4<$Q-7LBF!mtm!0 zPv1x`4t-IPjAwe@a$$`lq{-5;5^zOUk01a!s)XQ3O<}<*du$9;pohoWULvZ4CyZNp zlpYj3=Vuc*p2k+wOs*F?*I@t6KPLb9bj`W!P#->z%C6&bW%1+29orst+gv-OxO~jT zrCJ5@s*-6bC%Cy;#h=70{+u8M*W07aBxE~PdpRc0TAYeOghXN(T@DGs%|&X-r!9tf zMY2!sN84I^cz==wK0d#Q%Ic^pMzJOMmf-Pd;Q?I<-~H#QhTXgPX&#|3F)eYkv>IRV z;ltnYA{O`Dg8Rol*mzQ74L1_Fjt?bF7qV4$N6w*()e0_}qP?i{QRS%!R)>UX^E=3+ z!LymixxbF^US_xI&B3(iL+P$C^YV^c2ELask9hUT$) zduW2{U7EP#v?12$ItMsg5*4Ijg&#nH{!hg03J2Z2ja3T(F{Fwc|B`Ff221TY&%w=8 zF*y^NA80w%YwgNP`Oo`vGbU0jq5(&o^)}~TaACoMxpk+jOtxi@7?bF4+In&_#uv&R zSNMn|l%T9m-T|h<5DfQY7aRy2>DT0>JCd*zj8Bj)6p>I5fk6|P`HTPDy?YGpPtIP7 zABalXtjv47=&O`gRHO)j$6E@Wo9NE{tyS1lKh^2g130e`C#pnRDVCYNWc5Tz#lon= zlJYAz>HzC^{aO73R3`&5yQ zt48+u`THV!?PIxc>dp-hhnU-8*s=Z3#pFN0*qmX-sZ0%rOayUp^Ls%<3+iQX0Qnr^ zN{p>uBJj?6!k(LJsy@dJnPeeELrQM-b8ziIdt3_yDL<%W!FUZF9tLY~yqP|z_q$IE zLmczpykW_>H6l)7?>v%tlwv;>+pG+HyK7p==@;)2_UG=9nV7W9sI7SN6lpy80-T#l zbDVAO`+L4#N>o@7Gi|vG242uA-HoyTPIN-N089AKpkeG0Y)_yM@t=kz-+!XVwE=uL*x>eqd3)#hBPS8kL&$%k^ewj1#8L&gGF3Mz% zAt~iA2SPgPE+wv55VPfqp5rG<>SZ~OyhZ@FW@f@XD5go8JgokPPzpz6xhJ+(muvqD z#We^hp|Kg*N6=4h|4v@ek|+)c6R?iLK(iZI=G4*v90l!+h~iagosWv+LSw5NIa4OX z>Fuz0^f^?KkA6K>yUP3G{W$JWP0fy&6GcZ-qKBjRX+PU0KU7Fa&ph$pSG}uFyzcSa zT7@Py44eszWf6Gct^K=s%y6a9P)KQ|(W;M~!+ytzg>AuH!q3u@dU8J`POU>ZiPR)n z%pTpKg_kKizI-X|i8<*Bn>p))hYT@a`mz>}+I)TT&_DKOw?VdoPYB)n1mQVKSFSUP z9_}?tk@S?}faVpE7sl+J5xs>ddim9Vqk`kRC2J%vN^VIl&vz8qqwt)#tWh_&oKrV_ z0VpB;EX0lY0w1!8LNhQ{-Si>te*mGF#$l-Ag%Vo}lbTD@zL>019{%9hfqnJL4coQ@ zI(6pzHNQDw=HjH#Gv8JD<1VeUC4IY>$L7D6r=rXyK@icFUdz7DN&ZRv1ODJjx?X$< z>Nq>9@UwQCKwD}ah?^+Q$-&p)O@N5RW)!Ew%7l8s-IjqEF6}0YCUNjHamQudu`BP1 zl=AD&i!EYo^Wa~3XV#XeQ#gEY7D~4hK0>XBtP`)O34UF|45Pyl$M7^69>&vS_m9}P zf9kcZ=FT;dX9O%9#&N9%%528!-psLmUp)3gCmm0{@|FhIydIlYIz? z->2sarwXr2VwXNQki9hE;9!_7+I;h^ztgJmr_xjd^n~&cKnnT|t0V{4C#pSSBqCco zJcNx=>nI$PzQtF?bL3z|rwHD@ZDd|itv0bR640d8Q&CDMj1-|dy1a)%QIv1veg7Vt z^kdkg#qra=lXU!pU7lJhi(^Be#@K|yT~}vU5fU6V!d~i(UbSo>H=7+$L4XQ44gH6v zP|&z?sHl$4e{;s>d*1Nz7Spk-Ypo%bA#Esu8eT6#j zy?f=OmYjdL%p625K%6z#p?-v#DiIinfSBEkCXI?I!BQTa(6jodNaq*3G4T$tN2FCT zsR{3EZefIVCykBEtF70~@o+NqSDiM>~^GYURHj&--{` z#$p9tOf3(&JFXp9cHhsCfJBTM@&JhX$>!`Y#*E{O+J=v~J$o*_gW- z|G5-KmjwM*`&}2a&m|Mi_DG-1qOb<$8G`x3XrB!UvASs}HV)Z@sUgz*`e%c)o}!Nj zo{`(dS?2t)G@L*FNtGNJzkGvIK=s{gwXtEVd9FqF(ag#^62fRDU-!Rkf3UXNu5S7b(k#vH8%u3YZ8A9C$9DBh#SHhp zeD%S6^`180SG4=3CEyl8tZeRs6I2cwKKj^zHDoDlJtDt1QD=l-;iMA+V?`&L(C7&> zhp8pOC?nq!U3@<_DQ)lof>9RDl?7*;{(a&xShi&Q)w1F{rkwJ0FUdgHv$K}Pl-jnu zxf8x+#!Iq;Trw7tPq9Q{C^EbK7IcjY6CjR#x%VY8F>%*nxjlJ{X^5~GQ(k#mZ$wbN zX`OXLnaAnAN=@D0LEY#`QAE+zeH|X@3C(Mxjl=$AIET>7sBq5`HS#SJ)yc4%zJdJE z*IOXD$HwNCm@$HQHFmF1sHrHU+}HjC*Xmy#y6BVsFR11fRE)mRWIWNs;PZ*vU+q_{ z8bm+};)O!Ef6DX|V(n?eZ{~OpHPB13)FkGi%)h{uv>qjx6k7>Zc8hbHrv;ZR6t2{A zUSZOKaN;gsDR~v~s6MM=Qj53Ra2kO`oN5-#sx0=yr}S?-zb>GG3Wag-L!{pbhnIxw zyXTl5QOro2W&XE@WZK?LkIE3q{UIHH)%NjzFj6yLV}KO+uX~&Ztw>0*L@qBV*SMG- zm$&n?ivemZViEDn6RxJ)^B2Xh^+DQ2*usY(4T6D!5BU1g{%&rac>1}YYsr2n@;-5< zc7NrCC*P|yE=C)Z;z5`&ZFtI~pj)L}ym(>nYiNX2X z{}hkI0IfOs=Gp8lwWr_PMg|neN;U6XHa+ZFUlCajaiQXAsX*_cqr;lk+`_nCk{i7* z;8y9)LhsE6zGWUVIeV8yMt}0(vRVYY!~O@-oZdPznwQA^4?K`)TwwdK+_G$*ug1}6 zqO)HWebYItcpzu3`RYd47k_1L;U<5RL=TIVd9{uxz7UgeIN^P1fBf6e=cwWtdl;8* zR9`koQbM3FVE#CGcPwJuGm`+plEwkO&Yx?g6{f6S^II!wurQ{kdJP$K^h50=3B{d@ zYc1)HtEzw?L^AEcDx-T1ezs*-qr%dJu~U^JzdH9pN@MBK`rg}R<|e};lfsWz{te~w z4i{!>Q+Tld$C5tYJqVlXNze^e{_(=srqu%n2-(=p1>7H*Y*_A;s36@cye8stc4%pz zSLY6t`wS7Z6~NFL$>sea(Ocec=zKq7wGkU2uAr#F_>TC3kK4bqfI{|n3O3C*CNV1a zWh51$B0>(ykGbt(5UzD&cX9 zp+1Fkv#iGsYqB)`&->Vz9MSvsY$`xLzay@DZm&ob-q{q@uq(BBmvc+GZ^L^{PdKUm zUF|tt$<-a6pH_q$!a^C~q!Yw-hi5&{o>*0w<38+bG!Lkd(EPxI_uG;ey^52+yDtTN^Zs&Bg88e4K4j`#dKy%uWS%f ziOz+ECB4f`c76amAvUx9Y~thU)lfVo>FA>okr98UGW?991bYYf$mNGN4b@7cftKB~ znQ{U1p=o^$+BXTax*iCfq(conl~TX2OZ`RUT-sK$Uru&h(U|S~=^p#;dnpxYUJuH` zD(_Ti%Co|cbpBBcH0a1R@PX{I?fhW-Hwx98nMd*a!&VD)yHUp{H?HR)EHM;lZU zg)Nim-RrS@;)?nHSt(C%wCJIk>&F|GUtQ@mNadEh8NX=}elw-!Wx=}dXILsp zV+DDY%pR(aS}dRtHuw4Hm3S(WQ$`~Gs+l= zL!8q^cZL{S|L!KdSDyjf)r(x~G|stC9%?b;+*r^;tscR6wLC5RA`WA5RsDRbvpV~h{G zVm31e$}0cAxXtDP}cY{c&g1eXVxt2-X&HKZ_2CSSwKo2sh;_s;#N1IwX##v z{?;eL;+41T+h|xt^-asE4XuN)hy)|apZD0Ni&MKgyj|{$&{CA4%9Rv=Q^)=@PZ>}YF`)l@5H!5i>5!05jOh^!id3GMqYbo<~W|#t#0zP}YWYto>Ugn?+@3g;z zegd*lxl+FAd;jMfs2G7}EZx7a63oa<`w#tyOdEtYx&S+J8jW-Gs`@hw6`+1&^{#wR z+xWHEB&{c$QEDjzd&vuJU<4U|X-9D>O~J@Q30)oqIxbz-Ah|k+>5bds5-W4gtI+~_ z*+76f4U3-M`dJ~$?o$c86A_>xyj$9Los$jg33KRJ)0L)Rs@H?42fGUGYwOuo2o`tk zEQ-s~KaPGPuFu{DBGKYp(DF=UYB_-R+))#Mq@0vNiware&*Dcpdf)o#ceUnh5Nit+ z|3a=`Bh0xcxk$l8Qu~fw==A6a201^4h5obq&t#eM&OsSte}F(Yqu(SJL-nNaK;BJsGNk!Itz52+>Im$c`D-{jpzWQ}!ji<>V>h1ESsc}~K%VcD96U0-`x|&MMug~uxD%kCmX4d`gY1z!%#40=5+M8A%p*OCZ zzHE0St6lRnG3tWPL7dQ^H}?$*%y-|HwaZ{wm1DS~Z)?1=-#k^{a33a~cIdaV7ad+ozX(rld}rGGK(R*VCil;_E2TzfTpur7d|C!o1^@kE-+XX> z%QI_zO3tU&EYw+@RjaR46(8QO@vfZmzvu0P*dGq$M_s+d$*5sm0`#bRufR%x7PnQtjQ&1!G?E%RhnImnm^U?^>3{L z$^|#C;l98)%sSkCu&qmO2m}bCi~0-&Q^8jT-Mem;S*x&Sxim$nuS7h3!-{}9eY%d0c@ z4x_+b^kccq=|DTRmK;FD%d0D*=Akzl*<)x2a>ekbF(YSnR+)Bg`RnO>F3#BBSlQj7 zsVUd=TRutizaDRym!scSClULp1v=YUG|!;DTvo$X zAq@=a+VtwozDuNP@EzobXWa{5q|OlgX&0~Qda&pL?sZn(qA{T>}^S3!ns#&4aYYej;U>V9i>0LW}*IoIs6_xAJOpTDZXywQfCc0-qLm~(|xXJ;S%`W_Hhdg3DcprkuiX~z1E z^1?q_UIus^wwN@d=BZAjpy$ho?fewWXVr^|zWHd5>7v}C23zAE@+!WeaP-*9PTlaF z%HppcGw#tps!{-8O-)S_v0t{wLEmJXJX$ujryI1V2eujby82`)x%Oi)*w}j< zE((#<1tEL)1>l|(?%j=`cSf3RSF>#;D0>5KaN9-fBDRecb7|3_6gQ;E(j8Y|J3Ykv zJ;n2HKgv+umxUCjpdmh|x|e9;#EC~Fb$%mCY+#yzP^l)gdSe=IOX>2fuO(vZJ~m)B z6_s1=_o>fP4JdnQto%^uN=L5OjgJfEc76a$ihULtVB%2ns< z^G2?3_vo6wIh~5);eJXB@|m!@}v84R8E`EHx8 hK=s1^>j#xxy?oV;pAEWhzeL2J1-~ybiZR^i^69ARrJWB}A1VAU=>nKtN`~LIY12yKu09f85Sr zHJp|0Or6~f98Dl(4V>+*?VPPG3`tx~9GxueY*`t&7?|it%$=R>op=}-ZT{a540euY zjO^9*rNAI?_7a*-5D>@)?;pq_!9oiNh#Xx>Q6UxgjN=zKZ}Pp&wFlpl!|lM2>m+;s zzL+`N)}&j<8={db{vZoWGnU+%m?s)Ms%~o#U)5d7JjzTwS>Pq|vW_`Ex{#>ZjAS7< zt&!y5jmu>H_l0cF-LYa(uq!}}Yk(5ceYFx>Un%c<2~3wzrXByrokUuJ1*|^_@MruZ z;{^J@W|d1A3F&)FcsBI^uf~4O%J=-DlA*3H2-j9Z$@rQT0wEMAAr!SQQ*3Q|j5|9! z1DBINMBId;(9qCDB_%_ytiZQWLK*?9t9mrFw8_sI8AznStKYK;p4O@lWi)N0fGNf@ z^tP5(+0u@=va$?yIR+`;@+r zc4BHAX*B1|_+z#HL3qHLHdPHoQTq9Peb6?EC^bs|b%qrV4nuLwh9&))#U$sM@Rw^Rd`nH z|Fr)B$bl1sbKxzC2K8}R&a6n@9Qdli%9eC zI;0OF4PK@)+4G1~_{3#9pH>^^(kKQ84znctjVKB#l!5Z$Ir8P}Ibk%73mdMqnZT+! z)rMG6%v1p9yeVyA_vVlxZBUeGVC*$Yg6b!s`JWXs&av2>V{jn2)=110!_UcuJT?DV z49L(xU?0&KVE57|CCtNF$OR9WCF7|Q2qU2jS(c~_L>!MxFd)HE|LYPjG>bZ$8$pC@ zp?F>6j)fj*jV>gL5-3|tT^Vlcl2O&d6bUuW^f4`+B4oZu2Bk*!T{s;1FJqn~Sn!oF zwwuu~rUC-EcUNg|6dr0YUK#ZZR=-GKzo!6O-%VjMr|sTxi|RZ1!qADJ1CnRW$=Qhe zi@}rO-STKK63z?=z){CAz9d%QT|cWV64T)y#AS)|W|qY5z9C5Z<4H3|H8?ug#GmZK zaa+4WprWfzN&hzk_RO*>+R9*E5B6cd8WNJEL({bPp9FN17zG5rdKW0LzdgLJ5( z{~f#my#KETWVH&X_WwFI@BzEv^?%xIsKPbU)2QzQG=LTB=s17Zi*Mtv-9v{U6ZhFR zD(mQsPzpXsYH4dvc}TwNzWC3&ZC_OG_F)ELiKKk?(6*P`CGUq}{oUner?%TgE73f~ zEYCygXJ0=aMp|Hs#+syo^J&sG%V?mvd>8ZGon-y2t1~;FBW(<9Y^RIOuW}h&abwc( zKu=kjsHqKNW4_}*BuD0Ts_SeTwJT+js31{|sK_x?ht?Gc3=9n8%Nk(axKlgCyXroB zDG2UNB|M}(3fDZhO@|Nm2RX9s3t6xv-CD+Up@6|6ewiS4c)oXVJzLGZcIw_>+OT)u zT_cL2R31eK%v0l^btu232duHGxR_M!0rj$;I8K&UFMYon$>!Ha2pi z|8HucczHG@$tRCW7#17l^?Le|4A5?En;jIewSXAKrr2ID1Yi4~kIe+P${Sa6D=KUU z$2sw$aH9I0IV6F7qVK+-N-Ho(l$DGbj*rCU&v9q_OOGD7oHR>vxx?s}dgk}`^t_4P z*=5_v%EkuuMNf~&w3a(F84IvyRJDd(MXW4n7YgN!I`(|O#V*kLiq|qq%{YWdQ9zu) zu0PM{zhFYd2t4j*#Jr8JJtOMhcVka_SO}raQlr3cL_;$T@O(ya1xpUOCOD?ashLxk z?Fp~Zr)}lWCq5x-rxiG`Pe+XvnW?Ytdj7?tH3__tdiobh0*fC(iML)JXSJNRPl^=- zl4LPy5RS$^%Uxh_rPLj&?k040hjyQEiXv=b8FG1ms)u#!4v5_M=F|0sDrI>1H!21e z4vqb6ScxlyV(Oj;`MTFW2j~8B%=}Zi#0~9V_i`5AdVhzTd&92KEl+aRQGKGOGlg&A zslzH>bKhu~T*cR?IB-~e+lMS#-xR{=Lu*cE6An+<)b{bnSl#zi%e0j_fq&obD`0B# zhg4pkfU!p`zv4UVpVqcTzaOSvM{hhxs&2L%d91+LTG&8_l6P^$Z7 zYzH(50h8jW%|*1cD~i2zlg|nQ3&n$PQ!QbGMV4=`jf;cuBP5v>EE#_N+n@glGR^}G z+}(ff1me8cUvx_`+$H*Ve|ZgRsc9D>qH&Xnf0Zxk_icuE@AHA_1&UD;O@RI9wYy9N zI%&8f>NsO}A6Qtz77eg-P~SXlMRfJJ8_5ESB-Pqhq7Z)Q?#Y5184oeIv|3I(zXKgph(*@-P}F#j!Hs z;s%V1gBJ9*`8y&;s0zb>7`Z))2s}vGXWJL?J`1+Fz z2sa|e3ZuKkrC3LKU}}*%Yfig|oSv2cmvcb0Cqi+ec2q4|*KW{tDv$s))C^w?2Hcpj z1QXHjldj#SgBO>1QSOkAgiM4JCri&khn0JtP!_#l8oD&UOO0@?(S^VKhWpP_<+~<< zg)mOMu8PJg%FbvkGoP{RQ`llo-tX4ac%;IosDNNtwl_t2x3VO&>W|ZFkq0522t82Y z_r!R)Qr0AbdJ}uq7#LCDFJ3AV5WM<|NV0i)2aTD!tg`N!I6Pw3N_-H8DQJusWR~_5 zRf3ku-zPaRGl*ol-OUXG=jiE=B-$g-t*mepi|P@z4K#Vh$E4oH6)qE3IP`yPJMI`8 z4#4)PICRI-ruv-*3lior@%y5M(g14*{_-QMcJVl{EBDYx6Q^nC6>VM&*UBvrgsT5szW=uN_N=YQq(9mcsC$}6_z~F5H zjhEWQ6=%1rwI#hxr8mMdJ-AZ!_r|N&lJv5(n^~&|E=YKw5A@%dNIRU4Ml}h^{B!em zWjRuQelsKW8pOO2N5xvd3qk5Csk%6b&^)AM$ISF)Ri2D2{uAGRP3ois&B8IQpkE4) zYtk4YMQb*W26pGA4W+K@>g{t&OC~r?-A0B&)Lex2V*z4_80)c{^9c>lRT{I%d?vAv zCWc|O7suVOe~=TGzJoFn~g|7tgMwIxLagS;!r zR}~^QyYwkma%qEt8bDSx^WE2|AY&sm{&&^(@TAQy_4rv`6|(UU91d2tq3+9N zHEp$^y#>s`GO8dYr(-=e4HG#Ce^Cr)DLRePWnLK>3B~?sG^J^GpyY-fyYwan>=d!}5GX-_Te^((l&Z z|HTxRHQ*_8+QJF7tdj!RtLb^E=KT&?9cAq6@E-O=J(u`^20~3sUCS_(8tzbWY#?Tk zHP-k2m?pF<^DC;!)z3v)N0}SHEy6T*A$cvf7pou`7L*>c{~jI8i|UBMjH?L_!1J3u zRKNL@YbapGs}WdqaEz`j}0fs<8~Mz(E)B?Js<4* zr-m6l$9@GFsYuANtsif@tl~HSrL>Hmu-5mc)H2ZW`xdDV&B(M)D6YCS5Fh#1dTS$| z|9A~b1QI`Lcz-=?^5sZi{FuU^1_po2)H z$uj>gcL&iLh3Vw4(`~Da`9mRA%}yUni?U3OAuzTlx|u|HK#e5W6bceiqphw5%3SMG zb`|QpU%045>XkIX6Yv%R1?w?EEXyngkMXy6)we|ALLp$!lB?a_c1(q~E zhhWu)V^_sJmeR36x?!2V7s;5X875TfXw_puGCGmK*m6lggd&$>0d-H%O?&t{cgq1E zAC^LKH@vHS_NH7qBk zTo%YR@TEwwc5gO@-#tBEls}YdK-k9$n+&SO+JZDpatg|E6{3y&)w}(>PWdRMP-y4= z{xID2JXK`tMfxe_ow!YY@9{fm#;3~aaSf3Rm{L>Q;HUj~3ip<4SilFLn11G#0ap3G z<$q!O^Pa1o=*0^AEGE>IY+O<2RCq}LW*oGR8Ta%%CHBYt?%ngEGX)Mpet|cGY{S$J zzL>CKa(P_9r>LJPms95})(ktl!UF1dIF(3x+rJwz*&REh2gId`zWMnYHKbF)3P%H) zKhIRr%8P3sbI$ApFSqmBGw`yj^*NVAE@~~Gwlj`L`yg#h-;!aSY?rLq@-#`=gnIMt zFx!-g?Fa86b|R4DXrQ8s1|n`9_VCjwEZnrh( zSCl|RVHq_{4g`6&FFy>WJ!Rs-m*ntS5|@ei{v>pa>VUJ1fg>o8q5~Z7YcP7re$ z0Qh6ssA>^)vBZwpP^_&AyHMk^P_d55pv@!lA1$+OFbsRhe3s*%`h7>1nzT*wA zOgpq|7;}|y2O2DjZr|0T)Uf3N}i}bbovN{s=f<; z(F}JaO4g52T2qoLyiyOMI{{n*=2sCP&(QCJ9s+M5C_Gw{3nAx=)y`}7@G24Xwrgi7 zXQzXm@nNH{R^4fBlzn>Yx$={QkuW%FC@WoMJFN_Ibg1?itOYE?9D1{9{X?sA=5MgF zDm?-(szUz!g8~e6(kAk=IhI~d$9Y!JQun!T3Jn8doayv_MvIbw0H;TL3G`^dFNmQd!>*$$fV&Yf?0y+ zaXF!Fom<510+yIokhFUMnu4a-R?jjOjxP?=uj5^-Rm`0gn)9)ri+ajL3|Fqp#d*=h1?D z5q(wWLF_T~vYKY;1Cm?lX5>q5K0WRJy&u-UsiKj9ZBjaoZO`ByQ(eVd=pQPGwW-d( zR}{+QJ}}F7)w*CyS4hh;)Jk?Ttr212Fl*MF->nsjQsYr$y@8})8b(j|)1KyY)unBf@&oRtvsy6V{(mlq>TH!{WedBYx-O^0vaU!r#xR|!3a zuDn&s^EO&+E5$B8>B@`2im61@xV*9t{v;V6YF_<&56+4?7VNBKi%HmedJ0BEa++SQ zA|aW@3#XbP(823W&!2@m0^+RQ-$|(o!!i;SD<#6PKq6rf!8+hc+7o7R@!PHslHDIH ziL*0P`D;O0p+E7J_jsZNC(48Cpj|R3O+3PuHy*lO=GPQ%GmkqqTv$v}Wm}0A6V@LP zV@GVwc)L{cc>WjS zl7jG!RQ7>euqvuBM{@nO{|Lpae-OP*die*EK|YA;{fnuQ?&{vQg%f=#huYWo=F8$8 z6VaN?j$Jc7QSO2^8#$>fL0f4GG$#jrWFpBWW$jnDVaPx(ROInzC23(8E`FzJ;rK3Wo#r0fC9m1(eOi<>kwG&<#ytudwx)YsvR7u z#q2k)OaAC&x7jgkAf;uA)3MmT-7G!&iBJEEDxkx`@;6#I1`JZWiCi^X=I?K!@?2To zMB*$_4J@urmL6txQ8v|vhu2>vB%H;>EuxSobX24h+CM;ijepR1P(;FJbC_C*5+v#? zV6CPEj2N?BqG0)md5x-q@%Y~FCl2D8>YsJfp%A3M zMQJ>ROabI={?fUoTYM`Ko~M1(jTTB9L{bb}_w4I=bROCLw^4+CLQzim??a z8Ef75okfMfO2ny_YsHbL%B%26#0?JiR&y+NlR;=iVG%Jb_dCpueR86dl6m-<5?`4$ z$j+m=@sK8dzjW&6{>LlPd(@vO)!~^+jGwrYC&}qb3(A02!UYx*fXcp+Zte^j!>n`| zu>D$88}T(0kxJ^f1wTOZB9Gt~Xq3?MUR3XRiboDPC(a%PxLK%3R}bC6znG`>Y3fk1l;1{Fx zx;&iK;S@s&td|srkenxQqca#ib@zM#V$(YNNGWb&xUdN2#%89)p;}es8d|%f)4t}( zi|a&$nGC8`*+#n*eUHj2U3IDAu`qo^CrXy@+Qb{^iT%uUs3fN2lBs@(nPqfTM;)5` z#z6pVsQu_d1-p(r#9}w76TR83>^ZCnY z9Hcxtim-EJrmmIyWw?pi+B?-G;7uRp z3!w%kqIivLH>h0uL$HE+iprkv=z>ifs(c<0&7o6k|FjmR@mx8mPI2M4NiRb@Wg==? z8|>!iU2aPSE6#eY+~^opS0eWPeGghYW^O-Yd)hgab_VFL@DBS~zVw!qbba=R1vS%S zg0^oO>?)}Pzwe_iO#WZ#*#}ie0Twj=3phiud-Iu(80i@cwx(huzUXq|H-m{8PVIBL z zBL`eFSrTE}dS}l;b-J~i3Nt~PaGdd>P5!i&RL?78Hv#}!pnh?jmijPo+)R9xPZRhZ zmh^*y@yOP}WI&ZWb%d<6^@k*#^h#nU9r3U6@#i&QMe3caqYn6GX4kDAnMf|PM0^z< zsr#ss5YZiFp#g(ZIM5|2GFC0+?+VJmFKGb-yk~8HvtJgn9RR=?8V2TJVcfS5z_kaR z^^{Q5z$+rmgW#4TNIp(=&VIw&xr%Mj}=m%MXci+>Mye-av~*byFZgoIL?g}*#}a8q9{sDnoBT$7iUhVQ)d>g;zK z=T9D!hU*SD$-_3j6=$~S`iKih=77ER+PD1#$?Ge;7nj9X73aJ z>@tOaBN;CW#EV9gNP3sczg9TE)bg`$NTLMZXiGB=C=J^ue+DsTd3dSXNL!(J?53Kz z1D{C`I3bM$>!8@4Hws}$x)tfTp)lVtr?Tyq82)P}J4C%5;eDe1QCTNXu@;fMNC^QV zmJ=YuJ-0F#iT}aZ>o0BAkIOQ-dx9+l4hh|K(O$9?8PE#RMT6`yDW)L(`Xin8u_Yso z3=Js+F61xk+pRmFrgaoaSw=~TGr}FyhLaITnmI#hp1D4MET1S?ph1K2D~~!J-5jlv z6~iCs=iB-Ihl!x%hnsoTwCns7WB!*3IJtga`~49BdTGLF3MsIVh!>3$i21wg8Mz-; zT>Z0ATLYgN+0sh;L}5gWGJ6aORGO$P^k0?2?~>9l{=^ivJ2!rGrfFuO4_WUXu3eYE zM;H~OUD!7)!i;SE{F;T||H?~zmsmPE5dk&R{TRwMAgJ+7cT@O?Ug3{v!?*tErM=$# zU@n@uI7aPrbD`6~V0UKEpe8w^)@o)O8*DWS{HtGq%hg#qDZRo2N+Jwaa3pZtn4%rG z^_3ShmA)?TC54cZk`lTG36z3Sq|dbb(dKCuA8bym=Kcs zd10`UY|cEHV*Uh01ablFDbjL=(F*l)xQOe9i_Oe_y5Frjc1*GDHXvddi7Ci{gM zfV=zgh=k$_)x)?V)rg8$V0Vd#yFS{!Urvi?Exv#~G|aO_ZYErj_D` zd!F}qYnY(Z&}6yCvMdb#M(ZWKQvNm~*M$e~)wFd$j)T1QPkZ5@2yp$(7-_~}KHaO| zvs(VLjoisN5hyk6;O;&{C2ouaz}IkN0jQzwtf!M6O<<&4q{GvrY;-f88Bno(l1^)0 z@rtKytaLi=nqaTvaZ+PZ0n{Vs#+lQzG!9FI@P~P9bu7NVw_ zsZ5UsraPEwLkuS|g-J$*diJg+R#yeC&c?>%Ds-BKg@hnyW)7YTpbQ%717mxG4Nb2e zeR{~4KU=>e?VjkKvVB`u6}j~bwedN4>dNGoyetkO!sXTBn+}xBvR|PwH2>fullFo~ zT1M`yJGi}rq($7g%1ZMmw8BXT@3%mDscl0i?t;imuII7!sYO^@w#F$DAKhSky7|;S zy#J~PV78NJiOnx?LPe7Y+bw>XQ_^x z7{$JPO!QmD$&k7ZJ>z_opcD1#-wT#_)DMTDUP@)RVGz-)8o8br9Sf zhNo(C0$_n8O_82++^A!e1%ovkD5P5Rlp=x}pLp+2tpxKZGWtJ~KQYsII?K`e#KFmR zya=rQH0gMJ(wAKHd0S@9{#9NcmF?O#`X|?Ps4S?7%(nuek=YRbB7d(VaH6W2;@es2 z%AYfV7yRevk#W&5K%I|XpnX% zupzl|ty6R_q_w!RMEAUYW+(AE;%z7UB2WJ{(5-TnWVhpo^*_bt(qKlv?JWWe?xxc- zT5Lj#<-Z+^C(DOcW;E-)rZo!q&fm0*Z3oV0PU{-_O`N}zGUMGTJqyKzfF<`$2y-+r zV(^5Mj0uKbW~56Bn7_t)`kYpnqj6-{BUP78JGPUg61i%^0f3IIK{=?0__KXuYXDh8 zS}IEJc;hHRB#WGP&!UUADbeozl31z)&^{kR709lcrgq&WJz<-n%;_c!MV97&CZXC9|yJOILy zPVDFINi6F~4O>#@-@f*v@8RjR9r@K8^$ce+CSEfGdafVKQc^N zQ}u$fP3Y zkVFB}oGMe8SbMhag$7!kP|46Vlj;`ft>@0|Er_nu))l zwHXNNam#o}UaFD|^KY2v;8>zJyl4n-!(Xu&tW6SPL*?HHEX(A!;Nh2X} zj0uB1q(e_USzTXt>5j5&NCWBK+)ggsxm*r0&aynPW5%UTJji3R+ylwPqkmDABKL-& zT<)%%jd)v=-2fPde`xH~b2SP8$NhGxff;0b>3>{oUgB$dg2;~K{}bw!!At1I9XH2E z83-}GAcYGnXJ2tgksbcE`X?5+J$T~VcB%g3=gKqh^n}9I&1DJfaLJ8z5#)<&GWn6z z-z`}rafg)o5AF0*?lQ&ecOwR zs$NUfD4|a!=s<1A8eN2sKLlaPPTiNjJ*qDgcKrQecKeNO?M#=DIAeXrO+TlhAW7c$ zGGRE&$`{sS>pA~Zc5U1T3E|Ua#UMn<85PfuM)!t7WjyFJNx8`3;^m`2B7kkzKK|Y7 zr@X2lS7D`(n9x!LO(qsL+UJ$pf^XQH5xEx{pFQ>ZZb7wr5ex8~W->9=V_Fx0w z;0Og|ytBBt*tF^yRX~R5BnL5JkD)cKlZa!HRwM7z{4*MIo>C7%9|Pvs2_CKonBGlYs}xV_8) zAhtLe9?uVX00fBby}B}}cPR~DOvRvWZ{1-{*DTG6Di&Byw?aOxo?Ba+P=!a@*^_$h zZXwIezXyYhhnHJYV)^G{p`9e1`90(5#;f;uda&4|4$sBP;yB6eGB%=?LTTapZt zH#Q7fT3Qq^f^3!=;*uNfr&@L5q7pf}cau`8GKTrdnkN&eB`2@5tnegTZB<@iK6{&+?ZmH zlGTQ&v4Mdvozw{F$Bfwd?tabuV*J% zaQn&0*cQED+MOl%!V1(!ZyVBOkYvs;82QBP_MbBNN z;PycNl34&w#toCwR_f3Y`A0j1$TrrwE>j6z$QZR8q zytzWF9#-n``bRl?iD_+I%K6&)awS1<=PrRltW3aC_r?818xmWb5_8n8usPP7Tj8AwB@hghYmI#m&>pGBgOuek8Jb=Ku@}lqI z(-rm_%c?Oe3paaWlGR>Xl*+9Sb&h-B9pz#Z%jyq+^+Iwquc|OS(S3q}<7hS}!m`(A zX9W8Pz1NEwx2(&#_zYSbHynJWwq(O|ccZ9ZV^7{EHjPTOt?#$@)^Bc|vKTP4jmZQ1 z=)c@LGnD-j;@407vLU#0f3dY-yPJFM$-hH?9+WgbLOr z;j!vVL!(bsj7AqziBtIkSl|re$A_noJ<@^ z#sC{KfL~Dc?IPDABCLPQ+1VKd7K)02p`fkJd(yb;=_hS=wq5Ek;gV_ zT6#J*A8w^v)_`TVgrqd$U-i~G?{a4#z4Gonk`-ItnjU0u-Pdu?1KD0TI(gNEtd)61 zvRobdWv8MjZ!M=Dn^YR`IFG0sQTMIe?r6y`6~K`SzAnh)gdsTW7yD4P9AHw2)&59A z_iA!@#9Dj#t)L-7D72Old1=g?L5GeP#lNTFHxfaA_af+Us}kU>#j>3?iSlK>cQL+|9HH0=T9(>v#rNg9tC zzfA1Mv5WjZGe<{rvVz_THq26Ea6um&lsANitf_MiP#j7j=a16>57Wy=O@uKs=yXcl zWDTXF!~>KcMEaX$_wvM2^-9P6e>rsZEX|@2Kbir?+9`Yj(!2kd{YIPDQT_ABI#-7V zZ0VS2P&0~TJWz*_m6VoU>>e<@fv;1bvuP(q7JNo2lBMdykW5?-l6Zv-3&H&Y{Pn43^*#w9mz6(t{%&UxBy=ptdh!xeF z+I||6!ZqQ?Y7fKD((`^1+ANazE>~IjyX&i@5UR3PEUCEd?S9$p&wg1hyuPgLwu;zZ zTd~AV896zV27_S@OE(>Wx%(dO>VhS6yEmmgtzB_`)XQsS+Et^F`u(GguV6A{Nxk2D zJI=leAb$SdINml|uiY3&9+vxz=6m+AcRyVyP`_Dd*10y0{CetzGwgiKwaj*P5r1g- zdH8eF`6Z_BYlQy!j^OiO%*?ayAo%4YE3>*Wnv}a zxueKrfaS=(%gphqAy(Gu3(bOu;vyn^vNhwwAGcmwRcrdC`o(_V`WocIJyfek2 z&2aLbe))k1CK@XJ1IsQK4GkWT$IVi$nJ`ejF{ctvtd5n|VqBH@>DZo7MUcscT|7OHI8BW>#yY+@ou+e*7g+S_G=1k~` zvK1oHwA2?w{312z9ioEy6(2$FpTJDNgVD#C$L`dabYp&ioM!)2>F9dws^u>c#~kAw zk;$=!lFzf}zeN~lfYBc9X?0kc`FW1wOffj1KZCcq7-0er_cuMy2Z^7U7&W>x=m>UY z{w~8W?Y@r>V>;?%Cagn%k?(+VbBN?{f%w+<+?r4H^$Qk{!TD6XrHhfrE521M-fUymWhsXi>uQ1Xksee34GXT%_rMS3p0M~bVye(op|3Wk6#gY z-khBWQ5G%gb-S10uW5wF@%j>Y(!vngq+GFw;cJt|0&4K^)Q{lValJEsq5gK^rQ>zL zV5-jPnHN0}=#Rcj|DF6$3;$J0_7>n9{`)ST5)n3naaN!A5-ns(-Y^bONIc~xrE zH@qe_lkL>G;*lT>U!Ud5O9o5VBH=?VWd*|wYkXO*WkS3EnvJ`Et&v;P=Bdb(inS>` zGUn-)xe%)uIp?s;-UooPZ&pGqW-*dyWr-r~0=nrMx%S>%NPa!HAzf@Ps$YeZZ8vQBa0d$=7@!i1eWb+jKH zJ@HM0t1yq2CtT6)*YwYH`ELhFr64fK;nkSdW|B~BS9{Qx)l)M>Z|s)BA@54y`lB?4thDM8~H+{ zu06$7rJ=A)a`)ae@`PD3mywHsaXnkb_B(m|ZedD_7TaH4?ZEFdqhXr2a8`44_>G@z zm|aWRuQ4(lr6EZFRaV1!LE9%DF+x>Nr`Q=L)_87sTVYfQYsroxflYQRsW9ZOe+lP2 z>VtwI{kpvYtJkF^r!`6H+tr8~$)E}>Af?V{`M0pfRlk4|{vEct8PG6G-p8$sj!UGi zH`~a!t0O=Ezty)jXICNv_oWye#QD?((m<;PKX{GfW!$cuMUQ1s{aXoPuAG{nEGj$66E2c74HSvn|eU z&0&_!H25Oy5#_&9bvOC(SBcukT0hQFDcTTB%#na5xY>so`3rIBGS`bIKjL#le%bXB zNBhf?s)ywF^62u8*6kW0V*Fe^OQf%Gj#D?^o0OjOcsgnHxLq)tbACPT()L;XiFSK90``PM8s0J4&m?gJnzRy5J|cvdF@t3@F2 zpQ3qY8dp8LCyvTSAFtgfjbY=Z9q@;p+ z_qYl`x$Jw8riKSWD3kd{e)2Rn*;uLsOKM0*${^Ub-G$$v@RM3NPpypd{++``mdUZe zt0_}RR_{a4f1>8#u3c%vWTo*$!nEE}_|s6QKkQVC++Q(NcN1Mk9!S?1HY1i$oRgL~ zi#7OrIDs(5h{sin7K>oXlxip1FBW)Wv9LxlHOa5S>Xom}5&qGW&lVx6mpHHt30~Pq zxs+$mP=vWy=M$MET{Gj)0!xX@*+a54_IOAEf@wLzzX06wZYW)_Yi zx3l&?8uOVa6uV_T>1s4yVu0%cXp4itwUuGx$SsruV*?-1HK%5HbKMqzVjGvM>aOV7 zfVp`*3%5rm7I0}%JtGpTkY%lkO-lSsqGsnd6}Wz(q9QziE;be4S?blt|1}biss5fKts+~@l@Uvh^2IJ(<~fS zE*E>epk`oAJ#5+6tMKy0GuJoTd=@NpkTgr~XqF(sIXO8$V)!5E1U(MU>|?x&&8b8t zs1fcWnH=3RjOdXs{)zM_^NCXg8}71dUDxsHjn8nNPQ2Vw6$tak)1l(UDcpweVkKCCpuWlL(eITvdd#>5h|`U7B_3=lp1OZ`3$RI{#{zCi zByme07N<$6MCBzXmSH;$ClbZ%NW}N-3BGxRM?^f_(01;wwze0gNp<9XUwiF2yIgh} zH(+DvFfeRU>n#)YZO(-8GolQz*^0dL`o~tZY?Rm53?aQb>m@%w?{+|7q8J&Nj{{;4 zm(=4*9V&;8HQ}~t4Y#GRO08?r6qew^*vUWB?LmjDItgRB?mGZ|RGr!H6c|evYz>|= z$uHx$`#iK`2n$)YAL(6jtN2>6hrxJXvH4F%;=A_ejXECpj$P2Pr&HhJRunXs;Kb0( zg;$`FK_t&dug{0vTJthl0#}$EoKmoou_mc8zSnttH`B`3*Vnlv4nxDk)mqqZ3!|r> z2744n3?s4l>z|~GR~j!*m^n(Ld5kGiwsQf1xb8l?m^>^d zCg%RIlg#aL2>zph(mFbZ9wYE)N?tH(>Okg^eSshxHHpGsBJDlelT+eibxh#>6EWo? zih-N_ckpVbzo^c-TysKNvjWX{bI>!-1-~-6z=Dol_e(svipvICm(2VC2#hTw+P3V3 zY~Q2N`fajIa<+C&ve8g3eiPm%(4wjSX$V7vc=R zH-fjrm^V(Hil@6d9o%qKEJ|Q5fMy3&5E2a7{hksOr6T%cQKe`^z4~t_Z_0$+q?mPu zm!-3y&+_i4X65D(Uxn^5DOPkID+2+GJu>wCY*iK0oK|tfv{8yYd~XfW7qP##!NLgx z64P4J9LvAYCaTii>E!a8Ne(Wgd>}8r;O7~*_4yBI9ku;#O<6eZ6anf~F>fc@%Y>bS ztA!0YtTLTJ3p6Jf9C*!_yWFqCZXJL2-Zl#NGDHx1w}G1qlOsj@3#Uau!pIRQilaGn z%=F>lh;T5-@pS1n@#=NZwS_TS$*s=401Vu;i(Gce`=pYFgoPGe*(oPZ8fff^-ZqmK zdGBtq&d;+V(qqIN+f~F_Gd|O`MgGLf({IFo9seO-R3pOBa3k=x3QI(IX#TEtcD2u0 z4k25A0_RtwS?KJntL0sC4(CXF!Jy$ULoeoJhSha+ba_RE6wWI*+F(P+^mjyo)vJht zu$`<{WZ+mYRtB4eRU47-=2<}R^_BdzjpKX!bYNM+MKn|#8J>8y`8quDQ{hp^m>3+W zLnHRgtwVAEd%Ywb2$X(#E#g*g9$0 z*hypCw)HjEiOt5g-Pp#7)7ZA}?j3iGJ4XKHN3!=hd+qhEIp?z+%Ih%Goi8 zP8(AT#~Lfk?gBO&t)mafm<{@h2&387V88L zmlW__ssRp)FiQ(?$|p6W2hqpNkVR6IyR~y;kGAZ$l=EI}Qr-!C??BZu%xg`YI8>M7 z{4B9`-!XHw4WT+yU}`fJg88GoI*H$zE+f)`5^-resZts3`ZH5)1dzZ@>M4gT37t;= z5W_n-)F)cK@t>qzppumad@fk|u29c&YBN-TQX4n^&8jKYesMYV1WvKhXtVZqc!I_o zl?mIcO3_;H^;KjD379mOOSh9&xVcS@D-O}8_VLC%k{XlW7*oVQ=satN&{&jca7LP^ z1vB9prYmw?*ZjuYgk;fCvpmGi$cRK4PNg#+AY|a5{|&ipdJuYzKiFOM<{OF|n>B&{ zu0Ay+>xSH^4&)_=7{z5LDiVfOnTB4VKjvx3j|Mbk_`Y&-=Ls295Nag-+@>WzCGtFv z{OOkeBQOS$67((Hd(77Zm!H84@fB-7jTe<C1i%pl%Nlk8I*)dAGX`cV!ph3RD+=2RAsYbDUsrmFwgFW=Y zh!n8GIyu!w=<^D7PRmLA^8Gulj2)#rkKX;1VXY;*z8G|?eeSkA(;?n^nLnOO;96=d zgRRrCPOm`)rY!j?t)C=H$2)0ETXiK^@ks-n?_92lJ0G*F!F`Y5@a>)SlfHSb3iOWl z=ckni*T_pR;-{M{Dov5xCW=jcLGq@;R*zwyOf2DVz8o?&#wP502H_uqO!qTh(}BE= zJ#XC2>b3#$#yM{o9byjmC$hHiW5i!vX;pRq&W>j1 z555va_9vq|ah@j|R9QF_~LaD=| zB{Y7f1(86_EY-yW!*Be@A-kRIV;1(@>pkLVFK03vn-T&Uv~wKs4)}NW%3oVz=lO5! zoo7t7e`}sG+V65~B_c~2DrOv*qmwes;0j@teMp5Nr}Ocb7KefTLUvOhg$CPS{e4{7 z#wq7OwXwpB@y6dgXEEH@cT*w-{#;K#y3Um{aBLw(t^4rJO8c}kzLw;Z{%q=_^1MTP z!Si=E--xE?$~e2RyfNk`Aqy{KoG!Gy{uX=k`t`p!uj>l@#;cvb+dXS01nU$>5-(ke z7?(Q?JVh7S-f5LEBOrjM1%{N&-r5#_yGmy9Cy>IJS%&`82sr@_>=-h=)P+FtxqJKKVkQF)4{Fe-2^L?z6L zcR)(AE*ep+|7!&ufIj3vtz~Q?1zztz1)Nw0$R-g9`jg*EU|vfQ$gi8kQfxSK^nk!8 zfQK>Y)tCgc>IkzWueT015U&{(btV*+qD6A^W&Mn?TJveYg+Sc5h|h{@YwU-e0N8*K zrO*(Q-=lQrYp)&Z!WSBPx7;s=FDJKM+u&KdtKF{m5Z;@`u++)Sj_J&K>+aa>!9P=6 zw-Z6nYk`KStAW(@JhKa~qH!LTS6pUeU$pVsM%ONEDE?S9Tsv=~0@0Ii43?DAXn4PK zNNXCuX3$Z(i_RD zeFiy(43Ax=iLJN0g^b!c|D2A|n&-D$YwdUQy|E#<#X535{jWJ3BXqV|dV4R3^XNe^U}`Eljw^FLE@%ZNeDHGRoP2DikUZg<8hT8wbbL~?yDDMgN3PZ% zTtm)w_b&rgUe`$%Em>6LjwlE*3vUiP;WX z4%6XO$WKQi0MH#E)-gVtNU8{=-9EH+nYne1ssgFnNh%o*w!X1ZQ9I)eF*9)7?A!KY9hFYyj)e_hPd7E-uq~E;+c##zBV~T| zkoM>}U2zIF17-xX+`LY0r&y0B6ZswN;ko)W><&$BMuHzCt2N7CBK&T|U#`H(|D0M) zt7@^BsRO;TFAF*7bAuT)7W-1PRh0{MnBtEs4>Y=2t%8C>{<5sBg^#c_EJ#VV`x1iJ zS5%U9&Jzt%rVPETCCemN{cLs-A8LaN_(ESEv){k#JM-Vy=#ED z^8Ppa{ULhR$HO2#m9GRTZW3EkMqM^A7H>4b8G0hu5)X)xh|KQ)yN1B+^@N-7#Z1#& zDFQp{z_ogN*vsaP5aYP&U53u~#o|TS!45V9kt7ObS!pYrX&Sgob?@nIz<4waVrrpZ z=7j0Gy_~#QotACg(i^i3=oXVIs}$mt=YXXvUPEa+Fn`_Y%r%k}*Sr@c&)> zht^rug5#Bb)#~RGTQvNalxdaBtlzhcip}CKL!*^InjXzHuv%HEeb4F?SlbhGD2eh| z1{#G&M!AGx>7Kb!5?h7YM?W0R-wit7kKe;eONXvjzhlPQ2UZJAtgm@t>HNwMG6aN- zoo*D$ys)dSIfmIxn}+9^@&q~6#m!>V5F;zzFeb=0Dey&Nprf;|7Bez3>f3gZlG<}+ zN=iszW@oSed);*jwu?zl23_l^sHkwKCo87aR^UKXnKca->~T0ByIT4OB!IW8zkYqcK-yoo_@-M7Flk1a zm~{8H=DlPdUYsMNFEsZVa$W2Xh6gaSyj} zr9E{|B7DUh2ITT@*mi_(hw%*QKh35vGGS33Dz4#VrhR_=>{9)tD=|d?gB-X%xbF>? zdsceSczUl#YG!YM-;h%j2MC{T^{-#|^(esApivHpwj{E8k!DwTK!xzTQ8HJm6>d-f zHhH#KVJLYpMUpxVm~E3Z8qv4 zuzQ3-=70F0dVJKQR0t5M6!|?klFN7PXjFO`t1s**RRHTkf@Su>z2kic|EiJiR$4gy zFi=u0c(s3((Yhr&+ZkIRl6?*M6#$KVHGpq-F)Z(k_CZC(V;c;57*Xqtn~>g*yxy)@ z%;k>K+Q(9JJUrnwT%VxJN?*N3oHl2YAHD6ECNUedbMo0D+EjqM{Jm{ZGRLC;lnuBa#xB2z(kZ(==U#?$Q}?(5j4~L zCdLzlhX!xQV86*|-_yUpwxJ(RX5aNiJIK<*N=w{x1=-oJ zZj$N+C@9Kro=`sp!+7Fuad$r(m75AN+B=aJa!!pr)jrgNyaB3Pz3cSp)jPrPbB zs<~L6rT6$)5T`vJsdbI~n@AxMa`yp_r-z8H2lyA?_c7YEar(-V`nG3_>13+Y1-hB< z)jtnmE`Mj8}86~7c?!{8+fKa)s%TVHk zmip;WFdk%z9nm9}&zM3(NR>iaMcUJw0juq@%B(`B3BM9(A4bHR-*T2rom_O%Xz?~U>U zgh;98k(rJ7m;(k$iNM(1G2gsLxA({Qt$}g=BY6yi8u>}Ja4Q9}UpS}O=a;kRT_SI4 zh1s8y;kd#u*dPtoVdEqCN%d0tOHR#{UwC|OLVW)K3Vhko?a5|3!-Z{JK(1&_-)!J9d2>MsEhBk+?g0D#$}+VtwDJD72s$2kL-{|{m;+s z?WB3M+L?TVpWOe=BLe@1^g-$ z^?sNbC%B2P0P~&P;ZA$K%!UzXrXj=Yf>N+P8eipL(L|VVl$K z>SS3bM=uotC;04Q*{U{KSX zVk>$R7becG>GHu$Gsda>nN!2VVO1gVA$9LjDj#wD9U(SKyFbkPX9F9u(5-SrNvsC4WDuh)8 zq8X}{>BH{N=(3*{>BAOHqPV&C4Nfa%`F>zh4hg`5RAZ&kluU}-jlE%g#1C>;DO}<= z`>Ub&Y<}k?71+-$ zE;-4=M8uSJSw_((`uo$g1dn^lK3a5f<-Fdk*HnaQH?9=0TP)!G$zKkHwfVxTJKrJd zrG=8<-R|%G6M&|<+yg`ZX4;uX6n`0$Zn)HWFeP2HrB9!b_9+60(4%&c9LB3z_s7~9 zwD*el3-)F}{0l8)oFA%pQ}+=@13xQNcKAkz86e|O7gcT~-;5UW` z$aOO<3ga=e%D5*mwP=zlms?Oy1Y=Fo;LEtQr$mDK8_ui{f+=w>qOMa)a5LF6dm=D+ zfK;{Dw1O+$E`rz^l##(0@lANW*jHxUNOpCIDk2+%vV_q!KvzDeLImgE^ADA&YXJE? zf8t5PWAr!nXXKq#fb$v=B?^LlYd)CiWq?>wsp&!K`9(6MKau6c6@FVsm(~@V{^8}) zmWi`0?C1%OgxAc_`ky4u%Ap)TW*KaU5dQ1GJ-r+EABaYZac)ahb7BBX;5BVS>dPo# zM!U5CqNZzS_V)@Z2+=jtmCrygGR#XiH=dS9K$(S2K}Ct<-z~Xx02M%Iq-4x)e#44l zb6gp30G&HLESVCBwzMGdCx?>6eGI2?s@BJchHpew+NO@nn31%LMZV>ixS8mD|5x0ax^tOVUe+3X9381KOZub56yM%Hb! zsyK(yCxoqR2c>|xXTuLx77TK!CSe6xqGuwz-=`hEUpKPT4pAGvkDYjz`^P;!_a1M* z>JEhPCJ>Dbp0JO3Ynv%kTMZXI-%xje#FlPTV8}+7yxk56lA{a_#YCeiBp>FP0q{u8 z8)2}c&;s@TtJ`It|4m?fA30tr5mJKfeob7GiVhXTQ!uGERXDWNvi&K5E>cEj`XUD{ zGU>3%U3M17;{IYCpYWwA_dO)I1KzDk?yj)*ecH4Aj0D8!%(i+YXr~hTWow8fmG9Y# z>*}WQi(Xe;D`j0o`8aW@B;{H!s17uletxM=1Iia%$7>z!T{um^%lHr}vX*gGub`^b zy^YN0KVEG=WYe;qwEJc|qXBJPAOh1;RlE>Z#vMION*w#g*+j)G)u%h7>XHaltC0o} zUMM7c6bww8t>Q8*!Rlvik>hU3>;9Gu-xg(5ZG)aXrX1g8h2toYQmj%VpUu?_9!#>ou!wf8A02$i~?>Xdcfv3z}^EcX0uPZ{_Jx__>5cM~7c z;dvE?=Wf2LcwcsUnD=Sb)|IF-_jQ@XS01KrTw;4&QOfEnKFg@VMOL3Xh60~fn*MQo zK^yG@{)K$0Z+4f*HdXtQ7q*Xt(5D_x@X^}5_hs0|Zwk9j<|9R6fwIFd!wo34n4gEN zK!<8FcB zG^oc1fmWAa$;tooBi)9(O(WodRVz9}Mbx9T`_tdKOn6dZD^#?zH%gTVRG;MrH@@Ij z%I@Fe8l1dZzKMyOJn?~_rjdh{lc*%ozRk-?m1Z7Wt{9pe?w`lUrwGR#&`3&*eH;Fo zOrHII8}FBWmt(se;w3m+OjnuT(r!EbqiJzUz7>e0J7q0AE$dlNL|1c_&5G1>$nlou z9$;g&T}KDid>q}{>WGmcuwc=pyQvwk53sX+be{1*C~Uhj^TchzX>cWk39F}) zt!7Q3VQ;rPnR4Yj$UQ<>3US58L>=zrAk%c9he)^6E7cC)Z$K^UF|+(ks%6>n%qp>b z5!cv^zN48HnE^`B4a#Z#l_+|BQ}9Di9$FGFpPepW0EMLY<Ok)rvLU61kZxlVpRp zyQ!j8BQV(`M-`g^ih+>C8H?u4372j!*p2&;4-}l&<6oY95giN*7NM?U$Z!9CAC9+2 zc3HY^OwT==7NT#e#F2PEP&lds!XHTqe>x=27P=itx&3;VZt32Ym$`l^SgLclRBcyq z!^lIM+9Ju+ln+8LO^={v9M9XI!9g69!pXo({f>nj3me_P=#=}5tSqAD2QrZT=P5Iw zNEK;V7LgAtwQy2h91{JCmENBK&WcNv+W#2|up5f3wLVgoWo4z4N3J{NS?If@m~*Mh z^&=(YBx#Udj$p;5g+Hajv@R7`?Nl}q`%(O-Vb=3|c6)xc4+9MQisSZ`Ta7>@X{FS= zF|mEgxD-SIq2^94;%~|ZQUag${am4)YChI23F(vhA3=(j6j-k*_G*>Q_#(>(#?o!5 zgKN!f`#1XX7ZN+8YEjh{8=$a7n1;k+^=zrSR^@mLa|bw_gXfaW7UBBnv?ZkGm8S|L z3UKpSRisD(*!NQLZ;ROmX@D^fXC>qu>(g`t%OfP!)gY4cKQj} z`0cS#(@vr%!fbs&e|q}rPZp++uOalD_7R~*DgA4@TNm5)yFmTv`E*{V!1ei(i=_VL zkGQklKXqX!WH44#U#kQ2ooj_+zh%q05D3JkMwe}J8E}j|Z+ayx!H0bz1E6LM9+eI2 z8T-(2{kC^Y%?4#@oOR(}&n7*F@*AwHvL4bz&LtYh^!Dha(STvozbqm^0oX`IHEJy2$YU?xIuD;73wR=TdaM*tI9UN1 zN>oKNytuyEd`>&EzoWiioaMJsNQwXF0@+o-%AsmoG*n|>SFb!WkMF~X#iLcya8p=5 zuh=Vi?Ikwz=rlSHnHFQ^Jjf|>Nl;hrKdk-PR0q}JVAKWf%bgV+z7Z2GcN~rbzrvx- zl#ZO__9*mSB!nQZ-03HsL&|Z8i1(vxLy<9gLlwH5Zzm2?+-5sr$Ib|s%nc}%RBIj0 z_yo%Oh&a;)DU18t zmltvS7po_|HD#>31{BFuHzs+F5|z?{vC8Q>UKFX?Fw~>6rJ3&@sh+ZvdYSd=RSAU_ z885>ww%VsT)>Y_cEtrx?p-_f5IzU}K*V|I+djHef1U;00sf(27TN z?5!(fXb@E!PMEx+e*Lxe8>8#~yy4HA(Jb;BLsFG%UdQi&`I_`tR76TFI4-%I-DFr^ zgk$TMAbis7!&U8F1p(c;d1n$VHg<@Pw`+1)PZh7Y z=8sSPMzkP#m%JtR()%`3*MSDi^x?AFnfrCF%;XSrPiCjxB|f8%m7NQ}Ch_}Xib#gh zUNenW+gOLr#E+;eolMIamZ~4mcY0cvoJ|1*WgKAqL0qzwZ=$RdQCJr_hHu$)R@?X@ zOD!;(txvcW$0x{DsJU69I?%!(LsDK8iWYCj&NYoYo-iK|I@zQmxh5Qs{f+*;xvlcH z?@*@gtpQMgJ&6=O+MxM--Yk{gQ8tYcpY5kk5=>+a;K_jsPzlMKk$GQZ!9z;S$(nH8&Ev17ZjD;nakVr?zC&R?HsJ~itr@Q*E=l?Fnn>P0rL~%e4K4@Eu zs-pW3X{|*WYhMMomxgW zYq;MCLURvHM)2XLaWTEuN#>DTrc%%J`YlMH}*P1;^0$nRfao z@1euFIZFCk;4tq!xZ`?{d95p}&r^7>Sa}ron$z`h6sCQ9_lSuH20GX3jc7r5df1!= zQAJkQl>|#QHb!yz8V9z&`Qf;&UiU<>u7oRX3`YusTPvjb>4^`cjGZcwLLx4(VXjZT zipRueShVHcoyJoS-*MCwM%t#d^;l=5`Eu7#6Y`srZ|o;D z{cqtxZ}{kQ1R2k*@U7(T&%zn*r3Mo-5Oa!&RN{?7{=ZxH9@}FO3{7igv1^Z_I&kG^ zFFWz%DsN<94=wbF$CvXT|Fw^_^vb3cZk{3jrLQrlFRUCa+m8I5JURKfPT~- zOUcgr@_x)evsfbF5*orTqVsF}V`Y%99f~AVPCrM&HQerswzYt2>WtO+Ij)8UNh-0J zv81L8&aXM7d4P0gV+T@`*P|-!r(t5+{{lFnVdrYg;>J|A)c0y0Bfs!)r`T2H_%yu1*!Zn|M+exfk4&4MC zbki6`LW6dv$OZ&*qKhNfZc*+n=lImqYJU?W_TyL+Q&lZ+Qw9EUK9>;;0LQl33a!Hc z1ss$0ZJN1X^pVCwx)MOJs>jDArR@q>5TbQ_!xuCRCBc+-H4zm9mzt*~-G~*7sQ?p2 zDTB>#lf~I(RWAR@=577@guuyHTDnOHGqu7QS!j9UTh3_$kyam#TYnVR4P&m=9A$Xc zfsG#Q^?NMq+PZs&Fh6xuAE(6mzcgQkcwZv>Wdm4%^2gPd!kPkv`1wB#vzg8f;9N^u z&h*rf?8V{r5KES{y*naz%1`QBU&jh}I^cq^=rn(jpG4C{hP&>tIQxWeYAMYT(4<|v2`rroUt1~j zo=9nUImQC^pVDtap%pDaR&Tg+$q55(`|S7-kn3%?y&%xAvZBoU`1=I2?1=JyF|}zz zJED|Gm7Do$7?%jpr@Nlc-@yy<$?mmR zB#9jTKn#@xZELM^^ab+1FA)1)^bWn!Xd`V9QCC)56EiX(&c4)&ZYUyW^DEaoU68Yox=_M5u8&;^oW5Pu1E~XzLCUbb!zz#@UY^^zST|P zW75l^$HsE4oktncv5}6Vy~Q#+bcqQ|;|3+-SDCqU{L9aZ2F6%eY4}v5ec5$|lO{ya zNzXNoMtAD`2=Fn3wjI749F^z^%Xzx>xG@ZXw6;qIlU zSle3UT`Lf=RI7;}3DL$-{m$uwND4Gkm~<8;OO79nOA>KwDGJ*CODUvJd~&m_>{g9- zYVi@!YIVu>B8*t^7N6A#J-(Hs`=LaanwJI}DyQIFpj-qhjIj=Q6Q-4-!uG*D^dh*) zDY*TnH-YF>-7+5PQ~~Ks!wW0r1$u;_T8g@k-@$Zdj3|#Gs0hJxssq~NmN_zj3bqjO zs?F~bU4x3et;^KwgD%oOrK}RHTSblowl}kmL2b(>e734v+lh=Z4omAOSml}@Zl0I+ z1tV(20+ad;`_K|30gmwkjCpRFQWw*<77bwGOf{*oCvuc=FXMHARUT)a=wwbb2g~=r zM&%GNFizY{r?wc9eQZaC}=5%1sn=YSf6&+ z%#HJ}weBy}!(&C;&M7-UEBsf);SB2!6e7_A+^C8LQr>i9t%};* z@B6g^!whNI(V|Q0yO@U(XEVKb+>jKtQ$c255M|EKwn;RZBm?BmjtC=~pvBY~53@G=$5Bl!WCJN!6G!vfA#n~$NADOb0B-TZF&sjAnmfD$04>BnKD72WtRj!jS@5-{89WyTJcXvoxE`+~_-2F~{m8maKMm5VfrVtQeKb# zbk3r2aBI;X6e>xcFt8u1=KVr0HA%THgg0O3XE&C*4jsgYaT0H0MEt9L_sToRslMK293IrfU( z&vMQEK$QOu@}pn8c>vb2nOyefv^df5(8ZXc0R_Q*<%2AV0?iH3(Xe41ETI_WTdJW3 zoNgoNWak>25qU-+$?5vQFaYQm2rDCKyE`tw{P0fd-lVAR_lbU*$k*!_h}mU zfQWL7Y$BfszfnISXXPflf0pM|{+#bzZ0Z|RY*n6HSrdM6J{T%$lrlDux|#9_S&Jm4 zP#}ch!?Lk(iXM;SEaV;zw}hbpk1o*N&7Df&P9k2a*|S6vBduRp2IL-J9jLDV!;?8=n(MM*PzP#U>wU?>ZPRU3Ht3+n7_^%hrWIZ zFW&fwUed{Y=ZeA{Rvdn{2Zoy@OD<|p4fw++kUGGf zpGSVq*!r-k`Vug3m21+Ll@Tp9CPzT3rnZT5mbvf4ET#k|LbtZ-LWn=4po{5mpXjH- zkmLW#Rin0|rBJ$lB9GBCG-VWhYQlK9(lj60Fa$?h8} zOG9sKULM;cDz3qlOQuZXV!3OeAsdgtS9yZ%i>%LV+1ZN>F0Lf0c6m@3AFVwo2Y3oo z2yW022V*HNiOOJ6hb!AOgomt6 zLt;nR?|h3dkvV-aHce+y+^h}yXKE%R=|{acYxb!fTHWuTo>v|9p#B&(U2YZ$jF<^r zYdE(CG0pZj+D+bEfUD)uWL%%aaJLreWXwy&>?tDUiel8ZemEUd3mBO8txl4fZKpBC zSA2*W?Iu5nn40C3VkhWT(9fx@VKz%%7%-y!T(Nz#M$~@}OG?LD(D0~y$~d4)efMMe zpl?l6U9}a|I!njR?|UH3JMWmWeo6Yll|bOXeq%8^^|ko<6C!j8+4G?j7GHf8I`cjG zBlNTMgZr5kZvT!|5occD?W<42nG2GXS%+ul-7y{f%wcU+YQ#G?3e45AG-4^rGXd4( zUK3w!(s>IxFcu?*JvG-5I@;S1ln4%5vfU!MOc`l_oU^R*`~t+%X>&3xg~L-kgJLIt zA9>E7KVzRTb%geIOkXe^#VFlYI1a(qbQPO_w+D-aL#ERjt=xZ|3%!B2l;_Lv>qkrj}V8PK0oP`4G2D@e`W z6ic;=AD!r09a#dM>C;1|ZiJ5%wKlOGf{rgV=4G8xr^Y_hv@wG{x zu4pST7FJ65b)i(j_;xO+(F1jBG6sY|M~js>42bWGDq+BC!<^DvATKr_2#ELx=jTOv z+eAdsX5E*4wUZ(^se}@HUV!%%Ae9NvvJZS+U6dLJ^jpD9aIm4iZ)GG#~`7D2p8SPwVAN(+X0B6D)(o=B3Q7MsG(`Mr>K)4ZN5%sKi% z>5prh8Y7h}E|Nly52RY>NsSx(J;m33p9$YiyWT;o1g%0#Z)A;`#r^6P7uWFuo9|Cu z?;Pmp=uZ58zJlfbNr9A7?eN0@QdcmQ@ZJ7OatmWl{X=MSO_oXdQ%(TM#K2kgxGs+fXQswtCRHwXsG6M)kf;}n*l9AgT{ zf`NLtyYCFrF0Ot5)xkFU@$`{X$|}6&X2eC;ee(I zzHi5vTdU&88Bh+clsBlsp|Kg$yE#S|P@Cq7)2{uGb9vv$+BtlJXm8F=GUW&XIE?oP1z?cS&yIo0ytEe&F6tI7!oD0bxa<6I>{*D2qz!p0(>* z-6b)UxTTwZ`0&MN(3Jf9Bcxd5B*+_DHipaek z>A>sotAlf*fm2r|7&1DY8M>aKnWMYpI6c$6E*FCPP~uE7g(XE9k2?4|pIs*m(-71j zP-t=Y+6Q2`aq+Tdhtl|87f=(Hbli19`n+SxY9G>fU;KFN_K>tXf*Om zvh-Tz#D25XmD$}b?mwQu+<1ri9fgbTD_a92bbyY&eDslG^UvGs&MQ~;dfV&VS&CP$ zs!HNpTL7=eLGR)zd~ZJ>UC`r;1&*ZxF9o!8hI)Ezv2d$QjQJf@`;aivt(4QR2z!aA zoAC@{Wxtkvw4SpXG{Q(~`$JJ2^TY(+u5SNnhW^gKcN1=0_@Y10`D69FPlXzuBY5NKV!DG41w*8;9U9)5Sg{E z;VrmY@eEY}vfdoBfiF@c2OT|;PU{*Hltgu0gRPnLJ%AaAI;Cg8kkZ8`ClB@_3nZMH zT6<>IeE94(kb-xcN6lJU3PfJvm^Gb@{PWd)$myw0qV0F*U2~-(M~s3F7-sGAQ2iov ztm3tO3j(0CR(=VdeCRaHMYf2iwJ1Ra7QfK&fyB7puUDL#kkO|_FUkag)92=iydB&3 zgHhLOQ;NI#k2S+t)l)xKpnm;Kx%&JC*!lEFe_p}&_lGWlp{cd7ZxbW{VsnTRNGkw- zs<=fn(>&>usr2gAvv#dvk*;K(ea~uT++vUB&^R5rk-I%5r`*tH(t!pLcW5xANy)J^ ztd&WKm0TxYJsd%jZt^G+4hW^@ttqA2Eq3^7oYPD(}2YwaFTSOGc*MGwsCIquR3{w5gNy*e>1PW8_mE+zs}P|4;hZkA-x z(x}D$JLtJNCY^v0{@10%OlA&;EIAiyw=M}~S*6&r|4{bZVYcJRA`3khyj&5RPBQ9Z zGmxx8`LTCCkPZjHB9i<@=KtG;)2H0fcbQG;a5^>Y<-hKgpupH(@akxP$c%V-dH2h5 z(`)WG@A8_5U@8{1x1jVe&u{D5Ti4EpU?dg^h^yDsBaQ>iU;gXV$&0@M$X5`*SIA-O zSW**^@&RNKY`EV!1|V5GxkPwU<2T#(681Jgo0(Duhxsyf4wKXZ`oQ6kx?ow4BXqAY z`VM3n3s{oY<3N_hHL-Tgbe(0%DD5JpI#q5;wb!@*vQq%D@NvRG$3pnR?ff;hveKY3 z>v-qaVEXq9_1;>q@=(IxN=#j2Vr%QHXF7y`1n>rQErn+PfG{Zbrp>vPC3R~S1MN6w zuteT={Nnh;IC%yb+^HF=RZ;1E@Et2g)GGHQT(nm?b!Yj@4E>+wq(GPf3RF~KL2A1Pw~+$ zWwdJb8|@%9-%j5NJ0Na!=8(L)iG_)7pLlsb79HPG7XvZC{P2bQrwha=LkC<1Biin1 z7|OiZq`~89e5Grrds(Q%F1~@jshiade?=Zl9_>ZAF)RLk&7L7oPjbp9-e#&7Wg;5g zYS_${X*p|40{J$P*{ITt2mEDAz}}S4pB?w)y;XA-Ue)Ktz$cX12?a$iiL1a95Z$Hbn84X&exMiRAgAy-9_E36OiJB{d|qF z+B2mYMT>HT4;M7uIl_n!;D;NT<0smTXSS9DD5G}OygWVkuqFK3gxj2IY z(s;WpQ*&rr|M6 zbgus16jmDjqw%ZiE&9v0z?%_;q~=u@kK0*!3(G%izkS;p+xzX^UFD;8`nZ@Drc>i7 z+`{i3B=LEFqw&Xi^;cHAY(Ee@gO+Bl8^wIQdR>Dfut+xeOje%>^sU1{6AmmP2A-ZM ziL9rpS{#WADf9RXa&^3kUnvn#PpU-$AS900%GjRCGN)mN;cnbC>xcPwA}pTCW8+FX z50n8wnAEXMOOb^MXiJlh4q}W`vew#$%^u*idP<3&-X5Rl8f@Sxl**WZY7*G%FNfP7!4h z%dq}UQix@wFBiY-toz3?7t5CN8GXuiD**b8%am(f$2Ivo!6l1a+4bN0i{iy~^tZrQ z)UV5wIH##(L`n`An$&i#v3iX+eXH$cbeC4NsCpOyHk;=YAdH?YJ3+HWybjVDbApWr z=g@l0wCTg9f%^`X@*^Yw#UP?Ey+F;CK*tH>-~qqh!*&D{8-hr$`dB5fTJ07HwxUOQ zu@Q+;X!IC@(9*(x%=e_el$N62_OpQY26UN@0Xt={qVbQo_&`049!2AnR8Sn;=4=g;|*+_N94I9N**Gn^>vv$MT@eNcRSd_ar>K;3`( zVPr(ksddIMJIaA?pfaX-H-Elkr?qm?FSO`bbrBa`$Fdx7d@IN+_m( z3V6|VQJV#tNEDRF)@ajoR=GE1htT_XQl6dpmJWplbLt&Vov0ioYsr-AOpa`Lh`>&# zw_YNNI2_2><4~}&vneN6PWOrejY8MCbo3aRW9x&*%`Z~Wd_`h42{;M}tlgI|z;u5+ zDo$3fOh}2twtZ>%$30h+C0mfmY*}f0fZ&<#=^zN#@I3x@NYcNkx+b3?)EkK7?5}LR z-HmnKpKl=l8IGs&xS1B8by<=%$OAC?uK5ngRCE)UhUZ_1=vIYeX^?$7!P9>+?7%vC z%_ZR>NPH=$rj2rSb=_g)#oGGHcJ|kiox*8gK%yT zrt5N*7c8LYLHmn*W-;!F%o~d=`SU}cLTKr1?4}3NO>Xo0O9?lB69||&!W~&d4F~}h zLdUVBC~s(FTHe;|w@b!mrR3JfM6%@g@c*0t+YOmFrFU1tO5O9+V66N3;58lAVBp}k z@(Oymk@mYxoNy>ggw?Mpblq0ih2fD|#hjwd2(XM5OlUpy3SQB>B0^ITPaQf*M@bE(kD!giy}K$emfhp&6^t!ZaF{KVrgHCQy&^ChS7(p%8j3Ep zT)dJ^AuK^Q02(~cbpQ2?7Z*c17B-K`h*C>w{^@ke*Y3e&Y4KTFUPZHt@fZk^1-ANb>`4u^`vU&WouW^rG^5c6FO zm1h5u%4F=k^n0kftT0MN zRB0EK;ORg@YSdDxmt)2M5K>}<{s+~l3IEvd0C-A`z59fH^T6RFp8&bpj=k^aAXF!| zFoAC)Y%k#VQl+a}l!8={=KjL*9PL>tcjJ-}ED;{FQwJmzs=vq#p1gRW1`W2IkSo=C z7Gh~otTqhk`tNMF%1-f!ns8I`Z&%Rr!`vGGR{P#!Tn+5b_HEHsRm4i;ub3#31rEgp z(o0GQ$MogT*Zi1FT2BRGe#&C*Ecp->e)z2-iVVJ=LoVDZV+T{C8Y>k>oGeAhGdzs| zhn^cFKt?wxD4aaVozM5l7Fwm`qe#IppUEUn&q^7zW%l5(=q>!im6Xs$fUcDrZ1tz>`-7QT9B3i@Nrw z^6^;7ZuK`8IXJuTIL*w02JwVihtB6AcGN@e>CygV(BBMwhYCsjC9rlBVSXJxlBRtX z`|iMQUJY{yQL%@J*Gxa7f#e^Mp3!-d| z1kWHpw@Ez$&NM2b(g4{%uMvrz$*_3N0+vN!(N}HSCs$r&Fd1CB4IEjhv3g|?%72Px zsNC^cz#dGMq@XXyz+xtxF)^vDB)z9*OkoNC_KC3UFlMsyEV-(m(>uAZo&t?%*BPEP zmnq>*RR85mscR1hNGxLa>dzE;PXu?D7Znx+rX{UDctr;rX?qj|{9qS(oc2#0{tcX{ zHu07I_e90tK$yn?f?LHM^VH0;{v&|d!?y)pxWA#E88JDH#z}-K!b*YtSwaY0meE>@ zH?d)pw|LN3yxJA^oGV!Q&}#m@9=XWnI2eKSe*ToHpKr_P?=+`m1&(l8%fayft zM4&eHHX%Z+nnCKdON~9jhJI*a(rvQuq>J!rynDyT(x|qn^s{?PoO13FWQ-{v%LJea zJ3`v|pSrFytf^pW2MAIO5PCpb0@9>~E=>rbOO@Vxlcv%^X(0pwse*uj6sZPjigf7$ z(xmq)y^0h?;U2&5xj%27{K%7RcK6KAyfbId?7WkY?JC9qN*r#W7RrtF$H3wtwAzAJ z9sals2mCr7Vagi(zP^o*k6xHhfIP6Y=y{@+2bBCEw$qS_>bRnk0_v~5ZkIB++O&)yM4&r)V2Y*=ARq%+ebCuSBJ_;oO8@7!D|0_Ss0HhHQD_lVG z6n=~6n}Sn^stP(BEP_(pQ3>Cb{;x`>y1jSi1eO}Us%E{)js%}3}mj)kn-HLeU zJW;e;ULDT22niwy9OCznJwt)Myf*iun0kB8kK>2G-d##`Bn#;|qoRB=6!7eNfG?*v zDzcPzw7Q-tqEZ#3wwm;V#zSbJ-27@(kA_I9S7cTS;Ka1^%UW4Fi12PIDKO4@*L6^1 zTh7zSQAA(F{ms>NImL9=bmD}(fP(Wm;+?9P@)u^}cbC*v2Qgd&NsdfvA9Fz>V@zgo z4VQ6x+f4Um0*Q3Q>!$DkZPB^fQ5gGzl8-G*x-ln|U08DhfRK3o(9` z6G+$@uO zoGIsJy%V(s%F6rk)t~zHpfMNE80?objo;D?^@WlXRSSc3v&8g|I;wy+O2pmdh?YJ= zC6GPm*q8eoBa<_vCO2({>#C=z`3kX>Am&Cw`g`{r@f-e1bud)=++qudZB9dN)z7Vu zKf8U^tYwb=cm!b5kh8MUhWr$Vl$(+Hkct7YRtt4hy>im`orc=4#a0Q^enmt&aTKFX ze3-)`+cAp~zfx8Usyf5(^Ni(Qd$=@>x9`*V(kEl=$>EL?Qq6ZT$sNuv-9xwF-?@s5 z^WTpOHui%-?#<5k7j!r>hC20bODWNT2~IsflzLaF2xXJ7?W+%fP?}{gOmtrAJCKh4 z29BN)ep%B*8Y=fg{RoTR)vd1&g&IeK2qG(Ggja(P?rYMAD~sJ058zczfTMSnk=>Z2 zNCU{kNY9gc>F{^qJR+ou$Tv=ggO>}}4G+Y_^mK07LEn=WY%4yi( zp6ziYepe)zGjiN8*k4Fp;f~!;W0*Q2UUuR%i)YrAC5w+h0t=<=P7?~(JEZ{==w4ae zYW-Ws$Z4a-kwuJCC73Z~gaj4~(kSC(keCsBuzq+`H&V={2xBlR z{@Xj=uGEF_*K2U0S>lE#+l6e4h`A>1V}3J*>|RqFaBLYJI)}7=i6CaGU!)i*H^-oa zhZiZv!7&6FN%K(A=!)wgsy<)lGiR}Q3GVx9wVwh!p$=3Xfxmk#G$$XGp=pWq=bPta z4DFcIHpRNK@y^2WC$_w@`_)ASZnm1w8;z5#7f8g)8 zl>VyXkuHly_N4ke*re#yR6a;3BWlYImcrG!jaNGHr)rLfZi+K_RFKcr;qWN1ajzC$ z^x1Z_uyPQ)vZ&#^_t4nM#BsR?R@2Brs2c>wiCvd~mBR6h5G62bij$P8SATQNI>0#Y zQ)mD%bJRvpoyc>rQ0G^=_lR59PSm9|v)Dj@_~}`=yZ*pWMnPorSN3I|^0IfniRV-<;%zYMRST zuRyL3Q}~-W;s)+-`mEKGKv@*u>|O?xSNh8$+PT=~nUy>XDJZgc=_>1fZ~sJa5E;8CXs(~T^5g_Y7Bx3uHhs2IQmGKHjN&kx-1?{^3U0C|I#N(ZbvLu^EnmY^o;aK~ItbGw?3LJ!c+1=uz z@g^0Qo`Y2TN;SWpRZwg&HA53wU#vJwYjjv!s4+@1H>SHfupT!aqbydT_lmth^2HE? zw2Xy#wV!N^y)gr;Zu|0xvWw-PI=wXsxEzDc<3R3=!L?bN5T7;n7WIt>B2u@K>eqeF zvk5{^?WAby2CDv=hgn4azxGmsMheWP6AlT74@ zI;>URPeeAM)@Immo%+uvmzUK}XKvV1583-f-@Q|Kb{}UT52i2V(H0(26D#*~#BN}0 z&^4%|&^Oj;><5N%jYvN}RG#=@DwzbE*bg(ZQCk`VmaRWi;Ttlp0A7e@DT=3o!EZi} z-e{UDh@HAQ{B^*VwCouKUSTrjs1|n4D;moZFL83+;%KJo5y-5KKTy$)Z}4CPZf5Mx zEjFT|ppk6fBad26UwP~oSHceoA8W4U%cB7g^(z#Fmu-RVQ*g@WL^bq;V+Vyyb9UI$ zN48buPEoSIy|E(GtQ}qIERmp3*({_i9^rE~vk7bbR-!3A_~A>Dy9`kR>PZA!935*< z3Qk72Ct^f%a~P2T0&4%W_Vfo!#y2mej3GAJk=`b(kjcz2Sw3OTan^_=hUKu1rmb`C zPB+KmS|15%#;5Z;l1dB+oOTfm&E^nbVHZ&0E%Zgx_Xg{%zXW1rBHV-jraq7RW7^uU zzLZOUPT5ws>2~rScdTZS{fHeA@A1-wU)lu8o&1>0Bpc#?+fvv{=&w|smxcP$YhyWE zwe)r@ZtM4`v*q>NQ%ES1AnE~$J`V@&kdpAu=&!xv+sc@uEf&5_#=Luo0WtPC!6`0J zS`~s~=CyuZ!?KkoTAXU?5&O^2wv&U;7L2_k+RJ-KUTVb4lNP$g1#f;eyv}UIj5DLi z0rMs&0PC5M9-CT7?FG#42uz=+vcf{3Jza`)2G-b?!N_8~km;Tl732808DIo(n)@9F z^+!R+$#g#>DgCtfu+Tw?Z?eR3Q_{j1x>p`IVD6`|{TzF!zU&9eZr9kXMvib%08PC| z+UqAMmWVv)|E+6^`z39EnGCk+lIQi!P94erdHTD84UoIry4YinuwMa*IU5LBO zoe-&cND~JE2N%-`#F^1`;&g?R8s+Xgk)^R5q&|TUmyafSt)3S+n)TqdsE~p8z-pff z-w#tL@o*?eCM^Gj(yX}cT^$?4?rYVrSLlnUDGp01`_x%1yI($2NNQ=1oK`3QE7iM9 zCavFAX54_d6JL*KXqA+Toa(hZd28ogr=$T9lU~lT-Ux}*5`>LjNlt+Px)nq)!OML0PO*+_;HJckjG?Y1`;2iN*t$$JnHu;>moNL0+!PK@e0C1VMOn;eIDmoEjTtW;(@teRgxJVJ<@K?S&GR6}? z5;SLE2%!U2Nz#C(&nLX=;z2~ognkXfr%`)Fe*r49bjH7#nSl)4aleg+fxs7HldH&` z88s?%eVR3_ss5t4+ApKAQL*mXM2K@q&^Qb=Ei{y?0w^E15T_ zhF}kMIK-h50)0M{Q*VNrNGOL_Ext*4R7RbsQeazi(VeLus>X*fcwf1=>TGIL0q2X4 z_-A3v->^G!O^kL2noJV<4j_W@DPjT`DlL6@<9NT@dOhJT_$-Kn;b38u03E6E^QjbJ z$<*^=36J%UX)<{f+MYsS?|9C!^ytDFnOb*eU*=SKB>!5^@<5=n`NePTU)D279aQ{X1{z%Eqbyt zc=*S|H~$QP0!}=^f+FwgU9=Lz@Ve|N!D73_|Bx&!#U!Z#0e_cT3DQRv(<4~v7oY-G zde!jIJ%ONIc8zq2odmRXDsy2jKkYw46;<~5I?TnuEcEi+`U?YD#NWl4Fk!QFv>*L>Nb^Gq9KrTwNl$9e>yGH^~hjTTN-^8NF zeVHTV7lZP(q2R!e)1&Onz03O}Dd&_lXacV`BCj@wLd|0S;#rOk5DI-lO1R$bO$h-3 zfiG0=hy1O0=cg0<*?^LCZjA#m#&kOrOz=@vj60@)+)&lMs9%9enUq?-va;_6A0M1` zKipSh;Ovyxce~fwsisI`7zY%Pl7J|O;_eNCf8r2Yaz2vFWRZ*9{pW?D%Z>s+5Hg1L9U+Q z!l8-q-}AP5T);nSZuHm8<_^3_(MTR5`voj(e9yd1q1#;-2e&a0$bMp^7c3hD<19V^U7ErpR2p>(T<|Y~f|wO#!3# z<*(oMLk<4IP&gcEX~zqkG3v{FK1?DSdIO3;WL3CV-Y_TQ2oG-JAT}q5rw9zsZOG>& z;)AmTDEpwv42In!_y6kL17V@%LIk_d!0#^MeWF}uJ;`_;&{s_I%db|g1F_}kB4?wM zNyB|O8X#B~r&VX;ZhOtBn%+b!d=7;p1k0YkP#Xzu5sT&;dFEi788f()V73 z{^`E$uY^;7(9eJdo&+8B-+2!ZuTn6?5ob$z_srC~B=yRwsd}|Nk5c&)S%zrNjmr^ z?+Z40naiM%5ZQzIhNyt0rx{9U<$pqPy?ZOz4~IthG+1gWy)_MOH?hqrO)t^ z4A5F?ykjSK#o5oF%YS~I1fEWqWP}dQdACuNjNQFlIlq)Dms0_vY{L+$OhUjFAn8uo>Sg_Bku7-V&8v{3rlA8DN&nGfs3SHFhCUZ``4ULr+As?OTq%lNO{U=s7Kvj?rR?R@#MWJDIozKD7m_2-UIkU z>zay;MKI7&cgK<^u!eil(`cFk-i`?mz-S2cOZL4)%PeLp8F+MaEguQR&LYEsmeFjg zJ|`z6uZA3LtF}2dod9%(lnh`?tfwJy%70Hb)w2U9cxeTrlK`<5tafpyT$~-YKv@+Z zmXH9-4@!FBgbej0pStpA4@vZl(HR~hEu*?N$%tS8)`Z@B*_iY$GN!n)aRy2V;%*|) zZrXun#ykA6L${O1_Q!bJY2gSkxaY_-5lBcXQzWlI;8#a6MHfaS5~k9*Awyiw$uI1W z*2KUule=reLVQ+)eCU2HD1}zu3zZyPsLt%?=Qv5qD0MP735?Hh(rRe%IaO_#5C)p~ z!Km!9x)NmoMN0n9f<%qGWSOp%k{M1>6^L0F1Ys!t-&@p8^aLW)*B=W-4Ny{vCd=7# zmIc{lI5FkR>cjkQhRTNcqU80c{A+-9~(qIlG?xw>P0# z2t}dooWF)0)L0=9f@>BFz=lA+y&Rh&+acDc8$#{I8uf)7rdVpK6`j=aug&Vn*P1#u z)F;2o-}EST0$?>qL-%k3N&|4r9VfsX3y=6uV1gvj@XKhxdV7H8ED$&Zjz-s21GhM% z!K8e)fR`&sDEd`FNd%Z@@?-G@>VJ+8VUW%(i--mhieTt`%Dmj@&!BwE9}m#zxG_tp z9it;$$3Rff%TX0w7o64j1Bko3pa$kol)uaik^Y;+s`#VR6}_)02*=xQAyR7nM}}ea z_Kc2h5cu2f{rOnjq|QWz^FP4A@n`cd(LCYB;&7!hr9!x>nlmV6J)E%}tub9(Fj1Q)y zb|5%{U&qKg6Znrm@YU%>E^yg~ugjZcs{f5q#757Gb~L*I>MEfHfi5Z83u0jqFIj`* zS1E6e==riDlFGJ}t&CRtz?i$N$%b-78X0CM!+pg+zL3rsq^qJ0sYT0J!VllC4N$L7 z$Z5f&qN0v2|7rq2h(@cxU@%23t$~{1vMmmT1`QUAwXL7qY#}m=a}_6VTS|llMD8zB8 zfE?S)=-$E~hC9edGC38&x#ix$YQT^$6O=H3H0e4y3OG{xFtskj9gd=WR^$=Ah2M?> z4Hv-GL2Z8%zmwXx4A3ZE%nUy(_T|g^ z2^3Xh@^1ab{cm!>p{;_7ikrf%7YG1_(}c92(8PiPCfB1O*+X6{a)M93+cY|P3JG^i zDwk7r6_g~iyKf3NhoceszHTaOKNiSOD{TIfAGTf!1&4&Z6jB*`c73@7RH<83lx8t* zq|=_M_hvuan~4IRp4Wq%4`cyW)8pT}@7KO&ijkX?SVeLG=~N1zs~vjNgreEVqEV#) z`Py5pj3a<>fX_-tf10{XFIgQdl%cgPij%bDPHmsE2}=NuL4JLvO{ce zFR6`k)wu{kMo(L8p=FAI&yWtglCyq#YV=kMKI;QegnrpPadmZlb$*J)-iVKn=QX6) z{|+R{dp957pk$N7<;Vu`Tj`9#(EVG$%%EVqnZ$#GgPIYM@cl|*qC&^_fefG& zYk}|G-3|@|RqOYR*6#z1hAD1DNrzsD{7YX1_&ycsX5R6C_`pJC@M6@p>z}(lUhSUI zNCvcEwL30w|HD+8;0txT8iBRbDVtsr_Rw%36OskcOU;ZrFF<2BfOudeUzrq4C>?OX zg32G+a|k6Vjla5j2CxPew6(GS3T2zBv?2llteBsjYxyi*-)R1|kuCjb6`UKi!L+x~ z#Mt(0&^t+;>j;p5A)sVDY>9;>B`#+tBvfq6vmYJ;p^U4ir%{!trwmXR@#>=Y-YSql ziCOT<%aQu-D`Qt}N>^E_F3NWR&;^QytK3s(;?a3+`ZF*TV5HH^C}!Fm&dac{uy86I zrd;rwY&+UK^@qZZht7{U)Dy=+T_at)=@X}DxL06(|BmV>2UVE+p literal 38015 zcma&Obx@XH)HMvEbP7m=Hx1I=NP~1E(%s#u(hY)iNC?s;UDDm%-Q5k};rD#={_)Jb zGcPj^xqzqp;m zG@O)eO`Kfy9gLx5^_}djY@Mvk4c@yLJ2;x#+ORUPGqBRVH*<2bbL3%UwEjOYV6b&C zWgPraHwHcg!A|nCBNP;x{>wk;KZ1GYP*AZ4QldgCZm9>0&R%JkkI&ED&U{o3Yw2CF z)#kMM(iRiHgil+$^qBNuOsvA0IRwg9H4~XRX6#%)EozT*Ox8BskM3Vf_{MFfV9`p+ zZ8*0q-boDea!;TC?XA<aUJ^nI z9*3`q5f=ULm1F_I;J=UsaYT%lH`GR8k-ognjv%c8#)}}KU+nW|yrrcj>d>_#u9qjc z;0g-H78YdO+_>-uYp&fd_Jwnbio*Z=p?2+l`Jj$B)C>%iEG%bVT5@%9NWokG?c%Jh zudi>h{r7epSy@?8F|o9|DBlzx?O-o{Lh#)GTm1?xh_Dcypcw`jUt254J0*cY>2Rf&T3iQIYPd*k61dp;qxW3Sz)n0D$m^A@|>NY zFA^ySLnOdjcSM&tFH*kcZ#!Xgb267k3>BZ=(VH&OwvnXl7@-84Vld)Zr^PlkwQgJO zG+#oEC=eQwo0}^jN9i98wvKtnoDJU#<}u&gdZ&8vcfFa){ORT8;kcGC{L8wCbQ}aE zM2{=VRaR9=&xiDRY5BnB%BE}u8VMs?zbsgw|LyrUCO0HWzM{sih%|xY3*6;W}b zM`Ty5mP6-nQ3;6#-duE%$gF~by(4tf@reolPJ_(yatsm@64!1FVPw0@%ge^6Im?6j z#{CNcQv5f|J$ejH1_=G}^di|Y!zRKP{^xbR(jeY&9V{#?Kv;;EPRAxD29KIKxspR* ze}ZTG15LnoP%$w@|NHmxC4k;L{?D$8|Le~#P#9Tpx{=bFTwa44zAMc z)m^>H#tH*^;_1KC?w2&oGrFh*iE9eNllO&E6#K=)IXl0vAes!AL*0Z~3`W|X6aO#FCtvDnom4)yT( zcz*^yVbpeGd;5H9-`2rvS)Z_2?Jq15MsK;6^CP< zC-DgU$-`-lVznZ*{iGI7cJ@nEK8XL0b3i}<-_uHlq9Z{Pk-+znUmuf;iV69=eza@| zggrKAWGLH~qx(r^T)tUyp4KMh_lR>{_P#FCJ-=CxGA!2^dI$*(-79nh7qlhgpom}ZTWsdNWzu&D5kY); zr^>)z?@bDClr$Wz9o8&wRSpZZ&(EiXh9W}Iy+a}fVkcR5kT{&r_~ z{&&;lRHVrI5A5#-J-d^cNxl#3By1cUES^_ZZEbBs5AMfJ*B&oBJ9_*Y7M8{0OoN5C z!meIRd+s`cu=_1`N3H$(LbM$G_3mXR9;D-+qPn_-rR9g_=4Llf&j#M1UyhSi(a-|a~eVIT|rbF zEL(d?4}0mJ3yDhb%pu$XB=9FAhqv!=oE??B($-R&LQ zFIh>>fkGPPkDZR2n-zR z$k^ETmKMSF?x=1fmO9>ebOR`!jQg64VE9oHkQ&_Yi)&`eZIBL~2dVK z$nvi7q`(IjnivUb#~qI7|~=|y*m182_KC`%eu(tnsrO3 zJot-E6Ly67RtpkjC<-k5#n)m24vgQY$146_^fc7T-V*W^hTW0S+QE&FQ(q2ljmQ%G zBgrUv2*nf?RDZ@!zA5tFcYNjdU8C8nuE7v2BJS-CsVLeXhEmd*@zQw?F~yTSKxNi`vnVA+HwQT2ZJKP7X>1pu@au{smN63(4i- z;9_-t!Kds>6cSx&lDs``D*5!B;(~7&5c|dIDCCgr=A7il#zs&CJv5b-F)1i0z_G69 z4aFrjG7}Fbj`r!LTN1co8JtpUj7U$L3&p23yL4i9-c#ZH-Qb2A1T*z*Qf$j@pP>vM~8<8I{zYeagztUL=x7HW(uVx0lFjiW*}s z<@KZLXKJ!RDgzEjP+Gh3=b{h1|8CsJrKF_nT?dffVPg7?PRsaco7Wt=J5#vbcw*w= z&35;S%2QKQuf)I+uZ`TNNI8nzB`v#A)@E^?wW>Wm+&`0Xa!xN|biRM7`uzVuc3XZt zz0RRaYU8kc_snxjQEF1URo0y9&dIpF-EwpLRY&nH9-h?R1e?oGlHZ+kQ~AZs#UbJK zTDij+A*H3Ip07f~&boYcyOYNMv6C_CtC+n4xjo0f%h9@zkL?Y8 zGO}VbPe#`|^MU72NlCo0=*3G8LEj$e?he}QPw4l7_yx~eiDyrbE{ulu_K*B-s>{ZX z5DEf61Y;qYdMl`!ND%*8vyhOG*WF@vf9MM5ufi*oUw8U58*~JN&Hpbaf!sE}>!fws zR7k_ZRz`pP-ntqUYVME-fFaTJ>iGWB2E-Cwv+y3-j|4!a9Ww4ao!q1dbxfVBZ%`e)9C> zO;1lh3y}*x9+{i#dwRS#H#7TZP|l>^_8P?Y0+BTG$8E>wcw!7@>Ys6OC!09BWuD`x zghU(z?-)%OQv26B!{7!T=ALrP%A!G<(yP)$Kt(m_i=zP;*XNou)TbS!`_Gjob-aPN z1|Zk_$=TR2$O~LhS1<60-*vBSugV%b6BRz43c$G@uYU_7A%Fk=-y$EaS@g zAGG}Z{G&)3|D8Oe$#7g1xpY1$ACq_E+2R>A!p&ReC-3Q*V)#>BMn*G{P9N%>Z;$ihy8Tm2h#g0@xxs&zeK) zD^xZfddk@Rs8|#^wL)yaED_Imm`8w<7=kbhC+E6*{n23pUcO99R<`rQMAX1ps?B^< z+%|d)R(qMgwqR@6InKLx;we)?$`aBwhn*-tZ(iT@eWHMLe3pWc!eRpyy~WrPE>e7J z6mPoj#0_1>V|75sC6iwsVyw<6;TSJ}vi2a8$n@=BEmJkN(Tb9G+T7lJGS{eP+ky0U zFEN8~aODqG)~w;#Lzk<=`R-OfICEP|Di+!w7Z(@AyyaK*`z7rrRTWRMst3F=0iT)2 zzGEx@LF0Vd;TRhq_uSxFyHJ>kI(|Z6IE-&oas4b9(~7Am8kuRA+#Nt!=kO)!OD}fE*Q3i7>M2 z%lp4MjG9K02+B=0XAgv>+vUPTk65tD;B$oj;vg$j_Yo5;iRg4aIXU?^J*^&!4(Z?q zFy$f%6m>%@<>C5n2?ssoSqZtZv9U))WY7Tnfs&Xt%#|khHxyP(vEF*x{O^jAJx|&T z5QX?R02p#7V`W80&%=9ZExTB~Jr$3Rj~UWwuv@JSdWjV>n7XXtoZr7Ok_iX9vhP3h z@Dcf4r8H5T?SG!-n9ko&`g;=Oaq5)Uh(grJu~_P>6{7X)z1m(&hW*JI#Z`2|OOjWR~RR1=nM-V~RB=p4-DxACdl60|xo@0HJHyR>d)e z-n~#5E#Ki{EuY&>9OtxB5a!iZvu$1M`!v0bZ3o6CeFu1STD8$-Wo2@@4IY;kPv;ZM zNn2?HJ<+wSV$x!c^t#vwCJ#R=Z!c|q7Rl=FezdQyjAV*{>(OV!$K$jie0q91ilp%8 zLINo*x(c*6Iv!4MV)@qah~nM0#I?rf{`Ebig=?@S-9Mk)hv7f<_VlcTc#;^n_h5Z* ztWVFZpfM#GM4(K+pGU&s$1O%bcUz8OiYV3`4c|>d9(*<5^Tfeh;m`mm3nY&_X<6XZI7WO~(VHLawg^7^BO2Ce|)X=5th>He}a;^)e5 zDvs)V;o=r^3yZa$A($N4?(E&IXEq8pVhQUH_t(d+B0LaLc|f=!;|mE1y%r5jy%g6P z)e2jLSzB8Jn{#@48lKFNPH!Ca$0FZQeHA0pBttKhBYrnfRLLvQ{`}_mKxIzFb)_s0 zpVzNR3q>|Wj=ZLM7gbgJKSQjJ^Bq9%H4f|j0=#4#aj&ys$MV-AY|EZ1T+5(F0ZC9*2qP7Np-Q`(c0 z{k&YfknTgH%9%|`Y)y;X$tdC)d~PelbV!l&!u+4_$3?VUw`JYnG$bPgPrF>acRTpgI zH5{V0ju6bnI0g7oOrymVTotguEjN>lv;5A8DO0vNIc2XaYXU4y=uL)Fxo>WrTgEnp zOW7SZBuU%IaEZ8KNn%YCN=Gf7{@~dA41rI&Z5{R*;C=Qk?MR!Ux2SRM5Tp`l)m+^#ypo&l1Ni&Y{t?P z5+5Jm0+BMjJ%$kp287`SnF_XC$|)7MhNH+IjiqZVceq$`$TvILd%A)|S?+!BLQ6}_ zlq3^QBA7lgF+se$xO)sT%FRwY+AQdOr?y%-lS) zy80bhS3A3tuSxr)9STkY*S2`cc<)tIjX~S%bvl|CXN;4{qm4^%LOGn)dO5AToGpU7 z_Mqk4j)H}ab-Eg9Eoun^e|GV^xhaY73pU0&X6@zG`~s1^!pYfLTYup_Hk)wpH)#)1 z*kH!yo9{JGXS9kgBuXNfCnE$j1*Pw^IZ~n#5cqDkgUU4Mjv~2@s%mN~-Oo*`i5D4sI+=u%`8i86-Vt_hJUan{N4Ek%A6cbR5EdxFsH_zy zGMQa2RtLGkjVLYC@yZ~AzQZmD9S;g*c{AtF_UW5t6?a#Z$i%QRl*%Mjn1H2Zh{Pg= z`IjRV`)|0Xx1i*U_dKAgr*W8^ZFoGqulXs3QyKHdrPS2kNkkH6R#c2F+5@PwDb0fCz1sh{dPLAYXy%P>bq6p}LvL7GhG-Sj7{CsPHYP6lDh|Olg&#e5T_Hc-I z0~X@Zu{T-h?%mlhI_sr@&jHPto%ExN_R6<8Ov3TZ{bV!<0Rh3@RR+@Wp0wW;E)j63 zEUc{MvsV5=L9wZ+U>!nMC_;TV96GTuK6_u$KSbod+K_46%n{ z&7n}b&qi9`>Z~B&r_sH3@~L}tom|uXLfw;<(&O!wRzL4l4R~hU3k%2?X!a7B4R7X` zpQch0FaYCWYim2FO282WsIbP0R|S2AiL0#NKS&Hg=p9}wXDQd|Z@hX{!2a+!ivudl z-ueUx+Y)u87-`0)I0<5R{|_a#S)7by{yWgIl(KE;2ZO6;fHy-;h+TY>T1}0YcP%e3XCYB#Kws)5>(VAjDCM31B3A;AG28{VcDP^JN|IbZJbC%k1s;cG} z6trzRU|?bS%T1U17<(+Js%r;~nr-x>32dgd4b~pWUFcA*nIM~P*yC6<^ntp|^*K4L z{pe%fG&3J*I!(Kh{fcnmWc@t_JOnn;=d$DuP}b)s?Pv|Wf#`n<`aoa(`La_z&SW#Y z0397;fFglj?{uxx&jsfTNaJ9Oz}9VpdvtPgLVx>K*vpGAivJGx_;FKEbbT1!5Z8x? z5#OpfmFH(?$e0$J5b;9XkF}$O_x`wgcd8JF=f`WuVgBpXTTj3$DJm-3$dCsX0O~wJ zUe`T=Iw*i!h-}pS@5a{8lcV#}=!Dq*Vc**@p+#N;mLyz3AFsUbJ|L!OfvGz5 zqF2Yu!>QbkLl2Mp`UxpE^&!ts*DWucJ%fgrIbJJI|7St|Aon*)S_%u@`3wDKY+0k` z<~7bMrdJS3%3Nhn5l_}owQ*YyK=gibKO61to%2cL@@7I17-gHRuDJave|s``J(AhF zY(d_J^|5k%=u67=`6QL@NebK%U|p6LPXln3fCQAp@5%9aLrnmwH@-T{nVhwsx_W2% zAzeUZKi1K~fd#rgE!)`Jd|ZQF8XawopCphxjXYBEhf;}GWzr-GY0bm!_m6_EGnb~I*N~LMz{1FimFs z-E$Y`cS178{gm_Mm;p2197*31{U7TxH$U%wb(&{BOt&4_QRjv?2n9se>J6d|68RR% zoyyFPuCDY;?h6n8mbzn|Cz~gN6c-}Ve6DcVHw{6;7aO8SPm{x^=jZ!{2@|#;O@qwS zc`#c!TWN|05UB>;J4*R<89lvU4eMzDEGhoQ=OL`NnNKS~f|L83Ttd`_SWzGz+ziN9 zT$LBrz4P?DoEZF9p~CGS{vnOtR`mN*C7V~gM>kX3Kw;f{5`0L1c<=(0L*)1_IRir^ z5LVb07ybqQ`1%!!q2YkVwVSJOWJDnlC2Di#Nh|BIZHTYr*9y)`_vr%N$=KUtlG)w+ zAtqV>b>P@h043{ zaD^U+-Wo@vynwA843Y8xD0BBrL9>K|!x=Zfgog)DM)MhhEj|V0om2UfB7n|=En+Aq+E9Pul!U>MyiBmFZyY1*R)h_pm|TE%25FY zbH|B?F23>@Yw^p__7gq07iX7-wD54`7hH`W0hpc0m6a9NL!kOR+xkeKryDSka91ib z1_A~wc0C1NMt);BO3-7dMFvQ}MY=8Ne!SPKWxSFyL_>|Y=eVpU;aCviV4;4Sn)69@ z-Exmb+P=cRQ8Tu1{Pe!DPU-s#C##oDvcEaef4ZDb_|r$zx-nwV{*B>Z?5y;b46injZq16VMMup;q-9NJu@kOuX7qs?jK_P$EWp$} zo*Gq(f)=Si91?r5+>-GE&Z7OPQ9-=6<>aSr*#YeG^kZE#GJ*mE$&_G4gmma-7SIMz zyt$EZZF#L-IG%Mq3J?dVY|SYb!N?fJ#l?J2+Y+~XzpsPy*&XwbxlHh4%@@-9&(ZjM z?=JT}FFZgN26(EmVRjWu&X&$Z>EdrqP4@V1?G@Z|_CR5T^K3)Dt>7Z7()3hMa*?*m z7b~sv$9*GpWnkVx5>sSK8F2dRoO)@Q%3<2FP$uso8W=oTs2*EM7F%dAK8zd-)o~|L z#{T@?w)sJqQYP_hX{l|L*04eO%I3DnXI1CCbAje53(GvQattgd4~M;r-EsTH?X{-q zr8U3CLp{eV+$w)^3HxbTLH)ChUj842yr@BbX}qo#KJ7ebVP~goo-B@cbO6syA9pDQ zps!h(3?>c|WIQL_s8DI9RV#n-R)yh7`G$Z=Sxd7x3;Lngz!$+$tSOO2^A`xud4)T@ z?Ml5vn*Al(4Ye0z(w-a19!=>$Hza$FoL3b_hnKF3Jz!oI#}rbD1VDdPags) zuxDU^k9D1gogF)^&wjz(*}wdKgYh7ukd~Y%tX;|bJ9wFhj%J{+UX%@Rl6B%JtT~kwYrqP{sp40kw ze#y6A!3rjWX@lW-tW3DbN0C$vN`Rd5tvyC7y6HbB)Xj*nuv>GgWwPW?V$~-WY`EWk zbO`>kq#Xp6JsQ09D=)veYThMbFKf`av%NiAqI7?Ky&VSaG3EvISX*-1|7}JV%cC$q zlJxQFbO3_gboMl_E<-|C>6BN1X<|Ouj$h;ZxB}cEm;@C)Jv}?)5nugxP}teo`A)aH zskswn|1v~VquCamow=FM3%Lx;4wd@er!bHp2Yv@y!PUX62xy#jbaZ4=xnlk^0M+Y( zG18?oS{Vzyp*+>0L{l(=3#97{$5gGx|2x2n=D( z>NeFtWLxk$AJlSPbOtRnz~=Dq@H;py=pYNnss4P+Q+@CLeyLgK4=mN2H*b`Jk%iO> ze}c>4S(>1eYoW_9O)=OtzvI4jS`g3EtkDv7ZMd|(m166n`;k+l#fSgd z{ajFmJuaKw!cHUYrg?Q3JFIl$Zol+6p$TqVIB%TUe2kn@79SVR3tX=#olaxoM*jUv!2L=4Ce=WB#iHH_0r>{>=-m|b&Os78!n^kGDg~H~w&ssMW z6x60N{MEFsIW({<$j@Ir9~LyduOHO-GB@gpo5W|z1Naa!Qqs1?QwB*zMU12dG?ov1 zFWwCFgUw;H42|lNr5^TaEx)|H?a%4PcC&SkRE$rKZvqwQ*GrkdRU_@oiz=Vv+TK2 zy{gYJU*H(vOPV*6MCGG}jo|T^4PFmFZMvh92*?0iBdp&yX2ULYeEhv5Gn-6mMCo^o zne`s;fB!ZZ|NetTbe`m5G3!>E-mQ z{~eSd7?cVIkoUE>l+8okhKsx08&=cvvC`M<-qTwj*($ z`<%%bT19MMzn^0akAc{Gc^Du)-%fvc*e#cU)fz1sHTwviP>@AUD;I=Wtme7p%%#nM z6~UqxL^`An{0g6MKO?6QPFj0joJgV?nL2FrU;uaDRQGNmF^y;-Zkk;8&FMOxpig5% z_61TbmHbv@icg#G@*P@(uV)mc94+l6nPUE{fJ1Zf1>3Z9%)~`En zF*EQ3+K=8d-ebu>Z%P5WuXeAXkb(L<#kRS(i+>+afGl%dZOHlOrPWMxWOR*4-Ddn3 zhMl^_{OaoXA3xp#z7w!GxDj0fO+Kos*g@5Y#-DbASwW3O*5p?vl_)yo+RX@z5e9uYN#C{0JgOq8oV5M^CdRp2S66)bu!uSLer&d$GG2R#C|-M- z!-19=rUc!-PD_P-GA2!XfFhkn)Z_KosDAd18$-}plrrAdnneE*A&az|pPwId3SWNV zpZ4**{ZE-)$&}$dws}+4ap+Ga zExPif5a)D9wzsqeU6S~Arq(&$8}+;gZBXVtgNOcuA*}7NC}%wP}1_P=s=lJ!#gqh z<|CcZySd~!YHn4zKc-wY&o_|}R@1J<4c*Vd#2~PibOioZISDow70}8Ro`2_v0$!K) zwOt8!ALE+C%{SOL9=B+TKZ#PNZODhv7k1&lmPWvbh$-8e0w1sU53#&)`&)K(g+HaH zrmgx#s01&JnjZxfm&J$GioyhxTG^IQ($eMZHJFDuq2i;_=(wE~ai6^ytuYcJ5?eQR zR1OA-fFxHB4ggSX*H)kJF*)h#FbYuO4okD>mxsnKHu=s*vdO8a8hF>DA^c#ezt^#D zpY_2p8p>AzMw7Q{GHz1eE|I}3md)4KcPnRjGrQ_|9p_-)d?&BGI%I4eTg!9zlHbKm z-&RTWXMF*_L1TReRkk9V1{T`h{{B7PIG}FKEG^gDfz!opiieMRBosyD7nSXK4&yR^+|eQWDlp*3 z=hXJ1+LFS}NVN@v5O~6|bBGM(_}A2XRt;(kL1LMwyVp})U0u+Xul}W}sBRY5EE#MP zkm#F_W3FR{4(e0o{l=25t}RduS>wQjWl%9Amxd8m)GB0-pA*{X>5PE$Z3B$sSYft zxT61cojva>Y?lSny;qoX-N>0}*`5a0e*c1#${#yQ4_*{``Rl z<>QZH_J1bQBA@KcOkfdmi@pmd&Gr9{zE2W4slTmZOpG_^K2U$8bkw*%1YPq@!#BHt z_PF_;;luJHmbx{8Kq%ax1zc!L$gMj4Ru_S7Tu4%u1iVF)K@S`DEq<+C_d7VcGPvoDW zg7)HIMnzk&fs^l8&g`8*88r>fDk!g@D*^JYq>Rh~r${cnR35Nf+
    t*?2ru@~m7NrJutt*wi;&&wI?oSf&w z3D3P(P4i~u9MF1WNqB&Ub6viy^kFuYHK9TwMS4fyL2RU_eB^T=*PYazQe0frH!CLk zi4L&;4u-;zJI0{)R^S5q3}z5`U5|2#iw75DL`fXE2#ehG-$e00!{brhLnh>ktAD5q zKHywGKGke&Y}E3uxdZK=?|z}OXzqzZDBCN^q0=o_hx^-(l>WisTqjx7V^UYwQNr*w z#V!V(=vz$8y2okP(>~p&-hHZR^n%mYBL}75)(|Tvy6cCdB>}-vmEdoB&rgqyPo>Wa zG1}o%C2JFZZbV@#9_|W1H@exk?6$pYvb@}zELyA%^*1kn9eA7JzQ8;s)YV1Sc#?n( z)b~&%0p!Y3Vec)^7R4$L&Czt!;$8&XNj(k7Q^;d4}d>*a7X_i z??7zve2pYz4b|A#7|fXHGvP|g$q_p>y#_`~E%(izN0AWGmb?O5lBQ>f06T3$M5<5j z_WHixbfePBCQ|r-CL$tiE@c${1`M~G?|=?PyE;-Xn)qvKfpxp;P~*WBr;J*GCzgvCW;l9Ttk;<8FXau49OxkGsN z-WNO=T8tW<{@T?3EmymHLs9v*bJ&OZSKtY@*lLjA10*vu)2sZL3u_tL)GC#T4o*2TZR zm(E7ju`;g4lPrD@3hH(h45`&yZg}$Kb2uO;Azc2bDan$l1I^~d=J zG@*lqhu2F&>>hl*8kmB~w(HFws`dP{b4!d7m5tQJqG%kzt}2Sqd{Cg$O8X<5Nj zn%>#j8JKO~zI!*tSic$;7Iu4&oTnz|6wnP3pREtIVCGh3p1)3tFSm zjrrd7V0Aq^B@v6`huJdI9FbaNoT+1*&d}L>vxKB%aD!ne#AJLbLW8t%7z^_J;r&2{ zm9~KA)j^DKPSoqyuhG%bSB`K^C#I**H!_H`*WD<>f+DCUc+s(cKGd^R`!uI*&(FE7 zvVKmfEo!J6B$ZOfN@|f@{c}p82Na>z`)!-w)<{WsXw=0Y2#T9aDNB0ZzR|Q zXeD>$2dUHxS()X~!@)lrK}+2MC%R^Q zvT{!3$>p?zj!7wF=Q#GQ7)$|9FS|wX!(ETqSc~LMVqjwQv#V?O4Y}jpw_~r_V*(RM2FR6zZI+gbq8K-Wq)qzg;GAsq= zPsSGbZagA2Q<6_PJkqNcl})p%ROJwwaWlNm5N;>AWi*)LPihrpOvswQz3a+}Y9rI? zCOB?pAeg(XfJ}lx0bf?jDLR*fxz-`sd3ZTwaw83NxrW#usVtiPJU6YXg20p2wa9!= zlrq=_N8!+o8evyP~E9*$xfb_P*}$!PAaA;O4qU2Wrbk1mxJ= z{#I3$yLVHz#R`uSG#uq&2=c_k=o0H6FEtIM?LQGo!hHblcssJ#-i~9RdtQN?_vy|l zQx3G8BoX2wDrQ*yN3~k@{tc@RbvOHAzWT?eDUz3=`ff(Fh|${01IfO=qMz+)TAH4l zeaaQbJCmJz37^XO{VH-T+PrztMvddQS1vfC)6+0aSK@-2H!96 z?(R-Nj^ppklwL~GpovZWE@esG7CvZjMt7aSyl3yH;L4X^@l>-l7MgMUPZkppaCnUo zuO~2H8x|4E38u3Spam~@fMw%~ey(5rLrshprnr|L7U-HVRo`Ik<7@crU*~imkbG<1D!;I8pjbvV=Vs`!I5kzdrJ;SpPr z#+=NiLxippgd>1RN)&L1)wOw!3%+6cTR+tAj3kGJv4Y(LB&>xvJG1}BGJj2|O`+@k zb@C`$wAp+NXP;0}VQwQ1@6?A3;rFdxb2{2}>-by-Ewh*m;Brzla{&-qSW+Jfs02kY z^B|rLAtx7gnLmW6)3tnu!MmSnIYLJ;G(1JS%+4PC)Ot#)89IM^ie{6bUE`VbKn`35 zSYa)UDAhxSxGvblnYoRjVoQdSEP)t@1YL#cwWfeRB_$;V z&_0$l2M&dRBOH#zE!dtJlX~IH&=A^{z1yWd-#p!dd;jA9AQ`S5Dc}}a`_9J3RtC&q za)i97AJ2kUbMo@mx2K(pny6$`n9~+@tuwRg;uVge4&>k@!YU=Ff((S^xj78l#shY6ukcCk zWklAU*W-ekQQ($P_Km8)fso?LKb$YO4^2^Z_e;7gE(bF@4Oc)E!sWLl)h(VM6n!TD z-t+(pV|Nj(;)u#O3c9b+Bes#2CzmH(2NTMgns;f#O}@`QYTmcld8kA%37<~Nn6|X5 zqu(IC>)BWpl2gP2=+-zro}kAz9(}D5aL5&Fr>0CeU+VbGp~V+>9UcDDR9(*3Vuw#} zLi0Qi4=6#e1pLs+)8BOrr|;<5HcXW!)MRs7+jeSK$`|rFN+otyCVgx!^W>s0dnAG?X z76b}5Ej>VLe22Qg^n7cuDH)6xo{#hT_MJc95nKyiGgT%qigFGFDQ1i7kGKkaWNOHT zkH`qIU++r0yal<^{eE*A_XyeKwr7?ct{X`4y^S5cbnsG!(+MdrwxH5xN=P6r$Q@j8 zK$~oAiC6em(C^0ZFOuf?qEMF_KFg`0Q$s=%}-Na)j#IeKB=g7^3FufCJe0?6qeve$IkNb@VpG=f;j>xKy%AZgFoo0x6osSiuR3?0!_VCKpc2y&&(XNZ=|cd16&)XIKTzb4Ik zi|Mz*d>cg+eV~Eupa#a`!|B0+Rl3g+%~}81h)0^h+`{eePhKjdElt}s9i5%t+rWt{ zX>u4(R;z-8|JyMSG_qLLs?44f6FR-m*1#6i3n1?i z()Bx&Iu8k7RdrU;4p;qGuQjiaho>j2@6*HiQ}f@yY#fa>KY;Q9juLMbx0YPRmrqH8 z_j~D~H2yav-YgOuw!ZfS%*@P*GL*nqF#wEp_iGixT5*7mG_+EZLJd6{d$&jQF|j|0 zo`9ncG8-@p)GD#bH#vjE-e5T6d--bX!aN_N|y!FPE_ zXaWq-O9IvLgvvymi;so|hK8Q!zc0Yrb;Yo8|5UwgpfTs-e+{Rwywrh1Riht@Qv2(b z1pMiuN0Y=x)AiDNy64gA?*ttKAU+mplz$IE!g1J}paFy1p7&?MT4e=ipI%)onF^df zw+Qn+(lF2*udCqLEPrcq3rHTttACm!2!|aIqP!wn=>9<=-F#jLhP`A}RImu9N~s*5 z^`R*9=vRKYpTlklAoHX}>ONm_K6IYEvb-V`*WD8?H8Y=@g~!9|EcLx~1f#~y_aR_h zt#}$KW;@+8a^9vPg5+^W0;&bLnrv!h7{f6G-z!T=cK8w_0S^V9t>U+$<`BBw2JgUjLGpfr;GD5ZQ-+m!rN`s}9% z-ztrHYA2QR$61(d!qARdQ5H_)Uj-HkI>dlCE3kr?3;#$NyF>%@hS!Z{13yE(SJR}$Z!ps}P6D~p1fiMXeT6q)ZJoU+vbi`=MOfI= zx$6MzBDc=Jy^^bbo|GfNm}JrZTc~q9?MQhr4A7o)h}u{$u0;MbP3DhFcsE&))J@`> z8bsn#J6tjiY@Z<5@(T-J=D$NQsotWapDZp@!xjT=`79wpC#OFDZIf8o;J6STHWrDt zl$IVjY!h*DR0syrSnc{y#tJ|PM?Kqg+}uedKF20c=T{#NJ`BF+;z0-QMTP<)TXy?- zv}3Nk%?2q7&1W@)os z&FpZB;W`gHQ}a@Ca+H*mTSc)N_m#lZ`8_cacdAHxaMdu6DrtzAKO+F?-PN9uvvBax zfeUYFR?n^2g#*NZ2^Uxo`3N|y^nkPe-)Qc?L+`y6-&S4%}s`_AxqNG2DV7|9($p=(*(2eoWGn{U|v*G2vT=U-4Pb3 z%`i6Rd(TQ(0U#v+PoZ6%7L<|`(x?RRVFSQfq*Iw}NW}_`o5u40arW0iRlaW+FKQzV z(j^K=BO*wLG$J8V(jeX4urTNjkq$v5C8fKiL8QAwx|@Bk?{Dv!y=V40bLRZPFe3}r z@_nE8dG5Hb&+RLY&T0ta3@f=6!CLLWDG*XlIt>M;{I1SUIFwL^hK3-{dk)Q1SaO1o zgdDNOa&n4|XP$o2zg2z7b$qZZ#+Hi=+L5-Y$9jGCyh#vXe1QHF2*vcvBA_0s&R%vh^c&(EUfz9lOEfak`owc5)DMtYFT!(=3x~ zW_UP}66w^zfjHVv!Th~1bC0Te@Z+w=*K)I8Xjp#f*m#G@;KSOVpV6kN=ODs(s)rS9t|>Es5rfb5E~pyG6|frN5T(QmcR*6b2*@K2df-M;39zm zMd4M%qS5mHjPsQ!h=bRj?25{yV8~5*9#2hSwN{8i4;GAy@}kFF&Lz{{U30tzm-tWH zKy`7tlVbh67pG?w_m#HP z<>N(MJSgH}!q9gN6Fj6pG$Tk~rkh(^2v~oc&7A-K@F;rJf)n9&y`8~@Wy4Kgv)9RF zar&Mj-i=I~6i?QSkMeF^*B)8HTqje(7cV+nIZmr_DZd}ldL3FZzU?7_daBb1PRnr` zpWkmlx%+9lOYD_C0oaE^4`Vo$(~qAYs)vO@#bt5v&D*!1B+}=aou}zK_4GU@{n>TW z>CxD(=46UWOYApQ@~h6w$`2o5K0#k*(Uos|DsA5t;D2pIBs-L0XL07pr)P2ZOc z?vLLGk}wH(H-vwh!u=2|;oQL@^J^?Hp>}`)x^5xvUcK{-t6zw(>MA&Tp4qw3xIg?S=b`s2~kw^pT=OIxAIKE5Bmbd!!UkqTQmtv>i?Qi~o1t z8f~7a{(|5?m$9n?ST8i3EuV06?#STo)!%Bq>`>U_v6*cMXBCT&kADZs{5IEiw&#lp zhCRF?Ujr1VO}nj@gTe%nUF_mLVGp{f0q@$w4LbgbpH3LQ(>i$rl$aee$=fq0xA)|h zb{cmvzn`={*jSSEbZ3uyQE8&@c{;FJe&ph8E-Q;E&woL`+0GP4$rGQIg%e1|c&d7J zu0*6{BjOeOMIrlQTe&pw9%j5SJL|W4MSLIRdH5YXF;rBY2G|I~!DUiI0yT9vXiC4$LM6x&lZ!F@pNIBnxA>MpENTYa=Bc&_B`L*jzt z1#gv>s&TGbH-1<;be|KXMKqbH0J)O4Zm zO-8_V@Aw0!h}Xh`iC1RhFAdM}dw+8)DjgBqHwtl?yZEfEKKDm_}zGVA-+ zuD(C-2ECu`Bz&V)R_@^a@;cRdCp8w`z6dNO1Fi}5R(S@o)+3n2=>NLd&SIC8v~A@s zE-p?kJ+XHV_T}vjHc>g22kY(4szv@3&P|^Gn{gV;R#R5icG5qs-2QrG`_=N{cx!Wj+U}z73LqmpIWZjnttILE~GxD zIehXoPn$HJSN*pcL#we1vC!#Q(sL%S`xEtELaY~-cb6OuS3Nkgu%eHJMj|6)J3Wu5 zorSeZVl?eg&#^c3C%&@0ORGT*#b~iARg6~*t!w_AGKnBVAP}`XX7|3HoVYw_3o%&v zDkD;J!FJW>=MQcPlF~7m%PT4mPtPf$w;1$Ld#l;mKu3C`p-(@1Fo2FnC%19ry#gBO zqV3<>k+khe3?esv@v^)!MJ3PTYl&g1{~{vh!Sz!m$V&<*I&)p>+x{QssNRMb`pXJ` zwPo$|0zRL;<-e@0u(&#oh4zuK@a>gY*MSl^r(Dfi6&+&Z;|d)(?k%j5>DhatOO{bA zc4Vf^2DB&hZ&R;_NKn_;9t*xz34K3QrTm2=OC){ZxoL~T*QaW{von9)0@LUxuLk*C z^5*+$-0cLKJ$>i?&B-d;vy5#niOI;!gUZR-S%$5FI79+Gwl z{RcYcbGzTjd2C~sm!SZ&HFW(NEkf|Q@!XS|s8iOqQm(m`0oSG0fc0Bcc@~hSvq2+7`J(Gcd zhal=c9Xt1ey3%g{f|t=yj`GI4dY{l?(i%UtcXc}wge>YDv#JUKSKus71-bKO?ceoZ z6`J`s>r;i1AIW-}|7c^hHIuK5y^S^W-L*{~7GFD~U5BDs#e5mree7*s*Bueqe!!>w z2Hyud**vceK8#m7qX-Y&ObQGya6NbXIMy0LE&0^!{ZF~fDDCoXIJ=s9xMsSsy-q~) zRG1{v6%d(XDgL3M5~Ym4I7{c&1`mHnbte*7p#dJ_6fYrL zHY(TSNcJ2RPggc*m7x4%!U3se1%Mw!K)Lx+Q;fg;IFZV-*W?%PW?b3$9A-#dqi zw3|A_uOI*MtEsK6+&r2%ojx1^g@mtm0n+>=P)rgDqN)_u%cvg8JSuIxmYP%rP_brr zi(ENwh)YXLSFHU=_)bjn2$bnOdfeyx&W_bfHBg0{-k@R3F;BpGZ`1$p@M6!ne!hr~ zQm>B)1vPlLc~$RwS24+=S!XSh=Ui6C5*yWQY*_tpoHnJ-M}ftVx`+-04e zT_&bxus=V*!S}D5ZX9OO0F&LzA96{Zdp@drYwKYQeYub5pWmqN5mpw)6jT>NI34#H z#{I+*McRP5rX29#D+***Kqk2tQ2gnAQ}@lqrKPvw(SE}@?}tg&YS5U&e zR3v=Z?}k@boV_^!gZw(tppJG!E)#TN=RfX$wh`|kYZNL=dERIj~3Ron#pi_51z87+}l=RB^)`l}` zEUd9(C`CUvr}&rf92FDw$shdR*^1BksllFj9sVs&c>X{-k!F0)?A?eHhJG#~0YQS? z6J~yI!|W2ZxN1CQ(d;1_P13aPEJ z7_Ipj7-)ClaT&{_kF>rvAw%a~HzcbNs59UJfe6kZ`?4HFe>kvBWzPED&2u|f41L%~ zJxMNAUHh3zlI0_H`bn!b;srftJ;3b9DJUrT_b1scrm9J53kXwQS~HqUk6riG=FL=u z&RlQZgjjBhqNE+!ekt&(@6NxhHZe07Q^3Edy@=y-zbSMvhs_ozvlTkJ4MLG*j{g74 zRiGeO$u9}&{*6&KPRmIt1-YBFB`8rp?TjAO3D4A^ zl$JY%7YRmBYlKldl05I1pn2A#7%HFnaWU)jCJsSxhl z)>8=1V0dl;abPj|D`Nf+RZXo&te_(=gg7p)u7|&0AeA7LVJIZx3dAqW@Y5wi?40p! zLp7hqOw7cBY8QGSc~cd>soo!u_7}g*fC}4z4WXJaNJo&}wJ*gh7GuRe&1!zc)i(G> z+k+@HX1_?&{3PcLcMbk+^)T}m`xoiASFu1TeKEtUuBG!(XMV460dG+jp@veeGv1N& zLT9((((4fo&0=**779>MyvaDYxJs<1c!#akC1tfR>jdk%6WCLr9t$1Ae_Jjh2mX-H znUR@G$p!r@6QFtSUnAfHPgj!Sz5 z;6(8#JHmTUEAfDr`J{V+;wOcH#czYwASRcMi1xFC88xUcpS|<+6!1bE$dh;Qct80= zmf~W)PL|_xy6IJDIAL_P9fpldPJWTpM=j>%>_(@H34R$+OLzI8&A1Jko0#Zco*i0f zl?V8ayIp*~9apRS6d5^yG_m%}MH8%(Ia9Wj(y3L$)Vgo^Blci-DKzXNJbE}9G-X8% z`=zJK$XYrIr);>+c&=0twiV)?!&NT8bF5gfYq+^nB}`DDAe zcNBix++PP2NOD=qv%{wiyXYFJ))p+T3;aRU9^56k^Q$+C}s|h9LjN0tasSVSY z;kG~^OLkedl{OFB#o8Ck9gM8J!pY@Cv_=ONq%*CjS4Wa8^i*^EujHMGv8{zeED*qMw`&%J7l(5@-N_9v+lD(gMkO6 zXd3i=1*^Zly%%+)7MGNcdtuqDwnB5UGE?v-MWMwpz&?&7rY)=AWtm21ar|WL%cfv! zf_2S+D(g~WcifAZP<1|8#~!V5Mzq{#yaH14^4q2V%FD|3y7%Q3H|dT46x)86BkTD6 zszXMN_on@q;!mI@n&w#)fCs_wU}zWwi6@5>68j9}tLL)x8f44D=5U z-WXy=!6MfkS})-C*m!oM8Bem%=1Sy;e9Ck|`y2|XU-QQvqvqyjeW|PJr&?8C_V(;l ztWF}E^q;uAlX<6M*`M=Rz>>3k+ReOt1|<8Pb4e(%xSS81)W z)DkQBVcXM9r-a)fX~G2~$7Z2@Lf462^}ElVqN4k~b>TEmH(^Cdo@hVbvzmo1i9C|4 zCs|2Tvs;x(wHQgDQsF~9zS&)SaNuoFa=Nj9{~j5@!sHQqcu*qk0jG3!UQP?h!Y$W1 zz$)N8TpI#%$s*1&+ywFgOZPl4Za#Fmx0;%h)@Zok@q%Exoo^dM|MIJ&K{Bt8!~o6) zWz*(NeKOM4tm;(&rOkxlSw7xL8xHwVM$YUK2y_ z)1}M48U5~9HgHb-77~toO9Kjc2rj*D5E-OpU`7wS3YJ z9ckhN{{ems!2-ct>#yuVXb0tJI3c2uD-J+C&p}gta*!LwAXrCPs}__#<>NQsp&XPy zH*Q|AIrMLZU{Me2;N<{4l-;6IQY1a~1)dK1Xy;0nn*QcTd{<@1F!IBu{Bfc5SXE4( zPZ7w34HkOeRq-`OEEYkP-Da}E%TFiAYFm(%^~lkVv|4cbgM2C7tB=iZ@bAW~&x;uf zwp(UQ+O+=Mvpx}mXioY7#g=^9DcH6|aezz?dpGB4be?FX3%7t;q3+GVwD8DC5ozhb z1iTbv@5NIleZXeFhYKjL zPBwAm&D&H7v}ZD5b$~Sb$$6aShd+PbVsK)9Os<>$cuLWs&FK z=XMto@-{9+1*N>AA-bTO4#KW0>GH?Pi4N$+=V%882CT-0-I`7U@+Rth)8pD3M4!-u zj}8Hr?w_K5iYv1VVM5DvLZ`1%R?eX=i`1VkLwKE)BP}9wYcNxOdq^)gId$Y;(LxK< z>W3VXCi<<)(@fmGMD|_|_V+h5dm&;MS|$C-apfFbsD`n~eCPsA8O^94Jqh*pz5}^E zvMmVhp{>wKR=_jvPAc}50L$vgc%$8@B!ZtI4!{`)6P5=VIJg2$b2e{4!zq{93~VkH z%>(_xAF|DR@?LTed4%V?^^6~umyR)X<+V+0h`u-DPjI%Fhh52`>wD+qq-L_)(W^aa z`~EYNH#g4JiMA2MJ=TcR1jK3fmO0QXmso_bi_HRwamgo;T$WIkr3YNpaiG-Vda{uM zO0$mLCYe8kp>2zlT0*7Y?-oBn3W=t6p$BWk9z?{lth+X{rhsqi-kNPooLl8H_J>+TZrccq_cMCtV}6$|+&$Y+w<(NR*;mbWzC6&nPA z^2iFBM|d&#?S+4B*3C&@3e?uxyJ*sb6!Ooc-GRDj3ifBn0AW|}VC^$(`ol&XJhS1a z`;3H`k11Lph0*}ol@`oCem{A(K&f9oHdc(_<70fj`zDyx`C%uj9GT8XHgsRL&@_40tr^MP4}R~gN4tG_ zE{n`i0F_Io7`TOm(Y#F2g=UDpk%RX8tSY5I`LA}b#+wBBP)E&5i$Tq$QlQb(CQG)u zW7fzu5~bJd>&WN}RTjZH?TxAWOyH8!Mg{0xtj8>B)dhQ=AAzAn&c@~$tiOM%#_0z{ zz!i=SrUhp}m8CO)LU|J}x5D`b*a4hVAK`SygxUzEj;?2QJJ!SQfuP;N0z=#6iy2M=bf?7g2t21>F z-5)n(lv;hX*>HrI1179%lfHk?=c_;RMXu`2211E$=@zd3Ta4sF(=ug7AGEj5QLg(<8D*|2F$|44dRVVvf^!Ar z=c{0|^G8pkM|+rTq)uABEq&L-K1p!(^?^Ld_RRAueW6-u3;8Gz0KhV&_cu$yq*N;= z>F6Fvnb#e23&mVho{D^kjcEQY_*GO{h2^F#;reT`?EHLM8X9lt7{=}zftuDcQvM)m zXUFDh8ykD~PuKPA>U4VIucfq9oDHHTmXXT}9qiVCAYkxT=qj#s>rM#?8GN#*xo5c| zfZLg1W^!Z$y?7U{47`<2@CB=e(Oz?cmQra*1@|kV%QCQGt=nWNn;SR%=<|QJWY~r$ z#L3S!zQu6DEBCl=uXX#BZIc2WyN6x}sKq5E3`|TA-G;}m41pqV-@Z-3#6&xW%s{gcAOnc~_L<%C6`jTOD88LSQ=9pwrF6Q( zKMa$H`_*6qhkC;q8vsbxf3sQe)`UXP0A&O0C=}3^-Vwhu>%hx4#_zhjR{vWrUIgPU z+^V3+*x29ftb+0q5^ZtR1&aS!FQYIMTAYEsn3-P|nkee}dGaNw zogAJ0O8{)s^uDNnbQE-0Vbu#jf*#emK2sG`yMFxeCM{YC+M111>ha(H@&1psy^Zs) zzZT7(5?GBHX*(E|s-MmWvA(NCyclwfHo<3U#*-+t=y(o?{rZ;6N?vVk(uyj7`*5vB z!$#Ah<@eg6+dqdIE)MQaLW|4}>kT&d|5(ld9U3Ic2So^egBKNVXKX)g7HV}08PMN$Iyjc>oM`m5q z=nMWhHtL(#;nqi)*^JqGOUtbHQBmi70hX)Z^bHCA_trpmEq{cR_s_l68r?jynh>8+E7xOrDC~>$!_O<~o0t^npC4^nNjV{amoKjM zngZ8W513T#J_=KB#KE>pNk=yR9XKbXz;^GTOWB!j-+nuy9yFXfTUd49gFXCT!Ifaw z*N%Y9%U7VFaBGzkb<{8Cs#uRCz3{w1MO{N2YY%Wix2iRx^`!O8X(E5fbl`k7D=%+j zLYJsv$?j&VNtG96zsZYK#J*#iwNx13>QoA}d+Mi8=;GfH;l%{&{fXqDeM)g#Snld{ zTnNT5BmqA7nhj`b5-nk~f3L{NIVCg8md^-t?Ebxb=KPpeaYTPkd`1EPZi!!9Xj!P$ zgtBt0sUw#EbtcsFJ-P`Q(W+VF8POPb_m5&S<~?Q5fWiw9Gr^04+ugVl587M4u_tbA z43ZttgaozY=d3i#3x-==A;i)Lc1o%da^54)j`I1XR3xxk$1)7IxO)de=;Any?x||K zW>o8Axq^s-&lBs#-9zq;(5IV@(U_|n5^%E3`Z}!8!Inl6HORpKR>WM>+MzwybL+uVWzSz8ueAq;0phwCtRur08yr zms(5~e;n>qNfVuq^P0Hzv~n@><}QOfJ@nOXCX`vy=r7><%1bv*^r3^hN=;LI`XiN5 zNQx+gz~Hux(y*?K?#w~M%IEvQ@G>m3HR`LciiIQApZ1=w1ngFi0F;6cvMd{JirDU{ znF^VQ66A6y;A3`XML&jJd=7%NMHHcvn@?kM`>-bQR-Q652cvAA-}XA42ud7vK#S=O z=$dO%-0o>wi`g4YndH&syjAj!ng3w68R-#bnJ9ass48mLO}~6$gM|zUb)SJtB^>r| zVtnY*?Qpoh)liVMF?bVmG#<#?Ex``knUxe>uTL8NTkivXfIWkS1P$r&1(OeGbfEHb zv-00hKR*;C-s|e(bSsn!w3-+XplYITAx&D1W!)?^y4_8Vd&93s_$mS}MciuxgYRUD zXl#Y1rRt!5kb3>v-Wi|GALOm~?usi^97>kIy^z9nSEZm~X1imp!y5k&N*Vbyw9k?g ztj{8lSak0buit9yz#?X1S}5rg)bHx;ad*kpX&dCJ*+*Gw`0`9o9L?QQ+?hEG&I0N z;ojTu?gZFq{T7^LeS*gr@--*KaZ4m7&02rga$J@!z3gUg*FO;wnwi4&StSCg$l

  • True Class \ predicted Class

    A)u*?&sx7(P-BV+gphR=Vt+pL8v%iEIQwH+A*zKvAhBv#l0ahU_FriISkci5_{-*pa8aF-!Y4} zk&*K9r$As^fio{Kt#OUNi;h1guq!)lutRFM6_l<>EeF7vp;NT@eeI@2$9zVtg^}D= z-_~FDKkp`5I<$DcXUOS7FThG>w8U+bYsRR=w&%sjGqCJvgOzByDi|j%1swx}hJiB< zk4Lgf03|EuJE?qaOk$u1E*d(z>tTI?-Rh|DIIsGEnWLC5#zH((zFy;}yZ?=hnCB0s z;QLx_bxv}9w%xUHwed(I2+MCMpe;xL&u@l{b)tGwrR&UE6@UJVo#q=CP!-tx`PyIm zFMv;wIB8SU#=gEV5Z+UrOhj>xG`<8C~aIL@?p)P$v}9++-4cBimyw=i_xc{@kI!A+y%OLHjqdd$&(E zO8V%n=ym@XnywyX&itum=9Q2o5r!>(+v9{2Kvog5k5N(~wal;ClXh-jb-c{MIX&x{ z2Qh@Kl?*$_Pqh-?5!D)*=Z~3#68y$=)3Vc}1$-o3*E)!R*@0wR16)x}NkwIEUP!xP zYpVC}UA#9Onbuoo@txV9c`g>B>+v85(A3mSSq3>4Q$bB6$d8aoH6tU_4$xG98xN+K zDf3ogZS99T`4^EC?q&MUqr1nLx^qv^D>sU}b`B0UqRo$hJ;uqoJu2q%b~TP_(W^By z*k~rkZ>-vx74kQGQIW@W6RxrwdG9Uvi|WSBk&7DGq_o7 zs&J&_UZ;)?GyuV7>MJW1)u(OGZTE{kqWVQ-GYmupwJP4^Ja*nF56=X2EUxhte|=3= zLJ#pZyE+}7aa}BuG_kbYjQ)3&vAk@QcZ5}QSyOE}LUw3^iS|F=lmEVrwg6TA)nP&9 z>2gB-q50G0sNw&ISnqA{!ME;inRPTKwPzM8F)*h>Du}o@2ag1_BL}B+X0}$LDg2?v z;V7h*BYlu~&5~KojdrAiJFOftO)vMg0uIylI1jb)I39+_&7VwPnHkRbPI(-S8Bf|Y zV_M0%*+M&Y_nBM2=8VkCES(sq>Y>oCADx}z0|iN{k00RU{{{Xebk5^&)+C_Uf+YBa zOgXEa6ARdmlYgF%TGY)LGEvYn7HWU1tc-8CV@>I>Gb@bNxkvIsD7(w*r#7MdE&a=P z)wYC6wb9iVTG1CE!it?dejaT~PV?AI*>r%wbUcIQ?xl4kzw zhY>xPrD%aH-0j~J3@JeJ0PP>F&8Z0|JUEBr*DvAe23Hg4JmwsDdBCV~1CDZJ-)Pvd zRs230nusyyn*q(&vGOCEK3xgs{qCfw7#oOxdUJ?$Mah!G23iQTViKTnoc8TkL{|av z_74Zo%)C4dAXKk6iIUemU8q!>LUhL5l#NP56km`)2n{dk7gy18m)~0`5-M zS}K~}i;D(n5^W{!*9u=lVgru6rtetF@tt?cM^?Gq($mwkl3}Rp0qykZ$$l7j%_hD6 zAIT&Ji9{?qN$2E8{p_)o_A6C9hTFhPtk`&}DW_WAtW<_Y#`_cNb0b7_nYCx@xp@<% zU*`trK_7u4cl<7T`O9vvu{E@nx}io>zwZi!6xUU3?ERFHE77*O+l$*Q61hXT1kZzW zz3f6XR9+oQg2|Ns;~Z z2YU`^BS^`}GSarGLASH8=11B7X1sAUTny}#Syn&k(izc3-#@Cq9;7s^_d{$US!ain zieH8a^|3h8Oz_on`R*TK&8Z4i8%sG1#zaTkjudRQSXU4Mi0cB(p8vC0*kUQ#}F?Ar?k$sI!@n$%H#C?6mQ-fb#jErfmXdDz3ojGSOi zj>tH6!m0}$apTJp82qLSlE`4Z$ z8w)ndCUAzt#>Q&1yzTY)uxd1V|7Gsryj`}jK#F8yN^$XXbzXHTRQZiEfoD`7(mpSN zRr%H9`Fqf8e~Hv(Z(r^^dL%do9|~Qr(HRdtPM)p`GvBU=K(=2b^YMs@>G2d>Km5{f z$12;J=$0=#{gsRiMzREJ&TDhj(2X-b6*Z-h`Y<8D>DJm^euF`WV6-SIn|S8#?f}rw z(E+nxR!Qs}UjP))U|?*#-&j9m5KJ41$}p2y$IZ(earvbEbSJtT*}e`4m{PqG!MIDt zY1uGa0IWC%`Q-9rE;2+mE+as0NVIf>*C8`a(Zz6y9;sKR7W$wN=z&j~;t*u@jhp(z;b}*$6U%`{)>%^ts-13)OX8 zgh`B#sb~Vff2ZO4j`!J1^rNuR{twyJe-y!C!~+?Y9xe9|9I>FwzY1ga4k%kQ#NXYj zp0QL?z{i+&bK0H}*Zo8}XRC)CgA@YI9qy|lL64$!d&s5So}{GFUmS#{M1nc=whqPI zYChf~CDUU6SD8@jPNTNbI8FPW7qxbq-+miBFY@Rh;K1ilw5hotvwzSZJ2*$PZE}<4 z$tJT-v8J2Yq!^&BV?S;1r}2NPqNrEF_o27PIaLFjHLcjS-tKNjR>o1@W{9KguZi&h z=~cukH6z2P^nb;_J3HSWtPa#hvOyx+esw{dz-jq@;VUMG(lGmT3yc^|XH;m2Y{Vq+ zalUv_v9+_q=rhMcc4mv+nu@L;1HKxT@&yn5VTkJ)$TaLZp;MpF?%6`&h9}j=G%QFK3>#X`w1VGK(>% zZK7H7Ytz*=vTie@eafV*AVJ$p{&_m9UC;iFO>wMO{poX{P5n1gWtj(g1Rnd$yrH&- z8wGDOAA{c;lUX)sak<^?A|=%xq~j3lW%@;f~LH83-PM_M5Me_HD>^DKqgte}tv+2F&?= zSB7`N1p1hX37xwZbqrz^AkSOL(TQCHoQql_ShvMLKero%IH&u~VTB+Y;k3|}w?wc! zzKXb*{c+lzz*R69IrFU>X2dw~Jd3OLvfka{fN%yfP0eQ@&!UI6Go0qog8EUNexFVE z^yI{5NLkeuzP{zG-<7SnaC07pfuAsi0EC;Di23DHP|&tn9DL7D3oRVY-#0bu{P!$@ zf2o1nwh;>MBKIp&=jY%m)a(xbOZ+YHvB#=4mFqdb757a26^gMOIpr#NfMOFl<1kT% z9}qw6U&|x(n-bod^8o7Sd~j?vWYhWEsWL9EU%G$E45ifk?V0VNV_o^7YNCK?m zs~|(F2+50wzbY91^=liLLjae`TT)_XXIFgSec$%sfA1KSI$%O9=;2bJlL=$~U{WZ! zP#`ob{uoQl@!ty&c_86J4!ZN$%XDy(qCf{AXSz@tF~+(n zD<_AX`UANF7aiV;2=eN!W{!`KyKL-Aj@dg93GZIDga$SkmD)3(-)~RhYm+D2nlJ8p zYVRylj=V{0#wk?g94J3m*4h(wUV=sO_-b7ntYcGTZ#?Lb1Ju$|)BzIX9=1h$7>Vn0 zjwo?ew=sB>iDj@qQ-0M9X&>tS`!@R0$Jqr1NFQPPuhQ_MAc^@oN4NCS|Llb+v%8s; zD{*wmjUyu?wZg6CktE6@_mQ@Iu+X@yuVuRIwi1ECj|@iqO%?faAT3e|%;~vgqvo33LL3_KxK zQNKW8(wq>s(`_%mzqla(ZLmW_T!)<)BNjtqT!XjDQdOBi($8Kh<@}G{=4#pf(|FkH z&7zWPuaGnKh?`V?YK!}o`OM)(BJI0I*6is1K56kPE%h|4PG`qVF{ygb>JTm5uog`lu_4v+ow6!g1c~ z=h2P(-XBR8>Km1mval(4f9rDY`Yk?@9ENrBIRhRy8b+<|54&3{yjAe-F>U_N6@in~ z@{?-@If=mSpCJag{M;D8EV9&a)=VQW)9_&SbJtoLb3tMnwIQ>#j*LiCf9*goxJQ-A zR3g3d!YdTmlE(K!31_o+^`P^%g-X{86W2sA6moLr-)fnZ8gGxQa3m@gv_Y>}Z8vOX z;I44zg;@8rQM_3~2aiXjWXc6Q_SMy6M@Qw2glx16R zGDiNr3YA}e({YmukGkrY^Di~qvK&B%BmV6}0e{+UTh>81oY!(OuASwh;P)Pq<~m0d z*X>K^SFcX@!|P17vw#4W?B#S9IUVEs_d9^Zgllvk6VuW87h*1uDgO~It*>&fs_o*a z-VLK4y?S$>#9`1^C6Cs%GMIS48`4WIi>%wFrKL?qivPE)z_@2SdwTh0Ng3ziaZgCk zl7p?q2&%773vxD=wPz@lBcyYsrL_7T6YRy)aiSjdLV}S-?Ze zD*2@A!R!PjIe5>cwc4l>L~rks9k9-`rliNtz<*^J-dlL^M0+#5XnI`DIFK= zL6(U{M?vLOvHtgk$HkD}m!&TYM9V=_%c=PlA91#A5QqEjb@s{qMT*&ovp+e(#8d_MYZ?qVnR2tTtpH7^>Aqo}C15;2N zz{1BDpBvVYm#5V#M^KEps=1H_GixE9Acc_-^v|4O^W6#4=NYD4X}<(uG{ zBUkhM1VGHAwF}a<_6H)G_+a1#@W|!t<9bd8F?rMcuWj+1b zI@ny@r`q@XItwRF67Ds!{t0DixEr*O9)0ll&+q!w$_4%c_v0<350j((1s=h}R)}g| zNl6j^d7TtS!PjQb%Kuuy@TR)_-J!dknd%a>-)*)FyqH!fwNk;T`$I0aEq;m#72~*l zRgZtr$g(`b3s^pQM9G7bg~{KurZz(+xqjI=OrT0g zeBb+vCl7OB>KEd~oWWLcGDwYWU-JmBUat-!f`Q3?X)V3m9TC(nJJ{Di!}%?)vjR9b z7`^HZax5?eUHl6&Sllo^xQK93*P?=p=g`TjRj5 zKE-ve27xG>krSHV2)TY=vOsqt&tM1xN#(~g44l#%kavcQEK;4Eo!No@&kmjlAZ|dl!|IYJN|_xT#qEHw7xv3d`ta=9YNB~T zw1cHP1LnDhMOErR{oAd1tWW3)xsB7b1#DolZ4%iN_&9|pNr&aCo zfAFgIv3hxj=1~}KxZis!TKd3`W0;S`-f(>!h;6ZDHv+6LFH;=9uYtL*t=U^z=@7o6 zyn$>PUBzhSg|BUaaV^65n7F$>crW$t-W1(`i*GV*a(#q7GX1FUUKMNDc4kiQ!L)s~ zmk?IWdG5qYGWD%!Qcvw0TYWf;pVe(_YEUumw`{KaY9Etqk@P!N-)8qPddETgoE7mx zR18lW2n(Qq_?G*p5m77vc4;=S*^~${uCJ`1Fnzv<$wfA|xIU`y<><=7KUFga^^~uD zls#!g?XwPBrb=1`zL_)ELKM_g^mR&~vdhAD%;Ri*eeUDRzN7kt9CLa-=V?+oafghK zrE0utN4yP}*@Yk9y8g6GEqN3j4XsK4rtpd6))Vg*eyos?wu*xMJwo-IiK2~YLqZ)7 z3mOuPdr;_|9WOP9=`ryy&|$RL?R*sEnD;!*EAp%JuD&;lDk!SfM8sPpZ#10nIGySA z_s=jBGn^A4_ZQ>POX7EZz~|(7BjzRDN%zqwY0vB2$hI?D{N$%i^FFV4 ziyv&)UZZH{GW*t6Q&`YVq<+gsHBr%Dn_qIVTrk&n+RKOF@S@$1FG43V?CIgWofcsZ(Flb8!t3uZn+-Y-6Oh+Lis}>B z4C404mZrE(%jCmzbL+p~&g=xPeqD;f5{!T13*Ht3L&L}C-CX_U9L>g6*o2ZSZB0Jt z?Hkg?EG#T8D>G5Hr8zgk1bMnnh7_B7Bs6<2DZAs3=mkg1D2|Q`TRaJ?U7>8n6 zI%yeusYS#%K2%lleo^_-V6VMh;vko>75E38049rYXgr=@UG;~k95#!DrOW8>q@)lg zL!a1sho=^_6U60wmAvn#=i6=9ay{T!;(}>CYpK(H<5k;qCMF)l2~W6i2cE(0Ar^B> zD!6qcwW^-~Ow7a1kh?dT4}C(CV=6El#bV=Eq5Z(Tg;nUShyjyU5pRE58X_X1it38= zBMGg7b294}jq1PP!1gt~O}3z}u8~?acu=Who+)f^9(0#FZ6Nf&t2R75?CXBwPQI*~BmVmwk2OP+6Z_!Ts>v>osY~XNl+s1SCHCboIXZ-_Zt*opd}a*WF%l zI9uY9;AYF%a4_y>lTgL?Z%x+*K_%tUz5%V3l1c+&4`1xco(95(*^S9_{Efd{xQ#G& z;M1k#75Z?mnajzvPDg1~9%0hqapAg-b^|M77rix;fNp;tmZjKtVq9Su=~Z{JPA|oIHq#)d=_b%|e{VR8*}2_d$&NhzhC9L=Q*x-uK7BjhI(rB!F^Ajsr1A zr!77qz*-oP58MB5-`XsEq~Ku($u|mARYu3hn`UMxp+dX5vB5DS`2ZJpfLOl_wFla? zFwdqCN=1M#gAUmZXw5^7NElkFm4aWPkKKk7B)3}!CB}=>KCiaJeXdRA+cW8t->+DkfM|%2gFzmElbG>+>M#TY0qqqJY&SFqt z{`NNe%##3GReTbegD^M+D_7;G$ou#2Q?_d%q2T7_CDj4p$`4~WdBya7JM_h@rfUKK zUWJ%|lB{t0z>OPF%*G)h34mMh06L0qa?kTU-Kwc!>TD~l1NbF>27NJ^E3>wtA%gt; z{Lf~&gKIbh1U_)G!f}15;eF$SO0JJe?u!>R@UckKyE!Gq;FCOm{s1(@V4!VgD7~Jv?(7it%lepkhe$pvH%_NaZ2d3oda{rj_Y|F`E3 z5W_@7AJDgf2wWG;TZP5*zus`T*%&EPrP=ll4&o&zCrkSYb6AkWUMVIPh`iwc|9m4E zV$T(f^{mUzel;fr4~a?PL(OuOlECh)r(#f4xY5wn_4>ab{8n+84!`3zbUoJ;n|NqC0WaGF3^e{krMGfQM zyT7ryiKIk94606VHVBv>_xsq`eo09biHV8#9J{+%>oKCGhc*d_h>WLS`kB(Z2Hr=U zPs~7j?RHsNnSVe)W2yN_H`(g5$vRIm^WnUYpFiJ*Uqu!X!Gd<|E@NO|5LP!?sQ1~2 z>fz|tR5c6+z(C&Ufi!V$=Pk|pP3(vK{xDLixvlLUIJa77u8z3S#d#fmEXF1$Pp8*g zSXeL<|6G$x5ezX-cD;wZyxB@87yErE{IpQd1m%&RO0M|Jmp8yT-Scq8CN^GQMMWhH zp_HwZm7QHA(;$lMTme-R2b>j+P!a;10d!2~Z-$X=@$h^@k4Q_SBF4A}PI4j`i!lnb z901nv8AjBV&n#$rT{?O|!38-p10-TTIXR3#K57zCNXRcK!GjI339@ln-lwn|LP?}; zq|Woa8-MOMv2^l8xph0>b^Ha~j~;Px5kX=k0sjwBbB=Bu2ntU}$EALgJo!IS6zI92V8o#P2c z&abRGp;=kr!TRXh`(+GDn_WHPpn))b+-tn6oA*5v|Ov!P5A~Gr9z*GkQYNj zX6xWUt~3GbL>lzgY71;JjmxIbh+C$nv;Z}yH#ywj{|MGP{J)Lc?)xowMl;=d*_$F{ zJ$VF!mja|S9wf<)tk}YmhfW9~x|m57>`7z4Orv(MkGH1qz#IhiFpYxE6t62+wK@;i za?2n>79;^`D9;wlFPkUcE;&@<#v(XwF3VhDNRlB;hn*^`-DyI9Kt^WX_FJM?*N)$H z@B58#fIGjVp|#J-&BeO`Xsc|&iQpDkBHR84$TmlBZ?ET8y~{2Y44}cm!_%MSbU(6i zad)StqicWgSX~B!1*CWh5+RGp3S1bCBJIbK*4f$lMp1F_Co3GPMJ5Aj3S%))vbV9b zYXZSp@C2NnsVcb<2?-P1MJb3g2GFA5z@$g#X;%~&SG0`f{4yyisRG9HmZ#LK{{#iC zObQeX5)-X9Z^B}5QaU1f_KW;xDinp`41_7H$nlJ5=;$oC`K`gF2y&Q!r3<$8*|p4+ zw(=Q7t^+r%sfERz4~T*Q>VcSaw*kJ_O#eIjK|MTfoB(WM6OQufNksl6Qq9@vwu>g}C>I@hGFt*wBn46hX38UcKr4W!xHURN+~vGySdqS=kk(23PU zf%SX>6DoJ%D;=&nK(Am!lGM}t_CDxC=&!o7qU>x`PtDVX#A9^{D9eq4_}H-3Pw;>Ah35CAUTq-;veCz8kf7tpv<&>S?6G<)3v zi5ct%g=RyHG_`8xM*Tg#cA7@fxnEq27af)a+7>&Q^Iy zN=nM^44g^+fq^0bTDjVbsXuT}tghzc<>MRZ@9*Etm$I~EfjGzyuk4jfk8K6?!Dr{^ zKY`&FyeMI#=U6R?u7axtaNxq)ATA#n9;V{vc9GiV!T;PdFf~=%exn`COY`tN(q3+{ zsQV&`ArlK9YdJz93JAx2sb>pT{ovllv zp!nI^a(!n73F+_NUKJPyW;tCm#!ZY!t+t`Il?&|>Y59MR^MrqHUDGPSMald5Ga@c7 z0PGXDDufu%V50@NCYjU5XG7`#qqS>&X)27vt3HSlQzw-zZ%s2+=|qzmT3(n}a)RA- z4li9?q`Ay8Cps-jkD7C?c_~D@Fe}Z>>!xllG0Bw|ls-hJp)M1wP0c|T&Ytr>biSNV zFX!bwyubVNJQ7!^?9y<&{HziKZat41J$&Q4@_{|hmfxn-Rj~!;L45m6z>RwDu zWiXjKm4~bA(39^C%wpNX5S&;EbaO}u*}W>>*|@m4%J6{jtU!qzLU@P8v!-y)%7-K~ z4LG|n7zKcxECNzF=exPqM~QJ78+6qHaM5kf$#R5-BF z1k#6y`1l77fnxsRL?a6cksSVBF=a1(Au1!(h+XFOdN&kfs~{`DMfYMDATcySGU76{oFcpwO1o z#cKt9=?DC=ivVzwAAw0=FxDVu8i|%p`zB1#VfbblkP7G8605;3O}Y#mr6LxaJC-ri zcLoEA?r<;HSLZ`TaJ<9Fwqehzqf&x$HM2Pb+oXZ!)k;}y?LlNB42BHK#VpObtbG$H z&hYp+cQ$v~qc_*o{9{&=;2!VW!jhilyB z@9)2%ixE$?=Ip%+Zj9+PN#LkuA+nWHA|frV1xOwaZu~HAT3%kB8_3dsmt=K$`^HrL ztz0oLvbDBsHhc0)H_g$}1E#UYS}aBD{}LGd&kKbtDwVqSt8q)6@Yu9sT*eOdFP=5f z1OfrM!p6o0N*6T{hdd+?jsf`~4VuR&fzs&oLxPD0Uqd-TNa1m_)3(rq)WJGokbVTB zBYH%1UDw_=`5br$yLcf1JBaT|f57j%5qbN$g>mp{v$fVq-<|!FS4t2|nJ3ZJzkHNV zihyP(O2QBz3|cr7TCEl#9MRd?$q5U456VEfrC9o>&&m8+IGV|AHXDbqm^hNbKY{WU lGJze)VvtGh{4cN3t?j|4_jlJ@l|>Xhk)d49tB~Y7{{U=`xS0R| diff --git a/_images/3.3_binary_classification_11_1.png b/_images/3.3_binary_classification_11_1.png new file mode 100644 index 0000000000000000000000000000000000000000..7eb4937e01b30bc3606332b7c29fba5f05683cb6 GIT binary patch literal 41456 zcmbUIWl&sA7dDJSLXhC@GBCKiLy+L^PH=bk1a}Q?0fM``gy0(7-QC^3&HcRf)p^gq zbE=r4YftZ69ARrJWB}A1VAU=>nKtN`~LIY12yKu09f85Sr zHJp|0Or6~f98Dl(4V>+*?VPPG3`tx~9GxueY*`t&7?|it%$=R>op=}-ZT{a540euY zjO^9*rNAI?_7a*-5D>@)?;pq_!9oiNh#Xx>Q6UxgjN=zKZ}Pp&wFlpl!|lM2>m+;s zzL+`N)}&j<8={db{vZoWGnU+%m?s)Ms%~o#U)5d7JjzTwS>Pq|vW_`Ex{#>ZjAS7< zt&!y5jmu>H_l0cF-LYa(uq!}}Yk(5ceYFx>Un%c<2~3wzrXByrokUuJ1*|^_@MruZ z;{^J@W|d1A3F&)FcsBI^uf~4O%J=-DlA*3H2-j9Z$@rQT0wEMAAr!SQQ*3Q|j5|9! z1DBINMBId;(9qCDB_%_ytiZQWLK*?9t9mrFw8_sI8AznStKYK;p4O@lWi)N0fGNf@ z^tP5(+0u@=va$?yIR+`;@+r zc4BHAX*B1|_+z#HL3qHLHdPHoQTq9Peb6?EC^bs|b%qrV4nuLwh9&))#U$sM@Rw^Rd`nH z|Fr)B$bl1sbKxzC2K8}R&a6n@9Qdli%9eC zI;0OF4PK@)+4G1~_{3#9pH>^^(kKQ84znctjVKB#l!5Z$Ir8P}Ibk%73mdMqnZT+! z)rMG6%v1p9yeVyA_vVlxZBUeGVC*$Yg6b!s`JWXs&av2>V{jn2)=110!_UcuJT?DV z49L(xU?0&KVE57|CCtNF$OR9WCF7|Q2qU2jS(c~_L>!MxFd)HE|LYPjG>bZ$8$pC@ zp?F>6j)fj*jV>gL5-3|tT^Vlcl2O&d6bUuW^f4`+B4oZu2Bk*!T{s;1FJqn~Sn!oF zwwuu~rUC-EcUNg|6dr0YUK#ZZR=-GKzo!6O-%VjMr|sTxi|RZ1!qADJ1CnRW$=Qhe zi@}rO-STKK63z?=z){CAz9d%QT|cWV64T)y#AS)|W|qY5z9C5Z<4H3|H8?ug#GmZK zaa+4WprWfzN&hzk_RO*>+R9*E5B6cd8WNJEL({bPp9FN17zG5rdKW0LzdgLJ5( z{~f#my#KETWVH&X_WwFI@BzEv^?%xIsKPbU)2QzQG=LTB=s17Zi*Mtv-9v{U6ZhFR zD(mQsPzpXsYH4dvc}TwNzWC3&ZC_OG_F)ELiKKk?(6*P`CGUq}{oUner?%TgE73f~ zEYCygXJ0=aMp|Hs#+syo^J&sG%V?mvd>8ZGon-y2t1~;FBW(<9Y^RIOuW}h&abwc( zKu=kjsHqKNW4_}*BuD0Ts_SeTwJT+js31{|sK_x?ht?Gc3=9n8%Nk(axKlgCyXroB zDG2UNB|M}(3fDZhO@|Nm2RX9s3t6xv-CD+Up@6|6ewiS4c)oXVJzLGZcIw_>+OT)u zT_cL2R31eK%v0l^btu232duHGxR_M!0rj$;I8K&UFMYon$>!Ha2pi z|8HucczHG@$tRCW7#17l^?Le|4A5?En;jIewSXAKrr2ID1Yi4~kIe+P${Sa6D=KUU z$2sw$aH9I0IV6F7qVK+-N-Ho(l$DGbj*rCU&v9q_OOGD7oHR>vxx?s}dgk}`^t_4P z*=5_v%EkuuMNf~&w3a(F84IvyRJDd(MXW4n7YgN!I`(|O#V*kLiq|qq%{YWdQ9zu) zu0PM{zhFYd2t4j*#Jr8JJtOMhcVka_SO}raQlr3cL_;$T@O(ya1xpUOCOD?ashLxk z?Fp~Zr)}lWCq5x-rxiG`Pe+XvnW?Ytdj7?tH3__tdiobh0*fC(iML)JXSJNRPl^=- zl4LPy5RS$^%Uxh_rPLj&?k040hjyQEiXv=b8FG1ms)u#!4v5_M=F|0sDrI>1H!21e z4vqb6ScxlyV(Oj;`MTFW2j~8B%=}Zi#0~9V_i`5AdVhzTd&92KEl+aRQGKGOGlg&A zslzH>bKhu~T*cR?IB-~e+lMS#-xR{=Lu*cE6An+<)b{bnSl#zi%e0j_fq&obD`0B# zhg4pkfU!p`zv4UVpVqcTzaOSvM{hhxs&2L%d91+LTG&8_l6P^$Z7 zYzH(50h8jW%|*1cD~i2zlg|nQ3&n$PQ!QbGMV4=`jf;cuBP5v>EE#_N+n@glGR^}G z+}(ff1me8cUvx_`+$H*Ve|ZgRsc9D>qH&Xnf0Zxk_icuE@AHA_1&UD;O@RI9wYy9N zI%&8f>NsO}A6Qtz77eg-P~SXlMRfJJ8_5ESB-Pqhq7Z)Q?#Y5184oeIv|3I(zXKgph(*@-P}F#j!Hs z;s%V1gBJ9*`8y&;s0zb>7`Z))2s}vGXWJL?J`1+Fz z2sa|e3ZuKkrC3LKU}}*%Yfig|oSv2cmvcb0Cqi+ec2q4|*KW{tDv$s))C^w?2Hcpj z1QXHjldj#SgBO>1QSOkAgiM4JCri&khn0JtP!_#l8oD&UOO0@?(S^VKhWpP_<+~<< zg)mOMu8PJg%FbvkGoP{RQ`llo-tX4ac%;IosDNNtwl_t2x3VO&>W|ZFkq0522t82Y z_r!R)Qr0AbdJ}uq7#LCDFJ3AV5WM<|NV0i)2aTD!tg`N!I6Pw3N_-H8DQJusWR~_5 zRf3ku-zPaRGl*ol-OUXG=jiE=B-$g-t*mepi|P@z4K#Vh$E4oH6)qE3IP`yPJMI`8 z4#4)PICRI-ruv-*3lior@%y5M(g14*{_-QMcJVl{EBDYx6Q^nC6>VM&*UBvrgsT5szW=uN_N=YQq(9mcsC$}6_z~F5H zjhEWQ6=%1rwI#hxr8mMdJ-AZ!_r|N&lJv5(n^~&|E=YKw5A@%dNIRU4Ml}h^{B!em zWjRuQelsKW8pOO2N5xvd3qk5Csk%6b&^)AM$ISF)Ri2D2{uAGRP3ois&B8IQpkE4) zYtk4YMQb*W26pGA4W+K@>g{t&OC~r?-A0B&)Lex2V*z4_80)c{^9c>lRT{I%d?vAv zCWc|O7suVOe~=TGzJoFn~g|7tgMwIxLagS;!r zR}~^QyYwkma%qEt8bDSx^WE2|AY&sm{&&^(@TAQy_4rv`6|(UU91d2tq3+9N zHEp$^y#>s`GO8dYr(-=e4HG#Ce^Cr)DLRePWnLK>3B~?sG^J^GpyY-fyYwan>=d!}5GX-_Te^((l&Z z|HTxRHQ*_8+QJF7tdj!RtLb^E=KT&?9cAq6@E-O=J(u`^20~3sUCS_(8tzbWY#?Tk zHP-k2m?pF<^DC;!)z3v)N0}SHEy6T*A$cvf7pou`7L*>c{~jI8i|UBMjH?L_!1J3u zRKNL@YbapGs}WdqaEz`j}0fs<8~Mz(E)B?Js<4* zr-m6l$9@GFsYuANtsif@tl~HSrL>Hmu-5mc)H2ZW`xdDV&B(M)D6YCS5Fh#1dTS$| z|9A~b1QI`Lcz-=?^5sZi{FuU^1_po2)H z$uj>gcL&iLh3Vw4(`~Da`9mRA%}yUni?U3OAuzTlx|u|HK#e5W6bceiqphw5%3SMG zb`|QpU%045>XkIX6Yv%R1?w?EEXyngkMXy6)we|ALLp$!lB?a_c1(q~E zhhWu)V^_sJmeR36x?!2V7s;5X875TfXw_puGCGmK*m6lggd&$>0d-H%O?&t{cgq1E zAC^LKH@vHS_NH7qBk zTo%YR@TEwwc5gO@-#tBEls}YdK-k9$n+&SO+JZDpatg|E6{3y&)w}(>PWdRMP-y4= z{xID2JXK`tMfxe_ow!YY@9{fm#;3~aaSf3Rm{L>Q;HUj~3ip<4SilFLn11G#0ap3G z<$q!O^Pa1o=*0^AEGE>IY+O<2RCq}LW*oGR8Ta%%CHBYt?%ngEGX)Mpet|cGY{S$J zzL>CKa(P_9r>LJPms95})(ktl!UF1dIF(3x+rJwz*&REh2gId`zWMnYHKbF)3P%H) zKhIRr%8P3sbI$ApFSqmBGw`yj^*NVAE@~~Gwlj`L`yg#h-;!aSY?rLq@-#`=gnIMt zFx!-g?Fa86b|R4DXrQ8s1|n`9_VCjwEZnrh( zSCl|RVHq_{4g`6&FFy>WJ!Rs-m*ntS5|@ei{v>pa>VUJ1fg>o8q5~Z7YcP7re$ z0Qh6ssA>^)vBZwpP^_&AyHMk^P_d55pv@!lA1$+OFbsRhe3s*%`h7>1nzT*wA zOgpq|7;}|y2O2DjZr|0T)Uf3N}i}bbovN{s=f<; z(F}JaO4g52T2qoLyiyOMI{{n*=2sCP&(QCJ9s+M5C_Gw{3nAx=)y`}7@G24Xwrgi7 zXQzXm@nNH{R^4fBlzn>Yx$={QkuW%FC@WoMJFN_Ibg1?itOYE?9D1{9{X?sA=5MgF zDm?-(szUz!g8~e6(kAk=IhI~d$9Y!JQun!T3Jn8doayv_MvIbw0H;TL3G`^dFNmQd!>*$$fV&Yf?0y+ zaXF!Fom<510+yIokhFUMnu4a-R?jjOjxP?=uj5^-Rm`0gn)9)ri+ajL3|Fqp#d*=h1?D z5q(wWLF_T~vYKY;1Cm?lX5>q5K0WRJy&u-UsiKj9ZBjaoZO`ByQ(eVd=pQPGwW-d( zR}{+QJ}}F7)w*CyS4hh;)Jk?Ttr212Fl*MF->nsjQsYr$y@8})8b(j|)1KyY)unBf@&oRtvsy6V{(mlq>TH!{WedBYx-O^0vaU!r#xR|!3a zuDn&s^EO&+E5$B8>B@`2im61@xV*9t{v;V6YF_<&56+4?7VNBKi%HmedJ0BEa++SQ zA|aW@3#XbP(823W&!2@m0^+RQ-$|(o!!i;SD<#6PKq6rf!8+hc+7o7R@!PHslHDIH ziL*0P`D;O0p+E7J_jsZNC(48Cpj|R3O+3PuHy*lO=GPQ%GmkqqTv$v}Wm}0A6V@LP zV@GVwc)L{cc>WjS zl7jG!RQ7>euqvuBM{@nO{|Lpae-OP*die*EK|YA;{fnuQ?&{vQg%f=#huYWo=F8$8 z6VaN?j$Jc7QSO2^8#$>fL0f4GG$#jrWFpBWW$jnDVaPx(ROInzC23(8E`FzJ;rK3Wo#r0fC9m1(eOi<>kwG&<#ytudwx)YsvR7u z#q2k)OaAC&x7jgkAf;uA)3MmT-7G!&iBJEEDxkx`@;6#I1`JZWiCi^X=I?K!@?2To zMB*$_4J@urmL6txQ8v|vhu2>vB%H;>EuxSobX24h+CM;ijepR1P(;FJbC_C*5+v#? zV6CPEj2N?BqG0)md5x-q@%Y~FCl2D8>YsJfp%A3M zMQJ>ROabI={?fUoTYM`Ko~M1(jTTB9L{bb}_w4I=bROCLw^4+CLQzim??a z8Ef75okfMfO2ny_YsHbL%B%26#0?JiR&y+NlR;=iVG%Jb_dCpueR86dl6m-<5?`4$ z$j+m=@sK8dzjW&6{>LlPd(@vO)!~^+jGwrYC&}qb3(A02!UYx*fXcp+Zte^j!>n`| zu>D$88}T(0kxJ^f1wTOZB9Gt~Xq3?MUR3XRiboDPC(a%PxLK%3R}bC6znG`>Y3fk1l;1{Fx zx;&iK;S@s&td|srkenxQqca#ib@zM#V$(YNNGWb&xUdN2#%89)p;}es8d|%f)4t}( zi|a&$nGC8`*+#n*eUHj2U3IDAu`qo^CrXy@+Qb{^iT%uUs3fN2lBs@(nPqfTM;)5` z#z6pVsQu_d1-p(r#9}w76TR83>^ZCnY z9Hcxtim-EJrmmIyWw?pi+B?-G;7uRp z3!w%kqIivLH>h0uL$HE+iprkv=z>ifs(c<0&7o6k|FjmR@mx8mPI2M4NiRb@Wg==? z8|>!iU2aPSE6#eY+~^opS0eWPeGghYW^O-Yd)hgab_VFL@DBS~zVw!qbba=R1vS%S zg0^oO>?)}Pzwe_iO#WZ#*#}ie0Twj=3phiud-Iu(80i@cwx(huzUXq|H-m{8PVIBL z zBL`eFSrTE}dS}l;b-J~i3Nt~PaGdd>P5!i&RL?78Hv#}!pnh?jmijPo+)R9xPZRhZ zmh^*y@yOP}WI&ZWb%d<6^@k*#^h#nU9r3U6@#i&QMe3caqYn6GX4kDAnMf|PM0^z< zsr#ss5YZiFp#g(ZIM5|2GFC0+?+VJmFKGb-yk~8HvtJgn9RR=?8V2TJVcfS5z_kaR z^^{Q5z$+rmgW#4TNIp(=&VIw&xr%Mj}=m%MXci+>Mye-av~*byFZgoIL?g}*#}a8q9{sDnoBT$7iUhVQ)d>g;zK z=T9D!hU*SD$-_3j6=$~S`iKih=77ER+PD1#$?Ge;7nj9X73aJ z>@tOaBN;CW#EV9gNP3sczg9TE)bg`$NTLMZXiGB=C=J^ue+DsTd3dSXNL!(J?53Kz z1D{C`I3bM$>!8@4Hws}$x)tfTp)lVtr?Tyq82)P}J4C%5;eDe1QCTNXu@;fMNC^QV zmJ=YuJ-0F#iT}aZ>o0BAkIOQ-dx9+l4hh|K(O$9?8PE#RMT6`yDW)L(`Xin8u_Yso z3=Js+F61xk+pRmFrgaoaSw=~TGr}FyhLaITnmI#hp1D4MET1S?ph1K2D~~!J-5jlv z6~iCs=iB-Ihl!x%hnsoTwCns7WB!*3IJtga`~49BdTGLF3MsIVh!>3$i21wg8Mz-; zT>Z0ATLYgN+0sh;L}5gWGJ6aORGO$P^k0?2?~>9l{=^ivJ2!rGrfFuO4_WUXu3eYE zM;H~OUD!7)!i;SE{F;T||H?~zmsmPE5dk&R{TRwMAgJ+7cT@O?Ug3{v!?*tErM=$# zU@n@uI7aPrbD`6~V0UKEpe8w^)@o)O8*DWS{HtGq%hg#qDZRo2N+Jwaa3pZtn4%rG z^_3ShmA)?TC54cZk`lTG36z3Sq|dbb(dKCuA8bym=Kcs zd10`UY|cEHV*Uh01ablFDbjL=(F*l)xQOe9i_Oe_y5Frjc1*GDHXvddi7Ci{gM zfV=zgh=k$_)x)?V)rg8$V0Vd#yFS{!Urvi?Exv#~G|aO_ZYErj_D` zd!F}qYnY(Z&}6yCvMdb#M(ZWKQvNm~*M$e~)wFd$j)T1QPkZ5@2yp$(7-_~}KHaO| zvs(VLjoisN5hyk6;O;&{C2ouaz}IkN0jQzwtf!M6O<<&4q{GvrY;-f88Bno(l1^)0 z@rtKytaLi=nqaTvaZ+PZ0n{Vs#+lQzG!9FI@P~P9bu7NVw_ zsZ5UsraPEwLkuS|g-J$*diJg+R#yeC&c?>%Ds-BKg@hnyW)7YTpbQ%717mxG4Nb2e zeR{~4KU=>e?VjkKvVB`u6}j~bwedN4>dNGoyetkO!sXTBn+}xBvR|PwH2>fullFo~ zT1M`yJGi}rq($7g%1ZMmw8BXT@3%mDscl0i?t;imuII7!sYO^@w#F$DAKhSky7|;S zy#J~PV78NJiOnx?LPe7Y+bw>XQ_^x z7{$JPO!QmD$&k7ZJ>z_opcD1#-wT#_)DMTDUP@)RVGz-)8o8br9Sf zhNo(C0$_n8O_82++^A!e1%ovkD5P5Rlp=x}pLp+2tpxKZGWtJ~KQYsII?K`e#KFmR zya=rQH0gMJ(wAKHd0S@9{#9NcmF?O#`X|?Ps4S?7%(nuek=YRbB7d(VaH6W2;@es2 z%AYfV7yRevk#W&5K%I|XpnX% zupzl|ty6R_q_w!RMEAUYW+(AE;%z7UB2WJ{(5-TnWVhpo^*_bt(qKlv?JWWe?xxc- zT5Lj#<-Z+^C(DOcW;E-)rZo!q&fm0*Z3oV0PU{-_O`N}zGUMGTJqyKzfF<`$2y-+r zV(^5Mj0uKbW~56Bn7_t)`kYpnqj6-{BUP78JGPUg61i%^0f3IIK{=?0__KXuYXDh8 zS}IEJc;hHRB#WGP&!UUADbeozl31z)&^{kR709lcrgq&WJz<-n%;_c!MV97&CZXC9|yJOILy zPVDFINi6F~4O>#@-@f*v@8RjR9r@K8^$ce+CSEfGdafVKQc^N zQ}u$fP3Y zkVFB}oGMe8SbMhag$7!kP|46Vlj;`ft>@0|Er_nu))l zwHXNNam#o}UaFD|^KY2v;8>zJyl4n-!(Xu&tW6SPL*?HHEX(A!;Nh2X} zj0uB1q(e_USzTXt>5j5&NCWBK+)ggsxm*r0&aynPW5%UTJji3R+ylwPqkmDABKL-& zT<)%%jd)v=-2fPde`xH~b2SP8$NhGxff;0b>3>{oUgB$dg2;~K{}bw!!At1I9XH2E z83-}GAcYGnXJ2tgksbcE`X?5+J$T~VcB%g3=gKqh^n}9I&1DJfaLJ8z5#)<&GWn6z z-z`}rafg)o5AF0*?lQ&ecOwR zs$NUfD4|a!=s<1A8eN2sKLlaPPTiNjJ*qDgcKrQecKeNO?M#=DIAeXrO+TlhAW7c$ zGGRE&$`{sS>pA~Zc5U1T3E|Ua#UMn<85PfuM)!t7WjyFJNx8`3;^m`2B7kkzKK|Y7 zr@X2lS7D`(n9x!LO(qsL+UJ$pf^XQH5xEx{pFQ>ZZb7wr5ex8~W->9=V_Fx0w z;0Og|ytBBt*tF^yRX~R5BnL5JkD)cKlZa!HRwM7z{4*MIo>C7%9|Pvs2_CKonBGlYs}xV_8) zAhtLe9?uVX00fBby}B}}cPR~DOvRvWZ{1-{*DTG6Di&Byw?aOxo?Ba+P=!a@*^_$h zZXwIezXyYhhnHJYV)^G{p`9e1`90(5#;f;uda&4|4$sBP;yB6eGB%=?LTTapZt zH#Q7fT3Qq^f^3!=;*uNfr&@L5q7pf}cau`8GKTrdnkN&eB`2@5tnegTZB<@iK6{&+?ZmH zlGTQ&v4Mdvozw{F$Bfwd?tabuV*J% zaQn&0*cQED+MOl%!V1(!ZyVBOkYvs;82QBP_MbBNN z;PycNl34&w#toCwR_f3Y`A0j1$TrrwE>j6z$QZR8q zytzWF9#-n``bRl?iD_+I%K6&)awS1<=PrRltW3aC_r?818xmWb5_8n8usPP7Tj8AwB@hghYmI#m&>pGBgOuek8Jb=Ku@}lqI z(-rm_%c?Oe3paaWlGR>Xl*+9Sb&h-B9pz#Z%jyq+^+Iwquc|OS(S3q}<7hS}!m`(A zX9W8Pz1NEwx2(&#_zYSbHynJWwq(O|ccZ9ZV^7{EHjPTOt?#$@)^Bc|vKTP4jmZQ1 z=)c@LGnD-j;@407vLU#0f3dY-yPJFM$-hH?9+WgbLOr z;j!vVL!(bsj7AqziBtIkSl|re$A_noJ<@^ z#sC{KfL~Dc?IPDABCLPQ+1VKd7K)02p`fkJd(yb;=_hS=wq5Ek;gV_ zT6#J*A8w^v)_`TVgrqd$U-i~G?{a4#z4Gonk`-ItnjU0u-Pdu?1KD0TI(gNEtd)61 zvRobdWv8MjZ!M=Dn^YR`IFG0sQTMIe?r6y`6~K`SzAnh)gdsTW7yD4P9AHw2)&59A z_iA!@#9Dj#t)L-7D72Old1=g?L5GeP#lNTFHxfaA_af+Us}kU>#j>3?iSlK>cQL+|9HH0=T9(>v#rNg9tC zzfA1Mv5WjZGe<{rvVz_THq26Ea6um&lsANitf_MiP#j7j=a16>57Wy=O@uKs=yXcl zWDTXF!~>KcMEaX$_wvM2^-9P6e>rsZEX|@2Kbir?+9`Yj(!2kd{YIPDQT_ABI#-7V zZ0VS2P&0~TJWz*_m6VoU>>e<@fv;1bvuP(q7JNo2lBMdykW5?-l6Zv-3&H&Y{Pn43^*#w9mz6(t{%&UxBy=ptdh!xeF z+I||6!ZqQ?Y7fKD((`^1+ANazE>~IjyX&i@5UR3PEUCEd?S9$p&wg1hyuPgLwu;zZ zTd~AV896zV27_S@OE(>Wx%(dO>VhS6yEmmgtzB_`)XQsS+Et^F`u(GguV6A{Nxk2D zJI=leAb$SdINml|uiY3&9+vxz=6m+AcRyVyP`_Dd*10y0{CetzGwgiKwaj*P5r1g- zdH8eF`6Z_BYlQy!j^OiO%*?ayAo%4YE3>*Wnv}a zxueKrfaS=(%gphqAy(Gu3(bOu;vyn^vNhwwAGcmwRcrdC`o(_V`WocIJyfek2 z&2aLbe))k1CK@XJ1IsQK4GkWT$IVi$nJ`ejF{ctvtd5n|VqBH@>DZo7MUcscT|7OHI8BW>#yY+@ou+e*7g+S_G=1k~` zvK1oHwA2?w{312z9ioEy6(2$FpTJDNgVD#C$L`dabYp&ioM!)2>F9dws^u>c#~kAw zk;$=!lFzf}zeN~lfYBc9X?0kc`FW1wOffj1KZCcq7-0er_cuMy2Z^7U7&W>x=m>UY z{w~8W?Y@r>V>;?%Cagn%k?(+VbBN?{f%w+<+?r4H^$Qk{!TD6XrHhfrE521M-fUymWhsXi>uQ1Xksee34GXT%_rMS3p0M~bVye(op|3Wk6#gY z-khBWQ5G%gb-S10uW5wF@%j>Y(!vngq+GFw;cJt|0&4K^)Q{lValJEsq5gK^rQ>zL zV5-jPnHN0}=#Rcj|DF6$3;$J0_7>n9{`)ST5)n3naaN!A5-ns(-Y^bONIc~xrE zH@qe_lkL>G;*lT>U!Ud5O9o5VBH=?VWd*|wYkXO*WkS3EnvJ`Et&v;P=Bdb(inS>` zGUn-)xe%)uIp?s;-UooPZ&pGqW-*dyWr-r~0=nrMx%S>%NPa!HAzf@Ps$YeZZ8vQBa0d$=7@!i1eWb+jKH zJ@HM0t1yq2CtT6)*YwYH`ELhFr64fK;nkSdW|B~BS9{Qx)l)M>Z|s)BA@54y`lB?4thDM8~H+{ zu06$7rJ=A)a`)ae@`PD3mywHsaXnkb_B(m|ZedD_7TaH4?ZEFdqhXr2a8`44_>G@z zm|aWRuQ4(lr6EZFRaV1!LE9%DF+x>Nr`Q=L)_87sTVYfQYsroxflYQRsW9ZOe+lP2 z>VtwI{kpvYtJkF^r!`6H+tr8~$)E}>Af?V{`M0pfRlk4|{vEct8PG6G-p8$sj!UGi zH`~a!t0O=Ezty)jXICNv_oWye#QD?((m<;PKX{GfW!$cuMUQ1s{aXoPuAG{nEGj$66E2c74HSvn|eU z&0&_!H25Oy5#_&9bvOC(SBcukT0hQFDcTTB%#na5xY>so`3rIBGS`bIKjL#le%bXB zNBhf?s)ywF^62u8*6kW0V*Fe^OQf%Gj#D?^o0OjOcsgnHxLq)tbACPT()L;XiFSK90``PM8s0J4&m?gJnzRy5J|cvdF@t3@F2 zpQ3qY8dp8LCyvTSAFtgfjbY=Z9q@;p+ z_qYl`x$Jw8riKSWD3kd{e)2Rn*;uLsOKM0*${^Ub-G$$v@RM3NPpypd{++``mdUZe zt0_}RR_{a4f1>8#u3c%vWTo*$!nEE}_|s6QKkQVC++Q(NcN1Mk9!S?1HY1i$oRgL~ zi#7OrIDs(5h{sin7K>oXlxip1FBW)Wv9LxlHOa5S>Xom}5&qGW&lVx6mpHHt30~Pq zxs+$mP=vWy=M$MET{Gj)0!xX@*+a54_IOAEf@wLzzX06wZYW)_Yi zx3l&?8uOVa6uV_T>1s4yVu0%cXp4itwUuGx$SsruV*?-1HK%5HbKMqzVjGvM>aOV7 zfVp`*3%5rm7I0}%JtGpTkY%lkO-lSsqGsnd6}Wz(q9QziE;be4S?blt|1}biss5fKts+~@l@Uvh^2IJ(<~fS zE*E>epk`oAJ#5+6tMKy0GuJoTd=@NpkTgr~XqF(sIXO8$V)!5E1U(MU>|?x&&8b8t zs1fcWnH=3RjOdXs{)zM_^NCXg8}71dUDxsHjn8nNPQ2Vw6$tak)1l(UDcpweVkKCCpuWlL(eITvdd#>5h|`U7B_3=lp1OZ`3$RI{#{zCi zByme07N<$6MCBzXmSH;$ClbZ%NW}N-3BGxRM?^f_(01;wwze0gNp<9XUwiF2yIgh} zH(+DvFfeRU>n#)YZO(-8GolQz*^0dL`o~tZY?Rm53?aQb>m@%w?{+|7q8J&Nj{{;4 zm(=4*9V&;8HQ}~t4Y#GRO08?r6qew^*vUWB?LmjDItgRB?mGZ|RGr!H6c|evYz>|= z$uHx$`#iK`2n$)YAL(6jtN2>6hrxJXvH4F%;=A_ejXECpj$P2Pr&HhJRunXs;Kb0( zg;$`FK_t&dug{0vTJthl0#}$EoKmoou_mc8zSnttH`B`3*Vnlv4nxDk)mqqZ3!|r> z2744n3?s4l>z|~GR~j!*m^n(Ld5kGiwsQf1xb8l?m^>^d zCg%RIlg#aL2>zph(mFbZ9wYE)N?tH(>Okg^eSshxHHpGsBJDlelT+eibxh#>6EWo? zih-N_ckpVbzo^c-TysKNvjWX{bI>!-1-~-6z=Dol_e(svipvICm(2VC2#hTw+P3V3 zY~Q2N`fajIa<+C&ve8g3eiPm%(4wjSX$V7vc=R zH-fjrm^V(Hil@6d9o%qKEJ|Q5fMy3&5E2a7{hksOr6T%cQKe`^z4~t_Z_0$+q?mPu zm!-3y&+_i4X65D(Uxn^5DOPkID+2+GJu>wCY*iK0oK|tfv{8yYd~XfW7qP##!NLgx z64P4J9LvAYCaTii>E!a8Ne(Wgd>}8r;O7~*_4yBI9ku;#O<6eZ6anf~F>fc@%Y>bS ztA!0YtTLTJ3p6Jf9C*!_yWFqCZXJL2-Zl#NGDHx1w}G1qlOsj@3#Uau!pIRQilaGn z%=F>lh;T5-@pS1n@#=NZwS_TS$*s=401Vu;i(Gce`=pYFgoPGe*(oPZ8fff^-ZqmK zdGBtq&d;+V(qqIN+f~F_Gd|O`MgGLf({IFo9seO-R3pOBa3k=x3QI(IX#TEtcD2u0 z4k25A0_RtwS?KJntL0sC4(CXF!Jy$ULoeoJhSha+ba_RE6wWI*+F(P+^mjyo)vJht zu$`<{WZ+mYRtB4eRU47-=2<}R^_BdzjpKX!bYNM+MKn|#8J>8y`8quDQ{hp^m>3+W zLnHRgtwVAEd%Ywb2$X(#E#g*g9$0 z*hypCw)HjEiOt5g-Pp#7)7ZA}?j3iGJ4XKHN3!=hd+qhEIp?z+%Ih%Goi8 zP8(AT#~Lfk?gBO&t)mafm<{@h2&387V88L zmlW__ssRp)FiQ(?$|p6W2hqpNkVR6IyR~y;kGAZ$l=EI}Qr-!C??BZu%xg`YI8>M7 z{4B9`-!XHw4WT+yU}`fJg88GoI*H$zE+f)`5^-resZts3`ZH5)1dzZ@>M4gT37t;= z5W_n-)F)cK@t>qzppumad@fk|u29c&YBN-TQX4n^&8jKYesMYV1WvKhXtVZqc!I_o zl?mIcO3_;H^;KjD379mOOSh9&xVcS@D-O}8_VLC%k{XlW7*oVQ=satN&{&jca7LP^ z1vB9prYmw?*ZjuYgk;fCvpmGi$cRK4PNg#+AY|a5{|&ipdJuYzKiFOM<{OF|n>B&{ zu0Ay+>xSH^4&)_=7{z5LDiVfOnTB4VKjvx3j|Mbk_`Y&-=Ls295Nag-+@>WzCGtFv z{OOkeBQOS$67((Hd(77Zm!H84@fB-7jTe<C1i%pl%Nlk8I*)dAGX`cV!ph3RD+=2RAsYbDUsrmFwgFW=Y zh!n8GIyu!w=<^D7PRmLA^8Gulj2)#rkKX;1VXY;*z8G|?eeSkA(;?n^nLnOO;96=d zgRRrCPOm`)rY!j?t)C=H$2)0ETXiK^@ks-n?_92lJ0G*F!F`Y5@a>)SlfHSb3iOWl z=ckni*T_pR;-{M{Dov5xCW=jcLGq@;R*zwyOf2DVz8o?&#wP502H_uqO!qTh(}BE= zJ#XC2>b3#$#yM{o9byjmC$hHiW5i!vX;pRq&W>j1 z555va_9vq|ah@j|R9QF_~LaD=| zB{Y7f1(86_EY-yW!*Be@A-kRIV;1(@>pkLVFK03vn-T&Uv~wKs4)}NW%3oVz=lO5! zoo7t7e`}sG+V65~B_c~2DrOv*qmwes;0j@teMp5Nr}Ocb7KefTLUvOhg$CPS{e4{7 z#wq7OwXwpB@y6dgXEEH@cT*w-{#;K#y3Um{aBLw(t^4rJO8c}kzLw;Z{%q=_^1MTP z!Si=E--xE?$~e2RyfNk`Aqy{KoG!Gy{uX=k`t`p!uj>l@#;cvb+dXS01nU$>5-(ke z7?(Q?JVh7S-f5LEBOrjM1%{N&-r5#_yGmy9Cy>IJS%&`82sr@_>=-h=)P+FtxqJKKVkQF)4{Fe-2^L?z6L zcR)(AE*ep+|7!&ufIj3vtz~Q?1zztz1)Nw0$R-g9`jg*EU|vfQ$gi8kQfxSK^nk!8 zfQK>Y)tCgc>IkzWueT015U&{(btV*+qD6A^W&Mn?TJveYg+Sc5h|h{@YwU-e0N8*K zrO*(Q-=lQrYp)&Z!WSBPx7;s=FDJKM+u&KdtKF{m5Z;@`u++)Sj_J&K>+aa>!9P=6 zw-Z6nYk`KStAW(@JhKa~qH!LTS6pUeU$pVsM%ONEDE?S9Tsv=~0@0Ii43?DAXn4PK zNNXCuX3$Z(i_RD zeFiy(43Ax=iLJN0g^b!c|D2A|n&-D$YwdUQy|E#<#X535{jWJ3BXqV|dV4R3^XNe^U}`Eljw^FLE@%ZNeDHGRoP2DikUZg<8hT8wbbL~?yDDMgN3PZ% zTtm)w_b&rgUe`$%Em>6LjwlE*3vUiP;WX z4%6XO$WKQi0MH#E)-gVtNU8{=-9EH+nYne1ssgFnNh%o*w!X1ZQ9I)eF*9)7?A!KY9hFYyj)e_hPd7E-uq~E;+c##zBV~T| zkoM>}U2zIF17-xX+`LY0r&y0B6ZswN;ko)W><&$BMuHzCt2N7CBK&T|U#`H(|D0M) zt7@^BsRO;TFAF*7bAuT)7W-1PRh0{MnBtEs4>Y=2t%8C>{<5sBg^#c_EJ#VV`x1iJ zS5%U9&Jzt%rVPETCCemN{cLs-A8LaN_(ESEv){k#JM-Vy=#ED z^8Ppa{ULhR$HO2#m9GRTZW3EkMqM^A7H>4b8G0hu5)X)xh|KQ)yN1B+^@N-7#Z1#& zDFQp{z_ogN*vsaP5aYP&U53u~#o|TS!45V9kt7ObS!pYrX&Sgob?@nIz<4waVrrpZ z=7j0Gy_~#QotACg(i^i3=oXVIs}$mt=YXXvUPEa+Fn`_Y%r%k}*Sr@c&)> zht^rug5#Bb)#~RGTQvNalxdaBtlzhcip}CKL!*^InjXzHuv%HEeb4F?SlbhGD2eh| z1{#G&M!AGx>7Kb!5?h7YM?W0R-wit7kKe;eONXvjzhlPQ2UZJAtgm@t>HNwMG6aN- zoo*D$ys)dSIfmIxn}+9^@&q~6#m!>V5F;zzFeb=0Dey&Nprf;|7Bez3>f3gZlG<}+ zN=iszW@oSed);*jwu?zl23_l^sHkwKCo87aR^UKXnKca->~T0ByIT4OB!IW8zkYqcK-yoo_@-M7Flk1a zm~{8H=DlPdUYsMNFEsZVa$W2Xh6gaSyj} zr9E{|B7DUh2ITT@*mi_(hw%*QKh35vGGS33Dz4#VrhR_=>{9)tD=|d?gB-X%xbF>? zdsceSczUl#YG!YM-;h%j2MC{T^{-#|^(esApivHpwj{E8k!DwTK!xzTQ8HJm6>d-f zHhH#KVJLYpMUpxVm~E3Z8qv4 zuzQ3-=70F0dVJKQR0t5M6!|?klFN7PXjFO`t1s**RRHTkf@Su>z2kic|EiJiR$4gy zFi=u0c(s3((Yhr&+ZkIRl6?*M6#$KVHGpq-F)Z(k_CZC(V;c;57*Xqtn~>g*yxy)@ z%;k>K+Q(9JJUrnwT%VxJN?*N3oHl2YAHD6ECNUedbMo0D+EjqM{Jm{ZGRLC;lnuBa#xB2z(kZ(==U#?$Q}?(5j4~L zCdLzlhX!xQV86*|-_yUpwxJ(RX5aNiJIK<*N=w{x1=-oJ zZj$N+C@9Kro=`sp!+7Fuad$r(m75AN+B=aJa!!pr)jrgNyaB3Pz3cSp)jPrPbB zs<~L6rT6$)5T`vJsdbI~n@AxMa`yp_r-z8H2lyA?_c7YEar(-V`nG3_>13+Y1-hB< z)jtnmE`Mj8}86~7c?!{8+fKa)s%TVHk zmip;WFdk%z9nm9}&zM3(NR>iaMcUJw0juq@%B(`B3BM9(A4bHR-*T2rom_O%Xz?~U>U zgh;98k(rJ7m;(k$iNM(1G2gsLxA({Qt$}g=BY6yi8u>}Ja4Q9}UpS}O=a;kRT_SI4 zh1s8y;kd#u*dPtoVdEqCN%d0tOHR#{UwC|OLVW)K3Vhko?a5|3!-Z{JK(1&_-)!J9d2>MsEhBk+?g0D#$}+VtwDJD72s$2kL-{|{m;+s z?WB3M+L?TVpWOe=BLe@1^g-$ z^?sNbC%B2P0P~&P;ZA$K%!UzXrXj=Yf>N+P8eipL(L|VVl$K z>SS3bM=uotC;04Q*{U{KSX zVk>$R7becG>GHu$Gsda>nN!2VVO1gVA$9LjDj#wD9U(SKyFbkPX9F9u(5-SrNvsC4WDuh)8 zq8X}{>BH{N=(3*{>BAOHqPV&C4Nfa%`F>zh4hg`5RAZ&kluU}-jlE%g#1C>;DO}<= z`>Ub&Y<}k?71+-$ zE;-4=M8uSJSw_((`uo$g1dn^lK3a5f<-Fdk*HnaQH?9=0TP)!G$zKkHwfVxTJKrJd zrG=8<-R|%G6M&|<+yg`ZX4;uX6n`0$Zn)HWFeP2HrB9!b_9+60(4%&c9LB3z_s7~9 zwD*el3-)F}{0l8)oFA%pQ}+=@13xQNcKAkz86e|O7gcT~-;5UW` z$aOO<3ga=e%D5*mwP=zlms?Oy1Y=Fo;LEtQr$mDK8_ui{f+=w>qOMa)a5LF6dm=D+ zfK;{Dw1O+$E`rz^l##(0@lANW*jHxUNOpCIDk2+%vV_q!KvzDeLImgE^ADA&YXJE? zf8t5PWAr!nXXKq#fb$v=B?^LlYd)CiWq?>wsp&!K`9(6MKau6c6@FVsm(~@V{^8}) zmWi`0?C1%OgxAc_`ky4u%Ap)TW*KaU5dQ1GJ-r+EABaYZac)ahb7BBX;5BVS>dPo# zM!U5CqNZzS_V)@Z2+=jtmCrygGR#XiH=dS9K$(S2K}Ct<-z~Xx02M%Iq-4x)e#44l zb6gp30G&HLESVCBwzMGdCx?>6eGI2?s@BJchHpew+NO@nn31%LMZV>ixS8mD|5x0ax^tOVUe+3X9381KOZub56yM%Hb! zsyK(yCxoqR2c>|xXTuLx77TK!CSe6xqGuwz-=`hEUpKPT4pAGvkDYjz`^P;!_a1M* z>JEhPCJ>Dbp0JO3Ynv%kTMZXI-%xje#FlPTV8}+7yxk56lA{a_#YCeiBp>FP0q{u8 z8)2}c&;s@TtJ`It|4m?fA30tr5mJKfeob7GiVhXTQ!uGERXDWNvi&K5E>cEj`XUD{ zGU>3%U3M17;{IYCpYWwA_dO)I1KzDk?yj)*ecH4Aj0D8!%(i+YXr~hTWow8fmG9Y# z>*}WQi(Xe;D`j0o`8aW@B;{H!s17uletxM=1Iia%$7>z!T{um^%lHr}vX*gGub`^b zy^YN0KVEG=WYe;qwEJc|qXBJPAOh1;RlE>Z#vMION*w#g*+j)G)u%h7>XHaltC0o} zUMM7c6bww8t>Q8*!Rlvik>hU3>;9Gu-xg(5ZG)aXrX1g8h2toYQmj%VpUu?_9!#>ou!wf8A02$i~?>Xdcfv3z}^EcX0uPZ{_Jx__>5cM~7c z;dvE?=Wf2LcwcsUnD=Sb)|IF-_jQ@XS01KrTw;4&QOfEnKFg@VMOL3Xh60~fn*MQo zK^yG@{)K$0Z+4f*HdXtQ7q*Xt(5D_x@X^}5_hs0|Zwk9j<|9R6fwIFd!wo34n4gEN zK!<8FcB zG^oc1fmWAa$;tooBi)9(O(WodRVz9}Mbx9T`_tdKOn6dZD^#?zH%gTVRG;MrH@@Ij z%I@Fe8l1dZzKMyOJn?~_rjdh{lc*%ozRk-?m1Z7Wt{9pe?w`lUrwGR#&`3&*eH;Fo zOrHII8}FBWmt(se;w3m+OjnuT(r!EbqiJzUz7>e0J7q0AE$dlNL|1c_&5G1>$nlou z9$;g&T}KDid>q}{>WGmcuwc=pyQvwk53sX+be{1*C~Uhj^TchzX>cWk39F}) zt!7Q3VQ;rPnR4Yj$UQ<>3US58L>=zrAk%c9he)^6E7cC)Z$K^UF|+(ks%6>n%qp>b z5!cv^zN48HnE^`B4a#Z#l_+|BQ}9Di9$FGFpPepW0EMLY<Ok)rvLU61kZxlVpRp zyQ!j8BQV(`M-`g^ih+>C8H?u4372j!*p2&;4-}l&<6oY95giN*7NM?U$Z!9CAC9+2 zc3HY^OwT==7NT#e#F2PEP&lds!XHTqe>x=27P=itx&3;VZt32Ym$`l^SgLclRBcyq z!^lIM+9Ju+ln+8LO^={v9M9XI!9g69!pXo({f>nj3me_P=#=}5tSqAD2QrZT=P5Iw zNEK;V7LgAtwQy2h91{JCmENBK&WcNv+W#2|up5f3wLVgoWo4z4N3J{NS?If@m~*Mh z^&=(YBx#Udj$p;5g+Hajv@R7`?Nl}q`%(O-Vb=3|c6)xc4+9MQisSZ`Ta7>@X{FS= zF|mEgxD-SIq2^94;%~|ZQUag${am4)YChI23F(vhA3=(j6j-k*_G*>Q_#(>(#?o!5 zgKN!f`#1XX7ZN+8YEjh{8=$a7n1;k+^=zrSR^@mLa|bw_gXfaW7UBBnv?ZkGm8S|L z3UKpSRisD(*!NQLZ;ROmX@D^fXC>qu>(g`t%OfP!)gY4cKQj} z`0cS#(@vr%!fbs&e|q}rPZp++uOalD_7R~*DgA4@TNm5)yFmTv`E*{V!1ei(i=_VL zkGQklKXqX!WH44#U#kQ2ooj_+zh%q05D3JkMwe}J8E}j|Z+ayx!H0bz1E6LM9+eI2 z8T-(2{kC^Y%?4#@oOR(}&n7*F@*AwHvL4bz&LtYh^!Dha(STvozbqm^0oX`IHEJy2$YU?xIuD;73wR=TdaM*tI9UN1 zN>oKNytuyEd`>&EzoWiioaMJsNQwXF0@+o-%AsmoG*n|>SFb!WkMF~X#iLcya8p=5 zuh=Vi?Ikwz=rlSHnHFQ^Jjf|>Nl;hrKdk-PR0q}JVAKWf%bgV+z7Z2GcN~rbzrvx- zl#ZO__9*mSB!nQZ-03HsL&|Z8i1(vxLy<9gLlwH5Zzm2?+-5sr$Ib|s%nc}%RBIj0 z_yo%Oh&a;)DU18t zmltvS7po_|HD#>31{BFuHzs+F5|z?{vC8Q>UKFX?Fw~>6rJ3&@sh+ZvdYSd=RSAU_ z885>ww%VsT)>Y_cEtrx?p-_f5IzU}K*V|I+djHef1U;00sf(27TN z?5!(fXb@E!PMEx+e*Lxe8>8#~yy4HA(Jb;BLsFG%UdQi&`I_`tR76TFI4-%I-DFr^ zgk$TMAbis7!&U8F1p(c;d1n$VHg<@Pw`+1)PZh7Y z=8sSPMzkP#m%JtR()%`3*MSDi^x?AFnfrCF%;XSrPiCjxB|f8%m7NQ}Ch_}Xib#gh zUNenW+gOLr#E+;eolMIamZ~4mcY0cvoJ|1*WgKAqL0qzwZ=$RdQCJr_hHu$)R@?X@ zOD!;(txvcW$0x{DsJU69I?%!(LsDK8iWYCj&NYoYo-iK|I@zQmxh5Qs{f+*;xvlcH z?@*@gtpQMgJ&6=O+MxM--Yk{gQ8tYcpY5kk5=>+a;K_jsPzlMKk$GQZ!9z;S$(nH8&Ev17ZjD;nakVr?zC&R?HsJ~itr@Q*E=l?Fnn>P0rL~%e4K4@Eu zs-pW3X{|*WYhMMomxgW zYq;MCLURvHM)2XLaWTEuN#>DTrc%%J`YlMH}*P1;^0$nRfao z@1euFIZFCk;4tq!xZ`?{d95p}&r^7>Sa}ron$z`h6sCQ9_lSuH20GX3jc7r5df1!= zQAJkQl>|#QHb!yz8V9z&`Qf;&UiU<>u7oRX3`YusTPvjb>4^`cjGZcwLLx4(VXjZT zipRueShVHcoyJoS-*MCwM%t#d^;l=5`Eu7#6Y`srZ|o;D z{cqtxZ}{kQ1R2k*@U7(T&%zn*r3Mo-5Oa!&RN{?7{=ZxH9@}FO3{7igv1^Z_I&kG^ zFFWz%DsN<94=wbF$CvXT|Fw^_^vb3cZk{3jrLQrlFRUCa+m8I5JURKfPT~- zOUcgr@_x)evsfbF5*orTqVsF}V`Y%99f~AVPCrM&HQerswzYt2>WtO+Ij)8UNh-0J zv81L8&aXM7d4P0gV+T@`*P|-!r(t5+{{lFnVdrYg;>J|A)c0y0Bfs!)r`T2H_%yu1*!Zn|M+exfk4&4MC zbki6`LW6dv$OZ&*qKhNfZc*+n=lImqYJU?W_TyL+Q&lZ+Qw9EUK9>;;0LQl33a!Hc z1ss$0ZJN1X^pVCwx)MOJs>jDArR@q>5TbQ_!xuCRCBc+-H4zm9mzt*~-G~*7sQ?p2 zDTB>#lf~I(RWAR@=577@guuyHTDnOHGqu7QS!j9UTh3_$kyam#TYnVR4P&m=9A$Xc zfsG#Q^?NMq+PZs&Fh6xuAE(6mzcgQkcwZv>Wdm4%^2gPd!kPkv`1wB#vzg8f;9N^u z&h*rf?8V{r5KES{y*naz%1`QBU&jh}I^cq^=rn(jpG4C{hP&>tIQxWeYAMYT(4<|v2`rroUt1~j zo=9nUImQC^pVDtap%pDaR&Tg+$q55(`|S7-kn3%?y&%xAvZBoU`1=I2?1=JyF|}zz zJED|Gm7Do$7?%jpr@Nlc-@yy<$?mmR zB#9jTKn#@xZELM^^ab+1FA)1)^bWn!Xd`V9QCC)56EiX(&c4)&ZYUyW^DEaoU68Yox=_M5u8&;^oW5Pu1E~XzLCUbb!zz#@UY^^zST|P zW75l^$HsE4oktncv5}6Vy~Q#+bcqQ|;|3+-SDCqU{L9aZ2F6%eY4}v5ec5$|lO{ya zNzXNoMtAD`2=Fn3wjI749F^z^%Xzx>xG@ZXw6;qIlU zSle3UT`Lf=RI7;}3DL$-{m$uwND4Gkm~<8;OO79nOA>KwDGJ*CODUvJd~&m_>{g9- zYVi@!YIVu>B8*t^7N6A#J-(Hs`=LaanwJI}DyQIFpj-qhjIj=Q6Q-4-!uG*D^dh*) zDY*TnH-YF>-7+5PQ~~Ks!wW0r1$u;_T8g@k-@$Zdj3|#Gs0hJxssq~NmN_zj3bqjO zs?F~bU4x3et;^KwgD%oOrK}RHTSblowl}kmL2b(>e734v+lh=Z4omAOSml}@Zl0I+ z1tV(20+ad;`_K|30gmwkjCpRFQWw*<77bwGOf{*oCvuc=FXMHARUT)a=wwbb2g~=r zM&%GNFizY{r?wc9eQZaC}=5%1sn=YSf6&+ z%#HJ}weBy}!(&C;&M7-UEBsf);SB2!6e7_A+^C8LQr>i9t%};* z@B6g^!whNI(V|Q0yO@U(XEVKb+>jKtQ$c255M|EKwn;RZBm?BmjtC=~pvBY~53@G=$5Bl!WCJN!6G!vfA#n~$NADOb0B-TZF&sjAnmfD$04>BnKD72WtRj!jS@5-{89WyTJcXvoxE`+~_-2F~{m8maKMm5VfrVtQeKb# zbk3r2aBI;X6e>xcFt8u1=KVr0HA%THgg0O3XE&C*4jsgYaT0H0MEt9L_sToRslMK293IrfU( z&vMQEK$QOu@}pn8c>vb2nOyefv^df5(8ZXc0R_Q*<%2AV0?iH3(Xe41ETI_WTdJW3 zoNgoNWak>25qU-+$?5vQFaYQm2rDCKyE`tw{P0fd-lVAR_lbU*$k*!_h}mU zfQWL7Y$BfszfnISXXPflf0pM|{+#bzZ0Z|RY*n6HSrdM6J{T%$lrlDux|#9_S&Jm4 zP#}ch!?Lk(iXM;SEaV;zw}hbpk1o*N&7Df&P9k2a*|S6vBduRp2IL-J9jLDV!;?8=n(MM*PzP#U>wU?>ZPRU3Ht3+n7_^%hrWIZ zFW&fwUed{Y=ZeA{Rvdn{2Zoy@OD<|p4fw++kUGGf zpGSVq*!r-k`Vug3m21+Ll@Tp9CPzT3rnZT5mbvf4ET#k|LbtZ-LWn=4po{5mpXjH- zkmLW#Rin0|rBJ$lB9GBCG-VWhYQlK9(lj60Fa$?h8} zOG9sKULM;cDz3qlOQuZXV!3OeAsdgtS9yZ%i>%LV+1ZN>F0Lf0c6m@3AFVwo2Y3oo z2yW022V*HNiOOJ6hb!AOgomt6 zLt;nR?|h3dkvV-aHce+y+^h}yXKE%R=|{acYxb!fTHWuTo>v|9p#B&(U2YZ$jF<^r zYdE(CG0pZj+D+bEfUD)uWL%%aaJLreWXwy&>?tDUiel8ZemEUd3mBO8txl4fZKpBC zSA2*W?Iu5nn40C3VkhWT(9fx@VKz%%7%-y!T(Nz#M$~@}OG?LD(D0~y$~d4)efMMe zpl?l6U9}a|I!njR?|UH3JMWmWeo6Yll|bOXeq%8^^|ko<6C!j8+4G?j7GHf8I`cjG zBlNTMgZr5kZvT!|5occD?W<42nG2GXS%+ul-7y{f%wcU+YQ#G?3e45AG-4^rGXd4( zUK3w!(s>IxFcu?*JvG-5I@;S1ln4%5vfU!MOc`l_oU^R*`~t+%X>&3xg~L-kgJLIt zA9>E7KVzRTb%geIOkXe^#VFlYI1a(qbQPO_w+D-aL#ERjt=xZ|3%!B2l;_Lv>qkrj}V8PK0oP`4G2D@e`W z6ic;=AD!r09a#dM>C;1|ZiJ5%wKlOGf{rgV=4G8xr^Y_hv@wG{x zu4pST7FJ65b)i(j_;xO+(F1jBG6sY|M~js>42bWGDq+BC!<^DvATKr_2#ELx=jTOv z+eAdsX5E*4wUZ(^se}@HUV!%%Ae9NvvJZS+U6dLJ^jpD9aIm4iZ)GG#~`7D2p8SPwVAN(+X0B6D)(o=B3Q7MsG(`Mr>K)4ZN5%sKi% z>5prh8Y7h}E|Nly52RY>NsSx(J;m33p9$YiyWT;o1g%0#Z)A;`#r^6P7uWFuo9|Cu z?;Pmp=uZ58zJlfbNr9A7?eN0@QdcmQ@ZJ7OatmWl{X=MSO_oXdQ%(TM#K2kgxGs+fXQswtCRHwXsG6M)kf;}n*l9AgT{ zf`NLtyYCFrF0Ot5)xkFU@$`{X$|}6&X2eC;ee(I zzHi5vTdU&88Bh+clsBlsp|Kg$yE#S|P@Cq7)2{uGb9vv$+BtlJXm8F=GUW&XIE?oP1z?cS&yIo0ytEe&F6tI7!oD0bxa<6I>{*D2qz!p0(>* z-6b)UxTTwZ`0&MN(3Jf9Bcxd5B*+_DHipaek z>A>sotAlf*fm2r|7&1DY8M>aKnWMYpI6c$6E*FCPP~uE7g(XE9k2?4|pIs*m(-71j zP-t=Y+6Q2`aq+Tdhtl|87f=(Hbli19`n+SxY9G>fU;KFN_K>tXf*Om zvh-Tz#D25XmD$}b?mwQu+<1ri9fgbTD_a92bbyY&eDslG^UvGs&MQ~;dfV&VS&CP$ zs!HNpTL7=eLGR)zd~ZJ>UC`r;1&*ZxF9o!8hI)Ezv2d$QjQJf@`;aivt(4QR2z!aA zoAC@{Wxtkvw4SpXG{Q(~`$JJ2^TY(+u5SNnhW^gKcN1=0_@Y10`D69FPlXzuBY5NKV!DG41w*8;9U9)5Sg{E z;VrmY@eEY}vfdoBfiF@c2OT|;PU{*Hltgu0gRPnLJ%AaAI;Cg8kkZ8`ClB@_3nZMH zT6<>IeE94(kb-xcN6lJU3PfJvm^Gb@{PWd)$myw0qV0F*U2~-(M~s3F7-sGAQ2iov ztm3tO3j(0CR(=VdeCRaHMYf2iwJ1Ra7QfK&fyB7puUDL#kkO|_FUkag)92=iydB&3 zgHhLOQ;NI#k2S+t)l)xKpnm;Kx%&JC*!lEFe_p}&_lGWlp{cd7ZxbW{VsnTRNGkw- zs<=fn(>&>usr2gAvv#dvk*;K(ea~uT++vUB&^R5rk-I%5r`*tH(t!pLcW5xANy)J^ ztd&WKm0TxYJsd%jZt^G+4hW^@ttqA2Eq3^7oYPD(}2YwaFTSOGc*MGwsCIquR3{w5gNy*e>1PW8_mE+zs}P|4;hZkA-x z(x}D$JLtJNCY^v0{@10%OlA&;EIAiyw=M}~S*6&r|4{bZVYcJRA`3khyj&5RPBQ9Z zGmxx8`LTCCkPZjHB9i<@=KtG;)2H0fcbQG;a5^>Y<-hKgpupH(@akxP$c%V-dH2h5 z(`)WG@A8_5U@8{1x1jVe&u{D5Ti4EpU?dg^h^yDsBaQ>iU;gXV$&0@M$X5`*SIA-O zSW**^@&RNKY`EV!1|V5GxkPwU<2T#(681Jgo0(Duhxsyf4wKXZ`oQ6kx?ow4BXqAY z`VM3n3s{oY<3N_hHL-Tgbe(0%DD5JpI#q5;wb!@*vQq%D@NvRG$3pnR?ff;hveKY3 z>v-qaVEXq9_1;>q@=(IxN=#j2Vr%QHXF7y`1n>rQErn+PfG{Zbrp>vPC3R~S1MN6w zuteT={Nnh;IC%yb+^HF=RZ;1E@Et2g)GGHQT(nm?b!Yj@4E>+wq(GPf3RF~KL2A1Pw~+$ zWwdJb8|@%9-%j5NJ0Na!=8(L)iG_)7pLlsb79HPG7XvZC{P2bQrwha=LkC<1Biin1 z7|OiZq`~89e5Grrds(Q%F1~@jshiade?=Zl9_>ZAF)RLk&7L7oPjbp9-e#&7Wg;5g zYS_${X*p|40{J$P*{ITt2mEDAz}}S4pB?w)y;XA-Ue)Ktz$cX12?a$iiL1a95Z$Hbn84X&exMiRAgAy-9_E36OiJB{d|qF z+B2mYMT>HT4;M7uIl_n!;D;NT<0smTXSS9DD5G}OygWVkuqFK3gxj2IY z(s;WpQ*&rr|M6 zbgus16jmDjqw%ZiE&9v0z?%_;q~=u@kK0*!3(G%izkS;p+xzX^UFD;8`nZ@Drc>i7 z+`{i3B=LEFqw&Xi^;cHAY(Ee@gO+Bl8^wIQdR>Dfut+xeOje%>^sU1{6AmmP2A-ZM ziL9rpS{#WADf9RXa&^3kUnvn#PpU-$AS900%GjRCGN)mN;cnbC>xcPwA}pTCW8+FX z50n8wnAEXMOOb^MXiJlh4q}W`vew#$%^u*idP<3&-X5Rl8f@Sxl**WZY7*G%FNfP7!4h z%dq}UQix@wFBiY-toz3?7t5CN8GXuiD**b8%am(f$2Ivo!6l1a+4bN0i{iy~^tZrQ z)UV5wIH##(L`n`An$&i#v3iX+eXH$cbeC4NsCpOyHk;=YAdH?YJ3+HWybjVDbApWr z=g@l0wCTg9f%^`X@*^Yw#UP?Ey+F;CK*tH>-~qqh!*&D{8-hr$`dB5fTJ07HwxUOQ zu@Q+;X!IC@(9*(x%=e_el$N62_OpQY26UN@0Xt={qVbQo_&`049!2AnR8Sn;=4=g;|*+_N94I9N**Gn^>vv$MT@eNcRSd_ar>K;3`( zVPr(ksddIMJIaA?pfaX-H-Elkr?qm?FSO`bbrBa`$Fdx7d@IN+_m( z3V6|VQJV#tNEDRF)@ajoR=GE1htT_XQl6dpmJWplbLt&Vov0ioYsr-AOpa`Lh`>&# zw_YNNI2_2><4~}&vneN6PWOrejY8MCbo3aRW9x&*%`Z~Wd_`h42{;M}tlgI|z;u5+ zDo$3fOh}2twtZ>%$30h+C0mfmY*}f0fZ&<#=^zN#@I3x@NYcNkx+b3?)EkK7?5}LR z-HmnKpKl=l8IGs&xS1B8by<=%$OAC?uK5ngRCE)UhUZ_1=vIYeX^?$7!P9>+?7%vC z%_ZR>NPH=$rj2rSb=_g)#oGGHcJ|kiox*8gK%yT zrt5N*7c8LYLHmn*W-;!F%o~d=`SU}cLTKr1?4}3NO>Xo0O9?lB69||&!W~&d4F~}h zLdUVBC~s(FTHe;|w@b!mrR3JfM6%@g@c*0t+YOmFrFU1tO5O9+V66N3;58lAVBp}k z@(Oymk@mYxoNy>ggw?Mpblq0ih2fD|#hjwd2(XM5OlUpy3SQB>B0^ITPaQf*M@bE(kD!giy}K$emfhp&6^t!ZaF{KVrgHCQy&^ChS7(p%8j3Ep zT)dJ^AuK^Q02(~cbpQ2?7Z*c17B-K`h*C>w{^@ke*Y3e&Y4KTFUPZHt@fZk^1-ANb>`4u^`vU&WouW^rG^5c6FO zm1h5u%4F=k^n0kftT0MN zRB0EK;ORg@YSdDxmt)2M5K>}<{s+~l3IEvd0C-A`z59fH^T6RFp8&bpj=k^aAXF!| zFoAC)Y%k#VQl+a}l!8={=KjL*9PL>tcjJ-}ED;{FQwJmzs=vq#p1gRW1`W2IkSo=C z7Gh~otTqhk`tNMF%1-f!ns8I`Z&%Rr!`vGGR{P#!Tn+5b_HEHsRm4i;ub3#31rEgp z(o0GQ$MogT*Zi1FT2BRGe#&C*Ecp->e)z2-iVVJ=LoVDZV+T{C8Y>k>oGeAhGdzs| zhn^cFKt?wxD4aaVozM5l7Fwm`qe#IppUEUn&q^7zW%l5(=q>!im6Xs$fUcDrZ1tz>`-7QT9B3i@Nrw z^6^;7ZuK`8IXJuTIL*w02JwVihtB6AcGN@e>CygV(BBMwhYCsjC9rlBVSXJxlBRtX z`|iMQUJY{yQL%@J*Gxa7f#e^Mp3!-d| z1kWHpw@Ez$&NM2b(g4{%uMvrz$*_3N0+vN!(N}HSCs$r&Fd1CB4IEjhv3g|?%72Px zsNC^cz#dGMq@XXyz+xtxF)^vDB)z9*OkoNC_KC3UFlMsyEV-(m(>uAZo&t?%*BPEP zmnq>*RR85mscR1hNGxLa>dzE;PXu?D7Znx+rX{UDctr;rX?qj|{9qS(oc2#0{tcX{ zHu07I_e90tK$yn?f?LHM^VH0;{v&|d!?y)pxWA#E88JDH#z}-K!b*YtSwaY0meE>@ zH?d)pw|LN3yxJA^oGV!Q&}#m@9=XWnI2eKSe*ToHpKr_P?=+`m1&(l8%fayft zM4&eHHX%Z+nnCKdON~9jhJI*a(rvQuq>J!rynDyT(x|qn^s{?PoO13FWQ-{v%LJea zJ3`v|pSrFytf^pW2MAIO5PCpb0@9>~E=>rbOO@Vxlcv%^X(0pwse*uj6sZPjigf7$ z(xmq)y^0h?;U2&5xj%27{K%7RcK6KAyfbId?7WkY?JC9qN*r#W7RrtF$H3wtwAzAJ z9sals2mCr7Vagi(zP^o*k6xHhfIP6Y=y{@+2bBCEw$qS_>bRnk0_v~5ZkIB++O&)yM4&r)V2Y*=ARq%+ebCuSBJ_;oO8@7!D|0_Ss0HhHQD_lVG z6n=~6n}Sn^stP(BEP_(pQ3>Cb{;x`>y1jSi1eO}Us%E{)js%}3}mj)kn-HLeU zJW;e;ULDT22niwy9OCznJwt)Myf*iun0kB8kK>2G-d##`Bn#;|qoRB=6!7eNfG?*v zDzcPzw7Q-tqEZ#3wwm;V#zSbJ-27@(kA_I9S7cTS;Ka1^%UW4Fi12PIDKO4@*L6^1 zTh7zSQAA(F{ms>NImL9=bmD}(fP(Wm;+?9P@)u^}cbC*v2Qgd&NsdfvA9Fz>V@zgo z4VQ6x+f4Um0*Q3Q>!$DkZPB^fQ5gGzl8-G*x-ln|U08DhfRK3o(9` z6G+$@uO zoGIsJy%V(s%F6rk)t~zHpfMNE80?objo;D?^@WlXRSSc3v&8g|I;wy+O2pmdh?YJ= zC6GPm*q8eoBa<_vCO2({>#C=z`3kX>Am&Cw`g`{r@f-e1bud)=++qudZB9dN)z7Vu zKf8U^tYwb=cm!b5kh8MUhWr$Vl$(+Hkct7YRtt4hy>im`orc=4#a0Q^enmt&aTKFX ze3-)`+cAp~zfx8Usyf5(^Ni(Qd$=@>x9`*V(kEl=$>EL?Qq6ZT$sNuv-9xwF-?@s5 z^WTpOHui%-?#<5k7j!r>hC20bODWNT2~IsflzLaF2xXJ7?W+%fP?}{gOmtrAJCKh4 z29BN)ep%B*8Y=fg{RoTR)vd1&g&IeK2qG(Ggja(P?rYMAD~sJ058zczfTMSnk=>Z2 zNCU{kNY9gc>F{^qJR+ou$Tv=ggO>}}4G+Y_^mK07LEn=WY%4yi( zp6ziYepe)zGjiN8*k4Fp;f~!;W0*Q2UUuR%i)YrAC5w+h0t=<=P7?~(JEZ{==w4ae zYW-Ws$Z4a-kwuJCC73Z~gaj4~(kSC(keCsBuzq+`H&V={2xBlR z{@Xj=uGEF_*K2U0S>lE#+l6e4h`A>1V}3J*>|RqFaBLYJI)}7=i6CaGU!)i*H^-oa zhZiZv!7&6FN%K(A=!)wgsy<)lGiR}Q3GVx9wVwh!p$=3Xfxmk#G$$XGp=pWq=bPta z4DFcIHpRNK@y^2WC$_w@`_)ASZnm1w8;z5#7f8g)8 zl>VyXkuHly_N4ke*re#yR6a;3BWlYImcrG!jaNGHr)rLfZi+K_RFKcr;qWN1ajzC$ z^x1Z_uyPQ)vZ&#^_t4nM#BsR?R@2Brs2c>wiCvd~mBR6h5G62bij$P8SATQNI>0#Y zQ)mD%bJRvpoyc>rQ0G^=_lR59PSm9|v)Dj@_~}`=yZ*pWMnPorSN3I|^0IfniRV-<;%zYMRST zuRyL3Q}~-W;s)+-`mEKGKv@*u>|O?xSNh8$+PT=~nUy>XDJZgc=_>1fZ~sJa5E;8CXs(~T^5g_Y7Bx3uHhs2IQmGKHjN&kx-1?{^3U0C|I#N(ZbvLu^EnmY^o;aK~ItbGw?3LJ!c+1=uz z@g^0Qo`Y2TN;SWpRZwg&HA53wU#vJwYjjv!s4+@1H>SHfupT!aqbydT_lmth^2HE? zw2Xy#wV!N^y)gr;Zu|0xvWw-PI=wXsxEzDc<3R3=!L?bN5T7;n7WIt>B2u@K>eqeF zvk5{^?WAby2CDv=hgn4azxGmsMheWP6AlT74@ zI;>URPeeAM)@Immo%+uvmzUK}XKvV1583-f-@Q|Kb{}UT52i2V(H0(26D#*~#BN}0 z&^4%|&^Oj;><5N%jYvN}RG#=@DwzbE*bg(ZQCk`VmaRWi;Ttlp0A7e@DT=3o!EZi} z-e{UDh@HAQ{B^*VwCouKUSTrjs1|n4D;moZFL83+;%KJo5y-5KKTy$)Z}4CPZf5Mx zEjFT|ppk6fBad26UwP~oSHceoA8W4U%cB7g^(z#Fmu-RVQ*g@WL^bq;V+Vyyb9UI$ zN48buPEoSIy|E(GtQ}qIERmp3*({_i9^rE~vk7bbR-!3A_~A>Dy9`kR>PZA!935*< z3Qk72Ct^f%a~P2T0&4%W_Vfo!#y2mej3GAJk=`b(kjcz2Sw3OTan^_=hUKu1rmb`C zPB+KmS|15%#;5Z;l1dB+oOTfm&E^nbVHZ&0E%Zgx_Xg{%zXW1rBHV-jraq7RW7^uU zzLZOUPT5ws>2~rScdTZS{fHeA@A1-wU)lu8o&1>0Bpc#?+fvv{=&w|smxcP$YhyWE zwe)r@ZtM4`v*q>NQ%ES1AnE~$J`V@&kdpAu=&!xv+sc@uEf&5_#=Luo0WtPC!6`0J zS`~s~=CyuZ!?KkoTAXU?5&O^2wv&U;7L2_k+RJ-KUTVb4lNP$g1#f;eyv}UIj5DLi z0rMs&0PC5M9-CT7?FG#42uz=+vcf{3Jza`)2G-b?!N_8~km;Tl732808DIo(n)@9F z^+!R+$#g#>DgCtfu+Tw?Z?eR3Q_{j1x>p`IVD6`|{TzF!zU&9eZr9kXMvib%08PC| z+UqAMmWVv)|E+6^`z39EnGCk+lIQi!P94erdHTD84UoIry4YinuwMa*IU5LBO zoe-&cND~JE2N%-`#F^1`;&g?R8s+Xgk)^R5q&|TUmyafSt)3S+n)TqdsE~p8z-pff z-w#tL@o*?eCM^Gj(yX}cT^$?4?rYVrSLlnUDGp01`_x%1yI($2NNQ=1oK`3QE7iM9 zCavFAX54_d6JL*KXqA+Toa(hZd28ogr=$T9lU~lT-Ux}*5`>LjNlt+Px)nq)!OML0PO*+_;HJckjG?Y1`;2iN*t$$JnHu;>moNL0+!PK@e0C1VMOn;eIDmoEjTtW;(@teRgxJVJ<@K?S&GR6}? z5;SLE2%!U2Nz#C(&nLX=;z2~ognkXfr%`)Fe*r49bjH7#nSl)4aleg+fxs7HldH&` z88s?%eVR3_ss5t4+ApKAQL*mXM2K@q&^Qb=Ei{y?0w^E15T_ zhF}kMIK-h50)0M{Q*VNrNGOL_Ext*4R7RbsQeazi(VeLus>X*fcwf1=>TGIL0q2X4 z_-A3v->^G!O^kL2noJV<4j_W@DPjT`DlL6@<9NT@dOhJT_$-Kn;b38u03E6E^QjbJ z$<*^=36J%UX)<{f+MYsS?|9C!^ytDFnOb*eU*=SKB>!5^@<5=n`NePTU)D279aQ{X1{z%Eqbyt zc=*S|H~$QP0!}=^f+FwgU9=Lz@Ve|N!D73_|Bx&!#U!Z#0e_cT3DQRv(<4~v7oY-G zde!jIJ%ONIc8zq2odmRXDsy2jKkYw46;<~5I?TnuEcEi+`U?YD#NWl4Fk!QFv>*L>Nb^Gq9KrTwNl$9e>yGH^~hjTTN-^8NF zeVHTV7lZP(q2R!e)1&Onz03O}Dd&_lXacV`BCj@wLd|0S;#rOk5DI-lO1R$bO$h-3 zfiG0=hy1O0=cg0<*?^LCZjA#m#&kOrOz=@vj60@)+)&lMs9%9enUq?-va;_6A0M1` zKipSh;Ovyxce~fwsisI`7zY%Pl7J|O;_eNCf8r2Yaz2vFWRZ*9{pW?D%Z>s+5Hg1L9U+Q z!l8-q-}AP5T);nSZuHm8<_^3_(MTR5`voj(e9yd1q1#;-2e&a0$bMp^7c3hD<19V^U7ErpR2p>(T<|Y~f|wO#!3# z<*(oMLk<4IP&gcEX~zqkG3v{FK1?DSdIO3;WL3CV-Y_TQ2oG-JAT}q5rw9zsZOG>& z;)AmTDEpwv42In!_y6kL17V@%LIk_d!0#^MeWF}uJ;`_;&{s_I%db|g1F_}kB4?wM zNyB|O8X#B~r&VX;ZhOtBn%+b!d=7;p1k0YkP#Xzu5sT&;dFEi788f()V73 z{^`E$uY^;7(9eJdo&+8B-+2!ZuTn6?5ob$z_srC~B=yRwsd}|Nk5c&)S%zrNjmr^ z?+Z40naiM%5ZQzIhNyt0rx{9U<$pqPy?ZOz4~IthG+1gWy)_MOH?hqrO)t^ z4A5F?ykjSK#o5oF%YS~I1fEWqWP}dQdACuNjNQFlIlq)Dms0_vY{L+$OhUjFAn8uo>Sg_Bku7-V&8v{3rlA8DN&nGfs3SHFhCUZ``4ULr+As?OTq%lNO{U=s7Kvj?rR?R@#MWJDIozKD7m_2-UIkU z>zay;MKI7&cgK<^u!eil(`cFk-i`?mz-S2cOZL4)%PeLp8F+MaEguQR&LYEsmeFjg zJ|`z6uZA3LtF}2dod9%(lnh`?tfwJy%70Hb)w2U9cxeTrlK`<5tafpyT$~-YKv@+Z zmXH9-4@!FBgbej0pStpA4@vZl(HR~hEu*?N$%tS8)`Z@B*_iY$GN!n)aRy2V;%*|) zZrXun#ykA6L${O1_Q!bJY2gSkxaY_-5lBcXQzWlI;8#a6MHfaS5~k9*Awyiw$uI1W z*2KUule=reLVQ+)eCU2HD1}zu3zZyPsLt%?=Qv5qD0MP735?Hh(rRe%IaO_#5C)p~ z!Km!9x)NmoMN0n9f<%qGWSOp%k{M1>6^L0F1Ys!t-&@p8^aLW)*B=W-4Ny{vCd=7# zmIc{lI5FkR>cjkQhRTNcqU80c{A+-9~(qIlG?xw>P0# z2t}dooWF)0)L0=9f@>BFz=lA+y&Rh&+acDc8$#{I8uf)7rdVpK6`j=aug&Vn*P1#u z)F;2o-}EST0$?>qL-%k3N&|4r9VfsX3y=6uV1gvj@XKhxdV7H8ED$&Zjz-s21GhM% z!K8e)fR`&sDEd`FNd%Z@@?-G@>VJ+8VUW%(i--mhieTt`%Dmj@&!BwE9}m#zxG_tp z9it;$$3Rff%TX0w7o64j1Bko3pa$kol)uaik^Y;+s`#VR6}_)02*=xQAyR7nM}}ea z_Kc2h5cu2f{rOnjq|QWz^FP4A@n`cd(LCYB;&7!hr9!x>nlmV6J)E%}tub9(Fj1Q)y zb|5%{U&qKg6Znrm@YU%>E^yg~ugjZcs{f5q#757Gb~L*I>MEfHfi5Z83u0jqFIj`* zS1E6e==riDlFGJ}t&CRtz?i$N$%b-78X0CM!+pg+zL3rsq^qJ0sYT0J!VllC4N$L7 z$Z5f&qN0v2|7rq2h(@cxU@%23t$~{1vMmmT1`QUAwXL7qY#}m=a}_6VTS|llMD8zB8 zfE?S)=-$E~hC9edGC38&x#ix$YQT^$6O=H3H0e4y3OG{xFtskj9gd=WR^$=Ah2M?> z4Hv-GL2Z8%zmwXx4A3ZE%nUy(_T|g^ z2^3Xh@^1ab{cm!>p{;_7ikrf%7YG1_(}c92(8PiPCfB1O*+X6{a)M93+cY|P3JG^i zDwk7r6_g~iyKf3NhoceszHTaOKNiSOD{TIfAGTf!1&4&Z6jB*`c73@7RH<83lx8t* zq|=_M_hvuan~4IRp4Wq%4`cyW)8pT}@7KO&ijkX?SVeLG=~N1zs~vjNgreEVqEV#) z`Py5pj3a<>fX_-tf10{XFIgQdl%cgPij%bDPHmsE2}=NuL4JLvO{ce zFR6`k)wu{kMo(L8p=FAI&yWtglCyq#YV=kMKI;QegnrpPadmZlb$*J)-iVKn=QX6) z{|+R{dp957pk$N7<;Vu`Tj`9#(EVG$%%EVqnZ$#GgPIYM@cl|*qC&^_fefG& zYk}|G-3|@|RqOYR*6#z1hAD1DNrzsD{7YX1_&ycsX5R6C_`pJC@M6@p>z}(lUhSUI zNCvcEwL30w|HD+8;0txT8iBRbDVtsr_Rw%36OskcOU;ZrFF<2BfOudeUzrq4C>?OX zg32G+a|k6Vjla5j2CxPew6(GS3T2zBv?2llteBsjYxyi*-)R1|kuCjb6`UKi!L+x~ z#Mt(0&^t+;>j;p5A)sVDY>9;>B`#+tBvfq6vmYJ;p^U4ir%{!trwmXR@#>=Y-YSql ziCOT<%aQu-D`Qt}N>^E_F3NWR&;^QytK3s(;?a3+`ZF*TV5HH^C}!Fm&dac{uy86I zrd;rwY&+UK^@qZZht7{U)Dy=+T_at)=@X}DxL06(|BmV>2UVE+p literal 0 HcmV?d00001 diff --git a/_images/3.3_binary_classification_13_2.png b/_images/3.3_binary_classification_14_2.png similarity index 99% rename from _images/3.3_binary_classification_13_2.png rename to _images/3.3_binary_classification_14_2.png index d174aeb947cc76a40900a7b4d91a85f63565cd0a..f5fa6ea06598844ea6d2cb0d5171c1bdb6925cef 100644 GIT binary patch delta 45 zcmX@Mj_KGsrU`Be7J3Fc3K=CO1;tkS`nicE1v&X8Ihjd%`9xqzqp;m zG@O)eO`Kfy9gLx5^_}djY@Mvk4c@yLJ2;x#+ORUPGqBRVH*<2bbL3%UwEjOYV6b&C zWgPraHwHcg!A|nCBNP;x{>wk;KZ1GYP*AZ4QldgCZm9>0&R%JkkI&ED&U{o3Yw2CF z)#kMM(iRiHgil+$^qBNuOsvA0IRwg9H4~XRX6#%)EozT*Ox8BskM3Vf_{MFfV9`p+ zZ8*0q-boDea!;TC?XA<aUJ^nI z9*3`q5f=ULm1F_I;J=UsaYT%lH`GR8k-ognjv%c8#)}}KU+nW|yrrcj>d>_#u9qjc z;0g-H78YdO+_>-uYp&fd_Jwnbio*Z=p?2+l`Jj$B)C>%iEG%bVT5@%9NWokG?c%Jh zudi>h{r7epSy@?8F|o9|DBlzx?O-o{Lh#)GTm1?xh_Dcypcw`jUt254J0*cY>2Rf&T3iQIYPd*k61dp;qxW3Sz)n0D$m^A@|>NY zFA^ySLnOdjcSM&tFH*kcZ#!Xgb267k3>BZ=(VH&OwvnXl7@-84Vld)Zr^PlkwQgJO zG+#oEC=eQwo0}^jN9i98wvKtnoDJU#<}u&gdZ&8vcfFa){ORT8;kcGC{L8wCbQ}aE zM2{=VRaR9=&xiDRY5BnB%BE}u8VMs?zbsgw|LyrUCO0HWzM{sih%|xY3*6;W}b zM`Ty5mP6-nQ3;6#-duE%$gF~by(4tf@reolPJ_(yatsm@64!1FVPw0@%ge^6Im?6j z#{CNcQv5f|J$ejH1_=G}^di|Y!zRKP{^xbR(jeY&9V{#?Kv;;EPRAxD29KIKxspR* ze}ZTG15LnoP%$w@|NHmxC4k;L{?D$8|Le~#P#9Tpx{=bFTwa44zAMc z)m^>H#tH*^;_1KC?w2&oGrFh*iE9eNllO&E6#K=)IXl0vAes!AL*0Z~3`W|X6aO#FCtvDnom4)yT( zcz*^yVbpeGd;5H9-`2rvS)Z_2?Jq15MsK;6^CP< zC-DgU$-`-lVznZ*{iGI7cJ@nEK8XL0b3i}<-_uHlq9Z{Pk-+znUmuf;iV69=eza@| zggrKAWGLH~qx(r^T)tUyp4KMh_lR>{_P#FCJ-=CxGA!2^dI$*(-79nh7qlhgpom}ZTWsdNWzu&D5kY); zr^>)z?@bDClr$Wz9o8&wRSpZZ&(EiXh9W}Iy+a}fVkcR5kT{&r_~ z{&&;lRHVrI5A5#-J-d^cNxl#3By1cUES^_ZZEbBs5AMfJ*B&oBJ9_*Y7M8{0OoN5C z!meIRd+s`cu=_1`N3H$(LbM$G_3mXR9;D-+qPn_-rR9g_=4Llf&j#M1UyhSi(a-|a~eVIT|rbF zEL(d?4}0mJ3yDhb%pu$XB=9FAhqv!=oE??B($-R&LQ zFIh>>fkGPPkDZR2n-zR z$k^ETmKMSF?x=1fmO9>ebOR`!jQg64VE9oHkQ&_Yi)&`eZIBL~2dVK z$nvi7q`(IjnivUb#~qI7|~=|y*m182_KC`%eu(tnsrO3 zJot-E6Ly67RtpkjC<-k5#n)m24vgQY$146_^fc7T-V*W^hTW0S+QE&FQ(q2ljmQ%G zBgrUv2*nf?RDZ@!zA5tFcYNjdU8C8nuE7v2BJS-CsVLeXhEmd*@zQw?F~yTSKxNi`vnVA+HwQT2ZJKP7X>1pu@au{smN63(4i- z;9_-t!Kds>6cSx&lDs``D*5!B;(~7&5c|dIDCCgr=A7il#zs&CJv5b-F)1i0z_G69 z4aFrjG7}Fbj`r!LTN1co8JtpUj7U$L3&p23yL4i9-c#ZH-Qb2A1T*z*Qf$j@pP>vM~8<8I{zYeagztUL=x7HW(uVx0lFjiW*}s z<@KZLXKJ!RDgzEjP+Gh3=b{h1|8CsJrKF_nT?dffVPg7?PRsaco7Wt=J5#vbcw*w= z&35;S%2QKQuf)I+uZ`TNNI8nzB`v#A)@E^?wW>Wm+&`0Xa!xN|biRM7`uzVuc3XZt zz0RRaYU8kc_snxjQEF1URo0y9&dIpF-EwpLRY&nH9-h?R1e?oGlHZ+kQ~AZs#UbJK zTDij+A*H3Ip07f~&boYcyOYNMv6C_CtC+n4xjo0f%h9@zkL?Y8 zGO}VbPe#`|^MU72NlCo0=*3G8LEj$e?he}QPw4l7_yx~eiDyrbE{ulu_K*B-s>{ZX z5DEf61Y;qYdMl`!ND%*8vyhOG*WF@vf9MM5ufi*oUw8U58*~JN&Hpbaf!sE}>!fws zR7k_ZRz`pP-ntqUYVME-fFaTJ>iGWB2E-Cwv+y3-j|4!a9Ww4ao!q1dbxfVBZ%`e)9C> zO;1lh3y}*x9+{i#dwRS#H#7TZP|l>^_8P?Y0+BTG$8E>wcw!7@>Ys6OC!09BWuD`x zghU(z?-)%OQv26B!{7!T=ALrP%A!G<(yP)$Kt(m_i=zP;*XNou)TbS!`_Gjob-aPN z1|Zk_$=TR2$O~LhS1<60-*vBSugV%b6BRz43c$G@uYU_7A%Fk=-y$EaS@g zAGG}Z{G&)3|D8Oe$#7g1xpY1$ACq_E+2R>A!p&ReC-3Q*V)#>BMn*G{P9N%>Z;$ihy8Tm2h#g0@xxs&zeK) zD^xZfddk@Rs8|#^wL)yaED_Imm`8w<7=kbhC+E6*{n23pUcO99R<`rQMAX1ps?B^< z+%|d)R(qMgwqR@6InKLx;we)?$`aBwhn*-tZ(iT@eWHMLe3pWc!eRpyy~WrPE>e7J z6mPoj#0_1>V|75sC6iwsVyw<6;TSJ}vi2a8$n@=BEmJkN(Tb9G+T7lJGS{eP+ky0U zFEN8~aODqG)~w;#Lzk<=`R-OfICEP|Di+!w7Z(@AyyaK*`z7rrRTWRMst3F=0iT)2 zzGEx@LF0Vd;TRhq_uSxFyHJ>kI(|Z6IE-&oas4b9(~7Am8kuRA+#Nt!=kO)!OD}fE*Q3i7>M2 z%lp4MjG9K02+B=0XAgv>+vUPTk65tD;B$oj;vg$j_Yo5;iRg4aIXU?^J*^&!4(Z?q zFy$f%6m>%@<>C5n2?ssoSqZtZv9U))WY7Tnfs&Xt%#|khHxyP(vEF*x{O^jAJx|&T z5QX?R02p#7V`W80&%=9ZExTB~Jr$3Rj~UWwuv@JSdWjV>n7XXtoZr7Ok_iX9vhP3h z@Dcf4r8H5T?SG!-n9ko&`g;=Oaq5)Uh(grJu~_P>6{7X)z1m(&hW*JI#Z`2|OOjWR~RR1=nM-V~RB=p4-DxACdl60|xo@0HJHyR>d)e z-n~#5E#Ki{EuY&>9OtxB5a!iZvu$1M`!v0bZ3o6CeFu1STD8$-Wo2@@4IY;kPv;ZM zNn2?HJ<+wSV$x!c^t#vwCJ#R=Z!c|q7Rl=FezdQyjAV*{>(OV!$K$jie0q91ilp%8 zLINo*x(c*6Iv!4MV)@qah~nM0#I?rf{`Ebig=?@S-9Mk)hv7f<_VlcTc#;^n_h5Z* ztWVFZpfM#GM4(K+pGU&s$1O%bcUz8OiYV3`4c|>d9(*<5^Tfeh;m`mm3nY&_X<6XZI7WO~(VHLawg^7^BO2Ce|)X=5th>He}a;^)e5 zDvs)V;o=r^3yZa$A($N4?(E&IXEq8pVhQUH_t(d+B0LaLc|f=!;|mE1y%r5jy%g6P z)e2jLSzB8Jn{#@48lKFNPH!Ca$0FZQeHA0pBttKhBYrnfRLLvQ{`}_mKxIzFb)_s0 zpVzNR3q>|Wj=ZLM7gbgJKSQjJ^Bq9%H4f|j0=#4#aj&ys$MV-AY|EZ1T+5(F0ZC9*2qP7Np-Q`(c0 z{k&YfknTgH%9%|`Y)y;X$tdC)d~PelbV!l&!u+4_$3?VUw`JYnG$bPgPrF>acRTpgI zH5{V0ju6bnI0g7oOrymVTotguEjN>lv;5A8DO0vNIc2XaYXU4y=uL)Fxo>WrTgEnp zOW7SZBuU%IaEZ8KNn%YCN=Gf7{@~dA41rI&Z5{R*;C=Qk?MR!Ux2SRM5Tp`l)m+^#ypo&l1Ni&Y{t?P z5+5Jm0+BMjJ%$kp287`SnF_XC$|)7MhNH+IjiqZVceq$`$TvILd%A)|S?+!BLQ6}_ zlq3^QBA7lgF+se$xO)sT%FRwY+AQdOr?y%-lS) zy80bhS3A3tuSxr)9STkY*S2`cc<)tIjX~S%bvl|CXN;4{qm4^%LOGn)dO5AToGpU7 z_Mqk4j)H}ab-Eg9Eoun^e|GV^xhaY73pU0&X6@zG`~s1^!pYfLTYup_Hk)wpH)#)1 z*kH!yo9{JGXS9kgBuXNfCnE$j1*Pw^IZ~n#5cqDkgUU4Mjv~2@s%mN~-Oo*`i5D4sI+=u%`8i86-Vt_hJUan{N4Ek%A6cbR5EdxFsH_zy zGMQa2RtLGkjVLYC@yZ~AzQZmD9S;g*c{AtF_UW5t6?a#Z$i%QRl*%Mjn1H2Zh{Pg= z`IjRV`)|0Xx1i*U_dKAgr*W8^ZFoGqulXs3QyKHdrPS2kNkkH6R#c2F+5@PwDb0fCz1sh{dPLAYXy%P>bq6p}LvL7GhG-Sj7{CsPHYP6lDh|Olg&#e5T_Hc-I z0~X@Zu{T-h?%mlhI_sr@&jHPto%ExN_R6<8Ov3TZ{bV!<0Rh3@RR+@Wp0wW;E)j63 zEUc{MvsV5=L9wZ+U>!nMC_;TV96GTuK6_u$KSbod+K_46%n{ z&7n}b&qi9`>Z~B&r_sH3@~L}tom|uXLfw;<(&O!wRzL4l4R~hU3k%2?X!a7B4R7X` zpQch0FaYCWYim2FO282WsIbP0R|S2AiL0#NKS&Hg=p9}wXDQd|Z@hX{!2a+!ivudl z-ueUx+Y)u87-`0)I0<5R{|_a#S)7by{yWgIl(KE;2ZO6;fHy-;h+TY>T1}0YcP%e3XCYB#Kws)5>(VAjDCM31B3A;AG28{VcDP^JN|IbZJbC%k1s;cG} z6trzRU|?bS%T1U17<(+Js%r;~nr-x>32dgd4b~pWUFcA*nIM~P*yC6<^ntp|^*K4L z{pe%fG&3J*I!(Kh{fcnmWc@t_JOnn;=d$DuP}b)s?Pv|Wf#`n<`aoa(`La_z&SW#Y z0397;fFglj?{uxx&jsfTNaJ9Oz}9VpdvtPgLVx>K*vpGAivJGx_;FKEbbT1!5Z8x? z5#OpfmFH(?$e0$J5b;9XkF}$O_x`wgcd8JF=f`WuVgBpXTTj3$DJm-3$dCsX0O~wJ zUe`T=Iw*i!h-}pS@5a{8lcV#}=!Dq*Vc**@p+#N;mLyz3AFsUbJ|L!OfvGz5 zqF2Yu!>QbkLl2Mp`UxpE^&!ts*DWucJ%fgrIbJJI|7St|Aon*)S_%u@`3wDKY+0k` z<~7bMrdJS3%3Nhn5l_}owQ*YyK=gibKO61to%2cL@@7I17-gHRuDJave|s``J(AhF zY(d_J^|5k%=u67=`6QL@NebK%U|p6LPXln3fCQAp@5%9aLrnmwH@-T{nVhwsx_W2% zAzeUZKi1K~fd#rgE!)`Jd|ZQF8XawopCphxjXYBEhf;}GWzr-GY0bm!_m6_EGnb~I*N~LMz{1FimFs z-E$Y`cS178{gm_Mm;p2197*31{U7TxH$U%wb(&{BOt&4_QRjv?2n9se>J6d|68RR% zoyyFPuCDY;?h6n8mbzn|Cz~gN6c-}Ve6DcVHw{6;7aO8SPm{x^=jZ!{2@|#;O@qwS zc`#c!TWN|05UB>;J4*R<89lvU4eMzDEGhoQ=OL`NnNKS~f|L83Ttd`_SWzGz+ziN9 zT$LBrz4P?DoEZF9p~CGS{vnOtR`mN*C7V~gM>kX3Kw;f{5`0L1c<=(0L*)1_IRir^ z5LVb07ybqQ`1%!!q2YkVwVSJOWJDnlC2Di#Nh|BIZHTYr*9y)`_vr%N$=KUtlG)w+ zAtqV>b>P@h043{ zaD^U+-Wo@vynwA843Y8xD0BBrL9>K|!x=Zfgog)DM)MhhEj|V0om2UfB7n|=En+Aq+E9Pul!U>MyiBmFZyY1*R)h_pm|TE%25FY zbH|B?F23>@Yw^p__7gq07iX7-wD54`7hH`W0hpc0m6a9NL!kOR+xkeKryDSka91ib z1_A~wc0C1NMt);BO3-7dMFvQ}MY=8Ne!SPKWxSFyL_>|Y=eVpU;aCviV4;4Sn)69@ z-Exmb+P=cRQ8Tu1{Pe!DPU-s#C##oDvcEaef4ZDb_|r$zx-nwV{*B>Z?5y;b46injZq16VMMup;q-9NJu@kOuX7qs?jK_P$EWp$} zo*Gq(f)=Si91?r5+>-GE&Z7OPQ9-=6<>aSr*#YeG^kZE#GJ*mE$&_G4gmma-7SIMz zyt$EZZF#L-IG%Mq3J?dVY|SYb!N?fJ#l?J2+Y+~XzpsPy*&XwbxlHh4%@@-9&(ZjM z?=JT}FFZgN26(EmVRjWu&X&$Z>EdrqP4@V1?G@Z|_CR5T^K3)Dt>7Z7()3hMa*?*m z7b~sv$9*GpWnkVx5>sSK8F2dRoO)@Q%3<2FP$uso8W=oTs2*EM7F%dAK8zd-)o~|L z#{T@?w)sJqQYP_hX{l|L*04eO%I3DnXI1CCbAje53(GvQattgd4~M;r-EsTH?X{-q zr8U3CLp{eV+$w)^3HxbTLH)ChUj842yr@BbX}qo#KJ7ebVP~goo-B@cbO6syA9pDQ zps!h(3?>c|WIQL_s8DI9RV#n-R)yh7`G$Z=Sxd7x3;Lngz!$+$tSOO2^A`xud4)T@ z?Ml5vn*Al(4Ye0z(w-a19!=>$Hza$FoL3b_hnKF3Jz!oI#}rbD1VDdPags) zuxDU^k9D1gogF)^&wjz(*}wdKgYh7ukd~Y%tX;|bJ9wFhj%J{+UX%@Rl6B%JtT~kwYrqP{sp40kw ze#y6A!3rjWX@lW-tW3DbN0C$vN`Rd5tvyC7y6HbB)Xj*nuv>GgWwPW?V$~-WY`EWk zbO`>kq#Xp6JsQ09D=)veYThMbFKf`av%NiAqI7?Ky&VSaG3EvISX*-1|7}JV%cC$q zlJxQFbO3_gboMl_E<-|C>6BN1X<|Ouj$h;ZxB}cEm;@C)Jv}?)5nugxP}teo`A)aH zskswn|1v~VquCamow=FM3%Lx;4wd@er!bHp2Yv@y!PUX62xy#jbaZ4=xnlk^0M+Y( zG18?oS{Vzyp*+>0L{l(=3#97{$5gGx|2x2n=D( z>NeFtWLxk$AJlSPbOtRnz~=Dq@H;py=pYNnss4P+Q+@CLeyLgK4=mN2H*b`Jk%iO> ze}c>4S(>1eYoW_9O)=OtzvI4jS`g3EtkDv7ZMd|(m166n`;k+l#fSgd z{ajFmJuaKw!cHUYrg?Q3JFIl$Zol+6p$TqVIB%TUe2kn@79SVR3tX=#olaxoM*jUv!2L=4Ce=WB#iHH_0r>{>=-m|b&Os78!n^kGDg~H~w&ssMW z6x60N{MEFsIW({<$j@Ir9~LyduOHO-GB@gpo5W|z1Naa!Qqs1?QwB*zMU12dG?ov1 zFWwCFgUw;H42|lNr5^TaEx)|H?a%4PcC&SkRE$rKZvqwQ*GrkdRU_@oiz=Vv+TK2 zy{gYJU*H(vOPV*6MCGG}jo|T^4PFmFZMvh92*?0iBdp&yX2ULYeEhv5Gn-6mMCo^o zne`s;fB!ZZ|NetTbe`m5G3!>E-mQ z{~eSd7?cVIkoUE>l+8okhKsx08&=cvvC`M<-qTwj*($ z`<%%bT19MMzn^0akAc{Gc^Du)-%fvc*e#cU)fz1sHTwviP>@AUD;I=Wtme7p%%#nM z6~UqxL^`An{0g6MKO?6QPFj0joJgV?nL2FrU;uaDRQGNmF^y;-Zkk;8&FMOxpig5% z_61TbmHbv@icg#G@*P@(uV)mc94+l6nPUE{fJ1Zf1>3Z9%)~`En zF*EQ3+K=8d-ebu>Z%P5WuXeAXkb(L<#kRS(i+>+afGl%dZOHlOrPWMxWOR*4-Ddn3 zhMl^_{OaoXA3xp#z7w!GxDj0fO+Kos*g@5Y#-DbASwW3O*5p?vl_)yo+RX@z5e9uYN#C{0JgOq8oV5M^CdRp2S66)bu!uSLer&d$GG2R#C|-M- z!-19=rUc!-PD_P-GA2!XfFhkn)Z_KosDAd18$-}plrrAdnneE*A&az|pPwId3SWNV zpZ4**{ZE-)$&}$dws}+4ap+Ga zExPif5a)D9wzsqeU6S~Arq(&$8}+;gZBXVtgNOcuA*}7NC}%wP}1_P=s=lJ!#gqh z<|CcZySd~!YHn4zKc-wY&o_|}R@1J<4c*Vd#2~PibOioZISDow70}8Ro`2_v0$!K) zwOt8!ALE+C%{SOL9=B+TKZ#PNZODhv7k1&lmPWvbh$-8e0w1sU53#&)`&)K(g+HaH zrmgx#s01&JnjZxfm&J$GioyhxTG^IQ($eMZHJFDuq2i;_=(wE~ai6^ytuYcJ5?eQR zR1OA-fFxHB4ggSX*H)kJF*)h#FbYuO4okD>mxsnKHu=s*vdO8a8hF>DA^c#ezt^#D zpY_2p8p>AzMw7Q{GHz1eE|I}3md)4KcPnRjGrQ_|9p_-)d?&BGI%I4eTg!9zlHbKm z-&RTWXMF*_L1TReRkk9V1{T`h{{B7PIG}FKEG^gDfz!opiieMRBosyD7nSXK4&yR^+|eQWDlp*3 z=hXJ1+LFS}NVN@v5O~6|bBGM(_}A2XRt;(kL1LMwyVp})U0u+Xul}W}sBRY5EE#MP zkm#F_W3FR{4(e0o{l=25t}RduS>wQjWl%9Amxd8m)GB0-pA*{X>5PE$Z3B$sSYft zxT61cojva>Y?lSny;qoX-N>0}*`5a0e*c1#${#yQ4_*{``Rl z<>QZH_J1bQBA@KcOkfdmi@pmd&Gr9{zE2W4slTmZOpG_^K2U$8bkw*%1YPq@!#BHt z_PF_;;luJHmbx{8Kq%ax1zc!L$gMj4Ru_S7Tu4%u1iVF)K@S`DEq<+C_d7VcGPvoDW zg7)HIMnzk&fs^l8&g`8*88r>fDk!g@D*^JYq>Rh~r${cnR35Nf+t*?2ru@~m7NrJutt*wi;&&wI?oSf&w z3D3P(P4i~u9MF1WNqB&Ub6viy^kFuYHK9TwMS4fyL2RU_eB^T=*PYazQe0frH!CLk zi4L&;4u-;zJI0{)R^S5q3}z5`U5|2#iw75DL`fXE2#ehG-$e00!{brhLnh>ktAD5q zKHywGKGke&Y}E3uxdZK=?|z}OXzqzZDBCN^q0=o_hx^-(l>WisTqjx7V^UYwQNr*w z#V!V(=vz$8y2okP(>~p&-hHZR^n%mYBL}75)(|Tvy6cCdB>}-vmEdoB&rgqyPo>Wa zG1}o%C2JFZZbV@#9_|W1H@exk?6$pYvb@}zELyA%^*1kn9eA7JzQ8;s)YV1Sc#?n( z)b~&%0p!Y3Vec)^7R4$L&Czt!;$8&XNj(k7Q^;d4}d>*a7X_i z??7zve2pYz4b|A#7|fXHGvP|g$q_p>y#_`~E%(izN0AWGmb?O5lBQ>f06T3$M5<5j z_WHixbfePBCQ|r-CL$tiE@c${1`M~G?|=?PyE;-Xn)qvKfpxp;P~*WBr;J*GCzgvCW;l9Ttk;<8FXau49OxkGsN z-WNO=T8tW<{@T?3EmymHLs9v*bJ&OZSKtY@*lLjA10*vu)2sZL3u_tL)GC#T4o*2TZR zm(E7ju`;g4lPrD@3hH(h45`&yZg}$Kb2uO;Azc2bDan$l1I^~d=J zG@*lqhu2F&>>hl*8kmB~w(HFws`dP{b4!d7m5tQJqG%kzt}2Sqd{Cg$O8X<5Nj zn%>#j8JKO~zI!*tSic$;7Iu4&oTnz|6wnP3pREtIVCGh3p1)3tFSm zjrrd7V0Aq^B@v6`huJdI9FbaNoT+1*&d}L>vxKB%aD!ne#AJLbLW8t%7z^_J;r&2{ zm9~KA)j^DKPSoqyuhG%bSB`K^C#I**H!_H`*WD<>f+DCUc+s(cKGd^R`!uI*&(FE7 zvVKmfEo!J6B$ZOfN@|f@{c}p82Na>z`)!-w)<{WsXw=0Y2#T9aDNB0ZzR|Q zXeD>$2dUHxS()X~!@)lrK}+2MC%R^Q zvT{!3$>p?zj!7wF=Q#GQ7)$|9FS|wX!(ETqSc~LMVqjwQv#V?O4Y}jpw_~r_V*(RM2FR6zZI+gbq8K-Wq)qzg;GAsq= zPsSGbZagA2Q<6_PJkqNcl})p%ROJwwaWlNm5N;>AWi*)LPihrpOvswQz3a+}Y9rI? zCOB?pAeg(XfJ}lx0bf?jDLR*fxz-`sd3ZTwaw83NxrW#usVtiPJU6YXg20p2wa9!= zlrq=_N8!+o8evyP~E9*$xfb_P*}$!PAaA;O4qU2Wrbk1mxJ= z{#I3$yLVHz#R`uSG#uq&2=c_k=o0H6FEtIM?LQGo!hHblcssJ#-i~9RdtQN?_vy|l zQx3G8BoX2wDrQ*yN3~k@{tc@RbvOHAzWT?eDUz3=`ff(Fh|${01IfO=qMz+)TAH4l zeaaQbJCmJz37^XO{VH-T+PrztMvddQS1vfC)6+0aSK@-2H!96 z?(R-Nj^ppklwL~GpovZWE@esG7CvZjMt7aSyl3yH;L4X^@l>-l7MgMUPZkppaCnUo zuO~2H8x|4E38u3Spam~@fMw%~ey(5rLrshprnr|L7U-HVRo`Ik<7@crU*~imkbG<1D!;I8pjbvV=Vs`!I5kzdrJ;SpPr z#+=NiLxippgd>1RN)&L1)wOw!3%+6cTR+tAj3kGJv4Y(LB&>xvJG1}BGJj2|O`+@k zb@C`$wAp+NXP;0}VQwQ1@6?A3;rFdxb2{2}>-by-Ewh*m;Brzla{&-qSW+Jfs02kY z^B|rLAtx7gnLmW6)3tnu!MmSnIYLJ;G(1JS%+4PC)Ot#)89IM^ie{6bUE`VbKn`35 zSYa)UDAhxSxGvblnYoRjVoQdSEP)t@1YL#cwWfeRB_$;V z&_0$l2M&dRBOH#zE!dtJlX~IH&=A^{z1yWd-#p!dd;jA9AQ`S5Dc}}a`_9J3RtC&q za)i97AJ2kUbMo@mx2K(pny6$`n9~+@tuwRg;uVge4&>k@!YU=Ff((S^xj78l#shY6ukcCk zWklAU*W-ekQQ($P_Km8)fso?LKb$YO4^2^Z_e;7gE(bF@4Oc)E!sWLl)h(VM6n!TD z-t+(pV|Nj(;)u#O3c9b+Bes#2CzmH(2NTMgns;f#O}@`QYTmcld8kA%37<~Nn6|X5 zqu(IC>)BWpl2gP2=+-zro}kAz9(}D5aL5&Fr>0CeU+VbGp~V+>9UcDDR9(*3Vuw#} zLi0Qi4=6#e1pLs+)8BOrr|;<5HcXW!)MRs7+jeSK$`|rFN+otyCVgx!^W>s0dnAG?X z76b}5Ej>VLe22Qg^n7cuDH)6xo{#hT_MJc95nKyiGgT%qigFGFDQ1i7kGKkaWNOHT zkH`qIU++r0yal<^{eE*A_XyeKwr7?ct{X`4y^S5cbnsG!(+MdrwxH5xN=P6r$Q@j8 zK$~oAiC6em(C^0ZFOuf?qEMF_KFg`0Q$s=%}-Na)j#IeKB=g7^3FufCJe0?6qeve$IkNb@VpG=f;j>xKy%AZgFoo0x6osSiuR3?0!_VCKpc2y&&(XNZ=|cd16&)XIKTzb4Ik zi|Mz*d>cg+eV~Eupa#a`!|B0+Rl3g+%~}81h)0^h+`{eePhKjdElt}s9i5%t+rWt{ zX>u4(R;z-8|JyMSG_qLLs?44f6FR-m*1#6i3n1?i z()Bx&Iu8k7RdrU;4p;qGuQjiaho>j2@6*HiQ}f@yY#fa>KY;Q9juLMbx0YPRmrqH8 z_j~D~H2yav-YgOuw!ZfS%*@P*GL*nqF#wEp_iGixT5*7mG_+EZLJd6{d$&jQF|j|0 zo`9ncG8-@p)GD#bH#vjE-e5T6d--bX!aN_N|y!FPE_ zXaWq-O9IvLgvvymi;so|hK8Q!zc0Yrb;Yo8|5UwgpfTs-e+{Rwywrh1Riht@Qv2(b z1pMiuN0Y=x)AiDNy64gA?*ttKAU+mplz$IE!g1J}paFy1p7&?MT4e=ipI%)onF^df zw+Qn+(lF2*udCqLEPrcq3rHTttACm!2!|aIqP!wn=>9<=-F#jLhP`A}RImu9N~s*5 z^`R*9=vRKYpTlklAoHX}>ONm_K6IYEvb-V`*WD8?H8Y=@g~!9|EcLx~1f#~y_aR_h zt#}$KW;@+8a^9vPg5+^W0;&bLnrv!h7{f6G-z!T=cK8w_0S^V9t>U+$<`BBw2JgUjLGpfr;GD5ZQ-+m!rN`s}9% z-ztrHYA2QR$61(d!qARdQ5H_)Uj-HkI>dlCE3kr?3;#$NyF>%@hS!Z{13yE(SJR}$Z!ps}P6D~p1fiMXeT6q)ZJoU+vbi`=MOfI= zx$6MzBDc=Jy^^bbo|GfNm}JrZTc~q9?MQhr4A7o)h}u{$u0;MbP3DhFcsE&))J@`> z8bsn#J6tjiY@Z<5@(T-J=D$NQsotWapDZp@!xjT=`79wpC#OFDZIf8o;J6STHWrDt zl$IVjY!h*DR0syrSnc{y#tJ|PM?Kqg+}uedKF20c=T{#NJ`BF+;z0-QMTP<)TXy?- zv}3Nk%?2q7&1W@)os z&FpZB;W`gHQ}a@Ca+H*mTSc)N_m#lZ`8_cacdAHxaMdu6DrtzAKO+F?-PN9uvvBax zfeUYFR?n^2g#*NZ2^Uxo`3N|y^nkPe-)Qc?L+`y6-&S4%}s`_AxqNG2DV7|9($p=(*(2eoWGn{U|v*G2vT=U-4Pb3 z%`i6Rd(TQ(0U#v+PoZ6%7L<|`(x?RRVFSQfq*Iw}NW}_`o5u40arW0iRlaW+FKQzV z(j^K=BO*wLG$J8V(jeX4urTNjkq$v5C8fKiL8QAwx|@Bk?{Dv!y=V40bLRZPFe3}r z@_nE8dG5Hb&+RLY&T0ta3@f=6!CLLWDG*XlIt>M;{I1SUIFwL^hK3-{dk)Q1SaO1o zgdDNOa&n4|XP$o2zg2z7b$qZZ#+Hi=+L5-Y$9jGCyh#vXe1QHF2*vcvBA_0s&R%vh^c&(EUfz9lOEfak`owc5)DMtYFT!(=3x~ zW_UP}66w^zfjHVv!Th~1bC0Te@Z+w=*K)I8Xjp#f*m#G@;KSOVpV6kN=ODs(s)rS9t|>Es5rfb5E~pyG6|frN5T(QmcR*6b2*@K2df-M;39zm zMd4M%qS5mHjPsQ!h=bRj?25{yV8~5*9#2hSwN{8i4;GAy@}kFF&Lz{{U30tzm-tWH zKy`7tlVbh67pG?w_m#HP z<>N(MJSgH}!q9gN6Fj6pG$Tk~rkh(^2v~oc&7A-K@F;rJf)n9&y`8~@Wy4Kgv)9RF zar&Mj-i=I~6i?QSkMeF^*B)8HTqje(7cV+nIZmr_DZd}ldL3FZzU?7_daBb1PRnr` zpWkmlx%+9lOYD_C0oaE^4`Vo$(~qAYs)vO@#bt5v&D*!1B+}=aou}zK_4GU@{n>TW z>CxD(=46UWOYApQ@~h6w$`2o5K0#k*(Uos|DsA5t;D2pIBs-L0XL07pr)P2ZOc z?vLLGk}wH(H-vwh!u=2|;oQL@^J^?Hp>}`)x^5xvUcK{-t6zw(>MA&Tp4qw3xIg?S=b`s2~kw^pT=OIxAIKE5Bmbd!!UkqTQmtv>i?Qi~o1t z8f~7a{(|5?m$9n?ST8i3EuV06?#STo)!%Bq>`>U_v6*cMXBCT&kADZs{5IEiw&#lp zhCRF?Ujr1VO}nj@gTe%nUF_mLVGp{f0q@$w4LbgbpH3LQ(>i$rl$aee$=fq0xA)|h zb{cmvzn`={*jSSEbZ3uyQE8&@c{;FJe&ph8E-Q;E&woL`+0GP4$rGQIg%e1|c&d7J zu0*6{BjOeOMIrlQTe&pw9%j5SJL|W4MSLIRdH5YXF;rBY2G|I~!DUiI0yT9vXiC4$LM6x&lZ!F@pNIBnxA>MpENTYa=Bc&_B`L*jzt z1#gv>s&TGbH-1<;be|KXMKqbH0J)O4Zm zO-8_V@Aw0!h}Xh`iC1RhFAdM}dw+8)DjgBqHwtl?yZEfEKKDm_}zGVA-+ zuD(C-2ECu`Bz&V)R_@^a@;cRdCp8w`z6dNO1Fi}5R(S@o)+3n2=>NLd&SIC8v~A@s zE-p?kJ+XHV_T}vjHc>g22kY(4szv@3&P|^Gn{gV;R#R5icG5qs-2QrG`_=N{cx!Wj+U}z73LqmpIWZjnttILE~GxD zIehXoPn$HJSN*pcL#we1vC!#Q(sL%S`xEtELaY~-cb6OuS3Nkgu%eHJMj|6)J3Wu5 zorSeZVl?eg&#^c3C%&@0ORGT*#b~iARg6~*t!w_AGKnBVAP}`XX7|3HoVYw_3o%&v zDkD;J!FJW>=MQcPlF~7m%PT4mPtPf$w;1$Ld#l;mKu3C`p-(@1Fo2FnC%19ry#gBO zqV3<>k+khe3?esv@v^)!MJ3PTYl&g1{~{vh!Sz!m$V&<*I&)p>+x{QssNRMb`pXJ` zwPo$|0zRL;<-e@0u(&#oh4zuK@a>gY*MSl^r(Dfi6&+&Z;|d)(?k%j5>DhatOO{bA zc4Vf^2DB&hZ&R;_NKn_;9t*xz34K3QrTm2=OC){ZxoL~T*QaW{von9)0@LUxuLk*C z^5*+$-0cLKJ$>i?&B-d;vy5#niOI;!gUZR-S%$5FI79+Gwl z{RcYcbGzTjd2C~sm!SZ&HFW(NEkf|Q@!XS|s8iOqQm(m`0oSG0fc0Bcc@~hSvq2+7`J(Gcd zhal=c9Xt1ey3%g{f|t=yj`GI4dY{l?(i%UtcXc}wge>YDv#JUKSKus71-bKO?ceoZ z6`J`s>r;i1AIW-}|7c^hHIuK5y^S^W-L*{~7GFD~U5BDs#e5mree7*s*Bueqe!!>w z2Hyud**vceK8#m7qX-Y&ObQGya6NbXIMy0LE&0^!{ZF~fDDCoXIJ=s9xMsSsy-q~) zRG1{v6%d(XDgL3M5~Ym4I7{c&1`mHnbte*7p#dJ_6fYrL zHY(TSNcJ2RPggc*m7x4%!U3se1%Mw!K)Lx+Q;fg;IFZV-*W?%PW?b3$9A-#dqi zw3|A_uOI*MtEsK6+&r2%ojx1^g@mtm0n+>=P)rgDqN)_u%cvg8JSuIxmYP%rP_brr zi(ENwh)YXLSFHU=_)bjn2$bnOdfeyx&W_bfHBg0{-k@R3F;BpGZ`1$p@M6!ne!hr~ zQm>B)1vPlLc~$RwS24+=S!XSh=Ui6C5*yWQY*_tpoHnJ-M}ftVx`+-04e zT_&bxus=V*!S}D5ZX9OO0F&LzA96{Zdp@drYwKYQeYub5pWmqN5mpw)6jT>NI34#H z#{I+*McRP5rX29#D+***Kqk2tQ2gnAQ}@lqrKPvw(SE}@?}tg&YS5U&e zR3v=Z?}k@boV_^!gZw(tppJG!E)#TN=RfX$wh`|kYZNL=dERIj~3Ron#pi_51z87+}l=RB^)`l}` zEUd9(C`CUvr}&rf92FDw$shdR*^1BksllFj9sVs&c>X{-k!F0)?A?eHhJG#~0YQS? z6J~yI!|W2ZxN1CQ(d;1_P13aPEJ z7_Ipj7-)ClaT&{_kF>rvAw%a~HzcbNs59UJfe6kZ`?4HFe>kvBWzPED&2u|f41L%~ zJxMNAUHh3zlI0_H`bn!b;srftJ;3b9DJUrT_b1scrm9J53kXwQS~HqUk6riG=FL=u z&RlQZgjjBhqNE+!ekt&(@6NxhHZe07Q^3Edy@=y-zbSMvhs_ozvlTkJ4MLG*j{g74 zRiGeO$u9}&{*6&KPRmIt1-YBFB`8rp?TjAO3D4A^ zl$JY%7YRmBYlKldl05I1pn2A#7%HFnaWU)jCJsSxhl z)>8=1V0dl;abPj|D`Nf+RZXo&te_(=gg7p)u7|&0AeA7LVJIZx3dAqW@Y5wi?40p! zLp7hqOw7cBY8QGSc~cd>soo!u_7}g*fC}4z4WXJaNJo&}wJ*gh7GuRe&1!zc)i(G> z+k+@HX1_?&{3PcLcMbk+^)T}m`xoiASFu1TeKEtUuBG!(XMV460dG+jp@veeGv1N& zLT9((((4fo&0=**779>MyvaDYxJs<1c!#akC1tfR>jdk%6WCLr9t$1Ae_Jjh2mX-H znUR@G$p!r@6QFtSUnAfHPgj!Sz5 z;6(8#JHmTUEAfDr`J{V+;wOcH#czYwASRcMi1xFC88xUcpS|<+6!1bE$dh;Qct80= zmf~W)PL|_xy6IJDIAL_P9fpldPJWTpM=j>%>_(@H34R$+OLzI8&A1Jko0#Zco*i0f zl?V8ayIp*~9apRS6d5^yG_m%}MH8%(Ia9Wj(y3L$)Vgo^Blci-DKzXNJbE}9G-X8% z`=zJK$XYrIr);>+c&=0twiV)?!&NT8bF5gfYq+^nB}`DDAe zcNBix++PP2NOD=qv%{wiyXYFJ))p+T3;aRU9^56k^Q$+C}s|h9LjN0tasSVSY z;kG~^OLkedl{OFB#o8Ck9gM8J!pY@Cv_=ONq%*CjS4Wa8^i*^EujHMGv8{zeED*qMw`&%J7l(5@-N_9v+lD(gMkO6 zXd3i=1*^Zly%%+)7MGNcdtuqDwnB5UGE?v-MWMwpz&?&7rY)=AWtm21ar|WL%cfv! zf_2S+D(g~WcifAZP<1|8#~!V5Mzq{#yaH14^4q2V%FD|3y7%Q3H|dT46x)86BkTD6 zszXMN_on@q;!mI@n&w#)fCs_wU}zWwi6@5>68j9}tLL)x8f44D=5U z-WXy=!6MfkS})-C*m!oM8Bem%=1Sy;e9Ck|`y2|XU-QQvqvqyjeW|PJr&?8C_V(;l ztWF}E^q;uAlX<6M*`M=Rz>>3k+ReOt1|<8Pb4e(%xSS81)W z)DkQBVcXM9r-a)fX~G2~$7Z2@Lf462^}ElVqN4k~b>TEmH(^Cdo@hVbvzmo1i9C|4 zCs|2Tvs;x(wHQgDQsF~9zS&)SaNuoFa=Nj9{~j5@!sHQqcu*qk0jG3!UQP?h!Y$W1 zz$)N8TpI#%$s*1&+ywFgOZPl4Za#Fmx0;%h)@Zok@q%Exoo^dM|MIJ&K{Bt8!~o6) zWz*(NeKOM4tm;(&rOkxlSw7xL8xHwVM$YUK2y_ z)1}M48U5~9HgHb-77~toO9Kjc2rj*D5E-OpU`7wS3YJ z9ckhN{{ems!2-ct>#yuVXb0tJI3c2uD-J+C&p}gta*!LwAXrCPs}__#<>NQsp&XPy zH*Q|AIrMLZU{Me2;N<{4l-;6IQY1a~1)dK1Xy;0nn*QcTd{<@1F!IBu{Bfc5SXE4( zPZ7w34HkOeRq-`OEEYkP-Da}E%TFiAYFm(%^~lkVv|4cbgM2C7tB=iZ@bAW~&x;uf zwp(UQ+O+=Mvpx}mXioY7#g=^9DcH6|aezz?dpGB4be?FX3%7t;q3+GVwD8DC5ozhb z1iTbv@5NIleZXeFhYKjL zPBwAm&D&H7v}ZD5b$~Sb$$6aShd+PbVsK)9Os<>$cuLWs&FK z=XMto@-{9+1*N>AA-bTO4#KW0>GH?Pi4N$+=V%882CT-0-I`7U@+Rth)8pD3M4!-u zj}8Hr?w_K5iYv1VVM5DvLZ`1%R?eX=i`1VkLwKE)BP}9wYcNxOdq^)gId$Y;(LxK< z>W3VXCi<<)(@fmGMD|_|_V+h5dm&;MS|$C-apfFbsD`n~eCPsA8O^94Jqh*pz5}^E zvMmVhp{>wKR=_jvPAc}50L$vgc%$8@B!ZtI4!{`)6P5=VIJg2$b2e{4!zq{93~VkH z%>(_xAF|DR@?LTed4%V?^^6~umyR)X<+V+0h`u-DPjI%Fhh52`>wD+qq-L_)(W^aa z`~EYNH#g4JiMA2MJ=TcR1jK3fmO0QXmso_bi_HRwamgo;T$WIkr3YNpaiG-Vda{uM zO0$mLCYe8kp>2zlT0*7Y?-oBn3W=t6p$BWk9z?{lth+X{rhsqi-kNPooLl8H_J>+TZrccq_cMCtV}6$|+&$Y+w<(NR*;mbWzC6&nPA z^2iFBM|d&#?S+4B*3C&@3e?uxyJ*sb6!Ooc-GRDj3ifBn0AW|}VC^$(`ol&XJhS1a z`;3H`k11Lph0*}ol@`oCem{A(K&f9oHdc(_<70fj`zDyx`C%uj9GT8XHgsRL&@_40tr^MP4}R~gN4tG_ zE{n`i0F_Io7`TOm(Y#F2g=UDpk%RX8tSY5I`LA}b#+wBBP)E&5i$Tq$QlQb(CQG)u zW7fzu5~bJd>&WN}RTjZH?TxAWOyH8!Mg{0xtj8>B)dhQ=AAzAn&c@~$tiOM%#_0z{ zz!i=SrUhp}m8CO)LU|J}x5D`b*a4hVAK`SygxUzEj;?2QJJ!SQfuP;N0z=#6iy2M=bf?7g2t21>F z-5)n(lv;hX*>HrI1179%lfHk?=c_;RMXu`2211E$=@zd3Ta4sF(=ug7AGEj5QLg(<8D*|2F$|44dRVVvf^!Ar z=c{0|^G8pkM|+rTq)uABEq&L-K1p!(^?^Ld_RRAueW6-u3;8Gz0KhV&_cu$yq*N;= z>F6Fvnb#e23&mVho{D^kjcEQY_*GO{h2^F#;reT`?EHLM8X9lt7{=}zftuDcQvM)m zXUFDh8ykD~PuKPA>U4VIucfq9oDHHTmXXT}9qiVCAYkxT=qj#s>rM#?8GN#*xo5c| zfZLg1W^!Z$y?7U{47`<2@CB=e(Oz?cmQra*1@|kV%QCQGt=nWNn;SR%=<|QJWY~r$ z#L3S!zQu6DEBCl=uXX#BZIc2WyN6x}sKq5E3`|TA-G;}m41pqV-@Z-3#6&xW%s{gcAOnc~_L<%C6`jTOD88LSQ=9pwrF6Q( zKMa$H`_*6qhkC;q8vsbxf3sQe)`UXP0A&O0C=}3^-Vwhu>%hx4#_zhjR{vWrUIgPU z+^V3+*x29ftb+0q5^ZtR1&aS!FQYIMTAYEsn3-P|nkee}dGaNw zogAJ0O8{)s^uDNnbQE-0Vbu#jf*#emK2sG`yMFxeCM{YC+M111>ha(H@&1psy^Zs) zzZT7(5?GBHX*(E|s-MmWvA(NCyclwfHo<3U#*-+t=y(o?{rZ;6N?vVk(uyj7`*5vB z!$#Ah<@eg6+dqdIE)MQaLW|4}>kT&d|5(ld9U3Ic2So^egBKNVXKX)g7HV}08PMN$Iyjc>oM`m5q z=nMWhHtL(#;nqi)*^JqGOUtbHQBmi70hX)Z^bHCA_trpmEq{cR_s_l68r?jynh>8+E7xOrDC~>$!_O<~o0t^npC4^nNjV{amoKjM zngZ8W513T#J_=KB#KE>pNk=yR9XKbXz;^GTOWB!j-+nuy9yFXfTUd49gFXCT!Ifaw z*N%Y9%U7VFaBGzkb<{8Cs#uRCz3{w1MO{N2YY%Wix2iRx^`!O8X(E5fbl`k7D=%+j zLYJsv$?j&VNtG96zsZYK#J*#iwNx13>QoA}d+Mi8=;GfH;l%{&{fXqDeM)g#Snld{ zTnNT5BmqA7nhj`b5-nk~f3L{NIVCg8md^-t?Ebxb=KPpeaYTPkd`1EPZi!!9Xj!P$ zgtBt0sUw#EbtcsFJ-P`Q(W+VF8POPb_m5&S<~?Q5fWiw9Gr^04+ugVl587M4u_tbA z43ZttgaozY=d3i#3x-==A;i)Lc1o%da^54)j`I1XR3xxk$1)7IxO)de=;Any?x||K zW>o8Axq^s-&lBs#-9zq;(5IV@(U_|n5^%E3`Z}!8!Inl6HORpKR>WM>+MzwybL+uVWzSz8ueAq;0phwCtRur08yr zms(5~e;n>qNfVuq^P0Hzv~n@><}QOfJ@nOXCX`vy=r7><%1bv*^r3^hN=;LI`XiN5 zNQx+gz~Hux(y*?K?#w~M%IEvQ@G>m3HR`LciiIQApZ1=w1ngFi0F;6cvMd{JirDU{ znF^VQ66A6y;A3`XML&jJd=7%NMHHcvn@?kM`>-bQR-Q652cvAA-}XA42ud7vK#S=O z=$dO%-0o>wi`g4YndH&syjAj!ng3w68R-#bnJ9ass48mLO}~6$gM|zUb)SJtB^>r| zVtnY*?Qpoh)liVMF?bVmG#<#?Ex``knUxe>uTL8NTkivXfIWkS1P$r&1(OeGbfEHb zv-00hKR*;C-s|e(bSsn!w3-+XplYITAx&D1W!)?^y4_8Vd&93s_$mS}MciuxgYRUD zXl#Y1rRt!5kb3>v-Wi|GALOm~?usi^97>kIy^z9nSEZm~X1imp!y5k&N*Vbyw9k?g ztj{8lSak0buit9yz#?X1S}5rg)bHx;ad*kpX&dCJ*+*Gw`0`9o9L?QQ+?hEG&I0N z;ojTu?gZFq{T7^LeS*gr@--*KaZ4m7&02rga$J@!z3gUg*FO;wnwi4&StSCg$lA)u*?&sx7(P-BV+gphR=Vt+pL8v%iEIQwH+A*zKvAhBv#l0ahU_FriISkci5_{-*pa8aF-!Y4} zk&*K9r$As^fio{Kt#OUNi;h1guq!)lutRFM6_l<>EeF7vp;NT@eeI@2$9zVtg^}D= z-_~FDKkp`5I<$DcXUOS7FThG>w8U+bYsRR=w&%sjGqCJvgOzByDi|j%1swx}hJiB< zk4Lgf03|EuJE?qaOk$u1E*d(z>tTI?-Rh|DIIsGEnWLC5#zH((zFy;}yZ?=hnCB0s z;QLx_bxv}9w%xUHwed(I2+MCMpe;xL&u@l{b)tGwrR&UE6@UJVo#q=CP!-tx`PyIm zFMv;wIB8SU#=gEV5Z+UrOhj>xG`<8C~aIL@?p)P$v}9++-4cBimyw=i_xc{@kI!A+y%OLHjqdd$&(E zO8V%n=ym@XnywyX&itum=9Q2o5r!>(+v9{2Kvog5k5N(~wal;ClXh-jb-c{MIX&x{ z2Qh@Kl?*$_Pqh-?5!D)*=Z~3#68y$=)3Vc}1$-o3*E)!R*@0wR16)x}NkwIEUP!xP zYpVC}UA#9Onbuoo@txV9c`g>B>+v85(A3mSSq3>4Q$bB6$d8aoH6tU_4$xG98xN+K zDf3ogZS99T`4^EC?q&MUqr1nLx^qv^D>sU}b`B0UqRo$hJ;uqoJu2q%b~TP_(W^By z*k~rkZ>-vx74kQGQIW@W6RxrwdG9Uvi|WSBk&7DGq_o7 zs&J&_UZ;)?GyuV7>MJW1)u(OGZTE{kqWVQ-GYmupwJP4^Ja*nF56=X2EUxhte|=3= zLJ#pZyE+}7aa}BuG_kbYjQ)3&vAk@QcZ5}QSyOE}LUw3^iS|F=lmEVrwg6TA)nP&9 z>2gB-q50G0sNw&ISnqA{!ME;inRPTKwPzM8F)*h>Du}o@2ag1_BL}B+X0}$LDg2?v z;V7h*BYlu~&5~KojdrAiJFOftO)vMg0uIylI1jb)I39+_&7VwPnHkRbPI(-S8Bf|Y zV_M0%*+M&Y_nBM2=8VkCES(sq>Y>oCADx}z0|iN{k00RU{{{Xebk5^&)+C_Uf+YBa zOgXEa6ARdmlYgF%TGY)LGEvYn7HWU1tc-8CV@>I>Gb@bNxkvIsD7(w*r#7MdE&a=P z)wYC6wb9iVTG1CE!it?dejaT~PV?AI*>r%wbUcIQ?xl4kzw zhY>xPrD%aH-0j~J3@JeJ0PP>F&8Z0|JUEBr*DvAe23Hg4JmwsDdBCV~1CDZJ-)Pvd zRs230nusyyn*q(&vGOCEK3xgs{qCfw7#oOxdUJ?$Mah!G23iQTViKTnoc8TkL{|av z_74Zo%)C4dAXKk6iIUemU8q!>LUhL5l#NP56km`)2n{dk7gy18m)~0`5-M zS}K~}i;D(n5^W{!*9u=lVgru6rtetF@tt?cM^?Gq($mwkl3}Rp0qykZ$$l7j%_hD6 zAIT&Ji9{?qN$2E8{p_)o_A6C9hTFhPtk`&}DW_WAtW<_Y#`_cNb0b7_nYCx@xp@<% zU*`trK_7u4cl<7T`O9vvu{E@nx}io>zwZi!6xUU3?ERFHE77*O+l$*Q61hXT1kZzW zz3f6XR9+oQg2|Ns;~Z z2YU`^BS^`}GSarGLASH8=11B7X1sAUTny}#Syn&k(izc3-#@Cq9;7s^_d{$US!ain zieH8a^|3h8Oz_on`R*TK&8Z4i8%sG1#zaTkjudRQSXU4Mi0cB(p8vC0*kUQ#}F?Ar?k$sI!@n$%H#C?6mQ-fb#jErfmXdDz3ojGSOi zj>tH6!m0}$apTJp82qLSlE`4Z$ z8w)ndCUAzt#>Q&1yzTY)uxd1V|7Gsryj`}jK#F8yN^$XXbzXHTRQZiEfoD`7(mpSN zRr%H9`Fqf8e~Hv(Z(r^^dL%do9|~Qr(HRdtPM)p`GvBU=K(=2b^YMs@>G2d>Km5{f z$12;J=$0=#{gsRiMzREJ&TDhj(2X-b6*Z-h`Y<8D>DJm^euF`WV6-SIn|S8#?f}rw z(E+nxR!Qs}UjP))U|?*#-&j9m5KJ41$}p2y$IZ(earvbEbSJtT*}e`4m{PqG!MIDt zY1uGa0IWC%`Q-9rE;2+mE+as0NVIf>*C8`a(Zz6y9;sKR7W$wN=z&j~;t*u@jhp(z;b}*$6U%`{)>%^ts-13)OX8 zgh`B#sb~Vff2ZO4j`!J1^rNuR{twyJe-y!C!~+?Y9xe9|9I>FwzY1ga4k%kQ#NXYj zp0QL?z{i+&bK0H}*Zo8}XRC)CgA@YI9qy|lL64$!d&s5So}{GFUmS#{M1nc=whqPI zYChf~CDUU6SD8@jPNTNbI8FPW7qxbq-+miBFY@Rh;K1ilw5hotvwzSZJ2*$PZE}<4 z$tJT-v8J2Yq!^&BV?S;1r}2NPqNrEF_o27PIaLFjHLcjS-tKNjR>o1@W{9KguZi&h z=~cukH6z2P^nb;_J3HSWtPa#hvOyx+esw{dz-jq@;VUMG(lGmT3yc^|XH;m2Y{Vq+ zalUv_v9+_q=rhMcc4mv+nu@L;1HKxT@&yn5VTkJ)$TaLZp;MpF?%6`&h9}j=G%QFK3>#X`w1VGK(>% zZK7H7Ytz*=vTie@eafV*AVJ$p{&_m9UC;iFO>wMO{poX{P5n1gWtj(g1Rnd$yrH&- z8wGDOAA{c;lUX)sak<^?A|=%xq~j3lW%@;f~LH83-PM_M5Me_HD>^DKqgte}tv+2F&?= zSB7`N1p1hX37xwZbqrz^AkSOL(TQCHoQql_ShvMLKero%IH&u~VTB+Y;k3|}w?wc! zzKXb*{c+lzz*R69IrFU>X2dw~Jd3OLvfka{fN%yfP0eQ@&!UI6Go0qog8EUNexFVE z^yI{5NLkeuzP{zG-<7SnaC07pfuAsi0EC;Di23DHP|&tn9DL7D3oRVY-#0bu{P!$@ zf2o1nwh;>MBKIp&=jY%m)a(xbOZ+YHvB#=4mFqdb757a26^gMOIpr#NfMOFl<1kT% z9}qw6U&|x(n-bod^8o7Sd~j?vWYhWEsWL9EU%G$E45ifk?V0VNV_o^7YNCK?m zs~|(F2+50wzbY91^=liLLjae`TT)_XXIFgSec$%sfA1KSI$%O9=;2bJlL=$~U{WZ! zP#`ob{uoQl@!ty&c_86J4!ZN$%XDy(qCf{AXSz@tF~+(n zD<_AX`UANF7aiV;2=eN!W{!`KyKL-Aj@dg93GZIDga$SkmD)3(-)~RhYm+D2nlJ8p zYVRylj=V{0#wk?g94J3m*4h(wUV=sO_-b7ntYcGTZ#?Lb1Ju$|)BzIX9=1h$7>Vn0 zjwo?ew=sB>iDj@qQ-0M9X&>tS`!@R0$Jqr1NFQPPuhQ_MAc^@oN4NCS|Llb+v%8s; zD{*wmjUyu?wZg6CktE6@_mQ@Iu+X@yuVuRIwi1ECj|@iqO%?faAT3e|%;~vgqvo33LL3_KxK zQNKW8(wq>s(`_%mzqla(ZLmW_T!)<)BNjtqT!XjDQdOBi($8Kh<@}G{=4#pf(|FkH z&7zWPuaGnKh?`V?YK!}o`OM)(BJI0I*6is1K56kPE%h|4PG`qVF{ygb>JTm5uog`lu_4v+ow6!g1c~ z=h2P(-XBR8>Km1mval(4f9rDY`Yk?@9ENrBIRhRy8b+<|54&3{yjAe-F>U_N6@in~ z@{?-@If=mSpCJag{M;D8EV9&a)=VQW)9_&SbJtoLb3tMnwIQ>#j*LiCf9*goxJQ-A zR3g3d!YdTmlE(K!31_o+^`P^%g-X{86W2sA6moLr-)fnZ8gGxQa3m@gv_Y>}Z8vOX z;I44zg;@8rQM_3~2aiXjWXc6Q_SMy6M@Qw2glx16R zGDiNr3YA}e({YmukGkrY^Di~qvK&B%BmV6}0e{+UTh>81oY!(OuASwh;P)Pq<~m0d z*X>K^SFcX@!|P17vw#4W?B#S9IUVEs_d9^Zgllvk6VuW87h*1uDgO~It*>&fs_o*a z-VLK4y?S$>#9`1^C6Cs%GMIS48`4WIi>%wFrKL?qivPE)z_@2SdwTh0Ng3ziaZgCk zl7p?q2&%773vxD=wPz@lBcyYsrL_7T6YRy)aiSjdLV}S-?Ze zD*2@A!R!PjIe5>cwc4l>L~rks9k9-`rliNtz<*^J-dlL^M0+#5XnI`DIFK= zL6(U{M?vLOvHtgk$HkD}m!&TYM9V=_%c=PlA91#A5QqEjb@s{qMT*&ovp+e(#8d_MYZ?qVnR2tTtpH7^>Aqo}C15;2N zz{1BDpBvVYm#5V#M^KEps=1H_GixE9Acc_-^v|4O^W6#4=NYD4X}<(uG{ zBUkhM1VGHAwF}a<_6H)G_+a1#@W|!t<9bd8F?rMcuWj+1b zI@ny@r`q@XItwRF67Ds!{t0DixEr*O9)0ll&+q!w$_4%c_v0<350j((1s=h}R)}g| zNl6j^d7TtS!PjQb%Kuuy@TR)_-J!dknd%a>-)*)FyqH!fwNk;T`$I0aEq;m#72~*l zRgZtr$g(`b3s^pQM9G7bg~{KurZz(+xqjI=OrT0g zeBb+vCl7OB>KEd~oWWLcGDwYWU-JmBUat-!f`Q3?X)V3m9TC(nJJ{Di!}%?)vjR9b z7`^HZax5?eUHl6&Sllo^xQK93*P?=p=g`TjRj5 zKE-ve27xG>krSHV2)TY=vOsqt&tM1xN#(~g44l#%kavcQEK;4Eo!No@&kmjlAZ|dl!|IYJN|_xT#qEHw7xv3d`ta=9YNB~T zw1cHP1LnDhMOErR{oAd1tWW3)xsB7b1#DolZ4%iN_&9|pNr&aCo zfAFgIv3hxj=1~}KxZis!TKd3`W0;S`-f(>!h;6ZDHv+6LFH;=9uYtL*t=U^z=@7o6 zyn$>PUBzhSg|BUaaV^65n7F$>crW$t-W1(`i*GV*a(#q7GX1FUUKMNDc4kiQ!L)s~ zmk?IWdG5qYGWD%!Qcvw0TYWf;pVe(_YEUumw`{KaY9Etqk@P!N-)8qPddETgoE7mx zR18lW2n(Qq_?G*p5m77vc4;=S*^~${uCJ`1Fnzv<$wfA|xIU`y<><=7KUFga^^~uD zls#!g?XwPBrb=1`zL_)ELKM_g^mR&~vdhAD%;Ri*eeUDRzN7kt9CLa-=V?+oafghK zrE0utN4yP}*@Yk9y8g6GEqN3j4XsK4rtpd6))Vg*eyos?wu*xMJwo-IiK2~YLqZ)7 z3mOuPdr;_|9WOP9=`ryy&|$RL?R*sEnD;!*EAp%JuD&;lDk!SfM8sPpZ#10nIGySA z_s=jBGn^A4_ZQ>POX7EZz~|(7BjzRDN%zqwY0vB2$hI?D{N$%i^FFV4 ziyv&)UZZH{GW*t6Q&`YVq<+gsHBr%Dn_qIVTrk&n+RKOF@S@$1FG43V?CIgWofcsZ(Flb8!t3uZn+-Y-6Oh+Lis}>B z4C404mZrE(%jCmzbL+p~&g=xPeqD;f5{!T13*Ht3L&L}C-CX_U9L>g6*o2ZSZB0Jt z?Hkg?EG#T8D>G5Hr8zgk1bMnnh7_B7Bs6<2DZAs3=mkg1D2|Q`TRaJ?U7>8n6 zI%yeusYS#%K2%lleo^_-V6VMh;vko>75E38049rYXgr=@UG;~k95#!DrOW8>q@)lg zL!a1sho=^_6U60wmAvn#=i6=9ay{T!;(}>CYpK(H<5k;qCMF)l2~W6i2cE(0Ar^B> zD!6qcwW^-~Ow7a1kh?dT4}C(CV=6El#bV=Eq5Z(Tg;nUShyjyU5pRE58X_X1it38= zBMGg7b294}jq1PP!1gt~O}3z}u8~?acu=Who+)f^9(0#FZ6Nf&t2R75?CXBwPQI*~BmVmwk2OP+6Z_!Ts>v>osY~XNl+s1SCHCboIXZ-_Zt*opd}a*WF%l zI9uY9;AYF%a4_y>lTgL?Z%x+*K_%tUz5%V3l1c+&4`1xco(95(*^S9_{Efd{xQ#G& z;M1k#75Z?mnajzvPDg1~9%0hqapAg-b^|M77rix;fNp;tmZjKtVq9Su=~Z{JPA|oIHq#)d=_b%|e{VR8*}2_d$&NhzhC9L=Q*x-uK7BjhI(rB!F^Ajsr1A zr!77qz*-oP58MB5-`XsEq~Ku($u|mARYu3hn`UMxp+dX5vB5DS`2ZJpfLOl_wFla? zFwdqCN=1M#gAUmZXw5^7NElkFm4aWPkKKk7B)3}!CB}=>KCiaJeXdRA+cW8t->+DkfM|%2gFzmElbG>+>M#TY0qqqJY&SFqt z{`NNe%##3GReTbegD^M+D_7;G$ou#2Q?_d%q2T7_CDj4p$`4~WdBya7JM_h@rfUKK zUWJ%|lB{t0z>OPF%*G)h34mMh06L0qa?kTU-Kwc!>TD~l1NbF>27NJ^E3>wtA%gt; z{Lf~&gKIbh1U_)G!f}15;eF$SO0JJe?u!>R@UckKyE!Gq;FCOm{s1(@V4!VgD7~Jv?(7it%lepkhe$pvH%_NaZ2d3oda{rj_Y|F`E3 z5W_@7AJDgf2wWG;TZP5*zus`T*%&EPrP=ll4&o&zCrkSYb6AkWUMVIPh`iwc|9m4E zV$T(f^{mUzel;fr4~a?PL(OuOlECh)r(#f4xY5wn_4>ab{8n+84!`3zbUoJ;n|NqC0WaGF3^e{krMGfQM zyT7ryiKIk94606VHVBv>_xsq`eo09biHV8#9J{+%>oKCGhc*d_h>WLS`kB(Z2Hr=U zPs~7j?RHsNnSVe)W2yN_H`(g5$vRIm^WnUYpFiJ*Uqu!X!Gd<|E@NO|5LP!?sQ1~2 z>fz|tR5c6+z(C&Ufi!V$=Pk|pP3(vK{xDLixvlLUIJa77u8z3S#d#fmEXF1$Pp8*g zSXeL<|6G$x5ezX-cD;wZyxB@87yErE{IpQd1m%&RO0M|Jmp8yT-Scq8CN^GQMMWhH zp_HwZm7QHA(;$lMTme-R2b>j+P!a;10d!2~Z-$X=@$h^@k4Q_SBF4A}PI4j`i!lnb z901nv8AjBV&n#$rT{?O|!38-p10-TTIXR3#K57zCNXRcK!GjI339@ln-lwn|LP?}; zq|Woa8-MOMv2^l8xph0>b^Ha~j~;Px5kX=k0sjwBbB=Bu2ntU}$EALgJo!IS6zI92V8o#P2c z&abRGp;=kr!TRXh`(+GDn_WHPpn))b+-tn6oA*5v|Ov!P5A~Gr9z*GkQYNj zX6xWUt~3GbL>lzgY71;JjmxIbh+C$nv;Z}yH#ywj{|MGP{J)Lc?)xowMl;=d*_$F{ zJ$VF!mja|S9wf<)tk}YmhfW9~x|m57>`7z4Orv(MkGH1qz#IhiFpYxE6t62+wK@;i za?2n>79;^`D9;wlFPkUcE;&@<#v(XwF3VhDNRlB;hn*^`-DyI9Kt^WX_FJM?*N)$H z@B58#fIGjVp|#J-&BeO`Xsc|&iQpDkBHR84$TmlBZ?ET8y~{2Y44}cm!_%MSbU(6i zad)StqicWgSX~B!1*CWh5+RGp3S1bCBJIbK*4f$lMp1F_Co3GPMJ5Aj3S%))vbV9b zYXZSp@C2NnsVcb<2?-P1MJb3g2GFA5z@$g#X;%~&SG0`f{4yyisRG9HmZ#LK{{#iC zObQeX5)-X9Z^B}5QaU1f_KW;xDinp`41_7H$nlJ5=;$oC`K`gF2y&Q!r3<$8*|p4+ zw(=Q7t^+r%sfERz4~T*Q>VcSaw*kJ_O#eIjK|MTfoB(WM6OQufNksl6Qq9@vwu>g}C>I@hGFt*wBn46hX38UcKr4W!xHURN+~vGySdqS=kk(23PU zf%SX>6DoJ%D;=&nK(Am!lGM}t_CDxC=&!o7qU>x`PtDVX#A9^{D9eq4_}H-3Pw;>Ah35CAUTq-;veCz8kf7tpv<&>S?6G<)3v zi5ct%g=RyHG_`8xM*Tg#cA7@fxnEq27af)a+7>&Q^Iy zN=nM^44g^+fq^0bTDjVbsXuT}tghzc<>MRZ@9*Etm$I~EfjGzyuk4jfk8K6?!Dr{^ zKY`&FyeMI#=U6R?u7axtaNxq)ATA#n9;V{vc9GiV!T;PdFf~=%exn`COY`tN(q3+{ zsQV&`ArlK9YdJz93JAx2sb>pT{ovllv zp!nI^a(!n73F+_NUKJPyW;tCm#!ZY!t+t`Il?&|>Y59MR^MrqHUDGPSMald5Ga@c7 z0PGXDDufu%V50@NCYjU5XG7`#qqS>&X)27vt3HSlQzw-zZ%s2+=|qzmT3(n}a)RA- z4li9?q`Ay8Cps-jkD7C?c_~D@Fe}Z>>!xllG0Bw|ls-hJp)M1wP0c|T&Ytr>biSNV zFX!bwyubVNJQ7!^?9y<&{HziKZat41J$&Q4@_{|hmfxn-Rj~!;L45m6z>RwDu zWiXjKm4~bA(39^C%wpNX5S&;EbaO}u*}W>>*|@m4%J6{jtU!qzLU@P8v!-y)%7-K~ z4LG|n7zKcxECNzF=exPqM~QJ78+6qHaM5kf$#R5-BF z1k#6y`1l77fnxsRL?a6cksSVBF=a1(Au1!(h+XFOdN&kfs~{`DMfYMDATcySGU76{oFcpwO1o z#cKt9=?DC=ivVzwAAw0=FxDVu8i|%p`zB1#VfbblkP7G8605;3O}Y#mr6LxaJC-ri zcLoEA?r<;HSLZ`TaJ<9Fwqehzqf&x$HM2Pb+oXZ!)k;}y?LlNB42BHK#VpObtbG$H z&hYp+cQ$v~qc_*o{9{&=;2!VW!jhilyB z@9)2%ixE$?=Ip%+Zj9+PN#LkuA+nWHA|frV1xOwaZu~HAT3%kB8_3dsmt=K$`^HrL ztz0oLvbDBsHhc0)H_g$}1E#UYS}aBD{}LGd&kKbtDwVqSt8q)6@Yu9sT*eOdFP=5f z1OfrM!p6o0N*6T{hdd+?jsf`~4VuR&fzs&oLxPD0Uqd-TNa1m_)3(rq)WJGokbVTB zBYH%1UDw_=`5br$yLcf1JBaT|f57j%5qbN$g>mp{v$fVq-<|!FS4t2|nJ3ZJzkHNV zihyP(O2QBz3|cr7TCEl#9MRd?$q5U456VEfrC9o>&&m8+IGV|AHXDbqm^hNbKY{WU lGJze)VvtGh{4cN3t?j|4_jlJ@l|>Xhk)d49tB~Y7{{U=`xS0R| diff --git a/_images/3.3_binary_classification_5_0.png b/_images/3.3_binary_classification_5_0.png index 17c6c277beff725ef8fe560a73e17d629d6fde88..5d0efde2f7ad03cd05939fd3e33898af85996736 100644 GIT binary patch delta 45 zcmZqLz|^#XX@Z-Ag`R2PG*u`eo?x<>BgS;*4ghUt B5qSUr delta 45 zcmZqLz|^#XX@Z-Ash+WpLPkkRL9vy-er{q(K~8>2PG*u`eo?yqS?!&dHm1#)4ghaa B5w-vT diff --git a/_images/3.3_binary_classification_8_1.png b/_images/3.3_binary_classification_8_1.png new file mode 100644 index 0000000000000000000000000000000000000000..1d69424ef6f997c961a6a6f20cca9536bbf7ecd1 GIT binary patch literal 39829 zcmbTdRa9L~6D>*zNg%kpySuvwcemi~?!n#NgF6HZ4#8z3!QI{6?Jn~D=Z^Dy9vEy{ zd#>guXFXNAejio<@z`U(aH1}pJRL=g-OoCpl;Ll)#`;1l{k80f%1PA5@yCnZ}G zCs%z3V=x(gCp#-!Co6LU0vBTkM{`>nW;zZ!1{wl0Cnq~cE_!*T;n2C)@C({I2rKO$B z!x>I}mZBsHvTAMBc=YyMYjth>wc@Z?Z;pW_Ms9Clf~N6(h$upX7>loyA7@CFB%xyB zN7dd|oVaDy1SkH)h-a0fPL5Q(v4$7|gdhS$7c|N$oxuCcz)~p)MBo!agf_ANw--An z;B*5gE>rXKp+iPO@g%k>#E||3kliY=#%Zgox|^Gu@)UIZyBkx21vNEsy}cr~DTMzn z;K<~5jSdV91o8D32LQhXU%w%J^A{|wLniHb+UK=eU@N|;C_uC2kmfmTWc8#-%S9HC;;KhuF%d;77y5Y zAoQFN_=pd9GIc(_A)=s2s@?xgONemq0ES8AAIhK)+~zrJ{{^_x7ZM*GSx}^j4zTpA zK(euwEH^=}QjCuQ+WSDy8^M@F0P}0V|G%^1rIe9J3)ody5F`s>`dP%FUe!t|zHQMo+ zLs9BhDj`&f5`2m!1RNoS1X$j2xE$JEBPC{PR?B-s$({%DQ_e?e$+EGUvu%CAlXK8R zH?|Cbi;4f4M#%--+Ve@`YZNvdK6(O47>5kS4eX6>i7Y~u?9VU%?)n2*lkZJ#HxY!> zf$hy#@iDkgi=lrl$n$9go5++%f50FL8igYR^L0(p^vGcMgtJ9^#VwzTmSw#hYFlIc zM$B6=p2lnL{Iz>Wy5ZmKiU{6U#IA4^AGAkjve&WVrS2K(4CNkZCIjXKb9=7QBaz39 ztRCO`y>=KikWpsm-RyCcBJYlCU=Hp?p%57F4o1$FjSTJw ziLWLH5eG)_z7cx+9p627dohe)bKsv}{^!a@&mssH%m!PW!1nsj7s-MliF|}2eg19m z_f5xC16*SNe|G#@*eZTDv41E$(uOc3#J?C4>Eo6SNyPVW{{QoFvKaAzK{?+?rB#n3 z+Tr2hzehJTIxUGgFUO`v#>VcKwLaqiHr?v`Cfn%Y=D`xVJznT>?R?Tfqf!4cb+E1X zx}!JWWKT>=N{SKHPn|>XBkX;AjF0adMxYIpFSxxG!;g1yW}4%jTv9?Io5|5NoJ7s* zZl3ecLLy+zJjGKI3dWSQCzWO_SSE5Af+F8i8$n1NK;T+qD0LL^@bCbGgwD|Pjm^9J z7n7Q}jAu}Jt{$OTX4rnZeB-dog<|~WwcyZEdm}qd)zB!FIVo~~&YOTHvTVc7f8PbK z{@V(Z*>nu&ijge?He;0S**2n&Nn^)75aR`iVUPrB)xR%rI^7@PF_xB>(dt6&ycysc z6KcmaUA*rpWkUk0*B*W}f->Vpz%F!vyLLRSoGEH+kG#G-(Lbc-yj~YSZQD?Z@SJXtDu{dx|cfFy$F zeXYQEzy9&|bVW)?sGAi3t`}ME{C+D2{%y&iCN?#d1Cvyj{oUCKx(DtTj@e|hxrUC{ zw>J%+KHc(}ycr8# zjmbb@j{y$xL%UNj1GRW6Ou`W3s!37tX9^39dS!z4!ZaaxsPCm2!o#U+CkRB}InsL8 z5iw+x*W8TxV}1SmwMRQS{mHwVy~+m0grOF&BN;JGOixHy*e#cAsTN1+S{dAoKp=1Q zyt%W4@;q!OfK}+Wd-M+ExbI@(dF&I)=`Iq#A01sYpJP{F`M5k={#rDMgoqMJOd2Kb zH7Zk~QYX_GE*+gQ^(0IFy6uK803xI{ohZJ!$;Jo|y(%V$2pAL&UMDN^zqtK=o3U)V z)rICLV)2;oM~!*%l;1$orbp@6sTsVMOp-TR>@-^93g(PwDEQw^#fIItJw!cgoAMBd? zzUnQ4uv2j}h1wY7`34Ara7_=GI3FHg;Om^mgyfQs?`XW++v+T_L!xmEez}4LDGEAx zP_b7n^tNSkuF{RuhfTo08P=#n%0=ZD7k{aHxE$v-m};eeKZ7B*vfeIUv*pa_tM{U} zQ88xr_UuKGgu*$4b#BPrA5P|g`9Qaib?&*j$8!$$eq>+i$-=fNYA^p7B}Qyx9hCq{ zpcDW}l=Cl!&b3}-&Y0}{jq4dLt{j?&%!JfyDLf?VeVo3dY9}k4y?2K)0ZYye`kf4PK z57*7S7Php@-PA|{3*OUWqx_|VL ziU5x3r8E8=-!^AnP*8>PRuDU$M4u@`J)1cP+k{TERNkZg=CNYr;Q21*l|P(H((J%W zyn2SwQxh(CH&&ur^jr@Zev{@0M3MKiz3a!ya00h(VP#dCd%v<`cb;97PU6kX)kK$$ z`luw{vJ?9HOS>N6@s9M&=)D$owQtjiaM>I}YHH-Ux%xC&jiJCog$-3GWkM2kH(VYO z09n|&+^t%6-i0=CV-S6B1z)FdIp^|V?cg_}7Ge&!YlNe@YI0h_zSbaJL0ez^x2I!# zPAzpYf1*H$%Cxay6I}|g=m7HQ^PZ57fFX?S6Q&>uAkVYoeWnWqj+OgzV$@Fs6vPbW zuqDEDJoePESVc!u92zR48{No!_#(Qm=dc!XNsgY~ibBrlw=xH{x0kD>!fiMYpJSF^ zV(-49kVOF_6_M9|AnYJyqV?biOfBjQMIgG*%I?t3>mdpe4xRidXwLDrO)G&!81Hww zYD2H;W{k_LgTw8U=}wqNECeY~GS=G`3lojYFDo8n=7Bb-T+_dSkjG#l0*P1^p%)n{ zQXuld00Ky3g%jk6Hx2h~@NwRg4r9y+o>0!gR!8Bgg5Nc8TDJU{7xspDn}X27?Bit$HZZ7*2Uzee9arXt*(`uMCrZ(en~v?AB+NWCRzE5KK~{E4`N|^W^22 z*WGMn9M|$R1d`CdI1CX{unBH%(Tj$MBk^qQ4N@jUtHjnuq*R%KmNS4L;BDEX&9P^+ z-qrc?U?V?uQ8}>8f8XJDs@##m_6F&6*{<&WKp&3T{$h znkygbr|Ju&TkF&!2#A5@+b6R}9U{5%4AhQXbxg&cttcDNwaj(*1?%40HghEkh$%~= zS<6GoL6%@ZlvyKKZGr4Yg&BPT>(6{5gzPZtYa=Zoiaf614+EWm3ow<~9g(;+qUJ@j z)p(p>Aqqj{5Q>RF=)(Y!;asf-apK(%F0Mi2mj*9Y8#}GeV{p@qf?ikLYh-L<*G5QQ zA@7A4_f}e04^!M(Z9R z=i)QWe)dG=SZC_qEV-tpqSpgD>l|CSl+0A+{+bj&c#mPTP@jbAF4d-^`{!wMd+NTP zST&Ka;>QAO?&{b-go&(*|Q7|!1sI!ny5aq@f4Wm%W$to2g#oL%ymH*5uc z1FLOC3#_C2ogCkYmWAQPK^z0(o|^eDgZye;Q{%h=JqJc7-KeW{%miUG^!}a52`WL9 zdl3n8@Hy1o6SD)4z3x4P5CWC*HGJlLztNzd=qA7b_v%tywf8qYdis(pm`Ul!V6V_{=s|EJjRqa%zryDCrZN{gWu9(R*QipqacT3mP<1 zn;>s8X8&rwO^_?)qGW1mD%@`nGmQx;-A|B+g_;$BMs!1%AAPs*rACU*KR`M`FB2ab zC|Z?*nplbN3$wfUBs0n=Y^%Bse|=DEyjWIO9n}j)sWP+`{%{)cyU`V7b3474AIk8{ zB3u2&o>IRncO;uPEdpY!-!wZaJe9f#z-9sWeTUJgE-sEaW zyhs!Q@wvYvJfY3qj=NEemPp!C%)IHmS7&Bw@bp#j_2SE$fUIURdU@uekw($)1039y zth~BIXzXp6T))IPL?4aI)v@N z>?6beL{@g~Ky7}6`WD~Ac_>-k5h+2~AWr>aKOh}o{Z zg{$iF&r*8y0c_M=f@DsbE6!Qa-~Vt8a&z+=z2yeLTwfDXk{BRw&DUFeq~4=Vt7rH- zG1X@p;_A3QNcj2jkugn%Mz1aMCPEDn$7zRjta}ErogYXUG5>=Nbe(CV22{6cP2MH~ z+SI&agY-2DLVCBHfMqV*3f!S_RHONBB6iz!$f4w!Z0-45Nn1N|X+sFz==(ul-*S@$ zGGWn0RIR$T>g(MCzr1^1AZ9;_qHyi6W}HN2)vLzC&Iur0pKZ|UcRr1nVVzNOufozu z9{MIt%1LM6d$Aj>>hqAYHtGC3%>0p~+bOQT@%p@LZEe@>Rl?^w>I@MN$799WZSrrX zhaPSp;y-lh_#bG~MO_6z6^#4WJg+lnm))M#_7ra@o)&T+k%HxsEo~PEdD)lQs}m;EP!qZYlx(?MS6>3-nT?Pd=iJW{X>iT(jn2{{&5ruC02-O$GHeJ)I0@`XY{`u?AGH*yHQxghZgP zzHoadRW4`Mer=b87C?)&9AD46d}*sak-=-fJK8GinkvJ#Sg?1aC%=;0u;ch9BcVT& zw?i|ev)-_zh5oM;T>VNQ3>{*P31B?BvL6z^CVyxo+eb9$9fY^uoSk4a7KJ z9HC$c^Xn1lq3!*!g!+}gf=2uE$bRiR_XkSP4-dr(&hu#|k^=e43K_o9#o^g`Ryw5c zYaZ2V-J$PL;JM3vQ!3!w12Q6D4|%EQ6b9Y-RZl#hcKYgbEO*D63iEH%7|mfuASHLt z<9e1GF3@1+{$fr8`0(PQShl_qGfOK-LiCQarP5p7gI0NNF1q|QzpuE2Pp1nPN(yR5 zXTFD&l_Od{D~(<9*0E_H;&T?BXJ^uOXbpD{S%x9UUv*hStvb0+h``?Q^}P9%N2@to zOppD#FcSW)xVF`gm)j*iE4{0>IfAT`?7fIum-=rr4!9BhkglH{bE&5zC0wjwHl7t=qGSWt)E*=iAdRzuwqD|yCD6LGf9I96qrqM-3?Octm{cf^8QJuA3{iC49 zO0Rmdep2S$rrw^ApvbFbvp5WRg3i_4t~oPv?SaD5J_Zi%@8#Nz%TCb0D;zRgS*9ZeqRaQpI-p6Z#f;YDy?(Hr#YV9x&s$8ZN>A}uD%F7tH4CS0Rabj zjNSGPtFAbzqtLz~-T?W2BVetlWs^oj5o;otp?idIpFZ6-Pmy9mlB$C3NF~SB#RN_& znci@(%3J!#(pd8w(Kq>p8G+LFIMMPHMsiCuJ0GWwF0E7Jle{DxT0RM&nC%iYK^q6c z;`V%kdb_pkEKPh-;f4JLBO5sliL~qM-N>%Puj*Vd@sf1s2sNEK*4`6z0GtP%q<|0s zDBi*kO(3{Lnd-Fj0FRAUYoN52=yPR&NMJA{zv)<@lNu~*2m&T*P`R3*m-2DR7Md1+ zKzu;SuZfHYop7Pt^&{71IWK7%?z@wsyc3i`1SH&kT+pe(Q8;Y=t}ID^ZvqA~|1Fev zq-5cyC%jk08t+ zq;{$i6^Lo+D0%|Bd>j4k*>}RCK7|uBk0bjfs&aI2uvfJIe%UMLXv2w%Q$@A+pw5^> zM;0k>Q$3UWE&ZwgACByc_44cgPJr~ddqW3N)Z~4G(eK(K@&_dIm|#feRoY_$8bo=# zj?_}+0B!|&y=aDA-lHh9QSvUqP@05~;vEYU&6>Fm>25r|e{2$h{GnNhH#5sC4_F*+ zBopMH<~VTo0OTGY{^WoUx`h%j1vT8bTy$r<%A zBU7j-MBEW7j?pfD=Y#j^+6&{C7@VS}YN#N^p=;8qg<20{PIHY_I>zsz@8~q-^?#he zFJYBWO&%3islUG#3PJq<;0CA)DZRl6Q+~toFk!EQ;H5S#vmcOfOpa?&u8w=b83%_a zg4Huot*q?~>F>d%OZneVu>P4I72~IqCT}l`cXO!tQi1(zrH3*kCYj&y?LzZNH_AVTtH|Nsxun#qUasfhV0t0Z z_tdmpwV}l<3~WCxE$pLOG+B!*f7>|Yw6aI6uj7f|T^GZmLiM{MIf);CO8+}52*3fH zClsOyMBAyuXbZ*da%QCVLODyaoBQnL$k=#n;_A((n3@eB8e|Q+U9Q*gaOcyO;|gwv zC}lpFl|n(HwU=U65b$ePU_iwuqe=S?;?n)~@RcS(6aoJ`bNd<^6}oGw=M&o5aZN+7 z;w=`>hV%)E^*37q1Fqi7Wk9cZjLjcX2tJMEhpDxkjcY&Tis)1sNhg?ik_l6MBVR*8 zIld>9x9gRGffeOri+>Kr_-Jnoj5+p#1z(GUIwo+yaKUjCp>W6e$4L4JkLtJ{ozNhP zs)Cy6L@D^J=x)4K$KTI<-||fjFTr*BTQjUZ`AO-?QygidN)jc3+C3pF-F@Y$^MCY3 z6~JeFSodhn=@;#DINM#)zYc+ttb6 zs>ZyJWef^daNL>_yu15iZ|h)DH?ZGcWNo4}yH`rf9~>6B*wP(1J+E0hJvS(|>E={) zOwH!B1dhF^?<+TSY`dym+HX+tUTkje?h-OGK=`lcU*vR6Br(6@|A55zALtDfpBN=j zEw-Mn37#ce{M;e|FGVnk0RDqSf+Uq_0fjv#d};?pHBtNa+3*vB;5j>xEx^RArZ2R) zGiR_zT)ZARUsR$aWQ;>)H=51ztcLrfe3a>{kQu~gWKx_^7S5O+FG}T9KmK^l`I(`_ zDezEQ1iPDoy_AxI9B_70QwV`$Zh4`e`e)>MvW=;@m)+3s;Q3OTD)*+?=}aH31n7VWyce677z2 zphg4DY#~w^n}I#7;-u#I5ifVF|8zxkBpSdfdJ=g_!{vM>lH<96h~a;|KkuYPgANPx zYi@r)4?Ew;p*k$PAJuykkZ&DH-fsqMv)=%3SJvQo9F)%3XHB21Pb+=ygkP4U*@*x+pbBq?OSu|RmiU4hI8wSSI>_ru7 z)}UFh`Gz}&2ahQ5yu_X39r}BwE9!tcgnKHzK}?l&L~ucV&=cSHPk37&M%y%!cV1?- zo}7{vb3j)6NKBfnp&WX9^ap9Ik2as2v^*vLh8V)mPH~zM2D?>HFHSFyTqu$6ADxl& z&_o7Z?IK&j72Rs%0vs%b3Y9}`EfiZsR!mSFVBdEeCzVk@U z3R4u;^D=_&j8YEhZn@oIa}!fRpj{)0St5@wp5|s|1@1r5CE_6^AWcQPtrj)mrzRE{ z4;q@a>2#l;K*#szO51eQpM!$=7W(UUP5-9faI}1}yImCc5FGkl)m9VK?z$SFS($yU z`Du-?JLC@FhJb8PK|_P{`Rwq};_~VW3L2W2l5!{^?Dd8V2NWz*l>2hY zY_1D+&Gns(gK@UuG`9RF^L@1iiBKs5MoOrV9zPOF`BLR;^{3cr$;ken64fUSjceNp zYO98E?pT~tia-Qc|NQ8-^@mONX2!m!0<~gX^T*0gK|w=!jGkA>>MCEyRh0O%3tkL^ z57Cc%xR}pzTLUq5CZj=5Tf$fTcwXm%+1|Gr0B= z(vq#)5z2P4n1!k`N8i~u9w&O9f%HMPFoVG{G=w?_r%as~lW|I7P@1r_DZVMzOhBlz zg8_Y8S&4HaOkpH5o4K?>g9gpT>M4*jSlL9>6vnr$y&*~2l!7ZOz9m}h+m|d!VO?#u zA~@nFzNLYF=c6I%@urc5AOS+Q>?;{OSfX;ZYO!QvIo)nkz?1dhGP$~;ZQHs9wBU0w zFcMF!n5_(Fm$f^b$9phtf)#R*(Qt;3m$ffla|nn@@ESI|a}ofC&61Lsg)M$zitJ9* zohYi|awppJbko(jbGNQeTs@W{03j=k?+J_?8^l?DyuQKR;U~u2jI0tNDK|B@*fUZe zM9jCkJRhiGOrVTBVwyZvf9r~fi~=VhrVcJXEXm=q+4Rn!NBZ2eF^U`chk~DP&;wpAjbS4I27XDp)IBNlu^t_Li;}~;X%1t&c;3%g+iQqf)AzkF&qU+? z+7NzUA=1%)AqFHp+zWbRO*)`{M-UpVe%G=)3JUtf%9M<}Jc6Uim{|4Q*x}FlRCSVo z^xY0P0~y3W4>`HA#fE=M`8c^U_9a9~|KDDD=`!sRD`lhtQ~)!h$Q7om(`f$tlQ5?WR7LmWHpK zB0ZC$Qf(@~8T^3Yp+^)72yO`cdN!QaU79D%2YfyxlR%B4YbNVSS{cFA#4#f4b(!7))P3_0Jb1MqDWQz{>#Ral?%3bgq%bDIz+p-cdv+Oozp3iiLq?w@uYO!gov3N z#$LLn1mi$7*QzD{Pq|veJ@F4)4&antUJ7EGTyKx~Z^OUk_;&YSg*hrY#-^o=c~PQGYZIukC$dQ#IVRj#!-a9H)&ajyLwAIhYiO1~bza%@RK!a^AS zz`QFxskVjbha*6jjFIz)Snq`k-h0Ofs5&rU`!|A(S9n)gSXlEE%f3lTphk^6#{!0x zfQXYq_|V(vbnT?Dq#i;-IrvSw&q<-DqO<*h2=pobW#aAhM)dSWmM7jhD2blI8GH~uszFEOn;j%! z7vU=9H;hJsgBSgpYlrV^`f&JM{)N>k_wyX8725sJL5>PkNdRA6E`rbuz$zUBlXD>I zrPb~Ei>-N@7Xk?kVVMf`-fkrH^H$SbTwhkiO;PkIK+KU!r&B z)^^1I#NhSFk2XZz zphV}{+Lx6Wv$I1Ia$ab)&aA|enms#dXo>BfStXW+hFE~;mI%{~N*)ExIrh{#!z@;q zDIZF$j$Np{XCnl$;ER^7LAS}co0`vqJIRw{#p&1OeX=c8cVmKFdZgC z3&e9`DP@F5SHYo(u{N}i8diCf?w661a78vrMW)_UzYBBx1>gvTEy^rwnkxduVpe0m z5|DBFF9H-COJiIt2K&&=Log*Wz+k7Tzr&atw!TCaT76Ly?jrjE2lclO$5xoWUb~bX zSLf{2+>uVsE{N5w*W*;msDa>N2h0xhz6GK3m1*Bkg3$N5q@ay&$xhW>=1BKKBGshC zvENZeDpVtqLPQ)E&Q7Iw+kdBmc-JQoejH?&{ZqL_ODusj4EDySEi3Q^apI|m*+^q| zG-j2wUTbJ}nzYB8iwKs`N>;a5yg}T}aEW_cX1u*>i6vJ**J+wv@6s)$E~g+?-e%1X z`EBX$i!S|&xIap`g!RvvS(%W<;qDo!g%*RJCQA%w87cO0-*Z>E6ukVo)d&)az(Zk; zoW^udww1%U8PV@>50J9YrhYDh*xNn{RcDO}a<8cdTo)RJ7;Yi~~IC{tTyj zX6ujhb@|sFt+ziL-CHz2uXThGb zN!teNNb~-wi~XS9>7w1UlT&{Vz;K(eTw1e`KNXuVM^3^8f^iSmVDL{vLndVxN5)O-9H@kQWqzh#k^DIO{QXMQ{mQ zBHQ3%rfW@DeeF1E8LQ=l=45zcILqRCC+3-iHtkzh5?yEF*7Qc(RHRblvOoP0EH(uQ zyb7JB&6X;6&L>&CqF=eG%PLch7|vi6Dw2v!$dF9f^PZPrN9C%F%!ZH7I)JWh!vZx4 zajC#KJSrQ*TRr?5_X!%Ej@0W&<<5t!E0j)HBBCE|a)A19=%6%{ zf{K`q0w>6614=yEIJz+znV;5gq@ez&BN?d5*v~vdxq;ZMv&BggRosz6ed>b&T9D< zU!hoT>o`4ehsRy9RRKPr2U$V#tIHX;BHLEYqWUhi*+)M)_$C&97KcWXdda6M!iu-qtpeb52{G-w$d7b1d^+D zbJ7~iv)^4gJQF?B(Ul4_nrwaY6z1{vL}jDgzL}_-9mPghuA0x!FQT8s6=#*Wb{RF2 zYi<{zR@2tkZ>_YwU76W2i3}3i!<84+&a>{aj3Q?T^F#Z(rQWE z)>lxzRUJhi|^8}l92Y!6;fn&R|chpBFR z#JWNs%c^bXcuv!Ui2G@NkqWc7_95bY1KY$zdhcoNp03)~Gvve++TNK9@KKUolB@Y$ zt<(h8sU=d`rXqmc3(*X(7h}5?PW^mYtq~E(A&k(Sz6D=pA$QSX$(6q-0RyLLJ0&T z7T7i2Nhu2}wx>Y7CF}&br6n#7l~}pS$fgYhCXslONrwcE7jsh4PsKwS{HBT)NMzA^ z5QsoBgFZTvIum69J`qyw~Va+uq=8^&oNT-aUcv7Nyfzo-nb+qYz>V& zvtl*6B%(UJ@0yd+@^X1lh5Nkmz@G={m{7xln57`Drp4|lcb5C;TlVng^Nim+praE& z+`2MWo&5~!{L()m7*=7rv3=b`$u^3y>2O+h(n$?hzf|>{Asqb1 z{e)2Z@eD`h-p3HlVnQ~;?504DmL0*od@>V>l1BFIql1I4-Cyw491lbR5;555D=Tv@ zmdfX_K8PYL3i;fYUpoW=Lm?@)>GT);HFtjQ@m|}RiCHtyn-Kg88vhwfLKHycX11c% zo*Pd@xW?YV^p~l!$ znLKr7?I8WG_;V5~M7Yw!=R2O5bD)WU4gUOa&}nC|rl9OicO9RO_t~BHR0Z#TQ5Ya- zr-|pR%`J_8wx%SW*N~$Pq!ay|knlDPko%070ursZ{*l+uWDw=}jWs)GeA4hF|MxS^ zmm}zj@o1wVf6+N-Ts;jBOQy8HCDYe;FyCSDc;!HgwxWLEbsBA|_r#q554TPYs2e)$ z2R<%0Z2aHo#bQVn>^D{F-{2jfY|ZRcUiPkR}xHi>u;V zod#L)?1A=;B&Wq%RY?sL_9Cv1$r@4r>waU=$%58WY0vO5dH(i79Ix3$NSmj|94fJ1 zHOjrMqW!bAIs&t!*Hw`9o8L=slMD~fo5`-s_)cbSicT~W9B3vLnK%_OrEC4qAJ(io zxh2kLe969`H?Q8x#x;>&M3D*H5eF70f-WFnmFynBbKat{yRNur$OTz#96p#VqeJl9 z@k-f_k|EoKM6T=#(hnLMxe9N2pNl_oG?b=be!R99s%w*<%*vucW}H zoSFGEQN>)*?8%I{k+0?OwaoEh zaetst8Z^8IROE895-gU`!XrJIg0#U-rkMMnI$Wmglb=~ z55c>#5*QLxXLKrLVk~|45FMP&0EiHFM~8?faYUWXaWxz##c>=tb*6L7O|G74)p+aq zd}Z-4q0&(B=}b?DG0ph!%>g|AaMF?DQQ1nf)n2>7BYZ_)oVZl%I=4Ahx3I_B+0a$` zc^LkO3P^2oW@VJy*Eb@MnKkfdvEFZec1jJWDS&XgqsD7K6@i3<&Yf}5$0th?k{A?S zB5+#rkbseCKjwTU{h@8;A&d5Q*ZCSS98Sf>-NJwYYa}<0BIWXu3CzeCR{hJvN`##K zqtS;A*^ga7EgD@1)S^E=Nugg2>cGq1kNxg2%fpUIlO{WDKA?Mj9#%@^7>~_N`mtJ) zU*3>0oTr(0Q?p#VQ&i5EqglC&-*NTv^{KIQ{eD1npV-Nag^K3n1p{icYYG4RtM=L< z4<{nr#|#z^n~#1TAJ_H>3j)=i`lM<0xB+{@k^twG>J^lzMP79{f0CP&U0qhb>7m;tkbc|=4Kaxzy3u3N|l z%K9HVpJr_38`RVA()|@G^H(P&lk$U(jU68*;PJ(avD+JC>|P%(np1Sw?_Y`4TOS3% zbxPubsFTnCq?`$d+eJP@07?Q0qnhh@9Nw(#>}={)12kfyZc>$575$R~L(R!~T)w() zBuWcjX&FOYfHq6eUg^D>?V#7JOm41oBtP-!FgiWfe!Y3Sv-PTfL6*hi3I-hz(XeK= z&hq{#a>f>cY=)^@7%^OXrK5FSmJpp;xN4-CoMa>^`7tgG00jQ{2mr@QqLD24xsP-; zi&`FxiI1nmMFnVQSxw4L@6V6%!hY(}>#=DxWWXreCfUCTj}9l}qVkYj^D(!y-jjC! zWYd^Yuq^^qE8afJH8r_m-kxyrdh$O&J4B|BPO4S9Vw#UTbVMUotrl4z8sv2pC6;C}pL(i!L92^)1 z2FCUd`s>*0$EO+?b%A(Bv&fOOG*FLTYtA6WnzoPkr5m5`{Z`Hah8a1@Dxm0HU&%r} zo^Ou`!E4HK##Z%g?Uf+)54Dq+*oYfR<4z%Ng+sQ6ArIy&kGOz1SjwPNlAcJjLitj^X;k(!jnz z7+)SHLL4BuSHe&F=UWjL z354H>pei4`9HX{nP|F%wE`Ua^s3TV5Skdegw`~(YttTTb?~BB4XlSxASxlc{T_8#AIA1@#QVG2UB%5E?jo=IQh{-HfdEJ z&~>JxmqNzK#TB01sJz_Oj~AQl%O3&MvF-IWgJdZH5V#`R3nHend@c$ia}Yn2v~t#I zYn@_l4VPsV-VjE$1l05ZDwC2obMULhDust{y*_VB&gU$C1L!jK(k>L0+RaaiWKnI1 zKpe-&bIGk z0{eP!XuA}l#f%3?Y^CKK$uqW8qdoQt70QNSCANBpkkx;$QgZc2Pbs&&OfD^f{D?ya z>FNG#IK`%=cMTU(heq7wEO~Yi+3MnrpYlm|dL!hU7_omZpOVeW5AZ}=<}kkrU83Jg zNzNYLy~%Lf%fI{Obd8vU7bR3!&`^~%8xDsCbPEpE2CdRLCa!;HUVD0Vy+5&i9lW@U z_#0xWK!JMQ2#-_*zZWOoA*)#XRxg6_6;C*E^6yoR<8=VNAOs@(eyvk}QWAuDzl|rJ zIb_#_l8jsqAXczsNa`MlElaoXd2M~m1;BIbRIDV)q1Qa`wz?PI4(By?^>%}#MyYFR zDRjEs{Not6P9uKocyu^hj5*$UkZHpJBq-E)hiQB)2#eaQX~pJPl^QEbjK#54GM?lj z>B|`*5tY9j-$P>E(-DxCAUHzaEqk#yF8dH`R?aRNM^jRBC%oNFy~TWdim`iig0e}8 z7*R>1(W*(^Po=O;aaEy%BR~fl$U+G=KL`dBSaH;FS???7zaaoxH;Nf5f0%woKCSz_ zQVapG&!0cv_u>2WHTz-ht}!4-oj%WkiFfQ4w8cIPDpA)lhIyCZH(n1&1v$+Y|>G zGN$)F(cX`{Cga@*He{WZ@qIPKrfaRsbYHo~nJkUza(5BVQ1;1-EWj`ww(k|nGRjk1 z?H}LEBDs#KJ!6OM1TVgo24P^a5)tsn-=4HY9d}d6`!8G zdEx+`Ox``v2ee{>B`}6!vs-U8%;^p+tP`;_1rRi3@A}C`*C%d9PC87bV*`C>a_NVF zAl4YwR6d==DR?4*90;FGjETs7IC~2HTfnfVHnrI@Xb#MFTSclkQa-mns%|4~M9dS8t z$G)Z3i|3dp0Y+F)#d6D7&S~mJ{20R5gOmDGjc-4uKOp zaBkH%V6(?~n+}9&14RpBnkn3qUvjR{Yaaut$X5NnWy|*7a1W2(HLQanpd|4p3eadb z$GuzjnF}1hXv#d&@F<@xiBtaiIm^ZAZ~}SJT9!Lrk+D=ShQFkoS6o4YvGfWFfSC{~ z1*N*LG2rmIyH`#cBNXDww@3din*Jnk-dIbMA@kqw-reuu`}W0IKLqxs$(JTNv1$En zh2e2qdf6VkK7)&#%Nv;N8TWaG=7K&_$IBA7Fu{RKNtmisvGRPi_VA$b+QW`<^Xjz+ zI)e&K3y^T|#Uu<_L5ij^Ts|#@SW4O$X&RVYw9EvoY%I**u?dJ=j!{JsFZ5Z^RsJq7 z0~DFDcFSFeE1+z2ON7LqGrf&Wdw%Bk89sgS*83f!6@5avaH0hGX5JdE{&8ZQ+@<_ukWiQyakgdu zCiH(D`sa{{0%Wq%PAqyYTQ(g|11qa^edV_&3*zZ?CL-d~(SCS*6f5GErq}_=c)D*r zSH}y#12CZ-9%k7)+*f!7c@`e7gK3Wrj!p~*GIHYeRD&cYr^vPJL&`LK-(Z*BK)X=w zx&(t`LqtR*{*TNu1$$&MT)MtRVS%X}ic@0v8N*(z@3BfGRUSA^vk5>FqI^B=xN}jh z&>RNRoP&d!?@XT57%x644Q31qu0q{y(D5F*>j34cBGR zG)|MoXlxse%?6EayKx&dwr$%^+SoQ5y|L{x`TfsX=X=)5-tWwwd2rv?vzt{`^6M8V zmwI~}W~@X@&8;g?o!ywi&Pw}+7Y?u4L})9DeX~c!3jMv5SRELeIHxHK4jgVq@4Bs|YI$!oN=M3b+!p64Y0f7^Encp`%&WzR3P z)ADXDcsTRlG#{*QA>j_rly7F1bJJ(Kd6a0hMyUj+=k_j$R?r4i#bHIE>F&g0HI<+n zgnI83oTrL)!v7WGga>EIK@@+NUS);bv(^>Pf_Qswc)^WHT&em%NB6mWF#L{toI>Gd z8}za6@^2*^KG&$WHcxM#VQLNT^ngAa>-cS!r_cYRDxdPUWQ07h z-{i(lHhiX_?%eKsxo78(7(E{+S0|mCexXSdi*tS{WpU*8C`i!XmpM5+_UbfdlR_Oq z{UZK^%S%fN(g`I1qBs%8w|xGLbvKvPijceR9*&wTATFaw35p?an-Od_;!26hNTvHO zLqxtj-(=&To|%{1IUEz3;o@E(ULfIN3W!WFN1;UjJf|`QEtBb$&ZxP_`hdHd)V``A zCNI}tPwUD@{TeJ;)uz?CKH_{QEKTliV_>*}K4ec@k@fi8B=MC>@+buWi{Oc39#EZsw;r;RUdBl@{CRN+4bF#?gYAf$Vns7$4Wx#wDz%VZ6Bb8jw@xW z+=B?$)YN3ki3#;~XUJ)A3K#F!02zAJ-WZ~6hn5BM0# zF@4Yed=I~3V$d8oaf8um)_2CUqit2!7+=Kc&uAjUCte-3gLIS`<+;He42juc;!#3Y zicrQMBup*MF9jUq>&%bwN{U`94S}v zMm;PV%ap^C?MJ5jf*B|KRiA5J#zflNThvV1Me+1H)L02&cLnZBSlf7b!dJGZm78S= zgMVif)LiL?a6u405rAL+KfE>>A z`5ps>gV9g-wV#uulUe1pv}6>gcAV9`jR7wtaF&n$r-X7yV=(2{3RW1E^ysHwzr@Q9 z&LpTLVT0lE>|;a<74$yN%F8Rc^pCP(g+5G%dk!@(^6DIiEyp-~%8;Yz(}?SSt8Pt9 z=N#5+*1iJKM|6Lr;+~%!g@z78b(N8fkdXDy#&E0fzPw)k(*$2kR`#9$vroAt_qH@1 zB2oL@boosWTif4GM81!I0MLSr_u)kF>8if{boBXQG_9=#XjIeC@zBG*kxcT;ajm0w zM*!6lGZc+(rvCBgJsOEzl=w-H{tepr{h;hO{QUgxTSs)Zy~Fhr^V5DJ*`(amOJC|U zNUP2Z`_Z~KWZlC%9`t1JM)S+_!-o=JUNT2D*CN?v0n|5ximi`!96;3e($XfAIRPY$ zk6u!lauuGBt_ZlC%zLN*AK|gyfA%H~h9GTrY)-6u{=-5EPm9MolhuGK|BoF%3_Xw% z@{5w3Td6xPV^>Jm+%}%O>_%hQj@pJdrRvr%R626>r!u$(-&O87aIWj=^T_A*s+9vr z#~Eal(E2F_mMfn?BM62d9x_fav9b~dDp8!Sn>pn>J0^gXBEs_o)|7(pwqKT8HEQbNzi+w?D<)rN^6eCU00e{fn4 zphDEZU)dD3zR_1kb6&Dbu9w6!JPew4Z@EYPfEdeYuZvE3d7J+>d0OW06N*B%f@+mc zq>5Q`N$B>wztKWB4V=6z*!zKGY5z`p@$sMPyY&be#-C?T@oBk7?8{sGz9#$G%>R^j zIx95d!sM9zanWXtgzo+*cm>q3WggJi=LhPe$VqrYGFLcgAKufzEt1cDGgfjvFte(FQKS)Od)-l-F)A*5Wg!ZZ#~jww*|eAwB*OSiZa zURn4dgG5U@$mm$Ry|Y`VgTNY@66GLW50t%)tYA@*k&($`CDhc^MBH0)bNvz+(h_Rb zEdMw%as!*+i;np8twnev*LwvJp-tFD`SanWe(wKGSDv-!fLofY`EV2H^-?{gQ+72x--ev- zKR@7K;d6=^UaEq(Wva6KUS)$Ul6^WrmOuc4w6?68oRs$VJJPM#t+^B@W=ilV8g zYFdy3ITw(6dgff*MWmqJ-D1Ft#?IBCo2rL6zVLN z4l3R5ew8)m`c+>l5s%`0nBJ_C{ehILN$Z>Alv&+)p8X~=3hfw zcJgxH|4`enCv>`w_t1w7O9W9$mQe<1>>tL5jUag5Ri}?D$PGJuBa-j=(RA;|aWX)b z!fyAH@_7-naBL;Dk*+_E`!Zp} zyP$sR#9!sPFHO+xHXi>8bxjwwzO|_w3Q09?zS^9RtNt*nu?RULP$JB5IBvQ`wO-*} z)GM+<#`4xX(pCjTmwh8biV;3z|88F-EL^FlG88S3OL(IZUcP$ScM*Xbrv!GRJlA70 zGd*4pyzX7MTsI(5e5N$nN{h*(+%dR@1nYiENZp(p78OzV_)ab7FcQ^Og z<>Oj%gUgua^jbA!eM37AE2VS2lcNuz&-c&wf!~XMgk}+a34{sDsBH@!>-#6)+q~#D zmOUPndXGQAWDLOB(Ty6oAX z>7|E6b_pu`-?N-)h5AIb&18es^88KAPtFS-GDS zoFU!S+lXH7Eyda+$||S9&rk117Oc*Q7%R*ym^q5%>lZi-`NWS>I1;>Rm-fTiMAt2< zCa0E&z5Cdg96FUpQc886pB{IJrhG--G0j=$R=4?Yo}jhe*IM6q%Xw;g@Wk=MnZnNN z-fW0#)N{KxiPEDb1KL$4~Qcgh~nwAq_%;B~$ zTtSf-P1C(^dkacL5e7j$dsW|7)WfMXI=^V&VTrV^HN~wCR1F2wwfZW~4ld8{%TdHI zt1ZAxUnai(`fD3|@&8yOc(rlMcU&>6M*Qk>b*VSIJffBf^i zukw;4c{}t*xBq4?o&>VTD?EqQX3ACfWA_me5bSn#bi=mOb5=ROO1Ps?#g`KBupAbR zMy5rHD4H-c?HrC4A`{Npb48zggVr{eHpk%85H8iFaI&s7HUR9PFv9 z7klkK;Elab?xG+)|71@L5z_rQ%`~RJr6EqGP#%Td)?)D^XY$bLd?LMG-aRksqT4p% z%SW*&UyrfB^Uxu%H*S3db`}D&I&Q( zo10p8bLf!J9(6R^~l8SnmiNQw>MqO502+S)rSFU;cvY$Kifz(<}V}nW`P`B(Pt@F3@qFAUBlY&U^ zs2@N3T;xavi{ARJUNd#qHn1E47j{5S1dJ>~-ajFZdcKMoI!N#fO%RV2vvf9Jc94jh zBFWqSQ;AF}+k>rm)b|wj;HzI&MWN_3tDe|K(TRTN=r;y~wrhK6u_+LTY12HqL2%~V zJZ+~YrHZLYBIA2pF-W3QHx-#=kf?Iiu(y=$?A}85qh4M&Ba2E;(@v(bw)a_;BWw*x}f;u!0Zj@iiqkgK2}i zHkpdrch>x+-*oL&ZJP~+5E{9`kz~Ml?I~Y84R#O>_x*i)Mj;ge9V>RK+ThR5f&Lyw zwM!rO=gMBt?U-&D(FTIFr%q^7Q?ni&W=1}1ymQD<>pJ?Ww{eV0%!VSD2sL)wcPTrx zEyFF~2-3VPWdlMIsZjzZ9{sM~w>&>Js2M4}$vn^WM`BbITp-j{)X{N~0~aaO<9uD= zE=8x`4W!7gv@m3v;bM(0433TWIc0oN6p*1$~4+8!`m^2i7Kn^so^W`h=%pi@GZu<+ZRf9^eyGNN~d z-y|Pc9d$223{FFRfrIQ!c0#`r2?b~9q4B(@)n)$3 z!|lg&E}LqBtg*6F&k4Sox);VG0uDs>cm7RpuNUzOjZ9Td3^Q@E_sS8k6k)bC2J>uf zWNd`}FluDJ9l)6O8q{hbGGaHJx52kO)LWu?DhnG(&{Kv+mGx*rspC?sF-N!Lwzbd3 z&>`_}a^48Mx+RM4XFgJ=#{hbE_p?(n;zoglPpL9)qFkkxmh89)7f?JddCXzB!})n- z$_FY;{g9Cn5+++L5>d&-W;0T(LqD2#SmsHU&J7J~SD`AOkc3~bu=Q6S{hI9X_5qPT zTyX4~-via-0s{l}PTy9mR_Oh1ps|ky#sZPH&%E53rLCdAi|k82B=!_OxHm0wjx{J2 zkdQ3fVbgx9*~MnpR0HK^V$cYA_!rrGbG-WGy@CHpFNh&y+H}Y4P}p$NruR2j*$*n2 z7xLmwM~{8sxZ+61`M&qtQP05H7I{zmz+E~?c025HL03WQ@w>L-(H$UlT*r=KT3rND3FK+f=@5Oy4RVfysT zsi@1!^D{U#`+!#C8Du+aa<}XuP^BOHb(c}Cem%z+wxeEbaJccampr*+yX z@BYUZN^*+PL1=o?)T2Yd2Ttl~6EiCaM*G8i8WP7GGa?3aACsfw3~^mT>qEV^=hWUY zldfx9MgTLFA_c9ZvuiI9fQ^dv2a|D9yb&kVJ*-#oY{6=s?rVSA=Zi{y2yV{?i$EyVcWx{Z5rJM$F?i(U5;bzWL zd)sW4w$HB~5c50x>7E`r7A#Yxv?IL*Y;_CoGrC3Qk2vcrRR2P_;$_vOLme%-pEvKB znQJpXC}+uu%{AfrCJNq62qyO>Ci9xsO2q)y(d$P_u%cZstkCx7fT!p(7`j4hI6z*` z-r37lXMZz=d=M22Ohq$gs@;2+RKho?q)LAaiJ+F>3Xz1Zc!?^Abr}iSU3A&DnYBJg zoePIexA_d4^`cn_6@PPcd}F364=+t)DWx7w|B^@yt92+y;c&l6fx*xo&t-CaxWtI=zeXe5TU+MA%CZX&2_ zf+x=YVYqAYvd>Yx)I#~fI%AlH<^^m0#sd@-G}~O^9)iBex)a|^S!1wBqVx_(UDR5k zg3XbVhj}RjEV#}--t!IQv$nrZ$zU+=*GwHQ8a@a12GZ;Y`33c+$SEEAaNHyTJ!$3? z^Zfkc@V0W8STz;G+7OkA+%}g(>shHP%))CZCMKcze@wL&pQ{1#x>)z2`aR-&CwP-+Wz| ziHV8H;eL#>LQ3A=PQJEjDqW#$`3<|i22Cq8{iSt>kDPLpF$FBB*JpF9Y<;Vq=d{Kn z%KAam`Xlr@ht=n&`S-ilb$Vh`Kr$^z>?dTSfkfhGER1w&2r4N6N#36?dYzgvJt46Y zgqgii19I_jhv38vh=e^FR;9y6Wi&-cT}v;Wu4JC1j>qk110HH|zUGZ)7>j=tGIA&MZT{T( zIBeZYwcbQ~nkiE>z1c<0j1y`!I_r7@^&oTVp@FLr=ikh1=Q_Od(G?yk7o|^=DrDJg z+TRU7^YKK+0WbRRWoS0hjUMOhUY~4L+ki!~b z)~R14bC|!_T~|nZ+P9x#ogpe->XS(%C=IMFRzBalKSr0Vq2rG;dCi;5tp8JO(8)kWlOctpBjM zv@VlbagtIpMEd&}{!YE!feoxYCLsW8rnEmsMW70I7jian-NV3Q<9aqF-+iY)zl#&S z=WPD~%q1|t{@D#$Ph+vr`eUoc^|})|%;Av74#1{nc%wtRjSKiEBs?_$zXhCxmpr1T z!1=*TYLAre{(yP={yi|r#PsmbtR@UrIaV`ZiI$liSnTs3E2HL2hr6_W{sz+>N9yW! zN5&KIYRUbWQiGPQHymwJZYoToxNH8Hh?za18BarSrX&WoS=mjJ?eXnf&|?U5;r8&v zF-DlRyZX-Kf?X~0u*?=ypIK7~tVKP((;LBnyjh_4u|Nvr$`kpWmwjz3pV7#`+ORW= zL%k|Y=m)%)6SGFqxx%zR4|dt$BpZ=0cXDOqVYnJ7^ZFPYG-&k{z5tof!9u-1cAW(= zA%j&%+3qpue$cf)V}DBjR7L2Ca4H@t7S#p#uYVVa(w@@uVQ)u~7#Yh;>wnV?CPs!5 zwS~oc1hOB}4*mTbe;`yeZCWuXlVXKI*}c8Ao1Dk8;@v~o*>tsd@y55<+L zhrYs4Oke15^~dJcOj{I-&IfH%uPUv}O&raL^aO03`JZ}YeMu7J$Uix-U1e2JG_Lh* z89<1oO{Cj;=)40u=vmm(P#;!nS@Dz8qPtTP8*zAk_?iZP1Josu^jY{g4TPtXeE-z( zTiTqogtvHlU>vnKa5z9fAPY!3e*Y%DyT1njqKF72PPe;0K2-wmKH--Q?plxle`+rV z(?}oQlQCY&s*h(Kd$ctf?gS-;)Yx$CKab{~DC)g2sqO_mW(in+p8~7z`uu95Q z^eu%s3jKSxdQ}w*y?2#?X`1NR(MU2D7HGr9i?CrhkC%0d&d3<}-EYH}#7uQrNZuRU zHX5E84H=9FB^r!~C7s;r{P%7IH_4|?d`jeK?$_hi1dseg&tkl>18Qhy@5^{G#&s** z&zljWxKug_6fwHTiJYR;~H z`jjHFhzJ()KZ=NIW*{2QK<^Vx^QseG+f0vs6}A1D4uxA?dPZesY)_g~Qj(gf`L5n+ zh=l_dyhj~>SSnXA$x^>`^4sm1=`GNjQ?}~ch&8UaJ#v7vosT4s{Q%PJ4GlyZL(LNH z`h?v^Q>jtujjQ`vm*!1zGVcHasfa+cRy-V(A-?CqjhNW9%z}T+wDE)b(FCFVA_Crm z1%(CKi_3u&0|6^PbOlmH@^ky=`^PuPOw29G7|raGD5s~>^q*G*Q%cK3if8D#oY5uY z={hXho=WjZy+O=CR!Dm*qf|aa)V#!=O8Y?L57_p*N0z-V$EC|A9kE@*h-A9*?}WLE zZgw1ad%23mg2H=>?DV76F|DIu9Tz;&0?DRoXP8Bv(T(4>x?=y>| zNga%9CiS|EpaTks6HJ;?8pV`Sp*X{dZXMK;X#0Ll(Ttp^9qPCMjR2 zSfW}R^n5q%h03f63Wt4FQf|T+nVE!QBJ2+TVAxjcrn4_!x!?86q>6T!3N z${?h1cY#7@2O_>#Ow5!)_^b^{r7eSlq%zcj^2em{(8>|VdL#y(53MU+tg_8%Gy8|7 z%kB?Ga4Ts6I>HjdPf(gv;Vshtiz>PuYxwIIEuNohS*US^@s4Z z%=}`+RQ|!C7Kiod>^Dy{gRw8_7fo$#{L!`>?%pfho|)N&ULJb*tX)$>jIq{_ z*Mio(0$&F5()VmmHZC_Cr;E4GpzJOJov%uET z<~k4C{pr0?)|CeZx9jiM_XLUa+1to|z0jz9RNnl>u}glFJszQ7fl6Q~sT8h7^Y`e> zx={Le{(XMBVpBYz(vcTpO`MF1_*tC_k8^kOs{LT+-|Ew?cFR)-6LAFKT4oS@v4@O6 zEF?+l(6MP8HN~R519of}$dN};Xtd5nK&W=s%iacvF zJ*2@K+7Ui#^ROcxSFW*FsaE!T+~nVr^=j|r^EtD1%n>O-g8QiTHXfmyY2Xemu!pnk zE4$YA3?}Y`ZZ~nc$-k%QJy86h6UIEDI`1>N+q5Zxt-A-Pzb8fd`7&~@IX{!5(NPUs zD#|-+0*Hx130rL4@%_W_jD`oMSE!=?d?dh7Z`9+U!Dp#{n0Y@}Dx+vd!kLXO9#!FR zMF>xxn94QzW%kJAcyrXtHOYI@4-Fj+HKuH9v(O!UW_|tr9VfRfpHt=iiC`#46kT`% z{@jLT6Fy^h7~>!3oXEYl$`20Mm0xPzg_K?qBhEM#Fm;PaO z=A^ki)W6j*n@1qhZrSUL{365-|AI=CYfS`k?QZwT~i)oxd{AH&v@^cc~JzpXkU2!{O5Am>T7#6?3# zk7l!`#TwqG+v9c0|MGzsQW0EMez7qMRgxNTMS(zu?_o{f?(d(7)3$~X7Il1{#KX7LyOO@|0U;^^NCd;Y$d@R7+<5R@k;rapW- z1z|(|gfg-|{cAZ-<1>Imyekh12->V^J&WpHgmM!LI31$-6&wnKPjC39ue&N=cEh;+ zMpg!AaC@oIRZ-&8q;ZON<3^!#6xPHk=M z+}vjwe0D(rhc_TpI~Sw*rNh|S+f6LKKH|@sF=@`>+K>R5OwEXpla!eF7S*uv>(W

    I-=ed7VaD(d*dkl>J;6&`r_&;D+0||_;;njBzIDg8U>$ioNpg_ zo71r%&J?3CV$5gWmkE zJdyFq<<6fAA|Ok_%9ip_WvaCtcHdvKj^I*}vhxjuBLE#3*;SsQ6!wN;xVE8B7=P8vD6w%N^Rxv^QOaDi;*JsHYgBJ<*ceyU`|d$=0rRjIbI1drqX zTPFXD+d@|@GX}tT94=I1Bo7QMxW&t>%!n!3(i{q-8xVZQ4_YK<^5}6u3o5*?J{LL; zmtEoP6U9FwM#8B(0W`sAVMGlj-{K7_xz5!ri8z`z1&Drb^MIHcU{Dnyxx>k6A| zW##3Hns{6L@Hj7fGyd#iGf*3fNc=*ZHf&iFj5AEaO0Jx@@D=sFAA*?ul87@rgM$l{ z`XHPs7ZDZx)y|3gtp{MQujFiO8h0zEf);X9VLf3&KE%_(`J&2s8D(Te#9kd05wG4#j6##d)wNS8c@6??V-^XY05U<2M?<8AimKY35;kTKAq197d2 zBpYag{A4nw{IRb6^lOYBS%fr+SbQiYvUA0|HD@zq1>wp4oRMue(NwFz%1#~Eg2m2}A! zuZo|R3f<0?PSiaXM&JmA3L8#VS+IZusXJav7?YOCSQ-JSY7+!Pi4A+1oHss>OvRtC z-KR_0Ty{i&D=@pxypXa;Fm7utoC}v$2A^9{K#>RzL-t|9Qd@qe)q~xaoMbqMx*Z;t zX|1k*4!YN~eqoW}r&f8V!IdY>YfyBP8kESZZF1{6?u$5r@Jrbp2qDN6jz20u}I@BBKxIWPDsg<(t3Ywzs*yBH+0ng%V6dJ z2e=srTQ06uIF!}JY^0E6{DW5@uk{4=T`nrEb(!ya;MRrCjE=)oI823n{S>~jubbO-xPcZ6%U+*i0sNSx{07Wds$|iSh0$~Od)%Tn8c$iFJ^R@|J60y za%hq(4aoOGyF$xTP45Ux+J<8-{AESDm3YI=OY*%BgD zlqc-#d%F@;`F_wif`!S?JA139-XVLYpf4>|LQVN0Mr(yfmHX3wy40JP{)0ybHoEwK z@qz{ACZsN|4*~k%l1@hPW~rohtb+D?a@b$Tm!d!V0-%`CvARkmuY1|tr>Nyhhkb0p%m`O z3^tpz8jrWvx&JFW;O7kpL8j{PjU;9I-^*iZ@3^~y&5)%?F@JSRmO{=KniC_JNkl^t z3XR_sK2?KOK1Fha=mkg6(N(dC6SJveTULY#&{-1UgvK&hl(o;TC0aPVI%hzQ_p2YEDBUpj?-5wrDOWA-@)?aJW7nI$q80oDsijB6i^4_CkcBVWkY4IzKpG-Ew<= zG7RBwC3DhcpEIWVr_`jfll|5s8hMUy@`&i^7O{l;}BIAqMWJuP(6*BzWnqPMmV#uv3H8**3g&0Cpqr!5-(^*AKdb3nY0!_7 z=6Po-t0|ITumMX@MLoH==ubVEFicuW=Nk{Y!V)s^<8rIM61l|2BCM6R(bcMR2ddR` zw(igr9I)A*Pj&oUBY13>lceRt&ETPaUd7R-J$BwtO|fLaf6JU9r=aEQTuCLHb3eCJ zwoasbifbWoRKvlpr`_5>yqcVzll+l|sroz29zExEV6v6Aw17lS@BWF?ad_Y+_%))_ zAKv{0^Ur3!#UqjS{}AN^wW5E&z8u`xV8DNJeAQ)4S_S#7M6KPZ$Q>w?wUES_c6Yv7 zP*B!I!C}*E;9WziOs(4Uh`1d5xAT6tM622RQ4~Qz>AU2@!DcXNaT7ZLj+{oGQma+{ z$!56`y!pIt*XXi4x>#Uts?+n^pr+^ia-d4e!xa0tz16>OPRM|N2`oZc1Kr@@vo8%^K31ZS8lc_E|forI0@( zZ;XbdF}wt|09A(RoG~FW{@3K%yOSTH(_cRl2m%o2!$m$HE}l4Yi!l+zD}|zbb5e!R zD3Z_zlcBH^Up71-zoa%!v)pSSrDc9|sIP6s&W~#Db{=n!YlOjTzhsR}5)AdyP-DhQ zP5ROsrl3_9d9XXlt=8LvJp+vGsgG_5ws}==YQ=|_Y8zkT=!%oT`SZ<_zxofih3yk_ z+I}1m_lin)&Oe#0!b|7>;5TV64rbZq%_y-WS**M}dJv2w`~NDY7xuE6h#HT{*g1A| zb7Ove!{M%RkksY_)VR+>qn=mQgS>e)H8BSVr>za#r(LKo%Dw*z0FI?%HUn_ebq}Kewi_9ec}u5 zc6fi^O2Qh|k0nLmA^=*bhfcnSw}?C!V}|(AajZ}G`f8=nB7S5o|1_3$y@i0jY5T%m~-Dg6E7Z|SRMuEZ48>SZas&XRG87q1damZ2JOAeDaCjL zv>_C=@<+%xUvtEQn%kMa)zy!NflgT8L%ExRCYQSARU2?N(f&xZ>6K)lcEm|HO0P}pW>TY{x z>L`qwXVMt}fH;{EFhMi+S5l8T(=YcIQ@dAqTo`M}I47t*C_(SDyJtiUv(Xt3&%BRM zS!M8W`T%RoponKlU~D)LK$}*|qB+O4MBVD>^k)>&b}sc`!6`)04Q}U%gU^_rcy1^v zwy|Ws>Q!w|z7a;qpdvgz#`&CVWm#F+$cW6|-kwdP1~_@&Mnp#P%gIIL(^6^l7+gIi zG@BsM9gpOXvWi7GZ3czBZjR+NhQ6j=Ss%ypJy$N*>Q8@C{+(NmXg}B2-nuurO>Zvv zy~QCjzNpzLUj31%na;jg55-y^n69*LCjA}eI7JV{i3S$5?9+L$9t9Db??aSD_+zg5U9qMsJBP7*dp0K&sy>F-J2Uux%BAV+5 zas@X_w&T|3cZ)`Hgx z`HMZ=i%zH67lz4oTX8~f9<`11$-$FRPhFd>*<2Qx!$1E5{j8gSw*J^L$RUW*?e@56n&Z{&Z#VguR0z*9} zqL}6$Vx_4s*S`Ls0Yntqen{vx?^gA8SSH+L1_Onys-c-gvRuQb9MWzkYgGi+;?$-h zBMli0`AS{TgpmEQyj_$m|6Y72M1K}1O(*M23YRwizUp|#N6_bcwc~5^I@h}1AUaN$ zoR9r|;A?#=3wM9Jh z>~gbsnn1T|v)pHCe;XVcyte9fN0&lNnOl|hK{ZZ%RLoHM=p)*PXB?SJ71!3Z<~9dx zw&kY8t2*G8A{l3p=e;j;GjC;p&K8 z+}IhhYB5wRU;iq_)S}hxJ)v&4_DPSVz}EVwui6h?+1*j;fIYDE`(mxl8eH+`XtAXmzGjSsOGcfO^|a+v=2sG zBRa}QA?8mSy6d|RoG2)C?RuT+phRe6xh%VE#pcGxBQ6#c+311^vH|_wU1$Pbr;i35 zg^z|Yu_~yEpE_zQ~vS)F!u$3fAe<-+cEXsh@2boP649J#_u><0+z`Jzl-E+aVy zBd!#s(y1*M+m=&PtOOoyRVzH?(MTBoz1htsdHJ*x19;EJ)z(O7?FH$zLZ%e1>EFb^ zAB;`I zFkn21wYJp#Hi)uUr1nZoBAArORqu+lNf|H>0T_tajM2?2CxI{NE}!&z&s=XX|f&yw=2xdr9`D_JElr+K*7U>h+tII$IyFJl&&Gxx)1h zYf+=|eoJKMWRDAU?m9)GuB+CVL2{<|Xmb6gO**GuGQ3!kKn69@@qP&aa$5nSrA+`o zfc`-RM3ICHVP1E9eCySR&Fn23NOe!FA*ZCQ)(xSK*ed$0vKry<3F%$HA4+8_RXb?X zO3rQ(4W0$?Qm`#I2N6{NdTf@FSJMPJ(oQWWWHhaRSX<4H;%1=!3lJrNm?l?Zx0>fW zZ7-(@_W15)@RZsor(_Qlsxuxib$}O4Ff(9eO>0(;lt*52Th&}T-{PuJv)pk|8~-8I zK&=gfAAi=Jk)c2_Z!@T;Y>^--ZTLkdKX|9XhDg7RdvjH8aUfIE4=shfch?RX7k4Bp zw)%SocW=IOl7_g39vVq(Y_`Bc#7f<3JBWcRfVQBlbv8e2(~*C@>DcLw1)bE7P>-?r z3ArV0fwN6>IR^|nv_wcL`Lw1EP>7z*ws z4}0^n#ax4L$S&ZpPG$=oBd&siDD=x{Z0|zA{B^oBASuPg-L#Ox0}c-FY;SrYbB>z& zh}?aWp9co_aY<3Wo7hEHLDY=$p@|5!puoT_}t?`6i@InVLT5^ zpP!hR3mho;Y#$5z^?ONR-GmGjw8iI;CI7qN zLtx%U5wBHn74}<;>`zoV9O78Vb8G_dlAxmjB0fmF;yGf(Sv7)i29fr2z%q_EfGLv+r)BDC|7~e(ufhL_Od$?b{>)E zgph9E{BJI||FOC0&cEH&7U^%s*t+7R-osFLocAu*si|nGMgR8s8V-xD+D}zJkvO(o z4LPYTEXwZ?FUepIH=7xajBFm2TXpG70V^nlz`Mv%ur@El(;s}O2U{-JWz<|36B`*m z)j}S=*(yqq&royaHk;jU9ttkqj=9pQ>|wqr^{zMXzfb!ZluHU=VDsMY4=oSw3MNl~~ zz!`Ox^}?b^l^1kSCMOGztJtk0dCfs-XJh;tz1eTxoKenwrLwLvA1Wkc)NVY6PfXh< zDj^1`e1<|Qi~wYO8jLiIK%ugNOmCi z*J@at74w$9UGG9&xT$BP+)Q~6X_jAO2m!IrE!jYz7_3NUgvm}B9&et432flZSRU5D zr9>xWp}YVJK;s3H=U@3&?HAYZX9KIeJ$cx~*ICX*fgJKRijGzK_sCI9>j^A$`W_ZqixD*>Vzb0#H9gqzG zEzyMYJbwG#5*Hx##HD_%=ohj#Bm+;C9mb~QgoOL}Y<+yBpWJlJ6XrEiso(3Qx7}}> zhAKcnA)EQN4+fVQ+gx?lYH8V44%F>a9Nm8B})&!}1PY~(2Ws_#} za;Ve(%_h((j?AlVXTB`)_fdA6&%62QLFRSe4B z1#n;Np+lVBt`F%y*G5Fe2IR>uZLBzxjNx}#dp=>Lw2!^APeKmdRbJXV?7)9Mq2;}C z!%ce%mlm@p5xr<9R3j!qy>Gi!e(IE_N?g^d!qSOp)j*qI_*a()}q{g9>n2KKy>@ z6FnZ>%%6W3g+22)UX&ZlyJh0R;SGrB?HRl2yt{|C*`0HIc$#)TJ$}BWNz*?o^k*yO ze@=ZR(|XOIMz`WUZuUpV8b-PLeYm9>DDp}Qg|mM_)pS+YhzrF|cgWlgfv%HcI>1E# z2-Vr(QHmka9^|O4{Z3NALh~}$6pK^MeaGVRbH}3Ct#X_e$#2wom&=K!4bgS=&0v0~$yo?4d;F)h=k?(CZ%RQ;_Mr_M$NoJ1zYPuHBL7ccR~`@L_x)$GjAiWGScgF< zvSbTonXy$AWhu!vNsBFO_ASO(1}#dmC4@+nUG|A=lO_to7+FFLqmd=wXZn0UzuzCf z*XuX`&FeYm+;h)8?{m+6o_p{45r~oU{dTyPo}@k$qZ%2mbS&T6WdDSY-Z0(7CZ^@C zwer>bNh?L;P3W;PV$%JjV})-UIb{+GZ-~ual)bZ1N=|ty6{AHZ!QJ}g%8?0R6AfNT zX{4}XvCw7c9H34o2e~27ywC}z}-8T9DM%`s%X(@4REG15!p0@@9SynM? z-up)Q@~MyackaNXCVIXkS<0igr0KU~ZePr`WscWqZ>gO%XuIoqw|Bj!cTmnh-V1b- z4_=y(h8SaAhFZjGlWw6c9;Slx75oYB-1HAoC&4z!)1G(q;CJL z#gWH$r_CaRjzg1=K+Rb8r{Z5b@vpC{xQOZ?F52BI0u}m4)jhwbWyEwbe(&Qz4O%<+ zlpR+&?O-%K2^bM`L71Icf(n%WFZiJKwnnTpq~;kFa5Lc*#E? zeMUI2hHaQ9M{wIV^RcKvA%|mE@iVS$ml~~=RaMRI8a=I3j0UF)4@Q zKz{6Nyc0Kk%-FjBP2p}LT;x_xrc*Aqg}*U4^;z;>mZtKRoV3Io@x{IxX{8Ac73ieT zQqQwr(x*Ri&h+C*9~%|oWlS`gYMOS81)76j2wk_%H~-0@@M$9}(J=qg18gyk`7_+R zv+=@K+4h~64Kn7BU)?`v_|h9+puu*X&{~-Jz@zI`MQg)`jW`m`Oe}Dp(h-r-k_BfE zk&Gt3`Y3`V`m`%|F7utXU$A%|*Uc-F!^+BLHMjTmC`=8C(4v!~`!26|Iy!sio(!@H z#SHu+s@Ci8Va}5h{3n;w3iV##)dHhy>9o5VgOX~3Vsn(kpq*ji`~6L@6^1}jTw^{g>?n9|6Wa_6 zyTUn>pJ;bq;?fOSLYyjZOfBcS7P>OA>?v>dsOoZz0RH9(@dxteuSNJUZHskec?n-0 z?QB4)4lukhwM*FyYu+U|P9#1$TF=X!l$l3q?-aUZF(|RiKNn|eUHpEnee1%r4_7la zBCbzGx$x?o`eE{BDzOOC*khR1%PS)mOO>g1bp=&RZXazzUR9pZg(vdSf39l=74ED< zJ}CK-J5@O&zm<;xZ1T;Mayk^UJ0vCX8X7qyZw2fo%*!=tK+`c zt){deIz!J(t9iZz9={kL_bz9m;YtA0Eh(j5rtc@{Er$V%JG5QEK7U_* z5IKr#C{X{%!Cm&-!I92Ns9ALsrX7^bB4W71{3?&zVEti>4c{S9)m^2Apsu7*ysGQn z-vji<^MWi->wRKmmB6LeQK@Gfs*t0ajue$LMW=Lpz9S?>CCbdjL%DW~l6@+g*E~8J z9NPd^c6`bnPyK0mKc}Q{)mDde;KXFB!9UY~u4&q!VrSBFnCQ*n)V48Is&vGee&oEqHO!0%-*{R2mGeRt zU$1(V9}uaMF9|n1ZR!n`CwvCjJpuNK7M4pRB=Fu;WDsD}s);>nZ^E zRKO6L`Y?nX7b!ITC;mxhs^q~I^N*WiHqnLbvF)HY_N8t;IgputYoU`;z!f&?wk^bj za$l8>%;{(NhanSgK{*9tg4@2VuC}RV+c&8V3g!IZ_L^F_^-d$UKNRe;;j#lH%v@tKpfs2?a$XrFCN5qRvPNQe zKwb@7lHZ$w7(TAZR5XD}3$8ZMf#hYFs{ZMLZ&>}Uv15DNc*DH)6WOXRW|o$H>ubO( z<}cMQxc>grdq9l`33`ynE6m*d{6#XTVh^0 z)mv}pc6N4>aZXN7HgNEpqx1VN@jD|z}*;y01#5zMX(P(+{$8*X^_cx|AjGTogs|D(uy?i61e*{5k&3d<%E#7pU9sANpUD>qU9QoP{70LN}BwWxmaN6z}j% zE%HEW3X}z~<axT$6`sh&%*W;V z7%1=~<;)n~rO|`87*f{%W>8Pgjb5{iEbLH=BN@vz^E00{%jEr70rzmjSfm5~m7!&n zC|EsU_Hj+0u=-0@X+nGNuGQ#BSRto1{CeG4@)UO;A ze&she5WSz*5+J5_uU*}Qgbo$6Uhg*GOn_Cc>|-PnG2H)kSum5_2Jo;Gz^lla@aT*d7(5_F1_1-YLpv}S zU?vna5hMNI0MZWPOOeq?`qzV9BNib@G`HUtKns!qJe8It!_OETAUG9CQjpUyL~SbI z>8^kQVA6zG8I3dl=+qYj=68l6jcP-FvNv_WGa56 z_6FQ>!%RXLDgk})+d^7HGyNI3_}di92bwv|SO`<|W$% zHby7ue;7vf(hHPCE-Qh>h6vZH03)vRJr*(;=|ye>6tT}E5Xf+{_aw^q_*|Y zMNVAOpT*yg8B=ba6#CjVV>=>ye#Np7pPgOi{rj?EshHY{)u!Ei#Yfb?#0(zXRb1b` zy-DKPTqP9n;{)<)1Onj(LmUFa-3qBy+_Ux)O_5oOrt9Ylj2sk+f&d?^6HD`>#5U&#<9pmY_I_{HgwuVP<6EXNiiSG` z+<6-ta0L-tTr5YRbQeeN{wgde08yz_MO9Ti1RfzBR{S_{wws-?$KykPe_WAb=;ok~ zDR2^wF%v}B=tl4bupTcwDo&N415i=w8u%=C!32%fw= zz`+_n4wMdNR5m3%?=IFMg)$8r9vB3#kKila$7Zta^OQ-xGRuq{h z->7ceIg%It^F&}sNQ#tv$%E|d=arRE)%SZEG0pU6{ey!&L(lYUfSIdfwC9+qjo;#k z%$3>bD>{r1-J4LTWUEDeBlbMPu)ae+VO)z$DVvHFQLU`lrf zMsoa}_tS#D@0!mj#;9Tkz#it#&XQN7_k#$}2QW4?kVZK9p2+K<-~XY z2j)DC)O9l$f^RNR52)p?uyqB{qP+Y_<&{Q$2#-`k`JI}Z@2tLuX6PQi&wkXQ3KbNz zwQiY7_Ja|L#PJ%Bq;WEac~p~2Kjde3Au`EtWn6vWsm?i?#qnNV0vM15WCp-?5s%@# zlZ%Usu&C67LxRs68%3R+oxOZ~%oGJpyuDRG1!ZMy?Ck9BNhx54qrAKQHO{WW-fim# zar^6V6zltGTxnj|X_}XMX??v&T3TAyd*7Qk8JxDZwi(&k3Vv_K>mql9TYi1J6}tSY zKI8FY-3ZcyE^Yj(CU`$m0(}9gwXtPt^^hl`Rt7dr7U~Z(CXn2GJTf zfI_!ltn*K)FaSYYB&fd^0Z0*mgKCn(djNJ*oVNF*c>;jN1adOlKk)ne&ke)N$Cs%F rlpD1GjJnB^Ye=z%hndT3`&!8Tb?P5*mLBP+_)EZS~;u`lK^0jqX literal 0 HcmV?d00001 diff --git a/_images/3.4_multiclass_classification_13_0.png b/_images/3.4_multiclass_classification_13_0.png new file mode 100644 index 0000000000000000000000000000000000000000..74a62975feda56ecab8553bb60f9874fa08516a6 GIT binary patch literal 5676 zcmc&&X;f2Lwx*t|VG4OCR;_+NURPJYw^qOYLAW{D_ujMj{`U9n zeUi`H+icmibCZIC!WP>fkUuIYY)}K&9sjuzeC}!Q(*^&`B2He4aKQLQM0tgy6wZ1@ zga%f$jLx0xiw$yGkSb1}%g42at2v$Q$}-!vweaf)P}S3_MUZO| zjI({(l_9EixI@(I+{0c05$5QzG3^nGlM237b(eWW=eIkrbXzXi zWyX191%;pX-QA*~ug0*3jn;zfSU9sOJT;yTWRbhTj#}zfUTPJPB zf3s~rGB`N6vZ_is#((0Li(dV6*BS=XYJEocz=4$U@b#aAI1-3oMWScsHk*PSwvv z(l{Un%G%o6v~pD2!{ZgQ^;OY*QdGa9qo=1<-rAs!@MlF$+@nX2a5z)h+T54OF*Txe z)ueaLMqO+8;VgSzaY>1=R!B&NPu0Vq4f7rUQJO+Nq9D`4rV$sJM(gLC^ z=SUnR5*Zj6h(vaEbs_!z{p*(oQjO59xjT%!k#VDTo+&uoB(KKC-QE2R>9F>qAW>#I z^6-ZD`r7ggLk$!0j!iKrdpTBYI^SmPvo!tL2s_M%Wid)!r~~H`R~(4E zh}^NbwHc=HQ7SZrLZRsD=_PaG#n=k3H@BcQeU<(W79egF{+$IOQv!e%*j9__U!j2$ zmzXcS-n{I~TYr^1aXY|1^68^Td-m)x4&m22uR84TLnU=l!$+SI8H4XKg)GnY@N`MO z?2r!pNp>c{c6xh%zov*B8$z7akkP@#Vr^m~Y!@e}UXW@?-vNR6FbR|VZeUbMjtMxE zXNf3lTwiH*h?^5}(isd!(evl{&4%@dF1xx43vxnIhKGlvfe$`!Z|{ac!j^}KOh;#T zWe})jGwg7a!#RX8`ngtkUzzBRjb<{e)pRcducoqD1)6q4$2S+8`h>@Ns^AK1<7e@-(<} z4ZM`Fva(`2$A13X>Y!^Dv%L^dDYD;3**8R{W2U5 z=R);cxazs0NX`qAN`mW)}OO5iAjX>`uemW+=1p)xC|iw!6YCKF39~y z+T=ZFk9ViicHDUo(P0bkv!bFo;_%X`I1!xt>D3J?Ud==t!MkI~yKx%1Loi{-&g5CdnA>nH$GiHpDgsHS8JvvH7BC>kbfFyTVCBzYV@pCzXiP@=Dah>5Q{7z+^ytweSaZlOUn(5+4 zpU0JzM?hGVA&_*-m8)_z$~gnt80J!W^+HWxU`Pm|ySw`m_yW}9B}=q8Tw}tk4o($F z#ZedB-8HnNBR24wbTtzweW}@yasO!G0I2Z^3a6)WeF4fepK03W1MDk8`d+pMA3b{X z4$37xVZ+h5rRi*o>*4Gi6GL&`l>F8Nh>(F#rM8;uudhoQB`blCFxi>(2bo)y5cB8d zl98~|naB8?q-D9QTz%Hd$7vo5A7Mu+OBq}~ES?KXh$BnEpvQ5Lhi5%j+d(GKKK8v;0gw7NjjcXS< zjSmqYUwB!sO(n`w-(~7d&C~X#TO6*&2s8~F=6?iK`V_kgT<9N))Cf$F1@4Uo5KVQkf@4wz1C zmMC|k6=I_faVWIMgU8r$N0{vQH88)gz;N-hiRaMQqlhixL z?e1rg&A8NhEeA%rmR4YQX|jq(^zQX#P9mczd7JRl4JCs0Rze!ROpi<-4mqk86tZftFT{E{30J6MMtZPjOesOWpmsxO#ZA+IUXPKEW;mSTe z_1v@3vOijghc-gQp$i|JnLvLvT3T8zxVVslw#*;I&b~U6Yg#cE#KCe9D&_Q*fO3ys zp4PW-8^KmRmtL!QgExc?-E$Vt)4&^ASq`ma1pL;ws^2XvEV%FV2lP|J%r*|bd?x$Q z?y<44$d~+~SgLs$ysuB&NKr{sU9KIamnt5y;E=|}-oP+PUlenGw9{ws?VY}|acNA< za#ec#gpbkHwuiNn{@A)w*$~l_z|@R2D6oIfJMPojNXm>_h_LVF@uHTmEH!OA*954u zZxXXXHJkmuF2-CRgxm`VL@A5e@zf5WZ=6d!==we2&5?zf(MI;WI?K01T{QsOU$jTd z(tjSTkf4<{qzZblpsD#h&N#X0h6=V zOy5+3iQLc>G<4prxn}KrzPh~Xhw`(69XWs5jZvr6^x(ZgD#U=9Df91{!ylvGeT;hYR*-~XZ0Y#G$GT9QWO zrCe;QnGx#!U3p_tn3rG79f{d_#H-jR-1Gz@3_a!G;=|J&~ZHn=rYP`r9GVzCS;)G z5?WkbOhJ>c@7Fgp6bOfU%t4#A9}cvH3fX(g7j&uIb{nk+A9{MC66g&L2-g=^jypLy zWhpBwU!!ezt)H3=bjd=ULo8g39D7#i2b6_7{rL@*1Vf7>M!9``R&|$sFi?luYvbLe zpieI;EoGm!v!ix&bOeDGkP9NV`kVOC^D=>+!d+`ay&~t^ZP0sd2y6g}jC({P+EY5_ zOa(fF5ZisuzW3Uqpgzw|u!tFcatPbe)^=M1%QkYcwY4?&Zob;IIy=L=awOFg&2 zcqN;%UN8ak=(5H|` zjvgH%)8dwA`7nKbeJqFX45)U9?BeR06FYpYqqq0+i1zgEs;ljffWd(S;hZ#FQCXRN z28*uKEIFMb`bJOl+}=F_0RiEhAbW9>|NJ2QcOUYo_O@cVJnGoV z-YOcp>~hrs2^%!E@(ckr3+LpTUkebEws#j@cpT2*gE2u&((6`*fIj8HK4LuU*!8r4 z;NTVnY>)T+NV{z~R}#dp1*rzpH6KQlr`QkKl%lL3&M5^b244P~e9Zge#^Y1?_XuiP z8T4;Hf_@dt$%RLSh)MHqCr_RP-q8!e6o=)UK`qY?(a_M#mAU}HAq!(4z!w+FJ_)-y zRYgQ54WN;~do~|U!JMAS?)dl-Af;I3p+}B&a&!b(&}|I@LATYFSJHRy!AZ^Szf!;% z#=iW2;qryMC>N)ZlY`Gdk0xP*6!Kv?@;s*DOoy|5eg|9T>*AuKw+L!+alkR(Q^>CF z?qM>Q&(DqZ1KJ@btri1T<-;7-ChYF~2JyWeY}=G7d8;HjGlJiq?g)G=csub8`cLWM zPfln4E-3%-Ea$(iQ#LpJRPT84BH$Ci$zZQ8b&KB44DJjAJ zPD2F+`z34~?re@R0I-J#sNZ~3>c1Ma|Dzy~7qU<;`6}%K$1fS_?#`0)$VmHREXR!= zcU{gwwwx+?Hb~y~Kz)klYkNp@KVa{m2yFq1BeQreaZV7-X=zi`ExmhT6VQiEej2Y7^n?MZuN*@-K^ F{1=munce^Z literal 0 HcmV?d00001 diff --git a/_images/3.4_multiclass_classification_14_1.png b/_images/3.4_multiclass_classification_14_1.png new file mode 100644 index 0000000000000000000000000000000000000000..1bdbccd7628a2256b8bbdec0ea2667d4a76a2566 GIT binary patch literal 30233 zcmc$`WmMJQ)&+cMq%lY(1r(7K=|+(dq>=8F?nV>=0Ra&KrI8i^Y3T+*Lb_Aw?ta(N z|8t)^p7-7_@0WKB9dHik{A%yL)?9PWwS%9?OX1^C;2;nPeCbD$N(cnXHvFH)#)Nlt z!#70X2cOde4JTz=Qzusg2NT3&11Gy@wocD13~5|U92_ldZMax@S=m`=%$=O<9QoPU ztpD`^R$B)%HtxcbTsX)jyGKtQ5ePy9U~#x(jRtZk9768%lbQU4$2xF+DpcNJURJQV?xd!S}*z!M%%-7+nlOOiWD9z*UGwL`Kg zTN%oq^SwBsULMLP%vQmXl9F;-A1BXM%M&*+FbJ~|U}3={Wz%h%Z4N2)K5;3wovL|Q zmZ?B5^#%_5JS}bR%7KxgA>GZ(m*C&|#>Kh9%3kKDPx|MlM?oPWxvz>PTiV4}5t4={ zM+-?D#%)9zT3T~Ic%~#nNbWw-)(*YGB(FbOY*FsCbosvZs0#fUD+`OHlhZxn(@hDv zSoV~Mr85f)fej7f8k(AeZO2K?4GpLm7#PE4w$!f(ZscrDzPTYl6D^~tqN0-Sj689@ zKgQ<4fz-$Q*38x8^)Ik;i-qVUn#AQ9*IL3T-S!65k;j|zy||&PtGj&A(Aa3dHp+c^ zy3@^FdKMarhwzJvQVz40poFs~68}kJ>GCaQ&0gZ5WDh>#@@8vCbqBY9AjT zgr7xUh8SIB-P9Dd=tzXq(S?X5Jl}{%Hz{@qZt%Zk)%jM}-hOF+f8YG)r%T8K@0}Yz30#uoyN9E`kDE8^fBjngRQSRDyN=*~-0NO=O41#u|HjiK{&iS^{uM`>o$x z=ktfFKp-B5QKVC)vR&|b?k+wjxvNQY|31mYH|H05d3heSfwFqM?DiyOMBDJXEv z%*;N0`lNDf#_*Ge#DUY|WPeTK?0By?TRBsvgj&Fb<#$&?h|AijLG$Zti<8v?uo5 zZ(Hx1(6w|hgM)(&@P2-x>s$*ye5Rc#$^0`H3ya+5&Q5NG!DN+tL)yhN_0Jl#2qI2S z&cqLuUX+oMk<0GZqs7GI6B7X^2OGHyI^}j^>|9(|CcSok;EYiUc@($sV-Z}xRsQXp zu=B_8^Xo1yF8(yw4R`XZ=&BB9L*RFRrR=MMLP7x;xFmx1)K{-vyCjqTwV~U<+WIa$ zmM21NjEor#-D+RpVWA=n=32rOyz=39nB~`bX%Ixh$BXo|w{J@ql$DWU;*o83CPhAa zwi+4L{Bk#QtDJ6qwp8rJtWxgX=A&)k)mqsx6SYK{x)D;yV? zs~=lgS%p$?=O|fw?kxvgoNf4Ol-to_;!~h!tGw%JD(e2!asfbR8>y9x4@vWr^3-J^o9Tl z6%`dSxD~>B_r1IPi|^w-3#FNA(;pvbVTfS-DR!tYp2jC6por!s{i?kk}Mo|f6@+o-)5w5(`VxbI2f=(xkwMT(yCee9Nqk5*Sp z3nrYe(YE&N70;v_n(x^j=_`E7SMaE_#kF)6w~O8tm6o<7i@hjtUQt_xMUY)>k2pM> z3+FKTe${DZ5MR%G?;1=7KZ!ts6!)Fq(Nyk;@B88RyOKo0cXyo-baG4GFMOTi=v{U7V^noR2zF}esOW+ zx?WokSoCVHZ*6U9RJn2ZT%5U{ZnaV?XuG<1y?pr+XG5pL0mFH@|9L_}f{jR>a@GE* z6|e8Ppo61hlAFJN#YW8ufsp5Z)9)W2w;)=js^{xsU%HfCpul{Rp2NAlv%_K8e+wNG z)A00gOQZA|xuKz9j`f)&cR)bA-01F7pMjZKV4+bf-QBx+4JSkSdaXICxrlf8_-I*n zrbpYqI#3Ya$Gh33+V~XrMCIiP&W~5v_Nrio7<4BJQLIr3x;-%%*``br^pV!)V`F10 zw&=suDzh2573zC&#zR0Qn03x)B@Ul0H1DPRtW!ynn3$+wZDwPmn^JbMRyH-eK2b@r z^S#zia7i}2)U-49IRq%9mBBn@B!fIfOhU5XfA+}umYW0_rv>sNAo3vx5ayZ1_{bUr z&O->N91io35Tfuk`24HKAMeu&2vAN`y0*q~nIXp&kBogfJLbM>b8ddkYjQ4A{pq^r zZX4AHPo6yS!>7ETY(LjR!Q^=t;v~!!i6mj~X~@_xx}WuGsrHr!Bw|=~62F}*2p^$C zoPB6#$KDc3{sIuf=ch%OoN;(N3*GspNptqFf?{DTxW@L@#z=8VS(~yH(|WR%nY63i zhy`3$MIqa8k8+#$AYgV6m)q0Bg3yP@4|sx(hDJ13yY}K-U@%`V9Hv<|TVP0NsAM>m z5W88|br!8sx!gVCrRX-ZA6Lj{ScFtpHH*z@HJ(1b z^!UR);+o^-T%4Gs8^T^1i&M3=(`##Yk$;+;oNU;fX$*jqs|~lz#h4@0nD|0h0tO`| zWqoh2;^I(#5)n0Zes6}CXSm)Z2|4*~1d+{n`BuL-Gxmp=B%vRDtRkKlX9pNCPwHD* z9wM)q=*Eq+rj8b$!x=1EcJ?O)1qD5ae3h;ntoLjuPlLz2oP-=Iv>{1c87;A5diU;~ zdGSX<_pkbCDi!^I1gZa@knR6(Us92PwasDi^XB2v z5j-Z$1b%06Il0hdZ!scv*L7_-cX#Bww6wI3_zD%_;NUPlGxPkeR_XMBx?Y|NBkm0!s@`-s zWoxU{DjA$FZGPUkA12qsK^+y9mk1HhPZ@Wdbz`clg|@f1??HIuAw;gTp3>stt1{`A zm9kZgYQnPsuQ}Wo*aC2XSN3wii%t_AgvKq9wXx?{go`8S=;kUzKV^_cvpN4Mq zQHae2J%^dgvG9t@r=Mrxgpn!C4=%}1lkQFJd_a~4{Z0%v&Bu+sDa$3|iMjrIJ&$iP zF#+^c6uOYEwom^25CaPfd28l_pUDLU1vmGG^dQz#KnRhvv}8uqH8x5Z@evXd?s-NV z^aoUVxi!{L;t}wB@eceDH@uBJcQ6WxL-5S0%@x&3UxM}Jxy`KV7wG#0s#9-pOgi}a z`7N(*`xZgf6G|mS;k+^!P*K4LGe2;qF_8ZL{nGDzRIRl{P@7$T=P$D$tp)M0t~X68 zGA1Svo?bkkBPIg_LzZ5xFhCv@goT9#MaQS~^z5lzJY-?Vd5IaDUqRKx%nS=wps|U` zOx<%dSmGk6sHoFROTmC(bI00$IUpwq#FS{=GDX5XWLfwX4U0gO2>qVLPjn=ZhZx^e zY@rMo1LtxudKBa11}SRqmw?4-X=o6RzdN6omGJ;rda`6)099qA^b;|RHLO)P;2bQc+}5Qux+fD?P++oo`O{=VvE(;+M{CLy!3( z1`t5qU=<^Tw`^QSES%8%MpU)AXfSv;N99&M@u^>Ye7sDOXhz<)W~5j8moBrslY7-# zX-{(->~g3fGFXI3tRSD7laRsV7!#|@$dWb={Tli$D+Ahv9{xY|Z8(&)a;SlWRw&Vz z4}B`w&d29otvbo_dR|Q%i*Uk=b;J7Qisdy*zR)OA6}rX zD*VCjFCi~^wW_U?;&L(`v})tI-@y;lBxx8ZLf>iam)b>P>fL_FReaVY*Lf2&okldf zF+lShi&m7JrMdUivB#lxB~t?l!%UP&*W3W1%}i$4o*m6k*$GpfRq`;4(+dW1I^s?3 z4Y}%HtLF|RE#0#9Z+<0W6IzFUa=T3;#US=uGqnt_Q-xbe>)P8{>q3{(8NujoqJt}3 z99LASU)-99x0XztG~_VOA9|u)(~2;HwUhbFpkrzBlX=%6WZHdx)Uw! z)sjZ9g%|QLBIHXN=bWJ)Oq8i};c+9mYYDZ1YfewwBw^vHyd9AYB%elr+ca`8-`4 zTPF3vs%JAZ)C_lVKF`EI=VHW2z%msqJS*H7r!7%VmDo5LNc?4SUFRKp8R9F~ zJq5kC@5O#aTG^8h?8wO4-jb5&#+-2;+grWsFH^Ic&leB6ZlE7@ zzqBnvb-EG%{37&mefY|#i0U);vTBp^AN<~rb-Ga~0`nE;4) zMh!174b)T@JmA@!xHzKQZaj`Kdp|++JAgQw?4ERyneTEdKM{Je@&!{8x_aN6^F_S4 z+{?D|vH?X}x8JgkOg9pvv~?9L89Wx=hIL%7x#ow&=PVS#) zl6?6)qt1IC$yAZ>(~q__Vj3D`!Y8X-f(PS{8Wj!vGO393G!@BS}jB zllrk2)zOk{V!=>~+WfDaozKZh&nj2r zaa|SO|<3egTvdg2%gd z{}B@jATg2g_&^SqA~7k!Dl$Y=rZ(ZZ!n}h^D2! zOk^ztVF_3QRS$s@L*&zVq&M$S(E=5<6|jiv=C0fG(z_c|)PSK;5Qirxb1V6^El^}2 z-tD!hf6)#eDKbm*y*Nks0hw0c*oX#&60+vd%obdQ#|NqK%rSp2NB);t)yd(ZC}UK1 zW>8QNlTE&IraZ6LA^R8IY8*tl-3%%c)c}k_LjZn$-ruhR@gyrIvfX%bxR5?IE$z;k zW1$p`Eu+{0Wy8B0V^B}LN=r-gIFIs}L$EvkmTUXvaL;=5>hIsbpD;%w>&l0rWGIM7 zj~`Ai&=_oNv4qGhYO9cQd3iVs@xr$ znwt%Nev$?__fSJaBid2$4U+xM!j$`XA0N_)3iXQ3$X5oNiEjbGSiKAgsPF5$f{1wk z9uq*uo&$gon4OQ)%NmXT49Yuy$pvXj;8WST`dEsP7nuE>HJ%U~+b=VdiGW)8vyUEY z%p9NrYyyHWyDq~>L?89U=cndC%+NYX9+XgxfEi|1Rzd(0&Yd3ZAPdEZ;Z*nt;KpL_ zSzJa^Huo(1v0<*na+wiSRabN9*ZIlV2L8QjWXT2?rCwm8>IGDINb&&5MFaPjYs2Mz z>@>fyU<9RdTUXaZsQL7b2j??F3r4;eI@zN;B5S*KMj ztepMCpFU@zt-U?F|B|t)qVAm$ENYi!ZeTt`o%4P}=y zE?9k1J}?9V$*gsOkBiRDrjccnF&TyeD|eymV>(zPOKNueEDyVB$=yt5bsnAb<)^Yw z;pus=hHzoUN5+_3a-E_(b#-DEpL#ST`w(H?%RwqJDI<~gKEQ5|rT&y-kJ!6T+IGyB zfy&s$=$IkUK|1l4y=T|x5S7~ zrOY>*#|+n=QCC~r|3$-~?0jYJFfjz4|K{ z>?IoX9LlYRJJi?PYTF4Yz8>IO7E`<>wz!GqG2+wk6w7HbIv|;}Xl6Z4)NTsPeBv(U z(CjKzX|S_sI4!w(uQY)xHHJrZBEdzS*G=J{85s%x3q}6JwcM(u4P}j@z09rZ<0Fg& zA^@|4zk2@*T@Wn0`_t4P%@JVZG55&6Vq9~y-%=n~di%ZWNfo(m$Q=#>^D(XygOADD zP1hY-&OF}}p-;~yy?G@4RcytE&!gQu2ydpyh|!de6FrrReq*At?D+SVp`DXr!#HYN zSI;>9(>Rh%i!3Vvfmk1KZE=0&7>ewO^%RRcNxajli@@zO}6$GYt2+^ij6+;Jg!hETTh?gW( z6K|g%Zog{F!f^+%LBgW(#Cj!4ggx-tZAF)ZuQujmF<YK8P9xm)Y zGRY>Fk?rh{Nwp~E=#-_{YakMaNzO9@ytX0F z=QwFfRA;8;V=O1S`igyTQ%>dYztYmd@S-4{ZJ8<^E^EhS!|OmGhWT&xp1Sju-rWy~ zR>3Iqz|rRa6_hqrLHlg-ZnZHwB0KN$2wM}m3E4?nHE(pB z(DZy~Up%Hp7frOdWY%q1wd+CgO70s(BzJE*7nZI199K#@wlP%a<=gCDE!Hn$_BLo~NLKKip>9Y|!C1yIhoG=xBf;`G)d;`h5 z^FkiGe#9bPVIU#~$*{kW3FPW_ep<>%ZVDfy%efjQG6H{+dvW>lE$8y=5Y~>tn}4g+ z>zWYr>0UHa{i)IzoG7Vy`f*L4{>fGSgDK8`Kjmfqhx57qH>_gw3x{h@|1twKGdqK< z=!nVTFIIKa9^D}~QvCPI-n@n%uBhMO6`gQoSk4vSq{PQPQ^GlU!1N-u&8X!5ttB&L zL59b54Zg36^B2kR7XJ}LRggFE++62=KzqYnV_pAo-GUXE*cDmKiIZgk0Iv0XxpL3!%yAvk7yu4_l+WVCy zC7Za)bb#~7uQ|p^lM07mEcWafi;Rp6(dEmjHhoawA08jm@$+luCWQzgW#PO3a3N>M z($!n7YZH~EKxrfO3j~sUQBza1b8z@+4#)xtSn{_2sr|)K(+LQLZ|e;Li;@ zx6;)X@~*o3i9#b%X=W5-Sai8tE|WFt0LoMYlB$P$%Uy8y@JKB$Cxf$4RB!*S8!StF z{&0LbVxSJ$xw=XLSKGhi@9(c~VeyB*SYWt$a~fngKo5hKXRDEDi#(iH@~aXENMX@6 zkLjPSetQ&D#62R%%&@tGqZdCiN8tX7!I-Mq?L69P*N2V#t#3`Ijb|;fy!S#%p|<`3 zi`=k_G#fce@_(%8tF13A4o{%MFpmAMpxI~Qo)@E-O+-!}Tu{KSp&`gp0qn3*OKAPO z+sf0kv#21rRGq9>A}?+^)Y(tS;lE{KjuAO5p8m$d{3>>*8Rt$RF9I~v$)=R<<=Hk8 zwlJ6H6VxNj`5+p+^rJ0$TEt{Su!J2JQbb=^@#mmcEH!*Po4HHjPT-;xm z3y&fx_)L+N_b?3ChDoN--5hJM_oG}mn!-) zQck{*+}qWl>DO5;DKzqZ_oS_*$hWOv?}}~w_{OK9wR6fsBqCu{?lf-m*jvUBBkF-l z9cM#2UFow{8372tqL7+hHYW4-w(Ldc#eH@c6<-Dh&Vd??q&Q)U_T;Lw0Z>~pIU#w^ ze9uzV&#{%7a-|D`OtB391r0tjdE_te0%gsjr)wjnm zgNl#3y~~fU($2lVD#E(c`mNx1Z0Q1OXXoDKzGJOCT zy?62PpZo61%63K^#@rosX;M%!t?!m6^R9_-{TFAu5 zW&P#v#@f~TAuo4I$#_}OfFC1R_uAg95e`boHUaKIZw1ZF7Nd%il;-HIkk3UbtAF5o zA*QlhQ+TzXcOQ&R9?UGNg@$S=tp;QJee@;%;N0QSGMXFSuXf4yA}~->(EDl@wT9pL zGhE|O8cTOu)Ba*#ISyqL)uFy_ys)eQZ6b8!vL7xoBScyk{QMBrX1vE~T*hBys`&0+ z>#|9I^v(DMp%gleK%dgaQ#^*g9t`Q>gKV~%xIRQhoC(j%rR`CnQ&+tBrmv<+!1cJ7FJG%1SCb^R^+)3{@cL6nL`9|Ty?Df&Tcw64cn{~jiz;>Aop!dC#27lOdseDJ zqx4fydLxp-0z|PxPftG(?g4Qohv2$qJ_;QHCRmRKa4_w^QUbH^ICuH%C$-Kb5z>kT zxi3#*1=H~cKmcNkaAf}Byi`&m)%7P|q?D34ATuNwmj329fRcQFsS1>DI^w2TuEGX? zQu-4u&w0UzfAaS~g(SSeGS4`Bqn6cBDrYniS16_~ z=qGEkIoOU~-8~<=a97+G{2n1v=}V6wLZ5h#vObWDkn=xfWS}BI8M^m=XLIvOtvWg56#d43q3avuFyC2h9<*Z%xJwA_ zjX97adXim*WpHjDTBztC>N>_Y45xWqlUX9C;gZCjEHNa07(Q9DkIPmIIu#MA5=g!_ zNjZ!|nraeTIfLUxNfPunGd^W4Q;OR%GGtO>gLdilp+Z8X`ws$o4;M9szJ}4@8|}#= z0^ascPW`coYHg~_*O1auxX3vfvJyDln&Yq;=Y2L_UZ}Yfq}j&vY}ijNPcz#UsdpnS zTGggx|4jkVb!6|WEwWdwAAFphXmf6WB{gN}CZZnHuW{R9LvuPH-NMdV32%t8+0Ec7 z|4%l}Ih*1zz%5riMTFLOH&}!CmP6lZ-7oh9?|}MYN><(V$7A!a|K5&+k`_Y-Tc!WN z4h6je>$zY0R~7%yCxgq1^ z*TZD{-gEGD1zdj*0d=)hfezZx-AyPu5^M{G37`fGj=d|i-}HeEl9#vq=NR$c9kW`W zvwOO1x>aP9_n*~)$O>HD4$j&&9E__t0mplDW(1ZUy$>!q;?f96IPw^qXx3$>%-)tA zU@`S5rK}y1pyiS16EjJwmHJ4hF`7kmCVj)n>q3|Yk$K*I&0opi-^sE17iaOAN>{DD z@cWH#*mtb1;ox=_E+%A@dq1w4i+lAg>D!*XRAZf>+;!&jO>V?Z?RN%8tD@r-7PzE5 z7`mP-n8G8ML&~t6B@LeQ`hLUTE8 z7Ppg5+haE0iy zyT1AaCby^O)p9tdD&%i}*wm3O8D8d_8@)lwZPculoDz_60Kwk|oAyjjC{ zs^{fU`9U9UXX;TWx`yV`k<+;p*{sj&5SNBAHY|gN)1oXgcgXny?} zS9OI0+#+sIUb204I1-7n+m`qFb5DVR1VZ%56CyA{6<7{1BkheIBj@Xno!OmDIKSu? zJZNy&!n+=WlAVWx<@#;WG9 z$*QWD6S$W$*yvnY;4J3YV4B^Hesxce|E>0`sQk~ql(|<_RR!E zQdqO6N%E=lx6RB?+KC42)%9C`%GxvzaOG!zDEV@_> zJ?6JKZYvV-lH%*>>CONCO~=fP0}-|PIU3gHPgyo0NB6(-J=G#1Zt%>-<;aY(EBV1d z$KZ!i04syaC9q{Hx6P|sb58J7<$Xnz94JFi$+Yz@eeXOml1%J5YIL0(pmCpGN1LtN{>8FQ9Y5`fbCQD08ZaY7C>^CNb0KXPn4&?lN0AMLd zl6C$gk1dJg4yZ!nO}th*)Ofbzfk+MG-8BcDH<9W_v6eTF|By#2&VPlPtUR;4zrq#K z=4RZiD&SK4zv|du;RT%60Owjhzkl=hV-`JyQUqvgkvn96-SU4`vW?Y;aLOjPuat`1 zTun@2-o6X(hKZTUv^U%f>B%rmT;2>5hx(@oF~}3We*UabnGB4{fOPTwCCjc1{(+E} z6|99Gc7f9Y>BRp7xG2C02W-ro$xpMq3-BpM>&|qr)oTA@hwJ&2AaiXS1r1Zh(gd6t zGU-Y&g77YPt7u@WvtqXR7o}`Vek{P+VL5=V`4dXOMy#U42T#cI{S*8sl%L-s?nKM5 zXcl85tta5TdHeP)0_o_e2i7K6hz78@P{Lq<*Vb(F@K+ODK$w_dKifM6=k;_5TTRxW z9h_}IN(nz|ruSQf?N}*3c;Xv^i0SohY`!Fd$J9!@!XaI=5y`Gm66D2Hcpk7)-2Z%7 zfD39YoXhf3y6xFRQ^S=dw^i9=+*}_S$*B7nhEj%%^lhJ1Q1yJ32yL;->NhdFXA-)s zH`l&@qbRdy>Evl#pguOzJ}D)eoaU2T9l^mWtz5Zl#OLGEsdD92Xmyz0Y`DQ`=Zc{e z$0M*11xnKO#)5e|$EOxNO*1nycFxYoo5dug3I(8$SC-~XONfWp1Xh$gofqqs8$G4g zT6t(ec_$rD$wb&N1m1hn2^Mp_olV!c9*rKC>!v3Y+s@0mrn3=-HYUivpY~D1c^-8# z)|t|i$89c#O=!Tnlx0(5oR~>Y+xtfD8*R}fj_gB27la`J{|W;=&AE?Z#%Of5b{a{= zqR=kY+b_exH`2Ey7bBsK;`+h*gt7vYeEgGI9`|kI)v+={Wd3_YCG`5;yQ_E<_a3cS zo9ncJ3oqo-6-Ir~HlJjxfJ2-IIu8QDnQF8?UZII~s|+Z^M>j9aeYltXeI@I)*c?}( z$af5^TKoDn$=hn(Sy&HJ&{GO^kH6m05X$G+o`2}{ zqGvlZX^9gBS!+azr?@RM-eq9{vr%^9a(^}&0wgo!+$!`sazGN8*f==i#>O}069t2n zGmAarzYYdeft-qLy+E>9!y_XGa6{!@N1Oog0+DvlkWMDxuNv!oQ&Ts2kAnj97u zRrCHF#KIeatc6Sd=nLTjH0+P!XYQDCCdxe?U6`Fs;{0?INFkm%YkP(k6l+gYk!M%l zg~Up9mHT#I_D5)+_7UHfzHdJ9Sfsn_{!8!=lrSk*xSBG}b}EuKJy@|dZjU(pU-dS# z^s$`WORzj4dnkzMA0pXDgdYG*a4SO5COJ_GtrVMkdk>tPiq+h6c2#r0FbzD`6IGHt z8a6gU`iG%)3rW6j0QW5FjWI)ihOID=zM0nlmum7l=K1`gNvc?T;G~pIkZ2yV?oXcF(YbMg>=U!iQIVl>D(=6%|;$NU` zRK6HbRaGaP~LhDci)!FM_$488a>6k|f+CpaGagplNYGq_wnKw3%0#WSt zZ#`W3^39u=;b$3t;)BDf&nt&^&t%_SrJPYN$X!}8d-LWEMZl>AB%r+W3n*DqKw<>T zXyX^1N_``vGzp@|nxxy{InzJfoH^X-78#hj`L(DB`aYO|m%0M}-rU`9F6-mLjtgD1 z&<>!qW(GtRxRtW>I(|98NSjArC~jl@e)1kw-X@)5Ct>9s-5rVeIpI!Y!MIZI`4G_Y z7Jt@$##$fxOcdvuSLkW2vwQvRC0J96vfk`xA-UKd9F&M@Ac;Q4tZvRdw5`7C0AQh0 z#gmiUG7)QmpFv}1f^SdI5jXk4$@N{&HP+*@C7kH*?D-}4(LvfbA1~*CdqH~EFM$OU zr0K!M=*;wV5ZZT^?zp4o)hdO7A0MoL$dv(>Y(KE{PJ^-ov4Bj#{=s%1KJDX(>Zx^?fxe4($H z>2K7RzEqEsS-2(O<2TCh^t}fLVy;=fbG0-tE z>VN*c97ss5R+|(N;RjA{sAe>B_bks!)}cd;*M0jYbW5Zr4t{6Ii)x ztW7!B<<|7Rw;beF�-RB((&TZ zn_YCZ!T#tf3yl93GNL8Q1z?brJ3lUZcJ zxE@Ni+qZAW^4L;!{`kS+b!Z3hBb1yA6S_j4hlJo>zj0#=@(3L-FIl(9MU~nZWJmCS z2yV5oK|uq?>S*0=$e%%A+_mha?*V>+a0z)6f`Qg~kYJ*8ywBe1)br48j_FHWKqD zTFLT47_Yj^!+Lm%YeD1RIM*H^nxt@OvjZ^;K$(M;X%}a zSO8Y*SJ2ZYk@AG*-o2~P+%UxdUXrMoa{go{kor#@2gJDfRE?0|*DF(#-Um9Ju^eeX zyIFnTQVDq^LtzKzCX@70SV{k)6hj_=J2`*jGGx2lIPEd&Ex>fl^IM*?kly^(wb%B% zo&w+%b`sV;zW1x7!R(iK?1;+xll7=9oRA1X3mY&}yq4K(gJuX?_jyr0sIb7zh>aWa zwOLkH7TO1&gB^B71*F0t%g`^a75KaE^U=)n(QC9T%g}%3F+u>wPZ}Yh-DJ~o+`-QB zc!7qFE|s}w$*?IkmF_AjsZ}S}r#Vc(F_tC8QeXC*=b@7&mfZjqnvlRAgau7xVQ}y^ znl1NvlMIEVH^_b*D8T(dqN_Qa#YKio7|>yW43CYWKuyi;@c?^gjW@hQ=>c78$lf2FCY+KG)Q|h{+-0edO$R9605&{N z=proH+u3=Ml%(fuObb`Qae47@x5!dfshU}}4V>mWOV?@+COuUNB;d@W*($Vpg@zB( z)fgimX|%Oxk3~Dcvye2u;o&ZN3_R$YdCc)@Sks{ zr}f9HJxLJ-;Gl-?#?-%1^P{Fmh*}=*(ZQ5&IM};@Oq~Yb(34wN5#SrX?gi~O15^=k z&_wwa@$+6OYGfPOA+%>2SXg8yPC>U*ynySMzlVw$JtkAm3y);Fc{3T>T(14@Fy@5T zMRh4g80uwp*^Si<=kRebK!JrSm;ItC_zDc9PsvN9;O!##P}g+4+&-4qo=!eV7$0h9 zz;NK(M+5g)GnC6ZSIFVc7jG9+X(sVGGO93NLpBFpy?PaSD(K;C0RapdM+PNZD28l} z8Fk$SZm@!O@Vc!2c*Hr9$gBfoKc~2NGWtW?9=xTM1Yi5|rXe6CN^ov|Z>o$qPZX3X_we1r-J`ggTHc1YwE%VkCF*hMufz=DrEU_jzJM>i4rc=0Hm6aLl21Ip zGY&a9xkjUf;ud+4IX5DPl-aC|}0&kM#SJ!GDf@eE* z!{IiD1Ch9HMuXO?6VqXOHM=ThBVX$X?WN+`?f0CKmL%_%PqQH-C_#LSpTPqGaFh1- zB#D*T$)fegZn}LlGrTxWm(J#zwe?uRTSP^Z&v0;YQ9{ZX>PA~0B?`8tI6nrZ8XMrf zW492Nr{@WCp3y&zt;%3i%caPc!3^teI=@AF{j>$6>`J5mc*To111rN(t92Cuef5PeQ(Gwa zb)C~T4k}dHJJd!^mL9QyKcgkWV!w@%cek3-hGBHJ#YD@CKTlY2nIuiI!%K1d33*=N zpy&STrQrD`v-LA*E7Z)(hpwPQ=$N9y{Ms}1aDAPU_R@=Ow+!Xia761ud3zreTxHIaN9k0L5u{wt|qWN8D(8K#!`%4 z_HNBc9ZNo0zHdZ2@lqj8JamKTr2$I!Od8Jz!|_?lf50mpn1(`W`_h0jvi(sJAj`2| z?yNe#gU$T7DP@mA_Pr=wq&|2Qm)-xf55p#}_FW~@ zBD6Zd;`htX-?%acp%aN!HEmzCsl<;jyq@!1*8e$bwP~U4M;Wt9#5YCQMb*5>ck>Ej zQ}z?nm&Bsh&bB*txmuxzeFTT6jR>U8%2|D)=6ci;ww@dA`D2`|^9a$xG_opie<0~5 z^MRb`meckqra8d;EoDsyidz}wb;nETJg4Z$eJ-ZSTWtp8_LqoP+8O*8WEeQyXQejMr2s`=@ujw{G9=jh*^;CyeY$zB9Owf4bepMg`R_un5dr zUGaRQU*wVf?i4&Wr%eK_1MmKe>g?33g$dDa`R951Gq2iFN*m{EFtdUvea8%^7};P^ zqKS^QOaDlUF&Z<}(~wrR%gwAySAN5LoIu&I>-P2IU&*m-wC2^s!HAW>xL=C)xXlc9PI5aW|=&or@#txd}z(B4*8b6V^vzY(K%i%Uy}h zZcBUj@Zy}*Crr1GC08|OU#M=}m((rASngNWKMWni_Lew_dX|%8zk=$uZJm0&r?u0u zePjHWze48W%3o<6?zGm|hGMt9>kh?^NCJhQ#8hQ4vGmnwa$+czS|H=vFZR&pN#&L> z5WoCRm~}f^<`kx;`N-Gw77bt3#|iw`z(WjJh8pR%vYiwJdowNQrZzU+=jjl>K*U^p zeqIm}bPyhv#pvxTRXJyJ%syOJ1iYORdHZ8&Nk(^>4Mmo8@k{4VR-sS%U#w*89!ID1 zt(@oo2U@wgZsHJn$BLI0|AvYB`J2{y7{reScxiAd?Aewm=39@ z9|Adl{tG190^3hA>=r?>13K~a@^Vh1h-oL8TpT9`D=Vv=lT%aWMokEyE5VD?9ZhS% zmVa;(P&km^iIMgzvrKob)(;dE01to0q39$O8aCs^#>E+IPS*p_f_}qhz^Wy>3hB5< z$PE!7qs<{(!V%NZJwI5knoENX_U$Lk?(tx)!;APrDBQaxTL&%g_jG0dx`Lp6sn4Q1 znspu&pE@nu>Hv}RLy1g$fX#|~*-o@aTA-tW1P&=Bz)W{5nTbgGjRX#$r&l{_uKx*;b=7f z#{tP{_=k$NnEunCwl(`NS0i}#@7et&qX&M9ccmb&iN58pTe4jwinW81?k|lDE{p2p zu+FBzzOCVyT~f8PcR`HSIFdj5QjJ(iBy}bFM?!e*7OwkC6g~K%+|{#xg^OG&!(Wi= zS*#YRtrNCn?QtG^wjMng)3c^X(e+n274U5PuAeQJHH4<%+wru^*d9?ecXzpQsXjdV zW%f<(RogtS`$0?*yN@o83(J9|o4L`=X4yhs=1ZLFLc);?9RKP~3pXdHGDG%Ih0^!E zKJd0%j}^+uuLuYW%%{onWHlwQ3hMNHkMPr38Q*G*v2k;i=2Sa#x&~htcFRL~9kMGB zaeE(HmvWe)w+y_3TgNN;jROPM?%%%;3!R}WQ7E@;jqtxY*KEnDT=xmdOMPa;qD~Sd zJ2rVG#uYk^591&o#ve9cGBTTz=vdfMWv%ig)8MER6Yj(f#naVL9_92)(C@zA=nC|4^8iPZUAxJWAOaze&w zj1A>+FVwtV=SK?)*3fc^5+|3D=;ejCK*mWdG_uQGMuS~vwWgVz?`yR>p^YVkX)H!} z{9K5WTW}-~^Ckm>LE|fY{JlqTQ z-_cxu?jfputd{Je?1aLne4n(2-}91{kF=ykFuJY}PI-CEukT$2{Thq{jY?;U!eqdO zG73#|Y%hbN*7HS209gYfO)5yW7WM)_7J&Z|fXwGCNdJ!~Jx_k+%i}*owq^2mG-rBQ z@%8vK$0jOgNxQ7;i8al3_H6Y>SN4}(jw(#c9VSVB_;2sM{}BO;EV2~L(XbZ~R3ZJb zL$E;$xHGkE$z5!7UQFf-iMB;xZCYr&bd4E*{`jd&hUFSp>X)}((IL9GYlU!I=+KH(^r69{c0jm5*3f^Nc zvrz}9aIOCG7wx^WH4cUwOr|;R$5fg~pO$8cW%{}sCKlElY(1n}s|S79o11p9yGq04 zBo%b)J_Iwxph!%X5$*pmDk#{J|F_;aFAy<5{aZfYKt=rHRDaNJ{5Jw9*Nk6}B-U-K zGP{Ju#K3>SLz!ke`J!3mBQ-_hn^aV;&mY!b2v+cYaBXXyy&+xjcG>m1@+wSQkK_e` zO0YN)%D!h2OM4hbgN+JP<~8&UBm08PC#(1v6%s>X&mD54W&(C2M!8r&XdasZ60YA; z;IbHzB;{UsaIhFuF9rJbsL0)R%(~+1!Him9(Z>k9%xql8zY$k>i!p7T+N!Qbd-W{ zJ?u||3jCVng9kIw>bfWhP{lBQeBhRVO{fxKhaj1J<^GgC*x*PX_RTni_yHZ~xJXqF z`U5|!5QA6!=R;@wJh-y3rQVLzq=(rmhLFkIy1S*oQvh_SqLPw7U|8pmuoY0l&=4uW zZOt?7)Fe|7QuKD$#?+Aw_bOwmeLcr>F~Z${JL`RC>Hc4?1R8dBBG{w`wwv;gii&#Z z`48!TO?DUQ!}~-!pwb5KbH5ryc3gaW1d;&}DQO^*R5_S%g-wJSfsJ#tBr{P;h%)s3uZMF^-+Su)zV}_Lv({CIxqU>~i>lT0jrOk_@fFFz8RJjEVy|2Gqd3?+ssBz#l@*q~x~FE! zK6XPgc?ZMTIyq&J>W0zdJ4l=S$w+$6vIyJ7)9S}}UYuO8j~QblI+=M(y7k*o3U@S%zMGt}V@%c7Dw1y8DXb=<32# zYPST21BbaPN2Qg=PfFEjh3RhduiKul)-u_(Dj+7@o2OikZCT?IjX~X2L7Ltb8E2>; z02}U%;+=$V$BQ4VRUeH-7WS@gKtu=6WR@!l&jh^4C_1^9;r&TE8aVjjTtxxMK zn>EZCdR}}#BVTu{b6^kjf>ZLGmN%b^D%kA}hn3s7Y;tmvKSW(r3yop7atRv`;je0s zT3a`+c^I{#xQ}xrcEx4BqhoY=*5<o4FoWJ13; zhgDkI}#9zaav{{N-3(yrBR4f$7lTl)tt9Ml_ejnY2~nz7bkDHku~#RM#8=X|xhAJUVp zc>A`GA17-z0Gfj1R87RupQKQ2Qh&SXby;TKce?df;6ZJ@9sU|O-FjQbyJX#3j$yaE zp$+5Dc1azK&y3DEJl`yixNi~U=75}2H=cPMnM9IUsMCn|>IE;GEL$J4s@oe#KYXqF zX*Y3YdQaC8O2y@Vmad<>q){%O}U=^ZSLTbfnHbiYZx>eL7WP@X5`2w0xE6XC54oGMHY=)%CNwaMj!nH>2_d+|!Y zHguIsSgv|@>KJK8u~fNt7EFF!diY&_AcEZm9+;qQ9~isUW%r8YptU^Pn~%_?EY(Qg zWCJ1qRF8DvKDFZVK&ZpV&#xH2T}Ouv9djc8c6WCt&YXh>8+i)Z@*sp~d+(E9X{-Qq z7~w{ufW{5?7&^VZwYNE-f<%)KDGqY*HuMjQ2@2-YC2yoS2Qzr8sNrH*X*t>YQ+-iI zu*+?MY6qD*8(KVAF~B`AlEn$4mg$MMSrluLQyc#_j}36ori$y=G1W@Medv6oc1z8H zXUgHok>>-opW1a@l1zVT7t5|zSUer>e|DO|6{Szi**FvhKrKX}=<4ZNSX<8$5fKT@ z1mFVB^pvB^rd@9rx0L$doEUls)pcNbC46r&j}FcFNJvkok0#oi8a9>JzkRd4Y0nw$ z2nia6$zgV2wESQvO6qa{r*F*AZIXJXPNwnZGlx@zSTP7{jh>#~CKt>idYse<7(z~* zpPwen;T<&3jL>Z98HN8=BefbKmwj!d%kN}TZ{!ZK|4Jq0aU)QE3BKIHF5E*YQYH8X%S9TN z2EpQmi<^~@zY-wD?gv}No3ifd$LZXry|#HEHu@*p%|4_ZxWu;A@*EsLF7q$f059VI zcBQY6PQBJJu5o~NnS5xjXsAV=7;Lox@3VmHd>LAgb{V z*~i2P%Xl7Iy(cZ*!5hIb#a1hO#cE0AcC$>IrmnVEmsJE}w};CXm7aHAIg7doO@&qC zIE8{I*Kb(M!8hT&ZRbz6_$n(WJ4pc3$lx4Q8M1n_kA$XmyQq2_L zp@sq79JwXeCz!PWe=RI8pN)+S08m9s%j@Lc$ULKP5~e=j&z}vCrz!XVr%u;&z?Qw%CgDGy!+kW>^9x>wMaf_ zGdWm#&?w;|0zECIx_TY2Tj-T5H$7ADQ_r_5y~ahiKgoPS(g)I1JD8Pyu6VHVEfLl4 z8TO-)ey;SdI!@x*@n<%ijiDu!R%$(GU753iv7Jt%dO%--S4pbA1FJW30{ z^{8yQJzWww_-ZKXElSWAqUGF^&9rf-q09%B6wjPFnv1B?l)`Ei5)~DQj*j_{sY%ia zwWrc)w0ty6+nmB&%D?tj(G?afJoS^kqLO|ZZfQFmf#>U6lR`h=bfG_E`27JY^N4HM zBf!M$L;zIpz_U{;BhyOtty*3|zPXK;^u>NQPX5_ONYbYqeYn`fI-)+r*@kCJK}ckS zo6NHDOH+l(F$=10Y(L!)5|OmP_-IA3cbVN;8Fx0ufosZ+Hkpa8&z%$ug5o}+h?vM% z$-1<=u6QXAZB?qLm{wms6SLEXzR_7U4cQg!Pn*`Mk#>TW4PEp0`_+5oMXkR0=Kfky zZO6Qp^Mo)w7#f3_yEZqe;bh(6naoX!^!io*MYll6?b)piTeoG8;@C1S_H=h!5}Fb8 zOrS@COm+sH`G0S13;p_&egln*(ns1he+$k9{V4m$dvJ}v9LR0_Pl+^*K z5y|P{jC33w*!!C{K@q2}m2gM#%=;$^BC%eXz33>c(}h1HO|8#fOjbQhCFibd z-{=Q!1DnQ7O1RZWTUlN?A!B~=RjZ1K2+F$rN*v-0(V!6kIn-X3D8Fl)Y>nHwWlgx9 zR`y@C8rdFkvDdUO4=2c^T#eM4H>%eK-;L$X^M^hf*et#roER4UFvgZ9VS)5S-r6;# zjctm5%vyFMyz9u3*WBI5kBI3M9B|b49tfpbka98n$`z#~eZv!8+0)d{!6Iw)tq6-E zG&s18dq_|q*&aQhS&9@>yL#G_lY6W_b<6Zh^37f#D3_x-UtdPsPdz>ODK<_BHb~nM z{o7c5(Lprq_`%>rx7EE}>gQ&`N}uT{{@Uu@;Tg@Y!{v&7xesGRO9?MfE;8$s;tqW8p zqq=<<7Gt8B`%j!2wjN`{fm_e1eV;{9a_tmFiU-#U$5FpU`MdNv7-Jv9iq`jg0#eFz|7se@r!dPPSZ#6dWRPq@ON(*y=FKxOQGnGVTQW}$s~spa z2|M9zEPCy&X2{WJ47@>1TU>5-J>b|cth09g;k{nk`P=miJncN+)Xrr*{;2i!%Bk!7 z+W&mUb^gPC0N4H}KAN-Ck4nF^k1Z`*?#i zz9YFWD0o+(_I!MxnW%k(V;AuCN~Eu8w>O$v zG#yYCXT5dn%$*3p>vs~RC(?O@6+(-HIz=y~f4X4Imq;HaVt*1ADcB5I;JfgLU{|OK*pY)LuK)m70{xa%Z}9Q2K(1@$Rd9D99kL ziCAxU#Vs0jb!>T{K<^#l3zqCtiUx9+B7NFSWrvc1<*rlOtQ_PedrB-tPTX&9HYwY8 zpKEtkSlA*o37iBBMvW~T9Om)z@&+QId+`)qAF=co6%}W6lfVn{FY!RX0=*U0o>g4| z*%wh;5!|$i6HH)84P;WbtqFgM6a*Ot!_Wzt{fIB+`)ph(`;%AgPrlYyA;d(BCIXVT zz1!c5UeZiJQ;6aGg$p1O^D!;zdjZhi_kA_K%@q}_#6VDY4D4R63WY02Di9m4JbU$p zQlY;a|6d!HbknUp7%zbPu|7Xatu{%I5!5^NZQEW)!~l|~tzBu`G*{b&D0^v$G?9g+ z5aNy6A;>?0!wW#U!L}(#XOu{qS>J#oLvjgNOgbL*L_bCPNT9jU6dN>c*j4rePJVJF z&UxPH(D|1S;urC3Cps^z&}1SLU4!~d6;yp60QfFscFexWZ#K;XZCUOULHg4_!vs04>HCn-Y?(ZX`TaZWz z8T)-3>Om4~qXnh-qSe}uP{3@5_>F*+4jnr53d29((>6?(#e!b+H581Z6DJrq@0G4@mAk#k#! zLcjE}zJ(+ZU%Iql7&SZm%ysMJ-&)1bU3ssA68+eR2bHgq4aCyoV{y%=3-(U!XA)iS z-@i|0B!Il$jy|fYhli~E$EzSFla)~oPW zg6sZcy`4%qJq1RV;y7i0B4;KHd1!-_)YX{=TJpqf*Mtg3JnV^f-vR8DQGuaon0Hnd zIneQ2Ci_#EpdDq~?B@r-A&r+K@HuJmHjXYXi-|%#&5G&Kqen{Um!82$17@fvI500} zh4B@931*xR7Tb?&OIek$#zAy$SvqEfaXAaQ*4gkS>WfxMfy=12gv{N@#YJbv>3ROj z5I!iBnXse_wG}3BNEX1fQRvU>xk6V|>isg;Z-U)a*n@35n{x(?MpU$oYNwDjZXxm9 zKm%`^_tC<@*WW)LQ*O8lj4U<(VW+y@{q5I437xfa$=FTEhz1}aQ-+>K93{3MRPvTU zmOhI@)bB9QZNU*qwOk)0`~=tXCNd_QuG)<48dM|dpl&IK4dZk z91#GECE66rV&}u1EW&CUp1PcH%Qbzp4r}))z6QqqG-TLuV5EVdrZ9@-WOISCgMpH6 z-?W%aaoBLU*=D}42X@$Atd>A|!v|7?Rtse+ADq4bv#XhyaN}vFhgV-`^fi88(rwtL zCS?x?R)tOdT^_%Ayg@L;RY^t4gs$oQ?p9=CFKJOoKQa7To7fsM6y!6B3b7{73w&N& zD)ZW81M+mKJYz?t8jCpHu6~D{c9MQOu%x?kTvjh+nFXVb>NCTa7(x`dbYls4b}Hqq zU0nuk<%Y-sKTnRnyKuReB)M%+lRQONw>ZfAHzg2YAsl{}VcB5k(BKuUuNUkNh~i@+ zMiB5&e2D1-d{Ij^H-RwCS-wjAjbCTPcx*T*_9YQfjHD$!ZiI?>JLMt{k}%FZEid1e z&Wbg5*YR6BWD9LQJtDf-{r~QjoaI4{gm6(O*zKuBlI6Mr+d=CmWD5w2h%^S;h6_B; z_C+2I=6+R)tvD<^{8p7!HewUrix9@(z|QMoo;OboMSU_<0lGdyXQLp`CSJHvS&9T0 z)x!gCm*(f^m*E=X=LnMs`O?`-j4L*Kj*Yp};XUDrUG&kz8(4|!1lBn;q^zk)G6qJ} z&d^FRxr`TrA@yiq4Kwel2}umbIu91CIVAKA=?6n?BE9a5djru%1_}B4j-BEfAL%E4 z)TdA*V8N7P*C(D&Q0|RuOfbU7i;sy&O^M45cPS44U7vcf&ebwzg98(~b%H?Au^>1W zLbNXeXMtvo?5T-Ce@blO!o`b)HKRqWY4}vOZasfVZ9culaBr1&OiT=jEXy%XhFLs+ z?7HLUR>i6>vVjfZF^GX$xS$KL-p-&B!h(mC9d9da9DM{>19s{lj6Hj1lW>H>q>zgc z(E-p>Fk3+J!wND`$Yc$5za*asGYCi;{ux~X78YNn8k2V(LxDRBJWoD({#^6(@bE(P zY&{-RajQKJ-lSd9q5|*A-DG^Zo|3<74)c}t9Jb~Ps768k(vtXbqo)M4RjZtp3 zAnwzMi7qZ*^_t+n_yE{wb^kSmQ}UQ^7O!^~%^f9y5C9o=+!~o*6`FQYFJ&DDrQj#= zXGE`>D0{1`tGV8N#RGx?E!Qw9WDGOoY|h13j7+n=boaMi}JbJNIj&o#?EAqf_5 z6|8-fEk}+>Va2eZ`vdS~EF8WMU59SEMZpY59CJ`oo9x{y2^g>J)I;x5|2i;DFd2ph zc^-~k@z__1z8tf%&Y{9WO9AZ&4SNYP0mfRp9s1ENK!=dz0e*9$L*Z)r29YTcb5(u)oH>PhbyrJ1^Ge3Y{6*)mFnAdu4fZj zR6M_P=>*~lCv)D!nY>Ac(1s+?J0l}Q0;9l2#!)2X3O)mMTh1%ocEtqUq#mGZ$>ao~H71V{gGg^MEgGNHq`;F0J_sa*%ivE;^sK}T zK~#BCC2~z6sGf_shzWD<3C?CYE_1Nw6P?kzZfKL@L1LnK0aI?*N%6v~X*$F=li3Lf z7ab5#mz9?*A3V4ce$w@g*nqC1iObc5)~dR?x)&B3e6~TP9SM_J--d*Q1n8cOd-w%D zk_W#QlviRP!9z>X%f7zdsX1^_mh{6718tQBtig-wy1Kg!6IhWR8HOeGl1?$M^TQj1Nr0EGOoXCb4m2YUUl4;iIcM_3c3I zjKh-}cK999S7K>{)|vWBY;{jpmoL~j@d(Y7=WfwB2qHsx%ifd)>X~R53qWzI_%^Z72n94$jql&twCP7i8H_Eda%!~f8b(om-V_|hAbTjgp0s`L(eF&j> zIrhBdp*+UZnFeqIc2y3eyC#GfK9pMTH9kHrh_Qm8X_nv?*7i3eccMIo0~o{&vPdw# z4gnuYAfpz%2E=cPvxd{;_hZN$=i1fX(TUmewQi3CzoaA^qNOr+4KUg6fis!n*@77= z1YOne$XSHkOWbvZ!6G?~Z9|ua93sA6Z->p{x_tBHRGxWXEtD5nW@N3oflX z#)+BSmQ~STkHh>AGW7!ef>r?2k+PE{l1SkI9;%TWMlF!nA$O1gDJhanR(xbuZt2fv z^*LxtQU@OPL>;G2dRe-0F3v<0F9b|W=;b5ON<&9n0y!Mz@paV;WJDD{Ml4>OY;rzC za*6ba@;qn{^2bq}5XA{-8;M#w63e>2o|D*-C6PX0+$Ies{5^p=ND|6RmXBN;4xPov zY$M(P^zwb7!#ikVx&cX|$6zrBd_*cZ9aZJIA3yZwzG_q$xFsql8h6X!&G&tt>5)+N md_PSnoe7`+!C2Et1*;=w<9CJ(Br&FyqM^D&<*t&s_x}JXyEO^` literal 0 HcmV?d00001 diff --git a/_images/3.4_multiclass_classification_15_1.png b/_images/3.4_multiclass_classification_15_1.png new file mode 100644 index 0000000000000000000000000000000000000000..13cee5223171e92e78f1aa5c74c62990c15f6a62 GIT binary patch literal 28324 zcmc$`by!v1+CI9FMpC*J5ET#vL|Oy{q(eZuySpW&q(P)Xy1NCWySp3d?&gez@4NT@ z&bQy|ob&tVT$f%f7HiEp$CzV0&;8ubeNTTW2_ZBTA`}P&f+qaoy$l2ba|r$~AR&Nv z)I#>&fgkKP0tz-C&Gl^THLY|Z;+i%VCgwIKhFXv9bgirn&CQtU+2~)W1Cx+s9+_Kis_&6i-iFxK^c6nXeof18UEXV)}bJ;CM0Ly?_5+uTx|j z0)EQ6(yc&$4fKxp^XmvK4#md8iebdFqM)E)ZsU`9|6Zp}p~K(LuZQ3vI~GwQ9j>r+V8%jj?f&=5XZgzxteFa*0(-WT{^+& zM*|1G?>=2=zMNn`$15d;`Ay_$e0==Cug}gdr<3{}eSHNZ75sdB7Qef2dy;s_l`G8z zw#M>l%eg-iy)hxsVIl;d{>mLZI5-&EsRRC<&)?mCS{)Aw32Dz$EXBmal7=z#?};d% zfbnZN9hT(LTxjr+dXD3;m0vkfWvRWgy1F!y{W1Er;iCf88lRJ`@lPVtlarHd)~l#* zFIKPviCGI|ruNUygzW6zn3$N*{64u0Dlca#DJdzk-%~>+dfl<$JY8YxC6oPLLPDZi zjq~kWvQqti!FTTXlWTnYuJerbN*@pMWiCUk1fJ1pl{SIg^zsaa}uKX09r zlas4#xA0sqH!?+xd0xCghAeDvs~DPg=rBEx>=JRlaZ8nYem@~cy{rN#jt&lNPA8k* z37qz^RHE|oc-uQWn#RV);irCL9{gK6gLn*Tfq{XjCKE-CKm71>RBPV6Jzs#m8Nax= zh~~7XHyX`>_vZ6(cZXb`)!%swrZP@2JbnzRb3SX!{+PKxW8Kf2ElctIIg)aP$)Gv2 z@faPrT386Rcr09um=E|G1fGA$`|i%ZRIk@ljG9@&etqDH&H4aLUteFAd_K|UXs++w z?OFZhUX)GnH5jGCqBs7+!U9BJU;lV#8h^Y{ouQ%*+(*rcB25cBJ0Fqsrv1g{u*gWc zLyymGTZQ$(>aG{?+1c5bwrhO}{5CeP)!c4QD5iNF58<$%NxYAs7MIFbVqs%vPX>#t z%H^WOHBP%dI9WXI4a9x1*>}r#{h?c5Ujk>U<#Jn<#o_}FyKN+AXXhJB$5Rr=4&NuC>= z1P)t11qA|d`^qV%=YHBgghfDY5M`+Qk}ew6)Y=N)?1R=^ZafZw++3ZtXC}F#KnR$0 zkSfe(zy9uyih6Me{x(o!Z*K6Ks3(RQQ8bFawVRK zmWSBXVhtO^nS)>x%v4)vcAR=4pz%35aWpkGy)qbhY%*1b43-$ZZQt$96+hTk;{~dh zwu_64S?cv~!R0FITt!C{Y)_UVLT_q`Zucw0Au5$>D|j%3A^cGUG$M_@cy@^UV5*Qd z*h>>XZE3+2Ww|A^hmfa&DK(g@W&h5g9!#(L6DMx3wEwM_uP-7WAK#BrBNzzyLUW@R zVzJe4k@NHOZCnF={U;S`;qRKMWRrP4K7hY0Qa`9lf{n9pyK^-qIFYim`oKx-xXY=}-ibmsK zhh4OuadFE2rnfh178VwmAhaQ%5|d}3mO&=r`hUhjH$ z$^6Jah})_}!Kj=Fvar6ckh9}vRQO|jYRPnk*qDm*+e1`xp@?#IW+ zGNx{4yQ&I`iph36QwUpib#;r|+kxQAM0tgZrFvoG(48Y9BEpW1&*HGJQD#0*Mky5h zB`OLZ8r`-hikHa)oHYADn8LkK1B*8_K0dIgN6hP_|CWxPo*p8Vk@WlScJB_%mmj!k zcp!lC$GtKAO47~8k$|4$dii2=BpcS7560f!-oe3Pp`YjOy^@kr_Vn?|$;;uEio2UV zHw#-^f%os>ur@<8>^Vj~`E%2WUM50sm!# zUhNI0i{gXe4^vooO7s)lZ*YTg*{RcSq~wTVVqys1y0C%F=?C5X2TQGN_PZ+Hb#JA0 zH9`D4J!mHf2ZjOnvL#h0CW`|c46 zmuO(IXS&Wd`(hM3pP6~>Byu^*=*%|}r*b(9t0aS5km`7}I#KIb%BxxHbV37?Vb&cx zEq@ff>ML;OJf(7!xw*NgX3xM)IzFwx+U4YO*l*BKT|^9CdVBnBbfq)Ga&L~?WUiL5 z`}<3NkW@h&65$GdFVjfe6e^G_my6fb+{_5p;A?|{hJ`+}Ov$7+`}xnln$12ikXROD zpU_auJoS1qkWSV|vaxT^mocCRySY4}Js8S3bl52$f8}_nQww5-!`;mp$U@#M#$!Lg zoFPQit@gxtfe7~FQ=u9Z0cdGa$QP;w5wRHk;P*v;`s+6Qspvqdz9bwXqIQcP7Fb$s zU6Hf^_q;M5%R{+hPt?`b^)?*NxY@FU2I6>j>sK!47G=ic=${Hy8Y@hvF>!Eoid6HJ z%0a>p1o@$9a1aX}9o=BM;^hNa*zRvz;O;BbIkD*V#b?)(m@T&j0o25tA(<518h{_Q zapET?vZ8qOKHTDHRa|o3i}IFkNgu5ONAHN|6d^1|09_D|HqdU14tVPK!7|rIIys>`65P*&54eM z6&dyz>4T)CZ%7D6ULH-Mc}zrv*UXGcs(Sm_7@kOa$%997B&GB#;7j{QN7$SQSXhKF z=;_f}j7GA)jrVnS^8RpRp`tPha(!uTZr;+?CXy2!XZyt7#s&_e!m$R^ZZyO$`l_Vy zNK5E31=GWej^-EFd3VlggjUwpVWC;Avkze`tmxeGr82h`<~Py7yNVsOB8wJ3wOMG{ zhz?d|UmM2+O<;ji!AokN{9`;>{_1mnmiEKSRIk^Pi?O!Q!hz;x{tqwtS7vT6w4lER z{P2R1cByv;O;$1q>vP5W`T2DPa)Ucrg2b_|(X&ux>HLWdT8oq*De=0?Kfl|rV!V>4 zM$f-5Qcgi#(m^3R+Gz$YVRW!;Fn{EGddKr`-PbdJ4nv|;_`pU*{$er-noZZiO%W!Zpk%oiv5!)C>e}AD;J>tk`0)<^4rEs049HpF&(( z-cM$VzNGp)|Tr~&KuTyG>Xn!LRVsJkaOe&Ylt5{8&|*J4ej(rZyfMw64l zMk*(EGQ9%F$7YTZr51hW&v$#VmP83qyGZ&Y)9H#BtN=#50+ri`i%}6lPm3D-v+k5t`iY{D_TiZCcBgV)tLY1JG`lr5Ko)*_y|Kvv z+RNQ*qJIn-^fhbAN{1R+4b!O?v#Aez*R?IsJ6`7_oDEJ1BSW;=Lf1~ zZcl~l#XI5&Orm9o_qfLqtc*!@Dae!9wp?t27faxftM3E3diJMnGsx{(aiZQa$Lr! zXTT?VqWVzzzNBw{epyz2N*y42CXX5|{{F37G}qnzkkxGFdC6x`e1I6Px_jERhWMku z<_v3wl@KCT%8M7iN4vkg#xh{3@yMz)e}6~I&E>omt!zCuWqx(H-00jep->p5`qH0d z%B5kFa$ch@!1=9Ac#C5Vbc+3B(qgme0=fHptyge00POl8Dmu(yX=$lD#lt#{BHw@A zB5wubS+FowdhJ43<|rSkh%8Vs7_&~=(_hMWoOEh1_(Zi{f*O0EmLGwF!Oz+e@y}L} zWsdYlXEF#0EGU`#W+WpBDuDP*-u_u`f_X+b%=A(mYFj< z-$x5hcB8Af&{-L#DL2Ep)d(Zu((BL>E8}(_vHiV-bvE9=T&bw2Fc{6j4JKjtbiKKR zf!J`6LSKV2QO?2niM95@&7G0f@-tqkXZSOitF6h%>pZuH{jM`>(&u)`Jo5FQ@CmcW zEDDnwe}wEM=OUXUSzim`XU&v37|T3R;X1^!?nO^RMSE{l67=uwnlUtl3?IOFB^oA% z*-|IhTRHC<0L3KAmFWH4XC%-%i1O(1uNef#!>kXi5X zlP53$!?uGO@vhttM8+^U6n4lxpW!nEm>U#a2_p&>WNgo76$LF!h^q~}+p zFvqj+;1gLr6O_mSwrF}BIamxfz-y74u5*7FprXLeH2CFRGr`Q~W?J#VtFo8e6 zF=ycB{lE=m6QUnfF0(R7xTlbW0BeNDi%4iAc&u(4suvXxrIzR(^oNN~bRhIMD^Vv1 zt?$&j$!{YG)G94I7E@v>lF?RAAg4(Vz;G1vM_1BFgUIf88*~sc%T@*sMiuL6y&}l< zS|EjgE57_+oKy$J`t8qgC&#FgK8JCm^60mpIRKi{)Yta~kX3VcrW*71&3gu<2YNlx z9sr;=gNgubWWY1n#7qGc3r7t)sHtvA3`uO zG2P97T_Ct!A0WDW&Yd6r?q)QddJSbpAVs>}cn*$^n*E8~P+%%DitY?0;dFn<=c3^S z34YuL)mV9R7^M&t@Ie{?uVA@3^5S@V5*va^OdRm#3!Kf?n0S4NNID;=s4M{GROX`P*XD3HT%nCf#t73p?$n7}&m?7q&lrISI@RO)+5OWyaZe37GIdCAM zp`j4S{^23hM1Oa;=w02A#-FKSGt9rf!bi<-Z*2ujQMg_$Sqi7-2CU&C)9E)~e0@`; zQw2f3Za6S-ijSS8^n6za!l!m-JR~JxJ^y5rlG4_6{14#EAh!fa;l-> zorAOUaz_~DX6lcCMwOpMk3q!3UKq=3t-ve|e9(4!C7 zio_7WQND7$cIb&?#jxER;nmQ14DdBNIXU_9)_CE_PEjcAIx`(1Y#VjcC?z>#n4JQ5 zFTOO^DYc<;F1#IGt_OC_OjxYJL;O7z8^Y)>FyvhB+lB0e*}`uoe*U1QPm+4VEFSD* zI?SlGOL`6$dCSrK_3^4D$g3q~VnNdx+6&P_S;JJsW^<0wEEGuk=xhPu0$nj_CSZ|4 z7w+8WGgT^T>ZbN~#J$=hbg*QT=U10Qcm(zIs0BmFf<{JUq14;e*`BXVHk~ae9#7fa zKS2oLsrk|=M8paQ&6Qft^X&=UTJ{sN)4YSmes$bg4#nV5@@(bpy;OuS2O&^=mafZjmx~e? zb-r-ysxLjo5RAhdDX@s98K{`{VMG>`#|C40gm3Szt)-_bD+ZG#hUrweHnPjxMB>4P12(dD0LDJQkVgxQP%3pJb z75P1Dtpm_b+4apq1o0~6p~|q?!alxFo=y_EmIu^-loW7&`kG8}!>V>Zn=o$$08~P? zBog1?8**5Pi}4yX@fG5awM2U}N=h9P&e#Lj(& z@FdNWSfLaC^-ib{o~jIla#sof$d5ol6v!(*y)zQ(AuUrX%yi_V{ z09?}mAdISh{!9UA{_bbJQa)hh`Sg#y%f)JWApKL0cX<<7UmeQZpaozFm%LRm_6N0J zp}yKbRRL6_9rgOqm0BcE_x9|;c1~pdU2H;FNXT@2-bmi>Cq^OH*B3|YL+JsxTgced z5GZ+5WH?M6CIhm8TpF{Lfocxx7p(G7``sBr3Unk)tT6Z&{n$N;v+7^dV!nbjBGS6_ ztOh_A-2py?d@NR5M!os27HInk541W!YNTTS6Xpk+sunFxTLrSE{?vRqn*$usoTCW$ z_O&-S4wdhpy3aGLpAz5Uf)E_i;T}W05C6#Gv?6cyjyfR|Rro+yJ9&_`HCU=;YC)rz z5+_;QmCg<>N5n>^PD7XvZkRMR=aOJJ=MN6?9_z?VA}lr64cDUq_=pDgPvL3t2kvZW zz$akA4z_J8$NV)E??0EI#0y5!ybS#Vw1d_`aSs>52(bfQE@K)v!Dz9h1+@QUZ9IUV z9rpd9H}6lm%h6bMG{cenpjr0uU)65FUKp!cT(E~WS+YcgNtNT8=9u5(c=iQ4JGx`S z?}0Gd*o&KCA<-W=^AcABvXGo3%JPRFtjSkB*%W%F^R#nuAtvPVX4HW660W5FZ4b(W z{dRpbznNrDK~wL|{E|UKJBoPNL$Pqn^$7x0Qs;IJRh2yMxeeM|SmPF#Jy1Q+v3xXK z4~*Z|gW|^6Y_Si9h5TY^-16dpYWS*_8TIj%lO9*a%OgR9ke`13vRbYVsIq1mFT(N1 zYnC=y`_|bgu?qL|2@_Vin%wvH8mA;0<`#c-j7RU1 z3?(R|6HKMoxyIlO4e6Lhz280y28rnrbL4k)rd0eFkIJD@3fc;S5+s?K&n{24e6zBi zN9eKrJMKqRTuEMrNVMHrd?L9X!#zuhRA8(|csQ`b^x7lz~1H|>UlkoZTpFMw=#aI+31(=CG3XL%cn&2N53&(<#T`;9_$*<$v z=Hz!y(fd#Ak%El#RIkJ)1@92B@szJ$Mrd}K469$?ZId;I)IC>3}yNZs!M{DCsDEBjxu1gb; z;}onS6EQn9Gz5VZ6cn_&s;3UVOLe^LPLaRj_z`dTX(4wxA{On8l?VkKRu z&Jl|t+URWyPhPY=TMm&*J4;BQV;B-;jqI@@=BhHrAg?!(o{6PMaG3qilR};dDuoUAC-&o{+7+4R_S#@S)EbWu)JE7d#pQ4r*?< z&b!i392JEflr?u1w$YB}z3y3PENO^h0>Pq1Xz=_dn)4Ak&EjfU0P9?khXieNv3jl8 zkgITu>-|MDel$GT(2snF30HeI=R8s8%nE7&5*Y1J5pR(Hlk?~)qVGQvrM*CX~@U{?>H%cZX1hlH7cJq z$3gu0mlMR;+i+KNeK)&tMPPhkCEm9TM_HvNtI5~A%#%Z4Ms(ostBgpGK=yn*HLE=j zkT@uBmVL=xq5Zq#Ejb$8?d|PbTeos0v`7)}KKUEXmk|RDVG^`L@=x@61cuoQX&GP1)B7rCZ&U}Gm{!OfEi#knRqpfNI{W86TrU}`L3lA0)5TlshU5YW5Bs6p%5W7`z4}Zt7~} z1#cl;TtJ845urfMi?}W}EGzeNCC?S4ZM{6B1*SeWi z53#TfeMg5~uy8f|#oUIgOgRvO9lvmhmn^O(_$pF*TCBR4c212OdPF2SE>2<4cZih; zvJ`T?-bnI1U4HZ=0%nS9p@qqO=IyHA2pc?3uo7HZ_q(+a@}|M=G7SIFA!k+x6RxSV z54=H2lO4Uqd@HR+=SE@VyX_PH;cI(oHt|k%iSBCrj~3)o7c^hlr|w|>>cUu)th(+_ zj1>C1moVXm82A)|3AcR85FikM*Vx~WLCk74Quq)R)#cL3(;cu2+EZnQ>(iAC5Dn0L z16)8;BDeGYlyPBX4k>^g_D<~Zsrqf&(@f@HPO}1{KRjLaZGZRsd%KuhYT5V`>LIe+ zj0^vv+eurpDx6)P-BL1*k;dmX7i=)~Zi^mAakCJJBfI>EDm`B?UdHQogJbp2_#xW3 z=dL#H!qy@?b;d()NS!O4mYQ$T7*Fyqiz@J5xryT7*eOXL;)G9Gibxc-w%uJU*SU%x z+|r6$UId~rkIlU6ol;C$fl0fV^S`lwM>Aqn-k9=Y(a@de_MB3w(k#dW7O`n~7#j+G z@zq_D?_7Z-=h34_(4}z00roLy%PoN(RC*t!(G&GjJ+#<2rYO&zJp30 zVdi7kr(+7wU2owJnI5XPf~;w>JUkS;OK% zQ>sIYDwG%}&KXaN_z}o%6$iXNa%{fR5v3zK7V%OJMfmlyWZ?4{ER{;RkWy_>rxh4} z+?zZy^qu2|Sp(-5waWG(Vcz}2UV#Man3R+R@{9PJ|@B zlbpn5281Jqt~x(EorlrJotx~9hKF2VU;mKFJ{DC_P$=GMZE4Zyjb+LDn2C-~!scGA z-M$0}toGI3I2Z^rGBO0hz`)>jQ(IemJWq=z?K@^XlI7w35I+U<;4tA};#kcE=YM^+ z+!%WL8Z?lGrvECFP1Jv9|GP|XxuBwN6_b%l)upDWs9ChkdpYyK`e6O%Bg?g&!IKEz zr@N`bQLs!fB0|H*8a<13rFUBjX_;ToB-JPuM02MG27#^ z7;}TB71(B%C!my@*sXmyBfqc@*7v_89t7=2ufjDz z`v4Aa0jObG@vMRbwO@Tnmd_0`n(vf*Sj`d|tK&c*6P~~LspdR6yo(xKGbR@`ax5zQ zSiLNU{Gq4yYQkHQcgw%BTg{RR!xkqf%wKOupm?YDQ4yx!&UNZMXcMasFkZ`9+!a4q zRsL|o20zl}|}$mb#aD_6oXv)E@cH*B>_|aRx{T4z0q}%pdte2ydC!Jdh02U)c1i z!i{tbPF$6@22%*1Y42cOS}_Nb58&{4J1?iU4yGhh-f{l2$8C-#-1=P|BL>1B7A~%C z(JojRp!tm`_3EG(@N+`JB!h11`SQzW^KJ~q=y*cMjIp$z3Lb;K!OqSO)qmOT&8e5iBm&c@i#G7Rd3>QWLHdA7avGjz4;d{W$-uZwA>jtaPlqY7b;?KR}>r0x<`{ zYXeNE6acCW05l&W1ZeF7$$7{?E1MsPq%a8x`~YX$3|Kd)P{5Wm<*Z{1$l8Fg3Cb@L zaN5y_oxdn)ISqBs>9xg4sDzpKEijbJ@u+Jshjz!Az5aM zj{E}?6Y(?NqURfR_OfqGr^*^Z>2T1?I{yP;Td1NB+Cu6)HR~sR_Oaa>i%Gjt-I`^zbR;oT zs}LG_>Rii2gDm1qif(4lB7C(P{ui%t6!o9H25o(m)S3W`MB(X|2uZS;t(ApA7S8K~ zNW@sQ=h46OdSUHCj)a=zI8m<;(QP;gnQk{{C$q~!r-=?2Yf;lq=e+x>1L!}KYoD%j zbo3Q@1~}709y8ApRTCY&Z5Q2PL%Uk1?@O`})T(`Oimqg{8xfdcIvRaycaZ9p@woL& zV!Ix;?a?w`J`h$2?#^!wti)*jV`@`wUWm4mpNF57MDLs>JWT9y|u z^kf%))q1{?J_r;nlQvOwG5i@ndrOK|YBDR)NC0m#bMyym{ur8eGt}dfaM|>RWp)WW zsao)P^-|3_5Pk3I1IQ5hnQKp!;W)+bA!8I9%nA0OKQ(5XF`BEV*`08w+=NOzkByASk;l9?}?l&IChm>)tJ z85~BI%kcleVj@*#0%D%XJSI`!BfY%9A21Kaoj)}WVIHPMzEJOIW}Kx5y(GfVKg+1R z%Tv_OaXNOo@Aib_(s@U=9@4THJNf|-Bqr9PY+mOL=vqE-J|JXCr(XhCjLPcCe37PC zbT5FE@Qf#UwjaZ0pgo|JE-9&wAa)@&4^5iT^{6B$k#SLc-}On(=~L3b?;kw=vE7g3 zX6N=|=|92T1K%+y*i^(NRlfgNw}ws#$)laHBWNcDh>PzL--EqvL8$JSZ8E4Q?jB{Q zou?I}ok{ouq>aVG=||c~w_al15-jx%?ryd-K~78P)nlaUcR3R;dWi4IAOv2$nJ+9* zn#Ql?qg;QO_1J#^N?3CwesK6-bWUTJAw0JVoA@plzoWWIeE`Pp%8>Q01!})^C&m~t zgnW6YC}p55h6&vU!UGYx4qFaY-L=O6cFM}x8q8)XZn3jJs)d0CU#T7f@8ClfF68ikGBiJVhZ)H+&<`}DAg(j>hpPu%%J2;@7g{_8icBsy-N zEf_XDp26M`2iyfZYJ|r_=4<`|%05?2e44&|oaaHgr+NN`bE32re+z%?5od5Kjde&Z zNO){OW)*fa?{>!x(zP_Wp6uc77X;kQWYgarDa(XZTi(+!@^B&0upYeq_A0_r=TcW3 zjbvJhw6MQA$We$vt6_xmTsNN~*d(uDUT^YZ9_{<$T@7-K*t^`sPU=o1KezavClNzx zzR@3?^I}(@iCjGmo3gyD;RqTYv>xDZnX$m+6xom)By)^;co9g*{K{;GjZUcy3CL+` z>~@-flho3CJ7cZ`0K3dg#SQ={Sj{&+MM z<>OmRCSS2NH#yCtN96Hydvt#;lP0Zfd}+CrwMa`(RVS-=9U<9Ul80F@><1J6A<)!n zfe6P2B*G*lB(JpFP*v((NkJlP1>$4b0!(Ni|7p85P?l|&Bx!1z%Ab&-SmkiIL9WId zx;P{(^x7m+cZjY>$2G>NQhxc;yzhgb^aIEe1*yeWJa(*�$HtGAd#f_DxS9-qZXe<;D4!Wx8Z{xA&pnUyMm5Agrib}szx^I1r)sdFs#2o}{kzP_ z#YkcMgKJvhRx`ItXUXRzWdFcGJP-duEas8E6QC(ie{J2P+X<7b!s zrD;ut1g5Wd0W^5KuioF*XIS@EO!vfNWT#{03MF7&V*V zZUAm0a&`Tk6rbWs;roW%;QB9%<|1}j$mN~=EVd-}r6)tWBZaAu02C8g{E^BWg zpX2Hw2@6jFPX^I2s{nR!y7=4-62yip`t|851aa;Ym?eM8^Dj!Ebk{%y7;s?5o}^7NJ8+ z<-M$f9+URrYx|3(K<2hzGbqcKJgR1D**@A=T#N;7v>W&bG#r!pJ>*-#b5`Nv+lA*+SSCq``N=?omGOz}P66X@G7l4ckkl=6hFxJ9?2SNiRq2IJn_ z-pS;ZYNkueRHA$_cS?Smry|2CF{wCK<=kClvZB+SEK%M#t2|VXDo%|<*S5_d07A5@ zt844rxj^nH=*VV{6b_dge*(h#R*hNUV34kN{VbNqHAy8v0tvobe-IgmXD%+{9w78q zt6*|5BH81Ecm<>IRgccE7_}s9FYdcs|H8~sJ|`={R&k(x_KV{2W1iRzA)keTaVRi9 zh*+SBn`rMOVfr7f9X)PD`zo!CFA!-a7=SGF3cn^&Mj`V}t}fo}H)ALiX~00cmt|(N zMDH3~Dgm>G5%Elt{-m@!V7S^^|F!uX324zWjGlt^NfU{ZFo-|KbgLC{@MebdsofU} zk)NC-+|6CD$#1*gXX0}5Vp-`&PGF&~JgjC5|A}j8XegLO|58{pe_#16qP$%?XQVQT zsvY`LTYna4_ekfERR;t-)G5haLjVQKV1=o&f-?SgVp0+Yu&31CoK6ekLScf4_O_#$ z^;;peDYBAcK>F#0+W~#Z1G&NE6B*n?AQaPBirTS1P z5Bx0Ifq~#CvYt#B`Fpc9_~0F05Iz}!Dz|pO>0uVI$^d0)F%U8U2}Bu_)gvI4%>3G? z#9$qA-5K!=2?gbWl*L={(sOOe4z%5YkUVR`1{@JLZNJY9Xw+m^`N(i^zD!JbDvOU5 zs*`itZ9}96J~FuYp@8HZBM4FtSSXekhq{o4Z!bRX0~H^Cw(JrRySAhWN6>IR29Uu! zDfB4!zNcwL=7bh16sL?ZoP%m5iW3!lJW@OxhF^ zuE6KylYZnf6pdpzN(gY%58SVB@oI)-2fOJQymlp&h`~F*7~fV4Hk}m-v(on1-H}cqyq#Xf7Uq%SRhw-*k6EwXaN5R8;~CV z!8EVrj`8xrwgUFB_n-jQ02&=&jNwfkgg`)Rpa|&hQ7}G$Q$3}%ev-s$P6q540Sv#+ z9{>&W$jH|Y=nX%}Sx=blnxQ;9 zJ#7P>&#!qrwwpMfo}M&RIM5kiWkC+AK*Rv8yW|AhM8@?Mm=FTRzvO~#Pq96vwJ;D*2py3$e#q{NSGxQ-xAqGtTt)`3 zoIk*>=)~;aN`X2NjI-D%HmP&!npLabel=A1>z;Cqg~4oSe*R0S)nF~r869Y-XvdAA z<|d|?9*t~(r5!0FMehbXC&+iddd>e_QY(8zOFiyRt?Wa_pBVibhzLIl_;Kv{y_x+u zkYh~4b@Li&_Xe()BV$Sa3oK+oGw%^A1BceJr^1L?BJ#WvI{_(Pzzhj({M51@=!99^ ze!_jjaL~AM(?@N5H1Bsa2gMV=%w>a$G9W|}v>Kw2@bRRnbU3n8wt|uXsyqWD? z%`>&h8h-t7`jg}4II<^dlmthLW-eXCZw+d_oaZM>nacxj7+Tt&FJgc5`b+!KtTzJ> zSusSp-I=1Xx%`~>m-fS&uW~#>Ec~MpXupATm+Egn)d3YvRJG9?^SPOYt=d{Hure0_ z8w91SoFT@>K*khhq#PueS`UK;$r{~csywroC{XIi_ZXpSZVnAML93sNeRP_m0t6Fn z4*w@gkvKQUlN?c$y##h0Cg;Dl9x&S&7H{eI#(D$OAQPfraIg;$k^>i}r0AwRy|F+{At!xeU`38&AOpY@z&y?OCZXlv#0`V{{Wx0*hveM zkEqfkQsvz+x}m|~Q-PB4jz@z$xkZyN&1(-3eqC-=#GlKTfkCa|*pxLiObeF5ZMat{is(fxSf`!a{%n(` zi%s6ZHcG(bTI;GRA%V`v&%e03>H}Poi$GZ13PfmK*HgIi9sTj_u<0_28K0d_xBUT$ zoC4}$V9!8w1!k|bj0~;zVA58zLaFBqD=Ruh1e84eD1&ZOsRF*48IHE1F0^M$gOEJkLAkyJR2QJUbc%t!PADy9 z-WHa6}ODr9buYVNyC;3Z~gcfIAKdwZ|rihqQ@6Q<1nqjE@e{S5kHpb&Q7 z-?ykeUkZS@2NAQT@OmMzIiJ!cy4_yLti7;)@+n&uL0uUb(g1V>K0S0`Y*HJGVh#-p z^MIO%0UP#u)3$5r9~y)Q)VE;bBgZ?ci_i7^$;a+kF*kLHs~pyr(pkwg7tRqcO=ZX? zwT4aH(wG~jd{Tg0Xnia{j`vAD@SXxJe&1U734{o#KwtxW#bPli)nb@mWH9gy%9XB9 zr_Bw33KH~|L}ot-L-Wns&zBAJ^W-1{L1p$J?*O6^83QBae=t9K)y!tuM$>3O` zx{N>6HVYhE3cp;~p~fnJjJ#-zAq&-OiBQj0k-=b!%o@!{puUVs1&bX{CRb2Q)t z96?yv*j}LNn@S9t3N?d;0Qga{;M1$T170iOWX)F395u3BYC(n?#enPXotYUusK9_3 z5vW8!_)h;-DU!_8uLQ*g(5VCVq(u+g1qLvvMNmamb#Z0o3lw+*$fFy(j_@rx6zF-0 zwc7$4fmu%}0|8t~RuJ?a-}irGL)lU56%r-Tlx5Ps*J|l5+%ta{_XHr8@V&%YhwxsErPG#U@Z^7V zc|EraTcdB%fp;E=m|=a#atlCzwfN%f!*Z;G9yX0#5RtI&=^J3}J4i_;%5u@nx zWbfDtMX*1xy+U^mX-68LF-)WfBgCWYWeC(FLDP^)ezCaZZ*=bPTQ!f{3O1i3UAt>x z>VvBRETp5egfDfCiE*j^fV%VJqhcU5m3H)3yQkow(AUh&tf;hj=1jj+ek4;@8BP^K!)F^GwYuMfK! z`~m}8hSEhBmzK1`PxJpE8+=KQe{IN+bG5}yp z8r_n@41O>97$o)Gpjg{oU_l{oKdoB0ghxDw^RpKFN(ns+lTQ}+A+RxFLANMyS}$&F z_yfWH0)YF^Ew6w+JWH15W@&9rzp3oKEE#!W?L%IOn)xI_9c-*-KZ3o@Zq$RA^=GFY zLlz~E;Zx!7Bn>ht*m<@3d{r1Q&bmb`0rBA{KBJ&TgSkbo+B#oX6AXcHwe`2ihU ztkL+O%wX^V01It^NGt+fCaua(&v7iQte6x6!~X6I@&9y95TpL#=!^PZt%!BA98?9- zouNZ&h^&P!X_;M?i&fa3&II;Gc@)AMK)V_lnMIzQ^Qkb{2aT90&v@VmjNR^xVF_x@ zSdI45A=^x?Nl2FHse`WUqi?4iBs054C8z)y%CQe$Xa{4$H57hFz|b;1_^qOTKHA57 z)))c<*~DQFC!1J0NcH3qvaG~~K=Avys+?A%&VS;HZ!foqMHc3~ZId10n*&D7_W}Zh zc{Pql)Sx03|Nc*sRpJO;C^GJfVH&kELCpaA~un>s3*oTHVY;2&G!@Of-j6jwh@&3gTAp?ofI)(#MU)_lqAr4HmTOYdC1fX2r9;;_m#k}Ueg-v*h#n;M;d@S)Q* z-8URlGbAdL`|~2bN@SqPX%6~gphX!3^>yvCG85qbV;KLaJ@*fpL58+&ySK=M6a9I!0}h6X z(kwv>NFx3Jj$DA`|6uf&pGFZXU0n_QqhMtLQBgVuDm~@gOTy*k!zvteP}@d2X8jX1 z^+AwMxIYL~$MZiLA|M_@yC!k6zU@Jce>^&EWKhv70`GH$z)5w_Kl)M&XjuPupf!fN zaa=lW?oCNpe+~guK9EaP(Kh#De~Xh2A+a=4dC4OI*)QBsE0a@Gfa zww`rx*2Q}cGA|dK#<21^j|hmRJvwUE{$bUv4J?KkG|`6rM&u+DOWt8ey9=e-Q3tCd z&J(3=h&*n;(S9tTqzX`OE)8^2%(|rVHmo{(+%Htt~h@xM$ykFF8vUe z<;?{=kxVgp9gm2Jz;?J1dZz7GMT_pb_0@S$BrjS8Hr9mD3Dr^Sey8;4{1lU3BOT0e zMp3dA_s&d0Xsk>6q1Y}v^VI?Z;R=*nS``oqRKpCI>SbP3rbSF`)(VT$_WtNRL&H5k ze^8gJ;XNJ(P8$kb3}6*GobM;QvfHd(o$U$9(P!5q)`%8 zbTJ9vyDFJXGo12=Eq}A(E@^**xc@gB0dw5HO39pK7w?w06070<@81gTE-q^BpEP+t zl+KlZX#;wN6FV$KXs?NaZjH;8Ol7bBsbuVtt%mCJ<$sdw*&87M-F$+)&-kzA+|ol4*?cDXqj zhvFR_Z)S-^Xq^a1wm3FIEV-wdXFnHL%N!tX*P?@=z$S}6L~^M zhsMKGZ&jK7zbJKdwEJ~h@bbuLDRRKUW?gvz_RKsqXax~vTj_TIJ!}LFq&!wnYon32 zL$*6C>6us8OY)CStb+M^gprAbp@3#pVG8@Amv0Upo51aS`XwYp(trB@i5h{_EeR;SVvtR!{nRMc~m?x&V&A@=6l1Y$H)-;{wJ1b9~R!kBYLRid*65NVeeF z8YFLB2teP7$#ME0!}%c{2897qZ`us8kDxoB)LQo=Ae=%pjrf{Yj?Bp=n@a8 zq<-4a3Jgu-+xwjZ@6xE_%w!%yhZ93T{Qt2?8abbnHUy84nhAkg(>**qp#2iiK~u>1 zJZi)uOM}ai%8;jf{gk3a=YIsa@TkAlkgrv{T7FS7>FH&- z#{EOp{gE>TVIgpvQL4(q6)(!*SL}83|bVasgZ#OSH^q> zaIa=5mQsVK_t`s08IZS3&PxIUQ&e2G_g|JSV`r~pFq`uxCP{ueh9s~IW;JSxT= zFmmw;31}53hlfDH!k29geXv)UZq^UZn#eW0#lLjRKMApo!*L?(B@t_LNqE>He2!O@q8%)FS;=IZub9WgNZ3TSBjXgpIc zH-ZPCl!V>teLX!54GMU$3O{%>&%I<4ny|3vCtm`2Ja~o?c$fn@cq~j7&tASvHXwu% z0gsDCDX0OYMBs@p-VqVlfN13gkKBlIYU5~tidSV{jO8i9LZA;6YrF(&T?;%{3gZ6X z3oJ2U=z}U@Ly;fo2#VR!Zv9HHzNwPQZdprm3kJ`EsjV$m=%DqQnH2}}RfD9oucVD! z>t$Ncepoq`-`CiTORFzIsa>4xYFbQ5@W{r!@4e}UhKh1Vm!e?&AAQ1~B(JfVZ2R%v zPTJkD76z@Oicx-+#*O^t_V`Ph>$ux@x_v8iZ)y4dm!$;?2%wj^fr6)f8bxt0O+~#2 z0~FbR+?+tF@X_|?zQ7!( z0QmrNrGF}#B+JC?&Dj61#?CyR%JpmGn`BDH5S3YEs7NJ=Ov!MBB$W`7({K!#hd4=! z$dDvcL{v&bsLW)OlQBsgLr5V*j*xh-Tm9bCd4H$R=l!csTWxzk&;8tM-D_RfcUjrT zOwArO-mTa8aD{RE5Ifhem-jW#RfeTVKxa4SYkkX4BCsnh#{HQM)#3BxbH6PrbQHR& zI!%kKEMJ1Wm&o6EcQt6RXoo<%IUj5B+vR2FxE`cB#%D+xEh|KWaPoaK$I6wA+qZ9T zxwCH>ie$1cHfH?*BE>@T(JNWLCS#{G}#azBI>p zIN6}J)H(~Bc?geeIgTHseMwsN#zugtQprgiM@y>&;jYPnst0*^NH_s*~JF7UD+o4sZx^V)^R z=1abo8&A5z?${N6N!MzWJ9iBGceqHmyicN`jM?A+Jukukw4QmRmpU^YjpBkTFXKVJ zhmn0E>6-4g= z?;@NXj^nwj?9Oiq2(VGH7>tl~QxK7li0j&qmH66mtcg}~rJJ9VmdM97dDR00^KI?5 zg8X@_e+yLzKQN~+!I>Ab^=R!12oYM)gL5ui4Pp$@)}Zne(s|~GeBzXe+7d}lne8iiK{ zgmq}Y;6huRCNPS%XJoE>FvhZ6+K7Yp(oMYBOp z=lsvQ>5%)?^N$-ToKYPJs|?aD@a*dib+@_ET_^LLbX!c z==oXG-pkC;ljI1V4-oT)K=L)uV10?0B(3>q*dUY_?3D!V{Dx8r_w~ zkUkR5=MegMNmGc=2H9uy?_wVBj9RO`xywgkRaEe^iqN>RL#Fst{kN6~ZF2Twie$R= z)cy+}f_4RpiU6f4LGsLqGH5vp|Klj!5?$W^bxi8kM?QH1MH=Hslu5SeHHHM!VLB5F z)26th9lg(f2pv@32}k|>Wqu4ZrMpk?~JuX@(TTq3 zdO?bR(R9K`ceu>DZl3ddaQyB^sVA{CqUBqa@ms{S)Ax@Ed|Do9BKac$Nd7-YOc%#jbgVS!E?aj|B8vhV)roV0V?<#vg z_6{mp#<%sIdT{uw!Mbaos<(ZeXswM)>648vPj^u4)98wZZS>_Pi;&B_U8TXXt`W&Re*QYgtAA~O;H8+`yae_W4)0C@J&C1d&$sfr zUbhX7Ob>4fi(0YihbSyLQf=X=`8Fo;Mq|i2$4|{SW)^nrD&jSE8hv=P%&qm2lA`Cp zdtUG8Ndbww)#?`GyTVpqM5cZOl7a%~e&+A2yB^Rfe>i>jHCyWcErg3?sk4p$hpcU9 zd-d(`BAYV7*OMmWDwDg%$@OcaJ(Tu#z(GpvnIsK`O=N`Q^q(BdmC{$9bRWuOZa$b- zHphF&s#-#gs?V{oBrlC)>z3t8X*XW`2~@n?6VUfWcP=+|ZR_$A{^L*Xm+G#!o{lsDktNua`svdr&_2L_ zT;2-YZ4csc)knA_7mx8G0y^>k5W|HeeK3+rKK)VThQ$^Y{x-v5Nn3i6sluLeHUW=M zIdNn6<3brCSlf0;P^7ZVmA48pQ5q)tt7k`iKO8GdS6e&adNT0Pv3(hDRDQ`E6z8N{ zLnoSOwdfblRsRSAWOuh!UBY(W<@^f%AV?O^46K5Xn;vSH^=?T&xCl1S&DE-MX#Q8l zb~V49RDx2de0OhRP;{4NOIFmOC83AXlk11r8uDkBHN3Z7`-fQ7Ta&@g*X|8dRVMnY zJ18|wkMNB5Iz?Kq&HlQQ$N#>K;9yAJp06^g%7)!z$1Qz@{jPdLe`@|I+(mm`jXJB^ z#{2t0NYXk5nBrNX(pRr|an>U~uyA1wtE2mTWB{v#O(>vh<&3B4h52RyS*6sWSGalC z-KjhKmO7mmh`sG1@JDV@>$-$878Bd`ZeNi0X*1311 zr@gQ8<1F@d)q9PVvCD`(BJw-i^MQJH;yc-O=kudy8+Z<^Yc=#7Fm+R&U1g+tycHQR zIlh7l(sFz=sTt!T5S5gq+VZ*GbFZ%KcPj9FEnpNgJYJh2COP7&SkU>>mhal_;fFby zPM@##WH}f-TK&OfRY#HdpGWN>gTu{E(d(+dw&OAD!%dmpy%u8(TYgaIFK#i*lKj)( zy(@w+QN`u#`hW{&U|>j1O+_hfiP=++ z?3#9!pXm6XkuUNgyxr-;C%ZDiPVqMmD>E&XCFi_cV8HagxBfOSUHzJ^Pb8hnNP(=Y1*u`mB|f`PGF9iB!|)J$cL20?%jBQ3-nK?H2vl&WJW6%E0&*vXUgUj;A! zja0a_w5o$jl<6>qN)>(bk`J7&=&9#axVkOsNu8LYtG8#J4$hU--LHCPo-u*1uxZxi zR~_aPTKlV$A6$+0QxLVJRz*ynioTwwtT_^qj+z4U*#f@>6*L~lKiti-o}ZgZlOi(x zqvgqe1#bl|7>w%Ob&SXbgy|Ak&vIxC86)oVc0=42E2pFHMzrNF-y3uY`TL60U;ML{ zOtGqS?Q0tT?jdD&p`{Z&->UU=q*is20`**I(8~OB{G#6fKs?USt7&Lx@bwAB5+0k& z%)Y+g+?8hyHhQhQOK`7*Zw!x}(|E6z!iiQE;-9p(whsJizUV&Xqe~dq2oW z#7l^@x3`zW8LW-f}MkpQ{>s{y8Y>EzRk=K!B zE7ea!s1rpEfUtwb#Kn)mk&EKgPQ=M7G zqF+KQOkktnQ4`2Ks>dkG#X1|_3a+u=xCX%94G)E#eX+(8z<=K=vHhqfKU)6vy`Jv|ArY`TPQK3 zsbng85UX%qD z(Murmks@z*TRXeptG9QB@|zVn3KOL?j^KreC{o zJCRlh$tf&gJF0HE4nns(tDohwFdl~Rs9Pk#1p{JoU-5tQD`CJ}L zCmFoylswCL=x>*;QF3A5{!DciKRgGP8jlPz0^Cp3r-MAq{*l76DT$}6R5xM|jl?@^ksWjuVjp2@5xc+_= z2-I;fo8JPKxn=f<{xkbm_ZK;XIRDd9)>{@|!hS>0^(jYd>+6F|@5(yYJ7aM)YJ17V zYIVK-!{qX{yShIjENq;Tf;=z)0gs+2_*vLuDqsO5+oI8?@BV`;b=xXXYOqGlIb(m8 z0Pg(-)K}gH@>-Mvh21kaD5-l3PQ-n-a$KHkhDV@9DsfV7mzTag{=ri6d**JQR-AHVwS zXAC;g4^Hhs+>zf{8a*L`1!WI0A510x|vEAp8k%?>K&$Iz>Qxxhz=p8=Pl)A&uUqZnHp@nVRD97#> z>;$69%Bvx#tUywwS+itCysD4epZ);>OFB9_G~@Pcbn4Ya?U!MGe*OZ6d?1eixlqoQ z%5F44DgC*}msgg{a7+zS`cRa>e$UIB_T&FD`91)Qbt20n`z67sc28N z3|A=5@Y^Jt*w#FdW`(MZI$ZRGk=+Av92dGq(#I1m{l4y_7}~-{&mq3Y=>UZhM1>XN zmxUP1-#C=WVvfc#1k|%ZK|u{Lju6gvO8>fxZ81s9F(U+*^f7^VV~sKgFtG6eK`wqU zQ5|hAZnSS?(2Yz++ov2l!m2Pa$Xa$%grL#5xJC;z4Ip?U;&q{x%maIodZ`;4hL6=q zBr#$cw3uVW#66J4#o#FB`|sOsE-N@3-Qq23wJww_^@=JEBIjnJDl%41koQJd$OnC zv!x(Ip9bijMtKcu5`>Q+4;o^FqU^+OgoYd)PVxkX=FnAKaQa=?{N}uavTOCPk?AD` zg@rvRqCd;IEbZZDfB0sj)kI$nnA!pA$vd(0Wgn@ahYo<@@M9MmNu1VP%gPNRV~FV@_(tCwuBKyv(!&RvUD963i}6MzzD z!_;WkWn7`2PWP^tetw7!WGoBedBVDHLq;LD$1 zQA%(`#-f&N$jBvO(Bjtx7=Cv|INqNdo2mpxGJI7E-6e{v#sq~a85V-`^Lk)j%oaew zP)0U(Ud6ZF>J9poj2h=zIPe~z z7)mLeY-{NLLi|?~2kRFzpeL218xB0w1cW$xeh3EyX6Hh49Nvo0bZ#h_6T!Rw*KhXB1snR^+f6q&$sXUfjSwyoqOA%Rx~bCb73FbRjr zimwzeb;HCO zvgH8viy;aOa&mHzxY@_HOQZys!CB?Ur{p5p(b-9m!STwToY~pgif+Rz|MXk%?I`gR zq>Pm@2wLID(uQp9w~m6}VFmasm_@_J$hZ^3jYyhL3sXm>*}iS z+C`5CP7V>2Je(NIvFW$2;?NM@4b}u|%w!9ZvKr+%$QWc)1_U9P z4MJI%srMVh{4e2+8`*c3c@7~AStI2jyjS8X14rh{`**%@{EwrAYmGxXnSx}1J}S0h z-q-gb=^X4TQN_%f`9)a>uFLZE8&<(>TRbg;BPtwo-e-2Okd8j34;CVsKEA}z*+6o<*7)R03GSIxQZguv500bB}WB>pF literal 0 HcmV?d00001 diff --git a/_images/3.4_multiclass_classification_16_2.png b/_images/3.4_multiclass_classification_16_2.png new file mode 100644 index 0000000000000000000000000000000000000000..a1a46604cdea10e3647ab5beb8edc04deb6b5260 GIT binary patch literal 28908 zcmc$`bySt@+C92Z5CkddPANfJ8l+RYQ$o61Qt3`9>5>NNMg*io5Ky|iyW!jm-*RBauii}RI)L4bkVne3wf>YXlrTXXlZ6Z>ipK;!OX^*^#$h(CVEm+M@L%+Zbn9{ zf4$*_jlBsYdwF#cxX5E$2@MAb1XUmUA0}TQ&kO>w)sPesRCZ0-nQ`&JIJtx0|CLLz zq3bB$F!2^uG~kIS8af_g(0TPXqoVRFw2L0G;*2LSaLTYEbn`fZqHp_R$h0!#5&acu zav2;Wt6uM(iCd9YNsLt0OCP!M6QBLi-Lo(AdU`mx=8!)9IEyBPl$@MAG$)E1f{u=^ zLWsnLjvftXNJdRgUh#&0SwutxJIp^ND5%?~JPHFHU4seR9=so^Q%F`s#ORxPcW_V; zJuVVgbjRZ2;*Sz7j=K7KK{Qy)nTBdblDo^3Ei_mdi}B)u(XMKvR2~}xIZ0tvIQgCW&YE?FK#Oa==c!x(vMaRFvcsN~l30DVGL!Gw9Gr@lq zH(m#P79#{$!S_W)7WF&0I5_ZvXru@a_-~GtvPlGJX&&tVi?THxz4`%e7K!Oo6( zwLi&svf4tpK$)D9687%Q`wqTZv!qr}LIOe8<3JQT6>|I+l*)8iZEbD)JGFD0HA!3! zRA9I;5HLqRqzDL)AH&GAQ0iRXp?(6dzzY7*sjdhr}~q zP~YuT|JuLW`$|DUAzZtAey|i28rp7A)~srL<$kuSzt|CMI+F7^B{g+nb2EgP&uxBt zqO!s2bZ07%I?eR~gvoJTeg@5RV{W3}!Gz6v8kbrwO{6P=XkmRl-y$J!C|X=Z z+{IO+%N`0UDk|l(XL#4OPm>6cxHPKuye{DM_4Q4Em8J?#MdC6)_?ags-WShMZaPfv zxHZM*~iVk`6 zBSTQV)|v>LQP)!W776FY{C6BZKh2U(FywOZM@`2g(&tA*0(VYdXBu6y!N-%3l>FA8 z#LBGS2205Afx9zR+jX+_tIty4O)JF6#Ds#54)NimC#|2@EueeM*Wq;Q7pf2Gd>4uL zXh|s87ru{>e^k8fW0~se>N4CKFL6Eij#F;CASCmN?J+oT!g;c(j-u82?E#5=?k^#4 zM)MV*;~Ov03XCA)*(6@uooQSj&W8WQVH5E^6en9c;l;}8)pq63{LW5zP!NJC8$P79 zH|}}4!b|=_|^zGtcD@HB4jr3o4pLipbmj_ zG`pW|j>EyjheA3Y!lSH@=jP-DN#!bfoXxm6ZI$XYQawNuxLC$$?g|SELi6?Y?K4Vb zHVinQ7nl+a#SVsajE;_qufE{x+#D-%+5)3{ae00oI?cTAVLW)4?(8n%#d8 zfK2fDEYb7o6sx(ZiTGVV{2dB4HMIh!=s}#CE;_c(v3OnQ$>B<+M2}2}@e4UY<2Q2mRh=2F#HNWHFG$i>9-yD|B#h z&>)@PllY3`sbn~xeTAlmh6V(JgM;H+a|cci1cE^&^F!-yw{h>mt0aewg@pyz%Z)rI z0e5%zY_FTkpvcHF+tt9hG_AXhy!4DQbL7c2u!}hzR-Xhs!FwPlCpUBX`E~MQ{aV`3 zn^aVMKDVmbAvu8?w%yt0A`4;RrqfA_-?cU*F|o1GP(n#foxoF!@-anCjYeuVjSU|e z`aT{j+s#p0-^c=GI%aS%d~0^bO9*bS=I#tmwitG2Ye9Z4sOl^$MfM9v&V~W)mdn=$DPEwRLnB_Vyx=)`keG=h|Zjh`)Dsex5$b zqES7^&0VvR=Hld>Z~gG_ce6Xk?NR#OJh*fx`1xSkVJL259P{%vLoNumU_gP@7QYO@ z$&cI)f7mKc;_3GogDS(YE8-li=NH2+lXk=Xu1OjXE9RXmgcNn+M%368CLwK*1aEgZMTkwMa7_(>JumCqt#ZT%tug(zfy-!=@N z9TCh@*TGWP^PPj>LPTizJDYV!m6esnWj27_ovv3}JyR>w{SHR-D8tAU_f=BT3K$tI zE7Yi@g2oasmz!9f z;C6-}2sM1Iq;uRDfpb{x{{~{!{My=C_l~8dW$*E+_xS?+bc2($jm`#q#3BDNuEpVU zPo3S;qw!LmP>`RYNef_sNK0|@`gu70?n3AwhKGl7Ic-VtUs~q7ysd2yL|p5p@n*M^V=DK7G(G}&6v9^^-J%l`hJE~q=>Y;N0s_LTKolb4i}Q4k!^dvN z>mO>YrVP&a7rKXrx<+!P7gkpT0Ps+qoI79wD_WqG$M4*TqvwHMX)@ILBU5;|REH;p z#|35USDCoFdg81zn4W;fMjq8-br=vnz{+O6PJW4ijLc5=3z|Mb(shk|$~1O4N~8ovJ#6s^LfQa7zo668)2z_Y(BCbd?sgj^xdwuQ zAFLa*vdHbmi!}^PP4i7nOsF3{dK9AcS!Q@j3{$$rYaEP>rR&|fgd#ZoSmH=QEzW=JCNfRSNanA2$vShOm}9R zwJhgan%C#&NgEm(LclaWH8e0duA$|dZP&BWYIdtec-7>*Gf6R}jCu0a>y!rEaH4Uq zVp`$0!Ff*gWz`&>+{)U5tLqK*Gvk&Q9?gDVT9qdLUm41eXsK&ZF z2qfZG<>BDqA(u4M%chc1^!zN$mx|Oh(iWG=sL|S3*$9FA$-6gAbeP!K zP6e(d-M!=Fbz@H8w-r%p@gob4CMIy&GOqS?$t7>7onQ-T1OxoFqlPS!^GAZ8-7$A< zD45{D48Fh;h`>JN^|u(luQTNF6_CPBCvWXLpe2T?AQHN!a#Kulg^kK$BGLWiM}n0t z_QBRnWZ|@)oK*>g{#mh)7-lB=bADdy-WHW$;jR0+g%6Y}6^LU_6#(Ud(glt|#I#VK zZ0!g4|6Jxl;CK;C$)j^K1+)n313}{uqG?a0;TCU1T@N1gTs3$?;?c}$&#SvRc3y$Y z_=$>B{Fnf>S(y)cF3gLDg!|t|HG}w;Oly`{mA96iH5l$?; z&`49Xx1csQprW-McVpkbI)rR%sbQ22w1l9ZrL{d*DqT9ms{Uf)^m^tck{sbrtpG1K zJRj05l}NVAmF;6iZm|K0wo8Anplw~$17^DZ@QA=ET0s_V(Z&3Zj5w7(Cni_Vju%fgK%v5+TH?<^8VjZW6;o zR+au>f$1-&7~X`lyDu~X0(;6+6N8g-GD`eJBPbb{p_v_IO(w(6Cn?-ch|pMkwmTCY z6Qj7%Rrr$|3FppH+}@*SXYHwBitS3>^G}Ylj4oIG$~-AkTOacDnw2&*h`*1^hBmxD zvfZ4&LB+|UnLif9@vH4+)j}~YBwqe4+utFhIDE}&G4t{MjvzaAbVpM_k&a(rpyBrr zEL%s%4vskwrH!sl=2fb+?YNKv9Zh{@b)NpsVM3k2XA1=_1uNFx=idDC+-5&E-yI(tF!y|n84V7gQ}Tt z`v;XC?-&P`GhGtDJ1C$}D0iasa&rZ&W1tGR5jY~8|*2}%dkL6q00qOX#y7)cyN4^_k+*_OU=LyTrBKYYfu^3GFoJOt5S5P&LcNf{Y7^Sd?=I9PwLJ917!+f-pY>4QuToYog&A3GZLK&cfxnmx5rbq84*>|f z9DE-}#8Wd8c{aK2YI(zkF!#D7e7h_sYYqQB0`ElQwWO_z)!h)W z?a|15xMa`%{tK~dICu{xPE0&A=a^-Es`fF9_&_4^q;pG#eHa`+zUR16L0{w^0c+%bvN_xZh;p`yP7)1#7-9;>PSqT>=XE8%qhhB`~Pv zI9W~Bx87VaqEL#b&|FjDy=t*5^UJq$g_P+SeIRZcv7G`|r<=~!G!;twm}R{0^!s31 z@8#|HC(xQMa@j|(L5ZLIigIyijQ(){6MdqX@+*o@wh`K&6HHhBJ;?fCKd7QQ)~k*( zNl3ZB#)F~gzTdz1YrbGDJ0LY5sJ)OP$_x{A!UtcTeDibfQ^Qgy@wygU?c}LYcvexe z!srC+smUHi>4eay%76%B`S4OA|3vtGn2(|561Q%9tz^VqHK_3??*AF*X}U#;nj^Dw zXQNp5HxLTZ@bMAh;o(OCcmyEy!+9%OGfhY$zbCi(c=2QKg5%C4mYtoQ7}1}EBDBF} zuY_&bpUeS;hFt)&+8!*5LVtt;XaM+}rux$bNTlQGzlC5ux845D425u@nx~9z)xzu|K` zhCs9d&(zb?vp!i}WK9CX2Q>Zzc*x9&3cZ987F!l1{BbQg!wd%#lf2DM7#=GVmx`u{L ztV8i6HnXR*-glle^}AHBKarA=!2p^CK)3hl=_HVO07dgPDnDC)<#E})XVlgfxbCyL zrh@*VL0D50FAe79)$iZGUlomk`4kpjSX&F^b3a}8N{@^42NheU)l|(RlE6O@AdbDt zI$yWhO&`=Z2#AP6*<#_gm&a!G+I484PJIYL@OckLy3md)AOdPobbR~}v!9=#1NXc< zW z+LDA5lze~^v-~b9W%4luzqUv0ZrDY>R+7KzI)ur=6*pqrHi2G_w!RvJm2Z|qV8^%2 z+bij0$_t_G@FJX2g3<=mf8U`cf^k1?PEJlM7(J9+W%j&uoO!v|d`4{V;J|D?N&_v4 zgac7Poxr0^7x%5J{4(=ImND0GG>o!XZ#}Sk_XLe3yKQ>iweB5O(#kots@sBP6;DHd zoo^7)!TP=~qO8YCFzcM#dJSzahJ29|Kevn&yY%Nni5Xc`ixDbiM9GwumFmUO9Fj+I~1)PyK3M` z<;*pI)!;q9brCJmzvC6xR`$H9REU{X84Z7+HbtahsMr`S;QP#V_9 zgR|cMgx5ivr5mEhyVhE!I0&K`DU0(El5Wly8F?)3=h(~KcYsV5=Kx!` z5=x($y8J3)r$eT*vU)5_I+Akxk_!^Gq4TZSKWDAm{dhgIu`L`^n~(iVIUI}PNirGV z0QLu`eg~Ax;9-}{L4`N3Ynf;)r3RB~)1yKHnk)P5J%qb6Q*XmbgK+s6U~nRMC>AOl z*H~9(W$nqJiFb)_>;fevHMHDai=iMJxBvJmy022)S|N63)Vz8&cfX=yS!tVY^U$WW z?zoabSN$VwS%Y~_2Ti$mDPxL9=y1N?=g|Xtq2+B@ztN$t#+&xs2q7c(hGs_$>WIl^J##(un`}~7;92o?Edlx=EL3D?`~Us=9m?XD8k7CdUQi$9q~r%jYQr$nB8gmyQjgc zlta!jB+#9Yw^pyq5uH@pq37);{mEBKU716$K$-vWQw`S1QUW`ZogMj$bSIH*Gx1}h zB*eIEY#xq86Kvz(tX$_?q4>53i~(vo?23lUoG0Pb_$Na@tdycMU#Z3r*(*th?%{F!w@dFsB~yQ^_&QCUiA*F$#@>?Jm__D@`sch-C4|QtC5m2H)Jzmc6JyuQ7!-q&XrjY) z7K18TDJg_d!3FXoOB4wj`E?o`Kjh_6`}p_}H+rk8Voy&`|G;b3e=c#>=JoshIZkeb zd}kInGWZf8-;@13PSB&n)BjoSmuPN54NWt~CSfcSt-iYhf+U4<)$kd~=g~<2veTVdJhcIcDl$y`Fvj{wZs_hBpcNqyfDFGF58wwYqN6J~ z<*?hC>XhR6MOQ@u?2Pvm1py5`8mpk2sGoRNFJd_<1f<3%1}CvI0F!Z>lD;x*6V;KK zsHKCda?vV40RlO;=N>A6JkMn1s$HtrU<8GDMe;g<;~MvfPWjhVVlOKecqg9UpTw9I zd`5wDal#6QvT=|1f{gOqj=Qm5z9&uR5$QRQHDuJ2iRKo<)8gTX2VXw%99mG%nuXED zQtgzEq92=fkXI5FHOzKaxnY9zoYnOs(e;c~>9j=ZP(~D>mPh*c#X6|6p*mqAHlpck z+@O1`Iiw6;HbVOYHBCi8Ara8^`hPwTG})6QQGEhei&k@{0GICVB)%`=kzq|`>JEZw zuT-BwrN|0I&Ecw}Y0dJd?aJgRCHE3#(Oxvie=WwH=#T$v{T^?4cUz2e7}GoJM`bBb zyoo&2ep<@jJ5x50B?HS_R=VlRtvd^cdnrq(S^E_!SIT!PI6|F`mC%ma+PF`im^Piq z*x+*^+dn6D=J@fB9_!EBT5-!syFDA#m>7LkkiG8cMoW}!OsRh(Bp~8k7I=<} zwJO%tKG4VO^4M)P(0%FZiY^*9s=f~zjFxIoG5o*S`*@cD1T-`wU4XO5W~hcNFe zrP29y90)%dziNaR2P7mU&;qKwyxe%eb`h1M_@;v-u(mPz zr0(wXTt1s+BLURz8LjQkqXI{$i_Mnu^$X6E7eX8f|J6ek>3b|;1?nq|fr zPh2f_?I{iVeiMF;>?+TP85c_Z zLzL`HxN5~ZsyGldlC6+=ZZ6k_xa1ftdvc4XTs$yjCr1a?ceVxD>U4Q; zBQKouY)bmmcU(<`hOH7c(*>hiZyY?lV5o)wfO_P#aqmak?*9H!hTz~}V;NK8@1lqu zH#9F%AkB0|t#r^F8<{Zk?x0m#M6}izL31|G~TaX2I=0GAF;;?fF||8SRvyJ`*Bz_epe5@y|jl z`QHbTSJLhC5wox*&K3MK_~GO~9?|tkei58}%u}V8WL6`CI(evrhF#1R0n=W(F#ket z)aGL_G2>iE4A%(CQP0Bt;h>AI#Q2eWrqhqFf^)%z=sHSs5tV+Q%`GqeBRd+?RbUh_ z55~1@^nsEE6$?RmG?135TgmHjD4eppHq2@R1Nn=$Fdljcx$-`JpPcZ>Mn)8 zob$flGP@;M=Uj4>B7Rfs)gTL9@)^WTMbdGen=MSuddv}d%WH=b@O#wa1vELqm4%0h zA2PrfU+3_j-sl2so4dS!zp!!tE0xz`MkBl@4aqW6izH$-ev*})eehFGAQK3q4JW`5 zU~B7o9p?jR{&^s#42F1p!OCey3nDJLei5;M_#Lx=;$wNW!-WG`PEI|=S7-7<8KGy9 z=AR1H>Dx#)UxR(&2V5a>gxOW9$207h&azk}W(>Uy9r0_bYG&ghQB~qC9vAkIS3r$A z87~8(ig3UaW^Z7BDXihF(uJcWd;v@s}>)00Dl5JHGgr_ z)#AE*i1n%u5m@lG<$p`0W`qqOd*%S-5sG5~1t2wI#ERlH!VAlkPJS#^_4UvnB6f0Y zU1C8t{$9H$K_nPSgPpviK2{yomwyRTdvtlBI5g?5GZ$J!{-IlZXb{m}({w`94`TxeF%#?QQL+1 z7#JA*aZ*fw&1=8DI4U>ld0MPq{s5Rad}CuV8eH}wKy~LE*`DbHX%5I)h~rS2-_Qv= z$A$M`uEsVP;*^TdvrD!-Ch>%KN?va7D??xn3|#0&ap^hy7*mmY%DWbFom0V){n)D- z^7`}2L&(U`@A(lElx|KFBte+Emo#F@j1F(IS)@gXxSG@4TH?dfd}9^}G9E!FJGe;Q zG)QF$qi$E3Ec3k22IQ{hx6<{DZ)!+X*AOU}p=y)@3=YI!mS7 z(AV(J>4Qrnx#RCBe-wgBw8Kx6+hw-ULe;G2RQ<+`X?F7`rp=jENTv8Rljp@V*s-2i zN;%q^pG)DPrlG&my~S!h&@Nyh^FOQwdRTf6nk5l|p}{Rwv*d+KW4iY(UWrz%7)Z7Y zOH01k44U&rWi2B&x4=v!AuB5eme^?v3Y$N_CLrXp@0jNWwKq@&vjKZz>*VBLRP=nZ z#wv8q`);Nf?;kY<_AX!9>xF>o^z)^CXO|upUYSj2MYj<7cXN7*rxV|pVaxmb6%7N(Lbg`Q3dbLwq4isd_E5NTp?#X%qJw3gdy(eTFKipoug7Dv-8;+J} z0lC6pXR;dVc#=)$4;KqB^jh!!BWHZkpSW>%3jM35mzpFFP3bO4t@3XjusTHul@~^X zoan&dc~51Hhx(s8d_l6uz_LXd%lI~Rv2U5nto5S4`e!>PBD&mJ9a3EOqlCdaiFn@~ zBVH{nhK6H_w(*n9_cDwa=8x$t#@!4I$bluoX)8|ZZT*x*wPuy|3_gkHF*+mz7;8Aa zZ+U^}`~ieA#5LE%9RDUjmADBErSjlFiB15i`WTkYt2J#9C;*hmS^AeW!XfPTiQ&Q4 zM*(Gn@a1vY9`_yj6b8~Sa=6+b9X9=<-~MQMbu|l+ zek;}(SXj9nDd@PSGizqWDvQR?ns_h;SCm*zM6UB>;Zfx&zSxjW)axV`IN+pcc*e{;oMUM6N4YtBF|M_zkd3=hkn%%MN_OXCLe8sA1ufWS z#eA*2!xyycgViVQvxEAY%X2U1q_t&tjx!d?;jHIuTjP)h)hkJH4{%a{@GRCCz56ZO zd2re%4$9&$4$paBe10nW6UQ)&M1WX4lK4B+*#a~PQf_X1;C*{WPC)?!@gaRPU1xW` z-;R0!%xOzt%&tq}9P_|d!|!>C>p|Fq^bU9e>{k2n2zi{J*tA?wfeH-`14C)I26(zS za`e}Kbbh6Mp-8%GBVM&`>n#-eH#@SzoI?d~Z=Tn|a4PQ>vcKW#?OZ9$!0?e@b6NMN zH`ki3TI=u}Z~Nx^rpb*t1VnV_(^cTvD^CqO0<1%~jM`$EKr`Tk#N0q>^5tzGw#VJg zndx-hy{!?dr~sn6!D`lhkFV)uTnm@o95c;z@$vHV@*A*3@&!*wJfoYY%xr8Txt%s4 z5Y1|He_$I}svP2P2cEV8`)iV~#UFx0G3+jiDGcOzvi7=_fwKC$Ua%o4lTIA@T6j18 z`7x3*1wAk71YV8A>lovFb(9@S^AE{d+vqwO@j#G3E>(s^2QTOL{8rBDpj z8~dt;+7HB|Mv3$AnRYim=Co@iqLq~51cGC|8vdu6p0-i_l}NWFq^TYzAJRp@1(mP; z()?jgxd$>=a}TbfcGd~7fOLd1ww!m*A^E(Ys5CJIP7JKUXYa_o6IF{mmt77E+iuhO z=2vsS5yZwUEP$+tgmV7ImWE|yyFY$G|K!ukLM+LyUY5;qzZT?uYBF#68=)Y|q~#y7 zX5yC7-cyf0+}QVCzt~1*uQDe!ZlMTafvX$;HD6Fxv4CkbOB_cyxgof#E1Jl8hsf)R z7@ch8Ymtz`g5tNi1&> zp-!2M3{t3%5p1`k)q!?ksM`n5D?aDD;$nKh=w-6HwW~&z?#E}+xWlpZm<^n<(+fAd zlId(BytTBTyulhG{%mU>0|3vY_ECf*uF(GhfaJ>6{X8d0p#00>#)vp=3D!yWTwu82 zg&r2GAC+AA?_d1)I+IkCg^fJHr+}>S|08>4HVkT-+*2&1ZRhSG0!?2D?fz(H zf5~F^m@2;bQ$)!<8gybR7e`6@3q}Dy^&jo*p53T;ld?@^=%e^pP|QUDW5AU_Rhp`c zCw!pMSq4mk42l(nlV8QMYoGugT}vDk3c|kqzIUsF1*-si9&Z+7t^hDr5V16-O!Aj| znk3p0S|1K-0-Rd$W*eZqXeZ#D0ui4+L1jqu4tNBRy;>7=-3r>EzwG9Ggmnl#<;QP) zNMB_SC&mNEV61Zbn3zx2Fy z3Kqb%=_2JHhhF3Abbkf%m&e6Q0xqvBlcnXZo=v?*r7=`6%?$u7P$Aoxqv_20Ui2Km zpunCQdH2I!iAn z)&(w6HedDxCg`CXqoB4&6Ya*VY+PuvxS>b|*u3hQ;d#19h}KMxMvWrjZAik!=VI?Q zRAnr7*4^ITZU>?j%hny#um^H++|yp|eq1yL9yraYdgngRJS3i z*2c!6tgdB|?Yj|@z+dO_6Q|cGsMDM~Pt@jwDvjKuMt78n0fT(N9HIV_UB2Q8s+4q1 z*QT8Bfol3^*G3zq6u!lPjXp-QeA%>|`sLHcc-Sf{Jsh$pTZ&@WISq7#X2h5LsSJOANxOI6@ zFjc@yeQVo3DR*t>+Sq7>N9<@>Mjf$t_Da#`p|y@n>!j#6n(j(L-_?nj)tD&<>R)Fv zzHzfR{U1dG!d@%`b7d#v*J~eOzJ~hKfo9$XvdBRnNz9L9%>50qH(Jf|t;>Cof9BP#@dwPNlN1xdk=*0;`+~ zEsVXrJ(KJH8xNoYL(}q|lhz-KhiDzROz56LWy_%9pHFQU>R6w?kapSqF{bp8K#P<@ z<*q1xavqY9bPN7PQH15o%sc361Cni zUIsN*m`5Wd%B^0#Zi8?;PIGx};>}>_Z^a^nYS666$(q88Pt~p&&idV{3KEISj)q3FCMurEn9&L z)Ast@&bKBVWFjh=#EdI00L?yp_$(KX$GXKm$s7A2_#wexQc&jKY}VhJlFFxr=f-q% zHVT64yq7OOozZdWX;cdGkJwBsMKWFwZ?3Ru^X!I9H#!HIdwW04SEZQ$RSyP4AkgH! zE)!?+5jvsw@QfzO({sg#b(6hEa4%>|ox7xl^4;?Fbk7D~ES+tHM@JAk4INz@*oAg` zvwYKyE~q$+x_+uf--FO8o_M7I-KptlkVpNi7ave;1+Qr0q@Wr)!)J76<8h~|t@wx@ zUxN9;*SW!wCJo?zi?_}qp(tn66JUS*<=RPuVT~)J(Ss4pyhGQ~e;9N({VC(^99!7c z4dLv?$?f8%R*-DAwc)wuk+y>%%8pS1tUm&e`^GLS+0dG-*ItrX!ROeSuv_(7?>jGO zivnm*_*GJ*_mw~Xg-%Fby4U1<7uUN(N<~FQ(1;*C!woD1K!bfVQSny3Xv_^Kr2z4N zb5`c^)-?=>V^lf;vy=i}8V@mWs22}4#5>ZQMdqRlAwtZ9aGMy0s9W%=cPpDCEWyQWGPiLje`{Rv(d+UI-F9+4L_I6+zz#-iKHZO0KGXafuCu#49c(5P6*{VWY zp04&SvLTy%BK57(W{w5uxzC(<;`08DtdpL!T%(esPed~~<^3l#W_?PJ`gf#L`RTCi zLxazOx(61f4GQ%^uL&WjhMqjz(EyQ19TvbkixqRD|&xl{k-*l$>ir>_tcQ2-XRC# zgo>UEH$MjTOq^{)l}Bzhx$S{vtSTqjnYH(j#CQ3q`CHcLHZfR37L(v42!Y{{KJg@rg2?2x=f@b{;A!2~N?vY6T z1DQ(};BbaPL^`o~K$ds(2w*sFXu>)^gM<1UoVV2hE8hyjJJe{81XwZpgI$wn&>~@b zrV(1_27+n~ppS5XE}%vaK+agH7*PV9Nu0^e^ak4GRXgVu3T!Bb>pwD~EgTAYvP7`( z@P?oW0@%b>Wf{Dg5-JiB)M*R43h~)m0Yrj)JRX&{$r1wZTGe+XBLNLjgK2z75LZy*8~~IioU5pR zeSVP0W~P`64{lh9Ip$cAJiON36-iQdbq9KA7J(Cq6C6Eg!xy-qsyQdXTbC|WbE7Xo z``Wi}-{PYEq4SEs1STLZKF1zUxjTVg!(jg*Fd9u^p#Z16NGEfC6r*NUcLqELtYD1L zi^4H9xRQxT>9I({J+_+7PBK8eGV|udj-vNQEv0rYOMGE}M_Qx!I18KU7cxcB#;>6# zZer3V1yC}PUNb>sAt^70d1o5OB zm6$gOtOXIM-oJx=3V{IcQ+uZH;nk-nfY5wz?jEcP@FUo%!_Dq4oS>HjC{yx9(k+n0 zq@>_T{>%K4hX9rjXXEK~3taCDL+L|3&l9Ze?QO>`;4F^>6r2ilUb1=>b!-gHk3nC? zZ*@n&==ZyU9S;mK%3`3H&FWQq4agwJ$Z1fo z2=7GWGIx9Df;<%2@-{vte99>MZk;E8ijqXvOEi&-_ldZ3UGmEByMVGh?_WpNM#qF7 zpUl0FksN$%hZ3ZV9fSeTOW9*cuZy-y0y@ZiQTbZ|9J0N=en-gXhFMTh0AReV%5stY zKk<^l4GV_&l@YbI#fkl3a=YlIPXWnY_1CCX<$ecq^V{{j1TqA2%@YY$ zX)y?h<>(|!L2s2F4mkIBMPJre`pNv?(36qFoK>Ymz{3u0o;vKIUfAB&&g@G3tM3q> z%~XC^0&B!Z8NWu{-C#{jZaPRwzh@bee+1`9;y6^y1r$5F_Bf1E)7hODpZJm^@IRPW z?Y_ea=Qf_7)WDf}Y0WR{*0+(Wn?LswWA@u>LjvW$3!FQNkw7vvd7KonbJB5eLo6X> z+gh@PqTWb@3-|7&=?`A57+&SJ^~{qOIt{PTi1{3B0J|&3rwcq~Ux54X>O;S4nYI=W z!{*C@_JFti4NiX>m}6Eks92d}X*a6|+ipz-D7%X0aa7-T;8JUI?S_2#+4~jC&bW|h zaOb4;i@%+554D=T>n=UnPv8IG{CK_KxtLC#8?o#}6X>u53{-mNprCN?wF4pn>HlPb@xP{dRUt1E$?2I5H5}<2_ zzi)|sy01JpYF{gGEkHt(%4T}fbP+JNB7riL`poFT`~QLvMJM0EJ}LsPPxc0A9Lb+P z0bRHvva%7wFrX_KP)Mk8QvRS@h8#39g4%J#ng9#S9|T@J&nM&-b{<;DgfpAI(b9$r zMY_b++O};08u|^AHmE#RJveeFul-Y{KJUp>@^F-Kksjt6+u9Fjv>&+~0D`WGqpo}f z^T<4ZWY_ETa;t19*`|frJpHBBo=ZiJ1&oW6qpl5L= zCNa@earJ)#zN;Q44A!K@!1_#A{r=Zg?`V->kPmpkd%$AYn(!$JL+Dpj!;_2n!AKa_=RgKZ1gm zvu@wF@D>E?nDEwp?MkCqRxVzb_^1M2A0fZgX4OsHN70*4OF%y90(97Lm6=lW2`GTN zpcN8{*E!79*`7G)Isv_LCdW$zH|4tvzCl?*AgV3_%_s4t)u&+?;^p1l2)C2XIQNyh z!oz>?F1daJy#vfjZ_UO}h`n_15#+p21cbK+e_uE;IO1m9(FzDmJ)-t1`S3xhFCA8G zOgRGoJaAfIXbUG_Ox=~Zg4HtmlM$mNRY5wBbT`}b3~UPLe8fk}XN0M2>(kGXUr!n7 zZ+@|rJd{{jxX=Kd-cq?0(^d}uSwJ~$v9hw3n~%|nh>I^JnWVu$ih&4-Oz;wFBRCjU zlEX{sS{K?~UHyDk3B3Iv(KCb2P|!;^@H_BlY;3G=ky_cJz}-cpWTau(KfyabFB8!0 zk@VKh%9*#u3*T?=^SGF^W)GY`H*!mO!tAgB^2x6ub_lv_h08_ke4%Eu@w@Zoz$?}j z@ge$pw1I!QniK`VBK6D^Az-ZOeaMp|v#+$W-HE~YjDpm)Au#i-ha#@^)y)=3e;*AJec_P+sJ*>D zl4CO)fh8vXtk+`#QrP-f5e{hijs{5$kJWe{v{?oP2Y;xoJu^HT`eRh*&gQU$+qf-9 zSIJf3K#>HV?FF(_AXdh!QaC*b&46-rK4}K!XzmVQ#X*xnPo6YMZk6h2+9A4S7%$v4 z>1#olQn4G7rx+L~75s(bEud8E2dV?udx289LI7J2H@$O!YG%;pK5obSS&nkZd=GWH zNWu#pCYxDaUkAJ~irVsW!CLDXP=S7zqFv^&neE6B^tC2{niCAdJn&F|)avq6&Vb2tQ0+(|`fYs5?x}88q|@E_H^VjB{~u zee3I!uJr;vh>1-44|w_bpw02Mvu;QLNU@t|5xfy0OJ}#h7KYmKy2uqsFZ*Lcw4ex<_t?-m0&qm zpqB5Lj{OW2pn4mMk4OR-Iz02WeiWVF=Ou^QCW2d)LG%TR>TCC9F+B^=tPr&9doQb_ zfD8StTBlL`N59v@KTb59`!5pC_d57iYo-$brAVr;k+}Z6jQhtg@8^xJbeceMuic{% zYL>M?QQM>;^ZBz|8;=?Wl#}E&Ng~j9RWNDP+o$m6;#l*12xDO#YaDaQZA^3<4}NA3 z^=37Iwk%*FPAnV@ovSp>ML+4l8dYAb@McTj8I^W`QnvHLf-gG z*dq+lA$w_I^=&85A;?E6OERIe$Q=a_2VHH<9;j~D`>Cc@9Ne~YOEg-+Luk5{GKOR8 zac{jPjeCx06l*b96+|UUPxdX)RR-?$O9mLD z1HBx&f(mMfmkYE<5g9tXsi@ioM8d7+++ZLLEinx>E2m{1VLaE5 zCX+;Z=jO%@yh5lvJUrL8S9>6SeDi@rnqOGZk6)UaG*hTGBbFs{94^5Sg~>y0AZ?0c z6BY&CTw}DcVid26(1A9%S)x{0Rkxqu5Jxg65B(@f3hd7p-*?2$0Qeu++WHEFY|Yvi zY;4ETe|oOWXNJI;qavF7oBaBUH}caGU0wVpsJRduWE`j7<@I9GcGdbI-R;1PhF=T2 zI$@q#e6|NU7}vr%X0cG?dcVkL;10P3n>-slWn_Kss{rUOhx$aJ+*{-{Kfo=(ozn1( ziRnj}S#Uo2tkx%p0<5mZ1TJF$Tl=^Q`;U4#ZrC2V?dWP?S)xNDA&G>_;MOw@zsn8b zXFZNyH-TbHz0ujKeoF4&b-$(mrTdLMQH8ETt;{W%|M_v(^Ye|~x%1r)IQkm~l<%Ss z%pdjT!BYnU+coPv*I{qonE5auTs)44#Z8B^;Kai5{i7+w4L}dve}fADZdoRJ?PduQ zmGMZP{b*ZXE$#%~OV0W^EUU(3XY*o~o&wO+7xrvJJRdxCf}EFE+XmXufB*22x910a z_=$C#=m|sImk~1lz^af+z&jBC0h|SH6YlaMxGV(Nan+@9c6SfHJnRQsm>E;8 zjga@njs!Wg6$KFEIrU?Vcx(0?WEe8L*Nnj|k0zCT0*FH%l5l zE?7WL8i?2br=Be1zE*%@Q(0GxC*C+Izs{Md@eOT!w4>ME`s2)|{WQIuWM(4(Zpqhi zO1v5G0mRi)h~<`*d4e7fW&^ZL_Gf(3op_BVs!(AHvXD6751~)kc!J9W0ezD=ViAPF z00%wwg-7+;z6IM1SOkPkjsr^Gz%Y_$nHz|Y;QcEkFiM!?GOj0c?%sgbyeZiJ>A$3YWtd*8>CJ5Ka(3nG3gy zoqF={TEJ5TpwICDPsUOZWvT>DrvBj0D@Ck{#7w3_R+@7 z3n(N4{+6*&{>WG=`K5gJX;2H)zoe!6X0NxgTl;mi|86kaA`N*KN_*9Z_NV>!{+{F$ ze=NZdP42zAF9fwJ5-a{qI77+!6~)$cXpG3)914oY_l%#%g|_j;prOS(ut0nD;;_JZik{0pVjaToTDtj_FaO;m2=qvwllrMV2}8$K#cbsDx>T2;!aO_|;BzqDdqAhJxG zdM`_)NYePyoq}u-{nra_gKs%Z=i_uDGgS4)T({X0H`7Tu$L`CY=~*bv$OOEuIe{Kp zq6I_;I0%S+UqQ2kMV{!)=Xab=`?mtR|Kp*31`s@m$O1~K;~I76c|0*oDv-YmSgO>Y zeKY*5V<>BT&JUWo)DIGxiX$q6H9KS)t`bY;IgP{iy{;lRADY4+&H z>QN&aR>;yn`9I9DF_|9;(|G8lU;2BD6{C z)rH3AA)q}xsZdwH<$;gTSNB}`AhhbY;tx@+k40@`Enx$a-D8r1ptsVgb(A5VhPYVM z4R~Bv03&Bo7Ld6UzKiGk`N2Y)tN@bCo`}5p$1;x(>3+Sal`2cm_P0h}xn36C;c2>b z4whMDwnJ`oUA$_LWv?|KKFrf)l`e(<=gt&QCQ$6f?(dqYn1IHv{euHRpfL@2ZU0l{ zmGt+We_B*7m7n}1_28&}S@Bcq1;S6WeXFM9h}(^ZuU@4vL9MaP&>Az&?Iv$o`-Ym} z#YTx96Eh|_FA24w8sKy&Xn^kBD|F%itFiNr$9nJo_!UB^v`9uN%4{i7MiDYH8e~Kw zE2(5>9U;lQLdeP}Dk9k=yP{zgnMn%?k&NS&j}{0G@Ck5J3nXrl4TF^ofM~wA1uR z?WXT!4UEax0C@X2jX4$>(|(8}S&V9g<5EnUbFQ2g&=ot$(knHAh4< zz+>vco$1t#4?n zSE}?M=8g$3%CghZBhNjSp=NyGu5EaF+8D4P)IahlP3rT{n#>CF07AnIFe5L0&Og8K zSryT&zPwJ&7|;$?^;S|;?18jY!Y*~>uH$U7pD45qBLeHT+=U*~!wfVugI$p|==%Ej z_z*x(8zJ?O9@_WeU#;t@esc)>hz9)L31+ZRF28u8S<;nf)y(AJ;Lwt79&B^e+FHb> zJ)b~fR=IK!BTA_K=C9!$i0(_cxdY?fCl_qoxUukS=d8^6j3<2GzKd4}!3gxQv2j^O zMut;=dftoNQ~DRo@6gV2_YNPQ7* zuERcBHO6x~6u-4}%hnfh6y4>$x>_gg(D&)D&&e1;XB!){^I=U1N!08tpJ{cLQWyFJ zHZ6G4V3n+{NpGa#%fZv2jB}r*)b0}uO|7@+?URENG@5Ai#JE+N8-q?{#3=TdlFmKz zFBi_a#p&0WXODG;PLhQ@@;clQ-qGtj=LG*%KMC2|=UyEDcLDXUTm!g{1W{eJRwLl? zAP(L+XFclmovYr8*Qkv(pWL^~&{=GLTxS&^7Z2GFp5*-&ki@6^j{@DH5WeRZdYjZK zFY@<`PX<4@P`H2O%{v|MsEUd+rWcD$omG&}es|d#z-6e)Swy$yL&VXjv4uvpaz#;& zq4pJQ9&Q7dc5OKPVmTAz$Hl7T-fB#~|9AaxDxZelJ!x%^ zRRMXE+p5~!uJsHo*`a3SzF?322;bv_Dt~jmCP1pNKF^`2|M6y9C()Aok_#^UEWWNE zXXM67VST-hUBQ_qckvi4T|!M>-f)jEp9RzWf$6)e_ll`Mq{{Eo(xtN5Vz7#~ATPqw zqD6~Rj~0o8?Pu~r+CW&fRLio3=kujlPU*Aj)P4A`&?Y=%f8q8*I{Spvi>#73i3eS@ z$_p0d+jq=6$v!`6&2##N(dMeun_=y68~=y?*5-5Nt1HI6LwdGDP386aN%~92CCm9! z8QnG5x}OQIu(fGTd|Q0T>E$Lb^B-&NqT~JVfBm*^XW~|UMalbDlvOqqMcsQ80+UW> zvGb7!u96X=`o5RhHyy{1k+L3SWNh`Da`3)18%0xKuU%gh{hY*A%Kf6y+HnUeb3xuR zBaI08gNz0fk2%H+pZTt#yq2TT95eAK4QUZjU}Wlkru=n3D9t zHTPbwnaXA98G*efnduUD^Oy3WB3~!E=aq$Q@h(~Qk#o_e1>arnNnM@!5a1a!ab~2MBEaF`VW!Mv zGhko&`hD4vS3)cML^z$cACS+Sj8f-=*ARRGCAb|DZwg!_SvX(XQ^+6M`=Nv^#rE9>!f0$iL}%j9K7lj-L%XWS1 zdCM!A%Ma;MRro)d7hvvdjK->8P*63r8HCB@irMO1Wi0%su0i16D$<_dKUJhDoGz}B z39QEEn>upliKfIRn+cNJw7BY&gYOg73lE>Y3yw~e%F!&e3botoGhHOk=;E6sjIqR( z4!$4XcUd;@6$5iXkP7oC`=ht*k&~mrS%i+5aRkfn+qZ#n|^Wpi`s=nFx zAFXP5RuNf4YfmaS(OmVg+tVQLpkT;?9gf7RjEW>HF6<&P8lSf5U$e7?xSv6YS_ zF=T3xswp5s}{668i6zFu&MX zT#rbvwtR%6FO|1U-F=g+mS|~F{H3a@14@}JTZ_+i?AX7GeBMnNpF`0z2h2rJoVwHJ z#FegHg6PrC`FTUjy5lW3-{Y@qa&bU3soU1^jh(yMOex*SRBoj2 z8WL{Bu%k;(YD|U6r8t&xPkw2~X9))D9};wDYuXb;*}8RhEKbrk@G=+8(Y0OrJT$3M z_0!7j>lXC0Px9V7FI`!ax_QS=9vef2I=;7RzpJEQ?>d$h%d#%dfog(rP*H3x?V0YP z=#`tNgl>G1^pW{uRFe^&lX-eSh+1h2ghX6Z1YJ*lFq!r}_x)InW$}>1+JUfOaqZ%6A|@=jXtPDVGMlXWyszsGvMh1;iI6^D*|`kq!o}n>gs-%!By^S)~IaYkYVkHEv1fPF|BVbBV6s`O?{+fWmjX& zT#fv>KFdU@DeWKw8ScjJw9j;%7_lAKy4^fWrcrzI=OH??cpZ=uJe^hRrNzaf5WoM5 zjX2V(?i*^d>+zPx3&~D{g@FZ^UX~o#G8Lu0Qoo2h(a<7jV+D1{wCfOMw?i~{Q$cP^ zffVIUY{T%&LS~DXKQ=y?JS}e^(`OYCpxEetW7Af?)|!!?p5r*(fIBN0!v&OpIICc4 zuY!Ux*n;oNCEj>s zmv{esp1ea#Bx?BOXhD&a!``KoHJMr)do&8WUra`)j)z%tr{7xRujjYEy{sG5)X3fH2Ej zvDap6&EgrJeg0ONANb*xl#!3$dUTm@NZaZfuvSAN2KMPb4Gs8pb`iX0Huw4et=C-L zKNi27^6;-+1Jxx9C~c25f%%g(gMXcKvoKGo2xED*Wlm_Uw(XwCMRz-@nZLBlrnF8^ z6s_DgF67|4#B;TocUhi;jABN<-%gE3U#2BIscGN57JMi;;SyxPs_;pMRGYN8fbhoV z+rDFh%aRT%3M6pl&jyEQoc=V)eq5-(r*H@5*2+DCKQ@1XXm2`0vC83|fvxMHOlh$a zhGe$)ax7W}h}UR+{6@F12EE}swZ~eRR>YfYim)Bm_%3xiR6tpN*^vlpC(W26581b7t5?ZEuV67lqzek51^!oo0JQ)%ruf_M78{v_D`N zqXa-XP{q(;Um#igfz|P|^eL~@75fbXa?ZY0REyj^Pt2^2$b4Vi(G?@*FmSx#-yCPD z81}3=H#RBi<)7gtjr{BK7ct1-64t)s33U1cc=}YPvPCAjoIh1wIKDh;l-q;qyXMK4 zbIAg1q)H}n;_bPsS48iAEtZtzcdpwKTGynf6+nIErXBIKqXWF)uy^fiZf0h(V%T08 zCV0@UAB8z4?*8kPf(}VNk{2lqff<69vgpl@OII{~hUoQtjd$s8j%PRAWO!LcK+IfB)^g&R4J4F$x#T zc2m%`;~gI#S2_-(-z*PQIXE2880KSWJ3e{;%?{L-f)iAI9?vM2DmCAWyGH zwqAbA6=NacgNMf|S0^7xOE{2rYg%IQEv+PaKzz@@j#o1Fi}{zrt>nJp3{s|B^8mfR zj~)r}#HBY{<)Bfr7=}=N%bKi@vt6N>{kVY0Tr4^Yx5v4TD3jTLK|uj#{}w6S7ks7( zvme(tWZIzSLL`djTE09fiWrA~6wA6AHCqCqPQG#D_~hs(;zotFC<_emt;@RAc>Qck zoJ5EikL`IVT4=x9T5#(p+qvqUXSyj+ugnM57DfhyO_k^k82FJX4ZhoM7++zHStBm4 z-JnKHp^)L&vnOL{FX}$?!%x!z*)sn^>eMkp^Un}^0YnF!U{?jP~E z@=v+RM$7dl&BuJ&x$+{#w1IX;VD*K<*8sMT*9f6(8R&X1(O%Je>Nc?}g6f5zSI zr5>eCTBBg^`x$xs$Z6VAIWS?cUp~<^W0` zN4=dKG<>(y`2#ncyss0rZ-qorI0F#e}>V4343;I_E5^wM!d!#E2QlXW(2x%*GM zfuT^fSmyig#6zad(jyJ}b@ni4dipfIsg_6k zkf|vj+74;sh13HE23)92u;s$H>;eN?mz>o16KKlS7uugBdnsgOWXSCH!DOE>?xs`( zlrFb%ZuC&iMxI8h5p487wGH@c4;dJ+1S%eUAN>xu7BzVEh}i81_pTM-eZ^Yj=ml`@ zScI#lguloC)ON64lB6ks{=$e_jfM;>56?!+8&JMocz3RvQ&Io?wV&YD(9dOij31c{a8uzclHStrd zz;=^P1C%jT(*~;?5?^E{Kdz(fhWLf3T_F*cWBYT0q7>e#-N=exD~HOBG;1+Ne*^gw zA)nyF@t?Yh8`iib(>V3;Z8k(ZVsT(uwT%&vQkck#7=#&8u;dw*|~z*iN@r!VN}=-6~yhe(h^MdTr5taWX% zYRTjkKiw&!l{mF@=~C!SZKl7!4L+b$maKeb2uh2$%{oT&DMZc%fWIG}n)@MmC^?CE z4-o>nf@ZeaeikkXR;;<8p19|r?H1H-kQbS4_g`J@v~}UCx0~hCwN)Lae>om1fHk*M zg(jO^K!hemVtRo3h(PYa&J@)31<&E?#3TWN1DH;1RZ!$X%ad zI|a66y0);^S~p}|pgXQ_Xlx|@`cbgO`}S$q-a6mw>1?yb{0>N6B|MD?glFJ32Ha+? zfWV^x=f8K-5%K9MFpomvUN+!NIR-Ec8HR!8g+&H|A3s_QwB;?{7E(N^7Maaq-$@*zx_Kl5fwKxmO9QB>^^0ZQSah!#4S4Jn6l$0E~tu1;MH(^h>unu4C!9JK7 zmO$_(A{4HYg$J?+KMUIPokhaCma+xsTAu*603FxXj`;p;*B3tsbQ5vxR+N`llCXE^ zb~E+;>-@7xE7{oAziw;0j2#-sO-+*{LqmCS5Y@CrLeQnV`L+ykvzmVT*FvCKeF7Ou z{2yC{OcOCSCG)Jpc%VK5P>DxL*TDFJr9NA?ZsjQmoC7$P1xucLuSP8Y$p)|P8UgEw zl^Frb!SZ|Gneg7Uvcwh^EY9&-^KpWh^u2w}buPPVkR8si2!kt-@9;$2eWmcsR_u`&Aq&qcpStOKD3b5fwX z1z!|jKVdnMhku3AmKbAT6oSG?qu*OuS5Fid3)bmwFrajb|`+}O=JrBK6r931dwax;1tRe z@K3~?tqR}3B~T7xB+e!dj)R2jlILxZXA=uco*Nn50NF_7y8Gfwy01aw+j=x~hqZi2{XWDNmm2y41cN9krX)gG24ACFS}(vojZKEZ7+k zhx`)-)T6d4uqYxz^6TU&zLsEI6wRP zf{z?8q*MA>c5~-wQSM4^?(}gyCUr}2@r3c3hD8qh>DI&{oeizwPxOB)X?rUd2Npf9 z2MB7!-kbBvumVqved+0jyh0y4R$R-PyQfmxpHWKv2;FwOt=Lf0$RZ*qbjP+V3r`J%HzLzVWUzSaZ;C%XhjscL3v3q zuWukld_1{Y`&A2|n=K6J@a?cf6kv!-k?IKgdt1sLTj&nmnmE z&j<#r6CO8G-BX4T=etq0R71FeT_OAcLBBUDrR7<=)C=pLSUAO5kdik`zb6JY3eH!= zA>2XoR#rmz?0^G$p@2A!hZAEPQ9|T}zseXZM+z61CMg9gBHcx^!W$1ZboM3)SBgJM zkU&*I?Lf@A?oRc6St9~JfWOQ6r*t*OaM0t518vWx}r?H6M&kU$@u{vbO8=^PyjPG)rJ zMnAWW8?AQ4NZsjOxDJ6Nldy+7ifqTBB%n=3{w9ej1ip>l3&j&B&N1BONT=j*b%rrZ ze+xaWf`x^EC-v(~(iFw_SC75}F`NOf6RPF$MRik&H?lnwynsb#u_U>S2rl8R8F(zn z<|RX?H}i@90@-QvluIiNzC&ZLj7%VKA;lpGCEnoMe7v_*t9faq($fZB#G%$%ncx4h gfA9Zw+x;rGLkuC{IX%SFqP+AlLr4i{)0RaUBq(ed_L`tM#qkxnk2uPP8 zjdXn1dd@q3W4vSh{`kgs#yI0VhX?jv>t6SLU31QB&K0e5`vwUi10f29BDtxds)s^h zDx**sUHG{06MZqMefS?~4>c1HeP>&bXVz{HQMar;T%I_4Jh8ve>iN*k-QL;hs?aqd z5dl^^4-Xf28DU|^|KBeNIlDa)mZ+?L2OmPgvvHdqq8eKJ;~8(s3O7a(v{Y{w(_kzKiDe z7Y%In@b!F)jkAkqD{E`*t*sdF9}NwS0Z*?2x-Wi5lvR)V(cj-lRWm=oO+Y}<+T?%o zi8&%nV_Q_XS$BVovKW3t}G(^K8kQ&PzMbJ(pnlCzWb?olsZMC9h?8rk?BZm}Ku zbuUURF7~`mz50kWBO^nnIlw=B`R4~yyn3^;%$Dx@gaq=_t#-1*^OH@9rgd7ud#wEY zM9R539HRf$M#9Z*z#_{M-Q+)T(=wqzh8zQ2*XxnkwdAEi5Y?$}Il z6o~VjZ7vlU*iU_tM$P>BQAF6oBIgyv5^#u-l9D1KE*@4}E49BlUH&P+%}tD3I~8^1 z$`v{~x*WH~?v?50>n~rvtdo?MmQIy;Oj~OB4i^gx>za(r{hftxU%!3R9sAiOp=?}k zffL`=zV!V~^1k=pitd(|9Fv?^f@w-ZLQpUkUY=f|rih4$;_uH-DJUp%D=aMhJNq(a zDVUgu@$m5I7#TSvBqXLsuW)c+QC+zmmY>f-OiZj(WqV8D-Y5K6(Qr?>%VhaC;?eu- z6T0wIItGTeo*tq{eHpsrwz@X{7w7UJAt5tMOSp*|*jKM!^;j9esCD|SXVPrl9)SwN zz`}K@Rh5FRp;-TO_E*&-*e)iY>?nSgnG+cs8zXlLzjwHt9hmfjO-zjP>FRKBZZ6yE z$h*kv=Z7jEj-%Tn$=XLpFTH*HR^;kcmG%gdN}DdyLeGPZ-zx8nK3F|@g4~9HS)Ie+SNzM*GTgclS{E zviBc83^w`unl<{+C~j;jsjK5kI#2aBF0qU@()^ozS4!b?dMNt&=^C!7sVUrk9`a~@ zRbA23(^Fv750Fp}m%pBUJh}bw;lo^`5BG`<-_d^j__1zrbGkV)Gm|-8+#WMc8y8jQ zemCYP+6cJP zwt)fiWIn^T3hVZ*+4ji(GOg!$<`nD>-+Zy&>*QkA{@wW9U^o7Wmx+l<Ec{K_z5my?`w>e|~mCcg=;BLEJ8=pn&u5bTf;v#g`yB7z=LFO(z?& z8M4nvRU%2%*2k+|m;0Cn%s*4dUzYE#b!wfMU=$J(8f)~GIz2n1$(pEse2LGX7{msW0B-gyHyvgvz&X-)=I-rn5QR zXxMatCrQj8jt{4{YcT(YsQnNp{Kx9gP$A*^oot0T^9E1rzhjlK*IVGE3?NUm-YuN} zbVT(%+*~^pm#z8u>utY&(U)5`qthiG&#bM*_#SMuPEB2|emshX!XoOvq)p5$lceSK zM%+H{_|mMUtmj|Fd-oV3NEmV93563~%6mLo78M;mTgJ{TlvlsN{4I{09Ne~%} zg4IBdl8cKAkIRHN6vHs&@HzedoGSB_Pe4GxWgbn!B<+UX=zFjT>pM0T|htpl#W70^?cyP2}_Oh z^oyJvR`Dle6lzVS-^$TcIWz8n3VGrtAGHpwCe)#l`zKAI^L4xuIb&q>e9AjlnE>hjm0MX%U2jyc%)1-DfRXBmEFnwRi8eI zJKZ%fpvKCnxMleA)vL6U65ieIZR@*t?-KSep7n{KQ_IVRv07@L{Av^I`S#7arl#h- zX|2?JUO}PhshZQH-*l?}uFdnHr*_ zquVxJFW<^I`LcXFQ>K&7<}W-PVpL3Qtikwn*G>%YrazmcWQwTK;cmXBb$oo~WV53} zc7I=nbUQl-2R(|GmiBE$R%!F#bihd*h86Un*_7|;5-}K7P=OXxZWihp)w?}J&u@zt|x+U0P|I(!ixd&KM4mk#PQllfLA>#x4JEKiuG z{kGDCgqXNahAmAy0zfFT%>p%ZH|ab#-NBX2wDP@%uMojLO-WB)u$` zdeWSgbs3;qD_whzQfS>G?2h8QRd3rib+VvowGR&``JT3uU2o~@BMm(JXWZ1qOixeX z?(Y7{al&XeweiarR?28Xzd(-8NT;|&%nxSuloAfZicrzm+1Xu|dg;U27q8sO3KET= zziMlRj-}_T-Cp|6c-KOIL$O3y3EM+6=7&OJ83f4mxA`Xm`1yw$|9o9Xn{e`muX|;Cr8ctC|zV zy7{zXic_q%6bWtSXA zN_jt+ez;fN&wby!+Af@)qZmMnCQB0ypFs=s8JZNwsW0?^9?*blSrawt7E3J}PW$|= zYqt0P=#NcIv=0sKR8>qql@CwO0hcGU$+C?inRGMBX#rDjO_RlUq9ts zasZNcV-;+~BqWut^Xi4}XXj_Wy=hnRWS?yq_&DyYW-ILf*(|HCmxkZ4e)zEP)9DWx z4#lI**Io0uutGR5D)$bzZ3+qsTF_|q#a*1n=EOObXmVa1=qYs;Hq(I@^3b0n;1tXQ zd?AlkHG91ZjiC&8S-(^Pdza&N&+O6?dIZz2dvLI_<)81~N^o}IIX#>%5ebP-c>06y zjD>-6xKH2(LEq;aphUL|7Q|L=j*E7za;FOAD4dmgRcWSM#~u zHKh&(UQ%I#@aTsVHIDfB_$>$1f$=wAakrw;xIR8UCKXn}deEc)t(9y@HmSOvX9-z+ zp#x@fxZ8i-_3xNyEVC>v5v@Q=q1Nj<{>ILAtrwdsgZU`8@_o60Qxo3pwW&r~A+x$5 z_{iLVv*XDVeOPG2^Q?Er{=6I0kLt}x85tR$OgEV??jHGLaCQP`)3ft--iPPg_MC~A>iSoit!94vv?#kqg5akxR_M(2?)ALszj#x@=0#`9KC63Y!lK~U^6k|X(MNquy&2N4Oz(_L zr@r<3?1-kzlJm|>YVq$K8KJpyJ3|q0a`iq=3{O4-TV4uOeWYID6A`HZiF@+o$pBE< z_jjvs%Pku994_F*ZCn6NYX4wbyVb=K$Wz^Of*t{QhQLhtxuzrF`h>(pT`NC0$Ps}1 zJlDs=0d}_b_1(^`jf8Rpl`8@OUa5As!V6<_W?9cLZSHn>X4EOd0F0rXuhl0l&vnKS z)2Y)~5C72#%2!!zuqvL}I1w;6=+}zwKH!99sm9@1u8h!p%JnW$@C@OOA zL2xb{GC$8V`07@8jbFFeobv#)TQ_J7Pb20WxB2;YLJtYqkMgR1x#!HgH{04 zMXlSg!`Dm3ADNhpJ&K>za{ToX$KKw4avmP^%*Z=q&A??AWJ^B~qld#(w3lJPH?lH) znOE*JyXvqcp!Czj`S`I<_EZsMEH9Gzjq{)hz;ka;U{e7y6f# z=BtWF{g;tHK~CqFFJHExwji`)c6N4aYfG^?;H<*;z=@befvMWm}MgXGEpJ4WHrRB+(Q2F=!n-N8!u<8wItf4 z`E1{GW5VMV_bnHoK5$|)8`58Q!OnwLgil5m2}lZ%!_54={t83MX;@fTj{9;S!n<&Z z>Hgyj0LqGu%d?c-3ZAE>(WeNR{|C~65U>1hkOHz41UQTB>Q(*4I$fNj{R!volg;LQ z0Mv&|Z=A^)8DqA#T!u^Zm#Zp^8{&X^=2|uf9R3@%+=k-1LHixp_8{C(>}7cd)Xd^y zIM92mZ!fu^=|omlUG?+xd%k$Ex7mDwhNHO+)F@9qjv+y_aP0F_{@1As--O@Zp;}q^qS{i zy8AXZBLQ)QJwrp3fYI6kqi-GmdmI)Xj&uNc2pUamhsVeFp{PJX#c-PX5)E5giIse2 zd%i0wHn!vA!yfqf>(r*boGe_UN^wbC-oGDQ94)gHF2hc9fBN)cSy`DjUot>w-{U>r zH4saxs;eJj1_w!ByH?@ce3r8QtLldJZvZ@%Ko_q90OY17yt~+)3{bsU`O>{glU_vJ zsf1&Kpl738Wt^qO#ZEXc?Lh78JhMHs`*&d_%Y2XP-Ion6Ps3UG1>HFnBoZoo?B1V0 zQ~ZHCJOOZL_U4Pz$LuwS(@H?ol5k#Zot^u!F)}96;CiQPcrNF+LmD*A-Z( zsM>K!nZBBto2P-S0?gt8w5p<^in`+ayky*)iK^z`(i`uh5SInmsA zvU;IP9{n1PwYwZIDrg`od#`}MKVGlV@XAy7AtoUOowi<2`4q)G%M|6O0- zhT;?!8QBi{4QN@To?c<(%r~Nu-!m-M!LYEfFli2upK9_aqN1Ym+x;$excJ)gxm*qh zTNpLX2tEbKwW^Ph&jlUVgO*GAKYjPEj4=o2>z?hMMXl8IblRRI%>RBYho*y8ZsqJ; zF0SLGyJE(^x3k#Oe|z#Kh`|X%yb1~y`Bd0zX6#8)^tRCcf~nYE&Oyz00np-<>YZoq zp`b}7bEyz7GiGQWb`B`7MybR1s62!yx*M2n9UKUO-3i{vpWvheT0wzXAv7AZt! z#t((|sr^w}&f5b%gUZ?dNXwVP{r_2Z{{JsrYrTse0C8^sSP|gW(5`vw=_dbd^DBIO zgd_~&K|tm~^of8~r}51|)`B+p$125imFz8#6(c*KVYg2B|hsW^ABu zT=Utp6TP8{EYOa|yH{nNpkIQr!{c!R#r2x3tj+dZCkg@R^PmrzeD>fyJw1KSuZ@W4 zN%{{R_K#q@=E2tz_Q1ao2{=6z9=~iue0NAd1f3w5{FqgF-8xo@uWzs~pm0d|o-tn{ zyYy8O;i)enO*vc5&tpXu+nVgMJ0nCD(+ijQh<|BsSDIy!)T_2v(!4YfYHvuYtvi{K z+&l6aCkR0eRJybA9vuii)!?N368I))<;`pReQ!bElMR*1C$-vK%D}LT4N6|NeFXZ4 z$Z5dgMSuX`15FuETKeKFxA5&-OjO5x(c`lbvf7tUG|mHD!5GX!hRTIx5nPR?4~#zG z)K?a3Oho%1s$RuNW+QHCI{v;r{w1$Q->2jOm1cqM(#>_aj#;7Ng zYL?-r{`AwN6AK%_BSC=s59U`^@KM)1S51yILQpF`UR+t&7$~n(_A5%CHM>XoAKrxh zyz*A;soGaK7NEx&ne0P%0GYGo3j;Pvzv#A_l@;s3HMoZtFJ5dp&c>)+xrBilV!;Xh z7JiLpj99(x<1_ku>90b~yCP7i&w}?b{6k+JMQ|l*RCt?XqjK&j239*cFO~^+cE(&9 zsB@*lCu}HFB@MgYb9Rx#7nDQ2ursF}RkQfBxbWbVYT&|8FP-br*cRWx3}O?~ ztSkFCs1Bx#IBx&UT;sMb?&NPSC;N_d4Gk)m<$uqZldgPr5i;?l9lD~8g-Shjmh@82 zP2teH#b*=sqAAqp-(*gC*ALHYGK)u5*9r;>+kStzjAFf;_2Oq|MYdQnzJ${x9U%4B zZ65(!!pNd zF?_yE`i|}|{Tz@I$F?D+ytz&L#_x;&4Sret5kHPsnw(yCR)kj``>q6fY-Wl^2-L4K zuyUuc=?Y&)SsDMLkh3P>B#Ko^=fLAkE6sjQhdP~<($Mm~BoZvTuoJQtj_oGBwJMEj z0WF1&6|bDiJ&jZ-*Q6pjNltymVXVpUxzFt79(MR~!D-BMsqeJP* zjK?Vx?ridG@~gi7hEDxz_CVn(?FQMg@$ghQDQ97} zP;6E&27J$0;N*t`dlHDxSMHp@Ba4oU>qO)}d;4fU!%{22Z7@DU)Eg8EYH1h3hP-zk z5HnpP54<>&^4y$?10|@WakCFkR;9mqi$y$E^b1Kd$@Z>6^?@N}fJ=Ad>ObxU89F*r z{PJ0n>xCWr7Y^qS@pI1cYOe@vFLhs^w86E~;jo!3(`l(0PhC3q{Zlr6!Y|o$;(pP% zt-Wq2eEx$jg6B6*{^tr;)-^PVV`RuG>b`C7uqRzuQt{!T*Wt;@Jm4}^5M1bz zZ`Td|Pd=8j(4DvT_QHyauAo>&M98zUvQnk59>iY&f{u!bnID&xm7NFi7rM?hIXSrs zukHKqEt{J(%$Ez(3^BNao{bQSP%d1|_Hgd#y}|a^B=nBvR!Ux28Wcqcsry! zjp45Xv4UoZ*tAjThgTANT63D0blX0D)KsG^(28XcN0p~uU(xtQ4l)QC85shH(P%W% zd_bIuc}^2ko2B>8IP6}{le7sM8J1G@IHzA9xt#1);`q*VMas1Q5L03K(-G{o%x~{B zo^^JJZCrS^D$LO2rf8&R#u=)(uPH?cOrwH>m4a(S2}4D3x3FQ@L$1}4@LqukMJN4$ z6Z@FOvhQJ#YSrsAoa5t}?cwHULWvr#OTBkL*$rmAqnPWVciF^2&G=+?i!3cynfsq# zTGv0LTO5-);YQ_TkBH!_XJcR=eX%EsWqb8#cJ6w8tplUPA)}8EPID{cwt36Ee~c!YJ8+jJbeuQT_@{E2S6`=f2d|p_u)Si0|*ZaF!0)DLbdKT>a$-0<}%*b`He; zSXh3~&IrzLem|UZ-0Sy-Ung?&))P54HNtL6jp8IzUPlNHSy!%_%QNei;Geum)y_BW~;}WT@^pOKQb|q z;?Pgw?d{CxK%A0SE}=4Shbb7QPFS{;+RoV5N!@vCR`!dtn5npRBY*0kmFLzpRew8m z-C=S~J1ft*sfkBJM8X_bvSwm>Iw2?>C`CIvo@3y;R?9_mc|W3c1WkYVt%d9~oOM!B zZwjW#-dbxjxznhsmCkXaqhQk1`fN!GWBwcY{u(8!<*+jN;@=YGBb4<<{RPWY=?hai zE>-r#nc)(iPYxrLn87HqyR<@6#|$W|pbWia?2?|zNg_W5|AdsVxw>$*+Q<033YC?W z2r>eAd^<~yKwe%RW{{7$2rxb5D8?nnB7Lh~^(-b7MAt7rAf74t%+GON9-xtFFQ`z4 z@iMB4?Y!3M3YQjU^g^?gSuQnsskcCqx{Ec|i1R?d>H7rihU6PYkbbUs3kX)`u-a_Q)da&yC$UHEkKZwC7J@2J;Fw zyz97yNZRT#ZRgXVX&ExK)&$>$Ad?&ss^agGes~Qd_YK#Zare&UX)8^L(I+oSk_4cl zf7C`vCwvoYT_!sB&(ONlU#ERVS=GO=WKD)mwF=~T(fb|ve<$myPy?Ur^`A`CkibZ6 zoP<~=3x6@uR)gkc&NDslrkgq+7X>xKFMd+|8po(O`Mb~MC*R4*!&1Y$nQ;GUlSXZr z@}+FywsEdd(TK;R4IEsHGOBM|j)?TDnJIa3nhG`|9lY^*&u)Xd0D=@u6EB0#l`8Km z`Bpm()BkKJF(l~)&nLwcMv_#M?9IRnoS5p-MS`LrxU+n9n7j2dUuS=Tl z=L^5K|0IM4Va~v_F}bHI;ia4W^m0j41a-~-zUDW~SkNz+W1vuiE_5HXudVIvK~EDx z4@rvd=ZuG&>w=;ke=cs(uu&7RiW{7L6qyR_{E;6)(z!&?j)CI%=@i1B(MTB;_ zjnWW?lb=ppjS)4PNmazmMYXkQ=Y6FkpT+C26k5PYR)`f%c6ahOBkD-qn)b;VdbaqS znt9}mJkONQ2C1+^KYk!G3MvRh1rUPYEq>i8s)|m)*U=2wr#EYFu)HvOEW0nU#?!lR zF_5Yl*L%yVS9oEB^``AMm(mMMjF7prnlo2s@ABP&xBKLMk?` zEvsoi7RbC6reG^thGEr0n2G)8;ad#t7Zi_cTfg?oO;23QenIe{_o7WSDkKY~Ou{XM zIe+oFm*!Rf2nI$_+Fh)Iq7o?^dESQNjmU(ZwXsSYMEiVaT+T|4Ut!gXIb3FLI$=#i z$ff-C1JQjJlBuf!y{UdNv0QUZ?^z^JawtqJl?{?Nq7mBlOld6U55<1Yw-<=iw(j_u zQSG_P#}AmS*_>0W1=wJIdvNTP=3+ubktkfaacTj#q;Zr20zYs#c9`*@bQ(MzVUmjl zlipDWv(^%qysb>F5?3*0i=-g6^z*#X99X68D%Nwev!hSiGU^i&!`uXzMH z3NMYEkSi;|U<}bDPC=7J1%c>iJ=+#8B4lIf1-s1c>|o$kAu(+No2V!Ss-?dVn@}SJ zE|amKR7m544=d|MdJbjrGB05%&JeR&+H}ln06uTv-rn9o(H#~!-+f}xzYjri#BUTU5D!pB*uH*o%S~9jf4e+|u2x*^}rm4NsAdjx#~2@0Aj}Zj%~^h=>6l zqsF4-@CPD3JF^@&9jby-+9)(OpS*(cG{s0hWe^3^+9xt``a^ko=&T;)PhOL+W@gr?K_ z%!<9SX|yy&6xCBQJzzQ_9(`pl+;)e+^t8RYXCl*8noHm@^Uix zbC|@we)zZKruwM@N-YY-EC|CE-|WQ{F|Efd4)2+HnR@z2aLSW*&oYA zo+=tltKjQ$2?~m7VuFXNbR9hP8B)EzECqs8DO=M-dr}73Hi}pBSIpU#c>X)HmZ7>uo zlWGSVut0obOr_Of4-n3GECtUJB-M8OFJ-RVVvDm|?Rk>gNpIK@I zh@v2ChQrCQlNI=otGYrZZ+j7vr{Pj&u||FV9oIGTN%%b%@584`;UC~n@0Ok% zQ5wjq;18<7R9OjzfHF^4u~CS)38I%y+4Lq+3}tS-#vV?%W(Z-1W4e9|V|{%W22#qDgi6T38%P7j7o#oy!EJ4S2zNgJCx zZc~m~P~FgU?Vw$Y2Aq05u(i!o4ktwRDCmA~*9SDYG{X{3w5sM$*u3mbt8>%~ZI5Hy zhR>6V?y;<%-v)rg0fITmy>s!`&rzsPPQMvI+*Jo%w3_MepTgZ}@;fazQViZEV3)kd zIG)_2XZR~tUP`O+`f;H6$XVv+WGdxuSwL-ILsMoYXXWI?2K(I1!PT$cT>5VeG8QNa zyzYxGq@^VgVIS4zmvDeiR@m@tGYGdNmzZ@j1xB51$QNLt9%F zruw2_Oj%f1$N^qj2g7wPCCjKX{F2<`gXo#Ht0NN1YAtl_{~FE`(*yLaz2kP5yPxWQ zQe|%)wCS1|En~*UnPliukx&RDH-9$Mf`JfSWXLHlt_mO?u0?G#PE9ddM_~v3LAUtM z;G_EJgvvy9Dz-EMeO>}Fse_QF;`{aIi%VLZR?2LLX!Oh_cEk{B&Yi3&>VNFP$;H+B z`!|fK{v!6kYG$Lf8_@}b<4m>O&apW=;-nzbB;A zRSg`&r%LKZ(ldWVTYlcMna3%~du)RZdZq3yu-AcXme8|!_@^ivg$(*k>Rdn`;kV?W zIF4Oi?hh{SYB60+m(?B!;$WZ`M!c!t`awyX+1%`Z8ode51rV?c*DJcYGB+i-p|#1a zHH&&L+)eAA|4B!G{`y3RQWc&NotnCO8{7aw{y~tWxP18q%#9sn-@9oom*dMjjT7I+ z#HjGF*_fAfv`)`Fv&2FN#jRIUGlQ6Fo|uvn0m6&*JbJR9!`ayxncsZwymU45P8i|+ z;T#OFV`7ajuNrdbRzvA*2zR64&IaZ6N~mw8iz|6}h=X7ZBg+WjWHb(T6nf%G_!uto zUgTbJ4>ulRD`Zrpqxu@-7)AqtwIqEmcDu1e(n!92CG8b`)-Dd8r1 z;wbjaatch;)D3g;BXxBB{5T!s@{3u4a~_Hz7yksatilBBv^T!N{Y8nd2-s9FffHa3 z25pn`Fx8j`Cub6NvItx=UC{KUe&cOyEcVkNwGmBDaPJAVziSm@kcHLlmPXS-^~MF> z@3Hoi1jctL)a7`*|K!{vU+9!W<%U$w^Vt^%V>8p=nmE%GPZuv3WC9HT&g1DKOTB1{ zxKj=`{^JMGpkP{I#;*EFrHG0xhKyzAqbJGMw(8r`mx(!7S`-+w**jS_T!(Jv6zgpo)s%3t*b`$T?q>i07A_*o4v%}7G92fue2{r;b9=pZdJcwu6*V>LfE=1&I_VgxHk|WALiy-+xh}SN zARUOVq%e1RZ_&sAr@jM*={y8{p&rN26Jq=I@lAl?_y&NT^r9~%l+{goHg$#G+=H}{_R~noC4z1GU0*7G(Sqz!-Zf`3= z;|4i>Yim|zY;26Ddb-jE52$EJR206r{SY=7OqCTCQE&oN1n%ag<+LTZ%iJU1G@H@eD3Jc0- zkScpHczt1a#KJLikQL8kyQdWfLOYDhB7oMo^?-yk{>eTRYFw#V5ja1P<6mZ09|A?3 zjhh=6wBSq7(O++Z4csl^)vI>-+qZ5lo@d+ItQh#8?teTXsy75 z7ykTDNA#-d1+tE$dko4e;Q|qmiHs|^w_9Ibxg+8ia-O1vk=HWHrL`^YgoF9R1#)YA?S19Sx$M zhl9NdIf&r$qQwkWoS0palVO307SZ}mEiDyr?EPJL*SeA}<@^F1eEESF=N>|z{=z?Y zel-8UrEFwmH1Oj`J4||MQow1z0A5GF(KJyTTzEE-V4%f9fkhWAAi+oxKi>N@vzsj2 z3e(({mK+!3M|;MSGv~tO_(962Lp=}D2yZ6T*Iyzg?k&a(W&pXXu{DYPe~*W24Z-Ii zf<19`q@ba}fg=fHyf!e1_Nnpen3XsG{M=6zuI%OQJqttkNio=Hurhhjt@uX2_4XQQ zdIA|mEm))-QT{Z{Oui%&fP+8WocH6)uZLa|V`@kxO=5#q1$F~97!z-S$*ZHQiv#9= zP!K8eMoeu0vjH`U1Zyyigu^N-L>@eN;L`XN@&3V}T)?CPg+fMc0(U=RgHk>Dp%P4R zIdE>xlnct7ek`*ccF$kXV#{M_zbBM`JJ3Zy7l$0Zhgwgb2!OU211AZE0y|qc*oIo$ z+LRlD6DjjYREwb`dY$YGBL0Dn4pn5(3a-mp!s7Y4IqEVL4jvv1_Smjnqk}XEQpLcL zu>}M^aPXWyh$U~H`VwK>h-OHc`R0+@2@DwX8&YpkAf&qOp>%Y|wZc^}PTIG}3Wx^%Cw$r&A_g^zDd<~})7z4PN!@x#? zQp}Wjs#A2ES@4GXr#PS)x?(C&#`?g5g$NEvE&=4Ym63OsV6tA#Ov}slN#O)q2)P~; zs7nC+<>cjE|E(Gtz&N?Vb3KnUiYJF(8HS+UnP8bDrWeBojScJnLi&t!yia*3^r&oz z-MndoCUpx5V8;l7dBf8GA5E5mKVh(95OVC>!U*^tv9N|wvPmqwU>s)V;;jH zh6W(w%!sy@!ol${xzB>)cr070i+Yxu9@gMxUU_*u80Jwe9nn;-i`_JuAsUG*e`(m% zv?nkSL>p-)bOVfLfJ|HGw<`k9d?uUx8Nr}eU8BOWh=M={JVJ-guC9DgED&3MZSVMa z`b*Y4Q4ckw_m@!9(?>(0VV9Pshe=ITTwHinRaH$p`y#P9MYqiwE`G5rYy&$}*!z$y z89d zkB8aRV_9*%+k+n}<-#?P19n%r6=Gu>6fvC;e3AvPnr@*c4I)3oG;Y+>q#z@oUpbuf z^&>X}{!6cMt-=vs z87*gl%gQY(iUcEI`_vSaHVS4n@KuB*P_og+i2Ck7Io;_Iwu)^9L)JvCb7XvcJgmD+ z?0=upDFh>NxR)-FqOed18i83IM3@Q|zebhiTiC$qd7cTTf_tCrf(dE(tiTWkP9-c@ zRD+!VfLSGIu*!aZatBCu32`M3fZJJ6T`h|Jzhs@=B*c^;6%}z=-baxy8S`r+-@?pH z&f-^mT~*{7$>YBD^`XNEsE|+xltOrL9AMCcdw5yS&ZP|4F#UOc2eXHBo{?|*qgZlf zLRx0#I0P&p0;!1Gf(B9+z)knl$tsLmaa|R}Pa8nk5I+IAPgz@=7=<`o5z8hTOF(E- zZ3z|h**@M{K=@j2zBd}5jWaM-RKT){X=-W;;iV9Wa0P<-9$e6{)y7HV6EI6M@xNzZ zXF&oMZQ(?0)P(hm|5is3-9duE?BO=u7wL02a zyyme&4ijH^9QeF))p!Ql8XAh#4kJk^J&SJOeu%?19QQM0QH4&YItn?8`*R)9fXZ7l zq#=L_zo!hwqfboqY^(aR6s2IE>dTUk0e=Xez;x9kGALFOv?lgS|Dee4WJ9mdhYRxp zOVi%Jf1)lkiiQ1H%H5RJRJll)41DO&j1VddKK*R~q))*92*^_41zk+C!W~j-7vI>` zP*~4{(u+K`7;<1L(W;m*%zZNTCG91v-cpG<$1o(gn69~?zzG!;9Zi6AzmtQ_`IcZT zJ8&4gc9?t_uKS^eT#h+43rjpCYG#VE142~UmB0rD*22t>M_G5iUTLx$8Uf-rf4DuL z{-V$z@0e9NN(d4eN?<_Tn(HKjIodn~13KYz|C}WxF*;aMxVgHvf+mub0uGS&&Q3KB zrQ{@;yTXJ_DpANqf9`8(K>^ST0vzBpSr-f`EGW<2G;r^bQ9igB5NTg_MQ!B=v#Iu{JE&=1@<2&0Zyo@SV64!nMF0bQ&O z!Y;l7ufDnLEZn>%Ep0DeH;0a66Q9A~N^`zuz@m!Jy9t0(Sy@>G5-iuiU=N-ukZ^#P zg+jm*3{%uG%2$*TS9s8*41Hi=VE8h$SzsW@lspdC`2NmKmtut|@;rVp9S+tyTOwET z-@wdgnnNacAUeTJ2oD8jo_TPI2PY>RR^k{k==j6lxg>(FaGa2gWso3*E)N02b|g9m zO&8jOMzl`Ds0j#Ft{u9o$Zr>XK^7Z`hv&v50qX(Z0F<(BvotI=wQaTE%ix7`Io`AH z=L@`fFcb1W;5Y-@vQ?R?+ezMu8Tew`%x2t{DPLGM;~< zdV942g+ZE&647`hB_rbEZq;jq(b>R!u)Zq^q?K+Wh&X0sFhN-i0S6RlHV{Qq0@M5_ zW(KxH>BVg{NMQ2(UnX*V2;3 ze-H4-|Aj=DWIc%?COF_}5|%{ha77vB!hQi84w90RV08ey%$qj|7Ofhzzq@PudUnL> z(r*Tiu%x?i+bbaMN02fM3I;~7epA8U zAcj@wV8%?M4slsoqFhR031Vw-NC4n={cn6lPDvTk(xSN0Bfz#mRE8fO7KWrkPzbin z2l13n^gcEi@M0t$|Fn}+gmqc%f#M9uXnS>pAI4scuZ1nuVGIJF?5DiWuM9PF^1|`S z6PJar6mhr+9$5jaaU}%gfJt2XkDwc6-AM%aVH~#O4#N+>ll9v4aV9AH60qU?j@+P= z#+m;7{PZyt+?Ov|l?iix(&WNPnS;xQ=p&t+mk1=n5L>f$nivk`wSuy=zVVkH!R{F4~y3m3WlQPD;{s~QJ2q1NfX zV=h%L*c_}NRao)qQ%58j3xZ1!m~VrQRRUs74s8b9ZkHat2Yl@sE6T~u4fx~kM6L^+ zO+|IJnxEh4BiSdQI?n-VLPiV-+=mVcp=zy1Z&mo5Rx^n7Jp2@plndMmS4}@0-JTS| z_KWj_>)Pq!1Q1B*1cf9Dn87TlSK#|`b46>wjd2STe5|Ytu5|sg!prx%CowCFG*KgI zv(^SuOVA;m!UF#neui*sMOePzG@-jtlh5?7&i*Az*&&Z(bqJlsyXl-o` zRw#~XUGBpf6nOmjG4c(-rZ9tZRQK<$sPgdh$MDz9Z+n4uH1m0oN?GG>k};LR&*#xc zehM(=*xL9l3&o}#_V5H7MIMEBZN~$#yMMI8P*!Kh{~*nRLX{Xi2h7(BnEWInbNIWr~*~Y-urr9RvYR1l$E&oIU#zcySpPTMaZ7s4~Sr0|?j(-a`~aJ_~#? z5Jet-f0xQnA^QaUrnho0kd#OSh%T6cFgqF^KLP=R9O6JAbIwBN2M0dvL>2%V`5zli z1k|B@ZU6ms6}Su@4yot<6z;R#4X$c+NiQGrar?7{*z6bLUbFFVexNvSmLxF<1y=-6dt84))J z=o~1d0svA7QDjy8pOyr264F&NGeyBtR_1kV16>~SXTm@$t)D!Jg#hk-_+-9=dWc9P z@+4S^;aR#od)5VbXB$FCb8^G?6Jd-E)8N7ihhtrSGOFd%m!)u ztsi%;+plPd-*_CI0JA56Rs&F%FG6N_2O+lz{aANV1^~v5d32m8*jNlo4F~|asc2|K zsW-8KVzTb@EJJ=-f5DLgRN8LF(G~DWLIyZkhes8x`pG`w)y~tGks}2#5(yBoHe%u1=D=BuMB07!|3*Vbi-U(pBX=EeIWTTAB)|)mMIBUfT49S=2r=*` zD<$Djace_O#RLCYG@Q_RP}ZQ@KMr1lmN^S}5ZnelLrtCcT@!x_-v+xj?6npMs1h~a z22la=bc4f)5Msa`P$NYl;mjoOlk`|WRaVabc&`;4`Yxc9#$DFewg1p9#0%4pG-5a~ zdL|Z-OqKK6Qe2b~6%{>%00lC8JB5^l*Ukcg`U@t4Xw|$u+=TyGWThwPhldRcC4mWx zdGqP%mAUuy_A)4P|A;iRkWo(;jNkG3o0Kx>_cT)|iwtlcnhwgyf?It}J4V7A{Kelp zB@nNNY#t^|p2817U?vO)Sc-u{K+RftGa5|Cm0+bnDFSogzMT<;%pcBAk0w9E+5{=G zwm^0n;Sn2ed^I%iVd+bCmhS@b@`Id##_iiiN5>0-J-%m9#$Y!_K%Ykp42Go!tw5Kk zYrfH8*$^YI)PPk>eDx|6Nsq%@4$R`&KtF=$`hCC)P$g6$i68>QA0)lOcW_by;ZlUN z!BJL$I*qYFN@xbb00csT7?9jO8UT4l1IeMF~DM?TCI_N@kXPW08fzAN4KREQjg5fjXl@lOQoiTJR=b&nn<_AkFP12K*ipr;Cq zP{Gj#tPR9#3~=?CLFx}lY0DRl0=O#5b;nbcmqn< z*RL9gvIPkmPJK%&??v{qw6Tru6F8qotH1XYMpOiZLN0L@C6YL;T{qahQBgRApZnuEW`{A zI|b-8xHl>RFFI-G*414D+zeQsf$v}$a&th?5OZRG_Vvh^n3(ZU%_Wi|=(TO@Qk&1I zQOFz$SkyJIE!Jm+imc>{Jk14`JX38%h|Jk{zR+A(7N^@Z^rDFj%ps0WzZ?OKJ$a4Gs;>xZ#I;G_Yv!j5O}tiPYu} zef8><@*Ajo9NgUM)@cxLI|t{N-$7btCJ98Jz+S9upR@->gB(2=RKNXW1t4?HdxsOw&ohDlsv!Z5O&6RMs(|>6Da|th6!EG_ar!gnI&CB#Z|GPaI&9WR^p4 z>>_WqxqLkUdA|pMXP_8S{zV(L)m3b#+5=T)?eEF3iG4IJtGleGiP1i?VR zgKx{b^|w*kO=L8qCoh3oLVA7>L?Wcx01RpcZI~E>TS#`9QSwO(z)!-)4?xzyMBfgt zkb!2U49HbXObjU_C`EV`)9lPli+?*p+Kk?t1S2i9H&xUNqWDlWo=Zl}2XQFU(`m<% z>xso;`_xH|ZtjxAz#D(&VR60AWNH(JTNI=2jhGFm+YLcWg2@wB!bJX0$O$3e53dqH zq5jW{03akr0F^KNY3F@W5XHOA2a6$`52OVzT2-%r>YY$PgNW+947i{O;XtrK?iqRH z0N)`m3Lzq|!Vo)n5QXzA!zENmNRfB_inCD!yfh;hd=ZG`54ke7*FCxb(lBE_s37?B_YyZMd(p-m6=rs4o2!aKK7hALr4ko@)loS#oZE9*-{X)znEG!I1FhkCp60iwY zf~Wk|f9ryyEX{xPXIOAyv*>41t&cYmgT@ z?eFg+fVZu^eenI=tH}gIMIfTQ0J|j8Zy@N0hHin(X4G z)5-gY!w4I=5Ct_g$kyC&pz?tfYTUfp3I+{`0-{G4Xga|D7K%%v4B0IKK|%Oo1aO`l zIH5=TbXab_1|*l|=)}@uwX{K&c>x#%0huuL=>SLw;o!A?Ze{3iZNMT2;QbBSS#tES z1jto`;1&&q4$*3gO)A;JK}`e-D-=QGog~@vl3H3l>}P!d!RBEWFgXuNKjd`*@W+#e z1xV9oW5Y15c>)mK?}JGtCX7=56L$b2*}$8j5UIH~v;X((H+Oii4~(8SW9EfvwQoU= z`S0n`ZmcL;m7M~K7~8~Ff(DscUsqS$P*3^#<;%AJhq*U_>v3<_zW?TAjF7B~h*YSI z%McQgsgV##LWYnGsm!H>45f?-QRd7Ul12(;O30X`k%T1ld{1lby`OvU``Pc_&+~cS z_q{*s{@m*}{QF;9@5kD$w8GGWI#-i5SW{LniI=d!*qf)K^ca z&}}aSZQA6b$R@R`Id8<`=qzpb3^%vC;1t<(4cWn+ZNk>CUvFL9edgWiJd5etTm2ig zHeM%gNb@+74H`6XrvICcu6n|xN!@YpT0(|TQFEq!ou>G-DKI8yQ9s5JBA-T6dRwYb z8jq0qUfhr29Yoiw@u&N`N#eeg72|B)u~|SE*|tIB#xqcu5|F`Xp8S5lE6AoCkoNMx!N+^v6*Vi_V$L`)ybh{|lFZnz;rWu0Ae(pam>^auc;D zwl#JWPa$I%rK@V(s#U8C;!rZLn`7J_yJ%})22@#5R_&JnjQZwxbGQ`GeXvIv9aq-k zbMKwO!AXkK^h4)2S1ww%(dh7)H>#ZW^w4hYv8E#_#B&JC&?$cY@KTF!pK-B`m#fHX zaFwyw>Jw=G*eiZoTKhq>YVI^>Zgu3jLea(NgXO81X4F_8LFOZvCib=2Gig`Bn@U3D zF#1~HhLGh^vn(jDC;`S>Y^m5WDf8_%niI-c@aTh;Nfz1EH8I!^xt$)=x7Dr(G}z!8 zQ;DOM7dpS6|A}C9`pg-uxYA~NU5*}7GRe7JyLM_lXRA^v0SwAunWH5fB5*DB2F#Mu zgit_SxC+AoHy82Ti;G*aGpt}rC>>Nou%n!hb03@v=GPW|`sAGEP?xJ-~@$yR<-SAd! znI&?0*eUgBB5j+S4R39AC~g&)Crlz`u{e_g95`gxhGS;G5tp&^)(=+dJOpQ-g}9&q z%I~Stjy!cLW7CdNN}b!p^-<}&@>hR>BM5BrtN?6m)LhOOY(+t{Z{MU39hyC=5k7YQ z^mR=isX5cdCvpCyf%^Q}gLxP{FQrP;*%j)$F`JWU31WSKX50S4+}6aAhR(U4j1&>$ z*Y5QgvAgMkZ6J4?J*47vgSaM5Jg@htri!&+w9nA@c*Y3jmH#aG_-gQH%JG~Ig9qI> zc&(YK$78z5g`h0xqE=_*AEXqaVSiN60XIbPb!6&1BjRy=C8bv#-~F)u%Ni8aqU-%7 zww@KG8cb3?f)#F>Kk4z8;wLt)HDBFlZmIiWM;H^Cg-K8zA~)lf!YKeR#Cv8V6zuq? zPbbcC+{1Jm)gk{NMR`?Rypbs19(q}H2~)(^MMVvSVbrFLOunVZ>kwcrY$3Xn468G0~MK0MDK{RKWCh7!x+0v+eORSDWe6J8)TbfJLRfy<>1H zjhD}gzypt1OtW&<9oHfx4gn{le5q}2Zayl^aPaG;#*kJ9qG~`O(PMf4p>|Pbv#3;a z27Kf(wfZJ>4n`B29Bf1isXnV_O#-Nt=|WOck~kRJpPjMkzC#d^#+)xB=!G=&Oh1Ov zg&TQ)TTr`BozCa>g6L8{tOopfgRdhts3{!ng+*CicuCH8XfnDz#|taVs+#%dt;)V9~^YqLDMg@wL=1 z|NQx_CZ(p)>Ot`}Yt;(Ls-~B0t#DiNk$cl!L9`x~_e;57)m2+Pms<52Pe%=RJ2P|3 zqbRE(uDd;BxLdnPt>X01Yi_pTj_unIF8Dz>%vmBygNIw;?KC62dfNs1AJXbXr=9i& zGk{;aJTzj~9nJv22p}-UzVy#;WvN;_IX}k$^r~>5WDsa@@dY5PJp*xZ)7yzSK|C;E z+&rC065`CAogY_8_eq1zEwYa*>fx3XR)+^?(4b+%>EQi&nn9R=oTp-q@3qmW7v@D& zR%g8{A~!wBZ?JeMBmBga6u+vKD+U_xJihEqPY4t3{(SOenMXy(X1V*`481+X|G_}T zn~iU(J15xBxOeZKfHy$G7w2-_ST9(NU$H7DVCYb774i5`#KYPIa}csX$g^(6@3YA& zT);4H17CJMt=u${NcJ_ai>6noiQa(0K+sJP>Z;I}fWThwbHtlP#`i$&IoG^e0Wl52 zcOlTne+NJ#POBpe!e~We;Pqr^K0w&8kUT90lC+i>ONtv8v0>q_AD;eZ+UMrK+;?SK z@QxjI$<^W;3W{h-oV!O^a8k`N3C7eL;Mqnm7lVZapIoEf zy7g;b$eiZ~Fg1AvdVI+}Pg&9SZvv%^H%?FC*e-yK1Mv3t%JprBmz;_bQ4mlb;~Go* zt}O#&AeNB99i4ALI~d`#@ip(L|H|)*FV)}Q->E9kYre~|g!zgGcbbecKy$hni?1c8AKAbHfr-Qb%ML%R(Q-?}taQf;O_bLLFG zx(eg>VN`rAzG{KgIXgQ)B%6SSCgXHuIR8a|f;arfS1^cX(G4iXIg1F82-t}|>7+wy z4L;#yg5!n0#sjhqC3Rhs@bC{t*q_KS$-($C<7Xm4--icBPeHM^8=xW(Q`O+6By3sdA~MJ$6g#sedqK$%0fgoTBD=*wdh#bR9b zFE1HK0R9T)19=rbhe?eNZpZDAIJnxVE;B5EfBomX&S5A-MnTMW6t&K)h15^YBQXBm z&x?f#Vt;@dnb=@mvc=e3FXRolk&K_d32fdun7`u0A)x7thZHI3G4F@Zy$fM=&9fXK z8so;-v{kG1$B!G(LBkkyjMzlIYC4~eyG{E612oFY%KpMSI)VxxJH6T7zz>)=<&CWl z6G@k!kEsq|65XvCbnDKY(XTh;(CL1Bd#gDkbiH#j=A}NVp}>J+7(Qe;y?g|ipgXStzsN<+6vp0zepVeWWuq)HLxZ*=&~ktC8FmCMPk`>MJdwNG0x%rJo=+r3Sja>9xk~L003sVxcD-)(=~V&yQq_pQh*{N zXf-P}w+95gd32T10tTuRnaZLn=E8-#3h_0d+LWS#C#}plmI!w#ep(SB+!?A-9nDlu z#63Eckc=m|z)~$Mr!)U*G-=W^?~5~O_qmkcert}`{lF2Wk0Vl-+RNRgVs~QTjqO?D z#*Gbe;T5OZ{AP!*YWjN?h1B&Ovku-)Z0RmAfu5hgR8O+&xE-_5mi*{$JK6>YDq?2zJW*sx(Tnp^R`pp(IrtM;zNJBV*^ zFJzFRSOq%zn@2-=C}iZw5>i5|qhsFF49>cLD8TfD)r&_#K~%yGNHsZ+R{tyVpdyyu zSZxypVqVm>Nq+FaCffV~lb1|d4#p;Hstm_39u+A?V!8TRm%P={;tYpDCKy~kzc<%xvMGJ0y5v4ac3V9%Bh zI6U?XN>pG^u}6J(cW)r+Bo_oj=v^}SmD>wYm`c(Ax};$24yn6O@k>7j%eD9sT{Vrxc&*#BR zU@k5WT(k&tll)cYg0|Q(bY{Q`p#w6?@;l9g0egMtQoUr-2}6`ixsdKE}K+wkNedA*riop(UQnunn8Ykk;zz#? zD3g2_1&4$rliZ*1h|4#PZu30fb7Mi4PXxz+;Y;H8_z6i8=@Ls_NA}|_@Ibj1+$|MNcXlo zRQw(Pz>iqlabV-`-GdDitPe$t3Y$*dLODdK%jCu@D$AG_9$a z{rKc2K3#XQPsg{;TCJKjzjLd|YTQ#*J(cg5`gCdAcK@YmLT|-pq0iFNKNM3RMp=pY zFX3BHdiSq=O!0eMKd7y^rYl}?ERzUxRzMWD_YIijG^jHruj@u55-`37L)tbK3)*Ek z8^^W(LjSq@X^106=(&C_LD1d+s-;T=Mg%FGkXxgf>2N1#;RgU&lo~gFw?mBfpjHi! z19PB2OM31Yv~i;lI)tB3HSPoiy=!w2)Y?2~3F1hJHc7}?k@ps%vx5ZLj`4o=-Q-1> zhr5}LGB;1n*z6AlYu65ROe*b%y}I%tZU_@8S_@%+M+WHp{nt3Gw_(o0dq@VNF1yqF zr9uHSv0&5srq%~eI$qz5D5))&zrqlT9sH*{3_amMuiJ9Qv}9TVVhqZ)dR%!T{~J4^ znsd6Aa`!hi%}R%oN2chs;!gAD2g&4&YkAr@u&H%Ql+Vzcs3Dh@=7@rsDlNH76ZlPG zONGr07$+$EJrK5>IG^3y+IA6k4xkfBV#52ywAhzo^{+D|{msQ`=vOJ?tEW%3yL1_y z`z*_aDH6TbrR86aUKnEaDLL2I5&1Hl0r5&%0L4vBU42KoQ)T^jk>>Ol6jGN`c?q)t z%0)VVZU4EpZQClC5AY91O@I>cX(C6+Q$X*gfc0W6853iq-fONu7ZjZ%L-Kq0v+~|y z5hXHJikvQsy4Mw&kC4^=YQfiuFBGo|Ky+pCW$9qSr#AG6adlmShqFiFLww)A0#4)v zcMoq)UCgbIhhIeiv8n8L&OOfpLh23HC4iVqFHx}v5)4#7DGeHF1iXvdt8~q?ye?Rz zDJM_FyyET)0r1=RqEmP@KYQc9wdsLepcENTd3<=GLD8FM5>~#g#^i@_K3-Rse^CY$ z6XQ5~y@LxvG!-zkHj_CHBCfjRU1{vbn2n*=G^Rn|`_{9FnI1@1YJtQhQBA49$CG?R zK7!{sXN2a&t=FKVfoCQO-I(9yZoS57K&{6t%hg56e{pGsYWA`JtLYEky0r$XPk4rB zGK)kyO5z&KOl3j&yU{ovYl`_1IXSi$eXQX2oEl#OF6Q>N=meIPziagPF!X47mw6(` z?m6ojFP`aIf+(Q;>(?1HHn}^VU-Js}^zu5(Rm`5-EBlRgW^uW-tKWsh2c0h)KJ%Pl zJuxGdOV~-HR4bkXx7)<$a>_J=S%>G$`@Zc-K0i23O1o6_o?@O)jTZSu9J}kTnta(K z07pm~hQG|;-BLK5bTO~dae7!mt6^%OA}WlL7@0UK$x>C%X-*2(#IA z*2+GkhSpj26GS0=UTa^H#6@*vfAH zbJ4p68Qmb$Q1=a9wyckAgAjf)gXKOP@`yKzuDIDHmjji5LQYt+O1MC|Esu_Gpb%Bet>tqUbh8Au+ zR;31M!Pt+yS^w~$wwA+Z(aJ33Ys$@TR|8s^zrX(~!ewFBi9nwAG-Oj@z2|Gf31SGo zfP_V7rlt^oWum4Nq4FbRk$xwkZ;7@NGlDLspK~iinzgG}uO5YHT{={5m0I^14cQs6 zfi6#Wg*aRR|8>SWCr3);MA+AYrJbR4q*-`F*pPWR4ff&Fr}#By%ee$?aWqa-WA=3N zYkzF#g$0U5a*m3 zDNB2EsZ~D)cU1rJ%uY^}DFPcbar{+6qPr@t${0){U#D+Uh8}fq$?(WAyd9^}|Ix<@ zq?(Ce?)Rx(jvsK?^!*{H7NXQ@I5g8;T;S&~I;--w?Bhqvupf+vQUpJMkjI1EN@gda z=^bz1GEj!NOZqd05x3<_m4*$rg@gz&?CS!x@Za+$4)*Xo6&f0vkW12kP1nIev#9c9 zXh?Wk&7*Y2R#>9F*!=|7C(>1RG^I;{gZ(4NDRd$YDONie2r5&o2&>^kTvcQ8?E(*v z+6ttb2N|iM7~Y*ytHZkYeps-B8Q4#pC?WvLML>4Hvu76tq&OX#zb^e+x6t<{PR3D@@(6ci{{adwy^4SxM6?f>~VBB~`$2=@Ugbne;Ie+3mL;mgCc zIff#VpC1p?LR_@<{CgQ$T}@`Bu^BeQYqq|G-(T_RI_>Rhl|f8xZ6`@ubV-Nhb;K_RTZdQ8ki=D|8^vEv%m0p`8xfuoyq zD~WMpK2)mNO#zR8cgn}M>%3#Y6%Il!`uO#03da>`o+YzOTEvJX=htP+W$6ask@dY(jsw9k zen18jsRH~2C9UwBiMqgMGVX`JU}kDslNoYNcsBy1K?j+Yb$n-9?E)L=%9-0NV8vM< ze0htqPKfj__+()~@-$g~#Ho~uRtgv*6I2r+Byy6&44rB+$fh&(W3;Qew+%?pNWL)xdxL)+$=I#IUuT~ z^V!=`RaaYvWR*U>eDqL8DgikRVnMBV#c8UnGY=m=Z1!a7zE6mB|9^xj6qi5GFW)!* zOY=5uj=5|6UuGKEMqD|!GWy4qHvcV(f!i{_{+yPnpeF_-s+Zr+-Sdgd46sD&oz0Lf zHkC}_g4R;K(cuo*ek|v|mxCWxLM#+V`P(e&M zSd@Y|)@9@lgL@7h3<0_!!$3+ggzGc{B~c7QjU2nr7<^zfFt12%31NB$vWSbTx|HfN z@6(XFgE}76pSVsn^!@u;0^!o+u0~7An4-$Mw;%kei!J)90L1I17+Pr7O6=KW(IE%d z$P!DX&P$P|#Z0S12fYsI97W2a2lY@_yB_$uYC~R~+!~$VRc|t$?N(aH#PQnJ$@SZ% z0V)~^WtpN!pm}`=8ou~C zJb55^Xrh}bQ{OOYOZGO~)tlKY-k%9j6Uo(r!~z0*{C6suhq5f>9|bVVbGvOFE+SF+ z%QWq5*>afa-yit&-HJ}-E129T59p?;^h2n9j9bmdAeEsGx&HE+p!^y_*Jk6UbTq_p|RDSac-OJwE@6w30g>Gd{% zn#o%Q2cnZ$rtII}*7pJx2J^-NnWvqG{9)p)MkgcX6mu=%S?+in;VR_fUT!)5pg6f4 z21ZK2zvP+9lg*iR5rVY=(uP;vz0!B0I&Vn>>^j2O019^0m}VY*#A`ZM{xAeR5$EuA zs1Y>f=ffv_#Z@YoNN2!VTR1R$${(OmO@JKMgCVv|kMS{D+^N$sh@H=_dUj`dEHJLH zTUp0OuXUUneb=6PC+y#jzPx;~_2^x5?b6X5-_Ki=4>NgfBQ?WSyH7lQ_H6e6?{CQP z9v(l_x8Uf}|FnzWt?>iOa6<*W37gpK33pApg;+cRa@)Cmd-Lu+dQ68{W%+c*lwuy^ z3|Kg~+1$l3+Q{-*-9J_`SG%YI)wE^n*0%;!$3Droi(OpQvQ|7v_Wzv*UU}o#=CU?} zJexdV$F1pt5ugxh`*Lw{ad9>%Rl4^k$H&5lHITGXlmV;Xene0-d0XaDnlZcUtuL4iRSWV_wFNqtT+0aYy>Wy z%aoCRFXs&J`yjSXOs=fqKEF+XnYQR#6swqj0gpMoy}4D78qCQmst>h}-uRP(i;AWZ zT3^yR*9WpQ$9D;H65$PDIpd2yztQ#TU;Sj=$$;xqAQs|)@Ho{e)Qdt zYeQ)v;(j{N*YDql&A%d(e-^wsO+eNl+7EabGU1>x7>d>{*sYT+8>76G`j@sJwZJ`) zt7XfVzoCc{#|}n&p0F2a}Dayti?Cpg(L2hDL#Q_BIwC;j7`FS ztK-2jD@(gGlZOJUoK6oAeDWK+wbX$67A#yiINZd?HU+MB`#o3~1E8#ZnyV!9NGhoX z?(Ww1D{%T^gVrp)uBO8~qXU6SjlF@4oDYzaHx1FAGN1b&!E&J}H zOLCI+zc+6VqOBLch41t-8)P8kE!N3CS5~SpRfM1A3@cu^+Tx1O;aylFgkR2?dk_z% z2_q=qZCn3YCx7+c;}6h7=)a;j0x-Q+J{76Qjnxb7^p|B+Be#js){!-fj)0t;rVd72 zQ4=ANbP^&r^?kOHTm=uS`RuIY0Yo4tyrZNSp|5CBctR$F)FU->ySYNTLwA0Ip&AS2 zYM_IpEq%kI1qMw3lGxCGn5lnDAWN|l6$74%x*rM)mDw7MPmV$slG$Hd-V?M(H#2y)o%heENFxzU& z*pzOq@<3bhxd!G$#!WL`i)1za=DG5-!hoS+p-V~OMUR{Ha$VD*cqu)<+=BAObmByH zAqerhB%)A$77?PfZ>!4eDc28&{5+cYFOmr_og05iCSI9%2*^Qig-+VKKzTLfaYEWX zR_2^6;pjqs-QZz2i_x1rSQ$ZFTIejJU8)+Mc-POp=!9x0*jtN@@7jb#g^knUMl^;~ z3%68542fhDmKd$U=(K+F0<9M7-z@Dfus?zUvolza$P+0BQ-ZWk**2XwZQ22kKPa;k zL~FmB8I=nrrv0W~fJ~gVp32h&3-9)EKAaJKS zb9R6D$|N%en{DQBLVdskITa?H^3?{@ot##a7G80al+#~cU+Gx*?ho63Drv`>2z^po zK(@(`9;qZ&jsFpo=o|63enR>D zFb=xi?4@uALBwvnfBE(U^HfkP5T|wYu(&hBx;c_H?{tRKMz%72@fZi4p*aAnjlJx= z_4ub?M8)HO10ymYkN*|r1MgGQ#M_@6zcAd{xAmICx))QJ)Uwx2%s|`>I)U_1Xij6| z5&ryQL_|A67zgGwal%+JK!fERI1(X%ykP+tY<*b7-F6;bafLO1SoydT~KBWt0GoaN5{?{bgII zGq{ZYGa{yQarw0rsl@MN%e`VIIUI^K;MJDo3nhg9APlu5p*D7C{nO_(@N)#D*B5eIq z@+@?~iXUNnsjPa=&E8UD>dGHw=5at>*bNBMc~1}& zm>ACF83;*ds5nkjM0cl2@O``zV;%!Ny$v`*pW$N8qWm*N5A+q5mG95-CnkolO;AUA z<2j=+)*uM#EhybjU2-M!S=zCw;jo!69ye@J42bQEYJlP0=O=~bv~j-k6@WJu^LV0f z-A6>^cH9L+P4$<~)9t{UMB;WjI(20GI8Oh(rL|M+V@(D&3+Qk$G|XYj)UkWFrTjYa z5{l&h&XUm$05LJG0X}Zsu>P)`iU`GJnsSn zhGCR9lv@x>WY_KIqQ_%h{_sryH03%Lldm|Kl=k%iUqmA>^J1oS4wF*UCSG*gM5_`( zexVr|%)yeq<0tQ6UL>=8K3)io;0ElANg{-_xNEl}f3&XZ8wM_DDXAs3ED^Q$K#@dH zT?>0UF8?XphrfUSE{pd_%L)bUbs`XN^+I_;B}N{?%QRw>=(#zM z8~^#|pTYsZI9Y+|e?6jT5XoQI&ax>JoGtK61+%M_NpM&U`KIKO13dO`2-<1zp}c>3|p7D7a}<;2Zd#6*KuY(Mo~ zrDnK8*Zdbt5o4?F(?40Et?687cWbnet7A~q@?lIu8}VY1FppBR(5(&1}?dBqSnhqB;e5@WkXsOuWxrV=+ zEa0X#5ley69YZ~j{H5mxnr)fA+yDJ$LYItJnPi{3Fr@QRF_$Imis4k{1?)PckbwDk z$T~V<5w}2kbnfz0q?a+59>!^(qc#aim)T^C*cPE|2jq}6;g;%q+)3ck{)@Mzow|7f zPjLBimt!6G_lL?WYk=T0PI~Kh#SE82DHXATkR-3zPm$Vpso1`tr)E=g@cgmb^QLZW z*QHCN!-o&onX(#pOK5A*Ust8(vLiJ3uCL$QFW=!H8+;5LCw_DrH_B>+$m_R=vMol= zr4FksfJP@yketaD%QY73XH!FO;A=-v(d3-Dnm&ia1rZ~{`tg)nwbo{Q?Sb?bFRx9# zf88J6w(0xZ_2#?E9&E8zWg03Demrg~aP?Bp$$hmLn9%1yp!Hr+uybwS4?bPG^|E#+ z4-hhAQz5-1;^|^Jq!`YZTjOhEU#{O!?3D+`D#{Ah%eMk*=$mW_yUF8b+e(V{}`L94VFaO7Mk5t zK9c(J6!{WZ*Op+v4#^Npq@`P6H)T7-x3%gvR47E@g8)ocQvzFu)ZLj@bbsf|S2mTN zuWx*G(fC!rvlkD*2+|jStHy6q44qhLoEx?|)(L?IieY4X1N6Uc1RT+;rC0HKV&GE^ELdiL<_uJ@=dQ)%H z#*w&n4L@NvyyJE!d=Fu(*hF>KJxZgI-!IGt*2d~0x2NZ#hgW@_eR{j{tKqRECO_U{ zF^J$le{HL1h5|-?wvH)uL4mzxbM-y5;k$9&%d_GPbHBiH;9PcK4bol;d%<47FW!*781>nG!=Dfx zaz~Uc0rI%8Yr@CSZr7k~*b5%O8i>d)dVdjN%IHieHI(mia>UM(Aei@VN$Yklci@s@ zDIfyrS~p8JdBV40{x$ngV{2Fk{|*OR7yi$2Frc~~aq}iuJR0v9lBRN{0seNV9O!QQ z5CJO6kpnIo=owVMosN0eP#JoPxLqumka)i)FaqI}&8*i<$7TFqelfj2?m=fR<`%`p zb0aVO2e+7a&u&fsPe8Eb^+p(7_2nJS>(}Bz>i=XA^KI>eZT}VMi&om-bT=_YcpN-3 zUn;^~JzUqU{8eclF&a8EmdVyf-+ig|aQM1Uvm1H)_%!&z3D`qnDq~X`P52cz=m9V? z6Q^j4LI1blE?YS05&e=GyubbzqZgCEjb8p&w3E?sMS#i9w76p0DHS?o7}V<8=AUYVh7!Jo%qb?+jvB}6S%O-dA=>6f^4$_UG zVs6DR^?y-m_Uo`$=YLjdx@;y7{aOh`z=!wsb#XMsz=4UiR6glxY4?}tDkDIv!eDLt zt?7E<6%`dTxrO8Gv)JVDuAt!7fX#t{&Zs5pu>R#lH968)QA}x#j1(63Z3Vt|h9On_ z^|fhv=;|9Pu5dkoaM8ADq?Vf~guky*Y(f67RM~2RO?1++w3qL*3r4z z{)|iOs(l??&4%4+>ot96N|wK&TG5sOTjM45JC9OxnH%|KPhUc3-1F;yj)@%IY4HH9 zpz>w6WA84WTv64x!Zx%hZim}*fB*L&rVp0LZ2GKO!v!AFcCm+eP+K3d$w-D_O6aeupl;y{i@$Qvy<;1$k%-r0W zpDt=-jDOO6Gzp{}>vnX>lJEo}qDp0a8RxK2QC)rL)0Qn;nq{0c7(vDL^y2((p*zCE zgP@haCXPu(BJ&Q?gMR-pPoejdYhfU&sH<;4RCWN!N>VgIMvPp9F!4S!!eJ+MwV-rN zZqWg;GAI?0Hr?Apm2uDL(RYj;5pwA42pQf17N8zA?XAeNO7G7&)*!)%oN{*m{z0#m zx-4G2SX3_xOM82NuFSYxb&-dM8HA1K$JTzzCGDjkTGCY|QTG-Nm`IcQdw*++!CgH2 ztg;81n5;GpXgFzRXmt~}#XHa4ty9x3#65o?RV`b~t@y|_Yid#?Fp=3>)gN2jr%#_^ zX);b%UsddbRzr+X#FKrd0)*xb=~AcWYKQeHU~_yyTrRFV)WZfvHcY9js|$OG{>O0T zFK>Zhn3;jG_o0Vc`tA@Zt?QJl{>)&5y_97Ey)f2MM}_wLMQbuCqWyHnIgp@DM~-B< zot8kX;5{PIrD}AqgoSomkinnyTMFcy_$0f#^7UxThOk9}PE2ae*g5c}#p;ce7^&H& zC$)I&hcg_ljyi|0!|=l)KzWj@3@w=HM`q=N43Yc}QYu3lF@vTlhDW>%3Q#CNkaR}l zehhoX?g7vWpT7Q>oS$s^jP4peI z*5U?Xc0#A9eMPYQ#LAxYAZiWv>so$GoH)g<^``HZ;PI@L+QROPt5-$5ME@|RYY?1_ z9F=ZR5XAX`pST5ODsQ51tXs2yLpd{ZH3lqKrB~U$JJDJb^11RsbuP~yb&rsZC^Kc# zlAIrZb?8X372@)RI-vgO(aAPlV4yg$eTDowm8BxG{}U7|cI*Cg=gwL8Gfi9e{S0wh zv4`0@D03>iGQ#=}Q*Qp?8W zl`6$JE%l4`WNwoHbO-uTPa%IAfFSK>)SBo^by+HQ;#j4xR-<(-svgG-@9^dqX5207 z;_dMRvl*cotg5hS4G1Sb3c4Gca(AE<9N=j}nYQne&n3@V4gC3ed&1%k<^^KU$R$i;bc-lvHJ1$VkhW*8hMJmg?=;(O zFv3`=a46|(bW~K^_U(ss9nil0!P}|p;iUBO{$}{8yj%ugXpvZ_QIB%WK@*;WkSOS? zgw4Xl44rAm(0U3H`fMF;JE!m9L3R3?KC0|i*U!nMlzJDXSv=_%AXY3g*bAD>EvARcLC|Mq?Q*mqrtehKj(6U4>}@qEcTMTQM~@yI zK62!-&lc06n|N0|U+V5EOlpWBnFK}a^e0cAwCmh?M8s$*Zqd&}0wU8hz9>s>oD|z5~;GG1fDMB3)hYf}5y9dFC^nwK6qBTW?mt2z9Vf!uq#jemZ zyqew1bvetJ$|I0Goz#amnSZcSTni+WKA>yu7a244Kir%$y7N-=s0$~mW`MiNesTR~ zjea#16xd3_OJ~9$A{!#R)3j-80Bt!&2RLXtOSYJR1p1P4M7M6(yLT!tPZ`X+&Off} zGj(-Js4a6x$U`E11D{7YgwM7V<$%1V9k)mDDY7pPIt#DnE5=~=`p{C^zEKhuRN9X} z-C5?c^rg>wf>u;i)Pi{%Hf}Tnqo?Elo3`hDu6+-<1R|CY*!$~OKWYH-KjVSboFmb9 z%XS99B{5{A@cs7foA3R6uns>RfeBO~Iit{Kq5W%|xsRxt=}5$%GX zWJzwRILYyV>HcDk0T1e`2qGhfCbTiaJda(zx}y1gFZiVe-v$QEp1k&J>#6DabArBK za;S2~Ctxg*JI5>9*1|ga+_00AwLX|no@g@G49f^J-k#vSd+$Vw^#yDuQ%p4=(%hsx zBY0XIUrLYskb1FMU~-3M0XISNNJVMayiEoU3Y4;_x`ne*rE{C$Xh z2>8sYDte$ANXy8`|Ab6pBA0r8*1a|KZmreSwj4XAzjxrueg0|Jy?Z30gt__phmRgbyQJ^v zfkxTwSRfhB5_aWqJG&70&bod3UUpbG?h)^O6lbr4s`4#dcb*M*h(+%!?QzKTdE!@AFG?7nExJ*WUOUJ=K&U=8)ehm**v@i6#zJmAh8vqbe5MjHV`2Y322XDE+Aw|gD6-tDiroo4(epwlx&d2n z&hvfh@`)p^X{fwu74!Ve&Rx8|8bU~ycI>zdx_~g zhvndD-+_sS4G;GJa-n^P2S&AO&#i9z?!gF%v;aq96u|L12)uNOO$10fqKY%s{G7t7 zZRYo57ts`jSC15LZETUmculqd+u7NP2PIEew|wdle(vFSkDhT8z4gQxgmnB7c1A)< zN?l>k5PP!s^f-Li6Tvm;DiTzyQez7Kyv9F{ABP@<$=X%&g2k8Mw-jx&9!9B9L5(k2 z{CKJ3ib@?qc+}sI$o4EpSWI07Xoc4#V``W6Ne_+qFxD^D`t3h1mWqUkt>NLPwp0KE zFpy=!#S2tdKu+MMVEYeHdjtUH)DE$+X^ta^Y))l_G;m?yQOApJ&o6z5`bL2l9JFH+ z9@YO=&gn(Ol;-0~rel2<2 zbn;{k=E#D*zWqcz7A<#{#+$o+O&i(_rN_`8fAa0!jx|>SH@EH6Cro4e4R2%F#sKy% z=Jis}!Ny;G{rYu>eey(CR{s)@F|qq#6eQkOvb6*zv%?F5p%XnPok1-gkuaP{$+;wy zY!*$7?sej+)LhJ+^QRz-*X_QNo}26N!+3FA!DY%mi@br69GDwGytLwH-_U$OphU`R;Vd9kYC}hBO3o6a;jS67)QEE> zdvU_gZE7*@g!!cvbvKL+zrLXKVQTm8;kJ|el>Fe$e8|gFa}d4l(M;Fu^P?wU(rRHB zIwo8T(26|2@WX@q0$grEDsEZ{w$xlv`mhX3oSK6uu)CBk&l}(qclz`eu<)_eSnbKH zXD(bA7j?GJSM;1)@Th@wx{C=>3su#d=Lcd6c`TJEjx;egBYn|#Z`V!!-6QoLw zX^&mjC)=v14Bi#)nA=VJsK;#vKk${|{l2}=rdb@zjv9Wdb#yL_3?v?Li`dh5v9eHT8EuX42(d(1*T})>U@3E03K4It zr2(R2YGZTu_IR>GfD2}>C#PH!yKHw?nm|xUGjDJ2=*I@Sx|V(FPvJe~vDa3pwrqKT zYUg(UWDpFM=FM#i&j&}mC^fia81e<5@Y}n32JW6Ieu&&NnYPESHhOg6^nOLrfZ4xZ zJ)6+4$)Jxnw6>iQdrnfnu7QCW!JNvJXLr+Q-<~}Uc|O1(`oV0d23s0LgQ=i`uE)P) zC>&+oruP3%6ATRX+ZsstDvUX6wrUmXo@~r2a&c{>MU^ZdqEg|nF=L9{Q3*S_MPE~J zsxWAb)PHi@m=*0Y@lodwt!E)>Xa<*8dhgkPxhn?I8y#RYW~cGc(klj>xe);c$llDX ztW=m_yuH7P{RRLg)GG&4OswE?*=PZR_j&Qa0=T{_`lH;cj?jN zSG9@Te`t%v&e`1sxrOhNY2mO1Dqhlui1;z?d!arpqi{o#jQ^89x$6oAP1P2!m2^77 zrO!m4d}$0GVqgnpAl8@~2&)sL2%X-|FkBfo+k7|;(B;dQwW@0#CCwFy@>ERB8OtC; zQS0sY2ZiaS{(zh*%#)FGD7R?Q0^52rqcY`cp3e9zv! z0?aV(5o{u@aX|EpMz(fFbMk9MI$YEyh*X>^p%<4DO*ZA=9jH)1`lM4xf*E|!(3Eli zmR-BVKWC9AM!!nYwi6@A_^`kbl7OsJVG@h;2Li@sTvFaijGx*lWWyUxeVWg>kYpM8 z)D}i(@Kcrhh<>swePGKdHEJZC9XYfC#>Ys}bVvEO3@}qJk+o~0?({8E4Z6?FyA?qs z8O_hsY18ob@?$_9{O6OtSjD&nM|YsY$MRuBK#7f&)!<>n{2Z2})Y<8^hg$m;4oo*Q zGGxPq{8j37K<)*e_#TSg4bwL^A~b;Ct=4O9n1kl4p94D%)wViOP`k$Q_DP0XvUmdl zh?=^3&1KcyrtBOwuGF*n?R?+VT)X!wcJp|9#McUvmbh(G=BY8&mluw8VPxU-JaoMx zAwzmx(YY1L%sv4ZZ^ABEpnxUBmbhPjKo#?cKMyS~UbPxqD^!gL(6#wExZL4+d z!meGiu8pOY3xPJ8= zt(VMdcu=+hgbiG20$)Nbyum!DqRtQ{9QBj9NFX*59yj`8`NiHA_wgE9=H(@;l0+;5 z=3p;Y86JH^dN`&fO46Pv@2FK^;!G01~v!dsWZ-rIMZH4K|T9AlUt5&&p3(v^NI6{HB?ZSm#1@GTyQWM=uOFiNZdbD^!VNaC6D5~P`+&M9B zbgwwP!mzO31Z+Y*A___PXs>_y+K+#fRaMrRs!65KMHtBFTy|Xg9O4vq z`55jn>@V7SCNXL|{l}5wrWQ$kO-EfD_hb5{Wz9Y#O%n{+Zuvk^ZMAph37X4{zhnUt z%Q7!n!!@#sMQ{^3`O{WvI%%{!Jmow78Zz{B>%0)6#+f10XikGyEnXM4TxZ}wEgE58 zfE1zP!C_=Bb2ibswVzXA=U(Ri(Y-|-LLnrLiNX;1Gl|Li^=;{u5C57fA1DT`T=wn%?bt5+z`WhF?t}g~B}` z@nVcGw)-$y=wzEHEUm0+1f|-zdo;9J{7<^w*y_jCMgRR~*F>&M%nQ&8Q6#h8L!U>Q zW^fi)4PjK!N*&wTc1|{d){qg1tSF)Yk&bJ8ETJoc)MRO6BP_av=uZk+6v9-)boA&( zg3|^x@ATHBqP%=9#yafNS==M?DL9MG5eJMYK=w)abrejawl7{0)>oRSWxsy>DcnO5 zND#6>Eko1KIwjVXF9JK1lu=VCyNs2caklyR>C?9KD^N-s;(#hOAjP4y4UP>W$wC zt|g>fsW*6F!Y6}aW>$LpG_quZx--i*rT?wlP;C_);G3J$R+iuCEpQO+_k@y?quXW= zNchq{ehhK;X!*HvVASudSEq|@sxa==>oD+-?U3Lv_4@h5eT}+ZP>#)`HmSVShsL~q z?V6uHf40?ypTE3j{NBF%wrm-sm_;tonR4ptk&IR?Ti&Paizc5_eh#BNQ(oLMH4bt& z1y!dQ`%#Q^4l{a-{aTM%))!KiC4t{jUP$_;L4fNx^vO>LC4wIrz3I(OoWjmfT!0$kN1`|!a)wPG`06>kn`>{_A#eg z(fcwnt&h*XO-e@L*GNYDi4DTz0WK8s7WwEPzmnE?Q)NRHmFe3KsIR$ zHkGcJnXZDNJ;RJd=6DboX~3rK%!7I(dzCUfQmf!8^x@#V%PXr*$T4eqcd;i-pnO2# zh0%!A9ArS~zjrpN(d;ya^)5{uIaaowiYqO_H!{WE`&8QU(;*} z{4qZFanJe->W+=FF8v|!9$!VdK?5sGO9k9za7_1bs`(+4Cbgk3R(A0JWk0XqF_ZCq;7(o#H*|f<6{~zYI|DY&8&`&jwI`Wg7kX`iYkC(oY78H0k3CBu8Gd_EIb z2QiU>i7d-_IlS$bo8t=qQMjIlQe?MA|ciK|$J7#=*b9YP?QxIuK^{3sTAjhp=}X(3<8EOxNb;<{tw*N<3r*81cm6*37w zt)2p!-HoiQac&1roj)%^hred5vJ3QoXU2Ld;iliwqqAcRbv5f$y$S60_WmU7oM&_z z;^-Le_0YzEAuVrX3J!qS4Li)Mi7BaBY^o_@t~EF(GEbTMmz%NBt;Jm-DtN;*Otx7JnA zF!o1B*M~Ch&770#7)ri?I?%O(yR1L{58|(Iq9F@*3k7eI-CsK<(pUkb@%}oSq1K?`F&`IbPwsv-9#CqeR61ElyYX9ySk6mliDQ(_e zVe&E>?OFoKc^0<13=MAP1#H-`O@ApqPNiitV(`dx4=R47N=akVfGPbN{DjcJTiM#K z6LK}d|L?BQMqhSbBZXC}U%$r36~P{~gfbG8#Ye!CjMQ7uullj`lwvaVPR{}oSm?N` zwW@Hvm5nFzw;`1ojBkhlchyfUiN^N126sSoT6~Gv$P(f&bNw({ zNb%nWkde9sm9_5DKd5o&n^GZ!%Z^=|%~zmhsYK^A2X!P(!eG0(Ntt?ER_tlbd$3-7 z!12YGN`;s%!z>{vGgV<Lx;hPPxItmV}3^M6&4*mGy-8E=b$AdHs)`2a%2&_-> z9eermebC~7DDU+A!0SOAkL}ECU@cfN5ZzfB;13?#xkry+ukhWwN46ifQFr`qlh1hV z(%vElLA_pqg2MMQD+k9?Q_1*~aNz-V6`R4B%mS7mvEO>OcbdIPM*E{F z6WqgB|26!~O^CI5fB(7Nlh+UD{M*zsy1W@HX#zO4GNTlQ6TnDe@#a%$iyv@+YU}sJ8Z%@XY-jM|JuIU>ZepvfM>FbBq};uQsyOEglJC| zg8Nab?594Qm3_J$B(n)KR=g`0XDMnTmJBN4#HGJzsT~cKUvy)O4@!VtO#thKlfd&A zxQ`kJrtX2HALMBv@IWLApu&L!62WBxa!hDse%H2@c7lL@09nL>1N=M`iw|aAb5&!i zS?+1M++2JZ#kEAZMBU=P)kHLunVC5VkT0N8Vm!fA3JOR^Nt_Jk8>(NsO*Lu4@lb=F zA?!QaF6o89dX9c>97~he&_=~#Z~G2ghcAFrfZk-w$Xwj1o}4|BFnC@h_QbxndcG%5 zx&?%{QdNZxwaUx!Y7NJTjcRhrRG5_1^^;(9Ejv&J=nIF9WTfb9d zUtY7-^I3WG=%^HpbjvoX-QIQCyva&)Nw?WMMs=)puj+b+p5CXKAAF9!9BomeBpz~5 zuyiyZ0&iV&eNIt>K?=Q2o+>+C7RdQ*^=Yz*B8C+i{Y!}u!{m|ztxX++7@q~$B z4eM(Xmzi2StM{0-O43`uephZgHwyN>v;EkB>}yf2IST-eVo^>Bm}ioH=g!X#kAEB= zzv(CTmZHzZcRt!{75Bl?Ep`g%1(eLp!a(c*z8q_oZWs=Dv~)jW3M?x%K?IREVFd1Wpe7pk29wl`7252gbq>$ zXIwboiWlK#VC;8Fhj!6!s#JLAr>>sf@|73V!X1zGO4nae+vblp2m2RKd1wHuNi%5t zn-39Vzj%#^UTUYSnt*AN+kr)8N%>8h%&t0x1Z*nH8KIurp4aM{YI_}4Hr2W8+R5=g zK_=HRPc|H7hagLh^nsv5cj-=$uW69~?Jm19EMsG8Y?HMo#6m!~43L$>%9`%zwqOVCs=BN_I9*3_$bt;<`CXAk% z_L1K?NaHQ+c+k|->{0o93PtbaWHRY5*dX^;-dxn0P>TpZ`fmq7)fCxt%Rt_j)ld{= z`H@bR7rP`pin1C(Y~fL@W9kp#MOOZd%{fqLmor$uphfG}6J|U?o;(clJN3~W2EWBRQEPiML$v8Q(zB$@#2MhB|NmTxarU~42Pc^K~T)3Toj57@wrpz zV`vn}GH#})2a5G4(AsAtR5Aws-FByxy^c7RXZ5s3WQ($xA>*+|C?Hw6pQ0MuM$^O( zJ^64sv)}m`&VBw|VAHjP)7$~%H1F=D2Uw!Bi^ZC!_B?jcdQ6mtlOZvBw3^+T=OFB8 zkRTfn=Xp=hQHeYRhneHBk1pzdD@X6aT+9)^?G}VD5PEO@jLw`p*Fhl!mDuf(fsaxLUj2Pzbbj6sxi#IEz9hFB3sI6ScRt9k2L~Gw zd`=YzBj5ThR2WP8p)a*pRhiEOY^kApKGEjIgM6;l^~bj|)(&@PGSQy>%D#OAogE=# zN!qnHIL!N;zE~3|T=yU6>R#V}tR%*7rsZ^;u@CaHHT;^q`%|tilSW9J-WXEn5e7J! zAcA_KY?1KAx^fJesv}ZR{4m<6s65B|l;#+K!XLVhE9SJH=>XmHfLKP5P_>z+-hcEc z(!}SxrG>@(Zew7x=ED)phI*%=nbC0jUp0C_=5q{$cxLM&XCx|H_gB??vMDYd1EQw)*=+AD@OX#K=_ZS zqc9M(UOoTaHFD$|{yYVB=kAW9Mr};E`hcoS@*f4)n$4RVgH>+kj3?q|#tn0bBX&!` z0gkAnfQ-`;v&(ql{sG3drK`l^GM>5dLR1!t5BU}pb3*Q+Ocb9KL1~1((ATJ+q2b4a z)hj#d=m^PCxgg~El~d4!o$7>ww?olZQcy!O5VqRsx#3S733`4(T4=1sfnvqRe>z87R@C(a)Eqw;r|Y(4jWpljdN^ zlqup)NhInNnwpi>68I>`3ouB8^?ban!{QB!`}KWJtTB}XfuzOePMj2xMvKXld*06l zwg=&P^$o{q_asceL*D9nx-(L6sZL^*RMcpbE1|5 zN>c%#_OKpn{moXaen6EE@YI+oLaR@rWqP|g;psK6-dtxB*t%2-@i+!RM-}U1hsmTI z=3=_Kx~nc3`-W|xUJ?|c;;3hHLY#(~zpHjq^Xt(+=4#8v7J?%6%*)92C0^IS3iMN{2 zDj98v_hxQxE#8r?LGaXMUl!F0orZ)N1k~HpYsoqdzu_H@_T1Zce@lb#nI>ap(+i#A zY3J0&u=8Z~Fz*^$%Vdaa^MN83HH-*gDHs*27+qkP0)5TC-M=S)qq&R$ZE052?Zb)z ze1t46q;6-a(t7ENAj`LV$w7_nv%2E?SVE($Ae7?$FY5OYW_)>5c!}~hD&z=Zeh6-x<5Qh-z+;&sTrC3-2wwDrJ1Y-X*8W&ih_8=&j;u~TuTkV;hh zI_d0W=ht6&#yN9miBV7!WV|iB2pN+@vQzei2|?Bbz-}*yr+@FzMAOt(oV9q zM*%5s5iu1AtTr6Y!Q8Q6jh2ZI=ZHlL6{t$HW;NMmDZdTfE*{$Ieu#s-2;3?WmIDeU z^NX3xxBo|PX9CxAzVH8^!wt z8W5mIbj~Vpl-xB5{-nSQIZc83VlC)~D6B*cOV|dcv8 z_=YY|%{wO2H-)qoA~iNKdL?IMC_^CyJi63!eWGj7f0WSf3X9lh-MR{;Zx_@UJ6jSV znw9$L{ixC&W|{M~|9^lRdmdSh@9m#K*^EGs*|SxXn^&*8kvH&)M?&B1OFH9Tq>GDj~cuoIX zyI9w7%FN1k8nz^{65*t1u(0B&maK3WG{04%#yzBe6zN(F`sJ*QEhr0 zD!Q&oVHU-bFJ#`hdGih*PP#K_%Hd(;bkn%(9c_0cLI<@k5@9pqdEsz1vgp($Dpm4H zK^awaoYp6F)L5u;+(kCKfHEF?GpP6&FQ3L}_tr5!twM?IS_q&fE5*j?i+hW{ZDh=D zAdE%DO2C=}KUF|-H%_7C# zxXHo2ID&$M^G4_+guHA>Z!2rIC_96iC*SY;t8%0#OI5bOuZht};YQ_^?ORHojfMzi zJug*D?_(2Xu#<1Z;zJv>aN$BXSsjMX9<0Rp$Msk$mwjcgJ*A_&bcY$5Y(+QCc_SeT zumI(HUYmKHo3qf`+KZUvS&olCK1MuZq}_1#!`TMmT{j?a7m(N3*p20Cjksee#EVD0 zIRpF?%sfm2@}|_haot*7#pcIch9Ya$O~*G62BQ^1{RcSJK*(Iag5k*uMq^p~0|6NV z;?2q%tZ&ai;e%o)WDSI=;bEQ#f7q?{Ho=9c+%D&H0jx7Dhu>EzF2M7FI`A)yv|g9W@%b`7B8h0JUp|gL3Kr`FS*HF-+Ce; z;z~(|2PU9f1@p*TMg=6E@@KH2tccXd0!|FZHt3}6CHEp_F@lJ+y5Pl=>&PfN2oBXU z(Iw&j5YD|ygoJ|^CAn+Po7>&bEaLNtwpidu-V>yor5&k|(z4?KhvHs~Wt^mYxuX3kSnqK8L*Y?7Tm)>+G0 zr%xYG-0y~owO=ls9j{^Hto`=#h$!ER&}075B;vPg|MGriRHeTC(c6c0bgh5sMh}qp zxP%iSv6e_u$#T0l zz>|Ui;k=PIT(fWAT`OD()1Aed+;0dXun!6>EZ^WaNuO?Ix6wUDL2gliMQ`>8Fb?Hs z(!z?S+;UYl0NhPNTII*!XC>i}S^hd?(ZeOyTQwT*@82?`@X@c84wvF`w{ABqcv;L!6frBK zIw<%@wf6n&><&Qv6KEEcyLN4Xz=;*or><8!tX+G%oyh$djg&ifY|5vXP0Pq2vD&6E zwZ%CxaluZG2ZfS=GpIw+v~g56R=^uBLaUD$!-G9O11w|Rn1IFQ3YT55{l>$G9XZy= z1AYgGhHk+;*8}>HaGib^Xi%EN3AD{wf-OyK16QvG-x&cw@f<=(AzQI&DA?7ZPBe~K zXHXH>E$X5kl8z`U35LBh$U9mo6Dk7wyp`*+C;p%-wHDct<+4XGpxeNf_f*bta=M&! z?Sy33u~{?XBO3m`hZ>%aj`razjMog%qoYFbL{wlB$CzFIO;TD^7UE766#5 zt~iZSQc?xb+Exj)L@eH9P$N{5gg|;d*)#ZSQ>%SiFR6OKUiv(d{1LRBF<@yW zWl%~uMua2_ImsSDT*o+#>L~eHK%YcPg7;&0+#npj{pX;ltsv?XE z1yJWodFEaqD?y20!x(zye$_$VfKNqnzO~L>K864)de|r8wIu7+k#-Wkn7rI<9(`OP$c5ki^>%w7A#adt5<`!fkWTGqg)Y z2{d!q#aGED6|mXtLLpVb^0^iRn?ixvQ&#KnL&o!bghWOvvEFV-pSiO>X3XXY=W414 z?)CHAL@yd(5d>O<7Eex6fKJKW6rJqs{x5T^R<3N0+N46|B>5>kpq~2OpKEQq(XZ8x zw5&!adzcyUNJ{v+_#F^paFm~Vvy0Y49mfZnV)2c!L_L_&!O*&xUG2ifKe*HjF)>Ud z>{DZf2)H?+#78cKjYl=C>)hxKdS9p4y$4sAX;;5rfKEvtgk+@F8Uzv6wzh01ZjQqD zD;;kUr?$m8eEs>5_2-Z7LlT1eEuw(uukFlXA_Kj#rVbGej zc!sp-s_^vqL0<+g2a)CNF<_N(F!Ne%n$nFO-54ICg?*gnqDL+7!B4=G=2r)t(6cLD1+?eoqDjMiE7zoGX#Z z!SxDgOJ5(1%Rr*LdiCnX`mI1=!DZ$`!J{!eC33sBcNj;Sum?q$Ao5E~r$Y?07V2&R z+N%&o{2xk7pC(QRWIE1~A)k+)(U0RRS1DGoc3K&xbGZ;;!aJ!0uK*2qUAlrog$C%# z{mMNtwmTi%b;ffCh!!zqWD4RMop5#Y#J5(4b)6wgGR! z6y$P{&?1sR05+UVGp!OhzUx%ev-@++^qDFM1~)E2l~PqTjO|$BP~#jpKyY7GW#yg+ zHUjAW>$2<*-v&*eHtjeC+K&_*8*A%b-rn9x_SL(QuFoI{ph9Ql$Ux*RCeb6Dix|U( zk#;K*MUh#bITOs0VefkL^t?+GnLYc6X^-1NN{(&L`B#13LJz)univFsHyQSX($P-K zlOmcAfuAtl(C{d>a6c*qJ%LZFVpMNUJY~DXOmW>YejOza<@pTtnmoB2Y=dHtKaH&IM9@fu3!$#BzEG$Le@nEv>k!}hV= zt};CAsZ$JB%a>V%CRUSd6^Kw9y6UH8GJ&R0H_j26%Gh@UGuA|}4Z z=!$b;vzwcOBkY{mkeer)H5k#|%!rUm4kfU5a;nuiC}u>Iho<#LP_436Lzmys4BL4! zjUh#{Fcb2mPN=RJMuh z5%?b+Y3VD-=5|L6gCS35Jx)KTe?HRA<U3oXy3!5qC$b4KnVkL3*n%UrvYEM zgKmOm+fjYvw1Ehv6-Fx-bzzM84Zc`kCTUhOUE?Z?P`)Ivy$H>haIIHMDlP4YG!f`jJpiSltgPUVU~xqH?)SM<(N$Y=Oq-Q zk^p5bYgn^RjvEb&Cvoq4jT>ry)7P;1WoBoWj4?!~^*YHj;?lxrp zRVDHdUcCV;muK7V=jTfLo1{Ys`a!|A;)M}AY2CM#NKtmny8#zZA$pk$d>sfOP8$+# z6L>f@TG`}BvlnG;bbq~k?3@$na2KVbfl>%H%pV-fZug0c!&epO*%W@|QV*~F*8f)D zOJ~lcEU2w<{^wLG0}R;ce`eBkeN$cqOwlGNJ#ci`XDTK+o<-cXUVGKMlg-f++&^yE zHhn#jRL?r-Qu(~G$jpg9QO@|}DC% z>L#G`FA!t{-U3GKG7MAdp{tN>#ge~;^rZ;#ADtb5&^F+$fZ2&YKGWh}!12gBcJ%Ba z;MM5!Wksu)`S1tVIhH{bynK98!0HBLqGqgG#10098wV(pfUFmW+<->yFo?`9rbpJg z7lhgg~y%iPG*lvA?r}N{Z7SI@qS+cW@`kFAfD&oU1+|6=~ap5t49=d$2!L zRFr3zrV-iCNbbdjll349(!MsK*0rkhr8RM`DhNbYE3-Q3pX2l;bsOsbh_35=+c<`( z&Rk)oRTh9(UtP*Zt7J2(454k6>Pb8X8A-|fzj3cxCVu|V43Uy7*`$z%fa%z0=Kxml zYisa$I)RG!N_ha;<$GiZ88a5e%jtBm^z1eoS|{(`7_pQ~9K+nq*`UCqBEe})zb!zv zxzMsNg)UA~?BjoYtAxr$wkJ~MnErN0r4h6a5z0@rS6x?k;fefj!ZRq&S=bkmagzo_ z#**HabORoE!?@KGWC1A?6shzr5E3Cy=(Lc_91uT3**wy6GF81*`}SMu8BtS7CQvyG*>D%L2omyX{X$4u@ohyODrO3Z3lLVv7x5=2_tTF@*&M8ar(j zR{{74=`mS$kj&aNhs}y-Oxw5AOx|rGS$*6 z@lva|Y69qgTCztp*jzK~m4VrCq`M-3R=9ojB;TG|et}S85=vR5q~>AL0)PSSF4ysJ znj`Fe$zX$}6A0f;OKS$U10=MWbbAJCc61q+XaPmmQwVIW@-Y0S^+p1r#L3L9Jt`ne zM#eZwr)1IDb_8;iq?wSZ|E{b&s@nP_-K0`fAsY|GTr=af>8x3z+~O47jQCzAReD;M z`dQAUdaPkJs0cy<93}V5*Vi|xV&3KYF|n4buFmu}52Y){#&dIw|Hu&|mPyo$j>gv{ zE)ns=yDP+?)uiF())lLo{@rV=KqxyF8v!C4Gpm|{$EW*zbs5VtHwIG4tzBK7mk8>7 z>qb)r9Oh=kOkm#cNYENu8JONLsR` zSI9(MV7q}shL`HrpGI6a{@3w@!Tp|!+iv0mz_Fqe9MQ9)D14Yz%5^)LNE)#2WxY{k!i}&@d$9wvj{) zwvTK{JGbV!9&tTe9a)LE6DS-8rZGz2A+o7R0%dTMZIJ94mY{2s1BuvO0<^z|auq~N zqz8r9x%^X*#t7Z)8?obQDvk|-?UCZL^{tXL7%>Jy37(%m2}upt3_Pf$>Lf#0nq=YM=_VT)-2 zn;r9WH_mD;*Du=2&Q4X@${Cyg){M&SMM#rK$6?CiF7~%0wgrN$#F?qZTV?Q3_=I0L z+-$gL$4;M~F5K&)MdJWK^Y^+gxb&kp5A$>(F_tc!00VWOcE*C}AcMS<+j(65am1iT zvc+Pds_SA|@&n+Qy`A0jCoF6+fybBxsVVK4YwZ{6+L*W@+*xw8`^_*nXPfw#PGdF> z=H^CTw(y9EuU@Y!8G>I|+y;I(dFCAME@?lMb%{^Ly*i>IKu1O2mrM!WquPQQ&~z#wSm>Kp#m5M! zp7v0EkC%5@fY{cbGqm$stg+!5e@(;MTD23{c@!vjSC9`7-Kz*k4Yi-|7boIS-sW4>zO!GoVNYUZkJtt#KXE^B54OVFuC4LPGXkwu8VsxDOwOIGIc zO1_69`opn!(ePg>6xP<(YZ@<+^s_B2apQ@ed-l{4l*wJtZn)OgbdU(tUxHu8_W|Xs zkNIb3r{PK(8X8hagg+LPvr2z^`fSaT=2?yO-3j|-7|h=8GsiilWWwDSWmS@k;q8)r zvPZeA7!mpGKX|rbL0MP8tD0tRi;BNvR~(XB%s?bxYL4!rC>{CJWz^vGIu_rL`03;+ zMB;PwLe8Yrmi)TiM}kEq#0+$ws1PgRl-I89Kirkh1NoOD6SN9?l}Ze+l>C_yD+&t> z>!vh>-LhVRIfl+;R?(itoMf&bT*I{nhOl@-6M>-2tDo|sX7}m0Rg4JF zB)6A~(7CC&(f4iCN2o?K!Vf=+z{0XqP`Ux570vMitNoRg>*GEvSQcbq`z7KXPQg)fcoit;_x}8wBm& z-&A4zyzD*Zcq>$DOw;JS%*_uZnaRRxDiyW(#*u{V`fptBcjaQ%{X_TL$hhXf|2voEw~*#iTtlx9fzct|Sn^V1&tsWptwO~0&lKEV z)7#kXa z8<-kvyZ=VBSVT$}N^Lm{N&Yk6e|Mo=h?hf;mHV(5Fj*4qtR&Eu%sh&;1TnAHTWeu) zz_K(QG)#1lZ1Ru{B7D2l5ETFhlbLPmE@ssfjf5Tz6+@TZ>HE=S_S&`Q^>W~!8Oe7U z&NHGFLfpPGG1!8P!yJ#tzBya?xBQc5`nXwF^9rqDazm(B?wRZMF01>2Chd`-$bTJw zVnyDc{LjVT{`W6M`m2UOl8IfPLr5lO&``@|U+5tvLx^9Km08mceP=S>?^ow`aUGz$ z#?$=C{=;D_AGG3h`COE+So8Q%-Oe|-BrLj$^`5>zGO8$H{iol)MWo$=LJ=MrnUs@r zpe8!9ce{iRyqcWu-$JdlpgKwX7YOt4wyPdHU=);uTgEuSdz>oY8KeO@Cc`Fj7iG~H zpuWlbW~Qob$SfnHn-{T&c}Y?;Gcz(m&{?!DBdl#VM9L}FsnTmA8u8_vKpTE(Ymd{8 zni~fKF^@xJv6kJ@@i^^%?*?8mU<~iF;jvl9CzCe-9>hQ!5_c0q9nYR}#=&wz=>)>L zE`0y=2*+O$tpfI+9@~9nD3rVyW+PkTYbi;5Ebn>}eGK!NE z6^R!b4t+%tLYIC+YoYchj~~BId=5JDX+gt&u0F1+%u+M|%>_ZuRrY#PgTuECdhKyLcLz!e z8S+I=!+Hah&RYl=Xxpw`me~V`8B0q%Si!(wb$g7CW92(_9>IDeNB-1l+y1KB$k(Oo zPCb|tAJ0}Yu{!0x?{b5CFOgxb)1ZO^_vwxqQ{#VQj+)ua`A*hwcg#s9m1>70VsGdA zGN#pmh719=-IA(9hg7@(wEQ2LX^+H2*QxIF`k23*FI=BQl;M9Hr_YtWPJ6%`JhzSd z&{~t6r==%P_Ls?f-n<0MkM|>#)sL5mCX7jBldNOpJ%TrQB598j)B^C0CvO23Kt~7x zBxq!=^g|*s2p(S)w17;vTbz2b&BtdV0v4JecitI+4@6BwZpQI9zw9%NH0`0s>J||C zKjNzzNhYt=euz=?zPhG50dXB}pkMNkm< zh|vq}I~xBF_ZrPJFn_rm?Scwf!#t3d794MEb!UFAA7WfNd2w`<<_`nqQkh2jtK575-sPl5&^SQZrz$Z zKvzMlZ*bVtlP&Go_knYI*mrGHv!w zK5eR5c1|E>i1#&zO%$S}N1^q)q4~I_B^+5xc7Ga~3LREh(y~1%=lzR-8Q}y+kS%#rf9N_x?LluzSJwy;1 zJ$t%;8#EBjStDD9RZdCCkA#l23yO=4-R0@&X-O^n%Rq5?Ymewln)U-RqZlgM&gX0y zuC`v)JR``v7C5ljJi}4BLk9z>$DY5la7gV<5&eH-FmI%J{(R^z3!rpX9`2?O!(o~M zFI5D{E(HTt#}IN0dW0BHA}(0+7R)N+wY!hln_9=k)R>(h zB&UwIF>8o7p^gap9)VV5(8b&=ZUw zkWR=Ra(5rwxcN4yH&X)!NB}Y8OzJ-t&ELh7m2- zSEJJg-U?C9F)WFM4~f-t_`_?I;V8>>HYc{$241}QW58+CuBa|k=sCm%&$D2Ku}bhk zCR^M5Y9QGzos|(F8PXFVTiY!Y!a@*vIj$Lo0cIq@2zoluBAq*uL9i>B0)!#$OFbC3 z=Q@dGhv1*9Pj~|cT5%`x3Tq4x6{Ul1BYPzI`hOlD$-l&LP%h%s2a*CI2@kWpd$Rp) z?lV1T`M&C(lasdqiDAyMJ6(%tqt{E4IzsA zTrVus7&!3s^&x7%0vAo88<+Up?se;4s3~ayuZSY%+41)B!ZtOT{;3k7V~zt`Z&O@WQ*Fw!Q${Tm>K-7ABJ(07im6-aqwH9bh+_zpxYW^1Gm0m=BQAYa z7{z_oZ^+TdR|!Fp)GK8#Lm7|&UVeT;C>qcQG-|*n?^rPrOdn=n#risTAb(;cXTK(# zVj@lRFWeL%CrGK86>udAf1(v&m8|6DokZ*DLo36y{KH!)nSjpqIKDN@92>ZyTo>J= zgjxchtjSCH22UEIU4~M6=zm!G5q)R9xUJC1P%q-jk&z=3nfapg!hO{{9Nblo`yd+; zpw}{o4&ps>1<~0HPrTN_!46nmG{r~YUx6A1wunJTi>oB}g&n%|o zC>5~QYKHAfA~pzOfHxCmwIKfr5H+<`fq)?*wjgdrba=wi2_yhB>vVpl4GS=ubx*=D zB_X>A^A;jy&n*<+i$uZ-ZQ>UJ~zmYJabuC@UYmkHkj>H=fO$r6Q8OdOJD5()u z$_5KkyP&A|bo?F^oMtRvEBJh%TkTw#HfF0SlHk2ucFpU!nJBdOW_e38ftlEQSw&F;I4dH`^A&8 zl1C+i;RuL2yv~w0N`4UE5({sV-hSSN@LY5eH0}0p z*M7B2#cHeh6rt?&sC@hOt!%dyjE2n^hJy!BaZc@RG<3?COpts|ZV6=<9XgLHyMsU* zz=0T}8&Enc@hm8J?!1FRb%$gA1@Z$#B}}1{?u%09Mv*mJf41E9F2NJ5BWXip<|*wX zl@dGqRqj+h1(h>}?_~!piQ}>dsh1L!X4hsCq6zROsc2vXV>ve?ve~83Q*5RXH>-EA zjiFpE=4p_-C^S8XACqN$D5iF{2idGbkVq@`7Ab^>Mf0(yy4;4pA&(E8O3Cgu>o|#I zQlZJU@rAGfqOxL#IvP#`gb3s`Z{Zb`Fe8d@5+$Ht+cwGf9d92wb{$zsKby^~VtBXw zc?=_>qWsac(zWbR{K9+aHOXbj4@`k<+BwAeicfnt={a}z4IaO`dpT9?74K+o-e_JB z>@}f-9#$pl9O_>aLYkYjN&62RU?V~|#HU*9)2^rjR*Qh8lh70bRwN%7_^eaKs4qk3 z9Pr{8UxkfuB4rEDyY*aoUD6uS|GWQl@gPl z(o@PTN()L%!aYRFlMyz-$5`{S(%SZzRl-Hit!U=<<#XBe?%g*MsOJrsPu$~VIBfi_ z)`EeP{AfF+d2-(u%E}r)^+O^=Hx}AOk|5@~ literal 0 HcmV?d00001 diff --git a/_images/3.4_multiclass_classification_7_0.png b/_images/3.4_multiclass_classification_7_0.png new file mode 100644 index 0000000000000000000000000000000000000000..f61b20ea18eac03fefbd75adc279a47fc1c6e41a GIT binary patch literal 4777 zcmc&&2~<;QmX76=bd`k^q9Ti+D4>Ew4O<`(s|0BTK?Ftih6qvF!~~K638R)80YO28 zumlAGBLV_K*aB?{#6Td5>=06t5O!k15_aZ~eWqrn`^>a6=X6ib$#UNN-=BBC@4Mf< z_uV_|U?cy%>h}-`MBes~R_7p)&1&Fx#~-$UPpuE!gWwB}wZ4dT4h_KKe6RaM&iG=l z1%+aRuK4YZ@V}0^5*h+CFf}-;zxOg0dktd-g$Dn=z##NG8fsKpQ3y8q?%E&SFc64> zuk5|)IkMmi1hRdXt<_I1_{?c;=z|o0uH0wd_oZr^%CrPY+WKZF*4|BR2XuaW_2aWG zwojnD-I})?R>?)eT6YL<`X?EqZmWp5Y{on~{!YhvcW-9CNom>RJ1{$aGZlx}R!!^m zNFkfK7$BuQ5tCulCMntxUoFt(|skfI>&cTRY4phMrH|R`JF=HM3vxnv^1%^TxI71hx;#Hycpv(#6++1H4|4v4M>Mf zQ>TgPhd1DG7;cDwj+P{6$G^EHXJc(`?RlN0U5XbE<400lPctg?TVit#o@U&0=`QlX zb@U)NmN=-7`DaQaru&n-3+yS|HCKO=<18YW347w`Ly>wdt*wqLy?kaOQ_N@P=Hv{= zbF$r?ot-_yns$mmB$5nw>0kVDW08p*rbf-&D=euu(}-CWp9@WFWV0x=qN4kEHA$w; z@hVEt`bEFFi7vee(U8|f@WXp>IFVzy5)`j$bXdocsxFIa)8;LWN{$G{hV}Upett$s ztegh^NvFqwW0>m!0d46!Z^X?DtTYJ@$26>t zK;y^De|j#4vAZY54+S_SzI$cKRR`n&=oktRx-<96duh z&iB75D=WMB`m$3{@2h>M64X_|K4E?SsZFAojg^R%(94&}Vf<#mxOM#QV_FxA+{0Vg zu0BK~YRvkQDR%6=`8q+}^x9tI;Qk$$(RLZwuZwutk7quV_%z@J4{e6T_!?bI$I$zy zC;3ECl+Rsh?&winUGt6AS$hPK=4S(Igty1H^4M*4Owp$Ym#X zx{;oDw76-v;pMYdRzbXai~KVgyUw3KUmDa`W*RnZrSDUZ*rK2@Xb?Kmk|I0UTN55= zpKdtbK$VuntOcqgNr>kAYPgQbY)hiw+}MXw;>yA{O%rZ1{6+#LIf1b%X;l zWxjUZVLipIHA&D!YP7Yrm0n^cjREmVSG`>(?DXJS6W50t?nXI2$%*=eP_(fLFM>?V#Y#0E-S`({GmVJ z#qo)BdO#T<5-+nr$w(^-pylM`r09rT!*+IcHF<O8ZC+cc=oApU zmDN;Vc>y;#YGDdaYx`K9rZkoYhgTQ{c3XLQ0YKw?;`8iM>(QelQDZ2sjtrT%UYclXm(g&QW9-aUB!{5d(x99LO8?Gl(}bY1Xn zj9ZHf8mK%1==xYm0_k%3>Q%EV@{tpne;ywj$CLrL7l7~&v6Lu8gXLo490 zXzG^HRnD&1nskjNm|B4(;_aIBR1~;=k>yA__u@#_Gf?B4oSl`_jDyHA>$BOxljgV? z#E6_IeBnrMyM=U6hF|z(cN3^*1KmBvUTU&p$);MEb8kIqoupyDDah63u$&z&cA5;~ zQTAy^_i03beq%bS?g%rjpqlB1)`^=BiDnCZ)(*RScnmPiFXMh|Y2HvllA>KMTxhN% z%no;Zgx;5#Yi-1|+q@)xd3hNxVd?T)^h)BP#BsZ@;l_IxtFQaZtUWzF-JwP_Uia+) zu3?3{8*E~qX<9n1)EM*mmS$ro%^B7I`pS~Vk6sRr)MQzW5NGgKb+p!{8ExxpD|~a_ zl7p3%CuwOUj2qrFf;YwfWD)M*4U%nf3XN3r_xBesabhgHOMGHFrgKl-k9EpD<&QVS zT7y*}<#Y4%bwa8>-Km=Eu;XW9+V2GqR5sOwPx|$~@)f6)L~Dy~9p2>6-}ph*@E{4e zY;zCLuuSf+dtgQ3yCK_9_uDqh3Fj1Z8(bQ~|bSgJ)3CTZIxp|@#TA_xIiRwxuo!k(EMY)z4e zK=y9+-wc7g`?*hcLuZX4kbl*G^ba{a<~1Sz?1HOnDxy3uPn!@B7#JvFlgYE~=1_ug zeE4NqNwK zTd|wsl%Wn(IA}%zcMB?t$574j`qhsvB#asY8$JCO+{%Gp0ohVV%TrQPSTMV$f2wT% z5@}?rL;#993kIf}Bt*F$ON@4RbE6=V+db;=VG?$Kf4_j@HO^zz6IV_%zTMs`#zl%4 zQXS6VE8mk6wkPOdohOdGw{~#_(v6<3=t)9@cIE(wol*39Ce^diM?4#eZ3_?C^LCL znQV%%oB8vN&Eum!fwCzPjZ?6B+R&>JOm*; zJY2#C1x}me*+3$uzGLSV7Z-PWK=3vd6%{O)nyP9N+H#f+0~XVsNs;*tm@`?hQBF3H zDbo^eVfR=cxQDZIGNQbq!U*WF5zGil=ynQBmk>a!`kMLvccj1SX~5rG{e`ZY8Z&}0 zcBdYYQCAn>#w5g3W~R-}&HB|?C>V?Esc?`>0t%QJ?Lh_k@c#V+L^&vB1f49C$hk2A z<;`PcIp5aPie%LVy8A$hM_cU+sDU6gvF>pikMO mmAs*U0S{Hy{x3+2kz3^&mCg2Mo(07XVr%VSRs8dxZvGq8O4hOf literal 0 HcmV?d00001 diff --git a/_sources/Chapter2-DataManipulation/2.10_dimensionality_reduction.ipynb b/_sources/Chapter2-DataManipulation/2.10_dimensionality_reduction.ipynb index e9b02c8..9b41d83 100644 --- a/_sources/Chapter2-DataManipulation/2.10_dimensionality_reduction.ipynb +++ b/_sources/Chapter2-DataManipulation/2.10_dimensionality_reduction.ipynb @@ -29,7 +29,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 1, "id": "881389fd-3239-4d3a-b073-ae0723a5624e", "metadata": {}, "outputs": [], @@ -58,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 2, "id": "ba8e35ae", "metadata": {}, "outputs": [], @@ -184,17 +184,17 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 3, "id": "09ee7a7b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 42, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, @@ -227,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 4, "id": "7fe2fc5e", "metadata": {}, "outputs": [ @@ -312,13 +312,13 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "a89058bc", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGiCAYAAACyKVKmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACx+ElEQVR4nOy9aWxcWXre/6u6datu7fvGnSIlUVK3eqaX8Syescfj8QI4CxBkgW3AcQAjiOMkzgCG4wTe4sSO4cD/AZzAiYPECRAYzofACBDEDgbOjCfjHk9P93T3tNSiRFJcq1j7vtyqulX3/0E5Z0iJWluUSPb5AYKaVBXr3lvV9+V7zvM+j8O2bRuFQqFQKE4Yzud9AAqFQqFQHIUqUAqFQqE4kagCpVAoFIoTiSpQCoVCoTiRqAKlUCgUihOJKlAKhUKhOJGoAqVQKBSKE4kqUAqFQqE4kagCpVAoFIoTiSpQCoVCoTiRHGuBGo/H/OIv/iKLi4t4vV6Wlpb4tV/7NZS7kkKhUCgehus4f/hv/uZv8ru/+7v8l//yX7hy5QpvvvkmP/mTP0k4HOYf/sN/eJwvrVAoFIpTjuM4zWJ/5Ed+hHQ6zX/8j/9Rfu+v/bW/htfr5b/+1/96XC+rUCgUijPAsXZQn/zkJ/m93/s9bt26xYULF3j33Xf52te+xm//9m8f+fjBYMBgMJBfTyYTarUa8Xgch8NxnIeqUCgUimPAtm3a7TZTU1M4nY+5q2QfI+Px2P75n/952+Fw2C6Xy3Y4HPav//qv3/fxv/zLv2wD6o/6o/6oP+rPGfuzu7v72DXkWJf4/vAP/5Cf+7mf47d+67e4cuUK77zzDj/7sz/Lb//2b/MTP/ET9zz+7g6q2WwyNzfHrVu3iMVix3WYz5TRaMSXv/xlPvvZz6Lr+vM+nKeCOqeTz1k7Hzh952RZFpZl4XK5cLmOXrw6bef0KNRqNS5cuECj0SAcDj/Wc491ie/nfu7n+Cf/5J/wt/7W3wLgxRdfZHt7m9/4jd84skB5PB48Hs8934/FYsTj8eM81GfGaDTC5/MRj8fPzAdQndPJ56ydD5yuc+p0OpRKJQaDAR6Ph9nZWQKBwD2PO03n9Lg8yTbNscrMe73ePWuOmqYxmUyO82UVCoXixGBZFru7u5imid/vxzRN9vb2sCzreR/aiedYO6i/9Jf+Ev/yX/5L5ubmuHLlCm+//Ta//du/zd/5O3/nOF9WoVAoTgyWZTEYDAgEAui6TiAQoNvtyuU+xf051qvzO7/zO/ziL/4iP/3TP02pVGJqaoq/+3f/Lr/0S790nC+rUCgUJwaXy4XH46HT6RAIBOh0Oni9XlWcHoFjvULBYJAvfvGLfPGLXzzOl1EoFIoTi8vlYnZ2lr29PbrdLl6vl5mZGVWgHgF1hRQKheKYCQQCLC8vP1TFpziMukoKheJM8yjy7mfB837904i6WgqF4szS6XTY3d19qLxbcTJRcRsKheJMouTdpx9VoBQKxZnkKHm3aZqqQJ0iVIFSKBRnkoPy7tFoRKfTwTAMtQ90ilAFSqFQnEmEvNvr9T5XebdlWapze0LUrxIKheLM8rzl3Uqk8cFQHZRCoTjTuFyu57K0p0QaHxxVoBQKheIYUCKND44qUAqFQnEMKJHGB0cVKIVCoTgGTopI4zSjrpRCoVAcE89bpHHaUVdLoVAojhFVmJ4ctcSnUCgUihOJKlAKhUKhOJGoAqVQKBSKE4kqUAqFQvGYKPuiZ4PauVMoFIrH4DjtiyzLot/v0+l0CAaDH3pxxYf77BUKheIxOGhfFAgE6HQ67O3tsby8/IGLSafT4dq1a7z99ts4nU7OnTvHysrKh9q7Ty3xKRQKxSNyXPZFlmWxubnJ9vY2mqbhdDrZ2dlha2vrQ72MqAqUQqFQPCLCvqjRaNDpdGg0Gk/FvsiyLHq9Hi6XC6/XSzgcxuVy0e12P9QFSi3xKRQKxSPicrmIRqPcvn2bdrtNMBhkdnb2oQXKsqwHukm4XC58Pp/cg2o2mzidTvx+/4d6H+rDe+YKheLE8bAb+fPGsizq9TqpVIr5+Xn6/T6NRoNEInHf430UUYXL5WJxcZFer8fbb7+NbdvMz8+zsLBwIq/Ds+LDe+YKheJE8bTVcY9a7B6nKIo9qEgkgq7reDweuQx31HMfR1QRCAS4evUqm5ubfP/3f79S8aEKlEKhOAE8bXXcoxa7xy2KByM0xHF6vd77HuNRoooHFTSxBxUIBD70xQmUSEKhUJwAnqY67lGTbJ8k8fZxIzRUJtQHQ10lhULx3HnczuRBPGrX8rjdjeBxIjREQdvb21OZUE+AukoKheK58zRv5I9a7D5IUXwcEYfKhHpy1JVSKBQngqd1I3/UYvcsuxtVmJ4MdcUUCsWJ4WndyB+12D3r7uaky+hPGuoKKRSKM8mjFoFnVSyO02T2rKJUfAqFQnHM3E8xaJqmiu14AKqDUigUCj748tuDnn+UYrBUKmGaJoDsqDwez1M5l7OCKlAKheJDzwddfhPP73a7uFwuFhYWiEQi8t/vVgw2Gg0ajQZut5tIJCIHk+fn54/h7E4vaolPoVB8qHmSgd2jnl+r1ahUKqyurvLnf/7nNBoN+Zi7B3zdbjfRaFRaJj2t2I6zhuqgFArFhxqx/GYYBpPJBMMwZLF4lKU+y7Lodru0223G4zHxeJxqtcr29vYhy6KDikGAzc3NpzKYfJZRV0OhUJwJnnQPyeVyYVkWGxsb8r8fx0VcvF6lUiEajdLr9YhEIoxGo3uK3MFjUw4TD0ddDYVCcaqxLItms8n+/j7j8fiJJdwOh0P+OfizH1b0XC4XiUSCdrvN3t4e0WiUc+fOPdTw9agZrNFo9FjHfNZRBUqhUDxTnuawar/fZ3V1lc3NTWzbZmlpSe4hPaoTujiWS5cu4XQ6mUwmDAYDGo0G5XL5ocIJy7Jot9tcvnyZVqtFq9ViOBySyWSOVPMdPHc1sPtg1JVRKBTPjKc5rGpZFpVKRS6NTSYTKpUK09PTj7WHJBR2Iuqj1+uh6zr7+/tYlvXQ+A+xhzU1NSVf2zRNDMM4tnP/sKBUfAqF4pnwQdVyR/280WhEOBzG5/PhcDhotVqUSqUHdiaWZR1SzB0VoZHJZBiPx48U/3FQQm7bNqPR6J7lvbvPvdPpsLGxIeegFEdz7AUql8vx4z/+48TjcbxeLy+++CJvvvnmcb+sQqE4YTzNzCe4Uxh0Xaff75NIJGSXUy6XZRdzN51Oh7W1NVZXV1lbW6PT6QDf2Q9aWVlheXlZdjaNRuOhOU6PkhF18NyHwyGVSoUbN26wuroqj0FxL8e6xFev1/nUpz7FZz/7Wf74j/+YZDLJ2toa0Wj0OF9WoVCcQJ5m5pP4eYlEAq/XK2/+2WyWbDZ75D7Uw1J7xZ+DQ7eiQMViMTKZzKGu6yAPM50V595oNKhUKjQaDWKxGKPR6AMlB591jvWK/OZv/iazs7P8/u//vvze4uLifR8/GAwYDAby61arBcBoNDoz6hZxHmflfECd02ngpJxPJpNhb2+PRqOBYRik02m5LPY4WJZFv9/H7XYzPz/PYDCg3+/Lzsfj8dBut+n3+3IvyDRNOp0OHo+HwWCApmmHHiOW/ra2thiNRkSjUWzbxrZt/H4/Ozs79Ho9NE27xylCoGnafc8nk8mwsbFBtVolEomQyWTQdf3QMZyU9+lp8kHOxWHbtv0Uj+UQly9f5gd/8AfZ29vjz/7sz5ienuanf/qn+amf+qkjH/8rv/Ir/Oqv/uo93/+DP/gDfD7fcR2mQqF4hozHY8bjMZqmoWnaYz+/3+9TqVQYjUZomiZXZG7evEm/38fv9+P1egmFQmSzWfka4/GYzc1NSqUSmqYxHo9Jp9MsLCwwHA4plUp0Oh0ajQZTU1Nomka5XKbdbuPxePB6vYzHY7mMd+nSpccWOQyHQ/b29hiPx/j9fvr9Ph6P59BxnjV6vR4/+qM/SrPZJBQKPdZzj7VAid9cvvCFL/DX//pf55vf/Cb/6B/9I/7dv/t3/MRP/MQ9jz+qg5qdnWV/f594PH5ch/lMGY1GfOlLX+Lzn/88uq4/78N5KqhzOvmclfOxLIu1tTVM02QymfBHf/RHvPjiixiGgd/vZzweU6/XCYVCfPKTnzzU5ViWxbvvvsvOzo4sUPPz81y+fJnr16+zvb2Nw+Fgd3eXWCxGNBql1WoRCASoVqv0+30ymQzBYJBKpcKlS5e4cuXKYy/NiaVFofSbmZmRhe7u9+ks5EdVq1Wy2ewTFahjPePJZMKrr77Kr//6rwPw0Y9+lGvXrt23QHk8niPdfHVdP9X/Ux2FOqfTwVk7p9N+PuPxmMlkQjAYZGtrC6fTiaZpdLtdgsEg586dYzQaYZomwWDw0LmOx2MMw+DFF188NO80GAzI5/MYhkEoFGIymZDP53E4HGQyGcLhMPl8nvX1dXRdx+l0kkwmgTvDveI1HrWYRKNRgsHgAx+r6zqDweBMyNI/yOftWFV82WyWy5cvH/repUuX2NnZOc6XVSgUZxQhNmg2m/R6PRwOB6FQiHg8TrlcptPpyL2o+wkVTNPE6XTKDkY8zrZtJpMJTqeTTCbD+fPnCYfDNBoNPB4PiUSCarVKrVbD6/Ueeo37qQMfdB73UwXC05fkn1aOtUB96lOf4ubNm4e+d+vWLWUpr1Aonggh6Q4EAnIvK5VKSXXg6uoqpVKJSCRyZIE6KAfXdZ1EIoFhGMzNzdHtdrlx4wY7OztSfOHz+Wg2m8zNzfH5z3+eq1ev4vf7iUQiUkouikmn05EqwA9aTJ62JP+0cqxLfP/4H/9jPvnJT/Lrv/7r/I2/8Td44403+L3f+z1+7/d+7zhfVqFQnGECgQArKyvE43EKhQLj8ZjhcMilS5eIx+O0222KxSKRSOQeNwex59PpdCiXy+zt7eHxeMhkMuRyOcbjMYuLizKjaWlpSaryRNGbn5/n4sWL8mdblkWtVqPdbssObDgcPpbh7N08bUn+aeVYz/a1117jj/7oj/iFX/gF/vk//+csLi7yxS9+kR/7sR87zpdVKBQfAsTc09LSEi6Xi3A4zHA4pNlssr29jW3bh4ZuD843FQoFotEoqVSKTqcjvfOWlpYwDAPbtmX44PLysnQdDwaDzMzM3FP46vU67XabRCJBpVJhPB5/oHMT3d6H3e382M/2R37kR/iRH/mR434ZhULxIUEUmk6nQ7FYBMDv99NoNKhWq9TrdaLR6KEhWEDu6RiGIZfj4vE4uq5Lp4jRaCQ7F9GxGIbxwCFcgFgshsPhoNPpEAqFnooZwcOGfz8MfPjOWKFQnEgeRQV3UDzg8Xjodrvs7e2xuLjI9vY2jUaDaDQq54o6nY7ctxF7Og6Hg0gkQqFQYDgc0uv1CAaDvPTSS3Q6nSM7lofFbbjdbina6PV6RzqZPwkf1sIk+PCeuUKhODEcdPrWNI1sNnuk0EGIBxwOB7lcjmazyerqKslkUu4XNZtN8vk8zWaTYDAol/kO7un4fD5M06TdbhOPxwkGg3Q6HRYWFoAnKwxi8PiDLu8pvoMqUAqF4rlysCtyOBysra2xtrbG+fPnWVxcPDT743K50DSNW7duAXdcJXZ2dvjzP/9zLl++TCKRIJfL0W63iUajBAIBCoUCCwsLJJNJCoUC3W6XcDjM5cuXicVicmmvWq2SSCSOLIwPOnYhKb87T+pR4z4U90ddPYVC8VwRXZFhGORyOWn5I5bv7jZSFR55vV6PYrFIPB6nUqlQKBTo9/uEw2Hm5+elBLxUKklnc03TpHPD5uamlG5fu3aNSqXC1tYWy8vLXLly5aFDsfcTXfR6vQ+l4u44UFdQoVA8VR7Xnufu4VvbtgkEAoTD4UPBgwcLghAk6LpOJBLBsizW19fx+/0EAgH6/T6DwUD66126dImZmRlM06RSqRCJRJidnWVra4tr166xvb2Ny+WiXC5TrVZxOBy8/PLLj7QXFg6HZQKvx+MhEAgcGbfxYRY7PCnqSikUiqfGk6TGCkn1eDwmn88DkEgkME1TdiJ3F4RgMMitW7fQNI3JZILD4aBcLpNOpwmHw7zzzjtyybBYLGJZFuPxmGQySbPZlJEbiUSCdrtNuVzG5/MxPz9Pv99nc3OTy5cv3zfivdPp0Gq18Pv9OBwOOSws9rsOFiGVpPvkqAKlUCieCg/LW3oQYvg2k8lQKBSwLOuQks40zUOBf8PhEAC3243H42F1dZVgMIjD4cC2bfL5POFwWA7Olstl9vf3uXXrFlNTU/h8PmZnZ9ne3mZ/f5+trS0cDgeVSoXl5eX7OouLYrO/v8+1a9fw+/1MT08TDAaJx+MPTNJ93GuiUAVKoVA8JY6y5+l2u48sFhABhGLJ7uBy2N2Bf+12m+XlZRn+l8lkmJmZwbZtvvWtbwEQDAap1Wp4PB6cTqccoJ2amsKyLDY2Ntjc3JS5VOVymXK5zOzsLHNzc/cM44piUyqVWF9fp16v02g0gDtZT0c5m3/Qa/JhR10hhULxVHgSe56j9mbul0g7OzvLxsYGzWZTJtzmcjnC4TArKyv0ej1qtRoOh4OrV6/KvarhcMiFCxeoVCqEQiFarZaUmQvxxEsvvUQul6PX6zE/P8+5c+eOLDbdblfulWWzWdrtNuFwmHg8fk9Be9JrovgO6iopFIrH5n6F5XHseY7amzEMQxaNu92+A4EAFy9exLZtmQc1GAyIRqO4XC6mpqYwDANN0wgEAgwGA3Rdl2m1wuS12+1y+/ZtmWgrhBHxeJzz589z9erVI9NyxbmWy2VarRb5fJ5gMEij0eD8+fNHnudR1+RB0fGKw6iro1AoHosHbfo/qj3PUXsz77//PqZpUiwW0TSNubk5VlZW5M8WN/VEIsFbb71FrVaj1WqxsrIC3Il0d7lcBINBms0mtm2zsrJCNptlc3NTBg+2221CoRC2bbOwsIDH45FZT+fPn2dmZubIY3a5XMzMzPD1r38d27YJBoNMJhMsy2J6evq+53rwmpimyf7+vhJMPCKqQCkUikfmUTb9H0VKfffezHg85s///M/l9xKJBDs7OxiGwcrKCqZpSom5mF8yDEOaw7700ks0Gg3+4i/+Qh6bw+GQS35ra2vouk42m6VSqeDz+dA0jXg8TjqdZnl5mXK5jMfjYWtrC5fLxcLCwj2dVCAQ4IUXXqBer8vYejEQ/CDE9djf31eCicdAXRWFQvHIPK1N/4N7M4ZhsLa2xmAwkCm43W4XQErCRVF0uVxsb2/j9Xqli/nOzg4XL16kUChgmibxeFwO8fr9fjKZDOPxmGKxSLfbxefz4ff7pWlsIBBgNBpJX75er0ej0SCXy/GpT33qUJESQg7DMPB6vfT7fYLB4COduxJMPD7HGlioUCjOFgcLy2g0kgXmYUKIu8P2DoYHtlotnE4n8/PzDAYDKpUKN27cYGtri1KpRKVSodvtyhu71+tlMBgwHA7lXpj4E4lEGA6Hcv7J4XBQKpXY39+nUqmQSCTwer2Mx2NmZmZkeKHb7ZYCin6/TyQSod1us729feRxi8h2Eb/xOAPJj3PtPuyoK6NQKB6ZxxVCNBoNtra2sCwLv99/5H5VpVJhf3+fzc1N3n//ffb29uTQbK/X480338TlcjEYDIjFYoTDYfb391lfX6dcLsvX8vv90nZoY2ODXq/H9vY2iUSCfr/PcDjk/fff58UXXyQYDBIIBKSkHeCNN97g2rVrBINBnE4nyWSSTqcjl+QETxqDoTKeHh91ZRQKxWPxqDfoRqPBV77yFVqtFrFYjGg0isPhuGfPpV6vEwwGqdfr2LZNNpuVc0npdBq3200gEJBWQhcuXMDpdNJqtZienmZqaopKpSLdJURk+yc+8Qlu3rzJxsYGHo+HWCxGs9nk9u3b+Hw+ubwnbJTy+bzMkwqHw3Q6HcbjsXSIuHup70kKi8p4ejzU1VEoFI/Nw26ulmVx/fp16Y/X7XZlGODBPRexL6PrOqPRiFgsRj6fp91u0+12mZubIx6Pk0qlaDabLCwsYFkW29vbRCIRdnZ2GI/HVCoVTNOU3RLcMYZNp9Nsb28zNTUl491DoRAul4tvfOMbJBIJNE2j1+sB8Oqrr8pZq0AggG3brK+vUywWD+1H3S2zfxyvvYPnfvBrxb2oK6NQKJ6IB92UTdMkn8/j8XjkDXxtbY10On3ocSI+I5fLAVAqlXC73XLIttls4na7ZbyGz+djOByiaRrlcpnr16/TaDRYWlriwoULpFIput0u7XabUqmE0+kkHA7jcDgIBALE43FmZmbo9/uUy2UGgwGdTodarYbf75dKwXw+z5UrV/B6vfh8PqrVKtvb21JYsb+/L7uraDRKvV5/ZOm48uZ7dFSBUigUj82j3GQ1TSOZTGKappw/EjJx8XiXy0U2m2V9fZ1z587RarVkUXj55ZcZDAbkcjncbjfnzp2j0+mQy+XweDz83//7f9nZ2UHTNHRdZ39/n2QySSqVQtd12u02hmHw/d///XQ6HTY3N+l0OpTLZb797W8zGAy4cOECi4uLbG1tsbGxgWEY6LqO2+2mWCzy0Y9+lOFwSDQapdVqce3aNXZ2drBtm6WlJTqdDrdv3yaVShGJRB4qHVfefI+HuiIKheKxeJSbrGEYzM3NHSogwgy22WwyHo9ZWVnB5XIRiURYXl4mmUwSi8Wo1Wqk02my2SxOpxPTNAmFQoxGI0qlEjdv3qRYLDIYDIjH41iWxf7+PpFIhMFggMvl4tKlS0QiEXK5nHRvMAyDGzdukM/nZZru9evXKRQK+P1+arUaV65cIZvNcuXKFd577z329/cPqQ0dDgcul4vJZCJVge12m/n5+UeSjiup+eOhrohCoXgsjrrJNpvNQ6IDl8vFysoKhmFQr9dxOBxMTU3JWaR8Pk8mkyGRSOByuVhcXGRvb0+6jweDQdxuN+l0mo2NDa5du0Y+n5fd1P7+PvV6nXa7LYvYhQsXCIfDjEYjUqkUmqZx7tw5PB4Pg8GAVCrFZDLh/fffx+Px8P7777O+vk6pVOLq1atyqXFpaYnJZMKrr77K/Py8LLAul4toNIppmnS7XbrdLoZhEAwG6ff7UkL+IK895c33eKirolAoHou7b7KlUkm6eh+UkosIDdM0WVtb4/bt22iahsPhAGBvbw/DMDAMg0AgQCaTwTRNhsMhxWKRRqPBtWvXaDabdLtdtre36ff7BAIB2u02g8EA27apVqukUikuXrwovfJEdzUzMyP9/SzLot/vMxqN6PV6h4aCC4WC7Pi+8Y1v8F3f9V185jOfIZFISDGDcLBIJBK0Wi0A2f01Go1Hko4rqfnjoa6KQqF4LA7eZJvNJo1Gg0gkIqXZR1kfZbNZtra2cDqd+P1+vF4vt2/fZjAYEAqFSCaTbG1tUalU2NzcZHt7W0ZheDweLl++zGg0kim7Bwdew+EwsVhMzlq98sorLC0tyeInnCgGgwEA8XicfD7PZDJhZmZGdm2j0YiPfexjeDweFhYWZHcnzkOcs+jWMpkMkUhEukscXKYTrhdHFR4lNX901JVRKBSPjbjJdjodAMLh8D17KgcLg6ZpTE1NYds2fr+fW7du4XA4CIVC1Go13n77bXZ2dqQartFoUCgUmJqaotFo4Ha7cbvdTCYThsMhbrebcDgs03WdTieFQkEm877++usApNNpHA6HjIa3bZtLly7hdrvZ2NiQ+1SVSgW3200sFiMWi6Fp2j37Qg8qLOLrR1XoqcL0aKgrpFAonpj77akA9wgpxGO73S5Op5PFxUV0Xader5PL5RiPx7RaLVqtFnt7e/j9fsbjMbFYjEqlIjOaRqMRcEeI0Wq1SKVSLCwsEA6HqVQqOJ1OWSzW19cBuHjxIpqm4fV6cTgcfPrTn0bXdQaDgVQRut1umekk9pyOOt/HcWhXCr0PhrpqCoXisTnYKViWhcPhOLSnAhypVltYWADA4/HI3KdyuUy/35eBg7VajclkgtvtRtd1TNPE7XZLxVwkEkHXdWq1GvV6XUauJ5NJms2mXK7b29uj1Wrh9/v59re/zd7eHslkkmw2i23bJBIJGo0GyWSShYUFyuUya2trTCYT2u026XSaTCbzyNdEKfSePuqqKRSKx+KoTkHXdRYWFqT5qWVZ93RWuq7L5w8GAyl6KBaLrK2toWmaLB6TyYRkMim7oWg0SqPRoFQqoWmazH2ybZt+v08ikSAQCMhjG41GtNttGcueTCZxu91EIhG2trbweDx4PB5ZCIUbutgPazabvPXWW3zuc5+T5/OwZTml0Hv6qCunUCgei/t1Cg9K151MJpimyerqKpubm9INYn9/X+79VKtVCoUCqVSK4XDI+fPn6Xa7ZLNZtre32d3dZWNjg8lkwsLCAhcuXGBmZoa5uTksy5LdVbvdptVq0ev18Pv90t4oEomwsLDA17/+debn5/H7/QyHQ3K5HLOzs9TrdQCq1SqTyYRyuUylUpGKwYe5Ptx9zrquk0gkntn7chZRBUqhUDwWD+oUDtofCVGBaZpSoj2ZTLh9+za6ruPxeCgWiwBMJhMajQaTyQTbtkmn08zOztJsNsnn87z55psUCgWGwyGmaTIajbh69ao0k81ms7LI+Xw+0uk0Pp+PVqslj1MM8oq5qFwuR71eR9M0TNOk1+vRbDbJZDKUSiXpmi7ORewpiWXKozoqwzCYmZmRjhV7e3uUy2VlZ/SEqAKlUCgei/vN8hxU7Xk8HrLZrBQdtFot2u02nU6HZrNJs9mU3U6hUCAWizEajTBNE9M0mZ6eptfr4Xa76ff7tNttRqMRbrcbh8MhlX5iic7v97O1tcXq6ir7+/sEAgG5jPeRj3xE7mPFYjFeeOEF3nnnHbkMGY/HaTabLC0tsb29TafTIRqNkslkGA6Hcs8rEAhQLpfl3tndHZXYlxNzVdFolFQqpcQSHwB1tRQKxWNzt+TasixWV1cZjUYEAgH29/e5desW09PTaJrG1tYWnU6HeDyOw+GgUCjg9XoJhUIUi0UKhQIOh0P++9bWFqPRCJfLhdfrxePx4Ha78Xg8OJ1ObNtmf3+fYDBIJBLh5s2brK6ucu3aNWq1GsFgkE996lMArK2tMTs7y9WrV5menubmzZu02200TSMcDsviGo/HpaVSPp/HsiwqlQoAqVSKRqNBvV6XkvWDhQe+o1oUhrK6rpNOp5VY4gOgrpZCoXgiDs7+rK+vs7q6KjucfD5Pt9slFotRr9f5xje+IW2J0uk0qVSKUCgEwNzcHNvb23LZr9Vqoes6/X4fp9NJr9fDNE2Z0+RyuQiHw8zNzVGpVFhfX2d/f5+vf/3raJqG3++n1Wrxla98hc997nPAnej4N998k+vXr/Pnf/7n5HI5YrEYfr+ft956i5mZGWZnZw/ti507d45msymFGV6vl0gkcqijEoUHvqNadDgchMNh6vW6XI5UYoknQ10xhULxxBxUzQUCAa5fv47D4aDX69Hv93njjTcol8vk83kCgYCUfy8tLZFOpykWi2iaRjAYZDwey5/T7/fJ5/P4/X76/T6xWIzBYMB4PMY0Tebm5vB4PLLTGY/HlMtlWaDE4O5f/MVfkEgkWFhY4P3338eyLNxuN5lMhq2tLfb29pifn+cjH/mIVPWl02lisRiTyYRer0ev18PhcDA9PU25XL6vSu/gvlwoFJLCkEAgoOyMnhB1xRQKxSNxVP6TUPQJAUKn06FSqVCr1aRzQ6FQAJCFQ8wmeb1eisUinU6HTCZDp9Oh0+nQaDRkUajX63g8HunrN5lMyOfzRCIRyuUytVqNWCyGw+HA4/FQLpcZDocMh0MCgQCFQgFd12XUhmVZXLp0iVarRSgUotPpkE6nGY1GGIZBt9vF7/fL82g0GiQSCZxOJ5VKhWw2S6FQONJH7+C+XDwe58qVK1J2r4rTk6GumkKheCCWZdFoNA6F9B3McxIu4MIuyO/3Y9s2TqdTihiEhdF4PEbXdXq9Hl6vl3g8jq7r+P1+XC6XVNE1Gg3G4zH1ep1er8dgMCAYDOJyuVhYWJCdTbfbpdlsSjm5mIUKBAJcvnxZFizbtrEsi1KpJOenxuMx6XSaqakpTNOUwo1MJsP29jbNZpNYLMbMzIwMUTQM4752R8pj7+mjrqBCobgvIuhvbW1NhvSZpinFAWJv6K233mJnZ4dYLEYkEpHdyNzcHOPxmL29Pba2tpifnycUCrG3t0etVmN7exu/3084HGZ6epparSZVe6IrMgyD0WjEaDQiGAwyGo1kRLwIFxT7RJcuXaLdbhMIBORSnSh2hmGQTqdlvPvy8jKvvvoqo9GI8Xgsl+ICgQCGYWDbtlQOHlzOe1DxUYXp6aKupEKhOBKxvySGcEVI3/T0tJSDb25uUigUiEQiFAoFisUihmEwHo+p1Wpcu3YN27Zl92PbNq1Wi42NDYLBIMPhkK2tLXK5HIuLizIUMBwOS+fwixcvkslkGI1G5HI5bNtmcXERp9NJo9EgEAgwGAwYjUb0+32mp6cJBALMz8/TarVwOp1YlkUwGCSbzVKv19nZ2aHZbPLuu++yvLzMa6+9dmi5TnRKKhbj+aKutkKhOBKxvyRiNERIn1gKA6hUKhQKBarVqiwQ+/v7WJYlffTEIOx4PGZtbU0u9QnFn6ZptNttisUibrdbqun8fj+7u7uk02kAarUalmURjUbx+XzEYjHefvttWQAHgwGxWAyXy8VgMMDpdDI1NUUmk2F1dZVYLCa7IcuyGI1GlMtldF3n/Pnz0kNQoJbsnj/qiisUiiMRjhEHQ/rEHlImk5F7RrVajXw+Ly2CEomEFDekUil2d3dlgRPLcsPhUAoTHA4H4/FYJu1WKhUZB59Op9nb22Nvbw+Hw0Emk8Hv98uU3vF4zHg8ptlsMhgMqFQqXL16Fa/XS71eZzKZ8PGPfxy32025XJb2RY1Gg1qtJpV3kUiEc+fOyXyng9dAFabnh/N5H4BCoTiZCMcIEZ8xMzPD1NQUlmWxtbVFo9GQe06TyUTuEwnBRL1el7Hs1WpVxmyEQiGi0Sjj8VjK0S3LwrZt4vE47Xabvb092u22zIUS8u5Op8Pa2hobGxtcv36dXq8nVYFCjHHt2jUqlQqWZTEcDqnX61y9epWZmRm5ryUKppCtv/POO3zrW9/i2rVrMh1Y8fxRvxooFIr7cref3mg0kg7h29vbRCIRkskk3/u938uXv/xlKpUKgUAA27YplUpS7CAKkOh6BoOBdFkQxSQejzMajUilUvh8PqrVKru7u1iWJSM0dnZ25KButVplf39fiicCgQCTyYRqtUo2m6Xb7WLbNrVajXA4zOzsLP1+n/F4zK1bt3A6nTidTjweD4CM+sjlcnzqU5+Sy5iK54cqUArFhwDRTYi9ocdBLHMNBgPa7Tbj8Zh4PE61WiUWixEIBGg2m5w/f14KJJLJpDSAFWauLpdLxrUDJBIJpqenuXDhArdv3wag3+8zGo2YTCbUajV57KPRCNu25fM9Ho/svMbjMe12G8MwmJqawuv1yr2zVqtFLpfD5/NJFwin08mtW7fY2dnBsiy63S6pVAq3200wGKRarbK9vS1l9EfNfymeDc9sie9f/at/hcPh4Gd/9mef1UsqFAqQy2J7e3usra3JmPb7YVmWXE4TNj7i5iwKzkET1ZdeeomLFy/KaIleryf3iKanp/H5fLhcLpxOJ+fOneOVV17hh3/4h0kmk9LZ4cKFC7IQCCm5pmkYhoGmaXQ6HWlC63A4qFQq0hIpFArh9XqxbZvl5WUuXrzI/Pw8w+GQ2dlZPv7xj8uOSygQI5GIDCQMBoMYhoHP52M4HBKNRhmNRvI6rK2tsbq6+kjXTvF0eSa/Dnzzm9/k3//7f8/Vq1efxcspFIr/x8FwQcMwDs0wHdUNNBoNrl+/Tj6fR9M05ubmWFlZIRAIsLCwQC6Xk8OumqZRrVZllyGcybe3txkMBkSjURKJhBQxCIHFwsICgUCAarVKv99nbm5OzjVFo1HcbjeVSkWq+izLQtM0UqkULpeLWq1Gr9fD4/Fg27aceYrH48zOzqLrOpPJhHA4zNWrV2Va797eHqPRiGq1iq7rvPjii6ysrDAYDKhWq5RKJbnsKBzKVYT78+XYr3Kn0+HHfuzH+A//4T/wL/7Fv3jgYweDAYPBQH7darUA5ObrWUCcx1k5H1DndJIxTZNOpyM7EcMwaLfb9Pt9GYUhaDQafPWrX2V9fR2XyyXtizRNY3l5Gdu2mZ+fp9FosLe3R6/XY2VlBY/Hw3vvvcc3v/lNubxXLpfl/JCu62iaJjupW7du8dWvflXGsw+HQ3q9HoZhEAwGyefzlMtlHA4Hk8lEuoc7HA65TOnz+fB6vfK5kUiEV199VS4L+nw+nE4nb7zxBj6fT5q3vvvuuzLGIxQKUS6XSaVSvPbaa3I41+/3S/ujTqeD3+8H7njt3e/aPS3OyufuIB/kXBy2bdtP8Vju4Sd+4ieIxWL8f//f/8f3fu/38pGPfIQvfvGLRz72V37lV/jVX/3Ve77/B3/wB/h8vuM8TIXiTDIej8nn8wyHQ7xeL/1+X2Y1aZp26HHb29tsbW3RbrelF57P5yObzcqOp1gsyhmjVqvF1NQUFy5cYGtri9dff10av1YqFfr9PrquS8sjr9fLeDwml8vJguR2u6UCMBQKoWmadHoQlkStVguv1ytj3J1OJ4ZhyD+aprG4uMi5c+ewbRufzye99Hq9Hk6nU0Z11Go1uWQoEm9ffPFFZmZmpFpR0zQ0TXvka6d4ML1ejx/90R+l2WxKB/tH5Vg7qD/8wz/kW9/6Ft/85jcf6fG/8Au/wBe+8AX5davVYnZ2ls9+9rPE4/HjOsxnymg04ktf+hKf//znH3uz+qSizulk0+l02Nra4itf+Qqf/exn5RLbQUzT5Nq1a8zNzfHmm2/KIhQMBvH7/cTjcTKZjBQvpFIpxuMx/X6fZDJJo9HA5/PJjk3s8QhXb1GwHA6HTKgV17XT6eDxeBiPx4eKmc/nQ9M0uQ82HA4JhUKEQiHa7TbdblcO5+7s7DAcDrly5Qper1cWoEwmI5f8kskkkUhEvvZ4PObcuXO88MILcubr7uRbsawn3DTm5+ePVd13lj53gmq1+sTPPbYCtbu7yz/6R/+IL33pS4/cDgt1zt3oun5m3iyBOqfTwVk4p2g0imEYrK+vs7KyIjsFgWVZOBwO6UEnTFp9Ph9LS0uUSqVDdkWDwYBarYZhGAyHQ27duoXL5eKFF17g9u3b5PN5dF0nHA4Tj8fpdruUSiWazabcDxKms5PJhPF4jKZp0q5oOBzKuIzJZCKPS4g2+v2+HPr1er3STFYUuFgsRrvdJpPJkEqlZFdo27Z0r7Btm9nZWSm6EAGExWJRnqe4diJAUQQYer3eY49vPwufO8EHOY9jK1BvvfUWpVKJl19+WX5vPB7z1a9+lX/zb/6NXNtWKBTHj8vlwu1237O5L2LKxf6v6H5isRixWOzQEKwYbt3b2wMgHo/j8/kol8vMzc1x5coVgsGgFFBYlsXNmzdJp9OysAl3c+FGDsilP4/HI4ulw+HA7/fTbrcZDodMJhM0TZPGrmI2SlgoibBDt9vNaDQiHA7LGA6RlruwsECxWMSyLF566SUSiQTtdptwOIyu6xiGQbPZlKIIuFO89/f3sW1bWj4pocSz49iu8Oc+9znee++9Q9/7yZ/8SVZWVvj5n/95VZwUimPgcWZ2Dir8RDpsp9NhdnaWTqcjk2xfe+01+v0+u7u79Ho9uUfTaDRkR+HxeBgMBliWRTabxbIs9vb26Pf77O3t0el0cLlcBINB2UUJVwdd1+l2uwBymFfTNGKxGMPhUIopxOvati0dzk3TxOFw4PV6cTqdzM/P43A4SCQS+P1+dnZ28Hq9XL16lampKaamprBtm7m5OcLhMNFoVJ7H3t6elJsvLi7K6A6RlHt3iq4qUMfPsV3hYDDICy+8cOh7Yi377u8rFIoPzsFuSNM0stnsPd5yBzl48x0Oh1SrVW7evEk0GmVlZYX9/X36/T47OzvE43EikQher5dsNivVc61WSybb3r59G6fTia7ruFwu9vf3aTQaUgRh2zbD4VAu5TmdzkODuWLfazKZMJlMZISGKH62bcvICxHnIQQTYqjWNE1eeuklzp8/T6FQoNVqYRgGjUaDarWKpmlcuXKF6elpMpkMuVyOP/mTP2F9fR2v18vnPvc5WVxFl3QwKffuFF3F8aKuskJxBjjYDTkcDm7dusX6+jrLy8ssLi4eubcrqFarNBoNGo2GNIEV6jVN0yiXy7z33nvYts1kMiEYDLK+vk673cayLMLhMMViEdM05R5Pp9OhVqvRbrfxeDyy6xDmrqLw2LZ9yI0cwOl0yuMSoghRvMQSoMfjkY9LJBJ4vV6i0ShOp5N6vU6pVCIcDsvlxLW1NXl+2WyWt99+m6mpKW7evAnA/Py8tFJKpVKYpollWRiGcSgpV8VuPFue6VX+yle+8ixfTqH40CC6IcMwyOVyaJqG0+mUe0bz8/OHHi+6rV6vJzuNZDJJNBqV3dHOzg6BQEBaCrVaLTKZDLVajWAwKId/hR9ePB6XCbZCGKVpmvS/E12TYDKZ4HA45PKdw+Gg3+/LfSQhMR8Oh7LwiT0nsdQ3mUxkEQwGg4RCIarVKrVajenpafb396WkfXZ2lsFgIPe/3nzzTb7xjW+QSqXweDxEo1Hpzi72zUDFbjxP1JVWKM4AYimq2WzS7XalyCAcDstuQHCw20omk1KUEIvF0HWd9fV1bNvG4/EwGo2kSq5QKMi4jKWlJaanp8nlcuRyOQzDkIVuOBySSCSYTCYA8m9RNEXcupCdC189sYwnOi24o+wV0Rxi+BbA4XDgdrsxTZNUKkUsFpPFyeFwEI/Hpb3SYDBgcXFRqg87nQ7NZlMWslKpJGXtL774IuFw+J4uSRWm54O64grFGUBEY4jhUrijsjNN8549k4Pd1mQyIRKJIOb1hVu4mBl677335P7N1NSU3EMaDockk0mazSaBQIBer0e73WYwGOBwOKTjglDYCedw27bRNE12T6KICOm3UPvBdwZmHQ4HcEcFPJlMcDqdsmsSlkY+n08q/txuN06nk3Q6jaZpdLtdyuUyo9GIwWBAq9UiGAyytbUlj8s0TXw+HxcvXmRlZeXYnCIUj4cqUArFKeagai8QCLCyskImk6FQKGBZ1pF7JsI7b2NjQ/737OwsbrebqakpXC4Xq6urNBoNuefjdDqlK4OQY7daLfL5vEzSHY/HBINB6csn9pmEvL1arUppuVDqicIopONwuOOaTCbYtk0kEmE0GsliZdu23JeqVqtEo1E5v+Tz+RiNRpRKJWKxGOl0mv39fTweD5/4xCfQNI0bN27IIEbbtqXLgdiPy2Qyz/JtVNwHVaAUilPKQdXeQReERCJBJBI5tGdylB+aWNoTeU1Op5NwOMw3v/lNXn/9dZrNptzjqdVqsuMRA6+i4IhCIcxoDy7d6boui5Cu69LaSCzh2bZNv98H7ogjxPcB+ThRzESxEsc6HA5xOByyQwqFQrz66qtScLG9vc0LL7xANBrljTfeYDgckkqlSKfTchlybW2NSqUiO6jV1VWp5kskEmpZ7zmjrr5CcQq5e4bp7gHS++2ZiOU9gEuXLklZt7DyyefzfP3rX6fZbEp59d7eHrquy2FeYTpbqVSkTP2gm4MoTiKc0DAMWVQAuUwnCpJY7ru7iIruzu12y6Iogg/F8K7L5WI8Hsv49u/6ru+SA79LS0vE43GKxSLlchlN09jZ2ZEegnNzc/T7fTY3NwFIp9MkEgneeecdHA4HL774IrOzsxiGofagnhPqiisUp5BHGSA9uPwHd8IA19bW6Pf75HI54vE4U1NT9Ho9AoEAmUyGer1Oq9WSGUtCWJDJZGSmkuiYXC6XdBcXfzwej9w7Gg6HwHdk4yJjSXRJB4UbR3lWDwYD3G43uq7T7/elkKHdbsu8KMuy6PV6Uryxvb2Nx+Oh0WhIm6Zbt26RyWTw+/3SRPaVV17hxo0bOJ1OubcmTGaF9L1cLrOzs0M6ncbv99/j06c4flSBUihOIQ8bIL17+S+RSFCpVKjX6/T7fer1OrlcDsuymJ6eZmZmhkAgwEc/+lFeeukltra2qFQqXLt2jclkgmmaaJomnc4Nw5BLfq1Wi8FggNfrJRKJ0O/3GQ6Hcl9sMplQLpelRPxxEIo/oUQUy25iya/T6TAcDqXi8PXXX2c0GnH+/Hnm5ubksO/09DR+v5/19XVGo5F0Or948SKxWIx3332XW7duYRgG8XicdruN2+1mPB4zPz//0BwtxfHwzBJ1FQrF00Oo9rxe7z0DpAeX//x+P6Zpsr29TbfbpdVqyS6h1WpRqVRIJBLS1scwDL7/+7+fUCgkAwMvXLiAy+WiUqmgaRqRSEQKHLxeL36/Xy7RVatVKZCYm5uTYYQHc94eByFzt21bCjVM05Q2R2LwdzKZMBwO2dra4q233mJnZ4fV1VWq1Srj8Zj19XXeeecdTNNkaWlJdoZCMn/+/Hk8Hg+hUIiZmRl8Ph/b29sybTcQCNwj11ccP+pXAYXilHC3z979BkiPWv4T80HVapXhcEi73SaZTDIajcjlctKaqNVqkcvlePXVV9F1XYoerl27JtVywkR2MpnIvSYhnhgOh4zHY1wuF8VikfF4LLsRsX8kVHoP46A4Qog5xD6VyHgSJrher1c+fjQacevWLXq9HsFgkGQyyfXr1ykWi8zPz9PpdGT4oYjlmJmZIZFIsLy8zGAwoNvt0mw2ZZS8sjh6PqirrVCcAu6n2Dtq8/6o5T+/308mk8G2ba5fv04gEMC2bZLJJJ1Oh5s3bzIYDGg0Gty4cYNAIEA4HJZWR8LSSHQzDodDSsbH4zG2bWOaJoBUBdbrdRqNhpSai07nYYhC43a7ZQyHWGYUhSkcDtPv9+l0OrKzEvlRIjKkWq3SbDYplUoyc2pvbw+Hw8Frr73G9PQ0Pp+PeDwurY7E85vNpvx3ZXH0/FBXW6E44TxMsXcUyWSSQqEgb67xeBy3200gEJDFSyjsxuMxvV5PRpmPx2Nu3LghI853dnYwDIOLFy+yurpKs9kEkJHrYhntIOJrMYA7mUzuuzwmliVdLpeMh3e5XITDYWzbptFoyAwoh8NBMBiURVEsv1mWJaPh0+k0qVSKSqUi96mcTieRSIRer0e5XGY8HrOyssJoNGJhYUHK8vf29jBNk0gkwszMjFQgKhXf80FdcYXihPM4kQ93O5qL3/p3dnZYX1/H7XYzMzNDo9GgVqvx3nvvMTU1RTgc5vbt24xGIynr3t3dZTgcyht6o9GQ+z6GYdDr9eh0Okces9PplN57wjvvfrhcLhwOh5Sfi47L6/XKYWGPxyP324bDoeziQqEQy8vLxGIxer0eV65cwePxSMXe1NQU29vbcsZLLNdZlsXq6ioejweXy0W9Xmd2dvbIJVNVmJ4f6sorFCecR418OKrTKhQK2LYtPejEzXlpaUnGTcAd14atrS12dnak9Fyo3cTMk7ALAmQH1u/3pURcdEsAvV4PXdflLJRQ4x2FSMIVe1miIAm7pdu3b8s4DsMw0HWdUCgk4+UrlQqNRkO6lweDQdrtNoFAgAsXLpBOp7l+/TqmaeLxeMhkMtLkNh6PSyGJ6EqVzdHJQRUoheKEIxR794t8ODiHdHenVavVpPUQwMzMDG+99Rbj8VhGqb///vvs7OxQLBbp9/usr68zHo9JpVLYto3P55PCB7G/dDBgUHD3LJOwJjpqCPfuxwkxxMHHlctl5ufnCQaDtFotbNuWjxV7SsPhkEajQTweR9M0vv71rzM/P08ikcDpdPLNb36TYDBIKpUiGo3i9Xq5fPmynM0SsR0qiPBkot4JheIUcD/F3t1LepZl0el05Ea/1+tlNBpRKBRot9tSlSaylsQyX6/Xk0OxzWYTTdOo1Wr0+30KhQK9Xk92QM1m88jB2qMQmVIP4+7uqtfryT0kn88nQw5FR1apVAiFQtKFPRgMUi6XGQwG6LqOruuk02n6/T5Op5PLly8TjUYpFApsb2+j67rsoCaTCb1eT6n0TiDq3VAoTgl3S8lN02RzcxPLsuSSnuhWhH3P3NwciUQC0zRpNptcuHCBSCTCcDiUMmvhtSf86Hq9HrFYjPF4TLPZpN1u02635b7PoxYnweMO5wLSgLbb7eLxeIjH43I4uNfrSdGFMIU96Ke3v78PgM/nIxQKEYvFcDgcRCIRuaTpdDrlz+x2uwQCAaXSO4God0OhOGU0Gg22trbodrsUi0XOnTsnl/Sazaa07/H7/XS7XarVKisrKxQKBZn5VK/X5ZKecJewbZt6vc5kMqFWq+F0Omm1WjJi/X6CiOOi3+/j8/nIZrN0Oh16vZ6UoAurJdM0ZY6U2+0mGo3i9/splUqk02nZRem6Lvfuzp8/L01rm80mMzMzRCIRtfd0AlEFSqE4RTQaDb72ta9JwUSv1+P27dtcunQJ0zTlcK3D4SCXy0n5eCaTwefzMRwO2d3dpVaryZRbMZ80mUzQdZ1utyszkoSfnvj7WSK6pE6nI6Po9/b2ZAcVDoflfJewP4rFYliWRTKZZH5+nqmpKQKBANFolFAoJGXjQvjRaDQOqfiU197JQhUoheKUYFkWW1tbdDod4vE4w+EQv9/PeDym1WoRDocJBAK8+eabrK+vy+cJYUOpVKLf78tlL9GFidgK4QYhQgN7vZ4UXtxvmc7lcsni9rQRXZLYSwuFQqRSKTRNk8o/wzDkMubt27cZj8dMTU3xyiuv8Nprr3HhwgXZGYmOa29vj2azSaPRIBKJEA6HH2m2TPHsUe+EQnFKEEq9cDgsk2Pb7Tbnz5/n4sWLuFwuNjc3ZZdQqVQIBAK88MIL7O3tUS6XicVixONx6aMHSDcJsc8kBl/FvNHB4iM8+A7aDx0MGHyS/ab7EQwG0XWd8XjMcDgkGo0SDodlgOJgMKBcLktRxNLSEtFolKWlJV555RUuXrx4T0ckxCZiuTIcDj90tkzx/FBmsQrFKcHlcuH3+wmFQmiaRrVaJRgMsrS0JG/EuVyO27dvU61WqVQqcuB2f3+fZrMp/fCuX79OqVSS0RL9fl/aGMGd7uVgVLtgMpnIGHYh+xZ8kOLkcDjkHNPBIEXbtgkGg1y9epVkMimXLEWX5/F4WFhYYGlpiampKebn56WbxP2W64SPoRjmHY1GUvn4pMVJiFaUmezTRf2qoFCcEsQ8lAgEzGaz8oYMSHeEarXK7Ows+/v7vPvuu3z0ox+VXc+tW7e4ffs2lmUxNTXF7u4uOzs7jEYjRqORdA3XNE0OsIpQQEAm2j6uku9hiC5IFB6RKQV3Cl+hUJBJua1Wi16vJ5f7RE5Vp9MhnU7T7Xb51re+RSAQkH6F97uW95stexzu55Oo+OCoAqVQnCLuNw8FdwQUYkap3W6ztLTEtWvX2NnZ4fbt25TLZcLhMPV6HbfbzdbWlpx1cjgcBAIBuYQnItXFXo9I3oWjwwWfBuJ1hKih3+9LCfxoNMLr9Upln9/vl91cr9eTIgeXyyX99qLRKIlE4r4F40HX8lF5Ep9ExaOjlvgUilOGkH0fvAGKzX+Rz+T3+6nX6zLHqdvtUq/X2drakqo94fYtUnC73S79fv/QawmBxXGIIA4yHA7p9XoyxqPRaMhlN03TaLVaMkSxWCzSbDZxu92yiKZSKel0sb6+jqZpRKNReV0eZFT7QZf27nbvUEt9Tw9V4hWKE47Y34DvGJfe7Saxvr7O1tYW6XRahhJ2u11M0ySfz0vBgyg2g8GAfr/PZDKRCbjj8Vg6TwhvPJGv9Czo9/u43W5pMCuOxzAMGTUv9r+EUW0kEmFubo7p6WlKpRL7+/v4fD4+9rGPEQgEGI1Gxyp+eFSfRMWToa6iQnGCuDuUsNPpsLq6ys7OjpxPErLq2dlZDMNgc3NT3iDb7TbT09P0+32+/e1vSzdwccMXoYIi5VbXddxuN4PBQHZL4r/h+JbzjkK4nnu9XsLhMO12G4/Hg67rTCYTYrEYw+EQp9NJMBiUTuRC5Tc7O8vc3JyMFRHih/sVjLuv9ZPwNPeyFPeirqJCcUK4e7M9m82yu7vL9vY2pmly8+ZNGdt+5coVad+ztrYmOwsxgFosFnE6nTKyQiw7iSUo0zQxDEMq8YQwQnRLz7IwCZxOJ7Zty8I5Ozsrv56bm5ODw2J2azgcUqvVpNvF1tYWqVRKhiMKQ9yjCsbTFDY8jb0sxdGoPSiF4gRwcLNdqOe2t7dptVpySUuE9TUaDSkjv3XrFv1+Xy7diS4rGo0yPz+Pz+fD7XbLZTxhaeT3+6VKTiz/iZ/zPBFCiUajgWEYfOpTn+L8+fMsLi4yMzMjBRzJZBKv14umaei6zu7uLrlcDsMwyOVyvPfee1iWRSaTOVR4hDPF5ubmoWv9oH2qR+GD7mUpjkZdTYXiBHDUZrsQMIhIidFoRL1eJ5VK8d5775FKpWi327JTcrvdVCoVGX0ei8VkFlQkEsHlcsllL9FxiWW/512YABkqODMzg9vtBuDGjRsy/0kIQMRwbT6fl/to3W5X5kCJojMYDCgUClJqLrqmVqtFLpc75GGohnRPJurdUChOAEdttgcCATKZDJPJhP39fbrdruyI2u02k8mEUCgEQKvVolQqYRiGnBPqdrvYtk0oFCIajeJwOGSHBchuKhQK0W63GQwGz+RcdV2/Z5ZKLDGKQi1mstrtNuFwmOnpaXRdp9VqycDB8XjM9va2XNoU+2qDwYBIJEIsFjukqBMdaigUYm9v75CHoRI2nEzUO6JQnADut9keCAR4+eWX8fv9/K//9b8AZKSG8OSzbZv19XWq1SrpdJpGoyGVfMJ9otvtMh6P8Xg8TCYTWRzEfwtRxHFzMDn3oDrQ7/fLwuT3++n3+9RqNdrtNqPRiEgkgmVZcmZLuJy73W4++tGPous65XKZnZ0d3G43y8vLMkZDpPQe7FCXlpa4ffu29DBUwoaTiXpHFIoTgthsF5Lyg/EPo9GIbDYLQKFQoNFo4PP5aLVa1Go1qtUqhmHQbrfRNE3OCYkCJAZyw+Ew4/FYFgMhNngWogixvyTcxA8WKNHNjcdjTNOk2+1SKpXkHFe9XmdxcZGLFy9KW6aPfOQjpNNpPvGJT+D1eqX/4Pb2NsViEYfDQTabpdFoEAgEDnWotm1z4cIFFhYW1N7RCUa9KwrFCcI0zXvUZaZpcvv2bXRdp1AokMvl0HWdcDhMqVSi3W5L77m1tTUajQb1el3KsEXi7Pr6OsPhUC7nHZcL+f3QdZ3RaCRnr8TXgHSsGI1G7O7uYlmWtDHyer00m00A0uk07Xab7e1t3nnnHarVKt/3fd/H4uIiLpeLTCZDvV5H0zRcLhfb29vs7++zvLxMMpmk0Wjc06EqTi6qQCkUJ4S7bXMajQY3b96Uhq66rsv/npmZQdd1rl+/LkMIe70e+/v7FItFJpOJtDaamZlhNBqh6zrD4VAudz1rDr6m6JYOfq3rOh6Ph0ajIQUTAPV6HYD9/X3ef/99SqUSHo+HRCLB9vY2b775JtlsVrq4j8djwuEwuVxOhht2u110XWdhYQFAycFPCeodUihOCAf3SYbDIZVKhXK5jNvtZm5ujmq1ymg0YmpqinQ6zXvvvQfc2b/Z2NhgfX1d3ryFkKJUKpHL5Ugmk3Lv6lntN90PEctxd/d2cG/s4Pnruk46ncbhcHDjxg2cTifnz5+nUqkQCoXo9XpyrkuITZrNJt1uF4fDIZV/Ry2dKk42qkApFCcEcXNtNBoy7TWRSMi5HZ/Ph2VZeDwe6eQ9NTXF7du35WCuWDY76B6Rz+dpNBr0+31Go9Fz7RxEcRRRGgcRLhFut1v66o3HYwzDwO/3MzU1JYtauVyWjucH49qF2EScN0A8HldKvVOKercUihOCuLlubGzQbDaJxWLMzMzQ7/d5/fXXsSxLigTy+bwcOu12uwwGA9xuN7qu02g0mEwmjMdjHA4H7Xaber0uLYPEctqz8tg7eH6iaN6N6KqETZE49slkgmEYOBwOisUiyWSShYUFdnZ26HQ6zM3N8fLLLx/qigKBACsrK2QyGQqFApZlKQuiU4p6txSKE0QgEODixYuHLIi63S7pdJr5+XnpCnHjxg3G4zGrq6vU63UGg4GMNBdCBJF62+12MQwDt9uNx+OhUCg8U3GE4EHDwCLJNxKJMBwO5fySyIlqt9vouk42m8W2bebm5ojFYszPz5PJZA69hhi4TSQSUp6u9pxOJ+odUyhOGIZhsLy8zM2bN7l27Rqj0YhWq8X29jZOp5Pt7W263S4bGxtUKhUikQj1el0q4wzDoNPpSPNVsd8zGAykt93TjGZ/HMSQsJCbC0RnJ0QN4XCYwWCA0+kkFouRSCSwbZuFhQXZCQrHCdM0cTgcRyoghUpPvJYqUqcL9W4pFCcQoUgT80rf/va3Zecg3Mvb7Tb9fp9SqSQVcEIEIdwVAGmwOplMZJTF80J0bncLNURQYr/fJ5PJsLS0RKvVkga3LpeLYDBILBaj3+/L89nb22N1dRXDMGQcx8HgwEwmw/7+/gNNYZ+Gq7nieFDvhkJxAjFNU6rycrkcN27cIBAIkEwmpeeeiHEXLhGAFBc4nU4puhA/TxSoowQKz5q7i6SIe4fvdDuhUIhischgMCAcDvPSSy/h8XiwbZupqSlcLhf1eh3DMOh2u+zv77OysoLD4UDXdZrNJqZpyuXDo9JuVVz7yeZY3cx/4zd+g9dee41gMEgqleKv/tW/ys2bN4/zJRWKU4kQPHQ6HUzTpNPpsL+/Tz6fp9frMZlMyOfz3Lp1SwYQejweeTMXHYlwhrAsi3a7LWeK/H6/fJ3nXZzuh8/nIxgMEgqFsCyLRqOBbdsYhsHs7Kwc2n3ppZd47bXXCIfDsuCGw2Fs22Z/f5/19XWuXbtGLpej1WrdN+32KAf5D+pqrni6HGsH9Wd/9mf8/b//93nttdewLIt/+k//KT/wAz/A+++/L/+HUSg+7DQaDa5fvy4Lj6Zpcr6n1+sdmo0SFkc+nw/TNKVAwDRNxuMxvV5POpQfFEI8z2W9ByF88kR353a7SaVSLC8v4/V6ZWx9LBbD6XTi8/lIJpMEg0Esy2I0GskuaWZmhv39ffr9PpFIBK/XS7vdxuv1EolE7gkvPMpBXrmanyyO9V34kz/5k0Nf/+f//J9JpVK89dZbfOYznznOl1YoTgWNRoOvfOUrrK+vo2karVaLVqvF7Ows3W6X3d1d+v0+zWaT6elpFhYWpAuDsAUC5POEOAI4FKdxUjm4NOlyuXA6nVSrVcLhMEtLS8TjcSkSsW2bRCKBZVm0Wi1isRgOh4PV1VWi0ShXrlzB6XRiGIYMYyyVSrjd7iPTblVc+8nnmb4Twk8rFosd+e/CKl/QarWAO0aZz3pm47gQ53FWzgfUOT0plmWxtrZGrVYDoFgssrGxQSAQODRcGovFpKuCcPrudDpMTU0xPz8vYyrq9fqhPaaDjuUnFeFsHo/H8Xq9jEYjNE2j3+/zzjvv4HK5ZJx7NBoF7lgexeNxarUa4XCYixcvyqwsTdPo9Xo4nU46nQ6hUOgee6OD72kmk2Fvb08GJKbTaSnxfx6c5f+XngSH/Yx+vZpMJvzlv/yXaTQafO1rXzvyMb/yK7/Cr/7qr97z/T/4gz/A5/Md9yEqFMeGGFAV7gdwZ79oe3ubWq3G+vo6/X6fcrksnSJ6vR4ulwtN0ygWi9RqtUPDq+LGPh6PuX79Op1OR+5BnQY0TZNLe4Zh4PF4ZJfj8XgYDAZEo1FarRaJRIILFy7IWPqpqSny+TyBQEDORpmmSSKRoNVqMRwOcbvdsvA9iKPeG8XTo9fr8aM/+qM0m02ZX/aoPLMC9ff+3t/jj//4j/na177GzMzMkY85qoOanZ2VvzGdBUajEV/60pf4/Oc/j67rz/twngrqnB7M/ZRiooMqFot861vfIp/Py4C+SCRCpVLBNE2CwSDD4ZCbN29KBwmn08lkMsHn8xEIBNja2pJxE6dhk18spR3039N1nWg0SiaTweVy8fLLL/PJT36S9fV1Op0Oly5dYjAYkM1mmZ+fZ319na997Wv8rb/1t7BtG6/Xy/LyMsCplY2fxf+XqtUq2Wz2iQrUM3n3fuZnfob/+T//J1/96lfvW5wAPB6PlMUeREyTnyXUOZ0OPug5WZZFoVBgPB7LjfpisUgwGMTr9XLu3DlM00TXdVKpFC+++KKMY0+n06yursqN/kAgQLlcloO3k8kEr9eLYRgywuI0FCfDMAiHw4dc1S3LkkuTxWIRXdfpdru89dZb9Ho9AoEA+Xwer9dLMBiUQYwiWTcSiTAzM/PQbum0cJb+X/og53GsBcq2bf7BP/gH/NEf/RFf+cpXWFxcPM6XUyhOHA9TihmGgdfr5SMf+Qj9fp92u43b7SaRSKDrOslkks3NTXZ3d2VxEllOwlOv0+lI773TgNfrlZZNDocDt9stwxMdDgeJRELmVg2HQ1KpFPPz80SjUWl4e+3aNQDC4TDz8/Mkk8lD6rzT2kEpDnOs797f//t/nz/4gz/gf/yP/0EwGKRQKADIeQaF4qzzMKWYKGCpVEp66dVqNTRNk7952rZNPp+Xm/j7+/s0Gg15c3c6nQyHw+eS8fQkiH0yEUEvnC+Eh+BBw9hYLMbs7KwUSzSbTTRNw+12s7i4yO7uLpVKhWQyCajB27PGsRao3/3d3wXge7/3ew99//d///f523/7bx/nSysUJwLhUL63t3ek1Nk0TXK5HM1mE5/PJ01fe70e29vb6LouncqFmECkzcKdDWixJyV87k46o9GIfr8v3S5EXLsosiLbaTwes7S0xGAwkFL7UCiE1+tF13Xq9br04hNLmwcDH49yjlCcLo59iU+h+LBwv6WlQCDA8vLyPf9mWRbr6+sy/ymXyxGLxVheXua9997j7bffJhqNyjgN0zTxeDyEQiE0TWM4HNLv9wGeeXz7o2IYhgwKFAyHQ7lZLhwvotEo8XicVquFrutcuHBBJgUnk0kMw2Bra4tAIECr1cLv9zMej6VTuxj4VYO3Zwv1rikUT4GHLS3dXZiEnZGQhwtxUL1ep9FosLe3h2maFAoFuc9kGAbtdhtN0/B4PKdCTu7xeO4pUMJ5/OAyZiwW48KFCzQaDQKBAC+88AKDwYByuUwwGMQwDKampvB4PDidTkqlEqlU6p6OVA3eni3UO6dQfEAOero9bGmp0+mwuroqA/e+/e1vk0wmSaVSjMdjyuUysViMwWBAIpFge3ubwWBAp9PB7/fTarUYj8eYpim7p5NMt9u953tiZsnn88nB4lqtJotRIpGg3W4zmUxIp9N0Oh3K5TKf+MQn6HQ6OBwOpqameOWVV3j77bflLwIPW05VnD7UO6dQfEAedWnJsiw2NzfZ3t6WG/3j8ZhqtSoVbZqm0Wg0SKVS7O7u4nK5KBaLaJpGqVSSe1Rut/s5nvGj4XQ6pcvF3YhoDZ/PRyQSkca3c3NzZLNZWeCdTqfcp6vX68zMzEgHiUwmc89g7f2WUxWnE/XuKRQfkEf1dLMsS7pDhMNher0eoVCIUqlEIBBgdnaW8+fP02w2GY/HuFwubNuWCjfbtuUNW4T5ncR9J4FwfxF+gHfL4N1uN5qmYRgGly5dIhKJkEqlSKfTFAoFyuUy2WxWSs3r9bpc4hRmuUehCtPZ4XTIfhSKE4xYWvJ6vQ9cWnK5XPh8PtlJffnLX+bWrVvs7e1RKBRwOBzSNcLn8xEOh0kmkzL7KBAIMJlMpIv3Sbfl6XQ6UmUoukNA7qF5PB7G4zG6rjMajahWqzJeY3l5GdM0aTabBINBPv7xj+NyuUilUly6dAlN09jb2zs1s1+KJ0P9mqFQPAUeZWnJ5XKxuLhIq9XijTfeoFQqMT09zf7+PtVqlYWFBdbW1mg2mywuLnLr1i25VzUej7Es65Do4DQYiooOz7IsdF2XHZPH48Hv9+P1eslkMti2TavVIpfLEQgEuHDhAt1uF7/fTyqVkgVZxG4cjLVXnF1UgVIonhIPWloSEnTDMLh48SKLi4vSyLTZbLKxscFXvvIVwuEwuq4TDAZlWKEYxB2NRnIG6DQUJ4GwMBLx7R6PB7fbjWEYnD9/nvn5ebxeL8ViEdu2yeVydDodpqenicfj1Ot1LMsiFApx69YtKSmfmZk58V2k4oOhCpRCcczcLUH3er2Ypsnt27ellHwymRCJRKQEvVqtUqlUpLuCcF8Qce6nCafTSSQSYTQaSXf2VColXSIGgwHtdptsNitj3ofDId/zPd+D3+/HsiyazSbdbhfbtgkGgzJBWHG2UQVKoXiKHBzWhTtOEZubm7J7EOm5mqZhmiarq6vS7LTValGtVtE0jXq9Lm/KwjxW07QjZdsnCRGTcRCHwyHdL7xeLx6PB9u2mZ2dxbZtBoMBvV5Puri73W5s25bWRr1eD4/Hw/b2Nl6vl2g0yvT09KnyH1Q8GapAKRRPiYOdkpBWj8djcrkc586dk1lOt27dktEQ1WqVzc1NRqMRbrdbGsj2ej18Ph/D4ZButyvFESedu49R7DuNRiMMw8Dv9+P3+xmNRhQKBTKZDE6nk3g8TqVSwe12k8lkmJubw+fzUSgUCIVCUjgirsfa2hrLy8tqie+MowqUQvEUODis63K5WF1dBZDCievXrxMOhymVSjQaDUzTpNFo4PP5CAaDFItFer0efr9fLmEZhiFnqk7LnpPoaDRNkxHuYvBY7J+53W4cDgder5d+v086nebll1+W6bpXrlxhaWlJLgd2u12q1SrxeJxGo0G5XGY0GkkJuuLsogqUQvEUEMO6DoeD3d1dtra26HQ62LaNy+Uil8thWRbpdFrmHAk7o1KpRLvdptfrybjxbrcrU15P236L0+mU1k0ul4t0Oo3T6aRerx86F9M0CYVCLC4uEggEpDHs0tKSDHScmZlhb2+PYrGIy+UikUjQ6/VIJpO43W6q1apUCCrOHqpAKRRPAfHb/q1bt5hMJnS7XTqdjozFcLlcrKysyOW7VCrF5uYmW1tbwJ19mvF4TK/XYzgcSp860TkdZbp6UhFOF7quS1GIz+fD7XYTCoXw+/30ej0ymQxXrlyh3+9Tq9WYmpoiGo1KCblYLtU0jZdffplqtcra2hqZTIaZmRkcDgfD4fBULH0qngxVoBSKp4DL5SKbzbK+vs5kMiEejxMKhdja2iIajdLr9XjvvfcIh8Pcvn0bn8/H1NQUhUKBZrMpl7wOLu3Ztk21WmUwGJyqZAAhhAiHw9InbzKZkM1mWVlZIZlMUiqVyGQypFIpms0muq7j8/lk4vbd3oamaXLx4kW5n+V2u2XcBiCXVpWDxNlCvZsKxSPwKCmtkUiE5eVlaej6xhtvMB6PqdVqMh328uXLDIdDVldXZXckxBPj8Ri3281kMqHVasmh3NNUnODOALGwOYLvGMYK0YMoTl6vl2w2y/T0NMFgkIsXL8pO8ShvQ5fLxfLy8iEzWL/fz+bmJpPJRAUUnkFUgVIoHsLDojQOFq/FxUW2tra4efOmvGnatk00GpUdRTAYZH9/n2azSalUkntVhmGgaZr02BuPx3Lu6SR77h1EzGg1m03a7TaxWAy/34/L5ZJzXZ1Oh8FgQLVapVQqceXKFZaXlzEMA3iwt6GwQRJ2T3/2Z3+GaZpEo1EVUHgGOV0TfwrFM+agOs/v92OaJnt7e3Lfo9PpsLa2xurqKmtrawAkEgk8Hg/T09PYti2tfMRNd2NjA6/XKw1g4Tt7UI1Gg2q1is/nIx6Po+v6qSlOwi9Q13VZtIUCr9Vqkc/nqdfrjEYjNjc32d3dxbIsfD4flUpFXtOHeRuKQgV3urWDndbBdF3F6Uf9mqFQPIAHRWnAvXslW1tbWJYlB0rX19fJ5XJMT0/j8XiYTCZomsbU1BTVahWv10uv15Mb/qIYlUolKpUK7Xb7eZ7+YyGKknBidzqd9Pt93G43rVZLOmF4vV7pjrG+vs7S0hLtdptMJkMikQAe3dtQhDmKv1VA4dlCdVAKxQM4uNwklqceFjHe7XZJp9MycM/v90t3hFdffZVXX30Vj8cjYzTEzfpgp9Ttdk9VcRIIFaKu6/j9fulaHgqFpEpRuEeIQi+6yEKhcKj7EZ3S/QqOkJ0/zEVecXpR76RC8QAeltLq8XgoFApomiZFDuVymVarJQdvr169yvz8PPV6nVarxUc/+lHy+TytVotWq0W73T71lj1OpxOfzyf99jwej8xtymQyLC4usra2xmAwwOfzEQqFcLlcJJNJAoEAU1NTcnnucQqMcOQQUn5VnM4W6t1UKB7C/ZabXC4Xo9GI//2//zfVapVoNMprr71GKpVC13X29vao1+t84hOfkL5y//f//l+y2SzBYJDv/u7vxufz4fF4uHnz5j0edicVUQwOdj+2bdPr9TAMg0gkIh3M/X4/oVCIZrNJPB6Xf+Bwcbl9+zbBYPCQWOJREUt9irOHKlAKxSNw1G/nnU6HP/3TP6XVapFIJCiXy/zZn/0ZP/ZjP8bFixcJBoP8xV/8hXQ7aLVaRCIRdF1ne3sb27YxTZNOp4PL5TpVBQruJOIOh0Ns25Z/nE4ns7OzMqtpZmaGyWSCw+HglVdeIRgM0mw2SafTvPjii3Q6Hfr9PpFIhGAwSKFQIBAIqE5IAagCpVA8MY1Gg52dHeLxOD6fj2q1ysbGBm+++SaXLl0il8sRDoflXlMoFGJ+fp5+v0+r1aJQKFAsFun3+6dKTi4ScQ/OaAl5ua7r1Ot1PB4PU1NT/PAP/zA3btyg2WxKC6TLly/zfd/3fSQSCVZXVzEMA8MwsG1b7ksdVaAeZRZNcbZQ77JC8YQYhoHX65XRGNVqlUAgQLFY5Nvf/jaDwYBkMinjInw+H61Wi/X1da5fvy4l161Wi36/fyqKEyD9Ag8KGsSx93o9ms0mPp8Pv99PuVym3+9jGAbJZJLRaEQkEiGTyeByuaR0XwhR7qfCO2oWTfj9Kc4uqkApFE9IJBLhM5/5DH/yJ3/CjRs3GI1GpNNp6R7hcDhYX1+nWq3KYlatVikUCtTrdXlTF8tjpwWhwrsb4Uco1Hu2bZPP5xmNRiwtLeHz+ZhMJkSjUfn4BwlQBAdn0YScf29vj/n5+WdyvornhypQCsUjcNTyksvl4uMf/zilUolut4vH48EwDGq1GvV6XWYciedXq1Xq9br8mWL/Br4Ti37S0TRNHqe4FqPRSLpeeL1ekskkcGdGbH9/H13XmZ+fx+/3y38X1/BR5p0eNoumOLuoAqVQPAARN76/v894PD5kdWRZFp1OB4C5uTnG4zH9fl/GZBSLRVqtFj6fD6fTKdNh/X6/jHDXdZ1+v38qipMgFovhcDjodDoy6Veo6Fwul7Q5EtfK6/Wyv79PMpnk05/+NAsLC4cK0cP2lB5kfaQ426h3WKG4D/1+nxs3bshIjHPnzkmro0wmw+7uLqurq1QqFZxOp5x9Mk2TqakpJpMJk8mESqVCIpGg2+3S6/Xo9/tYloXT6Tw1nZNA13Wi0Sg+n49arXaoe3K5XESjUcbjMbquEwwGpSHs3NwcV65c4cKFC1Ki/qgF5lGXAhVnD/UOKxRHYFkWlUqF6elpGSterVaZmpqi0+mwvr5Ot9tF0zRSqRS3bt2SS1yRSISFhQUCgQBvvfUW165dw+/3U6vV5LwQgN/vB5Bd2ElHzDiJjiaZTGJZFqFQSDpsRCIRbNsml8tJAYimaSwsLBAKhdjd3b2nE30UjloKPC0pw4onRxUoheIIhFt2OBxmMBjQ6XTodrs0m01GoxE7OzvSY07XdcLhMMvLy+i6TqVSIZ/P4/f70TSNpaUlmSbb7XalJ91py3lyOBwEg0ESiQS6rtNoNGShcDgc6LqOy+Wi1WrJzrDVapHNZpmZmUHTNCzLOiR0WFhYAB6+zPeoj1GcLdS7rVAcgXAnME2TRCJBq9XCsiz6/T65XI5CoYCu6xiGQaPRkPswIkF2PB5TKpVoNpu0Wi1u375NuVxmMBjIP8CpkZbDnWvS7/dlQR6NRnL+yePx4Pf7mZmZwTRN8vk8Xq+XRCLBJz7xCc6dOwdwSOhQKpVkSrDKclIchTKLVSiO4KARKcDMzAypVIp8Pk+hUCCZTFKr1eT+1Gc+8xkuXLjAcDgkGAzi8/mwbZtGo8GtW7fI5/OHzFFPm7Rc0zQ0TaPf70tlnjDADQQCxONx0uk02WyW2dlZZmZm0HWddDoN3ClMPp9Pmu42Gg0ajQaj0ejIGBOFAlQHpVDcF+EVNx6PZWqr1+vF7Xazvr5OJBLBNE3i8bhcyrNtm/fee49Go8H29jY3b96Ug7q2bcs4CqfTeaoMYh0Oh/TaE24RIlxR0zS8Xi/BYFAKGcrlMpqmUSgUSKVSzM/P43K52N7eptls4na7iUaj0vrpoHRcLeMpBKqDUigegNj3GI/HhMNhQqEQhmGQz+e5ceMGe3t7DAYDNjY2ME2TmZkZ2u02wWAQv98v485FBzEej2WROi2ISHq4E9tuWZYsuKZp0uv1CAaDZLNZ+v0+g8GA+fl5Ll26RCqVIhwOY1kW+/v70u1cxLxXq1X6/f6hGBOFQqA+DQrF/+PgMO5BhGrNNE0ikQjVapVeryclz++//z4XL15kY2OD+fl54vE4qVSKUCjE66+/TqPRYDAYyBs7cCoUaGIZz+FwSIXi9PQ0fr+fer1OMpnk3Llz3L59m2azCcDy8jKNRoPp6WkCgQDtdhu3283e3h6aphEOh2k0GqytrTGZTCiVSuTzeebn58lkModSdRUK9SlQKLjX6y2Tych/OziHU61W0XWdpaUlGafx7rvvUqvVyOVyXLx4kdFoRKlUolQqkUqlpDks3LnpO51OKTg4qei6TiwWI5vNMhgM6Pf7hEIhvF6vHMoVHaJQ7tm2jcvlkgVpMpng8/m4evUqcKeLHA6HFItFVldXmZmZ4fz583KW6kkl6Iqzi1riU3zoOej1dnDD/uAyXCAQYGFhgfn5eZLJJB6Ph9FoRL1eZzAYSHfy7e1tGWnebrc5f/488/PzaJomB3dN0zyxxcntdstAwUgkQq1Wo91uY5omg8EAh8OBZVkEg0E6nQ75fJ7t7W3ZKVmWxebmJjdv3qRcLmMYhkzVFe7v1WoVn88nJfkifqTb7SrBhOIQqoNSfOg5yuut0WgcKlCiwxLDueVyWc40iQ7DNE2azaZMju10OuRyOUzTxO120263T/TSnlDluVwuuT8kOkohJ3e73XKwWMxz6bqOw+Hg/fffJ5VKyT0pEcZYqVRYWVmhWCzSbDZJJpNEo1F6vR7r6+vs7u7S6/VYXFxUggnFIdS7r/jQc5TXm2EY0kHi7g4rkUjIvSiRZdTpdKSqbX9/n3q9jq7rdDodOdx7UoUR4vxHoxG2bUvrok6nI4dvR6MR1WqVZDLJ0tISpVIJy7Lw+XxSANJoNOS5appGt9uV+0uBQEC6TIjB3tdff53hcCiFJTs7O7KDUl57ClBLfAqF3GPyer2HvN4OFiixvLW9vU2j0ZD7VC+99BLT09PSX04s44mU3Hg8fujfTiKWZcluEO6ED7bb7UPzWqIjbLfbzMzMcO7cOVmEhCAkGAzS7/dlnIZ4TjablYV8eXmZYDDIeDwmm83y6U9/mitXrvDCCy8A0Gq1lNeeQqI+AQoF93q9HRyiFTlH3/72t6nX67LYiOWvRCJBv9+nXq8TCoXkjV4M7QrniNNgDGvbNg6Hg+FwSCAQYDwey1iQSCSC0+mkUCjw8Y9/nEQiwd7eHqFQiKWlJeLxOO+8845UQ2qaxvT0NJcuXbonXsM0TSlZF0XwwoULLCwsKLm5QqI+BYoPNXfnPIkb48G9IpfLJZ0jxuMx0WiUWCwmQwnr9TrVapVKpUKz2ZQqt0ajIaM2vF4vDofjUEz6SUREhoTDYblvVK1WCYVCXLx4UQYy+nw+/spf+SuEw2Gq1SpOp5NAIMDMzAz5fF4WuvPnz5NIJA69hsvlIhAIsLi4eI9DuVLuKQ7yTArUv/23/5bf+q3folAo8NJLL/E7v/M7fOxjH3sWL61Q3JejYsTvd4MMBAJSeh6NRqnX6/h8PqrVKhsbG7TbbfL5vIzRcLvduN1u/H4/nU5Hukfoui47LE3TTuS+1Gg0otvtUqlUSKfT0uA1EomgaRrnzp3je77ne+Qy3MEiv7CwwNbWllTk3Z39dJBHCStUfLg59j2o//bf/htf+MIX+OVf/mW+9a1v8dJLL/GDP/iDlEql435pheK+3E9afj9ps2EYLC4uommadCtvNBoUCgV6vR7FYpHBYMBwOMQ0TdrtNs1mk2azicvlkvJsTdNwu933LCOeJHRdl4a3nU6HZDJJJpNhMplQrValx6AwenW5XHJZLhAIsLKywksvvcTKyspDO6KDz1Uo7ubYC9Rv//Zv81M/9VP85E/+JJcvX+bf/bt/h8/n4z/9p/903C+tUNyXu6XlhmHQbDblTRfuLHeZpil/w19ZWcHr9fLNb36Tv/iLv5DWPbVaTYoMxuOxFEoINZzb7cbpdMqAQrfbDZxcJ3NN0wgGgwQCAam4y2QyDAYDvF4vXq+XcrnMxsYGnU5HXiOBKjqKp8WxfoKGwyFvvfUWv/ALvyC/53Q6+f7v/36+/vWv3/P4gzEEgJy+H41GJ3p+5HEQ53FWzgdO5znZto3T6aRer+N0OtnY2JBLcIuLi4xGI3Z3d3nrrbcIhUIsLi4CcPPmTXRdZ2Zmhq2tLfL5PA6HA+DQct1Btwhhi3RSC9LdiO5OFKfJZEI+n8cwDGZmZnA6ndy6dUsO5KbTaaLR6DN3fziNn7uHcZbP6Uk41gJVqVQYj8fScl+QTqdZXV295/G/8Ru/wa/+6q/e8/0vf/nL+Hy+YzvO58GXvvSl530IT53Tdk79fp9SqUQulwOQMe5f+9rXME2TarVKPp9nNBqRzWaJRqPyFysRXlgulwHuWa4Tir1+v39qbjbimC3LkkO62WwWj8dDs9mUs12madLtdgkEAhiGQTAYJBQKEQgEyGazUp7/rDhtn7tH4Sydk0iQfhJOVA/+C7/wC3zhC1+QX7daLWZnZ/nsZz9LPB5/jkf29BiNRnzpS1/i85//vFR7nXZO8zl1Oh3effdd/H4/gUAA27YplUpsb29TLBa5cOGCTIh94YUXeO+999jf3yeRSFAul/F6vRiGwWQykWIBr9eLpmm4XC56vZ5c7jvJCKWhiKuvVCq4XC4uXboklXlut5urV69Sr9dJJBL4/X6GwyH9fp+5uTmSySQf/ehHMQzjmRzzaf7c3Y+zeE7VavWJn3usBSqRSKBpGsVi8dD3i8XiITNOgfDsuhtd18/MmyVQ5/R8EcVECAEKhYKM0wgGgzidTlqtFpPJBF3X2dra4ktf+pIM3CuXywQCAYLBoFTxiWwk0zRlgTq4p3VScTqd0gg2nU7j8Xjw+Xy4XC457zU1NcVkMqHRaGBZFslkUnZVwhC33W7f9zNwt5z/YTzO40/T5+5ROUvn9EHO41gLlNvt5pVXXuFP//RP+at/9a8CdzaG//RP/5Sf+ZmfOc6XVijuy0FfvUKhgMfjkSF8k8mEV155hWq1KruDUqkkVXiBQACHw0G322Vubo5+v8/29ja2baPrOpPJRC73nQazU4fDQSQSIRKJSLPXfD6PrussLCyQSCSwbZtwOEwqlWJqaop8Pk+5XMbj8RCPx4lEIvj9fkKhkPy5BwuMaZqPLOeHx5P/K842x77E94UvfIGf+Imf4NVXX+VjH/sYX/ziF+l2u/zkT/7kcb+0QnEPB+XlwkPP4XAwOztLOp2WruTCPaJcLtPpdGi1WjidTrrdLrdv36Zer8sOo16vY9s2k8lEzjidFnw+H7FYjJmZGRwOh5zlCgQCnD9/nnQ6Lbup+fl5mSicz+eluauwOAoGg7hcrkMFRtM0+bfwOdzb22N5efnIzujg+/Moj1ecbY79Hf+bf/NvUi6X+aVf+iUKhQIf+chH+JM/+ZN7hBMKxbPgoLxcSL5v3LghN3JFMF8ikZCO3L1ej8FgQKVSod/vM5lMMAyDWq0mbXrG4/GhfSaHw3HixREiCkMM2/Z6PVmwXC4XjUaDSCTCRz/6UZrNJpVKhUQiIf++fPkylUoF0zQJBoPMzMwAHCow1WqV/f19VlZWHsmp/ChneeVs/uHlmbzjP/MzP6OW9BQngoPO5YZh0O/3cbvdaJrGcDhkMplIDzpN06SrgsPhoFgsEolESKfTdLtdSqWSlJCL2Ald1+XS3kmWlWuaJsMTbduWM09iTy6RSFCv13n11Ve5dOkSlmXx7rvvStujV155Rbq6H9wrErlRosCEw2Hy+bwcWO50Og90Kj/KWV45m394Ue+64kPFwXTcZrOJ1+vlk5/8JMFgkF6vx82bN6XqaG1t7VDek6Zp0p4ol8vR6/XkfpNpmnLg1+FwyIJ3Et0iRIS7cLYQA8V+v1+6YTSbTaampjAMg729Pfx+P9/1Xd8lh3CFUu9uEcPdBcY0Tebn5/F4PIc89x5UoMT78yiPV5xt1LuuOFM8ivrrKEftfr/P7du3mUwmlMtlSqWS3Dvpdrt0Oh0pInA6nbL42LYtg/7E33BHIHTQd++kIIaKNU2TTuzBYJDhcIjT6WQ0GhEMBgkGg2QymUNCh0ql8tC9oPsVGMMwHlmVpzz6FAL1zivODI+j/jroqL21tcWtW7dwOBxcvHiRZrNJqVQimUzSbrdxuVwybE/MOUWjUSaTiVwiPCgnFx2UKAYnAafTyWQykcIO27bxeDxomoZhGFIAYhgGCwsLTE1NUS6XCYfDFAoFMpnMIdsnwVG/ENyvwDxOoVGFSQGqQCnOCE+q/goEAiwsLNDtdnG5XNTrdVqtFq1WC7fbjdfrleavQqXndrtJJpNyv8btdss9F6fTicfjoVqtniiZudgP03Vddn5+vx+32814PMbv9+NwOBiPx7hcLm7duoVpmkSjUbnXduHChUPX8kG/EKgCo3gaqERdxZngKPXX3Sam98MwDHw+H9vb23S7XZxOp/SXW15elpv04XBYpu4OBgP5mEQiQTgcPmQca5omTufJ+t/L5XJJp/JYLCaVtK1Wi/39fbxeL36/H0A6a6yurvLVr36VUqlEJpORRcc0TdbX1+l0Oo/kBq9QPAnqVxzFmeCDqL9cLhfZbJa1tTXgTlc1PT1NqVTis5/9LKZpsrq6KueEer0e1WqVRCKBx+MhGAwyOzvLjRs36HQ6NJtN2u32M5eZC7n4UYRCIXRdZzweMxqN8Hq99Pt9mVUlZObhcJhAICDFIYZhUCqVWF1dleq+TqfD+vo6q6urhMNhfD6fkoMrjoWT9SueQvGEiM150eE8rvorEonIwdTp6Wls28br9XLu3Dk+/vGPk0wmyefzFItFms0mjUaDXC6HaZr0+33W1tbY399nOBzS7XblTNSz2ofSNI1oNHqkqbJQHwq3CyGCqNfrjEYjGRMilIwbGxsMBgOZc2VZFjs7O/z3//7f2draYnd3l9FoRCQSodFosLu7S6PRUBEbiqeO+jQpzgwfRP3lcrlkBLlpmni9XuLxOIFAgNdee40//dM/pdVqMRqN5A1f7Eft7+/TbDaxLEt2KaJAPSuZudPppNPpMJlMcLvdUpXn9/ulu7hlWUQiEaLRKOPxGLfbLSPrhU2TKPBiuc7j8RCNRpmbm6PT6fCNb3yDhYUFYrEYPp9PPj+bzSo5uOKpoz5NijPFB9mcF4IJYfZ6+/Zt4E53deXKFXZ2dtjd3aXdbtPtdtE0jXa7jWVZUnjwPGTlIgxRSODFoPFoNCKZTMrsq8lkIm2JxPOEjVGv18Pr9WJZlsx9KhQKUtk3OztLJBKReW1iKTUWi5HJZLh48aKcjXpcY1iF4n6oT49C8f84qEpzOp3yRm4YBul0mng8zubmJpVKRbqcTyYTqX57XogEXzGA63Q6D8V8CNf1RqOB2+2m3+/j8/mkZdP09LT0JPT7/SSTSeLxOLZty+VKl8uF0+kkHo+ztLREpVKh2+1KiyNRnJTRq+JpogqU4kPJ3b/l320iW61WKZVKcu7pYx/7GP/n//wf2V2JaA23202v13vuQ7nj8Vh2OP1+H6/Xi8PhkGIHEWPjdDp58cUXCQQCtFot/H4/6XQap9NJoVAgHo9LgUckEuHFF1+U+1GLi4v3tTgS11QZvSqeJupTo/jQcdRv+S6Xi8FggMPhIJfLUavV2N7eplKpyOWteDxONpslk8lIpwkhNhBms8+rSE0mk0NWTGLGSYQQmqbJcDjE5/PhdDqZnp4mFosRi8WkQ3k4HMayLCaTCaVSienpaV599VWy2SyDwYCrV68SiUSAo5dSldGr4mmjPjWKDxVH/Za/tbUlnbhv377NcDikUChQrVZ54403CAaDcn9H13VqtZpcTtN1XUqva7WavME/r3MTLha6rtPr9aT7uigQ4/EY27ZptVqyW9R1HZ/Px+LiIg6Hg3a7TTabJZFIMDMzg6ZpUn7+IJTRq+Jpoz45ig8Vd8dtjEYj1tfXaTabDIdDWq0WnU4Hl8vF1NQUvV6P7e1t5ufnCQaD8uY+HA6lnZFhGFQqFSkgeB54PB7pd6frupzBsiyLbreL3+9nMpnIIeJarUYymcTj8ZDL5eh0OnzmM5+RS4Iul4udnR12dna4cOHCIyn0lNGr4mmjPjmKDxXit/z9/X2q1ar04BO2ReVymVAoxMzMDLu7u4TDYUzTpNPpsLCwQDqdplwu43K5GI/H7O7uyiLwPJ3LD0bMH4wMcbvdeDwePB6PjKkXw7XD4VAuW5bLZWq1mpTX67qO3++n1WqxsLDwyEIHZfSqeJqoT4/iQ4XL5SIYDPKVr3yFYrFIr9fD7Xbzzjvv4HQ6qVQq8mZer9fZ29ujXC6zvr7O7u4utm2ztLTE1tYW+/v7cvboeS3rCVdyTdMwTVMusdm2TSqVkkpDcd6iaxRCEPG8ZDKJ0+mUmU3CKiocDkuF3sM4KDx51OcoFA9CFSjFhwrLsqhUKrjdbhKJBBsbG2xsbEjDV9u2qVarRCIRdF1ndXUVy7I4d+4cmqbR7/dptVrU63Wp6AOem8zcMAy5R+b1erFtm1AoJI+10+kAyC4qnU4TDoc5d+4cXq+X/f19UqkUc3NzxONxEokEuVyOZrNJIBCQe3OmaT6wI1LycsVxoAqU4kOFaZo0m00GgwGTyYT5+XmuX7/OaDTi0qVLhMNh9vf3AajX69Kjrt1uA3dUer1eD4/HI/Ohnke0u9PpxDAMstmslIYLZ/JyucxoNJKdjNifSqVSfOQjHyGRSPDKK69Qr9d5//336XQ6dDoddF0/9NxMJgPcCW58UOFR8nLFcaE+PYozyVFzTsI3bn9/n3q9TjQapdfrcfHiRfb392UuktfrJZfLyeW+fD7P3t4eo9EI27aZTCZ4PB5isRij0Uh2Kc8KkWUViUQIBAJMTU1J66Vr165h2zbj8VhGricSCUzTZDwec+HCBT796U/Tbrcpl8tcuHBBXqtr164xNTVFJBKRRUZkYD2o8Ch5ueK4UJ8exZnj7uWmaDRKuVxmbW0N27aZmpqiVCrJpTwRqSGi3FutFu12m2KxSCqVYjQaUalU5J6M1+tlMpnIuSExE/WsEHHtIj5DWBk1Gg3gTnclrI76/T5Op5P5+XkCgQCXLl0ik8lQrVYP7UuVy2WazSZLS0uyyNRqNQBisdgDC4+SlyuOC+VmrjhTiOUm0dUUi0Vef/11yuUygOw0XnnlFbkvs7y8zHd/93dL5/HZ2VnS6TTdbpder4dt2wQCAfncwWDAaDSSfnxHOYg/TcRxOZ1OGStvWRamaVIsFllbW5OzT6FQiGAwSCwWk5ZHpmly8eJFLly4IPfMRNR9q9WShS0cDtPv92VX6Pf78fl8dDod+b2jHMs/qJO8QnE/1CdIcaawLIt6vU6hUKBUKlGv1ykWi7z00ktMJhOZHDsajXC73VJQoGkatVqNRqNBo9GQ+1TNZpNwOCxjNCzLkjHv0WhUfn2ceDweORhsGAb9fh+XyyVl7d1ul0qlwmg0koGEDoeDUChEMplkenqahYUF8vk8DodDOrcPh0M2NzexLIvFxUXm5+dpNBqHigzwSHNNSl6uOA7Up0hxJhD7KJZlUS6XuX37Nl6vl1qtJruEZDJJqVQinU4zHA4Jh8PSceHmzZtSmdftdmk2m3i9XlKplBzI1XWdwWDAcDjEsiyq1aosHsfJcDjEMAy5t2QYBl6vV0Z/iH/b39+X+U6appHJZFhcXCSTydDpdKjX63S7XTY3N5mdnWVpaQnbthkMBjJ0MJFI3FNkHrXwqMKkeNqoT5Pi1CP2nITztoiREF1EIpGQN89EIsH58+fZ2NjA5/PRbDbl0O3S0hK1Wo33339fRp6/8MILvPfee/R6Pfmz4Y73XavVIhgMEgqFGI/Hx+bDN5lM5OxSJBLB6XRKpZ2maSQSCflYEdsu9qH8fj/RaBS/3y+zoER3KDrHVCp1SABx9wyTKjyK54X61ClONWLPqVarUa/XKZfLtNttQqEQhmEwHA4ZjUak02l5U9/a2qLX68muYTQaMTMzQ7vdxuFw4PF4pDLt7bfflh3JeDym1+vJG7awPYLjN4kV8R7CMSIYDMpjEMfl9/sJBoOcO3eOTqfDYDBgd3dXLg0KI9zhcEi/3yedTjMzM6OUd4oTi/okKk41wmaoWCxSLBYBaLfbUtSQTCZxuVyMRiO5h/L+++/TaDSoVquMRiOi0Sizs7PU63UZUigEBJVKRS4VDodDbNvGNE255PesQgqFKq9erxMMBllZWcHtdlOtVun3+xiGQTweZzQaUSwW8Xg8+Hw+FhYWuHjxItVqlZs3bzI3NycLkFj6FLJypbxTnDTUp1FxqhE31Nu3b8t480gkgs/n49Of/jSGYWCaJhsbG4RCISaTCfV6nbW1NTweD6VSSd7YLcsinU6TTqfZ3NyUNkbNZpN6vc5kMsG2bWktJOyNDkaqfxA/PlH0JpMJlmUd+jdN0+TPHg6H7O3tyfkmp9PJxYsX0XWdZrNJsVgkGo2yuLjIRz7yEYLBIAD9fp9cLkcwGCSZTMpIDqW8U5xU1KdRcapxuVzMzMzg8XgwTZNYLCaVepZlsb+/T7fbJZ/Ps7m5icvlYn19nVarhWEYMnDwW9/6FqPRCIfDwebmJtVqlVqtRigUOhSRLuTcwWCQ8XiMaZqMRiMZY/G4CDcKUfxErpOIaD9YqMTynphb6vV6ZLNZANbX14lGo0xNTXHlyhWi0SidTgfLsuQ8k9frJRwOy25xMBiwtLQklyxVcVKcNNQnUnHqSSQSfOxjH2Nzc5PJZEKlUiESifDmm2+STCaJxWIMBgPpDNFqtaTVkVC3NZtN4E4RCgaDGIYhxQmmacrE3MlkIr8G5PefxO5IzDVpmsZgMDjUnYk0XGFEK/aZHA4HXq9X2hfZtk02m6XX60m38ldeeYX5+Xk2NzcPycZ9Pp8suKFQiGg0qoxdFScaNairOPW4XC6uXLnCysoKTqeTbDbLxYsXZUzGZDKRyrdGo0EoFKLT6XDjxg1u3bol3RbEMtpkMpHKPxFCOBwOcTqd2LaNbdtShOD3+2X38aRyc1FsRI6T+CMKlOjahOrOMAzG4zH9fp9Go0E2m2V2dpapqSkMwyCXy/H666/Lgnfx4kVeeuklALa2tmSEu8fjUV2T4kSjPp2KM4EYFB0MBoRCIZl8W6/X8fl8vPfee3Q6HYLBoBxo1XWdbrcLIIUE9Xqd8XgsTWBdLheRSIR2uy33nETXA8ilQqfTKVVwj7rUN5lM6PV6soDqun4okde2banACwQCeDweaVYbj8cJBoMMh0O2t7elLF7Xdba2tmTWU6VSweFwyPmuUqlENptVTuOKU4EqUIozg2EYcrYpHA4TCoUYjUbs7OwQDAbJZrNsb29TrVZJp9PSw24ymTAYDJiZmcHv98t9G4/Hw2QyYTgcHlriG4/Hcs+o3W7j8/nQdR2Hw/HY+1CiGIljEASDQQaDgdzbmkwmBINBvF4vlUoFp9MphRAiLDGZTBIMBrlx44Y0ie31erz99ttcunQJh8PB9PQ00WiUhYUFBoOB9M9TnZTiJKI+lYpTj3CQ6HQ6tFot9vf3yefzzM/P87GPfYyNjQ0ikQjj8ZhoNMru7i6VSkXmP4kojXQ6zfLyMpPJhK997Wty6U8UJpG863A48Pv99Pt9aUF0cFBXFL1HwefzySU9sfckip/X65U/S3jgiQFboVQUce7CR8+2ber1OqFQiHK5LPfKXC4XPp+PZDKJbduUy2Up/vD7/Sq/SXEiUQVKcaoRLhKVSoX33nsPn89HIpHA5/Ph8XiIRCKEQiEGg4GMQ5+dnaVarcq5n+npaRYXF5mZmWFnZ4ft7W3pXi46I7fbfSj/SSjsNE2TKj7gsbuo0WiEz+eTA8BOpxOn04lpmhiGQTgclu4Rw+EQh8PBwsKCtHSCOwWmUqnQaDTodDqkUilSqRQbGxuMx2NSqRTJZJLFxUW5TNhut0kkEoTDYZXfpDixqE+j4tRy0Lm8Xq9Tq9XkjdzlckmRhFC42bbN/Pw8sViMb3zjG7KLyuVybG1tEQgE2NzclIaqHo9H7kOJQV+Xy8VwOKTT6cjuSQzwAvLvuwuVmJuybVsWIrHXJVzRxfPE48WelKZpWJYl55lE4YrH40QiEXZ2dmi1WsTjcQaDAXNzc0SjUenWvrS0JI/x/PnzJJNJCoWC9CJULhKKk4r6NCpOLcKOyOv1ykC+W7duyYC9ZDLJxsYGOzs70hLI7XbLG7OwKmo2mzIDqlarSRm2iJowTVNGXAjnCNu2ZVE5qmM6uL8FdwqPWM47KCXv9/tMJhNcLpfc39J1nWw2K13XhbjD6XSSTCYZj8cMBgOmp6eBOy4TU1NTuN1uWUCDwSCpVErOPTWbTTqdDisrK+i6TrvdVvlNihOP+kQqTi2iy2k2mxQKBYrFIg6Hg1u3brG0tEQ4HOZrX/uadCYXe0lCDCGWAbe2tqTSTajkDg7JOp1OAoGAXCYUry32i+7HwX8T3UkymZRiCBHR7nK5iEajUr7ucrnksmQymZRegm63m0ajQa/XIxgMUqvVmJ6exu/302q1ZCzIeDxmPB5LI1jTNPH7/bIIifymR4nRUCieJ+oTqTh1HIxzn52dpdfr0W63icViJJNJmfu0vb3N9evXAZienqZarUqZ9ac//WneeustudTVaDRotVpyFkrsV4llMoDBYMBgMMAwDBleKPae7kYs8Ym4efH8YDBIJBKhWCzK4V4hknC5XLjdbrxeL7quE4lE8Pv9TE9P43a72draks+JRqMUCgUsy+Ly5cvkcjm63S7z8/O8/PLLxGIxGaTo9XpJp9PSZxBUfpPidKA+lYpTxd1x7iLXaGlpCU3TCIVC1Go18vk8w+GQSCTC9evXefPNN+n1eoRCIRwOB6+88grJZJJisYjf78cwDLrdLv1+H7/fj8fjkUO5Yl4J7gzV+v1+WZyEpdJBHA6H3HMS/y06GqH4ExJ2kWBbLBblfpCIYfd6vUxNTXHp0iWq1SqaplGv13G73TidTkKhEF6vl8uXLxMOhwkEAiwsLBAKheh2u1L0cDDc8CCqMClOOurTqTg1CFGEaZpy72Rvb4+FhQWWl5fZ2dmhXq+Tz+fp9/u0Wi0cDgftdptGoyHtforFIt/4xjdYXl4mlUrhcrnQdZ29vT1KpRJ+v19aIQnfO5GnJJbkxICv6LZEARD7VJqmSX9AkSPldrvJ5/NyuU2II4QQwuPxyGFbn8/HhQsX+IEf+AE8Hg9vvPEGgUBA+gzu7u4yHA7JZrO88MILJBIJRqORdMnwer2H4tmfxIpJoXjeKKsjxalBiCLETTwQCMg9oZWVFZaWlgCIxWIEg0Fu3rwpVX5iuU7ctB0OB8lkkmazSbPZZDweywIgFHsi+FCo7sLhMEtLSyQSCTk0K36mx+PB6XRKBWAwGLxHmSeEGh6PB7fbLb/2er3EYjHcbrfMeVpcXCSdTpPJZPB4PCQSCRnLLkITdV0nlUphGAYLCwsEg0G1p6Q4U6hPsOLUIEQRQn3WaDRwu93AnT2VpaUlKTkPBoO43W7ef/99KdEWRrIej4epqSm++c1v8vbbb9NsNvF4PBSLRZxOJ5FIhEajQb/fl6m1mqbR6/UYjUaEw2G5v9PpdKSruSiamqbR7XZlFyZcyC3Lkv534mtd1/F6vXLGqtFoSLl4t9ulUCjIAdx+v08sFiMcDuPxeFhcXMTtdnP9+nU8Hg+ZTIZMJqMMYBVnhmMrUFtbW/zar/0a/+f//B8KhQJTU1P8+I//OP/sn/0zeVNRKB6Hg+qzUqlEo9EgGo2yubnJ7OwshmHg9/vZ3d0lHo9j2zYvvPCCdFkol8synmNqaopvfOMbUtYtluKSySSZTIZOpyOLgpCYi2woUZDEUK0oQKJjGQwG0lVCdE8iqVe4qTcaDVnQxHN0XZc+f51Oh/X1dWzbJhKJkEqliMVicvBWDOs6HA62trbI5XIAzM7OMjc3RywWU+4QilPPsRWo1dVVJpMJ//7f/3uWl5e5du0aP/VTP0W32+Vf/+t/fVwvqzjjCCGAaZq43W6ZBiucEBYWFsjlclSrVUKhEHNzc/j9fmKxGKPRSM5N7ezs0Gg0pM1RqVTCNE2KxSKmacr4i263i67rGIZBs9mUPn2maWJZlrQZEh5+xWJRWggBsgPzeDx4vV45R2VZFj6fj1arJZfq5ubmpFx8ampKmrtGIhEcDgcXLlwgm81y/vx5nE4nt2/fplKpSENYsZQZDodxu93KHUJx6jm2T+4P/dAP8UM/9EPy63PnznHz5k1+93d/VxUoxT0clI4/6g1V3Lh1XZfhfJFIhE996lNsb2/L+aFer0elUpF+eb1eD5/PJ+eOut2ujM8Q+1xCeSfcz0V2lFiyGw6HstAI6fhBf7uD5yVMbIV5rcfjkct7wgxWSMEnkwmtVotQKMS5c+dYX1+Xryd+xvnz53G5XOTzeTqdjgxdHI/H+Hw+hsOhHF5W7hCK08wz/eQ2m01isdh9/13MmQharRbwnTmRs8DB2Zezwgc9p6Ok4w9amhIuDdvb29IhIRwOMz8/j6Zp+P1+Lly4IOXfovg1m02+/OUvs7+/L5fmRExGv9+XDhFut5tYLCZNWkOhEOPxmFKpJLswMf8kJOiDwUDukYkZKkEoFGJxcRGn0ym7NsP4/9u799i2zvN+4N/D++XwfhEpihfdLPkSX2InbuIAjde0Qdd/ig0FtmZA3QXZUqRtggVN0rVDEqyblyUbtnZDm6yAm3VtEwzZhi1b0GRp07RdOtd2a8exZJHWnRdR4v12SB7y/P7I77yTZEnWjSalPB/AQEyTh++JePjofc/zPo8O1WoVCoWC7bOamZlBpVKBXq9Ho9HA5OQkHA4HKpUK1Go1u7ckdwY2GAywWq2YnZ1lCRqLMxflYriLrx/63HW23XxOm8FJm+lTvQmRSARHjx7Fc889hwceeGDF5zz11FN4+umnr3v8+9//PrspTXaXRqPB9izp9XpUKhVotVp4vV6WBbeShYUFnDt3DrlcDjzPw+12w+l0sk2tjUYDpVKJ9XeSJAnJZBKjo6PIZDKsUnkmk2GFYeU9ShqNBlqtFgaDATzPg+d5xGIxdrzll4zcSr1Wq1337wqFghVrlZMm5I6+8myqq6uLlVVyuVys+oMoijh48CC0Wi1r9yHP1uTK7Wq1Gvl8HslkEhzHwe12s15RDocDer2+ZT87QtajXC7j05/+NHK5HMxm84Zeu+EA9cQTT+CZZ55Z8zkjIyMYHh5mf49Go/jwhz+Mu+++G9/+9rdXfd1KMyi/3494PA6Hw7GRYXaser2ON954Ax/96EdZK4SdbivnJAgCRkdHYTQaWUfZUqmE4eHhVTPRRFHE5cuXceHCBdTrdeRyOQiCAL/fjyNHjsDj8WB+fp4lGXi9Xly9ehVvvfUWjEYjjEYjRkZG2BJdNBpFsVhk45Hr5un1eoRCISgUCiQSCdjtdly6dAnZbJaNRalUwmAwsFJFsVhsSXUJjUbDNtvmcjkoFAqIoohkMolKpQKlUolgMIj+/n5Uq1X09vbi1ltvZTX67r33XpZOH4lEWB3Ber3O9mfV63XW68lqtQK4fhMufe52ht14TqlUCl6vd1MBasNLfI8++ihOnTq15nP6+vrYf8diMZw8eRJ33nknXnjhhTVft7iszGJy99PdhM7pfRzHsS9gtVrNygGtVbxUrjUnVxIHgHQ6DafTiVKphEuXLrFU7EajgcuXLyMWi2FmZoYlNfA8j3Q6jZ6eHlQqFYiiyNqgK5VK2O12tlRWLpfZGJf/PidXHZeXA+WySfK5ySnqc3NzLLgYjUbs3bsX0WgUuVyOLTUaDAYkk0nMzMzA4/FgaGgILpeLbSSWN/darVZUq1U4HA6232nxptzt/hl1OjqnzraV89hwgHK5XHC5XOt6bjQaxcmTJ3H06FGcOXOGbTAkRLaZwqXyF7JGo4HBYMD09DTrobSwsIBisQifzwdBEDA/P4+xsTEsLCxAqVQimUyyskHNZhPpdHrJtge5soO8DOdyuVCr1VjLdHnDb71ehyRJUKvV7FhqtZr9hliv11Gr1aBQKCBJErRaLTiOg9lshtFohCAIcDgcMBqNcDqdqNVqrAuuvKzY398PlUrF7tGVSiVks1m2NCgIAiYnJ9d1346QnahlSRLRaBR33303gsEgnnvuOdZcDQA8Hk+r3pbsQBstXKpSqVg6+dzcHHieh0KhYC3OBUFApVKB0+lELBZDNptFo9GAz+dDJpNBMpmEx+OBw+FAuVxmVSKcTiccDgdGRkZYhQpRFNkeq8uXL0Ov17MMuXq9zqpPyMkZjUYDVquVbfK1Wq3QaDRoNpswGAyszJHNZkM2mwXP8+jq6kKpVGJZeE6nE1arFTqdbkl5J7fbzerwyUVtjUYjNRwku1bLPs1vvPEGIpEIIpEIenp6lvzbTcrLIDvIRguXyunkY2NjAN4PJBaLBSaTidXCE0URQ0NDiMViOHv2LMu0UygUMJlMbGkPALvnpNVqMTQ0xPYX8TzPei1NTU2xMksLCwusdYfb7UY+n4fBYGCJFm63G8D7y3wej4f1bAoGg2x5slAooF6vIxaLIZfLwWg0oq+vD6lUakkR2sXlnaxWK9LpNERRhN1up4aDZFdr2af51KlTN7xXRchWWK1WHDx4EBqNhrVIl/ciNZtNaDQa8DzPAoJ8n8Zms7F6fJVKBd3d3WwflJysIS+XcRyHa9eusUBUr9dRLpfZ0p58LI/HA6PRiO7ubkxMTLBsQPl4Xq8Xt912G7xeL+bm5nDx4kXccsstUKvVuHTpElQqFfbt24dKpcKSKSKRCEKh0JLyTsViEUajke3hooaDZDejTzRpmc1svt0ouXTR+Pg4wuEwotEoq8SQy+Xw05/+FJVKBR6Ph7W2kJMZ5PtVctfZZDLJej3V63WYTCbY7XZks1mW6i0HHp7nUa/XMTMzAwA4dOgQlEolu4cmVznneR5OpxMWiwUqlQrxeBzRaBQLCws4evQojEYj5ufn2ZKhvBdLblSYSCTg9XqRSCSW3KMDQA0Hya5Hn2jSEhvdfLuV9yiVSojFYmz5LpPJ4Je//CX0ej0ymQy6u7shSRIKhQIKhQILHHKrDZPJBIPBgAMHDrDae/Pz84jFYkin0+B5njVFTKVSaDQarO2F3KU3EoksaTAYi8XY+8nV1efm5lhautlsxs9//nPodDqMjY2xHlTJZJLt55L7Oul0uhXv0VHDQbLb0aeabLvV+jZt5038xe8hNxuUO+I2m02MjY2x2UWpVML4+DhmZmag0+kgCAKuXLkCp9OJ7u5u1k5dFEW43W6Uy2WMjY2xJoVyYViNRgOHw4F0Oo1sNguz2YxyucxmPXJiRTQaxfT0NOr1Onw+H3K5HKrVKnw+Hyt7BABvvfUWS3qQ220MDg6ye2GLl+4WB6HFM1OqWk52MwpQZNut1Ldpu2/iL34PedktnU5jcHAQ58+fx9zcHPL5PMrl8pJkAznLTy7+6vP5UCwWYbPZYDabYbPZMD4+ziqjKxQKzM/PQ5IkBAIBWCwWiKLIWrQrlUrodDqo1WrYbDYYjUak02lwHMcCoNyIsLe3ly0fTk9Pw2QyIRgMslmbxWKBz+djae08z1+3dHczZqaEdAoKUGTbLe/btNmb+Gvdw5LfI5lMolAoIJ/Po1arYWZmBqlUCqIoQqPRoFqtIpvNguM4ttG22WyyJIPJyUns378fZrMZPM9DpVIhlUphfn4exWKR7WuS6+ZZrVZYrVa2kVelUrHNxfV6nVWIUKlUsFgscDgcrGjt0NAQEokEzp07h3q9Do/Hg3q9jkKhgGq1ivn5eezbtw979uxhCR2Lz/tmzEwJ6ST0qSbbbjObb5dbz0zBZrMhHA6jXC7D5/Ohq6sLV65cgVqtZg0KS6US26dUr9dZ0JSLwup0OvA8D6vVyjaSHzx4EDMzM7hy5QpqtRpr857L5eB0OtHf349AIIBoNIru7m4IggCDwYDJyUmWlj47O4v5+Xno9XocPnwYH/rQh+B0OpHNZpFMJqFWq1mdwFqthltvvRWHDh1i9f+WByb5T6tnpoR0EvpUk5bY6ObbxW40U5CDl1ztoa+vD3a7HYIgIJ1Ow+12IxwOY3p6mlUHl9Oz5VJHcqmgW2+9FXfddRcrTCs3PAwGgzh37hxEUWQzr0ajgWAwiL6+PlafT5IkmEwmWCwWCIIAn8+HdDqNgYEBKBQKHDx4EAcPHmQFXi9evIhmswmfzwcAmJubw7Fjx3D33Xezlu2LA87iQC3v7brRzPRmZE8ScjPQp5e0zOLW5oIg3PALcz0zBQAseJnNZiiVSszOzrKNtw6HAzzPw2AwIJ1Ow263Q6/Xw+/3s71PzWaTLQEqFApcu3YNAwMDUKvVSKVSrKqDTqeDQqFArVaD0WgEANbIUK1WY3h4GOfPn8f09DTcbjerw2exWGA2m+F2u3HgwAHMzc3hvffeQ7lcxujoKEvUcLvd4DgOQ0NDMJlM1wWclQK13P9qtZkp3aMiuwkFKNJS6/3CXO9MYXnw6uvrw8TEBOtE6/f7kc1moVKpcMcdd0ChUODdd98Fx3Es0SGZTLIlvkwmg0QigVgsxipCFAoFaDQamM1mZLNZOBwOtmwpLxUaDAZWykheppOr8cuVUvbt24fp6WnWumN8fByZTAYcx0GhUKBareLQoUPo6elZMeCsFqhDodB1mX3y81ebeRKyE1GAIi2z3pv6G50pLE7AkCQJg4ODCIVCLLFArmUXjUYRDocBgPWaSiaTLEBWKhW4XC4sLCwgkUhAqVSyunmSJMHpdMJut7M+THKfKYVCgWg0inK5jGw2y+5NFQoFDA0NYd++fTh37hx+/OMfQ6vV4mMf+xjrMWWz2ZYs4/n9fgwNDQG4vtzTaskmq1UuX2vmuVZvLUI6FQUo0jLrvam/kZnCagkYy2dls7OzbHOtnCknt2mXN95OTk7CarWyPU2lUgkmk4lVnZifn8eePXtQLBZRq9VQLBbh8Xhgs9kAAPF4HJlMhm3ElWdl8/PzsFgsUCgUyOfzePvtt8HzPGq1GjiOQ3d3N0qlEityKwfmlTIVN5Jsslb2JNW/JDsRBSjSMutNN9/oTGF5AgaAJfe4BEHA9PQ0zGYzBgcHkUwmMTc3B1EUWav1eDyOZrPJ2qHLlR/0ej2q1SoMBgMajQacTif8fj8KhQLm5+dhMBhYEdlQKMSWLuX9TNVqFblcjs26AoEAIpEIxsfHEQqFEI/HWefcWq2Gq1evwmg0wmw2r7j8uZFkk7UC2m5qIU4+OChAkZZZ7wxgsz2hlvdKkttwyK9TKpWsk2cmk8GePXtgNBrZ+xw6dIi1gSmVSlAqlQiHw+jr62Ndaq1WKytTZLfboVKpUC6Xce7cOezfvx933HEHq8fndruhUChYdfKhoSEIgoDe3l7WVRcASy+fn59nDQwFQVh1T9NGsvG2kj1JSKehTy9pqfV+YW7mi1W+d5VOp5HJZJBOpzE9PY0777wTgUAAExMTqNVqsNvt2LNnD/r6+lifKKVSyZb/AoEA1Go1NBoNRkdHWZHWSqWCCxcuoL+/ny331et1jI6OYnZ2Fi6XC8FgEL29vcjlcjCZTOjq6oLL5cK7776LeDwOpVIJt9vNyiA5nU6WHVgqleByuaDT6aDVardtTxMFJrJb0KeYtNx6vzA3s19KLhQrB4NkMgmXywW/349oNIpMJgO1Wo2hoSEUCgWk02mYTCb09PQgGo0iFotBrVbD5/MhlUqxjbeZTAYjIyOs1p7NZsP8/DxLirBYLKzahM1mg9frRU9PD2v54XK5oFAoYDab0dPTA71ej0QigZ6eHiQSCfY6OdGDWmYQcj26GkjHWe9GU5VKhVKphLNnz0KtVrP6edPT0+A4DgaDAaVSCdeuXUMmk2GJCG63G4ODg0gkEvB4POjq6kImk0G1WsXQ0BD++7//G5lMBuVyGfV6HVNTU6yFvJyqLu/tAv5vb5ROp0MsFmObd+UxAO+n0WezWXg8HjZTHBgYuK6NBgUoQv4PXQ2ko2xmo6m8x0lWKpUwNjbGygqVSiVkMhmIogibzQaFQoFCoYBmswmbzQaO49Df3498Po9IJMKy9uSEClEU8c4776Crq4tl4AFgLTt6e3uRz+dx6dIlpNNpNiOz2WyIRCIIBoNQq9UAgEQiwdq5y2WW6H4RIStTtHsAhMgW74danDggV5BY6flGoxG33XYburu74XA4IIoi63ZbKpVQKBTYjKparSKdTrNjhkIhhEIhltwgVy/3er2s11M2m0Wj0WBJE2q1GgaDAXNzc6hWqwgEArDb7axzrkqlQqVSAfB+2SSNRgOlUgme59HX18dmhzK5ZQYFJ0KuR1cF6RjyfiidTodms8lKAq2WOCDPOkwmE0t68Hg8cLlc4DgOkUgE0WgUU1NT0Gq1MBqN8Pv9qFQqSKfT2LNnD7LZLEqlEgRBgMfjgd1uRzKZxMLCAqLRKFwuFzweD/R6PVwuF2u9wfM8BgcH4XK5wPM8ms0mnE4n6vU64vE4CoUCuru7cfjwYSgUCjgcDgiCQPeZCNkAulJIx5BLGV27do399+K08cVEUcTs7CxGRkYQi8WgUChwyy234PDhw4jH4wiHwwiFQlhYWEA8HketVkNXVxeazSbMZjMUCgVEUWQNBdVqNSRJQj6fh8FggMPhgN/vx+DgIMxmMxKJBOt86/V64fP52GZcSZJYFmF/fz/cbjdsNhvUajXq9Tqy2SyazSYsFgs8Hg8FKELWia4U0nE4jmN/VlIsFhEOh/HTn/4UtVqN3T8ql8vgeR5erxfhcBgGgwEDAwNwOByYmZmBVqtl7d0DgQB4nke1WmXBKZvN4vLly0gkEpifn4fRaITb7UY6nYbFYmE9pbLZLOx2O1KpFOr1OoaHh9HX14fx8XGMj4+jr6+Pjd3tdkMURaRSKWi1WszMzEAURVitVgpUhNwAXSGkY8hLeXv37oVCoUCz2WRJCssrfOfzeTQaDRiNRpTLZXR1dSGbzUIQBFitVvT29iKdTkOhUKBYLMJgMCCfz6NYLKKrqwuBQAAejweCIGBiYgKCILD08mQyCaVSiVQqhWg0CpvNhjvuuAPxeBznz59nYxIEAc1mEzzPg+d57N27F/l8Hj09PZidnYXRaATHcSiXy6hWq+A4DmNjY4hEIhgYGEBvby9VGidkDZQkQdpG/pKXkwbkkkeCILAadYsTCOQK56VSCXa7HWazGZVKBZlMBtPT00tKHTUaDWQyGWSzWUiSxDbM7t+/Hy6XC9lslr1no9GAXq+HIAgolUos0DWbTVbpQW5GaLfbodVqUSgUWB+qVCqFSqUCQRBgsVjA8zwr3SQIAnK5HMxmM9LpNJRKJUvgWCsBhBBCMyjSJqulk8slj+T7QvI9m2KxyNpqyBth9+7di5///OeIRCLQ6XRQKpV47733oFQqWbJFLpcDAAwNDcHv90OtViOfzyOXy7GZmRxMJElCPB4HALZBd25uDn6/H+VyGW63m7Vj1+l0sNvtyOVymJ+fRyqVQjAYZJt15fMoFoswmUzQ6XQoFArgOI41TVwrAYQQQgGKtMFabTh4nofH42H7keQ6d5FIhM2SisUiGo0GfD4fQqEQK7aq0Whw9epVqFQqmM1mcBwHu92OK1euIJVKoVAosLYTGo2Gvb/L5UKj0YDVaoXH40Emk2Ebbq1WK9RqNYrFIqrVKpxOJ2q1GqvJ5/V6WaDSarXQ6XQAlpZuGhgYwOzsLJu1UUYfIetDVwe56W7UMTcSiWBqagoqlQqJRILdC9LpdKytRb1eR09PD4rFIpLJJFvOazQarFpEIBBAIpGA1+tFo9FAPB6HSqXC7bffDqfTiWvXrrEeTwDQ3d2NQ4cOYWJiAgDYkl25XIbZbGb3u0wmE/bt28eSJeT9T8tr6clLjvKGXI/Hg0QiAVEUqXIEIetAVwe56dZqwyG3ylAqlbBYLEgkEjh79iyrh6fX6yFJEhQKBXQ6HYrFIorFIhYWFhCLxaDVahEKhVAsFllLjZ6eHhiNRvh8PqhUKuzbtw8KhQIjIyPo7u6GTqdDOBxGPB6H1WplLToMBgMOHjyIcDiMVCrF3rdarWJhYYFVp3C73chms9BoNGues9xIkSpHELI+lCRBbjq5vYZer1+1Dh3HcSw9m+M49Pb2olKpYHJyEvV6HcFgEDqdDm63G263G1NTU6wnlNfrhdvtZnuSNBoNuru7YTAYWMfcZDLJMvAWFhYAgCVLqFQqeDweaLVaJJNJpFIpiKIIs9mM2dlZTE5OQqPRwGAwIJVKsZbx6XQa4XAYxWJxzXOnyhGErA9dJaQtVmuvodPpEAgEMD09jUwmg0qlgv7+fvT398NqtSKVSqGvrw9DQ0NQqVTQaDSQJAk+nw8cx4HneVQqFdhsNhw8eBCiKLJltWAwiHK5jHA4zNq6J5NJlMtlVnkceL9eHsdxcDgccDgcmJ2dhdPphCAIMJlMUKlUiEaj4DgOlUoFSqUStVoNhUIBmUwGtVoNhw4doiBEyBbRFUTaZqVlLpVKhYGBAbZ/SKPRwOl0wmAwwG63w+VyYWhoCAAwMTGBQqGAXC4Hl8uFarUKm82GWq2G7u5uVr1cXlYDgHA4DLVaDYvFgnQ6jVQqhWq1CqVSib1792JiYgKVSoXN2MxmM/R6PZrNJgCgUCiwDrXy/atwOIxAIACTyYR8Po/p6WkMDQ3RHidCtogCFOko8r0juWVFb28visUi5ufnkclkYLVaMTExwYKKx+OBz+djiQyFQgE2mw379u27LllB3h/lcDigVqvhdruh1Wrh8XhYnyeDwYCuri40Gg2W4XfgwAG2n8rtdqPZbLICsG63G/F4HNVqFfV6HaIorloBgxCyMRSgSMcQRRETExMolUpsn1CxWERPTw8EQYBarWbLfLFYDHv37oVer8eePXswPj6Orq4u9Pf3IxgMwmq1smMuXkZcnpwhZ9c5nU6Mjo6ip6cHXV1d+MUvfoGxsTH09vaip6cHR48ehSRJaDQaiEQicDqdcLlcrDJFIpFAIpGAUqnEkSNHWLo5IWTzKECRjpHNZhEOh6FUKlEsFtl9H3l5Tt6TZLFYEIvFkEqlYLVaUa/XsWfPHoRCoSUJCCttBpY30C5PzpDfg+d5RKNR1vnW5XKxMkhWqxXFYhF9fX3QarWoVqvQ6/UsYUMmNylstfU2diRkp6JPNekIoiiyKg7A+8Eln8+zyg2LZz6CIMDlcrHeTiaTCUePHl1yz2etzcDLkzPkL3o5aSKfz0OhULAlvHw+D41GsySo6XQ69jq5EaIkSeA4Do1Go+UVIjbT2JGQnYYCFOkIoiii0Wigr68PqVQKpVIJkiTB4/EsKR1UKpWgVquh1+uh0+mg1+tRqVSQzWbhdDqX1O1bbTOwPNuRa/vF43FkMhlEo1F2LKvVymr9ORwOhEIhAEsTOxYHt/W0CNnO/1erBV+aSZHdhD7NpCMsLhTb3d2NXC4HnufZvaTFaemiKCISibAutlqtdsUqDqttBpZnH6VSCYlEAiaTCeVyGaIowuFwwOv1olAoIJlMLpkxreVGLUK201rBlwIU2U3o00w6grx5d3Z2lt3vWb55d/HsSL5PtTz4rHS8xUtzANjsQ65EIUkSJEliHXG9Xi9MJhMqlQoGBgag1+tXHfd6WoS04v/VasGXkN2EPtGkYyzfvAuAVYdYPPORAwDHcatWoljpeHKquTz74DiO7YfieR6JRAIWiwXFYhFGo3FdX/qLZ348z6NcLrc8WKwWfClAkd2GPtGko6wUjLRaLbxeL+Lx+JL7Lmq1+rrMPZncawrAkn9fPvswm81sX1OpVEKj0YBSqYTP52OVz2803nYEi9UqcRCym9CnmnSclZIApqamUK/XYbFYltx3WenLuVgsYnR0FNPT0wCAQCCAgYEBFqgWBxSHw4GhoSFMTk5Cr9fDYrGgXq+zyujr0a5gQYGJ7Hb06SYdZ6UkALnxYCqVYpt4V1pKkzf7Tk1NQalUguM4XL16FdFoFD6fD0ajEX6/f0lAyWazrNdUvV5n+6/WG6AAChaEtAJVMycdZ/EyXL1eR7FYZNXN4/E4RkZGWBuNxUFBThvP5/OsBp/RaGRljHQ6HQRBwOzsLACwzDy5tFKz2USpVML4+DjUavW6lvgIIa1zUwJUtVrF4cOHwXEcfv3rX9+MtyQ72PJ2HGq1GpIkQavVYnh4GN3d3Uu61wLvL+uFw2FEIhHMz8+jUCggm82yiugOh4M1DpR7SMn3qcrlMnw+35LmhV1dXRSgCGmzm7Im8dhjj6G7uxsXL168GW9HdoG19j0t714r37OS063tdjsajQbq9To4jkMoFILJZIIgCEilUkv6Ncm19RYWFuB0OqFQKNDX18f2XxFC2qflAeq1117D66+/jldeeQWvvfbams+tVquoVqvs7/l8HgBQr9dRr9dbOs6bRT6P3XI+QGvPSalUsk62mUxmyb4fufW7IAiYn59HLpdDs9mEQqGAzWbD3r17odPpkM1mcfHiRUxMTCCfz2NgYABarRZXrlxhGXyCIGBhYQFut7vl59QOu+18ADqnnWIr58JJkiRt41iWmJubw9GjR/Fv//ZvcDqd6O3txa9+9SscPnx4xec/9dRTePrpp697/Pvf//5NK8BJOkuj0UCj0UCtVkM2m0WtVoNGo4HD4WAbaGu1Gi5evIhyuQyLxYJcLgej0Yj9+/cDeP9zWKvVoFAoMDMzA4vFAqfTiXg8zjb9ajQaVKtVeDweSJKEnp6eNVu4E0LWp1wu49Of/jRyuRxrCrpeLQtQkiThN3/zN3HixAl89atfxeTk5A0D1EozKL/fj3g8DofD0Yph3nT1eh1vvPEGPvrRj0KtVrd7ONuiVee00l4oOVV8cXKEIAi4cOECCoUC28ekVCrhdDpRrVYRi8UQDAah1WoxOTmJQqGAvXv34tq1a2g2m9Dr9cjn87Db7bDb7TCZTAgGg/jxj3+8a35O9LnbGXbjOaVSKXi93k0FqA0v8T3xxBN45pln1nzOyMgIXn/9dRQKBXz5y19e97G1Wi20Wu11j6vV6l3zw5LROa1NbtUuNw7M5XKYm5vD8PDwdencHMfB7XbDYDBAr9ejUCggnU4DABwOByYnJ/G///u/8Pv9KJfLbDY+MDAAAKzXlM1mg91uR09PD/sc7raf0247H4DOqdNt5Tw2HKAeffRRnDp1as3n9PX14Uc/+hHeeeed6wLOsWPHcN999+HFF1/c6FuTDxB5LxTHcYhGoyiVSojFYqy54GLL6/gZDAY0m01YrVZwHAeDwYBEIgFRFKHX6+Hz+TA8PLykqvniY8n7oQgh7bXhAOVyueByuW74vK9//ev42te+xv4ei8Vw77334uWXX8bx48c3+rbkA0alUkGpVGJsbIxtuAWARCIBq9W6Zt09AJiYmGD7p4rFIgYHBzEwMACFQoFqtXpd2wxCSOdp2ZUZCASW/F1uptbf38+qShOy2PIOsV6vF5FIBAqFAkajEQ6HY8lzllscdPx+P65cuYJwOIx0Og2FQoF6vQ5JkqjyNyE7BF2lpCNks1lMTk5CFEVWjshqtWJgYAClUmnN8kYrkatO1Go1uFwuNBoNjI+PY8+ePVT5m5Ad4qZdpaFQCC3MaCcdbPnMaLlsNouf/exnKBaLsFqt7N7TwMAAent72b2l9VYKF0URk5OTyGQyaDQaSKfTbEYWCoWoNTohOwT9GklaanmquN/vXxIg5GBSLBbhcDhQq9VQLBah1WohiuKmKoXLJYzkbQsmkwlzc3MoFos0cyJkB6FisaRlFpcgkns8zc7OLsmak2dXFouFbcLNZDKspBHw/r2llXo+rUZ+vlarhdFoRLFYhN1uvy77jxDS2ejXSdIyoiginU6jUCiwEkS1Wg2hUGhJ8DEajahWqygUCkilUmyj7GZnOyqVCqFQCNFoFJlMBi6XC1arFS6Xi2ZQhOwgdLWSlspkMigUCnA6nVhYWLiux5K8h4njOFYtIhgMbrlYq9VqxYkTJ1ijQ57nKTmCkB2GrlbSUna7nW18tdlsK5Y6WX6fCXi/usNWmwBarVbwPE9t0QnZoeiKJS2jUqlgs9mgVquh1+tRqVRgMpnW3MN0o6SKzYyBAhMhOxMlSZCWkZfvTCYTRFGEyWRac5lNTqoQBAFGo5F1v12cVLFZcmbfdhyLEHJz0K+WpKU2kiYu19/jeR5qtRo8zy9pTLhZxWIRExMTrFBsb2/vumZljUYDgiCA4ziahRHSBnTVkZZb7zKbSqWCVqtFsVhc0phwK8FBFEWMjo5iamqKdd+t1Wo4dOjQmsctFouIxWIYHR0Fz/NbXmokhGwcLfGRjiEvCer1epRKpXVXjliLIAiYnp6GUqmExWKBUqnE1NQUBEFY9TXyUmOtVtv2pUZCyPrRDIp0lM1UjlgPjuMgSRI4jmOV0VcjLzXq9XrWl2c7lhoJIRtDMyjScTZaOWItOp0OgUAAjUaDddwNBAKsF9Rq76/ValGpVFCv11EsFrdtPISQ9aMrjuxqKpWKNScslUowGo1LKlms9hq/3w+tVotSqXTD7ENCSGvQFUd2PZ7nMTw8vKFlQ57n4fV6MTw8TP2jCGkTuurIB8Jm7mcplUpa2iOkjegeFCGEkI5EAYoQQkhHorULQv6/xZ1/CSHtR1ciIbi+86/H42n3kAj5wKMlPvKBt1qR2uW9qwghNxcFKPKBt1KRWkEQKEAR0mYUoMgH3uIitYsrRyiVynYPjZAPNApQpKV2Qh+m1YrUUoAipL0oSYK0zHZ3x22l5UVqJUlq95AI+cCjGRRpiVZ2x22V7SxSSwjZOgpQ5IY2s0y3WuLBSsfYCcuAhJCbj35VJGva7DLdervj7qRlQELIzUUzKLKqrSzTrac77k5cBiSE3Dw0gyKrWmmZbiOdZW/UHXerxyeE7G40gyKrWm1/0EaCx1qJB9txfELI7kUBiqxqPct0nXx8QsjORt8EZE03Wqbr9OMTQnYu+jYgN9TqwEGBiRCyElriI4QQ0pEoQBFCCOlIFKAIIYR0JApQhBBCOhIFKEIIIR2JAhQhhJCORAGKEEJIR6IARQghpCNRgCKEENKRWhqg/vM//xPHjx+HXq+HzWbDJz/5yVa+HSGEkF2kZfVlXnnlFTzwwAP48z//c/zGb/wGRFHE5cuXW/V2hBBCdpmWBChRFPHwww/j2Wefxf33388e37dv35qvq1arqFar7O+5XA4AkE6nWzHMtqjX6yiXy0ilUlCr1e0ezragc+p8u+18ADqnnUL+/pYkacOvbUmAunDhAqLRKBQKBY4cOYJEIoHDhw/j2WefxYEDB1Z93enTp/H0009f9/iePXtaMUxCCCE3SSqVgsVi2dBrOGkzYe0GXnrpJfzu7/4uAoEA/vqv/xqhUAh/9Vd/hddffx1jY2Ow2+0rvm75DCqbzSIYDGJ6enrDJ9ap8vk8/H4/ZmZmYDab2z2cbUHn1Pl22/kAdE47RS6XQyAQQCaTgdVq3dBrNzSDeuKJJ/DMM8+s+ZyRkRE0m00AwFe+8hX89m//NgDgzJkz6OnpwT//8z/jD//wD1d8rVarhVarve5xi8Wya35YMrPZTOe0A+y2c9pt5wPQOe0UCsXGc/I2FKAeffRRnDp1as3n9PX1IR6PA1h6z0mr1aKvrw/T09MbHiQhhJAPng0FKJfLBZfLdcPnHT16FFqtFlevXsVdd90F4P2bf5OTkwgGg5sbKSGEkA+UliRJmM1mPPjgg3jyySfh9/sRDAbx7LPPAgA+9alPrfs4Wq0WTz755IrLfjsVndPOsNvOabedD0DntFNs5ZxakiQBvD9j+vKXv4zvfve7qFQqOH78OP7mb/4G+/fvb8XbEUII2WVaFqAIIYSQraBafIQQQjoSBShCCCEdiQIUIYSQjkQBihBCSEfaUQFqt7bvqFarOHz4MDiOw69//et2D2fTJicncf/996O3txd6vR79/f148sknUavV2j20Dfn7v/97hEIh6HQ6HD9+HGfPnm33kDbt9OnTuO2222AymeB2u/HJT34SV69ebfewttVf/MVfgOM4PPLII+0eypZEo1H83u/9HhwOB/R6PW655RacO3eu3cPalEajgT/5kz9Z8l3wp3/6pxsuGNuydhvbbTe373jsscfQ3d2NixcvtnsoWzI6Oopms4nnn38eAwMDuHz5Mh544AGUSiU899xz7R7eurz88sv4oz/6I3zrW99iWyPuvfdeXL16FW63u93D27Cf/OQneOihh3DbbbdBFEX88R//MT72sY/hypUrMBqN7R7elv3yl7/E888/j4MHD7Z7KFuSyWRw4sQJnDx5Eq+99hpcLhfC4TBsNlu7h7YpzzzzDL75zW/ixRdfxP79+3Hu3Dl89rOfhcViwRe/+MX1H0jaAer1uuTz+aRvf/vb7R7Ktvuv//ovaXh4WHrvvfckANKvfvWrdg9pW/3lX/6l1Nvb2+5hrNvtt98uPfTQQ+zvjUZD6u7ulk6fPt3GUW2fZDIpAZB+8pOftHsoW1YoFKTBwUHpjTfekD784Q9LDz/8cLuHtGmPP/64dNddd7V7GNvmE5/4hPT7v//7Sx77rd/6Lem+++7b0HF2xBLf8vYdXq8XH//4x3f8DGpubg4PPPAAvvvd78JgMLR7OC2Ry+VWrV7faWq1Gs6fP4977rmHPaZQKHDPPffgnXfeaePIto/cY22n/EzW8tBDD+ETn/jEkp/XTvXv//7vOHbsGD71qU/B7XbjyJEj+Id/+Id2D2vT7rzzTrz55psYGxsDAFy8eBE/+9nP8PGPf3xDx9kRAWp8fBwA8NRTT+GrX/0qXn31VdhsNtx99907tpmhJEk4deoUHnzwQRw7dqzdw2mJSCSCb3zjG6tWr+80CwsLaDQa6OrqWvJ4V1cXEolEm0a1fZrNJh555BGcOHFizb5sO8FLL72ECxcu4PTp0+0eyrYYHx/HN7/5TQwODuKHP/whPve5z+GLX/wiXnzxxXYPbVOeeOIJ/M7v/A6Gh4ehVqtx5MgRPPLII7jvvvs2dqBtnNVt2OOPPy4BWPPPyMiI9L3vfU8CID3//PPstYIgSE6nU/rWt77VxjO43nrP6W//9m+lEydOSKIoSpIkSRMTEx27xLfec1psdnZW6u/vl+6///42jXrjotGoBED6n//5nyWPf+lLX5Juv/32No1q+zz44INSMBiUZmZm2j2ULZmenpbcbrd08eJF9thOX+JTq9XSHXfcseSxL3zhC9KHPvShNo1oa37wgx9IPT090g9+8APp0qVL0j/+4z9Kdrtd+s53vrOh47Q1SWI3tu9Y7zn96Ec/wjvvvHNdAcVjx47hvvvu66jfnNZ7TrJYLIaTJ0/izjvvxAsvvNDi0W0fp9MJpVKJubm5JY/Pzc3B4/G0aVTb4/Of/zxeffVVvP322+jp6Wn3cLbk/PnzSCaTuPXWW9ljjUYDb7/9Nv7u7/4O1WoVSqWyjSPcOK/Xu+T7DQD27t2LV155pU0j2povfelLbBYFALfccgumpqZw+vRpfOYzn1n3cdoaoHZj+471ntPXv/51fO1rX2N/j8ViuPfee/Hyyy/j+PHjrRzihq33nID3U2VPnjyJo0eP4syZM5tqUtYuGo0GR48exZtvvsm2MDSbTbz55pv4/Oc/397BbZIkSfjCF76Af/3Xf8Vbb72F3t7edg9pyz7ykY/g3XffXfLYZz/7WQwPD+Pxxx/fccEJAE6cOHFd+v/Y2FjHfb+tV7lcvu7aVyqVrJnturVmgrf9Hn74Ycnn80k//OEPpdHRUen++++X3G63lE6n2z20bdHJS3zrNTs7Kw0MDEgf+chHpNnZWSkej7M/O8VLL70kabVa6Tvf+Y505coV6Q/+4A8kq9UqJRKJdg9tUz73uc9JFotFeuutt5b8PMrlcruHtq12+hLf2bNnJZVKJf3Zn/2ZFA6Hpe9973uSwWCQ/umf/qndQ9uUz3zmM5LP55NeffVVaWJiQvqXf/kXyel0So899tiGjrNjAlStVpMeffRRye12SyaTSbrnnnuky5cvt3tY22Y3BKgzZ86seo9qJ/nGN74hBQIBSaPRSLfffrv0i1/8ot1D2rTVfh5nzpxp99C21U4PUJIkSf/xH/8hHThwQNJqtdLw8LD0wgsvtHtIm5bP56WHH35YCgQCkk6nk/r6+qSvfOUrUrVa3dBxqN0GIYSQjrRzbhAQQgj5QKEARQghpCNRgCKEENKRKEARQgjpSBSgCCGEdCQKUIQQQjoSBShCCCEdiQIUIYSQjkQBihBCSEeiAEUIIaQjUYAihBDSkf4frETFWQzRRvgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGiCAYAAACyKVKmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyIUlEQVR4nOy9aYxja3rf9zuHPOThvlYVWfvW+91nuaO59iy2R9IHJV+CJIbsQFYAIYiteJnAsJXAjgayJQs25AEcQ4uTOAaEsfIhMQwkIwMjz4xGM5rl3p65PbfndnXXvpIsbofkIXnIw0PmQ/t9VdVd3bf73q7uqu73BzRwq7q6yHPIW0897/N//n9tNBqNUCgUCoXijKE/6yegUCgUCsVJqAKlUCgUijOJKlAKhUKhOJOoAqVQKBSKM4kqUAqFQqE4k6gCpVAoFIoziSpQCoVCoTiTqAKlUCgUijOJKlAKhUKhOJOoAqVQKBSKM8mpFijP8/gH/+AfsLCwQCgUYmlpiV/7tV9DuSspFAqF4oPwn+Y3/83f/E1++7d/m3/zb/4N165d45133uEXf/EXSSQS/M2/+TdP86EVCoVCcc7RTtMs9ud+7ueYmJjgf//f/3f5uf/iv/gvCIVC/P7v//5pPaxCoVAongNOtYP69Kc/ze/93u9x584dLl68yI0bN/j2t7/Nb/3Wb5349b1ej16vJz8eDofUajUymQyapp3mU1UoFArFKTAajWi1WkxOTqLrjzlVGp0inueN/t7f+3sjTdNGfr9/pGna6Nd//dcf+PX/y//yv4wA9Uf9UX/UH/XnOfuzu7v72DXkVI/4/uAP/oC/+3f/Lv/0n/5Trl27xrvvvsvf/tt/m9/6rd/iF37hF+77+ns7qEajwezsLHfu3CGdTp/W03yquK7LN77xDT7/+c9jGMazfjpPBHVNZ5/n7XpAXdN5oVarcfHiRSzLIpFIPNa/PdUjvr/7d/8uf//v/33+8l/+ywC8/PLLbG9v8xu/8RsnFqhgMEgwGLzv8+l0mkwmc5pP9anhui7hcJhMJvPcvAHVNZ19nrfrAXVN540PM6Y5VZl5p9O578zR5/MxHA5P82EVCoVC8Rxwqh3Uf/af/Wf843/8j5mdneXatWv86Ec/4rd+67f4b//b//Y0H1ahUCgUzwGnWqD+xb/4F/yDf/AP+Ot//a9zeHjI5OQk/91/99/xD//hPzzNh1UoFIoXisFgwGAwwO/34/ef6o/1p8qpXkksFuPLX/4yX/7yl0/zYRQKheKFxbZtdnd36fV6BINBZmZmiEajz/ppPRGUF59CoVCcUwaDAbu7uziOQyQSwXEc9vb2GAwGz/qpPRFUgVIoFIpzymAwoNfrEY1GMQyDaDSK4ziqQCkUCoXizxgMBk+9OPj9foLBILZt47outm1jmuZzM4d6Pq5CoVAoniHPag7k9/uZmZlhb2+PdrtNKBRienpaFSiFQqFQHJ8DRaNRbNtmb2+P5eXlp1IootEoy8vLSsWnUCgUiuOcNAdqt9uyYDwNnrfCJFAzKIVCofgIPO9zoGeJKlAKhULxERBzoFAo9FzOgZ4l6g4qFArFR+R5ngM9S9RdVCgULxSnZQukCtOTR91NhULxwvA82wI9j6gZlEKheCF43m2BnkdUgVIoFC8Ez7st0POIKlAKheKFQMnBzx+qQCkUihcCJQc/f6hXRqFQvDA8KTn48xoQeNZQd1ahULxQfNSiopSATw91xKdQKBSPiFICPl1UgVIoFIpHRCkBny6qQCkUCsUjopSATxdVoBQKheIROW0l4GAwoN/vq47sP6HKvkKhUDwGp2UMa9s2Gxsb7O3tsbq6yuLi4gsvvlAdlEKhUDwmfr//kY/2BoPBB86pjoovTNNU4ov/hOqgFAqF4pR4VEn6UfGFz+c7Jr54kedbqoNSKBSKU2AwGLC5uUmj0SAYDD60KzoqvvA8T4kv/hOqQCkUCsUpYFkWq6urlEol9vf30TTtgUd9R8UXjuMoG6b/hCpQCoVC8YQZDAYUCgX5sRBAPExUIcQX09PTLC8vv/ACCVAFSqFQKJ44g8EAz/OkEk/XdTRNI5fLPbQr8vv9BAKBF75zEqi7oFAoziVHd4YMw3jkf3OvPPw0jF/FTMlxHCYnJ2k0GkSjUZLJ5BP5/i8KqkApFIpzxwftDJ1UdE5S1AGnYvwqZkp7e3s4jkMymVQzpQ+BulsKheJc8aCdoeXlZfx+/4mFyDRN+W+i0Si2bbO1tcVoNGIwGMjPHf0+H5XTWuh9kVAzKIVCca542M7Qg9zGHce5z+S13W7T6XRO1fj1cRZ6771GZUKrOiiFQnHOEPOdVqsld4bi8Th+v/9Et/F2uw0g94xEtxSJRBiNRsc+FwqFnnmn0+12WV1dZTgcHusAX8RO7MW5UoVC8Vwg5jubm5vHdobgbufh8/nuKzqmacqZ0FGTV+C+z4lC9ywKwmAwoFKp4DgOqVQK27a5ffs2gUCAXq+H3+9nfn7+hRFbqAKlUCjOHWK+s7KywvLyMp7nsbq6Sq/XYzAYoGnafUXnQTOhez/3LBNzB4MBruvKDtA0TW7dukUymaTf72NZFvv7+7z11lsvRJFSMyiFQnEuETtDwLG5k8/nIxgMsry8fN/C60kzoaOfe9aJuX6/H8MwZN5Uo9FgOBzS6XTwPI9MJkOr1WJ7e/uFmE+pAqVQKM41J82dPuzx3JNOzH1csYPf7yebzcq8qWg0Sj6fx7ZtAoEA/X6fZDKJ67ovRIFSR3wKheJcc9Ro9WFih6NzJfHxvUXsUb/XvTzq3tWjHBWGQiGWl5fRNE0eOVqWRbVaJZlMEovFiEajL4RY4vm/QoVC8VxzdCn2QSm3R4uF6DxEMTpaOB7le92L+N7tdluKGKLR6H17V4+zYyWO+gCSySRvvfUW29vbcj71oiz9Pv9XqFAonnsethR772LvxsYGAFeuXLlvyfeDvte9iO9dq9VotVpSxPCxj33sRLn7h813SiaTH+no8ryiZlAKheK54EFLsYPBgHa7jWEYDIdD/H4/Pp8PXdcfOGN61AVb8b3FTpYQMezv70u5u+u6TyTf6cMu/Z5nXpwrVSgULySO41AsFuVcqdlsEg6HpTruQTOmR9mFEn9nWRaZTEaKGEajEfl8nkql8shHhYr7OfUOan9/n7/6V/8qmUyGUCjEyy+/zDvvvHPaD6tQKM4JH6R0+yi2PyKXKZVKkUwmpRpubGxMFo5cLieLkcC2bVZXV1lZWWF1dRXbtk/8/mLmFIvFqFar+Hw+KWJIJpMsLy9z+fJl5ufnpYxd8eicajmv1+u89dZbfP7zn+cP//APGRsbY3V1lVQqdZoPq1AozgkfpHT7qEuzQjY+Pj7OxMQEtVqN7e1tdF2Xy7uFQuFEY1mh4PsggcMHiRgcx3lmi7/nnVMtUL/5m7/JzMwM//pf/2v5uYWFhQd+fa/Xo9fryY+bzSYAruviuu7pPdGniLiO5+V6QF3TeeAsXs9gMGBjY0Mq3VqtFpubm7IQfNDfP8o1jUYjdF2nXq9jmiabm5tomkY8Hse2bb7//e+TTqfl7Ghzc5Pp6WnK5bJckgUIh8NMTEw8sLAEg0FmZ2cB5JxI7Co97Bru5Sy+Th+Vj3It2mg0Gj3B53KMq1ev8jM/8zPs7e3xx3/8x0xNTfHX//pf55d+6ZdO/Ppf/dVf5Utf+tJ9n//KV75COBw+raepUCieAf1+n729PUzTxOfz4XkejuMwPT0tl1If9vePSrfbpVqt0m63qdVq5HI5wuEwjUaDn/zkJ4yPjxOJRIjH4wCMj49z69YtOZ/a39/HMAyuXLnC5OQkoVDovu9fqVRwXRfDMOSi7aNc44tAp9Ph53/+52k0GvIePyqnWqBM0wTgi1/8Iv/lf/lf8vbbb/O3/tbf4nd+53f4hV/4hfu+/qQOamZmhkKhQCaTOa2n+VRxXZevfe1rfOELX3jkFNCzjrqms89ZvJ7BYMDq6uqxXSGxpCo6qIf9/eNc02AwwLZt1tfXGY1GRKNRbt68SaFQYGpqCr/fj+d5XLhwgfn5eX74wx9Sq9U4ODgAIJPJMDc3J+dKR5d9xYwqFArR7XaJxWKPfA33chZfp49KtVoln89/qAJ1qkd8w+GQj3/84/z6r/86AK+//jo3b958YIEKBoMEg8H7Pm8YxnPzYgnUNZ0PnrdrOkvXYxgGi4uLMq8pHo8zPT0tu48P+vuj3+foNZ2kvuv1elQqFYbDIfV6nXa7ja7rfOITn6Df78uPZ2Zm6PV68ohvNBqRzWbJ5XJks1l6vR6apsnHE3EfjUYDy7LQNA1Afs2jXsNJ9+asvE4flY9yHadaoPL5PFevXj32uStXrvB//9//92k+rEKhOCd80FLsvX8Pd0UHD5JrHxVV+Hw+8vn8MVeHsbExXNelXC4zGo0ol8vMzc0RiURkh/PVr36VcrmM53kA6LrO5cuXZbTHvY8tlnSz2awsgo9zjYoHc6p36q233uL27dvHPnfnzh3m5uZO82EVCsU54oN+aIu/syyLQqGA53kEg0FyudyxrzvqGKFpGqurq6yurjI7O0un0yGdTuN5Hq1Wi06nw/LyMsVikZ2dHS5cuEAul+Nb3/oWzWaT2dlZqtUqnueRTCbxPI9oNCol6UefVyqVwjAMXNclnU6fKKRQhenDcap37O/8nb/Dpz/9aX7913+d/+q/+q/4wQ9+wO/93u/xe7/3e6f5sAqF4jnCtm02NzdZXV0FYHFxUVoUiS4H/kxSbpqmdHLwPI9SqcTm5iapVAqfz8f6+jqpVEoWIs/zmJ+fZzAY0O12yWazdLtder0epVKJmZkZ5ubmME3zREl6Op0mEAgcm0GpYvRkONVF3U984hP8u3/37/i3//bf8tJLL/Frv/ZrfPnLX+av/JW/cpoPq1AonhNEV9Rut/H5fPh8PqrVKqZp4jjOsQIlzF8bjQadTodOp0OlUmFjY4NGo4Gu6+zs7NBut0kkEjiOw87ODpFIBNM0MU2TRCLBaDSiUqlQLBbJZrNMTExQqVROzIkCmJmZIRaLMRgMiMViyjHiCXLqd/Hnfu7n+Lmf+7nTfhiFQvEcIrqiRCKBbdvYtk273abRaMhwQoFwIvc8j93dXcrlMvF4HMuyiMVimKbJ3NwcU1NTpFIpBoMBo9GIXC4nj+A+/vGP893vfpfDw0OuXr3Ka6+9RjabpVarAZBOp+8zf1UzptND3UmFQnFmEV2R4zgkk0kqlYp0gJiampLO5IJoNMrly5dJJpN8/etfx7IsOp0OAI1GA7/fTzgcZnZ2VnrzHY1Oz+VyfOELX2BychLXdYnFYliWRSQSYTQaPTAnShWm00G5mSsUijOL6IqGwyE7Ozv4/X7y+TzT09MPdHUQqbTxeJxkMsnS0hKFQoH33nsPXdcZGxtjMBiQTCalRx78meef6LQajQY3b97k8PCQbDbLwsKCTLpV5q9PB3V3FQrFmcY0TQKBAJOTk3J2VCwW71MD35uYOz4+Tq/X48c//jE+n49sNsvY2BipVIr5+XlM02QwGGBZFoPBgHK5LOXpwr9vbm6OVqtFqVSSS7rqKO/poe6wQqE40wwGA5m1ZBgGfr9fzn8E95rK5vN5dF1na2uLdrstZ1D9fl/uUVUqFd555x0ajQaNRkO6SFSrVQ4ODrhw4QL9fp9qtcr29jaj0UgWNsXTQR3xKRSKM42YQ1mWhW3bWJZ1LLjv6P7TUYVdv9+XoYT9fh+fz0e9XscwDBzH4U//9E+pVquEw2FqtRqbm5sMh0MSiQTdbpcbN27wp3/6p6ysrGCaJs1mk+985zvcvHnzoREciieHKlAKheLMcFL2k9/vJ5VKcXh4KGdCyWTyWIE6KV7d5/MxPz9PIpHAMAzW19fp9/uYpslPfvIT3nvvPXZ2dtjf32c0GlEoFKRSMBgMomkag8FA2hK1Wi1arZaUuO/t7al8p1NGHfEpFIqnxsNSah+U/TQYDKjX63Im1O12sSyLRCIB/FmHdVRhF4lEcF2XXq9HKBSi3+/LKPavfvWrxGIxer0erVYLn89Ht9tF0zQ6nQ7xeJzJyUni8Tg7Ozt0u10GgwHNZpPx8XFM05T7VuIx1TzqdFB3VaFQPBUeFj549JhOFBkREig6pGQyiWEYBIPB+2ZQY2NjFIvFYym5tm1jmiYTExNomobf75cx78PhUM6lyuWytDEKBAJMTU1RLpdxHIfJyUk2NjYYjUYkk0lisRij0YjDw0MsywIgEomoEMJTQhUohUJx6jysAIlYina7jWmaaJp2bBH2pA5J7CB1u11WV1cZDof4fD4p/S4UCrTbbfx+P6ZpSg++fr+P67rU63Wy2Szj4+OEQiFM05S7T8VikenpaYrFIo7jcPHiRbnMWywWpXN5MpmUC8QPS9xVfHjU3VQoFKfOg+ZEogAJ6bht2yQSCeLxOJlMRh4FzszMsLe3d2wHCaBSqeA4DqlUCtu2KRaLjEYjBoMBiUSCdrtNpVKh3+9TLpdlISuXy4TDYeLxOHt7e/j9fg4PD5mfnycSiZDNZk+UlIsCCcjZ1r3XctK1K2n6h0PdLYVCceo8rAsaDAYUCgXpCl6v1xkOh1y7du1YYZifn5eLtKZp0mq1cF33WNE7aknU7/fpdrs4jkMmkyEWi0mnc2F1VKvVpEuEZVm8/fbbzM3NEQqFeOutt+47thMuFpFI5IGuEkd52LGm4oNRBUqhUJw6D+qCRPfU6/VIp9Mkk0kmJiYYDAbH9o0qlQrr6+sAxONxZmZm5N9ZloVhGFIcIYpNtVqlXq+TyWQwTZNkMikj3IWfn1AEdrtdXNfF8zxmZ2ep1+v8yZ/8CTMzM/fNmB52LUf5oGNNxQej7pJCoXgqnNQFAbKL2tjYkP89Nzcn/3tra4s//MM/pN1uk0qlmJubo1KpANDpdDg8PATudk3i6G99fR3LskilUszMzKDrOqlUikKhQLVapdfr4TgOjuOg6zqBQIBarcbly5cJBAK02206nc4xSfnRwvIoBrEfdKyp+GDUXVIoFE+FRznuGo1GwN0o9WKxyPb2Nn/6p3/K/v4+Fy5ckPEZ/X6fdDotXSIikcgxl4dLly4xGo1wXRdd12k0GiwuLtLpdFhZWcF1XcLhMKPRiFqthq7rWJZFr9djOBwSCARk53VUNXi0sDxK0OKDjjUVj4a6UwqF4tT5IBm53+/nypUr6LpOq9Xi1q1bfOMb36DdblOr1TAMg1u3buG6LpubmywuLhKPx9nf35fCiqOYpsn8/Dy3bt3i5s2baJomHSP8fj+BQIBCoUC32yWTybC0tEQkEsEwDNn1hEIh6WD+uIVFCCPy+fwx+bsymH081J1SKBSnzgcdd/l8PhqNBsFgkJWVFba2tmg2m2iaxuHhIbquYxgGh4eHcv/JdV3g7nzqXldyy7LY3d1lb29PFpgbN25QKpVIp9McHh6SSqUIBoMYhkE4HObll1+m1WrJmHfbtimXy/Lo8FELy0m+gMKaSRWnx0PdLYVCceo87LhLiCQ2NjbY29uj0WjQbrcJh8OEw2HS6TRbW1skk0mmpqaIxWIMh0NKpRLtdptIJMLExASO42BZFltbW6yvr+N5Hn6/n06nIx8vEAgQiUTI5XI4jsP09LQsHs1mk1qtRj6fZ2pqCtu2CQQCj2UQe1KnWCwWlTDiQ6LumEKhOHUetsu0u7vLaDTCMAzpNn54eChzm0RY4dTUFK+99hq1Wo1KpYKmaSQSCYLBIN/4xjdotVrcvn0by7JwHIdEIkEkEiEej8vjPc/z6Ha7GIZBOp1maWmJ999/n8PDQ4bDIdlslgsXLsji2W63H+s6lTDiyaLumEKh+NA8zhLqSco30T0ZhkG1WiUej+O6Lpqmsba2RjKZlAKIbrfL3t4e165d49KlSxQKBRqNBnfu3KFQKOB5Hvv7+9RqNUajEcViURanRCLB7OwsqVRK2hYBfP/736fb7TI+Pk48Hqff79NsNuWe0wfNnu69fiWMeLKou6ZQKD4UDzN3fVDREp8TnRFAMBikWq1SrVa5c+cOrVYLwzCYnJwEIJvN8rGPfUzuLYnZ0dramhQ9VCoVqtUqtVoN27YJh8N4nieLnQg9XFxcZGxsjN3dXbrdLul0mlarheM4BAIBfD4f1WqVYDCIaZrS4uhxrv9RdqQUj4a6awqF4rF5kCovl8tRKBQeKiW/9wd7KpWi3W6zs7PD5uYmuq6j67oUJ/h8Pnw+H9FoVH7Pvb09bt++zf7+PoZhsLu7i2VZDIdDer2edB6PRCLk83ni8bhU6Y1GIzRNIxQKEY/HZUG0bZvl5WUikQhwV4RRKBSke8SjXP/y8vIj7UgpHg2VB6VQKB6bk2Yttm2ztbV1X3DgUdfxk8IFLcsim82i6zqzs7NSCNFoNOh2u9RqNVZXV+l0OkxNTUlvPb/fL90fAoEAAMlkkrGxMRmxIY7chLdftVrFMAzGx8cplUpYlkWlUqFUKmEYBqFQCMdxGA6HmKYpC8+9uU8nXf/RHCthUquK00dD3T2FQvHYnDRrMQwD13UfaqIqfrCbpimLgOM4eJ5Hr9fD7/cTDodlBlQikWB8fBzHcXBdVxYUn8/HaDSS8nRxhCdmTJqmEQgESCQSlEol6ZAuZlyDwYB0Oo1hGNKvLxgM0mq18Pv9WJZFvV5H0zT59fcu6apZ0+mj7qZCofhQnJTBJFJpTdOk0WjIMD8xl4K7RWp9fV1+Pp/PMxqNmJ2dZWNjg52dHer1OsFgkM3NTanY29vbY2pqSh7TATLnyfM8DMOg1WqRz+cxDIN4PM709DSdToe1tTVKpRKXLl1if38fgGvXrjE/P08mk6HZbHLt2jV6vR4rKysyH6pSqTAcDu+79kf141N8NNTdVCgUj8XRGZLIYBIR7H6/n9u3b3Pr1i00TWNmZoZKpUK9Xpdf3+l00DQNTdNot9vcuXOH4XDIxMQEW1tbUtUXi8XY398nlUpRKpVoNpuEw2FM06TT6ZDL5Ugmk0xOTlKr1ZiensZxHLLZLL1eT3Zv6+vr0q+vXC7j8/kIBoMcHBywt7dHqVTC5/MRj8cxTRNd10kkEriuSzqdfqD7uJo1nT7qjioUikfmJHFApVKRsm2/389oNGJiYoJ0Oo1t21y/fp3x8XGSySTVapXDw0MWFhbo9/vs7+9TKBQYDAZUq1Vc12VmZobBYEAgEMC2bXq9HvV6nUAgQKPRIJFIUK/Xyefz9Ho9dF2XsnBx1Ce89W7cuIFlWVLSvrKyQiaTIZfLSUPY0WgkLY0cx2E0Gkln9W63SywWe2DxUYXpdFF3VqFQPDIPWkR1HAfbtllfX2d9fZ1kMin97FqtFlNTU/Ko7ODggFarRafTkeIEcdzXbDbRdZ1oNCpjNFzXJRgMyuPCYrFIJpNhYWGBw8NDut0uo9EI0zSp1+t0Oh2SySTj4+NUKhU8z6PZbGLbtnyuyWSSdrvN5cuXcV2XVqtFq9VicXFRijQGgwGxWEwuFDuOowrSU0bdaYVC8cicJA4YDofcuHGD69evSxcHv9/P3t4eS0tL+P1+7ty5g9/vZ3d3V0asb25u4nkekUiEVCrFzs4OExMTdLtdDg8PpWO53++XfnapVArXdVlYWKDX6+G6LhMTE2SzWXw+HwcHBwSDQWKxGKVSidFoRDwelxlRiUSCubk5fD4f7XYbwzBoNBpUq1VSqRTRaJTJyUnm5+fl9TqOw+rqqgodfAaoAqVQKB6Ze8UBhmHQbrfZ3d2l3+/jui7NZpPBYCDl4BcvXpTSbdu26ff7dDod+v0+uq4zGo3Y2NggFAqh67pM0xUu5bFYjHg8jmEY+Hw+isUiKysrfOc732FtbY2pqSlmZmbIZrN4nkcsFiOTyVAoFEgkEvK4MBaLMTc3x+zsLI1Gg0gkQrvdJhAISJm7ZVlcvXpVXq8KHXy2qDusUCgei6PigMFgwE9+8hMp6S4Wi1SrVQAWFhbw+/20Wi2uXbsmM57W1tZYWFggmUxycHBAvV6X8e2maRKPxxkMBpTLZcrlMtFolOnpaebm5pifn+f69evs7u4yHA5pt9usrq5KWyOfz0ehUODy5ctYloWmaVy9ehVN0zg4OGA0Gkl14dTUFIFAgFwuR71ep16vs729LSXwqVRKFrHx8fH7jjSP2hspTgd1ZxUKxWNz1LIoHA4Ddy2LLMvCsiwuXLgg49dd15VHgsJNHO4WOl2/6xXw2muv0Wg0uHHjBuVyGb/fz/7+PuFwmHw+T7vdxrZtqtUqP/nJT2i1WoRCIbrdLnA3TTcYDOLz+Wg2m1I2LlJxdV0nn89jWRbj4+MsLy8zNzfHysoK77zzDoAUYmxvb8sZm+iqAoGAjOAYDofyeFLFaZwu6m4qFC84D/POu/fvju4zwd1CJRR5a2trzM7OkslkiEQiDIdDarUamUwGXdflMZmmaWxtbeG6LqVSifn5efL5PIlEgrW1NQKBAP1+n1AoRDQaJZ1O4/P5qNVqWJaF67p0u11paRSJRPD5fExNTcnOZnZ2luXlZZrNJt1ul4WFBdLpNNevX5cJutvb23ieJ6/Ptm3Gx8elY0Wn02FiYoJUKiVj4A3DkI4R0WiUw8NDNjY2mJiYIBKJqPnUE0YVKIXiBeZhMewneebV63VqtRr1ep10Ok0qlWJmZoZr164xNTXF3NwclmVx+/ZtGo0G+XyeiYkJfD4fmUyG27dvY9u2NHQNh8M4jkO9XqdSqeA4DrFYDJ/PJwuPiGYX2U+XL1/m9u3b0rZobGxMLgbHYjFZRDY3N2UHJWZZ6XQay7IYjUYMh0MMwyCbzXLjxg12d3e5ffs28/Pz2LZNNpvFdV2Wlpa4dOkScLdgr62tEYlE0DRNqv/m5uaktZOaTz051F1UKF5QHiYAAI79nWVZbGxskMlk5A9l4eBQKpWkBLzf71Ov17FtW0ap9/t9VlZWpC2RUMgZhsFwOKRer1OtVrEsi7GxMSm2SCaT6LrO4eEh8/PztFotisUizWZTHhXGYjHm5+fRdZ1msyk7nnK5jOu6zM7OSieJy5cv0+/3uXLlCjMzM7iuy49+9CPeffdd9vf3ZcBhuVwmFAoxOzvLcDiUnxcdpFAxGoaBZVkkk0lM0yQYDKrspyeMuosKxQvKw8L1ANrtNqZpSufvVqtFLpeTwX6lUok7d+6wubnJ1NQUb775JuVyGU3TuHLlCq1WS3Yb8XicQqFAsViUij7h2xcKhY51K9VqlXa7jed55HI5dnd3+eEPfygTdLvdLsFgkEQiwf7+PuVyWRazer3OxYsXGQ6H9Pt9aTKr6zrBYFDOqQ4ODqhUKhweHuI4DplMhmAwSCgUolAoyI4MYHt7m8XFRbLZ7DEVo23bxGIxYrGYXPRVfnxPFnUnFYoXlIcZnoqoctu2SSaThEIhYrEYruui6zoHBwdsb2/LWZHnebz//vtkMhnC4TDT09Ps7e3x3nvvkc1mpU/fYDBA0zTef/99PM+TnUyj0aDZbJLL5XjppZfo9/scHBywvr7OwcEBzWaTUCgkBRaiADUaDUajEc1mE9M0GQwG7OzsUK1WKRQKXLx4kWAwiOM4bGxscPXqVTY3NwmFQqTTaRnl7jgOPp+P/f19fD4fjuOwv79PsVhkYmKCjY0Naed0VMW4vLx8zI9Q+fE9WdSdVCheUI52A41GA8MwyOVyABQKBVKplHT29jyPV199Fdu2pTODCPkT+02e58ldJiFwiMVi2LbNzs4OzWZTFsVMJsPBwQHvv/8+o9EIz/PwPI9yuUytViMWi1Gv13EcRzpN9Ho9+v0+w+FQytJ1XUfTNHw+H+VymXA4jK7r0vlcHEWK+PZEIiFTduPxuLw2wzAoFotomsaf//N/XhrUmqZJJpNhb2+Pq1evyvmc+J6macqQRqXie/Kou6lQvMAI126hqhOFqdlskk6nmZiYwHEcacKay+WYn5/n0qVLFItF6vU62WyWO3fu0O/3+fSnP00sFqPZbGJZFhcvXqRWq/Hd736Xw8NDQqEQU1NTssgJ2yPhEiG6t8nJSWl9pGka3W5XHu+FQiFCoRCBQEBGbLRaLXw+H7quU61WGY1GUhihaRrlcpmlpSXi8TihUIg7d+4AsL+/TyAQkIUlk8kQj8cZDoeMRiOy2awURDwIVZhOD3VXFYoXmMFgQKFQkD/QDw8PZbHx+XwsLi5KnzvRJYhjsfn5eSmeGA6HjI2NEY1GyWQy7OzsYNs2fr+fw8NDIpEI6XSavb091tbW5ON2Oh16vZ4UIoTDYZmgG4/H2dzcpFqtyswmXdcJh8NEIhH5bwDi8TgTExNMTU0xMTFBtVqVIofBYEA2m2VycpLRaCQf8/DwkMPDQ8LhMHNzc4xGIyYnJwmFQtIHMBwOo2kas7Oz8roVTw9VoBSKF5ijQgkhmxZ7Q/v7+1IA4Xkea2trUooO0Ov1yGazMv02Ho9Tq9X43ve+J+c+u7u7rKysMBwO5ZynWCxKl4dwOCxj2kVoYLfbZWtri8FgIEMNhdxcdFmiqAlbo1Qqxec+9znC4bAUMGiaxuTkpFT7dbtdfvzjH9PtduVelVjqtW2bV155hfHxcS5fvszU1JRcNI5EIszPzz9yl/SwvTLF46HunkLxAnNUKHFUNi2Oumq1GsPhkOFwKCPab9++LXOcbNum2+2Sz+fx+/1S2DAxMcHOzg5bW1tUKhW63S5+v18WqqPR6EKurmkag8EAx3FotVrSpSIej8tjRvH5drtNOBxmYWGBn/u5n5OZU41Gg1KpJJdr6/U65XKZyclJkskknU6Hw8NDCoUC4XAYwzDo9/v0ej35PTY2NlhaWuLatWvyeT5q9/SwvTLF46MKlELxAvMw2bQ4Utvd3SUQCGBZFvF4nJ2dHQaDAYlEgm63y8bGBrdv3yafz+Pz+TAMQ8rPhSlrqVTCdV18Ph/9fl9mMLVaLdk5hUIhWUQCgQChUIher0exWJSFTXwPMYOqVCq8/fbbMh5DmNcmEgm5WNxoNBgbGyMejwPQ7/dlUU6n05RKJVn8hGUR3FX2FQqFRy42ylj2yaM/rQf6J//kn6BpGn/7b//tp/WQCoXiERCy6Zdeeom33nqLTCYjbX10Xcfn82HbNrdu3eIb3/gGOzs7DIdDMpkM5XJZujW4rsvq6iqFQoHt7W1c15W2RUKJNxwO6Xa7stBomoZhGIyPj5PJZOj3+9LxPJFIAMiPRVESe1nD4ZBKpcLq6io3b96kUCig6zr9fp/333+fra0teRzY6XQA0HWdZDLJwsICuq7TbrdJpVJMTU0xOzvL2NgYFy5cYDQasbW1heM4snPc29s7ZvN0LyftlR3tFhWPz1Mp62+//Ta/+7u/yyuvvPI0Hk6hUDwmJ8mmha3P2NgYf/zHf0y1WpWquevXr9Ptdrl16xaAnEtpmibj3UXQ4OHhIc1mUwYYCoNXv99PPB6XvnqiaxuNRnS7XYrFIt1uVz4n0zSp1Wo4jkOn08Hv99PpdKhWq4TDYWlhFI/H6XQ6VCoVIpEI+XxeZkxFIhFef/11er2ejAjJ5XJEIhGCwSCdTkdaJolF4nuXmB+WrvugvTLFh+PU75xt2/yVv/JX+Ff/6l/xj/7RP3ro1/Z6PXq9nvy42WwC4Louruue6vN8WojreF6uB9Q1nQce53pEcRLzoPX1dVzXlSKKQqFAvV4/9nVra2syLqPf70uFnZhdiW4sEokwGAywLIteryeXb3u9npSKp9NpNE2TR46maeJ5nsyP8vv9GIbBaDTC5/PJiPdOp8Pm5iZXr17lzTffpN1uk81mGR8fx7Is2fV5nsfOzg7dbpdwOEwsFpOBiaIAfeITn6DValGv148VG+HO/iByuRx7e3tYloVpmkxMTHzgv/mwr9N54aNcizYajUZP8Lncxy/8wi+QTqf55//8n/O5z32O1157jS9/+csnfu2v/uqv8qUvfem+z3/lK1+Rlv4KheL06Ha7VCoVaeiq6zrr6+sUCgU8z2M0GlGpVPD7/WiaJjOZer2eNGUVbuOj0YixsTFSqRSDwYC9vT08zwOg0+nII8DhcCil38FgUB4Xapomj/1ECKJhGIRCIVKpFJ1OR4o4RNcHcOHCBS5fvky5XJbPIZlMEolECIVClMtlGo0G3W5XPg9N06REXjijT05OYlkW/X6fQCBAJpMhFAp94D0US8dCLv+i0+l0+Pmf/3mp9HwcTrWD+oM/+AN++MMf8vbbbz/S1//Kr/wKX/ziF+XHzWaTmZkZPv/5z5PJZE7raT5VXNfla1/7Gl/4whcwDONZP50ngrqms8+jXM9gMGB1dRXbtimVStRqNeLxOIFAQKbZ/uQnP5GFyXVdKcOORCIyZqNWq7GwsADcnfnMzMwwHA4Jh8PSF0/TNHRdl5ZKojsSR2LD4VAerzmOQzKZ5PLlywQCAVzXPeZeMRwO8fl80pIpEonw6quvUqlU8Pl8vPTSS9JgNpFISHl5IBCg2WxKF4m5uTl5ROn3+/nMZz5DNpt9qpLx5+19B8gAyw/Dqd3x3d1d/tbf+lt87Wtfe2SJpjBzvBfDMJ6bF0ugrul88Lxd08Ou5+gP+1KpxGg0olgsSquffr8vi4emaXieh+u6soi1Wi0ODg4YHx+Xy71ixygSiTA7O0uv16Ner8vI+Ha7TafTYTQayb2nXq+Hruv0ej15nCe6n/HxcfnvAemiLsQM4+PjaJrG3t4ewWCQubk5AoGAnCHVajWp2ms0GmiaJg1rO52OtGhqt9scHh6Sz+cfqWt60jxP77uPch2nVqCuX7/O4eEhb7zxhvyc53l861vf4n/9X/9Xer2ean8VijOE3+/H5/NJBZ7rujKyfWJiQgoTjv4SmU6nyWQycoeq1+vJGdNgMGBiYkKKGXq9HsPhUHZMruvS6XSka8Th4aH0BBQdW6VSwTAMTNPkzp077O3tSTujfr8PIGdQ4XCYarWKpmlsb2/LbKjZ2VlZJOfm5vA8j/fee086R4guqVKpSJWgcNBQ0RnPllO783/xL/5F3nvvvWOf+8Vf/EUuX77M3/t7f08VJ4XijOH3+8nn86ytrclk2VAoxGAwwLZtbt68KX3qIpEIjUYD27ZptVpMTU3JOY5woxiNRpRKJYrFoly6FYUnn8/LCPfhcEiz2ZQCCNFFiSPEfr8vZeLJZJLx8XF6vR7dblcWJ3EM2O/35RHe3NwcjUaDdDrN2NgYi4uLJJNJXnnlFYbDIZcuXSIej6PrOpVKhVgsRqfTIZvNkkwmZXemeHac2t2PxWK89NJLxz4nzqnv/bxCoXj2DAYDTNNkYWFBHpm12238fr8MFQQYGxuj1+tJoYKYC9XrdbrdLrFYTBapwWCArut0u10SiQTZbFZGZbiuK4uPmEml02kZPihyo4LBINFoFM/ziEajuK4rXcpFEROO6Pv7+/T7fWmhJOZV4+Pjsit0XZexsTE0TZM5TmNjY1y5coX9/X1c1yUajarojDOAuvsKxQvIvX5xwqJHqNuCwaCMoXAch2q1ytLSkpzP9Ho92u02+XyeyclJvve971EulzEMg1arRaVSkUeCpmniOA79fh/TNEkmk1SrVYrFolS7icJhWRaAPL4TcnWh/qtWqwwGA7rdLrquMxqNZOdVLBYZjUZomiYLk0jxFTL2fr8vd6O2trbo9/vEYjFmZmZk56R89M4OT/UV+OY3v/k0H06hUJzAvX5x+XyeQqHA3t4em5ubMo/pL/2lvyTzl5LJJPV6XRaXarWKbduEw2EmJiYIh8MkEgkmJiZYX1+XknRRmESB2d/fl+4R7XZbmrqKbRdxNHgUIVuPx+NyN8vn88njv2g0SjAYlIVFxHGIj7PZLGNjY1I6v7+/z87ODj6fj9dee01G2ovE3KOFSRm/PlvUHVcoXiBO8otbX1/HsixWV1elsKFUKnHjxg2mpqZIJBJSPXfjxg258DoYDLh+/To//OEP5XFds9mkXC5jmqaMiW80GpimKf3ytra2CAQCtNttgGMFSYQPCqWgUNBFIhHpzxcIBGR4oa7r0mWi1WrJWA/xb8Qx5Q9+8ANM0+QnP/kJ4+Pj0gLp9u3bfOpTn5KWREeLkDJ+ffaoAqVQvEDc6xenaRobGxs0Gg1WV1e5ePGiXG6t1+u4rku73abf70uxw+TkpDR5HY1GMu7cMAx2d3c5PDzE7/fLoD+/308qlZJLvsPhkEAg8ECPOl3XZcelaZp0VzcMQ86mRCyH6Khc18UwDMbGxggEAsTjcZaXlzk4OOA73/kO+XyeSCQiO0Sfz4fneYTDYcLhMNeuXbuvc1LGr88edacViheIo35xpmmysbGBz+fj8uXL0pX86tWraJomj9J2dnao1WrSuqdYLHJwcMDOzg6dTkcKIYTPnoivaLfb6LouO6dGoyG7ngfZ34gk20AggOd5OI5Du92WsyVxZDgYDBiNRvj9fjkzm5iYQNfv+l+3220ODg7IZrPs7u6yt7d3TDSRSCQoFotMT0/fpygWqkXhiv6oXnyKJ4+60wrFC8TReI1GowHA4uIi0WiUz3/+87z77rsEAgFisRhwNwdJ5DGJzuPOnTvs7OxQr9dlhhP8mVGsKCaGYTAcDoG7rjDiSE/kS52EkKFrmia7LCGi8DxPOqELEYU4BnQch1KpRC6XIx6P43kerVZLxniIxw4EAjiOg2mazMzM8Prrr3Pt2jUA2Y3t7u7SbrcpFov0ej3Gx8eV8eszQt1theKc8mEH+CJew3EcwuEwzWaTvb09arUa8/PzvP7663iex1e/+lUKhQKrq6t0Oh0Mw6BSqeC6LnNzc/JjoaobDAbHlmfFoutoNDpmAn2UYDDIcDiUaj5RvDzPk+o80aEJpd/RmZX43mJ5uNlskkgkpIuFiHsPBAKyWIkk37GxMaanp3FdVxa53d1dmXXV6/WwLEvK3B8mO1diitNB3UmF4hzyUQf4fr+faDTKzMwMf/RHf8TW1hbhcBjXdXnnnXeAu4F9lmXRbDalJNzzPGZmZggGg8TjcVmgXNdF13UMw5DHaCKWXXQ/JyHsjODuD3nh8wfIfSlh1joajWTxOopYAk6n0zJ2wzRNaceUzWaZm5sjnU5TqVRkGu/s7CypVEou+t6+fZv9/X0WFxdlRlUwGGR5efmhS7tKTHF6PLXAQoVC8WQ4OsB/1DC9B+H3+xmNRszNzbG0tES322VrawuAqakp+cNbRMLbts3q6ioHBwfs7u4e84wbDoeySB3tnh5UnAB8Pp/04BMLtz6fD7/fj67rcqY0HA5lgdA07dgfYWZrGAadTkem4ObzeVKpFOVymUqlws7ODul0mnQ6TTwe58KFCywuLhIIBKTd0mg0YmNjg263K3OdHlacnuRrobgf1UEpFOeMk5JbHzbAF3Hm4vjt6HEU3C0SwmFcpN+6riuDAWu1GpqmAXcXZ49aIMFd15her4dt24xGI5n99LDCJLj3a8TxnZgtiQJnGAbxePxYsKFQA4pjwm63y+TkpHz8druN53lUq1WZ4Lu2tsaFCxdIpVJYlsX+/j6j0UiKIZaWltjY2JBHhR/kJvG4r4Xi8VB3UKE4ZzxOcmuxWOSdd97BsixWVlZ4+eWXj81t8vk8U1NTbG5uSguhg4MDbt++TaFQIBwOEwqF6Pf7tFotecwn5leNRkMe6QlRxFHnhw+DcFU3DINgMCiDDScmJmQUvXguuq6TzWYZjUaEw2GpyCsUCjJnyjAMAoGAtGxqtVpUq1VWVlawLEuayUajUUajERcvXmR+fh7TND+wyKgU3dNF3UWF4pxxVIkndpBO+k3fcRzeeecdWq0WmUwG27b5oz/6Iz72sY+RTCZpNBoytdrn81Gv1zk4OGBra0suwpqmyYULF7h16xbNZlP65rXbbbkg22630TQN0zTl3EhYFD3uUZdQ/wmxga7rxONx0um0XNQVUR5iMTidTsuuqd/vk06nsW2bXq9HOBym3+9LCbzf72dvb49IJMJoNCIWi+F5nrwmcS8fdYb0qK+F4sOh7qJCcQ4RSryHKcfE7EhY+ITDYSqVCo7jsL+/T7PZZHt7mytXrjA9Pc3e3p5MyxVihEKhQDKZlE4N4phNyMaFCatIpj1qayQk44/TTYndJvHvhMzdNE2CwaDs6Or1uhRgtFotaf6aSqXwPI+JiQlpSFsqlWSnI+I9xBFhpVLBNE0uXbrE/Pw8yWTysYvLo7wWig+HupMKxTnlg34YmqZJNBqlUqkQDAbZ3d0ll8tx/fp1pqamGAwGHBwc0Ol0ZNHa2dmRhqpCQXfr1i1isRipVIpIJMLOzo6MfK/VatKFvNVqSUn4UZHE4yK+hxBOGIZBrVbD8zwSiQSe59Fut+l2uzQaDXw+H8FgkOnpaZaXl7EsSxbWbDbLG2+8Qb/fx7IsPM8jl8vJyI5isSjdMyqVCslk8lReC8WHQ91RheKM8lF3a0zT5OMf/zg/+MEPuHXrFsFgkD//5/88q6urMggwHo+zurpKOBzGtm2CwaCUlosZlZhZDYdDWq2WDAeMxWLSgDUWi9Htdkkmk7KzsW37sZ+zUObBXS89v99PuVzG7/fT7/dlYWo2m9KodnZ2llAohGmarK+vy5woIS2/dOmSDDO8ffs22WyWXq/H2toa0WiUqakpksmkEjecQdQroVCcQe7drRkbG5OF6uifDypiuVyOz3zmM9Lxe25uDoBSqSQXa5vNppzvLC8v43menD+JpNlOp4NpmliWRbvdlkdpIvdJFCUhFRfdz+MivPHE9xGWTOFwWGZAzc7OEo1GZcih6LDef/99EokEr7zyCrlcjkwmw/T0tBRFhEIhXn75ZTqdDsPhUB5RikKrxA1nD/VqKBRnjHuNSre2tvjmN78pXbwvXLjA9PQ0qVSKer1Or9eTKbUnzVCi0SjhcJhCocDa2poUQ6yuruJ5HvF4HNd1CYfDOI7D9PQ0+/v7VCoVGd1uGIb00RMZUcL4NRgMyu5DSL4/7E5WIpGQURq6rmPbtgwc9Pl80t0hFosRDAblMnGtVpOzsB//+McEg0Fc1yWRSLC4uCg7PF3X5feZmZmRruZK3HA2Ua+GQnHGOLpb43medOBOp9M0Gg22trYIhUJsbGwwPj6OYRisrKzw4x//mKWlJS5fvvzAWYrneXJxVaTOAnI5ttFoyBj2VquFbdvHRA+GYUhlnJCXH503ib2lB3ntPQhN0wgGg4xGIzn/ElJ20akJNd5wOGR/f59QKCT3t/x+P7FYTIYvfv/735ezp1AoJDvIdrstHcmPOlioGdLZRL0iCsUZ4+huzXA4lMXJ7/eTy+WwbRtd12m1WkxNTbG7u8v29jblcpmtrS02Njb46Z/+abLZLIA0XJ2ZmWFubo6dnR3ZFVmWheM4TE5OEo/HCYVCWJZFr9fDdd1j/nq9Xg/TNKUTuShcR53JH+S590EI2bdIwxXqOhFKKIxpfT4f7XYb0zTJ5XJMT0/T7/dZXV3FMAxKpZKchf2Fv/AXGA6HrK6ucuHCBRzHkcd4pmkeu9+Ks4l6ZRSKM8bR3RrLskgkElI1VywWyWazDIdDYrEYlmWxtbXF4eEhPp+PVqvF97//fQzD4Atf+MKxTqrRaNBoNGQHJb6fbdtYliWVbUIEcZI8XFgfHZ2BfRR8Ph+xWIxMJiONaIX5rHCsEMeKQvqeTqflXtNgMJDqQjFnAsjn82QyGQDeffddKUtfXl4mEAgov7xzgipQCsUZ5OhuzfT0NDdu3KBSqZBKpZifnyebzbK8vMz+/r4MFBRHg36/n2q1yvr6OlNTUxSLRTY2NvjBD37AxsYGhUIBz/OOxVmIDKR6vS5FCqIoimwmQPrmPSjP6XEQUe+DwYBqtYrnebJjc10XTdPo9XoEAgGZjisUfP1+n3w+TyAQkMd8uq7T6XRIJBI4jsO3v/1tTNOU3ntCHKHCB88P6tVRKM4ookuZnp4mm83iOI78O9M0MU2TZDJJs9nk//v//j9qtZpcanUcR86lqtUqa2tr7O7uommajGGPRCLE43HpR1epVKTP3SuvvCKXb0VIoHAHf1KIHSfP87BtWxYZUXDEzEsUMrjr+zcajaR7eqlUApDdVyqVIh6Pk0gkKJVK0hzWcRypPBTRGkpSfvZRr45CcQ4Qku+TYh1efvlltre3WVlZAZCR7MlkUnZFt27dwrIsut2ujMEQYYO2bdNoNDBNU6r1bNvm9ddfx3Ec1tbWAD6UbPyDEPMt8f2F15841hNJvcFgUD6/YDBIIpEgHo9z8+ZNdF0nl8tRKBTkHEvkPLmuyze/+U2p+nvjjTcYGxuTggrF2UbFbSgU54CHxTokk0k+9rGP8Rf+wl/g4x//OMFgkEgkwuLiIj6fj8PDQ3Z3dzk8PJTx7cIz76g8ezgcomka+Xwex3HY3t6WR29PG6G603VdysR9Ph+2bROPx8nn8zLBV7iIJ5NJarUag8GAWq1GMpmk2+0yHA4Jh8MA7O/vYxiGkpSfE9QrpFCcAx4W62CaJgsLC/T7fRqNBrFYjEQiIec4t27dOhanIQL+Wq2W3AEKBoO0Wi18Pp9czBVHgc8CEasxGo3Y29uT3nzCkVwYw4qCLWZj+XyeN954A9d1pf3Sm2++id/vZ2xsDNu2H8sMVvFsUQVKoTgHfFCsgwgenJycJJ1Os7e3x82bN9nd3aXVakmjVfFDv9/vS0HFcDiUcyYhmKhWq3Q6nWcWvHd0t6per8uo9kAgQKFQkPMjEc1er9eZmJjg2rVrvPXWWxwcHJBOpxkMBjQaDcbHx2m322QyGTmjU7tPZx/16igUz5hH8dx7WKyDbdusra2xtrZGMpmUrgm2bbO4uMj09DTb29vAXZm4kHELoYFwDxczICFCOO3iJNSBYh52NKxQqAiPdkqhUAifzyedLGZnZ2Xq72g04tq1aywsLFCpVFhYWCASiaDrOmtra/h8PtLpNJcvX1bx7OcIVaAUimfIvZ57D/uBeVKsg5hNCVufer1Oo9FgbW0N27bJZDJ87GMfw3Vd9vf3ZSES0eqiQxGptX6/H8dxpFDhcR0hHhfhHnG0IApnCJHKK1wuhMff7OyszLJqNBpkMhmuXLnC5cuX5VHg0tISyWSS5eVlPvWpT8l7dtRCSsnNzz7qVVEonhH3eu5ZlsX6+jqXLl065nRwlHu7rMFgIDuqTCYji5NhGCQSCQqFgpRiC386QKrdxOzGMAxGoxHNZlOq305DtXcUoeAT/niiKLmuK3eixNxJ13V5DZFIRLpdRCIRDMOg2+2Sy+VkoRaehEfvleM4Kp79nKFeFYXiGXFU+NDv96lWq1iWxWg0Ynl5+aFHT47jyD97e3vs7OxQqVTkceG1a9e4ceMGN2/eZHt7Wy7ADodD2RUFg0G63S5wXO4Ndwvhk1jG/SCESa3o6kTIoYhwF2a0qVQKy7IACIVCxONxZmZmpDCiWq3y9a9/ncXFRWl6K+6fuCfimlU8+/lBvTIKxTNCCB8sy6JarVKv10mlUriu+9Cjp2KxyDvvvEOj0ZDd0e3bt7Esi8XFRTRN49//+38PQKvVkgu2YtYj8pZEFyWKgxAmiHgL4VBxmp2UmHuJ5yE6R3Fv4vE4cNerT4QSXr58mVgsRjKZ5PDwENu2j6n8hPJveXkZx3GOHaGKQqfi2c8H6pVRKJ4RQviwvr6OZVmkUilmZmYIBAIPPHpyHId33nmHVqtFLBbjnXfekfEWsViMVqtFNBplf38fAMuy5MKrKE7iqE8c8QlhhEDkQYlO5mndC5HRFI1GiUaj0lIpEonQ6/WkPD4YDHLlyhWZ9js+Ps7ExASRSIRarSaNYUVxOjpzsiyL+fl5+ZiqOJ1t1KujUDxDotEoly5dkkKBQCBw39HTUZWf4zjYtk02m5XRFNvb2zKHqd1uS0sjuFtsRF6UrutEo1EGg4G0MYL7HSJEgRL2RqdZpIQwQ8RlDIdDIpEIgUCARCIhE3uFQ7nruhQKBWZmZnjppZfY2dnhlVdewfM8arUapmnK+wOcOHOCP3PmUHLzs416VRSKZ4xpmiwvLz9QQn5vsm40GpXGsX6/n0AgwPz8PMViURaXsbExGTbY6XRkYer1erTbbenrJwrZUXRdJxgMymPB00R0aY7jyCNHTdOIx+PE43HZNYVCIWkOOz4+zuTkpMx5Eh5+mqaRTCaJRqNks9mH7o49jnpS8exQBUqhOAMICbkoHEe998QPVmGo+tprr3Hjxg0sy+LKlSssLCygaRqLi4vs7OxwcHDA7u4ugUBA5j/1ej0Mw5Bdw9HZ072II8OTiteTxnEcKWcXasJGo0EgECAQCMiiGw6H2dvbY2JigsPDQ5LJpFTw+Xw+hsMhc3NzXLp0ieFwyN7e3gNnToCSm58T1KuhUJwRbNtma2uLwWBAJBJhbGyMWq1Gq9ViOBzKLKZcLsdnP/tZKWiwbZs7d+5w69YtSqUSmqbRbrfpdDry6KxWq8nuSnQpDzq6E84ST2v+JJ6PKFIiQXc4HGJZFqFQSM6gAJaXl5mamsKyLEqlEj/1Uz9FPp+n3++ztbXF+Pi4NMo9aeak5ObnB/VqKBRnAMuy+Pa3v41t2yQSCdrtNs1mk2KxSL/fJ5VKSbm4pmmYpsn09DSO47C+vk6j0WBnZ0fGSiSTSSqVCv1+H8/z5A/gXq/3SMu3T6s4AXIh13Vd6RTheZ48ohSZVaFQiImJCV566SV8Ph+9Xo/9/X1u3LhBqVRiaWmJVqvF3NzciTMnwQfZRinODuoVUSieMYPBgK2tLen80Gg05BEd3N3dWV9fp1gsomkaa2tr0tC1Wq3K3/x3dnawLEvOY0RharfbUob9NNwhHpej+1au68odLF3XMU0Tn88nd7iECW65XOZHP/qRLOQ+n49ms8n8/DzdblcWoJMKz8NsoxRnC/WKKBTPGNEliHgIy7Ko1WpcunSJXq9HoVAgk8nQarWo1+usrKyQzWZl0ZqdnaXValEqlahUKvR6PTlnEgh3CDHbGY1Gj9xNPU2EMEPsRolOaTgcSnPY3d1dSqUSW1tbhEIhudycSqVYWlpC1/UPLDwn2UYpzh4qD0qheMb4/X4ikQixWAxN06hUKqTTaZaWllhYWJDx7KFQiG63S7lclkd/nuexv79PqVSSYoKxsTG54+Tz+QgGg/KHvPDZE3tHZwmfzwfcLdiGYeC6Lo1GQ7pFzM3N0ev12Nvbk9dRr9dxXZetrS1GoxGdTofRaMT09PQHunH4/X5M01TF6QyjXhmF4hkjjpxEx3Dp0iUymQyhUIhOp8P09DSJRALP89jZ2UHXdXq9HuVymVKpRCAQoNVqEQgESKVSaJpGLBbDsixs2z5xz0nMZs4SR41hhWGsEHWIudrm5ibhcFjOkVqtFu12W3rwJRIJHMehUqmQTCaf9SUpPiKqQCkUZwAhehBWPnt7e+zt7VEoFKjVamxsbOB5Hq+//jq9Xo/r169zeHgI3PWmcxyHbrcrd4YikQitVgtAStcFzyrjSSDmYSchjiXFcwyHw8RiMarVKqlUitFohK7r2LYt52+maTI1NUUqlZLLyEqV93ygXj2F4ilyUvbTvUujwo9vY2OD9957T8qwPc9jfHycQCCA4zgkEgmi0SidTkceDxqGgWmasmid1EE9ax50tKjrOoFAgMFgIMUSwiFD5FddvHiRfr9PIpGQ8za/308oFJKqxcFgoFR5zwmn+gr+xm/8Bv/P//P/sLKyQigU4tOf/jS/+Zu/yaVLl07zYRWKM8lJ7gWmad4XubGxsUEkEqFer2NZFtFolFQqRaVS4cc//jG9Xg/P85ifn2dra4tqtYphGASDQer1OtVqVSrdnuY+06PyoOcjUn+Hw6EUR/j9fsLhMLOzs8TjcXRdJ5vNYlkWS0tLNJtNwuEw2WyWVCpFp9MhkUgoVd5zwqm+gn/8x3/M3/gbf4NPfOITDAYD/qf/6X/ip3/6p3n//feJRCKn+dAKxZni3uwn4V4wPT19bGk0FArRarXIZrMyo6lUKtHtdqlWq6TTacLhMK1Wi1arRbPZpF6vk81mCYfD8jF6vd59ERpnGTE3MwwDwzBksdE0jWw2y4ULF+R+WL/fJx6Pk06n2dzc5MKFCySTSa5evSqztO4tTo+SWqw4e5zqK/Uf/sN/OPbx//l//p+Mj49z/fp1PvOZz5zmQysUZ4qj2U/iKM62beDPMopM08SyLNlFxONxarUazWaTbrdLr9eTMedbW1tYloVpmgQCAZrNJgcHB3Q6HbnvJFzLz5pa716EQtHv98ugwWAwSCgUwjAMxsfHyWazZLNZcrmcLMq9Xk+KSTKZDEtLS/ep9gaDAZZlUSgU8DzvWOeqCtbZ56m+Mo1GA4B0On3i3/d6PXq9nvy42WwCf7bD8TwgruN5uR5Q1/QoiOH+wcEBzWYTy7KIxWLMzc2Ry+W4c+cOq6uraJpGJpOh0+nQbDaZnJxkenqaarUqQw3FUV632yUajTI+Ps7q6iqtVkv6653FhdyjiOcXCARk8RHzJp/Px9TUFJFIRMrvB4OBNIG9dOkSiUSC/f19vvOd7/Dyyy+ztLREJBI59noJ66jV1VVGoxGLi4v0+31+8pOfyFnXWTOKfZ7/X/owaKOndEA9HA75z//z/1xaupzEr/7qr/KlL33pvs9/5StfIRwOn/ZTVChOFdu2uXXrliwspmkSj8cZHx+nUCjIz1cqFXZ2dmTMhIhlL5VKMkxwb28Pz/Nkl7W/v39frtNZR8TSj4+PS6cIwzCkcm96elr6Bx4eHuLz+bh69SpvvvkmqVRKLvT6fD65QyXwPI+DgwPa7bb8xdg0TRKJBAcHB6TTaeLxuHSdyOfz930PxZOh0+nw8z//8zQaDRlA+ag8tQL13//3/z1/+Id/yLe//W3pKHwvJ3VQMzMzcpP+ecB1Xb72ta/xhS98AcMwnvXTeSKoa3o0HMfh5s2bmKaJaZqMRiPa7bYUO0QiEYbDId/61rcoFovE43Hef/99KpWKNHyNxWIEg0H6/T5ra2s4jkO5XKbT6cj022ctI38UxBFePB7n8uXLNJtNPM+T1ka6rkslYi6Xk2GE4XCY/+a/+W948803cV2Xb37zm/zsz/7sfa+R4zisrKxgmqa0NNI0jUQiQb1e5/Lly5imieu6tNtt+fGz5nn8f6larZLP5z9UgXoqR3y//Mu/zP/7//6/fOtb33pgcYK7b9pgMHjf58Xg9HlCXdP54Elek8grEiF5tm0Ti8WIxWKYpkmz2UTTNOm5NxqNZESG+H9jc3MTn8+HbdtSfi2EA+ehMAnEtYXDYVzXlfMyXdfl8nE+nweg3+8TiUQwTZNyucy3vvUt+W8PDg7o9Xr3nbBomkY0GsVxHPL5PBsbGwBks1mSyaS8V71ej1gsduZk6c/T/0sf5TpO9RUZjUb8D//D/8C/+3f/jm9+85ssLCyc5sMpFGeaB5mUCgHFwcEBtVqNg4MD/H6/zDkSSbO1Wo1AIEC1WqVer0vXBKFQO09omkYgEMAwDCl4EK7mtm0zMzNDIpGg1WqxubnJ3t4erutKl/bt7W2uXr2K4zjs7e0Ri8WOFZij99pxHC5evEgul5O/ICij2PPBqb4qf+Nv/A2+8pWv8O///b8nFotRLBYBSCQShEKh03xoheJMcq9JKcDq6io+n48LFy7wwx/+kFwuRyAQoN1uMzY2RjqdZm1tTUrPG40GmqbR7/exbftcycnFesloNJJdnziiTCQS6Ppde1Bd1xkbG2M0GlGv12UqcCKRwO/3U61W2dzclIq+k1wjHmQIq4xizw+n+sr89m//NgCf+9znjn3+X//rf81f+2t/7TQfWqE4FxyVn4tuaXx8nHg8jmEY9Pt9Ka3e2tqi0WjQ7Xalyq/b7T7rS3hkhJO6OM7TNE3OnjRNw3EcKRnXdZ1arYZt21y4cIHRaEQ8HicWi9FsNnEcR4Y11uv1Bz7mgwqQKkzng1M/4lMoXgROWgR9FFujfD5PMBjEsiy5G9VoNCiVSnQ6Hebn53njjTeYnp6mUChQr9flD+jzhDDCNQyDQCBAt9uVHZTIvYI/WylpNptsbm4yNzcnd8fEHC6fz7O4uCgLujKFfX5Rv0IoFB+RkyyMgIfaGpmmKePchfTZtm1pAJtKpUin04RCIW7evInf7yefz7O7u0u/38fn852rudNoNJIRICLbSagORZzIaDSSXVY6nSYajZLJZKT7eiQSYWlpiVgsJi2PotEo6XRadUPPKepVVSg+AkctjEzTpNFo0Ov1ZAE5ydZI0zRWV1dZXV2VOzkzMzMsLCzQ7/dpNptkMhlqtRo7Ozvs7e1RqVRoNBqy6zhvHRRwLK5eKPeO5laNjY0xOTkJIC2dxLHf5cuX0XWddDrN8vIyOzs7HBwcEAwGlcjhOUa9qgrFR0DMkDRNY39/n3a7TbfblbY8Qu4s8pd8Ph+3bt2iUChQKpWAuw4rsViMVquFYRjcunWLWq1Gp9ORjuSGYdBqtdjZ2TlXcyeBkE0bhoGmaYRCITkCiEQipFIpPvnJT1Kv16nVaoxGI5LJJMVikYmJCZaXlxmNRpimSSwW48qVK1SrVbk7JaT7qlA9X6hXU6H4CAg5+J07d/D5fFJdt7KyQrFYJJvNEovFyGQymKZJPp/n/fffp9/vS5siYQZ7eHjI6uoqa2trchdK13U5lxG7T+fteC8QCODz+aTLuAgZHA6HJBIJIpEInufJJX4xc4rH41y9epWpqSny+Tx37tyh3+/L6I1EIsH29jarq6sMh8MzZ1uk+OioyHeF4iMgZkOj0QjXdTEMg2g0SjQaJR6PY1kWlmWRy+WkGerFixfJ5/PE43E6nQ7hcJjRaMTm5iYrKytSOl2v1+n3+/T7fTqdDoPB4NzYGR3tZAzDYGpqilwuJyMzxCxKzNNEOm6r1SKfz3P58mXm5ub43Oc+x/j4OI7jyCj7lZUVDg8PiUaj1Ot1HMchGAzSaDTY2to6V8Vb8XBUB6VQfETE0VKz2cTn89FsNsnn88zNzcl5kbDR8fv9XLhwgeFwyMrKivTUS6VSNJtNms0m7XZb2iANh0M0TZOWPK7rPjCN9iwh5krhcFgm3YqOSVxjv9/HcRyKxSL5fJ7JyUkpiDAMg3a7TaVSkd9T0zRyuRzRaBTXdalWqziOc+x49eDggFwuRzabfYZXr3hSqA5KofgIDAYDCoUCY2NjjI+P0+126Xa7csYiYjSOdhTRaJRr167x2muvSbVeKpWi3+/LjkCYpFqWdcyj7t7uIBwOy+XWs0YwGGR8fJxQKMRgMCCdTtNqtaRrxHA4xHVdOp2OdJEwDENmWXU6HXmU12w2+dGPfsTh4SGVSkVaQAFsbGzI6BKAYrGouqjnBNVBKRQfASGSGB8fZ2JigunpaWq1GoZhcPPmTYbDIXNzc8cKleM4vP3223z1q1/l4OBAzl2q1SrValUm5oruKRqNyr2hexGps2fJTULMzoRkXMjJRTGCu7LzVCpFt9uVtkexWIxIJML09DRXr15lMBjIKPtOpyPvi23bNJtNFhYW5FKvrutEIhEymcyx/TPF+Ua9ggrFR0CE69m2LY+e0um0dEgIBAKsr69Lmbk4Cvzud78rveDeffdd6VA+HA7xPE/KsIXCrd/vy6M9YSQLyMiJs4SQkgeDQXmcF41GaTQatNttfD6fFEaMRiNCoRDBYJCrV6+SSCT41Kc+hc/nOxZ5b9s2S0tLhMNher0eo9GIXC5HIpFgYWGBXq8nvQnPmvGr4sOjXkWF4iNwkgFsMpnkzp07mKZJNBqlUCjQaDTw+XyUy2XeffddSqUSw+GQSqXCwcEBcPe4TmQShUIh+v2+nF11u110XWc0Gp3pIEK4m/0mjuxc15XdU6vVkmnBwWCQTqcjXSSGwyG2bXPx4kVqtRqu6zIYDOh2uxiGgd/vZ3x8nHQ6Ta1Wk/fW5/MxPz9PqVSSxUntRT0/qFdRofiI3Gs+KpZoNU3D8zw5l+r1enQ6HXZ2dqQgwrIsOZPp9/tSki1+sHc6Hbrdruw0ut3umS9QAO12W4odIpGIzHgSXnyiyxL7YaFQCMuycByHCxcuSEVfPB4nmUzKeI1arYZlWaRSKTY3N2XIo0jdVbtQzxfqlVQongBHfzCapsns7Cw7OzvHfgAHg0EODg7kblSlUmE4HGKapsx1EousYhlX/BAXcxrx/c46ooj2+30Mw5Dqw3g8TjqdRtd1uYicyWTIZDLE43HK5bKcv2WzWSmSGAwGMpokEAiQTCap1+tUq1UGg4E61ntOUa+oQvGE8fv9MqG13W6Ty+XY2dmhXC7j8/lIpVIMh0MymYx0ifA8T6rWhPDC5/PJrkJ83/OC3+9nNBrJ4z2xxJxKpQiFQkSjUSYnJ/nBD37A4eEh6XSadrsto+vHx8eJxWJMTk7S7XaP5T2JjioajZ67oEbF43F+3vEKxTkiGo1y+fJluQel6zobGxsyC63ZbBKPxwmHw1L1Fo/HpcT6pBDC8/SDWDxXn8/HaDQiGAySy+WIxWIyiDEcDrO0tMTW1hY7Ozuk02ny+TzD4ZBms4nf7yccDhOLxZienpbCCyFIsW2bQCBwrgq34vFQr6xCcUqIH5yFQoFgMMjrr79OLpejVCpRq9WIRCLE43Gq1Sq1Wo1msylzkp4XgsGgjPweDodyjlYsFtnc3GQwGGCaJqFQiEAgwOTkJOPj49IW6eWXXyYajcp7ea8gJZPJqAL1HKNeWYXiFDkaSCgEAyIFt9FoMD8/L7OSjh7znWcikQiapqFpGslkkm63K+dKpVJJmryK2ZEQOUSjUSzLIpFIEAgEyGQyx4oTHBekjEYjNjY2nuGVKk4bVaAUio/IvcdxRwUTR/ekWq0WX/3qV2k2m8DdvCixNyVmLXt7e+e+QA0GAxKJhNxz6vf7UslXKpXo9/ukUik5bxN+hOLIM5vNsri4yPz8/EPTcM/7fVJ8MKpAKRQfksFggGVZFAoFWq0WtVpNWhcdddUeGxtja2uLb3/72xwcHJBMJrl+/Tq1Wo1QKESv15MqvvM0Z7oX0QmK+yJyn8QcTnSHwhw3Ho9j2zae56HrOj/90z/N66+/TjKZvM8eSvFiot4BCsWHwLZtNjc3WV1dxfM8fD4fvV5PRprv7e2Ry+UoFAq0223q9Trdbpfp6WnK5bJ0SQiHw+zv79PtdhkMBmfKsuhxOZrvJGTmhmFIUYRwlMhms0QiESqVCrFYjFdffZULFy4wOTmpTF4Vx1AFSqF4TESKrthJEvOkxcVFPM8jFAph2zZbW1s0Gg0sy6JYLFIqlQiFQmxvb1MqlRgMBpRKJRqNBq7rMhwOz3UHJRDmtaJLqtfrhEIhTNNkampKSshjsRhvvPEGc3NzJJNJ2u02KysrcuF2fn6eZDJ5zFtPdVUvFurVVigeEyF88Pv9MgFWRG3Mz8/T7XYJBAKUy2Vu374tZzB+v593331XRmz4/X4ZGQFIK6PziGEYMvE2EAjgui79fp9er0c4HCYcDjM3N8fFixcJh8N89rOfxbIsKaQIhUK0Wi0AOp0OlmWxv7/Pq6++Kh3QVSDhi4cqUArFYyJSdNfX1wmHwziOI81cw+EwoVAIwzB49913WVtbY3JyklarRafTIR6PMz4+LpdwR6ORVLydBwujByG6m1AoRCQSod1uE4vFSKfT8n7Nzs6Sz+d58803+cxnPoPjOGxvb8ugR13XabfbeJ5HJpPh8PCQt99+m+npaZLJJLZts7e3x/LysuqkXhDUq6xQPAL3HjPl83nW1tZkxEMikWA0GskZ0zvvvMP29jae57GysoKmadTrdYLBILquk0wm5TKqiHU/WqCE7Pyso2malIofLUbz8/Ncu3ZNWhnNzs5SrVYJh8PSuiiZTBKNRuWx5srKCtvb26RSKTqdDrFYjFarJQt+NBqVQhJVoF4M1KusUHwAtm2zu7t73zFTPp+n3W4zPj7OYDDAMAzq9Trtdptms4lpmvR6Pbn70+v1pEM3IDOMHMdhOBxKeyBRnM5LgYK7HdTY2JiMwnj55Zd5+eWXsW2biYkJotGoTNZ1XfdYJySKTTabpdVqsbe3RyqVkrOpbrcrpfrKc+/FQr3SCsVDEIIIx3Gkvc7t27cZDAasr69Tq9UoFotcvnyZXC7H3t4e0WhUpsWur69Tr9fx+/0Mh0O63S7hcFjuRwmnc9FBCZuj81CcAJlfNRqNpBmscHgQabqaptFsNuV9iEQi6Lp+rBMaDAa0Wi2uXr0qnd49z+PVV1/Ftm3pHKGiNF4s1CuteGF5FHWY4zjSN88wDEzT5ObNm3ieRzQalblNR7+nSL/d29ujUqngOA6DwUDGswtRgBj21+t1ms0m5XL52Pc6Gkx4VtE0DcMwMAyDdrvN3NwcH//4x3njjTcwTVN2Ve+88w6e53HlyhVardZ9dk5CeDI5OcnU1BSO4+A4Dtlsllwup1R8Lyjq1Va8kDzo2O4o3W6Xzc1N9vf32d/fZ3FxUR7HBQIB4vE4nudxcHDAj370I1ZXV+n3+7iuKxdV/X4/mqbJLKhgMEir1aJarTI3N0c2m2UwGFCpVGQcOpwvRZ+macTjcaampnj99df55Cc/yfz8PMVikU6nQ7lcJhgMSveHdDp9370+KZlY2BypwvTiol51xQvHScd296rDRNFYXFxkcXGRjY0NNjc3WVhYYH5+nv39fUqlEqVSid3dXXw+HxcuXMBxHOr1Oo1Gg+FwKEUAojjpuk6tVsNxnGMOEsLxWxjGnhfE83Ych3a7Ta1W40//9E+5efOmLDCO4xAMBjFNE8MwSCQSJJPJY0XnpGRidZynUK++4oXjXgPXk9RhwprHNE3i8ThXrlyh2WyyvLwM3O0avv/979PtdhkbG2MwGFAul0kmk4TDYdrtNrdv35YZSJ7nYdu2PLoajUbUajUajQaJREKmzJ60qHuWj/pEJEY8HufixYtks1m2t7dpNptks1k0TWN5eVmq9zqdzgOLz73JxKo4KdQ7QPHCce9x0r3qMOECUa1WuXXrFpcuXWI0GpFIJOSx3dWrV3Fdl2AwSKlU4s6dO+zt7WGaJs1mk9nZWUql0jFhRLfbpV6vyyC/wWBwrFvqdDonFqKzVpxEwKKu64yNjXHt2jVs25ZFOhwOc3BwgGma+Hw+CoUCk5OTzM7OksvlWFpawjRNHMe5rxCJj4V/nypULzbqlVe8cDzsOEkc/7muSz6fR9M0NjY2uHjx4rHf+kVnJRJzq9UqpVKJer2OaZrk83l5TCiOAIPBIO12G9u2ZYEajUYyPfesFaKTCAaDJJNJGeV+8eJFuQt1eHhIvV4nEAig6zqxWAyAdDqN53lUq1VyuRwrKyvAn/2icO/871Hmg4oXA1WgFC8kDzpOOnr8Fw6HuXLlCp1Oh/n5+ft+iLZaLQ4ODtB1ndnZWSKRCO+99x6FQgFN0/jkJz/Jt7/9bSkOGI1GGIaB67ryY0B2Ubqun3l5eTAYZGJiAk3T6Ha7NBoNNE3j5Zdf5uDggEajweTkpJTaf+xjH2NycpJyuUw6nSYej3Pnzh0Arly5guM4x+Z/jzIfVLw4qFdc8cJy0vGR+K2+1WrheR7dblce7QlZum3bfO9738O2bWKxGIFAgP39fWkgq2ka5XKZiYkJxsbGeP/99+l0OjQaDelafjSkcDQanQthhCigxWJRFlvP89A0jWq1SiaTIZ1Oc/HiRTlvyufzBAIB+v0+zWZTRm6Ypomu6/fN/x5lPqh4cdCf9RNQKM4S4vgvFArhOI48/nMch9XVVW7evMnXv/51mesEd7upjY0NisUi4XBYft6yLDY3N2k0GvT7fVqtllS0BYNB4OzNlx6G2AUTs7JIJEI0GiUYDLK+vk6pVJJKRcMweOutt3j99delk7mYx4nQwuFwiG3bx7Kfjs4HXde97+8VLxbqVVco7kEc/62srLC8vIxhGKyurkpp+J07d2QnMDMzQ71ex3Vdms0m7XZbmsfatn3M+kjTNNk9dDqdcxWtEQqFCIfDNJtNKWDodrvSnqnRaMiU3Hq9jq7rTE9PY5ommqaxtLREpVKh3W6TzWaZnp6m1+vdp+hTcnPFUdSrrlA8AM/zcBwHz/Po9Xp4nsdPfvITWq2WLEB37txhfn6e2dlZma7b6XTw+/1Eo1GazSatVotWqyWj3oVj91nHMAzg7tGez+eT8Rme5zEcDimXy1iWJYtXt9vl4OCAVqtFMBiUx3JiT2pqaopGoyF/AYCTj1mV3FwhUK+8QnEPtm1z48YN3nnnHQAWFhYA2NzcpN1uMzY2RrVaxXVdMpkMr732GoeHh0QiEX74wx8yHA7Z398nEokQiURkFEcwGGQ0Gsn8p7OOOKoTx52dTkfGYog/Ii13YmIC13VpNBrYts38/DzXr1/ns5/9rOyIHMchmUzKzuphqMKkAFWgFIpjDAYDbt68yfe+9z1pBOt5HrOzszKzqVqt0ul02NnZwfM8dnd30XWdTCbDq6++ytraGp1Oh4ODA/x+P7lcTsbCi6PB89BB9ft9gsGg7KQ8z5MzKNd1pfGrMMKNRCL0ej2SySQvvfQS3W6X7e1trl27xvz8PI7jYJrmBxYnhUKgCpRCcQTHcVhfX6fb7cpF00ajAcD8/Lw0dW00Gvj9fprNJn/0R38kl0pLpRL7+/vSYDaRSDAcDmW3IRZcz0OB8vl8xxJy4/E4g8FAXo+u6/T7fTlbGw6HhMNh3nzzTcLhMMFgUPoSlstltdekeGxUgVIojiCWRNfX1+UxXTqdJhwOMzU1xfr6OpFIhMnJSXw+H47jsLW1JePLq9Uquq6ztLQk/fdEF9JqtWS0hq7rZzpB1+/3EwgEpIeekMOLBGCfzwfc3YvKZDJcuHCB+fl5RqMR2WyWYDBILBbDNE0KhQKDwUDtNSkeG/UOUSj+E4PBgGKxiKZp8jf8g4MDMpkMU1NT8nhK0zTa7Tblcplut8udO3ekW7dwhDjqNBGNRtF1HU3T0PW7mx1nuTjpui5nQMFgUErCTdOUcSCGYcgi9MYbb7C8vMxP/dRP4XkeiURC7jhls1lpASW+h4gfUQVK8UGod4hC8Z8QS6Jzc3OkUimazSapVIp4PM7e3p6MKV9eXubw8JBGo4FlWTJiQzhGiKhy8cN9fX2dnZ2dMy8r9/l8cjl2bGyMdrtNo9EgEAhIaybP8xgbG6Pf7xOLxYhGozL1dnt7m/HxcRYXF6WTOcDW1hYbGxtyEXdubk4VJ8Uj8VQWdf/lv/yXzM/PY5omb775Jj/4wQ+exsMqFI+FcOYOBAL4/X4ajYbMfzo4OODtt9/GsiwikQgvvfQSV65cIZlMEo1GaTQa0gjWdV1WV1dZX1/nu9/9LsVi8cwXJ0B2RELsEIlECAaDBAIB6a/neR79fp9kMsnk5CTj4+N4nkc4HGZiYoJkMkmlUjlRhXeelpIVZ4NT/zXm//q//i+++MUv8ju/8zu8+eabfPnLX+ZnfuZnuH37NuPj46f98ArFI+P3+1lYWKDb7fL+++9jWZbMeFpfX5dycdu2effddykUCnL4L+TkkUhEWgB1Oh0ODw+PpeSeZTqdDj6fD7/fj2EY0i3CNE3a7TbdblcKI4bDIYZh8Oqrr3Lp0iWuXLlCOp1mNBrdZ13k9/u5cuWKnLv1ej11xKd4JE69g/qt3/otfumXfolf/MVf5OrVq/zO7/wO4XCY/+P/+D9O+6EViscmGo1y8eJFJicnWVhYYG5ujkAgwO7uLjMzM+i6zo0bN7hz5w7VapVqtSr3mmKxGLquy7lTr9c7Fx57RxFdUqfTkc4PlmVJJ4zZ2VlmZ2dJJpMsLS3xl//yX+aVV15hOByeaE10dFFX13UpNVfFSfEonOq7pN/vc/36dX7lV35Ffk7Xdf7SX/pLfPe7373v63u9Hr1eT34sNu+F+/PzgLiO5+V64Pm7JnEdYo7SaDQwDINIJEKpVGJtbY1utys7iUgkgs/nw3VdOp0Otm3TbDal6u28IWJBhJJPuEgIYrEYiUSCy5cvk0ql2N7eZnt7G13XWVxclGo+cR9zuRx7e3tYloVpmkxMTDwRg9zn7X0Hz/c1fRhOtUBVKhU8z2NiYuLY5ycmJmQmzFF+4zd+gy996Uv3ff4b3/gG4XD41J7ns+BrX/vas34KT5zn4Zq63S47OzvcvHmTZrNJs9kkkUiQSCT4kz/5E95991153DccDqUvXTgcPqZS63Q6wNlOw70XwzDo9XqyWxJHlcLs1fM82u02w+GQ4XDI+vo6v//7v49lWcDdH0R7e3vs7+9LGbrA8zy5rLyxsfFEn/fz8L67l+fpmsT/Cx+GM9Vn/8qv/Apf/OIX5cfNZpOZmRk+//nPk8lknuEze3K4rsvXvvY1vvCFL8gN/fPO83BNotCsrq6iaRoTExN861vfYn5+nosXLzIxMYFt29i2TaVSkYq/ZrOJYRiYpkkoFMIwDGq1GsFgUBasXq9Ht9t91pf4QAzDIBAIyLmTyHISsnnDMJiZmSGbzcodrtnZWT7xiU/Q6/VYWlqSqsfhcMjnP//5p7KI+zy87+7lebymarX6of/tqRaobDaLz+ejVCod+3ypVCKXy9339UdjCI5iGMZz82IJ1DWdHcRybrPZZHNzE0BGlC8vLxOLxaTl0XA4RNM0NE2T6jYhy97b25Nu36K76nQ6cvfpLGKaplTuCRsjz/MwTRPbtuVicTwelynD4XBY3hNxrCmOQ4V44t73gcjSOg2PvfP6vnsYz9M1fZTrONX/cwKBAB/72Mf4j//xP8rPDYdD/uN//I/81E/91Gk+tELxSBxNcI3H4+i6LqPbhfih1+vR7/c5PDyUPnwiqC8SiXDx4kUuXrxIKpWSjgtHnb/PMuLYLRQKkUwmmZqakiGM4njS8zwGgwG1Wo39/X3a7TbhcJhEIsHMzAy2bbO2tka/32d2dvY+rz3btlldXWVlZYXV1VVs235GV6s4b5z6Ed8Xv/hFfuEXfoGPf/zjfPKTn+TLX/4y7XabX/zFXzzth1YoPpB7E1wvXrwoj/tc15Xx5uKYTvjJBQIBhsMhnucRiUQASCaTBAIB6vX6MbHPWR54C3f1TqcjAxonJiZYW1uj3W7L7m9ra4vp6Wmmp6d5+eWX6XQ6JJNJfD4fkUiEdrtNLpfj0qVLxzqkeyPcLctifX2dS5cuKdNYxQdy6gXqv/6v/2vK5TL/8B/+Q4rFIq+99hr/4T/8h/uEEwrFk+JxjpOOJrhGo1FGoxHz8/O02202NjYYjUYUCgW2trZkDPzS0hKDwYCNjQ1s2+aHP/wh4+PjDIdDOXs6L2iaht/vl+GBhmHQbrflrpKQhPd6PUzTZHFxkUwmIyXlqVSKqakp6Sxxb9E5+gtAv9+nWq1iWRaj0Yjl5WVlGqt4KE9FJPHLv/zL/PIv//LTeCjFC46YJ53knH1S4bo3wdV1XdbX1zk4OGB3d5dvf/vbjI+PE4/HWV9fl7Hl29vb9Ho9uRvlui69Xo/RaIRhGGe6axKI4hQKhQgGg4yNjUnLpkAgwGAwIBwO4/P5pI9gLBYD4MqVK7RaLeBuFHw2mwW4bwFX/AJgWRbVapV6vS6Td5VprOKDUO8MxXPDvcdJR52zHce5r3D5/X65OCq+5ubNm5RKJXw+H81mk7W1NXq9Hn/uz/05CoUCzWYTx3GwbVu6meu6TrlcRtd1Op3OuXCO0HVdipJCoRC5XI5WqyWPNcfHx6XP4Gg0IhQKkU6n5c5XOBwmnU5Lc1hxPHhvsRG/AKyvr2NZFqlUipmZGQKBwDHHCYXiJNQ7Q/HccO88KRqN0m63ZXE6Wrh+9KMfUS6XsW2beDzOpz71KZLJJJ7nEQgEZMEJBAIysn1ubg7btvnjP/5jGo2GlJmLnKdAICCdus86uq4zGAyktLzZbGJZluyQlpaWWF1dlV8zOTnJq6++immaBINB9vf3mZmZkTL6UCjE9PT0icUmGo1y6dIluZwbCASwbfvEgqZQHEW9OxTPDffOk8QPQeBY4fL7/Xzve9+Tv/0fHh7ieR4/8zM/QzweJx6PS/fxbDbL5OSk7IxWVlbwPI9MJkOpVKLZbBIMBonH4/T7/Y+0lHhaiKVb0dkJmfxoNCIYDBKJRKTPnt/vp1AoUCgUiMfjjI2Nsby8zOzsLJ7ncXBwQDqdZnx8XOZFicL0MNGD6FLFUerDCppCIVDvDsVzw73zJPFDUPzWLwrX4eEhlUqFmZkZkskkcFel5jiONIutVCqUSiVef/11kskk5XKZzc1NDg4O0DRNFqV6vS6TdXu93pkUSAjFoa7rcidlMBjIzk8oFMVxn+u6NBoN8vk8uVyOXC7H2NiY3HvKZDLymK5cLrO1tQXwgWm50WiU5eXlU9uHUjx/qHeI4rniQT8EjxauaDRKJpOR7uRH5dTRaJQ33niDfD6PpmlMTU1Rq9WwLIt2u41pmlQqFbrdrtyHsm0bTdPOZHECjrmSe54nfQLhrl+m8N0zTVPet6mpKV599VXy+Tye5+H3+/nUpz4FIBeULcuiXq9jGAbJZPKR0nJVYVI8DuqdonjuED8ExT6T3+8/Vrjg7pHfu+++K90flpeXKRQKmKYpk2CnpqZYXl7me9/7Hj/+8Y+pVqskEgnK5TLtdhtN04jH41J+LpzAzxKi2xOLtaPRiFarRSQSwe/3MxqN6HQ6LC0t4bqu7DxnZ2eZm5sjGo1y+fJlrl69SjQaxXEcWegDgQDJZJJkMnls5qeED4onhXoXKZ5LHiQ3Fz8433jjDcLhMO+//z7z8/MsLy/TbrflQurGxgabm5skk0l+9KMfUa1WGQ6H1Ot1BoOBNJAV+0DCceGsIWTvqVRK7iql02mGwyGpVEp2jxcvXpRzN6HQq9frBAIBGa8B3FfoNzc375v5qeKkeFKod5LiueNhcnPxw1N0BsLqRxzh7e7uUiwW2d/f586dO6yvr7O2tgYgffVEjIZQwpmmeWb3nvx+P7quMzExIQUdyWRSdn3i43q9ztjYmHTDCAQCMhfLsiySyaRc2n3Q0akSPiieNOqdpHjueJDc/N6jJ9M0CYfD3LlzB5/Px3A4pNFoyI+bzSae59FqteQybiQSYWlpicPDQ+lkHgwGpV+fQKTH3vvfT5NQKEQgEADg8PBQLskKj8But0sul5NztkqlwuzsLK+88oo0wTVNk5s3b9JoNEin0/eJIJTwQXGaqHeT4rnjQXLzk5ZI8/m8XMYVNjzvv/8+4XCYRqNBIpFgamqKUqlEq9XC7/czOzuLYRhUq1UajYZ0qDjK0QyoZ1GchJx+MBjQ7/cpl8t4nkelUiEQCLC4uCh9+AaDAePj4+zu7hKJRKSzRL1e5/bt22iaJouSpmn3iSBUYVKcFupdpXjueJDc/KQfoslkkvn5ed5//325lJrP59nd3cWyLKLRKD6fj+npaWmMmkgk8Pl8DAYDPM+TSjj4s2L0rEMKRecnRB+RSEQe68ViMcbGxggEAmxtbZFKpUilUrLQjI2NAVAulxmNRly8eBFN07Btm2AwqEQQiqeGepcpnksedvR0ryffzMwMd+7cYTgcMj4+ztzcHLFYjHq9Tjwel4mx4+PjzM/PS1PVfr+PbdtyznPvHOpZpukK49poNEo4HJaOD6LQ1Go1JicnicVihEIhLl26xOLiIrqus7CwQCgUkpEjIvuqWq2Sy+VUcVI8NdQ7TfHcctLR00nqvmQyydLSkjR7PTg4QNd15ufnWVxc5Pbt22xvb7O/v8/NmzcZGxvjE5/4BJcvX2ZtbQ3btk9U8D3LLkoEEZqmKQupkJuLoz5N03jzzTfJZrPSEeLatWtMTEzg9/vZ3NykVqvRarWoVqvEYjHm5uZUgVI8NdQ7TfHC8KBsoqmpKeCuSu/tt99G13Wi0SiVSoVWq4Vt21SrVXq9Hq7rsr+/j6ZpXLx4Udr99Pv9M+XBJ2yLer2ejG0XUe3j4+Oym8pkMrz22mv4fD6i0SitVot+v8/MzAwzMzNyjyqfzzM3Nyfl5grF00AVKMW55MNEiB9V93U6HQ4ODu5T7Y1GI4bDIY7j0O/3sSyL7e1t6SIhco0qlYoUH+i6TigUotPpPLWuSQggHnat3W6XfD5PIpFA0zSazaZ0Khfu4t/5zneIxWLE43EWFxfvc4RQCj3Fs0S94xTnjodlPj0Moe47ODhgZWWFWq0m/eSKxaJ0g9jf38fn83F4eIhpmlIQ0Wq16HQ6BINBfD6f7K5EyN/TPNIT+UwnKQSP7ioJEUc4HJZzqZ2dHSqVivw+N27cYGFhgVdeeUUay9q2fSywUKF4Fqh3nuJc8ShLuA9CyMpXVlao1+tks1mKxSK3b9/Gtm3C4TCHh4dyabfb7ZLJZMhkMoxGI6rVKt1uF0Da/sBd2yRd1x973+nDiijEvxNCjXu/h+d5uK6L67rSqd3n8xEMBul2u1SrVQCy2SyJRIJut4tt26yursp4kVgsxvLysoplVzxTVIFSnCsedQn3Qfj9fjKZDJcuXaLX63Hnzh06nY7smGq1Gpqm4fP56Pf7FAoFXNdlfHwcuCt8sG1bxpYPh0N6vZ78Qf84aJomv+ej4vf75Y7Tg6yVhNOFUBcC0hBW13U+8YlPcHh4yHA4JBwOEwwG8fv9fP/73yedTnPhwgWSySTFYvGYPZRC8bTRn/UTUCgeh6NLuMIH71GPoSzLYmVlhVKpRKfTkcankUiEqakper0erVZLOkQIAUSj0eDWrVv0ej1ZGETcufi4Xq/j8/ke+3oeVJxEYbmXwWDAcDiUMzhd12WhO8rRiHbHcaRru+u6LCwssLS0RKfTIRAIkM/nmZ+fZ2xsjKmpKenFd17CFxXPL+pXI8W54nGWcI9iWRbf/va3sSwLwzDodDpUq1WpSisUCgBEIhH5d8LaqN/v0+128fl8aJpGp9ORKrhOp3Nf1MajHvU97Gse1lX1ej0CgYD0A7y3kxJFy+fz0el08Pv9JJNJOYuq1Wqk02muXbtGNpslFovJBVzTNHEch0ajQTKZVN2T4pmi3n2Kc8fj+r8NBgO2traoVCp4nke5XKZer5PJZHjjjTdYX19nZ2eHCxcu4LouBwcH3Lp1i+FwSL/fl0GEnU6HbrcrC4PrulJ4oGkanucxHA6fiLWRz+eTSr2Tuph+vy/jMo4iOkzhETgYDMhkMnIJNxaLcXBwwOTkJJ///OfZ399nf3+fsbExLly4QLlcxnVdDMNQS7mKZ4569ynOJY8rLxeyccdxiEQirKys0Ov1GBsbkztMIso8FArJ1F3XdaUJrN/vx3EcdF0nEolIdd9gMJAdjTha+6jRG4PBQDo4nFSgxHGiUN0J4YS4J8lkkkQigd/vx+fzyUiQK1eukMlkmJ+fJx6PA9BoNBgOh+zv75NKpeRjFgoFmaWlUDwLVIFSnHseZSdKFI5IJCLnRY1Gg6mpKSYmJuh2uzLufDQakUwmZYckZjhCtSdECqJ7EpHp4u8etTiJDuhBXz8cDh/4d36/Xz7fo3JwEe0ej8dJJBIEAgEajQYHBwcEAgGy2SytVos/+qM/wvM8NE0jFAoxPj5OpVLhxo0bLC8vMzU1JYvkoygkFYrTQL3rFOeaD9qJOvr3rusSCASYn5/H7/dzeHiIruuMjY2RSCSo1Wp0u12Wl5cxDIPr16/Tbrdlh6LrOoZhEI/HjxnEipmTKDaPesR3tNPy+XzHipEQSQj5ujhWFI9lGIY8BhRzpnA4TCQSkdlNwkNwbGwM13VxHIf33nuPbDbLYDCgVqvhOA7BYJD19XWGwyGtVouJiQk5Y1PmsIpniVLxKc4tR3eiIpGIVOWJI7HBYMDq6iqHh4ekUimuXr1KOp0mn8+Tz+cJh8PU63WKxSKWZTE5OcnS0hLLy8ssLS0RDofpdruyGAyHQynSME0TXdfx+XxSPAGPF60hVHg+n+++WZL4PNztloSLRTweJxKJYJqmNK0NhUKEQiGGwyGu68qsJ1HMqtUqg8FAfo0QRVy5ckWmBI9GI9kxHRwcoGka9XpddosKxbNAvfMU55YH7UQ5joPf72d/f58/+ZM/wfM8IpEIFy5cIJ/Ps7y8TL/fZ3V1lZ2dHbrdroykODw8pN1u0+v1MAwDwzAYDodS3WYYBq1Wi3a7jed58s+HQQgqji7s6rpOIBCQBVF0MsJbT3RRgDS3DYVC8t+3223C4TDJZJJwOIxt2wCkUikikYjsngaDgSzc9XodXddJpVJSrVipVJiYmFDmsIpninrnKc4tQrFmWRahUEh2DZubm7Tbbd5++21arRaRSIS1tTVWV1f5qZ/6Kaanp6lUKsRiMV5++WVqtRpvv/021WqVfD5PrVbDdV2i0SgXLlxga2uLfr8vLY729/flTtGTug4xOxIGrs1m85i3nyiCojiJxxaBhOl0muFwSDabJZfL4fP50HWdpaUlGo0GExMT+Hw+Pv3pT3Pnzh2ZCzU7OyudzT3Po9PpcOHCBV5++WWWlpaUOazimaIKlOLc4vf7SaVS3Llzh0ajQTQaJZvNyh/0lmURi8XodrtSkBAOhymVSnS7XdltHBwc4DiO7Lw8zyOVSmHbtvy8WNzt9Xp0Op0Tj/Ie17pIzJ1c18Xn88kZmViQFXZGYv4kojOOCivE54PBoPw+R6XuY2NjfPazn+W1117j61//OplMhs985jNks1mSySSO47CxscHOzg6e5zEzM8PFixfVDpTiTKDegYpziZCOb21t0ev1ZAe1t7fHpUuXpNv46uoquVyOWCxGNptlamqKer1Ot9tldXWVSqXCYDAgHA4Dd4terVYDIJ1OY9s2gUCASCTCaDSSlkHCTuhooXqcAiUiOgRHjwlt26bX6wEcewxN09A0TYoWNE3DNE1mZ2eJRCI0Gg263a6cbc3Pz/PSSy/x0z/90yQSCe7cucPly5cJhUKy+ESjUZLJJFevXgVQ5rCKM4V6JyrOHUKZV6vVuH79OmNjY/Jobmdnh9FoRDQaZWpqilKpxO3bt5mamuKTn/wkjuNQqVTw+XwsLS3hOA62bRMKhUgmk9y5c4d+vy+NWEOhEPl8nl6vJwuAcI64t4t6mEDiaDyGpmn0+32pzhNzqFAoBCBd1YWlEdyVrwNS+i4MYP1+v4zLEM9ZzJvefPNNKRd3HAefz3diAVK7ToqziipQinPFvcq9fr9PrVZjbGwMn89HKpWS85RAIMCf+3N/Th6dibynYrGIbdvE43Hm5+cpFotUKhWZGptKpdjb26NQKGCaplxyFUd9juPcV4zulYkfRSjyRLERBUKIMETREwGDAOFwmH6/j+u6BINB4vH4sSNBcfSXTqdZWFig1WoRCASYm5vDcRxSqRSdTocbN26wt7dHOBym0Wic4iujUDx5VIFSnCuOKvc0TWNxcZGNjQ0sy0LXda5cuYJhGDSbTflvQqEQuVyOvb093n33Xba2tmSuk3DyTiaTaJrGzMwMtVoNn88nd6vEMZ/ruvR6PRzHOTHi4l6EUEF0Q8IZQtM0uZcVDAalElB0ZsKkVjhTiGM4oeoLBALA3cIXDAZl0OD+/j6u60p3jMPDQ+bn5xkfH6dQKLC+vi6LrEJxHlAFSnGuOOpmHo1GmZiYkBEaiUSC+fl5BoOB9Ner1+uMj4/TaDTY3d2l1WqRTqepVCrs7OwwNzcnO6nNzU38fj+u68ojN6GaazabuK4rl3MfBbGrJNR4YnYlBBCA7JjEnEs8XiAQkF1SKpUCkN6AgUCAcDhMKBSSnZlhGFy6dAnLsgiHw5imSbfbZX5+nlAoxNjYGDdu3MBxHGKx2JN8SRSKU0MVKMUz5XGj2+91M89kMly7dk3OVhzHkRlOPp9P7gNZliXtiGzbJpFIUCqVaLfbLCwsAHc7nvfff59SqSQ9+FqtluxcHjfvScyKIpGItEwSxereLCjDMORMSlxnPB4nGAxK9V6j0SAej8vOKxaLkc/nAWQ3ODU1xcLCAlNTU7zzzjtUKhWy2SzlclkWLoXivKAKlOKZ8WGj2x/kZn5v2q6u69IY1XVdtre32dzcpFwu0263SSaTBAIBbNum2WxSKpWwLItUKkWxWJSefcJwVSzKCr++D0KIE4RVkjB2FQIHoeITThJiFiXMWrvdLlNTUziOQ7lcJhQKyQIFd4tSOBymWq0SjUZ54403uHLlCtlsFr/fz8c//nGuX79OtVolkUiwtLSkCpTiXKEKlOKZ8FGi2+FkN/N751OJRIJqtUoul6NWq0n3hMPDQ+LxOI7jyM7KNE2q1SqaphGPx2k2m9JcVtd1er2enDM9qnuEKGTCCULYDQ0GA1zXPSaWEPOnSCRCKpWSgolYLEa/3yeRSDA+Pi5dHoR/YCKRIJ/PSwf2bDZLNBolGo2Sy+X4i3/xL0oF39e//vUP8UopFM8OVaAUz4SPGt1+EqLTER2D3+/Htm2uX78u3SXS6TSapknPOp/PRzAYpFarya6qWq1KkUU6nabRaEhxg+u6uK4rZ0X3qvlO+rxIrj3qAiEKlziaDAQCUqwRjUZlqq+4plwux9zcnEzU/exnP4uu6yQSCba2tgCkxNwwDFnoTdPENM0n5nqhUDxNVIFSPBPuFTuIXaSPsiTqOA69Xo9CocDW1hbD4ZClpSWKxSLVapVKpUKpVJLHdIZhkEqluHDhAjdv3qRUKlEsFul0OnJ5V0jZw+EwnU6Hfr8vP9dut6WkXSzu+v1++v3+sa4JkFZJYi4lHCD8fj+GYbC0tEQkEqFSqUh3cs/zWF1dlf/esiwcx2FsbIxkMollWbz33nvA3YJo2zbr6+uYpikd2x/E487+FIpngXpnKp4JHza6/UGII0Ofz8fk5CTvvfce5XKZQCBAsViUQgcRMyHEE0I6XiqViEQics4kZN5iPjY5OUm5XMa2bZmqK3aXQqGQNHWNxWLSTPZeRAEThUm4QWQyGTKZDOFwmMuXL2NZFjs7OwQCAbrdLo7j0G63qVQqRKNRFhcXOTg4YDQaUavViMVijEYjZmZmsCyLarX60Hv1YWd/CsXTRhUoxTPjcaPbH4bjODSbTTRN4+bNm1iWRbvdZm9vj8PDQ2kom81m0TSNsbGxYwu5mqbx0ksvYVmW7GJKpZLsgMQek23bcl4kFm01TSMcDksxhkjoPTp/EpEc3W6X4XAod6RGoxGmacq5UzgcRtd1Go0GlmXR7/eliCKdTtPpdLh9+zZjY2NcvnyZQCBAp9NhcnKSwWBANpslnU4/8D591NmfQvE0Ue9IxTPloxQmcUzlOA6bm5usra2xt7fHaDSSMyjP8+TRXjQaJRgMkkqlcByHmzdvMhgMyGQy0nfPNE2Zp9RqteQu1MHBARMTE9KhwefzcfnyZZrNplTctdttOp0OnucRj8fpdDpSgBEKhfA8j36/LyXnIipeFKhqtcrGxgaDwYA7d+4wGAxIJBL0ej0SiYRcLi4Wi+i6TrFY5PXXX2dra4tQKEQ6nSaRSMjdsAfdsyc9+1MoTgv1jlScCR53JiKOqdrtNpubm/T7fTzP4/DwEJ/PRywWY3p6mnfffRfDMJiampJGr5VKBcuypEiiVqvJnCeRsSRUeiI9VziKv/zyyxweHtLpdEin08zNzdFut/nRj35EtVqVcypd1wmHw7KTEtZF8XiccrmMz+cjEAjIDuioS4RQ8wl3CZ/PRzQalcePqVSK+fl5Op0OKysrzM7OMjMzQygUIhqNPvSo9DRmfwrFaXFq78qtrS1+7dd+ja9//esUi0UmJyf5q3/1r/I//8//s7RqUSjg8WciR4+p/H4/29vbhEIhFhYWyOfzcqH1/fffZ2tri2Qyycc//nGq1aqMdRcee6KY1Ot1YrEYk5OT+Hw+1tbW6Pf70r/PdV1qtRobGxsYhkEulyMajRIIBDg8PJSiC3Fs12q1ZAxGIpGQYgqRWiv2qqLRqCyshUIBQKoE5+bmmJmZkcIHTdNoNpsycNHv9xOJRMjlcrJofZAb+ZOe/SkUp8mpvStXVlYYDof87u/+LsvLy9y8eZNf+qVfot1u88/+2T87rYdVnDM+zEzk6DFVv9+XxUbEvQ8GA+nNF4lEKBaLdLtdxsfHSSaTGIYhl3APDw+xbZvx8XHGx8eZmJiQO0pHj+IAOVMSrg2DwUDK1MVRozB4BY5FeMTjcXRdl0VV7GkFg0HGxsZkntPRtFyxtLu8vEwikQBgf3+fTqdDOBzm0qVLMr6+1+s9cvf5JGd/CsVpcmrvzJ/92Z/lZ3/2Z+XHi4uL3L59m9/+7d9WBUoh+TAzkaPHVKZpEo/HOTg4kEd7iUSCWq3GzMwMruvSarWwbRvDMFhYWOCTn/wk77zzDvv7+xiGweXLl4lEIqyurqJpGpFIRHY5IqhQiBxEIe12u9L9fHd3F9d16Xa7sjj5fD4cx5FmsWI2VCqVSCQSUnY+Go3IZrM0m00ZM5/JZEilUriuSzgclrLyaDRKOp1mc3MTx3EAmJiYwHGcxz6mU4VJcR54qu/QRqPxUIVRr9eT5pmAXJYUy5HPA+I6npfrgY92TWK2U6/Xj81ExLHagxDu5LZtMz8/z3A4JBgMEggEaLfb3L59W86B5ubmaDabzMzMSGugwWAgE3hzuZzcfxIRGyILKhgMyi7KMAxqtRqBQIB6vY5pmtK1QfywF87lQqAhLJFE7lQwGGR6epperyetjvr9vnRI9/l8wF23iqmpKd566y3K5TL7+/vSGHZmZgbTNOXcLJlMMjExIe/ZSfM89b47HzzP1/Rh0EaPk1H9EVhbW+NjH/sY/+yf/TN+6Zd+6cSv+dVf/VW+9KUv3ff5r3zlK/K4RPH8IboR4dSdyWRkeN/DEJZDnuext7cnDV1t26bdbtPtdun1erL7Eam4tm3LxxPHdoPBgEgkQqfTOSZZd12XRqMhC4g4dgsEAsTjcTKZDK1WC8uypKJP13UpcBCFREjNhbmreD+PRiNKpZKMatd1XXruXbx4kcnJSeLxOJubm9TrdcLhMMlkEl3X6ff75PN5pqam5Myu2+1SqVTkTCybzT7SvVQoTotOp8PP//zPy9nw4/DYBerv//2/z2/+5m8+9Gtu3brF5cuX5cf7+/t89rOf5XOf+xz/2//2vz3w353UQc3MzFAoFMhkMo/zNM8sruvyta99jS984QvPTS7Pk7imD+tsIAQW9Xqdw8NDms0mExMTJBIJisUi29vbVCoV1tbWCAaD0luv3+8zOTnJ3t4epVKJfD7PhQsX6HQ6vPvuu9RqNXZ3dwGwLAvXdQmFQvIoTcRWLC8vMxqNsCxLLvIKEZBwfRCdTTKZ5MKFCzQaDTzPIxaLsbOzg+M4Mo8qHA7zyiuvSNujYDDI/Pw8/X5fBieGQiFc1yWdTpNOp2WX6Pf75fHf0W5UPEf1vjv7PI/XVK1Wj4mXHofHPuL7H//H/5G/9tf+2kO/ZnFxUf73wcEBn//85/n0pz/9/7d377FtX+f9+N+832/iXaJIipQsWbYXO3ajzO7wbdZsWVdgKDYU2JYBTRdkS5G2CRY0SdcOabFuXpZu2NoNbbIBbtZ1TTBkG7ZsQROka9qh2eJc7NSWZV0oiSIpSuL9fv18fn8Y5/wkWZJFSTQp6XkBRiCal/OJSD4+5zznefD8889v+Ti2+bweOxB5kNA13fzYVjUaDcTjcTSbTTgcDj7D0Wg0KBQKKJVKqFaryOfzkMvlKBaLSCaTKJfL8Pl8qNVqsNvtaDab6O3thdVqRb1ex8DAAERRRCQS4X2ZZDIZtFotlEolb6Gh0WgQDoeh0Wh4kVmDwQCZTIZ8Ps+fMxqNQhAEaDQaqNVqFItFfvBXKpXCZrPxGRRbHhweHuYzwWg0imPHjmFoaAgTExOIRqMYGRnhB4NDoRDPgCwWi3A4HPx3wcoxre/ie5DQNXW33VxHywHKbrfDbrdv677RaBT33HMPTp8+jQsXLvAMJUL2AkuwkEgkiEajyOVyyGazKJfLUCgUMBqN/MCtzWZDKpUCAB60FAoFDAYDxsbGYLfbUa1W0dvbC7lcjlgsxtPIWckjiUTCzzmZzWZeOimfz8NqtSIQCPBW841GA0NDQ5BIJLDZbLybbSwWg8VigUajQSqV4sEkEAjws1VmsxkGgwEulwtarRbhcBgmkwkajQbDw8MAAJPJBKlUilAoBODGea1CoYBMJgOlUgmz2bzmjNNtWsknZE+1LUkiGo3iIx/5CHw+H77+9a9jZWWF/53L5WrXy5IDYLvLfazS9+TkJOr1OhKJBM/Wu/vuu2EwGDA3N8eTKdRqNXK5HFwuF3p6enD8+HEYjUYMDg6ir68P4+PjmJ2d5W03gBt7RKycEUvlZtl3LM28VCohl8shkUjg7NmzsFqtqNVqqFariEQiSCaTUKvVUCqVmJ+fx8zMDG9GKJVKoVAoUK/X0dfXh7Nnz/Img3a7nSdWTE1N8RYcTqcTZrOZJxEFAgEeiOr1Ok8UWX3G6SBtupPDo20B6vXXX8f09DSmp6fh8XjW/B39a45sppVDu3K5HG63G9evX0cymYRcLseRI0cQCoWwsLCA48ePo6enB06nE1NTU1hZWYHVaoXP5+PnnoLBIPL5PN58802Ew2Feh0+j0UCn0/GECJZu3mg0UCgUsLKyAlEUeXVylkwxMzMDq9WKkydPotlsIp/P49q1azyoCYKAXC4HnU4Hg8GARqMBo9GIkZER3HnnnTz5QqVSoVqtQqPRwOFwYGFhAUtLS/wc1YkTJ3jQq1QqvKhsT08P/H4///9DqeRkP2vbu/eBBx645V4VIavt5NCu2WzmZX8cDgeazSZfaltZWeHLeMFgEH19fejp6eGzn7m5OaTTaQiCgHg8DoVCAUEQkEwmUalUYLFY4PV6+cyFJVywv189iwLA78eKu+p0Op78kM1modPpUKlUIJFIeJahIAjQ6/W8hYfJZILH44FarV5Ta5At8bH29dFoFD6fD81mE4uLi4jFYvD5fPyxhBwE9M8r0jV2emh3cHCQt2s3GAwwm80wGo28tp5SqYTT6YRMJoPJZMLy8jIv7soyAFlqNtvHKpVK0Ov1OHr0KFQqFebm5lAqlZDJZPjyX7PZ5HXz2J5UoVDgQaxaraJYLCIYDOLSpUsIh8PI5/M8izAajcJgMKBYLPJ2GkePHuUzRrlczq+9UCjwpUNW7HZubo4Xrc1ms1CpVBScyIFCAYp0ja0KmW61L2U2m3Hu3DmMj48jGo3yckMffPABP8vUaDRQLBaRzWaRy+V4BXO5XI7p6WmEw2F+bqrRaMBgMPDHut1uxONx1Ov1NdXOBUHgmXvNZhOZTAYqlQo/+clPeDdci8WCcrkMr9eLyclJaDQaXh5JLpejt7eXZwGWSiVEo1GYzWZ+jXK5HH6/H9FoFMlkEhaLBXq9nnfJNZlM/LWoKjk5aCitjnQNVshUo9Gs2eSvVCqYmprCxMQEpqamUCgUbnqsXq+HwWBAf38/hoaGkEgkEI/HedXwcDiMYrHIA8Lc3BxSqRRKpRI/f8Sy9VgBWVbhAbiR2LP6oC+rgMGWEFnViGKxyCs/lEolXmRWEARYrVYcOXIELpeLp6OzgJLNZqHValEoFPhrsuU9vV6Pc+fO4ejRo7y5oc/ng06nQ6FQQL1e50kgFJzIQULvZtJV1hcyBYCpqalb7ks1Gg00m01YrVYIgsC714bDYZRKJSSTSfT29vIlvaWlJczOzkKhUKypOMH2k8rlMsrlMt577z3E43EMDQ3BarViYWEBoihCpVLx9hbscVqtFmq1GisrK6jX6+jv7+fdbdkyYyqVglar5a9nMplQLpeRy+WQTqcBALOzs7Db7Uin02uSRY4dO7ZmFimXy6kqOTnQ6N1Mus7qZbxKpbJmX0oul2N5eZm3u1j9ha1SqXgV83g8zssMpVIpfuB1enoacrkcJpMJoihieXmZp5Gzg77sZ3Yol5U/YhUgLBYLnE4npFIp5HI5fD4fJiYmUKlUeEVzlkCh1Wp5qw1WDikYDEIikcBsNqOvrw8WiwXFYhFarRYDAwOoVCp49913efX11UF59R4TVSUnBx29o0lXW70vVS6X8c4776BWqyEWi/E6dazGnUajwbVr17C0tIR4PA6DwcDLCBWLRej1euRyOV62iLW70Gq1fGlOoVDwtG22LFcul/GTn/wEcrkcSqUSOp2O7wNZrVYMDQ0hn88jGo0CuHFyXqVSQSaTIZfLQRAEBINBmEwm3l6eBR+73Y7h4WFkMhkMDw/zunn5fB4+n++WySIUmMhBRu9s0tXYvtT09DTeeecdlMtl+P1+zM3NYXl5GWNjY4hGo7h8+TLS6TRUKhXvXGswGADcWDJjxVsDgQBisRgqlQrv0eT3+5FKpTAwMIBarYZ0Oo3Z2VnkcjlEo1G+9KbRaPiekyAI0Gq1OHbsGOx2O2q1GorFIur1Ol+OZHtJWq2W95hilSPYbI21lddoNAiFQrzOn1wuR7lc5sGZut6Sw4je8aTrsTbmrENtNpvlM4rFxUWIoohEIoF8Ps+Ls7K9qGazybvPZrNZmM1mBINBSKVSmM1m3oyQHdy1Wq3I5XJIJpOIxWI8sNVqNWi1WjidTsjlctjtdpw5cwYWiwUzMzOYn59HsVjkwZEFGr/fz/tIse66pVIJJpMJo6OjUCgU0Gq1vMU82zuz2+03JYtQgCKHDb3jyb7ADq5ms1k4HA7kcjleRYFl6jmdTuTzeSiVSmQyGfj9fuRyOdx9992QSqUYHx9HrVbD2bNncdddd6FcLiOVSvHnYhXRU6kUjEYj70vFOuCyDL5AIACr1YqpqSlEIhHeMVev1yOfz/OZG6tqzpoaKhQKOBwONBoNWCwWWK1W9Pb28gr+R48e5f2kqtUq/H7/moQIQg4beteTfUEul2NoaIgfmF2fMMDOKhUKBT7rYQ0Me3p60Gw2MTw8DJVKhcHBQZTLZV5nr9FoIBKJ4OrVqzzYNZtNfh4qk8nwM082mw1SqZQfAs5kMrxyhNvtRrPZhNfrRTqdhlQqhSiKMJvNcLlccLlc6Ovr40t4/f39vA+VKIp8aZCVWtoqbXyn7UkI2U/onU261vovYY/HwyuM12o1GAwG2Gw2XrkhHo/D7XbDZDJBJpOhUCigVqvh6tWrAIC+vj4MDQ1Bo9Hg//7v/6DRaFAul7G8vIxYLIZ8Pg+j0YiVlRWk02k0Gg0eLIxGI/r6+vgsrVKp8AO7LMWdVY4Ih8Ow2+28HbvH44Hb7eadelnvJpadyGpVbjdlvJV6hYTsZxSgSFfa6Eu4v7+f7+dYLBa+L6XX6+FyuSAIApaXl3nAKZVKOH78OJRKJRYWFtBsNmG32zE7O4tsNgtBEPiB3eXlZQiCgFgsBqlUimq1CpPJBKfTiWQyyTPzWO2+5eVlnlZerVZ5FfFgMAiHwwGtVouenh4YjUZYLBbIZDLU63V+UJgt67F0eQDbShnfSb1CQvYrekeTrrPVlzD7EgduBDGWocdap7Mmg6VSCcVikQcaVtUhmUyiWCwil8thZWUF1WoVCwsL/PwUAAiCAJvNxlPTRVFEOp1GKpWC2+1GpVJBvV5fc0DXarUiGAzC6/Xi1KlTPJ396NGjvPEga9mRSCR4+SaJRII77rhj23tNO6lXSMh+Re9o0lY72SvZ6ktYrVajUqlgdnYWU1NTEEURwWAQ1WqVp2WzLDhRFDE7O8sLuUqlUsRiMSwtLSGZTKJeryOTySCbzaJQKKBarfJqEKw2HjuYyw7Wjo2NYXJyktfZi0QivH2GTqfj56iUSiX0ej2kUil6e3uRzWYhlUoxPz8PpVIJg8GAXC6HcDiM4eHhbS/RbVWvkJCDht7VpG12uldyq6KxCwsLKBaLkMvlEAQBiUQCTqeTBzSVSgWDwQCpVIpkMolsNgu5XA6tVovx8XGe2p1Op3kw0ul0sFgsaDQa/IySRCKBIAgolUrI5/MQBAGZTIZXoWBVzfV6PT80zAq/DgwMoK+vD5lMhh8WNpvNiEQi/LGiKLbcG40lV1CJI3IY0LuatMVu9kq2+hJmez4mk4kvnbE/Xq8XtVoNS0tLUKvVOHv2LEqlEi5evMjPJrHXttvtsFgsuHLlCrRaLc/eY1l5rG8UK+Jqs9lQLpcRi8Vwxx13IBAI4NKlS9DpdLwxoVqtxq/92q9haGgIer0ecrkcNpttzfKb1+tFOBxGKpVCrVbDwMBAyy0yqMQROSzonU3aYrd7JZt9CbM27+zQLWt7zmYzUqkUPT09AMArNuTzeeRyOZjNZhgMBtTrdWi1WmSzWVitVp4mrlQq+cyGBZZ4PA6lUonR0VHo9XpUq1WcOHECDocD8XgcAHidvYWFBVy6dAkKhQIej2dN2wx2HSMjIxAEgVeNkMlkPIi3ggITOQzoHU7aYi/2Sjb6EmYzKFZBwuPxwOv1Yn5+ntfCm56ehkQigd/vx/z8PLRaLQwGA59dsefVarUYHR2FIAhYXFxEMpmEwWDgM6p6vY5gMAi1Wg2bzcZ/1mg0SCQS/OAumwGp1WosLi7iypUrmJqawsDAAFwuFz8zpVKpeM1Av98Pk8mESqWyaXV2miGRw47e+aQt2rFXwpYNV3eRZUkN0WgUMpmMVy+XSCTweDy89UVPTw8veXTixAno9XqUy2XI5XL09fVBrVbj4sWLSKfTkMvlyOfz0Ov1GBsbQyKR4D2irFYrRFFET08P3G43QqEQpFIp6vU6dDodFhcXYbfbkclkUCgUcPHiRYyOjqK3txeFQgHz8/Oo1+uwWq0bNhpsNBrIZDJYXFxEs9mkc07kUKMARdpmq72SvcjuA4BcLseLsrKEA1Z/LxaL8XRwnU6HfD6P3t5eOJ1ONJtNXlkcAK/BBwAqlQrJZBLJZBKiKGJoaAgrKys86UMqlUKr1eLUqVNYXl5GNBrlpY6kUikikQh6e3thtVoxPj6ObDaLvr4+6PV6nrDBZl7ZbJbvV7G0+dXZiZvNsAg5DOgdT9pqowC0F9l9EokEMzMzkEqlUKlUvKJEOp1GpVLhh2+lUinsdjvv5VStVjE+Po6lpSXkcjkYjUakUinMzMzgypUrPH2c9XRiB3pTqRSq1Sp/HolEgp6eHvzCL/wC5ubmeN8oFticTiefabEgWq/X+aHimZkZXLt2DcCNxIlCoYDFxcWbshNZaSQ650QOI3rHk9tqfXZfJpPBzMwMhoeHN8xmWz/T6u/vx9zcHCYnJ3k6tyiK0Ol00Gq1uH79Ovr6+uByuTA+Po5cLge3241isQiZTMaDVSQSQbVahVwuRywWw8zMDN/TCofDPFAZjUbU63U0m00UCgWetg7cqAIxNDQEs9mMlZUV5PN53io+m83C4/HwFh7seln1C6VSid7eXr4PxZb+1mcnsmQQCk7kMKJ3PbmtVi/T1Wo1JBIJZLNZiKKIwcHBNTOpzWZafr8fxWKRnzuq1+soFovweDwol8s8GSOXyyGVSkEul/MzUYFAAHq9HvPz84jH40gmk5iamkImk4Hb7UatVoNCoYBGo+EtOK5cuYKVlRWUSiU4nU7eYdfn88FsNgMAwuEwyuUyBgYG4PP5+Nknk8kEl8vFC7+yVHnWnp7tQ7Glv0qlApvNxpcbWVCjAEUOI3rXk9tqdWv2RCKBTCaDnp4e1Ov1NXstW52jUqvVMBqNvCo4yxDU6/Uwm828qrkgCDCZTOjv70e5XIZCoYBUKuWp5I1GAysrK7xLLlsuZGnmNpsNJpOJt8tgHXgtFgtvSMiqWzidTvh8PqjVar40yALuRl1w12c4sqW/eDyOSqWCI0eOwOVy0eyJHGr0zie71mg0UKvV0Gg0ePLCZtgy3czMDLLZLHp6euDxeKBUKm/KZtuq3NFGGYJqtRp2ux3Xr1/H0tISRFHkAaZcLuPUqVMwmUx82U+lUmF2dpY3OpRKpZBKpTh69Cg8Hg8mJiaQSqUQCASwvLyMUqkEl8sFmUzGC82m02m43W7odDrelJAFnI2CE1uyZO1BVo+fPYbSywm5gT4BZFcKhQJCoRAikQimpqb4EtpW9Ho9hoeHIYoirwK+/pzUZueoAPCZE2tTwZbPGo0G0uk0fD4fBgYGEI/Hkc/nYTaboVQqeQfdWq2GQCAAn88HvV6PXC7HO9oeP34cIyMjPGAKggAA+JVf+RW8//77KJfLMBgMCAaDsFqtfA+NZQZms1koFAq4XK5bJoewFhzrDyJTYCLkBvokkB1bvQzHirhuNyVarVZjcHAQkUhkwy/1jc5Rmc1mzM7OIpVKIZ1Oo6enBxaLhX/RNxoNHlSSySTy+Tzm5ub4Xs/ExAT0ej16enpgMBggl8thtVoRjUaRyWRgtVr52FlPKZaG3tfXB7vdjng8DqlUyveiFhYWEAqF4PF44HQ6eRfdxcVFyOVyHqw3WrKMx+OUPk7IFuiTQXZs9TKcTCZbsy+z3XJGLpcL09PTfHax+kudnaNiz8m+4PP5PPL5PORyOer1OkKhEJxOJxqNBubm5hCJRKBQKHgzQjZbyefzqNfrKJVKKBQKSKVS8Hq9qFQqGBoawsjICAqFAmKxGLLZLBYXF1EqlaBWq+H1eiGTyWAymbCwsIBwOIxCoYBsNguLxQJRFPHuu+/C4/HgjjvuuClYU5sMQlon7fQAyP61ehmOpWFv1aZ8vUajgenpaYTDYZ5Nd/36dd7vCbixnLewsIDr16/zA6ysXxNL52bBKhqN8lYXuVwOs7OzAG4c5mXtM1g6dygUQjQaRTQaxczMDF++UygUSKfTeP/99xEOh2Gz2WCxWBAOh/kSXi6XQyKRwMTEBN+/yufzWFxcRDweR7lcXhOs1/+/qtfrLf+/IuQwogBFdowtw2k0GlQqlZbLGVUqFYTDYchkMhgMBshkMoTDYV4ZYvWsyWg0AgDm5+chiiISiQQA8D0mlq7NsvZYVh8AlEol3sjQZDJBIpFAJpNBrVYjlUoBuFG/74MPPsDly5eRTCZRrVZRKpWQTqdhNBqhVqtRKpXw9ttvIxQKQSaTQaPR8BbvuVwOarWa1wnMZDJrAtDq/1fUJoOQ7aFPB9kVtgw3MTGBwcFBnsjQis36I61fFgsEApienuali8xmMw9uUqmUd6h1uVwIhUJ8b6pWq6HZbGJwcBCiKEImkyEWi+HatWvwer3QarWQSCSYn5+HRqOB0+nkBV5TqRRWVlbQbDYRDAZRLpdRKpWg1+thsViwsrLCW9B7vV4oFArk83l4PJ6bApBarb4psYMQsjn6hJBdk8vlUCqVLX/hsr2dcDjMSwqxs0TsedmZKY1Gw5MpDAYDdDodDwDs7JDf7wcA1Ot1+Hw+fkiWPa6vrw+xWAyRSASBQACpVAoKhQI2mw2jo6OQyWSQSqUQRRGVSgW1Wg3Ly8s4cuQIFAoFjEYjbDYbUqkUisUiLBYLTp48iUAgwHtIFQoFKJXKmypj7LS8EyGHGQUo0jGsP5JarUaxWIROp4Pf71+zLGaxWBAKhZDJZJDL5TA4OAiHw4FCoYBEIgG/379mVlIoFDA3Nwen04lcLod8Pg+lUsl7O2k0Gpw9exZqtRrHjx/nsyapVAqPx4NarYaLFy+i0WhAq9ViYGCAJzUIggCv18uDDCt1FAwGeZA0GAxrmiuya9lp80ZCDjP6dJCO0uv1GBkZ2bTieTqdhsPhgMvlwrVr19BsNtFsNqFQKLC8vLwma5C11xBFkZcXqlQqiMfjqNVqMJlMMBqNUCgUGBwcxJ133omenh4eHD0eDw8eZrMZ5XIZfr8fKpUKIyMjqNfrEAQBcrkcBoMBdrsdfr+fH7BdvXc2NTXFA5ndbqcMPkJ2gD4dpOM2O5zK9qDMZjMkEglsNhsPNqxL7sDAAAAgk8lgdnYWNpsNLpeLB4KZmRnUajVeZy+fz0OlUqHRaKwJjpVKhVcTV6vVsFqtPEOPpbarVCoMDw/zpbnV42bZhsViEfF4HBaLhc/04vE4ZDLZrpo3EnIYURYf6VqrU7NFUYRWq0WxWEQikYBWq4VCoUA4HEa1WoXVakWpVOL1/er1Oq86zkodKZVKZDIZnvHHXkMul2NxcRGVSgUmkwl2ux2lUoln8lmtVphMJjQaDSQSCcjl8jVJDusPLBcKBeTzeUgkEl66iHXSpQw+QraPPiGko7ZqXLi+moREIoFarYZWq4VKpYJer8fc3Bz6+vpQq9VgtVqh1WohlUqRSqUgCAJEUeRZeBqNBna7HT6f76alxNVLcA6Hgz+H0+mEzWbbcmlu9eMlEgnMZjMymQzvAcWqYLBSS1TOiJDtoU8J6ZjtZLaxNPZEIoGZmRmk02mUy2WIoohqtQq1Wo1EIgGn0wmDwQC1Wg1BEFAsFrG4uIhyucwPxprNZpw+fZqXRdqq7h/bV9LpdLdcmlv/eIPBgGazuaYH1OrXIoRsD31ayK5tVM38Vi3dt2qnsdH94/E46vU6jhw5glgshsXFRUilUgSDQZ5xZzKZ+Lmler2OS5cuwe12Y3R0FPl8HuVyGZFIhO8Jud1u3s5ifd0/p9OJUCiE/v5+LC0tbbk0t/7xVqsVx44du6kQLCGkNfTJIbuyUTVzALecGbVSm65SqaBYLPIltP7+fly+fBk+nw+Dg4P87JHL5cLk5CSv8iCTybC0tISRkRHIZDK+7KbX6zE1NYWpqSkMDQ1hYGCAz9TY67MDw9s9XLv+8RSUCNk9SpIgO7ZRNfO5uTnMzs6iUqnwHkmRSGRNfT1g+7XpCoUCZmdnEYvFsLy8jHK5jGQyCa1Wi0AgAIVCAbPZzANKrVZDsVgEANjtdoiiiFwuh1qtBpvNBr1ej1gsBgCQyWQoFot8fOuTH8rlMqampjA9Pc2vcyvrH08I2R36JJEd26iaeT6fBwD09PRsOTPaaFlt/fIZC4C5XA4ymQypVAq5XA5HjhyBUqnE/Pw8stksDAYDrFYrCoUCFhcXEQ6HeaX006dPw+PxQKfTIZ1O44MPPuAVzv1+P0wm04YV2FnGHitjRIdrCbn9bssMqlqt4uTJk5BIJLh06dLteElyG2xUzVyn00Gr1W6rajdbFhsZGeHt0Vdj/Z1yuRxUKhWOHz8Ok8mEUqnE948ymQwymQzMZjOuXLkCs9mMo0ePQiaToVqt4vTp07jjjjvg8XiQSCQQi8XWpKJvNr5Go4F6vb5mCXJ1dXJCSPvdln8KPvHEE+jt7cXly5dvx8uR24TNgtiSnkaj4fXwtpoZrX+OW/1dNpuF1WrlqeTpdBoDAwO8BxRbeisUCvB4PLzn0+zsLH76059ieHiYBzuLxQJBEFCtVpFOpxEMBjdNfFAoFCgUCvy/dLiWkNur7Z+2V199Fa+99hpefvllvPrqq1vet1qtolqt8p9zuRyAG8U/6/V6W8d5u7DrOCjXo1Kp4PP54PF44PP5oFKpAAA+n29NwkC9Xr9lZt9G+vr6MDMzg4WFBVitVshkMuRyOfzsZz+D1Wrly3sqlQoqlQrRaBTlchmhUAh6vR5yuRxTU1MQBIE3LHQ4HIjFYtBoNPB6vVCpVDf9PkRR5OefWOsMp9PJ29TvNwftfQfQNe0Xu7kWibi6v8EeW1pawunTp/Fv//ZvsNlsGBgYwPvvv4+TJ09ueP+vfOUr+OpXv3rT7f/0T/8ErVbbrmGS26BcLiORSKBer0OhUMBisUCpVEImk0Emk235uIWFBSwtLfFWGTqdDoIgoFAoQKvVYmRkBHq9Hul0GtevX8fc3BxqtRoCgQCMRiMKhQKvTi6TyVCpVKBSqdDb28v3szbDav/dapyEkI2VSiX89m//NrLZLO/rtl1tC1CiKOJXf/VXce7cOXz5y1/G3NzcLQPURjOo/v5+LC4uwmq1tmOYt129Xsfrr7+OX/qlX+Jnhva7W10TK57KUrxXVlaQTqfhdDqh0+k2bT2x+nFqtRorKytYWVnB6OgolEolyuUyqtUqP3ME3Dgv9d///d88UYLNrpxOJ5LJJHK5HIxGI0wmExwOx6ZJDwft93TQrgega9ovkskk3G73jgJUy0t8Tz31FJ555pkt73Pt2jW89tpryOfz+OIXv7jt52bLNOspFIoD88tiDtM1NZtNCIIAi8UCiUSCcrnMW1PU63UsLS3BYDDcFChWP449dzabRalU4o0RzWYz3xtqNBooFAoIBoPQ6/UIhUJIp9O4++67MTo6ikajwVu+swoPt2qweNB+TwftegC6pm63m+toOUA9/vjjeOCBB7a8TyAQwA9/+EO89dZbNwWcM2fO4P7778cLL7zQ6kuTfWp1th/b0zGbzVCr1VCpVCgWi2vOGK2uwLC6hFClUoHP5+Mp56ubFgL/f9q7w+GA0+lEIBBAsVjE6Ogon6Gx4q10mJaQ7tfyJ9Rut8Nut9/yft/4xjfwta99jf8ci8Vw33334aWXXsLY2FirL0v2KZYY4Xa7EY/HUSgUYDAYYDAYIIoiCoUCBEHA1atXEY1GAQBer5fvK60/K2U2m7GysgIAWL86vT6giaIIq9W6prMtBSZC9o+2fVK9Xu+an9m/YFlaLzn41heDdbvdUKvVGBwcRDweR7FYhEKhQLFYRDQahUwmgyiKCIfDUKvVPEgNDg7yM0gLCwtoNBq8vfrqw7PbOfxLCNk/6JNL2mKjYrDxeByDg4Mwm818qa3RaODq1au8S61EIkE2m11TfYI1A8zlcohGo7zE0UZVKqgmHiEHx2379Pr9/puWZMjBdatisOwPq0TeaDSQy+UgiiIEQYBOp+N/zwKd0WhEJBJBKBTC0aNH+eHgjQ7ZUmAiZP+jYrGkLbZTDJbNoPr7++Hz+SAIAgRBgM/ng9/v5wGKBTqNRoNgMAjgxhGEdi/hsZ5O2y1vxKpaUDkkQvYG/TOTtMWt9oPW708Fg0EMDw/zxwLgs631iQ9HjhyB3+9va+XwQqGAWCyGiYkJnqyx0Vmt1fe/VYsRQkhraAZF2mazYrCrl+1YS454PM6z7WZnZzExMcEP6fb390Oj0fBA5/f7eRmjdmDjq9VqW7YMWX//W7UYIYS0hmZQpK022g/abH+KJUNs1GX3diY+sPFpNBp+YHKzZopbXc9m9yeEbA/NoMiO7Ga/ZbP9KQA3fdGv7tV0u5oBsvGVy+VbtgzZ6nooOBGyO/QJIi1bv9/icrlaevxm+1OssgTbb1rf4mIn1dB3go2PVbkwGAy3bBlC568I2Xv0CSIt2eh8UyQSQbPZbOl5NjuvtNkX/e1OQtDr9XC73RgZGdlWHyg6f0XI3qNPEWnJRvstmUym5QAFbLw/tdEX/eqgqFarkc1m0Ww2MTIy0tZAIJPJWlqqo8BEyN6iPSjSks32W/ayV9L6/SYWFCUSCaLRKJaXlzE5OYlMJrNnr0kI6T4UoEhL2H7L6rRvj8fT1mZ+crkcMpkMoVAIxWIRgiAAuNH7iVK5CTm4aD2CtGz9Mly7S1jJ5XK43W5MTU3x17fZbGuSJgghBw99ssmOrN5vqdfrbX89s9mMoaEhFItFmEymTevwEUIODlriI/uCXC7HwMAAzGYzP0RLqdyEHGz06Sb7BqVyE3K40Cec7CsUmAg5PGiJjxBCSFeiAEUIIaQrUYAihBDSlShAka5CXWkJIQztNpOuQV1pCSGr0QyKdAXqSksIWY8CFOkKG1VJp6U+Qg43ClCkK1BXWkLIehSgSFfYrEr6RgGKEikIORzon6eka2ynlBElUhByeNAMinSV9c0KV6NECkIOFwpQZN+gRApCDhcKUGTfoEQKQg4XClBk32glkYIQsv/RJ5vsK9QTipDDgz7d5LZoNBp7FlQoMBFyONCnnLQdpYYTQnaC9qBIW1FqOCFkpyhAkbai1HBCyE5RgCJtRanhhJCdogBF2opSwwkhO0XfEqTtKDWcELIT9E1BbgsKTISQVtESHyGEkK5EAYoQQkhXogBFCCGkK1GAIoQQ0pXaGqD+8z//E2NjY9BoNLBYLPjEJz7RzpcjhBBygLQtrerll1/GQw89hD/90z/FL/7iL6LRaODKlSvtejlCCCEHTFsCVKPRwKOPPopnn30WDz74IL99dHR0y8dVq1VUq1X+czabBQCkUql2DLMj6vU6SqUSkskkFApFp4ezJ+iaut9Bux6Armm/YN/foii2/Ni2BKj33nsP0WgUUqkUp06dQjwex8mTJ/Hss8/i+PHjmz7u/Pnz+OpXv3rT7UeOHGnHMAkhhNwmyWQSJpOppcdIxJ2EtVt48cUX8Vu/9Vvwer34y7/8S/j9fvzFX/wFXnvtNUxOTqKnp2fDx62fQWUyGfh8PoTD4ZYvrFvlcjn09/djYWEBRqOx08PZE3RN3e+gXQ9A17RfZLNZeL1epNNpmM3mlh7b0gzqqaeewjPPPLPlfa5duwZBEAAAX/rSl/Abv/EbAIALFy7A4/Hgn//5n/H7v//7Gz5WpVJBpVLddLvJZDowvyzGaDTSNe0DB+2aDtr1AHRN+4VU2npOXksB6vHHH8cDDzyw5X0CgQAWFxcBrN1zUqlUCAQCCIfDLQ+SEELI4dNSgLLb7bDb7be83+nTp6FSqXD9+nV8+MMfBnBj829ubg4+n29nIyWEEHKotCVJwmg04uGHH8bTTz+N/v5++Hw+PPvsswCAT37yk9t+HpVKhaeffnrDZb/9iq5pfzho13TQrgega9ovdnNNbUmSAG7MmL74xS/iu9/9LsrlMsbGxvBXf/VXOHbsWDtejhBCyAHTtgBFCCGE7AbV4iOEENKVKEARQgjpShSgCCGEdCUKUIQQQrrSvgpQB7V9R7VaxcmTJyGRSHDp0qVOD2fH5ubm8OCDD2JgYAAajQbBYBBPP/00arVap4fWkr/927+F3++HWq3G2NgY3n777U4PacfOnz+PD33oQzAYDHA4HPjEJz6B69evd3pYe+rP/uzPIJFI8Nhjj3V6KLsSjUbxO7/zO7BardBoNDhx4gTeeeedTg9rR5rNJv7oj/5ozXfBH//xH7dcMLZt7Tb22kFu3/HEE0+gt7cXly9f7vRQdmViYgKCIOC5557D4OAgrly5goceegjFYhFf//rXOz28bXnppZfwB3/wB/j2t7/Nj0bcd999uH79OhwOR6eH17I333wTjzzyCD70oQ+h0WjgD//wD/HLv/zLGB8fh06n6/Twdu3ixYt47rnn8HM/93OdHsqupNNpnDt3Dvfccw9effVV2O12TE1NwWKxdHpoO/LMM8/gW9/6Fl544QUcO3YM77zzDj796U/DZDLh85///PafSNwH6vW62NfXJ/793/99p4ey5/7rv/5LHBkZEa9evSoCEN9///1OD2lP/fmf/7k4MDDQ6WFs21133SU+8sgj/Odmsyn29vaK58+f7+Co9s7y8rIIQHzzzTc7PZRdy+fz4tDQkPj666+L/+///T/x0Ucf7fSQduzJJ58UP/zhD3d6GHvm4x//uPi7v/u7a2779V//dfH+++9v6Xn2xRLf+vYdbrcbH/vYx/b9DGppaQkPPfQQvvvd70Kr1XZ6OG2RzWY3rV7fbWq1Gt59913ce++9/DapVIp7770Xb731VgdHtndYj7X98jvZyiOPPIKPf/zja35f+9W///u/48yZM/jkJz8Jh8OBU6dO4e/+7u86PawdO3v2LN544w1MTk4CAC5fvoz/+Z//wcc+9rGWnmdfBKhQKAQA+MpXvoIvf/nLeOWVV2CxWPCRj3xk3zYzFEURDzzwAB5++GGcOXOm08Npi+npaXzzm9/ctHp9t0kkEmg2m3A6nWtudzqdiMfjHRrV3hEEAY899hjOnTu3ZV+2/eDFF1/Ee++9h/Pnz3d6KHsiFArhW9/6FoaGhvCDH/wAn/nMZ/D5z38eL7zwQqeHtiNPPfUUfvM3fxMjIyNQKBQ4deoUHnvsMdx///2tPdEezupa9uSTT4oAtvxz7do18Xvf+54IQHzuuef4YyuVimiz2cRvf/vbHbyCm233mv76r/9aPHfunNhoNERRFMXZ2dmuXeLb7jWtFolExGAwKD744IMdGnXrotGoCED86U9/uub2L3zhC+Jdd93VoVHtnYcfflj0+XziwsJCp4eyK+FwWHQ4HOLly5f5bft9iU+hUIg///M/v+a2z33uc+Ldd9/doRHtzve//33R4/GI3//+98UPPvhA/Id/+Aexp6dH/M53vtPS83Q0SeIgtu/Y7jX98Ic/xFtvvXVTAcUzZ87g/vvv76p/OW33mphYLIZ77rkHZ8+exfPPP9/m0e0dm80GmUyGpaWlNbcvLS3B5XJ1aFR747Of/SxeeeUV/PjHP4bH4+n0cHbl3XffxfLyMu68805+W7PZxI9//GP8zd/8DarVKmQyWQdH2Dq3273m+w0Ajh49ipdffrlDI9qdL3zhC3wWBQAnTpzA/Pw8zp8/j0996lPbfp6OBqiD2L5ju9f0jW98A1/72tf4z7FYDPfddx9eeukljI2NtXOILdvuNQE3UmXvuecenD59GhcuXNhRk7JOUSqVOH36NN544w1+hEEQBLzxxhv47Gc/29nB7ZAoivjc5z6Hf/3Xf8WPfvQjDAwMdHpIu/bRj34UP/vZz9bc9ulPfxojIyN48skn911wAoBz587dlP4/OTnZdd9v21UqlW767MtkMt7MdtvaM8Hbe48++qjY19cn/uAHPxAnJibEBx98UHQ4HGIqler00PZENy/xbVckEhEHBwfFj370o2IkEhEXFxf5n/3ixRdfFFUqlfid73xHHB8fF3/v935PNJvNYjwe7/TQduQzn/mMaDKZxB/96Edrfh+lUqnTQ9tT+32J7+233xblcrn4J3/yJ+LU1JT4ve99T9RqteI//uM/dnpoO/KpT31K7OvrE1955RVxdnZW/Jd/+RfRZrOJTzzxREvPs28CVK1WEx9//HHR4XCIBoNBvPfee8UrV650elh75iAEqAsXLmy6R7WffPOb3xS9Xq+oVCrFu+66S/zf//3fTg9pxzb7fVy4cKHTQ9tT+z1AiaIo/sd//Id4/PhxUaVSiSMjI+Lzzz/f6SHtWC6XEx999FHR6/WKarVaDAQC4pe+9CWxWq229DzUboMQQkhX2j8bBIQQQg4VClCEEEK6EgUoQgghXYkCFCGEkK5EAYoQQkhXogBFCCGkK1GAIoQQ0pUoQBFCCOlKFKAIIYR0JQpQhBBCuhIFKEIIIV3p/wMFauX0kWaC2AAAAABJRU5ErkJggg==", "text/plain": [ "

    " ] @@ -359,14 +359,37 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "id": "e5d1d348", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZmUlEQVR4nOydWYxkeXbWv7hxb9wl9j1yz6zMrqWX6dkHPBaMhWUs4QdeLB6MZCzkpzEY5gXaD6BByIOFhUYyyDaWsJ8seMECWWKQZWmwwNtMj+np7lqzcouMfb8Rd40bETwk50xEVlZV1pKVtfx/Uqmrcok1O//fPec73wnNZrMZBAKBQCAQCC4B6bIfgEAgEAgEgjcXIUQEAoFAIBBcGkKICAQCgUAguDSEEBEIBAKBQHBpCCEiEAgEAoHg0hBCRCAQCAQCwaUhhIhAIBAIBIJLQwgRgUAgEAgEl4Z82Q/gUUynU1SrVcTjcYRCoct+OAKBQCAQCM7BbDbDcDjE8vIyJOnRNY+XWohUq1Wsra1d9sMQCAQCgUDwFJTLZayurj7ya15qIRKPxwGcPJFEInHJj0YgEAgEAsF5ME0Ta2trfI4/ipdaiFA7JpFICCEiEAgEAsErxnlsFcKsKhAIBAKB4NIQQkQgEAgEAsGlIYSIQCAQCASCS0MIEYFAIBAIBJeGECICgUAgEAguDSFEBAKBQCAQXBpCiAgEAoFAILg0hBARCAQCgUBwabzUgWYCgUAgEAguDtd1MZlMEA6HoWnapTwGIUQEAoFAIHjDsG0bzWYTg8EAQRBAlmUkk0kUCgUYhvFCH4sQIgKBQCAQvEHYto39/X04joN4PA5FUTAej9HpdGBZFra2tl6oGBEeEYFAIBAI3iCazSYcx0Eul4OqqpAkCaqqIpvNwnVdNJvNF/p4hBARCAQCgeARuK4Ly7Lguu5lP5RnxnVdDAaDh27FjcViGAwGL/S5itaMQCAQCARn8DL5KJ4Xk8kEQRBAUZQzP68oCkajESaTyQt7TEKICAQCgUBwipfNR/G8CIfDkGUZ4/EYqqo+8PnxeAxZlhEOh1/YYxKtGYFAIBAITvGy+SieF5qmIZlMYjQanfn50WiEZDL5Qkd5hRARCAQCgWCOl9FH8TwpFArQNA2dTgee52E6ncLzPHQ6HWiahkKh8EIfj2jNCAQCgUAwx8voo3ieGIaBra0t9r+MRiPIsoxsNityRAQCgUAguGxeRh/F88YwDGxubopkVYFAIBAIXobDcB7yUXQ6nTOFyGg0QjabfSke67PyMjwHIUQEAoFAcCm8zOOxhUIBlmWh0+kgFovx1MxoNLoUH8XrjBAiAoFAIHjhvOzjsS+bj+J1RggRgUAgELxw5sdjCVVVoaoqOp0Oms0mNjc3L+8B4uXyUbzOCCEiEAgEghfKk4zHvgwH/8vwGF5nRI6IQCAQCF4o5xmPDYLghYzHvk57ZF5VLlyIVCoV/P2///eRzWah6zree+89fP/737/ouxUIBALBS8r8eOxZvIjxWNu2cXBwgDt37uD27du4c+cODg4OYNv2hd2n4GwutDXT6/Xw1a9+FT/xEz+B//E//gfy+Tzu3buHdDp9kXcrEAgEgpeYyx6PfdmNsm8aFypEfu3Xfg1ra2v43d/9Xf7Y1tbWRd6lQCAQCF4BLnM89lUwyr5JXGhr5r//9/+OL37xi/jZn/1ZFAoFfO5zn8Pv/M7vXORdCgQCgeAVgMZjaYlcr9eD67rIZrMXWpF4VfbIvEnelQutiOzt7eE3f/M38Y1vfAO/8iu/gu9973v4x//4HyMSieDnf/7nH/h6z/PgeR7/2zTNi3x4AoFAILhELmM89qL3yDzrc3mZQ94uigsVItPpFF/84hfxq7/6qwCAz33uc/jkk0/wW7/1W2cKkW9961v45je/eZEPSSAQCAQvGS9yPPai9sg8DwHxpnpXLrQ1s7S0hLfffnvhYzdu3MDR0dGZX//BBx9gMBjwn3K5fJEPTyAQCARvGGSUHY1GZ35+NBohmUw+kTjqdrv49NNPUalUoGka0uk0NE1Dp9PB/v7+uSdx5r0rqqpCkiSoqsrtq2azee7H9CpxoRWRr371q7hz587Cx+7evYuNjY0zv57MQgKBQCAQXBTPyyhLVZCbN2+i0+kgm81iOp0il8tB1/UnMr++aiFvz5MLrYj803/6T/Hnf/7n+NVf/VXs7u7i93//9/Ef/+N/xNe//vWLvFuBQCAQCB7K8zDKUhulWq1iPB6jVCpB0zT0+32Uy2U4jgPg/ObXlynk7UVzoRWRL33pS/iDP/gDfPDBB/hX/+pfYWtrC9/+9rfxcz/3cxd5twKBQCAQPJJnNcpSGyWVSnEeiiRJiEQi6PV6aLfbWFtbO7f59aK8K68CF75r5md+5mfwMz/zMxd9NwKBQCC4AC56ouVRt/8ipmme5nZPt1HC4fCCgIhGoxgOhzwFeh4Bcdkhb5eJWHonEAgEggd4limQ8wiIR90+gJd6hHW+jSJJEhKJBHq9HgsIWZYxmUwwmUzgOM65BcRlhrxdJkKICAQCgWCBpx0jPa94edTtt9tt/rqXdYT1dBslm83Ctm30ej0YhoHZbIbJZIJ+v78grh4HeVfoNRyNRpBlGdls9qURYReBECICgUAgWOBpItCfRLw86vY//vhjAMB777137vt+0Zxuo+i6jrW1NXQ6HZimiW63i0wmg+Xl5ScWEGd5V4CTKszDJmZeZCDcRSCEiEAgEAiYJ41ApwPwvOLlUbfveR4mkwlCoRA8z3vAK3HWCOtlHcKn2yiqqiKfz0OSJOTzeWxvbyOTyTz17WuaBtu2Ua/XH1phel1SWIUQEQgEAgFznjHSdruNvb09jMdjHiltt9tYWVk583vmBcSjbp9ECP39rPumCZTLPoQf1kZ5mirIWTyuwlQsFtFoNPjz0+kUnuehWq2+NC2s8yKEiEAgEAiYx42RmqaJRqOBUCiEbDYLRVEwGAzQ7XZ5fFXX9YXvmRcQj7r9cDiM2WyGUCh05pQJjbB6nodarXbpUejURun3+/B9H5FIBKlU6rnc9uMqTLdu3YKu64hGo2i1WjBNk1/fTqcDSZJw48aN5/JYLpoLDTQTCAQCwavF4yLQy+UyFEXB8vIyZ2cYhoFMJgPbttHpdB74nvkMjEfdvqqqCIfDHG1+GopfN03zpYhCt20bBwcHODw8RLlcxuHhIQ4ODs4d6f4wHtceUxQFtVoN0+kU5XIZ3W4XqqoimUxCVVWMx2PcvHkT3W73mR7Hi0IIEYFAIBAsUCgUeFeK53kLZX/f97G+vr7w9aqqIh6PYzabwTTNhS3qwIP7WxKJBKbTKarVKt/+cDjE8fExMpkMlpaWHrjvTqcDTdOQSCSeyMPytLiuC8uyHno71Dppt9vPtF/mLB7XHpMkCb7vcyJsJpNZEGS5XA6O46Berz/1Y3iRiNaMQCAQCBZ4mP8hlUphOp2eKQJyuRwsy0K73cby8vKZGRjzvg7P82CaJur1OqbTKabTKXRdRz6fRzQaBXAiBk6PsM5ms8d6WM6TZPowzvKeaJqGTCaDeDzOYuppJovOy+PaY9PpFMBJm+wsQ2wQBIjFYhiNRq/EbhohRAQCgUDwAA8bIx2Px2cekLquo1QqYTqd8tX6vIAAgNu3b8OyLKRSKSwvLyMej+OTTz5BEAS4fv068vn8gnhZW1vjds38lMxFRaGfNogGQYBGo4FGo4FwOIz19XWUSqUnqso8jQh4XMrqeDxms+pZgsyyLGQyGYTD4VdiN40QIgKBQCB4KKcP0kcdkJPJBG+//TZKpdLCSK1t2/jwww9RLpcRj8cxHA6RSCTgui7i8ThCoRB83+fWAlUVTNN8oKrwqEPa8zy0Wi3k8/mnEgDzVQ7HcVCpVOC6Lo/q0rhuq9WC53mP9HA8S1UGeHzK6o0bNzAcDtFqtZBOpyHLMoIggGVZUFUViUTioabflw0hRAQCgeAV5GXJzzirBTP/eGzbxu3bt1Eul5FOpxGNRjEej9FoNNBqtVAqlaAoCjqdDgqFAouLWCyGZrOJeDyOaDS6cJunH8PpyoUsyzg4OHiiMdrTBtFOp8P+CwAIhUJwXRexWIxFUj6fP1MMOY6zUEV6Gs6TsjocDrG7u7vws5BKpZDL5WDb9iuzm0YIEYFAIHiFeB75Gc8iYp40hrzZbMKyLBYUVPWIRCI4Pj7GYDBAJpOB4ziIRqNYXV0FALRaLVQqFfi+j3g8vvAc5x9DvV7H0dERgiBAJpPhw/dJR3nnDaLkXyGvCrC4PyabzaLf76PT6WB5eRkA4DjOA8mq9Xr9mTJFHrcheGNjA9PpFIPBALquQ9M0SJL0yu2mEUJEIBAIXhGedgfM/Pc/jxCwxx2QBFUZkskkhsMhgiBAJBLhEVuaiKHvN00T9+7dA3AyaRMOhxGLxc4UFvQYPM/DcDiEJEnwPA/1eh3hcBiJRAKmaSIUCuHKlSuPFVzzBlFaVkcVDVVVEQQBwuEwwuEwFEVBMpnkSo4sy6jVarAsC8CJcbdUKj23XJOHPfbTotC27VdyN40QIgKBQPCK8CyTGs8qYs7icYc7VRnS6TTi8Tj6/T4ikQgajQZc10Uul0Ov14PjOMjn8ygWi/joo48wHA5ZbFSrVcTjcW43zD9H13XR6/VY5FDlZDQa4fbt23AcB4eHhxiNRigUCo88nMl7Qr6QarWK2WwGVVU5wr1YLEJVVXieh1gshrW1NZimiZs3b6LT6SCbzfJjpVC3i96Pc15R+DIjhIhAIBC8AjzJDpizDqKLHDelx3f6IJyvMpDo+OSTT1CpVFgItdttxONxLC8vc5vF8zxcv34d6+vrkGUZ/X4fjuOgUCgsPMfhcIhPPvkEw+EQ8XicKwKO4wA4ydsYj8dcuXic4IrFYmi322xG7fV6bDylfBPgpFqTzWaRyWRgGAaazSaWlpZgGMa59uNcBK+a+JhHCBGBQCB4BTjPDpiHTWqcR8Q8zBj6OB7X7qEJFzr8gyDAdDpFOBzmqsh0OsXe3h6azSYqlQqWlpaQy+X4eyKRCHq9Hvs2JpMJut0uPvzwQxwcHPAo8GQyQblchuM42NnZQSQSgWmaCIfDSKfTjxVco9EI0WgUg8EAs9kMkiRhOp2iVCohCALcvn0bAJBKpdh/QeIrmUxCkh7MCH0eEzSvO0KICAQCwSvA40KuHpWf8TAR43keRqMRut0u2u32mcbQR/Gwdk+1WkWr1cL29jZPuOzu7sKyLGxsbGAymWA2myGdTgM4CebSNA0rKysIh8MIhULo9/tIpVIsiqLRKLrdLmazGe7du4e/+qu/wv7+PhqNBkzT5EpHEASYzWYYDAa890aWT466RwkuEmuhUAjpdBorKyuwbRumacL3fR4N3tzcXKiqPMv7IjhBCBGBQCB4BXhcyBW1C86qZpw+LGnCgyZTKBPDMIwnmjg53e45PTlSqVRw9epVzGYztNtt9Pt9AMBgMOAFeY7jQFEUVKtVbm3Q8+t2uzyVIssyOp0OxuMxjo6O0Ol0sLq6ilAohFqthu9973uIxWIATnwT/X4f29vbWF1dRTgchuM4j5zEmUwmHOkejUYRiUSgqirS6TQ8z0MQBOj1ejAMY6Hy8Szvi+AEIUQEAoHgFeE8GR5nMX9Y0qI013Vh2zYikQgvmmu329B1Hdls9rFtjNPtHsdx+Hbp6n9/fx/1ep0FyNWrVxGNRtHr9fBXf/VX2Nvbw5UrVxCLxeA4DhqNBpLJJLLZLIIgQL/fRyaTQSgUwmAwgO/78H0fqqoilUohHo9jNBrx5MpoNEIkEoFhGJhOpzw2TM/ZNE0YhoFsNgtJkhYEF70GZwWVzWebzGazB9osT/u+CE4QS+8EAoHgFYHGNWnLLC09y2azj61eUNDY7u4uhsMhdF2HZVmYTqeIRqM8Ckvbcx+3PO50u4cCwAzDQKfTgW3b0DQN4XCYR2x7vR6PwJZKJcTjcViWxQKCREkqlUI6nebn6Hket3Ki0Sji8fhCfLksy8jn88hms0gkEryEjiZX2u02PM/jDb26rj+wrZe+h6ofp7FtG4ZhIBqNPtBmeZb3RSAqIgKBQPBK8bTjmoZhYGlpCYeHhwiHw+j3+3BdF+l0GqlUCqFQCIZh8Pbcx5ks59s9ANhI2u124fs+FEVBu93mSRZKWB2Px2weXVpawng8RiwW4/Hdw8NDdLtdbGxsYHV1FSsrK5hMJsjn8xgMBrAsC9FoFNFoFJ1OB5PJBCsrK5yjEYlE4Ps+UqkUtra2MBqN0O/3OZMkm80uPI95wbW2tobDw0NUq1UsLS1xZcO2bW4ZzW8Rfh7vi0AIEYFAIHgleZpDjrIwyENBGR6e50GWZei6/kCl4VEmSxqLTaVSmEwm3A4Jh8Mol8uYzWbQNA2qqqLZbKLdbuPo6AgrKyvY3NyEJEkYDAZYWlpCsVjkRXdHR0fodrvI5XLcVkokEtjd3UW328VwOEQsFuN0UxrZJWPo9vY2rly5AuAkoVWWZVy5cgX5fJ6rJPPPgQRXNBrF5z//efzgBz9As9nkBNhoNMrtoMe1WYT4eHKEEBEIBII3BKpiUKskFAohCAIkk0keiQUA3/c5yvz0wTo/rjsajdBoNFCr1XgSxnVdnm4plUo4OjrC3t4eXNdFKpVCs9lErVZDKBSCpmmIxWK8+G46nWIymUBRFBSLRWxtbaFYLCKVSsG2bU5OnUwmSKfTLHzovnVdx/b2NhtcY7EY1tfXYRjGmXthgAenWnK5HH78x38c5XKZn0c0Gn2qBFrB+RBCRCAQCN4QqLrw8ccfAwC2trZQrVbR7Xahqirne5TLZVy5cuWBq//T47o0Blsul3F8fIxQKMSVCcMw0G63cffuXTSbTaytrUFVVaysrMBxHK7AbG5uckJpo9HA/v4+gBMxVK/XkUqlsL6+jul0ilAohJWVFVQqFZimicFggOl0CkVREI/HUSgUsLy8zMmok8kE165d46mdlZUVeJ7HrRNVVc+cajEMA9euXRNtlheEECICgUDwGvG4wzORSMD3/YUV8b1eD91uF7IsY3V1FUEQcFLoPGels6ZSKaRSKUSjUZ5gOT4+hizLPOmi6zo6nQ76/T4KhQJ0XUe73UYQBNjc3GSD6507d9BoNJBIJACAP/7RRx9hZWUFX/3qV5HNZpFMJrG3t4fj42MAwHQ6RSQSwXg8xscff8zBarSJdjwe4/j4GNVqFZFIhB+7JElYWlp65LSR4OIRQkQgEAheQp70avy8C+3IJ2LbNvb29mDbNnK5HNbW1hCLxRAEAS9+O/14HpXOurKygl6vxxtqyYMSDod5HHc0GqHVanHFxPd9/Pmf/znK5TJkWcZsNkMmk4Gu6zwmG4/HUS6XYds2lpeX8fbbb2NnZwfZbJa3+VYqFRiGgcFgwN8zm80wm80QDocRj8e5PZTP5xEKhTCbzRaeG32tEB8vHiFEBAKB4CXiaTbkPslCOzqYfd9HPp9HIpGAJEnsn/B9H41GA91uF/l8nu+DxnWn0yls2+bWBqEoCsehf/WrX8X9+/d5VwuZPVVVRa1WQ7FY5EpFEASo1+vIZrMIh8OIRCKcuNrtdtHv9zEejzEYDPCnf/qnUFUVy8vLMAyDY9vD4TDW19dRrVZ5MR0ArsI4jsP5Iaurq+wJmU6n2N3dRbPZRLFYfOptxIJnQwgRgUAgeEl42g251DKhfSvAwxfaaZoGTdPQaDRQKBQeMHBaloVCoQDXdRcWtXmeh0ajAd/3OQtkftPseDzmRXGhUAiSJC2klAInI766riOfz8OyLBwcHLDP5PDwEIZh4P333wdwIoj6/T663S4URYFhGBiNRjg4OIDjONje3oaqqmi1WojFYnyfVCUZDAbI5XIYDocYDodIJBJwXReyLMMwDA5go+dDialPu41Y+EmeHiFEBAKB4CXhaTbkuq6Ler0Oy7LQbDb5MCSRcNb210wmg3A4DMuyMB6PuVVBEfClUokPVuBEINFkzHQ6RSaT4eRTx3GwtraGbrfLEenpdBrXrl1DvV5Hq9VCo9Hg/JBYLIZer4dqtQpJkjiErNvtolwuI5FIYG1tDfV6HdVqFePxGOPxmG93eXkZvV4PvV4PKysr7HeRJAmSJMFxHARBgEgkglwuh8FgAADsiSFfDAWwUT7JbDZ7qm3ET1PBEiwihIhAIBC8BJxnQ+5Z6+SHwyGOjo448yISiWA6nbJIWFlZQRAEC56PeDyOVCqF4+Njjn2PRCJYWVnBysoKZFleGGklgbSzs4NyuYzBYMCbdVutFnZ3dzlnI5lMot/vQ1EUZLNZeJ4H13VZMJDgicViHBo2mUwQiURg2zZu3brFG3R1XedFdp7nYTAY4OjoCMlkEsfHx9jb20M0GuX7cRwHjuNgY2MD6XQakiRx8utgMOAKkOd5HMAWBMGCQHnUa32ap61gCRYRQkQgEAheAuYj00+PmAIPXydPlYjxeMz5H+FwGNFolPe+5HI5Pmi73S729/fx0UcfoVarcRVAURQMh0Ps7e1B13XO4uj3+6jX6zAMA7quY21tjRfbUWrqZDKBpmnI5/OYTqfo9XrY39/nvA9d13H37l34vo/pdIp0Os07WUzTxPHxMWzbBgBUq1V+vnS4x2IxFAoFTCYTNBoNRCIRFlPT6RS1Wg25XA7JZBLT6RSDwYBFRjweh23b8H2fK01kqFUUBYPBAKlU6gG/y6NSZYmnqWAJHkQIEYFAIHgJCIfDGI/H2N/fXxAi1GKRJOmBpFPaazKdTtFoNFAqlTgZ1TRNhEIh9Ho9RKNRtFotdDod3L9/H7u7u3zgU5BYp9NBrVZDu91GNpvF1atX8X//7/+FpmmwbRulUgmJRAK5XA6rq6v8GEOhEO+nURQFkiTBMAxEIhEUi0XU63VIkoS1tTUAJ3tfxuMxHMeBZVnodrtoNpsATpJcKWRtMpnwvhrf92EYBgzD4N01a2tr2NzcxMHBATqdDiRJwltvvYVUKoVyuYxPPvkEpVKJs0Usy4Jt25AkiZ9zq9Xi13ee0yFnZ/G0FSzBgwghIhAIBC8B0+mUQ72oPTLvw4hGo1hZWVk41CaTCZs1FUWBbdvQdR2yLEOSJNy+fRuj0Qiu62I0GrFpMwgCpFIpzGYzdDodBEGASqUC3/dZbNB9kwDK5XILnhCKSvc8j82olmXxmO7q6iqP0larVYxGI4xGI/R6PfT7fSQSCei6jkajgVAoBFVVuQKhKApUVYXjOJhOpxwTH41G4fs+L5Wjg35nZ4dvPxwOY2NjA7ZtY2trC++88w6LqXkvB4mm+edCnBVyNo/rujBNk7f7nsV5qyoCIUQEAoHgpaDZbMIwDBSLRViWBcMweFqkVquhUCg8ELxFlQXyUtDhSMZVy7Iwm80wHA4xGAzQbrdRrVZh2zbvYgmCAJZlATipjiiKgrt37yKRSOD69eswTROtVgutVgvXr19Hr9dDu93mCgdtzm02m7h16xbC4TDu3bsHwzCgqiosy4Jpmshms1hfX0cQBLh//z5GoxGWl5chSRJKpRI8z8NoNOI2EeWSNBoNHrUlg20ikcBsNsPHH38MTdPQ7/dZXJRKJcRiMQBY2Bx8eind1tYWarUaV0nI3zEajaBp2pkhZ/NixrIsHB8fw3VdLC0tPSBmzlNVEZwghIhAIBBcMnR1Tx6LeQ9GOBzm3AxJkha+bzwewzRN1Go1KIrC7QfbttHv9wGcpIeORiOkUin4vo9Wq4WjoyOuSoTDYZimya0PTdN42mVrawu6riMajWIwGODw8BCxWIx9Hb1eD8PhEMCJGZQSWl3X5WkXauEoioLl5WWUSiXk83lukWQyGcRiMQyHQ8xmM6TTaQyHQwRBAMMwkEgk4DgOAEDXdSQSCSSTSXieh2q1ivfffx+JRAK2bcN1XXQ6HRZBZ1UkqMoRjUahadrC3hxZlpHNZs+ceDkr3t5xHFSrVQRB8EBl5XFVFcGPeGFC5N/8m3+DDz74AL/8y7+Mb3/72y/qbgUCgeDCedYMiXmjqiRJCx6McDgMRVE4tZSwbRvlcpmvuCuVCrc+aFkb7XOhpXaj0Qiz2QySJKFer8NxHEiSBN/3+WvH4zFSqRTG4zHa7TYymQxGoxE8z0MoFMLu7i63gyjcTFEULC0t4fj4GOVyGQD48/F4HEtLS9wqOj4+RjKZRCwWWxAtJEoo5KzdbmM4HC7kgtBuGgDcZorH47xQr1gscsWmUCg8tiJxukryqPfvLGPq8vIyJpMJms0mZFnG5ubmY6sqggd5IULke9/7Hn77t38bn/nMZ17E3QkEAsEL4XllSNBWXMrxALAwxUGihKZg6Ep+Op3irbfewve//3202210Oh0+iAEgEokglUrxFM1gMOD7GI1GGI/HSCaTsCwLjUYDmqbxOGw4HEaj0eC2jK7rmEwmPFqrqioSiQRM00SlUsGnn34KRVGQy+XQ6XRQr9fZRGtZFjzPY09FPB6HqqpYWlqC7/tQVRWDwQCO42AwGLDh1nEcnshRVRWSJKFcLiMej+PGjRvwfR/D4RDZbBa6rsPzPESjUQyHQ64knUcY0te4rgvLsh4QJA8zptIUUTgcRrvdXnj9RI7I+blwITIajfBzP/dz+J3f+R3863/9ry/67gQCgeCF8CQZEo+74qatuJ1O54GkU8dxsLu7y1kXsixD0zT0ej2k02nIsox6vc4CgXas0J4XWZYRjUYBALPZDIPBALIs814Zz/PYzOl5Hldjut0uGo0GOp0OZrMZSqUSjo+P0W63kcvlsL+/D0mS0Gq1uBUUi8UgSRLG4zH6/T6m0ynniCQSiYXMj263i3g8jkQiwc+n3W5jMpkgGo0iHA5jaWkJ4/GYKyFvvfUWjwEDQDqdRhAE6PV6GI/HiEQiUBSF4+vPW5F4nKCcr1idRtd1bmHt7Ozw8xGcnwsXIl//+tfxd/7O38FP/uRPPlaIeJ4Hz/P436ZpXvTDEwgEgqfiPBkShULh3BWTQqEAy7LQ6XR4CmY4HOLOnTuYzWa4du0aEokExuMxWq0WqtUqL3drNpvo9XqIRCI8XUJx5qZpsiAZjUa81E5VVbiui0gkguXlZZimCUmSeOx3Npvh4OAAQRAgm83yIrvZbAbTNHn8lvbPxONxeJ6H/f19TKdTxGIxzjehyZpYLIZIJMKbeucj4BVF4c+FQiH2hZBwsW0bk8kEV69exdHREXtOZrMZbNtmky4Jl7O2B5/FeQTlWRWrecbjMaLRqBAhT8mFCpH//J//M37wgx/ge9/73rm+/lvf+ha++c1vXuRDEggEgmfmPBkS9Xod3W6XD+nHpW4ahoGtra0F8yS1S9bX13nNvaqqyOfzKJfLqNfrmEwm2N3dRSgU4tFcRVG4WtDv99FqtXiqBgBnZ1BFJZFI8Lhpq9VCMpnEaDSC7/uIx+PQNA21Wg3dbhfJZBJBEKBarcLzvIX9NmT4lGWZLypJDAEnFRlFUXgslyoNtm0jEolwRWEymbD46Ha7cBwH7XYb9Xod6+vrWF1dheu68DyPl+1RxDuNGgdBcK738ryhZA+rWNHzFsbUp+fChEi5XMYv//Iv44/+6I/O/eZ88MEH+MY3vsH/Nk2TR8QEAoHgZcGyLAyHQ87POI2iKGi1WkilUg/8DtN1Hf1+/4HUTVpFXyqVUCqVYFkWVzCq1eoDAWfFYhG7u7sYDocYjUbIZDJQVZXFRzgchiRJ8DwPrVYLnudxS2Y2myGRSCCbzeLu3bvY3d1l38b29jY0TYPneSgUCiiVStzCIc+GJEkYDoeYTCZIJpMAwPHqmqaxuZRi4ElY3b9/H9VqFclkkl+7+Qj49fV1lEol7O/vL0zRZDIZSJKEnZ0dTpvt9/uoVCrsOZnP7QiFQqjX6yiVSo88f54klOysipUwpj4fLkyIfPjhh2g2m/j85z/PH5tMJviTP/kT/Pt//+/hed4DbmZSoQKBQPAyQl6CZrOJcrmMTqeDbDbLZknCsiw4joOlpSWOF6ctsBQvTuOz8yOk8+2bUCiERqMBVVURj8cXAs5oud2dO3cWxmc9z0O/32dRo6oqi4poNMoeBzKHHh0dYTKZQNd1aJqGIAi4lRONRtnjMZvNWGCQuZTGb2kZXbPZhCRJCIfD8H2fW0Ddbhfj8RjAyUbd8XiMQqEATdMwnU4RjUZRKBRQqVQwHA6xvLzM/57NZtB1He12G+FwmHfYzGYz+L6PaDQKXde5DZXNZpFOp2HbNlqt1mPDxB7l/QAWQ8mi0egDFatHjfsKzs+FCZG/9bf+Fj7++OOFj/3CL/wCrl+/jn/2z/6ZCHkRCASvFPNegmQyiZWVFbRaLfR6Pdi2vZAj0Wg0YJom6vU6XNdFtVpFOBzGysoKMpkMfN9HvV7Hp59+yt9zun1TrVbR6/WwurrKI7e0R+WTTz6B4zgYDodQVRWyLKPZbGI2m3GlgcZggyDgx0sjs0EQoNvt8k4WChUjMdLpdLhKYJomZFnm4DSKZQ+CANFoFJPJBN1uF7quw3Ec9qJQ+BgApFIpOI7DrSWaMCGTLHBSKaK9MePxGNPpFL7vc7XEMAwMBgMOP+t2u/jyl7+MTCbDrRm6kB2PxxgOhyyAHsZ5vB/zI8BPMu4rOD8XJkTi8TjefffdhY+RY/r0xwUCgeBl57SXIJ/Ps0+BvBXFYhGVSgWHh4ds5mw2m6jX6wiHw+j1etjc3OR2A1U83nvvPW5R0HTM/v4+B5SRWPB9n02lNKK6tLSEUqmEfr/PlWa6wh8Oh5hOp3y13u/3oWkaCwmaqDEMA7FYDKFQiKs1g8GAR2glSeJKDu2DkeWT44P+TTth6DWh26YdOr7vYzabcUUnlUphfX2dfTTT6RTZbBa+73O16OjoCJZlcTWHxMz6+joGgwHq9TqWlpYeeK9834eu6/w6PEw4PGpaCXi490OIj+eLSFYVCASCx3CWl4AyJCi/Y29vD7VaDYeHh7AsC77v44c//CEvfzMMA8PhEAcHB2g2m9ja2uJKw/379zkrhILEqNphWRZqtRr6/T7vbqGWAlVXyKBJ0yNUUQiCALPZjL0NyWQS4XAYQRAgEolA13XOGslkMuh0OiiXy6jVapAkCbFYDK7rwnEcKIoCWZYxnU6h6zry+TxPrEwmE/adWJYFTdN4ey5NQ9LtUQVEVVWulFB1JggCbGxs8FRNJpPhnTXUhiFPxurqKsbjMRqNBlKpFFeTKI02l8uxP+ZRU0vC+3H5vFAh8t3vfvdF3p1AIBA8Fx7mJSAxEo1G0W630e12eelas9nE0dERjo6OMBgMkEwm4TgOXNdFLpfjxXQ0XUIfo+h00zRhmiai0SjG4zGHgjWbTW4p3L9/H71ejw9NShmlyko8HmefB2WCGIaB2WyG8XgMwzDYH0Jx5c1mk0duqQphmiZmsxkbYCk1laZbqOIQj8dZ3FA7IxQKIZfLwfd9rmjouo7ZbIZ2uw3DMFiQ0G3R99BzAoBEIsHelm63i2KxCNd1+WPkJ0mn0wiFQkgmk6jVag8dy11aWoKqqgiHw8L7ccmIiohAIBDg0aFjj/MS9Ho9WJaFXC7HeRiTyQT5fB6DwQCdTgeu60LXdUiSBF3X2fgaDodx48YNRCIReJ4H3/dRKBRw69Yt9Ho9fOUrX0EQBHBdF4qioN/vYzQaIZlMolgscq4HCRoyk8ZiMfi+z9UZMq9SZYC25NJul1arhd3dXU4WnUwm6PV6MAwDkUiEXx+qilACaiQSQSgUwnQ6RSaT4SpIo9HgfTFUCSGhNplM+H6SySRc10U2m2UBQ+0Y2hpMUzK05K/X6+HatWssKnK5HLevQqEQUqkUAJw5ljudTrG7u4vDw0MUi8WFKkmpVOKqFMXtCy4eIUQEAsFryXkNheeNaVcUBZ1OB8vLywt7YADg+PgYuq4jm82iVquxl0NRFGxubuLo6Iivsj3Pw3A4ZPFAno1EIsHtlG63C8uyMJ1OcevWLUwmE14E12q1EAqFUCgUkEqlONKcKiOu6yKTyUDTNPZ1kJmTpl9IEPX7fd7nsre3x9Hw0WgUmUyGp0aoygKAqwiqqrJhNpvNIhQKsffFtm0eoaVlfTTJE4/H2UTreR7q9ToymQzS6TRHNlCke6FQ4GRXy7JQr9ehaRpyuRxqtRry+TwMw+AUV8uyIEkSNjY2Fgy3hOM4KJfLXO2hx0aCplgsYjQaPXNkv+DJEEJEIBC8VjzJ/pfHpWrOH0zD4RBHR0e4efMmtwmAE0PjcDhEKpXiq//Dw0MMh0PEYjHEYjHeE1Or1ZBMJhGPxzkcTJZl/NVf/RUikQgMw0CtVsOtW7fQ6XRY7KTTaTiOg1qthtlshlAoxF4QVVWRTqf532QeNU0Tw+GQ49WpEkETOJT/QcKHxEMkEuGKSTgc5hAy3/dZ0FCSKFV+6FB3HGdhWoYeB/lQqJUTi8V4fFfTNI6Gz+fz2NzcxM2bNzEcDlEoFNDr9dBqtdBoNFi4/fCHP8TW1hZWV1cRi8VwfHwMWZa5AlUulzmtdZ52u835KNTOodiISqWCSqXCVZ3HBdAJnh9CiAgEgteGJ9n/Ajw6VfP0wSTLMhqNBur1OmzbZnHQ6XQwGo1gmiabRE3TZBNrOBzmFgMdurZtIxaLIZFI8CK373//+4hGo+h2u3xbNLLb6XT4YA2CgIVNtVrlx6vrOnzf53h0SZKgaRpCoRDvjxmNRlhaWoKiKLy/hoy4g8EAoVCIczooT4S245IooiTUyWSCXC63sKRvMBjwgrxQKAQAXMlZW1tDsVjk4LJer8dm0NFohFAohBs3buDKlSu4d+8ems0mRqMRyuUyut0ugJO4d3p9G40Gvvvd7+LKlSvQdZ39HUEQ4NatW7h27RquX7/OgosqUeS5oekkwvM8tNttbGxsLDyn0wmrguePECICgeC14bxx3cBJ66bZbLI347T3w3XdhYOp1WpBURR8+ctfxtHREbrdLiRJQjabxXA4xOHhIQ4PD5HL5Xicdn9/H/1+H0EQYHl5GcvLy5xtQeOy4/EYa2tr3EaJRCLcRolEIixEqOpAj4uC0lRVZZ9GMpnEdDrlvS4UikZBYHSI9/t9noyhKk40GuXDmjwfkiTBsiwWIYZh8EjxcDjkbJHZbAYA7CUhAUa7Y6g9VigUMJlM0Ol0ONyNluatrq5C0zTcu3cPvV4PoVAInU4HQRCw6BuPxyzePM/DeDzGzs4ObNvG8fExG0wHgwHu3LkD3/fxxS9+kTcHk8dlMBggnU7ze05x8tTOOs18wqoY3X3+CCEiEAheC84asZ33cswfJtPpFAcHB7h//z4Mw4CiKBx5Tuvk6dChdgJNsNB9HR8fY319HdFoFOvr62i325y9kUgkEI/HEYvFkEqlMBqNAIAzOw4PD9HtdrG+vo5Go8EHK43g0jr50WiEWq3GFRCqdlDlglo0R0dHLCqolUPGzHA4zIKLxlIBcBCaqqqcP0LL7iaTCbdiaGcLmVSn0ylXTcg3QmmqnuchCAJOdM3n89ySMQyD80XeeustDn3rdDpIJBJcvbh37x6Ln36/z48RAKbTKWej0POrVCr83KlVlMlkIMsyKpUKNE3DZz7zGc5IabfbiMViyGaz/HNCz5f8L6eZT1gVPH+EEBEIBK8F8yO2tCSNrrpJiITDYQyHQy73K4rC217nE1JnsxlvjCVvBXkhqIRPFQtKV6Wx3MFggE8//RSpVAr5fJ7HUO/du8eJn5ZlwTAM+L6PbDaLarWKu3fvQpZlpFIpeJ6H6XTK4mM2m/GUC3k8SBxROil9PS2di0aj6Pf7ME0T0+mU98DM3x6N5I5GI4zHY8xmM0ynU45QB04EyGw24wAzqtbQThd6LKFQCNFolCd1crkcNjc3kcvlUKlU0Ol0cO3aNei6jp2dHVy5cgXNZhOVSoVfx1arhWazCdM0eYzYMIyFyZ1Op8PVG0VR0Ov1kEgkkMvlkEgkMBgMsLm5iXg8zs9tfsJnMpkspOACJ0LK8zwkk8lzJawKni9CiAgEgtcCGrGlQ4z2q5Dxkha/UWpoPB7HcDjEYDDAxsYG0uk0er0eX6GbpolisbhQMRiPx1x5kSQJ9+7d40Vwvu8jkUjwFMfGxgauXbvGogg4aR2RoFBVFZPJBKZpwvd9rK2twfd9SJKERqOBXq/H1QgK6iJBRCFmVIUgkUS+DMr9oBAyqlIAYM9HKBSC7/s82kv+FhIjdFsA2KtCBzGJIWpNkZCb/3rDMJDL5aDrOjKZDGq1GizLgizLaLVaiMVicBwHm5ubGI/HvKG32+2i1+st5JPQGK1lWSwAKeuk3W6jUCjwzhlKeQ2HwygWixgMBlhZWUEqlcLW1hZqtRps24YkSQvhZY/aniu2614sQogIBILXAorrph1X6XSaPxeJRDCbzdBsNtFqtXD16lXOndjf38edO3ewtbWFUCiEmzdvQlVVrj7E43Fks1kkEgkWB5QbomkaMpkMXNeFYRhot9twXReWZaFSqWBpaQmRSITbL8lkEqZpQtd1BEGAmzdvwrZtFAoF3rJLwoI2/JIgoCoNHcTky6AKB4mlRCIB13XRaDQWpl3oe0lMkAABsFDdmE6nC6+rJEmIRCLcyqEKkyRJyOVyeOutt7hiMBqNOM+k0+lgf38fuVyOczmq1Srq9TqOj4/ZuEo+mVqthm63y/t50un0Qggaha9RpUpVVRZu9BrRz8B4PEYsFlv42YhGo4hGowtLBufDyzY2Njj07VEJq2LPzPNHCBGBQPDakEgk+HCj0j1VE2zbRiKR4MOHhMH169dxcHCAcrkM3/fR6XTw7rvvYmdnB71eDwcHB+j3+0gmk2g2m9jb28PBwQEGgwGWl5cxGo24VTAYDOA4Dodx/cVf/AW3YlZWViBJEk/jUGUinU5D0zRUq1UcHx+zATQIAjiOAwC864VECFUzqJ1CUy0kOqhF4rouj+EGQYBQKMSVHZocma+CzIsbqniQL2I6nbJPhP6tqipv16WkVdpDMx6PMRgM0Ov1uH0Ti8Wwvr6OTCYDXddRLpdxdHSEcDjM+3gikQiCIMB0OkUqlcJwOORYeDKq+r6PYrGI1dVVnrihEWaqrFDlhZJWiUctrjMM46EJqwD4fRcZI88XIUQEAsFrg6qqKBaLmE6nGI1GvHfEMAzerzIajXgpGnBytby1tYVbt27BdV0kk0lIkoRWq4UgCKBpGmq1Gg4ODqAoCk+vUE6Hruvo9XpoNBp8GJOpkj6+ubkJz/NQLpdRLpfhOA63P3zfx9HREdrtNvs2HMeBbds8wktVD/rcPCQuyNNhWRZXEahdRZUMANziAfBQ8+VpDwgd2iRYaHolEomg1+txy4jMsrS4jkZkR6MR4vE44vE40uk0CoUCCoUCGo0GjzLruo5EIsHPqdvtQtM0ft6j0YizVyhvZGNjA6PRCHfu3MHe3h5CoRCKxSLy+Ty/trFYDLVaDZqmLQiGs6oZDxMpTzoWLngyhBARCASvDbRfRdM0FItFPkwmkwls24aqqryPhfIlgJPEzUqlwhvCR6MRKpUKut0umxTD4TCWl5d5woaqH2SKpSvkSCQC27bxySefcJXh8PAQ9XodoVCIA85UVUWj0WCfBokOqq7MVx5I4JzFfCWDRnSp7ULtDKqKUOXkUcy3Z2iMl15Dmoqh0DTKNyFRRbedyWTY8EoemHnTL/k5SGjQdMxoNGKRRh4YqpLE43Hk83msrq7ib/7Nv4lYLMbpqTs7O/y4SqUSP/YrV67grbfe4pC78+aAnBYpTzIWLnhyhBARCASvDfNr3efHM8k/MRgM2I/RaDSQTqchyzIODw/RbrdRLBbhOA5arRZ832dDK+V21Go1TlVdXl7G7u4ux6Sn02kEQYBkMsmHMrVDms0mkskkt0zIaEkeBDJ/AuD49Pk9J2RaPYt5YeH7PoeeUdvFcRxOY52vrtB9UV4I3Q61VoAfiSCanKHXmIy2lH4aDof5fiRJ4iqHLMuIxWLclkmlUojH4+z9UBQFhUIBR0dHHA5Hj5UW9tGoMr0umqah0Wjw1/i+j6997WsYjUac6KooCrLZLJtlJUl66hyQs8bC5xEZI8+OECICgeC14qy17sBJy6LRaGB5eZlbJzRJc+fOHUQiEQwGAxYd1J4g4yeNmMbjcUiSxOZKyiUxTZPbIlQxUBQF3W4Xw+FwQXxQdYIqD/MVg3mvxVnm0XkhcRpqmwDgNg5VRgCwMJr//tOL3ahaM1/hoKkcGgumx0VeExIykiTh7bffhmVZsCyLb0dRFE6oNQyDq1Y0SUMG11AoBF3X4TgOBoMBdF3nr6VdMpPJBNVqFa7r8ibgfD7PGS1kyJ0fw32WHJCHbV5+HrctOEEIEYFA8FphGMYDa91pJwu1Y8gHQjtNVlZWUCgU8NFHH+H+/fuQJAnFYhGhUAi2bWNvb4+NmpT/QaZIikEnATKbzXiMlxJE6WCkLbp01W8YBh/mJDgoC4S+hpivaDysQkKhZFTJoHYFiQ36+DynhQkJBzLChsNhKIrCY8xUbaE/JBgkSeLWGFVlaEqFjKdUXRiPx9B1nX0xOzs7GI/HLORotBYAj0XTc6dqymw242wYylORJOm554A8bvOyyBh5doQQEQgErx2nTYe0FO2tt95CpVJBuVzGwcEBLMtCJBIBcFJiJz9DMpnklfV0WFKiJx2UZMok4TC/4ZamN6jtoigKCxAAXC2gFoeu6+ztmG+TzF9l0/c+rBpC0OI6qujQKDCABRFCUzEkNDzP43yS+coJiR7yn9C/KWEV+FEgGJk6qUqSy+UQDoeRSqUAnLTIWq0Wut0ux8XLsoxEIgHLspDJZHjzcCqV4ooIjf+mUikUCgXMZjMUCgUOcqtUKnjnnXc4n+U0z5IDMt/ue963LThBCBGBQPDaomkar7AnzwGNneZyOWxsbHCWyN27dxeu3Gl8k5bBkSmTplPS6TQmkwl7HUhMACfmVwrXUlWVD3pq45BgocoKtT3mR1/nWyZU1aDJlYdBnw+FQlwZoY+fhnwgVGWgiksQBNzeIWazGY/Q0u1RFYdaNFQRqNVqvCU3lUphaWkJ165dQ7fbRbVaRbfbRbfbxcrKCu/poaCyXC4HRVEwHA7ZuFsoFNBsNhEOh5HJZHiSRZIkpNNpSJKE4+NjfOlLX0IQBI/NAXkazmr3Pa/bFgghIhAIXnOoxz+dTnF8fAzTNJHP52HbNu+OKRaLbFClqRXyh9AhPh+gRRMkJArG4zHfFvlASLxQK4WMl+S9IG8EGUZp4R21PigplaoT1K45LRJOQyO2Z0FigzJH5pkXJqfFDomb6XS6IEjmfSxUtSAxNJlMeAqm0WggmUzivffe42WDX/7yl9HpdHD37l3e5Luzs8MtNUVROAqf/tBrQ1uMk8kkfN9Hs9mEJEkPtOTmc0CeZbz2rHbf87ptgRAiAoHgNcfzPDQaDYxGI9Trda6SUNtiNptB13Vsb2/j6OgIw+EQ9Xodnuchm83CNE0+hGVZ5urGvN8iEolwi4e8I1RBoXj1+WRU4Ef5H3Q7tBCOPAkUuOb7Pj/WR03PEI+qmFAmBzEvOui+qdpBm2rnxQs9H/JikMCijb/ziauUlmoYBpLJJO94SaVSvJXXcRwe1zVNkxcPkrih1lEsFkMmk8Hq6ipnjtDrPRgMYBgG54Q8LKzsWbnI237TEUJEIBC80jzqYKCRW8oRCYKAx04p2CsSiSCZTCKZTCKXy7HxkQ5VWvgmyzJnclAqKiWd0jZXCjgDfrTRlcZZ6XFSLgcd7qFQiFs25LugryFfhOu6vGjvWaHKzPzIMIkiEjs0JUPCZT59lW6DhBk9DxJJoVAIuVwOk8kEvV4PjuOg2+2iUqnw3pl8Ps/L6NrtNvr9PlzXRaVS4ZHfdDqN69evo1gsLrRFdF3njBEKbqMtyMRFCgQhPp4/QogIBIJXEgqpeljktuu6ODg44MyJg4MD7O3t8RU6iYGlpSXIsoz79++zsTSbzbIHQtM0DIdDBEGAWCzG+1+oDUEH8HA45M9RDDkAFhV0+M//d97zMZ8fQocsCShKWX1ezLeI5rfpUiWEKkDUlgqHww+IoPmpFqr40GtC3xMKhdDv9xGPx2GaJvb392FZFnttGo0GNE1DOp1GtVpFrVaDoijY3t7GxsYGstksZFnGjRs3sLu7y5t9iXA4jGw2ixs3biwIBFG1eLUQQkQgELxyPCpyu91uIxqNYjgc4ubNm2i32xiNRjAMA+vr6wu5HrlcDplMBru7u7h37x50XedxU1q+FgQBEokEptMpT9BEIhFus5AXYn4zLh3KtGMlCAKObwew0AKhtg59/3wy6vyh+zyhtse8IZbum5gfHT5tdp2frKHnQR4T4GSD7mg0guu6AMDjvZPJBPF4HM1mE71ej9tXzWYThmFwW0ZVVdi2zdWPVCqFGzdusBGWRIaqqlhaWsLGxgaAx4tTwcuJECICgeCV42GR29PpFB9//DE0TcPa2hovvCOT49bWFuLxOIsD13VRLpdRqVRgGAa3bTzP45bIcDgE8KPtt/NhZ8BJqT4IAoxGIxYb5K2g9s9pY+i814MmTubHbV8E1FqZH8cl5sd2z2LepEqvCwmZWCzGt20YBt8uia979+7B8zxOsqWtviRUSLR0Oh0oioJkMonBYICrV68il8uh2WzC931uqWUyGW5/iX0wryZCiAgEgleKR0VudzodNntS9gdVNBzHgaqqWFlZYW9Co9FAo9FALpdDLBZDu91GJBJBv99n74eiKGi1WgiHw1wZoXYLRaqHw2FuOdDB7DjOAwLkLOh7nof/40k5j/n1LMbjMaeNUmuHRn/nA8nmvyafz3Oi7d7eHk8aUdItvX4kHAuFAnZ2djCdTlGtVnHlyhWUSiWUSiUMh0NOtT06OoIsy2wqXl1d5ccp9sG8GgghIhAInjsX2aN/WOS253k8eeG6LjzPw2g0wvHxMRKJBEKhECzLQjQaRSqVQq/Xg+d5fNX+8ccf89gtZVv4vo9sNgtVVeG6Lpf46/U6bNvmADCKbydfxZMKi8sQIc8CtW3ITxIKhaBpGmel0MZeRVGwtLSEWCyG2WzGPxeRSAS6rnMViDJE6GdGlmXODCERkU6nkclkEIlEuGVFlQ96n+PxOLLZLBuGiafZByN8Ji8OIUQEAsFz40X06B8WuU1tDcrioFFcyrLQNA2+73P6ZqfTQbfbRTqdhm3b6Ha7nIA6HA55mV2r1YKmabxnpd/vc8uFxlld12Vfx5sARb/TtA2ZWymGnSpGruvCNE1eihcEAUzTZOOvZVmoVCoYDoeIRqPQdR2+7yOVSkHTNLTbbXQ6HSQSCeTzeSiKgrt378JxHLz33nv8/tOkzWQyQafTWaiKAE+2D0b4TF48QogIBILnwovq0VPkdrVaRSqVYtPi/O4Tx3HQ7/eRyWT4Kp1GYE3TZF+BpmlwHIdv27Is9Pt9OI7DuRgUX06x7IPBgA2lQRBwK+FNg3wt85uGafcLJc3SiK7ruryFl/JSHMfhA5+qI1SFolbacDhEKpVCOp1eiJOXZXlBcND7RC0az/MWROp598EIn8nlIISIQCB4LjzMQPq0PXrXdbkET8vTgJPDwnEc1Ot17O3tIR6PI51Oc2iW4zi84yWfz3Psd7vdhizLGA6HODg4QDwex2QyQbPZRCKRgG3bGAwGC9kfoVCIWy5BEPC2XvJ1UGviTdu8Or+nRpZlNqvS62AYBgsValtRGysajUKWZdi2zT4SEisUdAYA9Xod77zzDiKRCAqFAk/S0OTNvOBQVRXxeBy9Xu/M9+O8+2Ce98+w4HwIISIQCJ6ZRxlIgSfr0du2jcPDQ+zv72MwGAA42Za7tbWFfD6PRqMBx3Fw5coVmKaJRqOBu3fvIhaL4erVq5AkCR999BEbTakSUi6XYds2H4rRaJRbB3QlTgvsLMvirBAyX5LRktoS82FfrzuUAEumVMoNIYPqfNAZBbLNR9pTRSIWi/H7r6rqwtjy0tISe3KWl5e5BUZpq/Q4qBV0esIol8thMBhgOBxy2+xJ9sE8z59hwZMhhIhAIHhmHmYgJc7bo7dtGzdv3sT9+/cRDoeRz+cxm80wHA7x8ccfc+z5+vo6H3Q04kkpqjStQmvlqdUSCoWQTCYRBAFveCWPA3k8KBuEFtnNx7jT+Cnw9NMmryrz5lsKXQN+tOmX2i2UPktQDDylrRaLRW7BeJ7Hy+1oezGZitvtNlqtFjKZDLLZLNrtNnK5HG/jbTab0HV9odWi6zpXxqbTKXq93hPtg3leP8OCJ0cIEYFA8Mw8zEBKnLdH32w2Ua1WYRgG0uk0fzwUCuHevXs4ODjA5uYmRqMRRqMRR4YHQQDLsvAnf/InPLHRbrd5uVyn00Gv1+P9JjQdE4/HEYlEuJVDe12o4iFJEgzD4EV2lI/xuC24rxvzG4OpHaVpGuLxOFcdZFlmX42qqkilUvA8jyds4vE4jztnMhlugxUKBciyjNXVVSSTSW6vLC8vIx6PQ9d1FpNra2vI5XIc20+PjR5DKpXC1tYWZ5I8ycTL8/oZFjw5QogIBIKHcnqE8ayRRvqYpmk8kUKQd6Df72N5efmRhwJtZaUr4/mPV6tVjEYjjMdj+L6PwWCAXq+HbDaLUCiEbrfLMeie56Hf72M0GnHVhDIqarUaX7lblsUZI3TFL0kSG1VpM+78YjcAC4mk58kJedmhSReqSpwVJR+JRKBpGkfAU6AYtami0ejC7hp63SzLQjgcRjwe52oJxdaHw2EWkoZhYHV1ld8TRVGQz+fZ05PJZGBZFhuUr1y5wq2157UJl0zQnU7nTCFyXp+J4MkRQkQgEDzA6RHG8XjMFYFwOIxIJMK9dJoeGY/HME2TJyRILAyHQ17j3mq1EI/Hz/xlTgccHYpEvV5HtVrFZDKBaZo4PDxENptFLpdDtVpFv9/HeDyG4zg4PDyEruvcCtjf34ckSbyp1XVdTvKkvSXtdpufF/lH6AClUdR5Hwitu6eD91X1iNDrQsmu8XicE1WDIIDneQB+dEATw+EQvu8vhJCpqsoCwLIsuK6LfD7PlaVYLAZVVVEsFjEajXinjKqqHLUfDofR7/dhGAaLllKpxJNPZDpeXV3F2toa7xN6nlkfhUJhYcEeTc2c12cieDqEEBEIBAucHmEMggD7+/s4OjqCoijc52+1Wkgmk/jMZz6DdDrNV8udTgeHh4c83VAoFBAEAW7duoVPPvkEKysrWF5e5sOEIIFDh2EkEoFpmjg4OMBsNmMPQBAE6PV66Ha7kCSJy/SmaaLT6fAUDXkPyHBK0eu0P4YeLx24dBVPFQJqQZxuwVAL51WHKhLUOiFfzHx1iNJlo9EoL9+j15VGomlCRpZlJBIJ6LqO4XCIcDiMTCYD27axs7PDo85029TKIV8HtdJWVlb45yCfz2N7e5tbY6ZpYnV1lX9unnd1wjAMbG1tsQh/XtUWwaMRQkQgECxweoSxXC6jVqshkUhwVYQWnQ0GAxYkFJ/e7XYRiUTw9ttvw/d9NJtNvnLudDoYDoc4OjrCD3/4Q7z//vtYX1+Hpml8xdloNGBZFiKRCDqdDlzX5VXw8XgcqqpyCNZsNsPBwQEUReFDgoLMtre3WWgoigJFUbgCQILDdd0HdqzMtxheZx8IVTSookBhcDTJQhMqmqYtTAmRuKMqEk3UDAYDaJoGwzCQSCRgGAYymQzi8Th+7Md+DO12G8fHx+j1etB1HaZpQtM0XLt2DbquIxaLwXVd6LqObreL9fV1rKysAAC3SqLR6IV7NAzDwObmpkhWfYFcqBD51re+hf/6X/8rbt++DV3X8WM/9mP4tV/7NVy7du0i71YgEDwlp0cYPc9DuVxGOBxGMpnkq1IAKBaLGAwGKJfLWFtbg6qqnLFBpj4KtKJJFl3X0Wg04Ps+6vU6/vIv/xJ//a//ddy4cQMbGxsoFApYWlrC3t4e+v0+Go0GgJMdMjTamc/n0Wq10G63OWqdckBo0y5lgNDGXDJX0qEJgFsQAPhriVe13fIk0PgrTR6RGCEhRi0yqhR5nseju/QeUyw7tcY6nQ6uXr2K1dVVeJ6HZDKJWCwG27YRj8dx7do1OI6DbrcL4MTAWiqV+L5rtRrK5TK2t7fxuc99bmEC50V7NIT4eHFcqBD5X//rf+HrX/86vvSlLyEIAvzKr/wKfuqnfgo3b97k0BqBQPDycHqE0bZtNgsCJ+V8MjOSr4CMoqqq8iQDbZ41TRO+78P3fWiaht3dXdy5cwexWAyGYaDT6eCjjz6CZVmwLAtXrlzhrJCjoyPcvXuXfSfZbBbD4RD37t1Dt9tFvV7nVfI0IkqJnpZlYW9vj9fMU5JnKBSCYRiQJIlbM/S831QoVEyWZcTjcRYg9N5RC4daMzTqHA6HYds2V8houd10OuVwMmrh9Pt9lEol9hNRNcpxHP45Go/HyOfzSKfTuH79OqLR6BNngQheTS5UiHznO99Z+Pfv/d7voVAo4MMPP8Tf+Bt/4yLvWiAQPAUPG2GkFgUdOPR3yt6Y91nMf73jOLxYrtFoYG9vj3v/kUgEoVAIvu+jWq3CNE0cHR3xtEUymUQ6nUa73eZo9lQqBd/3sb+/j1arhUgkAtu2YVkWNE1DNBrl6RoAC0vogiCAruuIRqMIhUIcXkbZIW8a5H8hEUcTR6qqsqeGPk8Cg7JXqEVGC+4mkwmi0SgikQh830er1cLGxgbHvJPQoyC5zc1NHB0dQdM0vr+VlRV87nOfQzab5Uqa8Gi8GbxQjwilJNLV1Wnmf6EB4BKwQCB4MZweYaR+P12R2rbN+RDkxQiHw6jX6zz9QP4KwzA4Il1RFFQqFTiOg6WlJWiahiAIoGkaFEVBt9vl/98pkKrT6eDg4ACVSgWSJKFcLuPw8BChUAjNZpONkrFYjFsH9N9QKIQgCLj1MD81Q1Me8wFlbyIkvigNlUy4kiSxIKHKFkXch0IhqKoKTdP4taWpIno/qbpCG5Bt28af/umfIpVKIZFIcIZIPp9HsVjEzs4OTNNEPp/ntn0ulxMejTeIFyZEptMp/sk/+Sf46le/infffffMr/nWt76Fb37zmy/qIQkEgjM4PcK4vLyMmzdv4vj4GIlEApqm8ebaIAjwzjvvIBaLodlsolarcV7IaDTiMDCapjEMg/0no9GIKxp0sA0GAy75N5tNfPrpp/wxx3Fg2zaAxdFTOhD7/T4fliRGqAJCUKnf8zwONhOcMJvNuEpE/zYMgysf8XicDaXkC6GAs9lsBs/zkMlkOPkWAHuDAPASQsp7yWQy3DbL5/M8hUOiQ4iPN4cXJkS+/vWv45NPPsH//t//+6Ff88EHH+Ab3/gG/9s0Taytrb2IhycQCP4/p0cYo9EoCoUCGw7JILq5ucnjl47jcFhVNpvFxsYGms0mp1HW63W+sqXsDhIN0+kUxWKRvSD9fh/VahW3bt1Co9FgrwF5TSaTCceMk39gOp2ySCHIO9Lv9xeMl+RxeNNi2h8GtWUA8OszH+xG7S2aXnJdF91ulwWgruuQZZmzW9LpNPL5PKrVKvuNrl69ikajgXg8zkZWSrqlbb0iPv3N5YUIkV/6pV/CH/7hH+JP/uRPeG3zWdCWQ4FAcDGct9x9eoTxxo0bME0Tx8fHsCwLGxsbKBaL3Iqh26T7kCQJm5ubKJVKSKVS+O53v4vj42M0Gg3OF8lmszAMA77vo1arod/vsxmx1WpxrPh8oBpNelBEO338tMeD/A+u6/IUCPkcaHxXcMJ8Vsp0OuX2jK7r/JqRSTkIAqiqimg0islkwsFj6XSas140TUO9Xuf3jwzEZD4FTn7Xm6bJ1Snaqivi099MLlSIzGYz/KN/9I/wB3/wB/jud7+Lra2ti7w7gUDwEE4npcqyjGQy+VgDIImVaDTKmRAAkM1mF0Yriel0unBlS1fT7777LkKhEP7P//k/6PV67CtQFAWNRgONRgO6riMIArRaLZ7CURSFF6OR5wPAY1sqtH6eIK/D/Piu4AQSDADYO0MjupZlAQB7P4bDIUqlElZXV9HpdDiELBaLoVQqscF1MBggk8kgkUiwXySRSHAwGb03o9EIu7u7sG0bmUwG9XpdmFLfQC5UiHz961/H7//+7+O//bf/xiVd4MSMdtYvMYFA8Pw5nZRKsdWdTgeWZWFpaYkPoMf15aPRKOLxOB9cpzm9GIzC0fL5PN577z10u110u10Mh0P0+310Oh3MZjMkEglcu3aN/02tHKqAPKufQ4zpPgi9h/NCZF6oaZoGWZa55aWqKmazGRuZk8kkTNNk0Xj16lU0m01MJhNkMhkUi0V+/6jS3e120ev1OE6e2m25XA5LS0v8M7m1tSXEyBvEhQqR3/zN3wQAfO1rX1v4+O/+7u/iH/yDf3CRdy0QCP4/p5NSAfAV7+7uLg4PD1EsFs9VJXncYrBOp8M5Hq7rsp/k+PgY7XYbjUYDjuPAdV0ux7///vu8vOzw8BC2baPX6/FGXKqqCJ4fkiQtTA3JsswtLKo8SZLELRhJkri60Wq1cHx8jHQ6jVQqhevXryOfzyMajeLq1auwLIt3C9VqNV5o1+12sby8jGg0iv39fbiui7feegurq6sLFbZOp4Nms4nNzc1LfIUEL5ILb80IBILL43RSKuE4DsrlMgdTUcjXea5Iz1oMNhwOcffuXbTbbei6jtu3bwM4iVunMd69vT3cv38fuq4jl8vBMAwWHYPBAMfHx6jX61AUBZqmYTgcAoDwczxnqFpFZlNaAkifo5wYGoXWdZ037DqOg1gsxn+++MUv4r333oNlWYjFYrwlNxwOY3l5mRcPfvrpp1AUBalUCsPhEJZl4d1338XnPvc5pFKphcdHCxPnJ2gErzdi14xA8BpzOimVoB0u+Xweg8EAs9mMzeKPuyI9PVXTarVwdHSETqfDJfnZbIaPPvoIP/zhD1EsFqGqKi+pcxwHtVqNTY+O42B3dxedTgehUAi9Xo9Ds+jqXFREnh9kCqVld/N/JxFIbTDanJtIJHgRYCqV4s26lLSqqioSiQRM08T6+joymQx830cmk+FNuyR2KVAuk8mcWVUTEzRvHkKICASvMWclpXqeB9M0EY1GEQQBLy4jHnVFOj91Q1M1e3t7qNfr2NzcRDqd5vuYTqcwDAOVSoWnK5aWljAcDrm8v7Kygl6vh1qtximelHQqKiHPH3qvadKIJmZo4R1VP+Y9QKlUCrFYDJIkwTAMJJNJ5HI5LC8vo16v4/DwEFtbWzxFs76+jrW1NbiuyxMz2WyWvSbhcBjHx8dwXRedTueBSUrLsuD7vsh4eYMQQkQgeI05y9NBFQZFUTAYDJBKpXhhHZXr5ydUgBPDa7lcRrfbxWw2QzQaRTKZ5NRVWZYXgsPI85FIJNDr9eD7PhRF4athy7JweHgI0zR5tHZe5FD0+3Q65at1ADxOKjg/kiRB0zR+f+ljlDhLu2YikQgHmFGseygUQiqVQrFYxGg04s3IqVQKtm0jEokgGo0ilUpxumqtVsNkMuFtzdls9oFohng8DsdxYJrmQqx8p9NBuVxGLBbD4eEhj3QL4+rrjRAiAsFrzmlPB4WItVotxONxyLKMe/fucW+fxmq3trYQjUbRbrfxgx/8AO12G5qmIRKJsNCgte40LUNQRWM2myGVSqHf78N1XQDghFQKFqP2DJkiabQ3EolwbDshRMiTQXkgVPUATt4bqnrQVmL6bzqdRiaTgeM4LBBJnFKaLY339nq9hfdLlmWsrKyw8G21WvB9/wF/EnAS4U7BdsvLywiCAPv7++j1ekin09ja2oIsy2KK5g1BCBGB4DXntKeDPCMUJnX//n02ISaTSQ4cOzg4wHA4xA9/+EP0ej2srKzw9zUaDQyHQwRBwPkclmXxMjRqCR0eHgIAj2paloXZbAbLsnj/i+M4GA6HkGWZDz4SMaI8/2xMp9MzxRy1Xqj6FYlEMJvNUCqVAIAX0w2HQ/zZn/0Zut0ucrkcC9nRaIRMJoMgCHiDbiwWQz6f5+pHtVrFYDBALpd7wAui6zpKpRIHqJXLZQyHQ2xubiKXy/EEzXk8S4JXHyFEBII3gNNJqcViER9++CHu3bsHWZaxtLTEW3AVRUE8HsedO3fQ7/fR7/exvr7OYoJ8Ae12mxdYDgYD3Lx5E7Iss0/k5s2buHXrFsLhMNLpNKbTKRtRAfAIryzLfBBS+0D4Q54fp19LqmIoisIG1CAIMJ1OcXh4CFVVkcvluMpB8fnxeJy9H5VKhcd0qTWzvLy8kA+VzWY5K2Z5efmBxzWZTPD2229zW2djYwOJROKBrxNTNK8/QogIBG8Q9Iuc2jLpdBrj8ZjbMrlcDq1WC/V6HcViEcfHx1BVFZZlYX9/HwDQbrcxnU6xvr7Oe2FGoxHC4TCvfb916xYODg4wHo+h6zp830ez2XxgM24QBFz9oLwQIUKeP2RKpXYMCRDauktVEvrceDzG/v4+ms0mgBMxUKlUYJomVldXcf36dZTLZYTDYWxvb2NpaemBkEpFUZBIJKAoysKoN+0H0jQNhUIBs9kMiqIgFoud+djFFM3rjxAiAsEbBmWLUOYDeQgkSUK3211YYjabzdgXsre3B9/3kUgkkEgkEAQBKpUKBoMBT1xIkoRPPvkER0dHbGpVFAW9Xm/BKClJElRVxXg8XtjQSoehyCB6vszvkqGKFLXBALBg7PV6SCQSiMfj6HQ6GAwG0DQNuq5D13X2+tAUVr/fR71e563L82JkPB5zFcU0TQwGAzY2Z7NZNqHSxt/5ya55Tqf1Cl4/hBARCN4wqOoQDod5oVw8HofnebAsC6qqwrZt9n60Wi1UKhU0m01eDU8l+maziUwmg1KpxFHstLAul8tB0zT2KViWxaO581M2nucBAHzfFwLkBUCv8fxrTUZU2gvT6XS4UmVZFhzHwc7ODtLpNFqtFmq1GnZ2dqAoCueJlMtlrK2tsRgZjUbIZrPIZDLIZDIPXbj4uLReuh3Rlnl9EUJEIHiNOM92Xc/z0Gg0eN+MbdsolUqQJIk/Ph6P0W63UalUeHKBDKW2baPdbrP3IxaLIQgCNJtN1Ot11Ot1hEIhTlylUVwSPfT4aDMuXaULEfJioQ3GsViMN+jSWK0sy5hMJmg0Gjz+S1NTZCo+OjpCOp3G2toagBPB0Gq1eNSXWi/Eo4TEWWm9p1s4gtcXIUQEgteA827XtW0btVqNvRnr6+sol8s8IeP7PptHyajqOA4Mw+AFZTS6Sx6TdruNwWCAfr+PwWDABxWN69IGV8oHCYIApmlCVVX+OjEdczkoioJkMglN0xCPxxGPxzEYDHhMmsZ2aTdRr9dDOBxmAZlKpXDjxg0Mh0N0Oh1UKhUWDk+S/3F6suusFo7g9UUIEYHgFedx23XnMxhoAd5bb72FcrkMz/OwtLQEy7JQqVQwnU4RjUb5ypfMrMCP8idkWeaWS6PRAAAOLaMQMtphQ/kgtDyN/oRCIdi2zZkmghePrutIJpOIxWLwfR+TyQSz2QzJZJJHp2mKZTabIRKJYDqdsijZ3NxENpvFbDbD2toacrkcOp0Otre3kc1mz7zPR1XsDMNAqVTi3BH6ORS8/gghIhC84py1XRcAmwspg2F+AZ6qqlhbW0OlUkG73cZ4PMaVK1cQCoWQTCZRqVTgOA6Oj4/heR48z+MrZwDcqjEMgw8tmoSh6Rca96WPjcfjBdExm81EO+YFQxHv1JLJZrM8zut5Hnq9HpaXl9HtdjkfhNJwPc/jEdpUKoWdnZ0HUm/j8fgDCbuTyYTXCjysYnfeip7g9UQIEYHgFeb0dl2KyTZNkwVAv99HIpHg6G5FUeA4DtrtNlcwptMpMpkMmxZbrRbu37+PSqWCaDSKdDqNdDoNy7K4ZUPTDMViEcDJSDAJkvkJCBoHPS1CBC8G8t8oioJIJMJx6gB47FpVVa54hMNhJBIJzGYzmKYJRVFQKBSQyWTQ7/eRTqexubnJiwlJKMybSueFxXA4RKPRgKIoWF9f5yobVeyKxSIajca5KnqC1xMhRASCV5j57bqO46BcLsN1XR6bJWPq/fv3sb29DVmWYZomZ3pEo1Hk83mMRiPU63W0223kcjm4rssx4OPxGMPhEJ7nwfd9jEYjDiKzbZunXiRJ4jFLTdP46puEjuBiCYVCZ77ekiRxXghVJ6iSQa24paUlZLNZ+L6PUqkE27axtLSE8XiMZrOJWCzGYlRVVZimCV3XsbKyAuBkmzN5Q063CgeDAT++ZrMJVVWh6zqnpt66dQu6ri9U9M67CVrweiCEiEDwCjO/XbfT6cB1XU47pc9nMhmMx2OYpolkMomPP/6YWy2z2YwnJu7fv49ms4nxeAzbtqFpGodRAUAymUQymcR0OuXJitlshrt373JlBQCPfdK+GRFQ9mKgnA1KQ6X01Egkwi0y2oJMApTaMoZhcGWCknZpe66iKFBVFbPZDPl8HsCJqFheXuYckHlT6cHBAbcKPc/DaDTixYq9Xg/tdpsnbRRFQa1Ww40bN858TiJV9c1ACBGB4BWGMhiq1SpM01zozwPgTanZbBaDwQDRaBTHx8c8CUNr2n3f502ovV6P98VEIhFEIhFYloXBYABJknidO5lXyQtCq+VpLHTePyB4/syPPFMQHPlzJEni+HUao6b2mCzL3Mqj97Df76PdbqNYLPLkE7Vxrl27hsFgAM/zoGkaSqUSPvvZz6JYLPLPCYmE063C+U3PwIkBlaprNDXl+/5Df1ZEquqbgRAiAsErTqFQQKvVQrfb5UViQRBwOFkul4OiKGi1WhgMBhynPR6PeREdlewBYDgcsm8gnU5D13VUq1U+xDRNYw/BfGy44zgL8eH0X8HFcJbPZj59lEQi5YRMp1MMBgNuuQVBwOmqJCTpZyUWi7FI6HQ6SKVSKJVKuHbtGr7whS8sVN3mmW8V0mMIh8PsGaJ8Evq5oC3LD/MMiVTVNwMhRASCVxzDMLC9vY1Wq8XmQ9r7kk6n2edhmiY0TcPy8jI0TeMsiPF4jB/84Afo9XpYXV3FdDrFbDaD4zjc1rFtm7e0UhYI+UVmsxlnhgjhcTnI8smvcorPj0QiLDii0Sg8z0O/34eu63zwK4oCWZbZ80F+okQiAU3TUCwWuUVD+TLz5tSzmG8Vks8jkUhwlY0SfUlYjMdjXrh4FiJV9c1ACBGB4CXgcYmoj/t8JpPB22+/jWq1yjtAPM/D4eEhfN/nVsz29jaazSZPP3ieh3a7jSAI4Hke7ty5wweR67qwLAv5fB6GYbAHhdovtCjNcRx4nicMqS8IChkLh8N8gM+3NoIgYLHoeR5qtRpnu5RKJW6n+L6PSCQCRVFQLBZ5++57772HtbU1eJ7HoWLAiSG11Wo9UmyeFdeezWZh2zZnzZDPhAyuGxsbaDQaIlX1DUYIEYHgEnlcfsKT5CsUCgW0223cv38fQRDAcRzUajUe01UUBZIkYXV1FbPZDLdv34bneTg+Pkaz2US73WYjYzQaRTgcRq/Xw/7+PmKxGOLxOKrVKrdk+v3+Qk6I4MUQDof5vSRfDlUayKhK1S7gZIcPjee6rssVEdu24bou4vE4kskkJ9x6nodOp8MTOEQkEmGvyaM4HdeuqiqKxSKOjo54sue0wdUwDJGq+gYjhIhAcEmclYg6Go1wfHyMbreL9fV1NBoNDAYD/mUtSdJD8xXInBgKhdBut3F8fMwTEEEQ4NatW/if//N/4tq1a9B1nc2NpmnyZAN93LIs9Ho9BEHA7R66SiUPCqWmiqmYFw+97mRYpeoU/ZdGdqmdEo/HF97rfD6PSCTCQWNUFVEUBZqm8cgtbeWlv5Nv5FFTLA+La3/vvfc4z+Z0Zc8wDA7de9yuJMHrhxAiAsElMZ+I6jgOKpUKhsMhJpMJyuUyPv30U2iahmg0yleoiUSCS92n8xWol5/NZtFqtbC+vg7DMNDr9TCbzbC+vo5ms4lyuYxEIoGrV69CVVXs7e1hMplwRPcPf/hDnowJhUJwXReu6/Ih53keXxVLknQZL90bDVU85uPxqUpFbZPJZAJVVRGPxxGJRJBIJLgqRubPZDKJ0WjEGSG5XI7NyZ7ncQVE0zR0Oh0Mh0MoioLd3V1Eo9FHJp8+rbAQ4uPNRAgRgeASmB9zpCAyComiZMoPP/wQKysreOedd5BMJjEej9Hr9WDbNo9Zzl+ZTiYTTj6VZRmxWAy9Xg/j8ZgrLr1eD91uF7quo9frIRQK4fDwEEdHR7w7pt/vA/jRrg8yGdLh5rouX4kLc+rFIMsy+z5Ot0JIfGiaxhkh8+9PKBTi0VsyEQMnLZNkMonhcIhMJsPVN1VVUSgUEI1GeRoqmUwiEonwLiHKiVleXkapVDp38qkQFoLzIISIQHAJzI853r9/H4eHh5BlGf1+H+FwGJ1OB5PJBJqmwbIsLmlTKBRlgswLAdohMj/B4jgOl9bpALMsi3fIVKtVNqH2+33Yts2LzagSkk6nudoSDofZmDo/hil4voTD4YX8DQqJmycIAm5z0OcnkwkSiQQMw0A8Hofruvx1q6urSCaTqNVqiEQiHGpGk1U0pkvZMiQ4SOysr69jeXmZq2CndxkJBE+LECICwSVAxsJWq4Xd3V0AYIOo4zhotVqc8zAajTjjg7I8er0ex6jPl78zmQzu3r0L4GTvjG3b/DX7+/u8S8QwDIzHY/T7fW63WJbF4VLkAwmCAPV6nU2GFFZGQkTw/CDxAYBTa0lgzIeXEeQRmW97GIYBTdOg6zoLUHof+/0+ptMpYrEYf8wwDB6lzefzWF9fRyqVQrfbxfHxMTRNg2EYWF5exvLyMgCgXC5zC3EymfAuo4dliwgEj0MIEYHgEqAxx7t378J13YUrTUo0jUajME2T2ye+72M2m0FVVQwGA2SzWdTrdZ6oITEiyzJu3ryJwWCAer0Ox3HQ7XYRDodRKpXYpEiTMrZt8wZeuo3xeLxQ1pdlma/OH5b5IHg25oUdTcNQYByZRIHF0LJIJALDMBbC5uLxOLfU0uk0JpMJh9eZpon19XUez6Y2XalUgq7rmM1mGI1G2NzcRLlcRjabRS6XQ6lUgud5KJfLvKNIlmX4vo96vY779++zaBEInhQhRASCSyKRSCAIAt7dous6T6nMjzzu7e0hnU4jHo9z/sN0OsXBwQEAIB6P85RLtVrF7u4uKpUKKpUKLMsCAK5g7O/vQ1EUZLNZDIdDmKbJYoRGP09PwtBBKKZjLh6qcNAmXBrLBU7EIL0Hs9mMxQZNzZDwWFpa4s9TyyUUCuHdd99l4UI/axRc5/s+isUiotEout0uDg4OUCqVkEgkOKCs3W7D8zyk0+mFx0uhd6JFI3hahBARCC4JVVWxtrYGSZLQaDT40MnlcojH4+j3++h0OpBleeGXfxAEiEajcF2X2y+0oGy+vUJ7Yg4PD3mEksZzh8MhptMput0uR7xTyyUUCi0cevN+EJEXcnFQvge1YMisSvkxVDGjKgn9nSpXiqJgaWkJ169f50pHvV4HcGJUfeeddxCNRtmcnEqlIMsyCoUClpeXF34ugiBANptFJBKBrus8NXN6l5Ft20in07zLSCynEzwNQogIBJdEOBxGPB7HtWvXEI1G4TgOYrEYotEoRqMRPvnkE9i2jR//8R/n8Uvf91EoFNDtdiHLMiqVCmKxGEqlEg4PD9HtdjGbzXB8fMyTExTLDoAPGtqeSz4DAHxlfdbeD+EHuVjItzO/tI4Cxci0SpM0tFmXjKSGYWA2m2E4HKLX66HRaHAWTDgcRjqdRiaTgWmaSKfT2NnZwXA4RCqV4imZtbU1noShjJijoyPE43F85jOfgWVZ6Ha7nMBKsf+qqiKbzYrldIJnQggRgeCSmI/D3t7eRrvdxnA4xGAwwGQyQTwex1tvvQVN0+B5HldLNE3j2HbbtpFKpTAYDFCr1TAajdDv9xEEAYrFIsrlMkajEQDwlTMZVoMg4Kh24MExUcGLg3wcqqqyGKQKGVWpqG1DUMKqrutIJpO8QTcIAmxsbHB7z/d9bG1tYTabodvtIpvNIpVKsd/INM2F1guNBZMIGgwGWFpaQqvV4uobCZxsNsu5I2I5neBpEUJEILhEKA7btm0UCgXkcjk2EW5ubnKgGS0wU1WVw6YouZLGePf399Hv9zGZTBCJRLjtQltwaUcMRX5T719cxb4cjMfjhVj1eW8Itc4A8FI7EgrT6RSapkHTNBaXvu/zz06xWEQsFoNhGLAsC9lsFslkEtVqFYZhIJVKoVqtYjweI5PJoNfrccT62toabNtGNBrlXUapVIq3MxNiOZ3gWRCxiALBJUJx2NlsFq7rwrZt3gezvb2NdDrNMdv0i19VVUiShOPjY0iSxNMKdIi1223u99M0jSRJvHGVPADzi+toIkZweVCVi8a2FUXhBYThcJirJPSHviYUCqHb7QI4GcFdWVlBLBaDruucxEutE8/zeIsyteU2Nja45UO7hDY2NrC2tgZd1xGLxTAYDJBIJJBMJuE4DoCTyhrtpRHL6QTPgqiICASXzMPisA8ODlCpVBAEAXq9HgzD4M2kzWYTyWQSKysrcBwH4XAYtm2j2+2i2WzylTItpptfgkbbWwGItsxLxng8XmiN+L6P8XjMooEEJYnOcDjMIpW8QsvLy4jFYhiPxyxCaIKm2+1iNBrB93189rOfxerqKvr9PlRVRSaTQSwWQz6fRyqV4sdEIkZV1TN3yIjldIJnRQgRgeAFMy84ACyID/qc67rctgFOyvO2baPVanEU/Je//GUEQYCbN2/i9u3bODg44H7/cDjkNg5dwZKnQFVVPuDEFMzLCU1AUWw7CQnLshZEJY3tkldjOp1CURQUCgW0Wi1ux02nU6TTaWxvbyMej8MwDFy/fh2GYaDf7yMUCsEwDCQSiQcey3g8Zv+HpmliOZ3gufNChMh/+A//Af/23/5b1Ot1vP/++/iN3/gNfPnLX34Rdy0QvDTQojq6mqQNp/NZDYqi8IREMpnkbId6vc7VjWg0yqX1TCaDVCrFBxCVz/f39zmufX4sl1o1IhPk5UVRlIU2WjgcRjQa5XYMiUuKdCdRIEkSMpkML7MLhUIoFApwXReHh4fQNA1ra2solUoLFYxUKoVSqYROp3Pm4znL/yHEh+B5cuFC5L/8l/+Cb3zjG/it3/otfOUrX8G3v/1t/O2//bdx584d0VMUvDHYto39/X0emx0Oh+wHoYAyy7KQTqextbUFWZZ5qVixWEQkEkE+n8fOzg4sy8L3v/99/OAHP0AkEsH9+/cxmUxw5coVDAYDdDodqKrKQVWTyWQhrMz3/YVRUMHLA/l9aJ+PYRg8SRMKhaDrOgzD4HFvCjTzPA/xeBxra2tYW1vD4eEhgJMMklgshnfeeQdf+MIXkM/nzxQRVH3rdDqIxWLcAhyNRsL/IbhwLtys+u/+3b/DL/7iL+IXfuEX8Pbbb+O3fuu3YBgG/tN/+k8XfdcCwUtDs9mE4zjI5XIYDocYj8ecllqr1dDtdnnEstfrcbnddV3cunUL0+kUuVwO5XIZf/mXf4lKpQLTNNFoNHgXTK1WQ6fT4UV2vV6PRYiqqjxNAfxo/4jg8iCfDv2d3ifgRJDQlAxNxMiyzKF0tNslnU5jY2MD8Xgcs9kM0WgUzWYTvu8jnU5jOp3Ctm1cu3YNa2tr3P6zLGshwv+0abrX68F1XWSz2Udu1xUIngcXWhHxfR8ffvghPvjgA/6YJEn4yZ/8SfzZn/3ZA1/veR4v9wIA0zQv8uEJBC8E13UxGAwQj8fhed7CfhfXdXmMcnl5GYZhwDRN/v8gCAIcHh5ibW2NvSB09es4DprNJmq1GmazGWq1GizLwnQ65UNGkiSugojqx8vF/KguJeFS+ywSibDwiEQivEOIPg+ctFRSqRRUVWVz8sHBAefTKIqCSqWC2WzGQXnT6ZR3E1H7j9o0DzNNCwQXzYUKkXa7jclkgmKxuPDxYrGI27dvP/D13/rWt/DNb37zIh+SQHChnPVLnDwZiqKg1+uhUqkgEokgFotxJoRlWTg+Psbm5iYsy8LR0RGbTu/du4d79+7xtIMsy+j3++j3+xgMBmi327xPhMYzyWPgui7HhtMVtuDyoDFpCi2jBFVFUbjqQB+Px+MAgGw2y6ZTilIfDodIJBIolUpIJpNsZp3P9pBlGaVSiatu3/nOd/D2228jn89z64Xaf/NVDyE+BC+al2pq5oMPPsA3vvEN/rdpmlhbW7vERyQQnI95I+rpq026mh2NRqhWq/A8D7FYjK9iyYw4mUxQqVTgui5CoRDvl7Esi6smdKVcrVb5/kzThGVZvJiOrpjJA0J7YoQQuTyoskEbbslcSrtZKA8kCAJomoaVlRVEIhGYpoliscjbkkejEU+8vP3221hbW8NsNoMsyzwlMxgMoOs63ybd7/7+PjzPW8ijUVUVnU5HLKwTXCoXKkRyuRzC4TAajcbCxxuNBkql0gNfT/9jCAQviudRhp43osbj8QeuNovFIkzTxN7eHprNJlqtFo6Ojjiuvd/v80jlrVu3sLS0xP9/0KSM53m8HG8wGPCumW63y8ZGCiqj6Yp5KLhM8OIIh8M8ok0VKuBEINLmXMp4iUajXO2iEDNZlnHlyhXOAllaWsJ0OsWNGzewvb3NSal0O6PRCLPZDLlcDrquYzKZwDRNHulOJBLc9pv/PUuBZWJhneCyuFAhEolE8IUvfAF//Md/jL/7d/8ugJNfiH/8x3+MX/qlX7rIuxYIHsmjKhhPaswrl8vodrsoFAoPXG1WKhVUKhUYhsFXreTbqFQqiMfjCIIA1WoVh4eHsCwLmUwGh4eHiEQi3GoBgMFggMPDQzQaDfYWUKZEOBzmqgcdfvNju/PZE4KLJRQKcTVCURSEw2GeXjIMgyelHMdZWFoXj8eRTqeRy+VgWRai0Si2t7fx1ltvoVQq4cqVKzg4OOAWHWV/0O4hTdMwm82g6zokSYIkSUgmk2g2m+j1eiiVSlwhm0csrBNcNhfemvnGN76Bn//5n8cXv/hFfPnLX8a3v/1tWJaFX/iFX7jouxYIzuRxFYzzTgnYto1yuYyPPvqIR3IpUlvXdQAnFZd2u40vfOELME2T47opGnswGPA2XIpp7/f7GI/HKJVKPD2hqipqtRqGwyHvkrFt+4HlaIqisCeFWjJnbdMVXBzUCiEhKMsyp6FS9LrjOLxVd3l5GcPhkH1D5Kt7//338d5773Gq6pUrV7C9vY1yuYxer4fpdIpoNMo/U7Is4+7du2x2JaLRKI6OjlAsFqHr+gOL6eYDywSCy+DChcjf+3t/D61WC//iX/wL1Ot1fPazn8V3vvOdBwysAsGLYn6UlniSfrnruhgOhyiXy7AsC7IsI5PJYDKZoNfrwbZtrK2tLXgAbNsGAGxtbWFvbw/pdBrpdBp7e3tcTrdtG5FIBOPxGI7j8Obcfr/Pm09t2+bqRxAE8DyPD7z5vwsuB6pIaZrGomI4HMIwDJRKJWxsbHA4WavVwurqKjKZDCqVCtLpNCKRCIbDIa5cuYIvfOEL0DQNw+GQR75TqRSuXbu20FKcTCYYjUZYW1tDs9lEs9lEsVjkz43HYxiGwe2Z0+1vsbBOcNm8ELPqL/3SL4lWjOClYH6U9iwe1S+fb+ccHR1hOByiUCjw4U9iptfrodPpIJPJ8KZc4EdR7mRcHAwGcBwHa2trCIIAo9EIxWIRyWSS98s0m01Mp1MOlwLABwxVO8LhMK+JFyLkciFzKPl1VFVlkzG1ZCKRCBzHwfLyMlZXVyHLMprNJiRJQrFYxNLSErLZLJuLyTvi+z7/XM7/bLquy6O+7777Lj799FO0220oisItmmw2i3w+z5NVIrBM8DIh3GuCN4r5UdqzUBSF2xrzUDun3W5DkiSeanEcB6PRaCEem7JAqGJBGQ0Ux720tARJktButxd2hqTTaaRSKfi+j2azCdM0EYvFEAqFYFkWwuEwstkse0xozJNGO8VUzOVC7Q3XdTEejxEOh2EYBq5cuYJSqcTj2OTv+MxnPoOVlRWemqHcpGw2i/F4DNM0Ua/X0W63MRqNsLu7izt37uDg4IArbAA4N2Q0GiGTyeCLX/widnZ2EAqFMBqN0Gw22W+SyWREYJngpeOlGt8VCC4aqkiMx+MzJ7Qe1i+fb+eQNyMajfLuD8uy0Ov1EI1G+TAyTRPZbJYrJdPpFPfv30cikcBkMoHneUgmk0gkEqjX65AkCYeHh5jNZmi1WphMJryELBwOY2lpiaPhScDQCLDg8iEvz2w2Y3EQjUaRy+UQiURQLpeRzWZx48YNtFotACfR6qlUCqFQCLu7uwCAw8NDjMdjWJaFSCTCi+ZIzJzlZZqPaJdlmY2q8Xgc8Xgc6+vr/LOytrYGVVVFYJngpUEIEcEbBR0QtI/lNGf1y0+3c2gsk8RMJpOBJEkwDAOu68J1Xdi2jWg0is3NTdTrdXzve9/D/fv3Ua/X0e12oes6C5nd3V32AFA5n/bE6LrOYVV0KFHVRphQXx7C4TAkSVpYPkgTM+T9ob0xAJBMJjEYDHh8NwgCdLtdqKoKXddRKpVgGAbvfkmn0xxYdpaXiSLam80mbt68iU6ng2w2i3g8zuO8ANDpdGCapsgMEbxUiNaM4I2jUChA0zR0Oh3O4KAplrP65afbOaqqIpFIcHlclmXOeVheXsZkMkEsFsN0OsXx8TEODg5QLpcBANvb2xzlTeJlOp1yxYUqMdPpFPF4HNFolA8qyg8hw6osi+uIl4FwOMzTKDQKTqParuvyexcEAWd/UJWk2WyiUqng+PgYmUwGpVIJsVgMvu+jWq1ibW0NmUwGlmUt3Oe8l4kgQ2wul8O7776L7e1trK2tsQh52PcJBJeN+E0meOOYv3ocDAYYjUaQZRnZbPbMHJGz2jmxWAzdbheNRoOzIYbDIW893drawmQywc2bN7G3t4cgCFAsFpHL5ZDP5wGcVF9oXwxVQ8jrEQQB7wWxbZuzHmhxXSgU4twQygkRvHjIDEqeEGrVUaQ+HfqJRIJHrinOPZFIwLIs1Go1+L6Pzc1N3Lhxg6dqbt++DcMwkMlkMBwOF4LIHpb9QYboZDJ5ZoCdyAwRvIwIISJ4I3mSBV/z7RxaLNbr9TAejzGbzVCpVLC8vIxOpwNd17GysoJms4nbt2/j8PAQsizzRt1IJMLBVrquw7IsHq8kbwGFq41GI97XZBgG+0OodUOHoDhULgfaEzNvHFYUBbPZDLZtQ5IkjEYjFh8kHiVJwmAwQCaTgaIoWFlZQbFYxHvvvYdUKgXgZAFoKpXir6MpKeJhXqan9UAJBJeJECKCN5rzmvUKhQJ2d3fxh3/4hxgMBlAUBYqiQNM0ZLNZpNNp9gY0m00cHR2xWDBNE+VyGfv7+1heXoYkScjn85z1QCV1RVHg+z5832e/iWVZcByHqyVU+RiPxwCwkJwqeHHQa04G0Ol0ikgkwruAAEDXdaiqCkVRkMvlEI1GoSgKf7xYLMKyLBaxNFpLPpBkMolqtQrf9xfi4oGHZ388jQdKILhshBARCM6Bbdv4+OOP0Ww2kUwmOSvC8zxMJhM4jsOeERrdpcmHIAig6zqq1So6nQ7S6TTK5TLv/bh37x7ngQAnnhPaqkvegmw2y6OXdIVNRkchRC4Oqnic5qxtxpSQS74emqwyDIO9I5FIBG+//Ta2t7eRSqXYpOw4Dmq1GtLpNKLRKNLpNOLxODRNQ7PZxPr6OhRFged5j83+mJ+gicViIjNE8NIjhIhA8Bhs28Z3vvMd3Lp1C7FYDMPhkNsnNM7bbrchyzIfRP1+nw2po9GIr4QBoNfrATgpvw+HQ47rpitsRVHQ7/dh2zZkWeaETiqr08Hied5lvixvBI9rfc2LEVosSBNO0+kUmqZhOp0ikUjg6tWr/DOTzWZh2zZM00Sv10OxWEQQBOj3+9yCi0QiyOVyPAbc6/Ue6WUintQDJRBcNkKICASPwLZtfPTRR7h16xaAk4MpHo9jPB7DdV00m02EQiHU63WUSiW4rotoNMpXumQ27Xa7HHTmui5GoxFfQc9vaHVdF9PplJekRSIRJBIJvk/ylJyeohBcDNQCOwsSjsCJIJFlGalUaqE9EwQBMpkM3n//fSwtLSEej7OptdVqcSulWq3CdV2urO3v72NjYwM/9VM/hY2NDRZE583+eBIPlEBw2QghIhA8gmazyYvmaNqBlpg1m002B3qeh0wmg0gkguPjY3S7XY7ejsViGI1GME2Tr07JfEjL6sbjMVc6qPJBV660OZcECi3KE1welBkiSRK3XGRZZkMyBYbNZjPekBuJRDiLxnEcOI6DYrEIx3EA/GjfUSKRwHg8RjKZRLFYfKYKhhAfglcBIUQEgodAQWbRaBTAyRZTGqGt1WpwHAeKonDUeygUwng8xu7uLvr9Pke8x2Ix3hVCPpIgCHhEF8CC6RH40dV2EASo1WrodDrwfR+macL3/ct5Qd4wSGycBR3wnuchHA6zgFAUBbIsQ9d1xGIxFhS6rmN5eRmO4yCVSsHzPOi6znke169f50wbmr45OjpCvV5HJpN5Yc9ZILgMhBARCB4CCYFkMolUKoVGo4HBYIBqtcoGVMuy0O/3kc/noes6b1q9evUqBoMByuUy9vb2MBwOWXiQvyMIAl6EBmDBgEqbdGksdDwew7btR7YKBM8Gtcio3TK/y+e0GZjGY0mAUHaHqqq4evUqSqUSbNuG53nY2tpCKBRCr9eDruuQJAm6rmM6naLX6yEWiwHAwpSL7/tcSTtrAaNA8DohhIhA8BCo7TKbzbC5uYnDw0McHx/DdV3oug7P82DbNvsCOp0OdnZ20O/3edqBDjCqjtA4LgBOaqURXDI6UiCWLMt8Re77PoIguJwX4g0gHA5zBggAzgYhMUjBcRQSFo1GEY/HEQqFsLKywr6PSCTC+SDk00gmk2i32ygUCsjlciiVSigUCjg4OMDR0RHS6fQDj8eyLGQymYdO7QgErxNCiAgEZ0AmP03T0G63YVkW6vU6HMeBZVmc97C5uYn19XWefmg0Guj3+7zkrt/vo9ls8jIySkalXAjyEVB1hFoy88vsqEoieD6QR4deUxIR4XB4IR+EPqcoCiKRCFesSBDOZjMUCgVks1nUajUkEglsbm4ikUhAkiRks1msr69jdXUV4/EYb7/9NqLRKFc3aJ9Mq9VCOp2GLMsIggCWZXGlJRQKifAxwWuPECICwRy2bfPYYxAEGA6H+Pjjj3FwcIDJZIK1tTUMh0M2olLWw2w2Q71e56CzTqeDTqeDarXKu2c0TWPjKxlQabkdAK6UAD/yiAgB8nyJRCILCwNJfNCBT+0YOvznxeJsNuPWynQ6RTKZxGc/+1neHbO8vIyVlRWoqopQKMSbk1utFt577z1ks9mFx5LJZHDjxg3s7u4uTLekUikeCxfhY4I3ASFEBIL/D41NOo6DeDwORVF4/JZGM2myJRKJQNd1noro9XrodDosTGjRHQWejcdj9pyEw+GFfTHAjwKyptMpf0zEtz9/Tht9KXJdkiQOips3DFNOSCgUYpFJG5JTqRR838d0OsWP//iPc3hYNBqFruvo9XpotVooFossSk6zsbHBO4WoFUg7aUT4mOBNQQgRgeD/Qxtwc7kcgJOJCNM0kU6nOR0zGo1ie3sb/X6fxUS/38fx8TE8z+NRy8FggF6vh+FwiNlsxht3qedPooR2y9DStCAIWHwIEfL8odZLJBJhUUJj0cCJl4cqJMCJGIxGo4jFYlBVFZPJBJ7nIZ1O85K6IAiQSqUQDocRi8W4kkajvalU6sy4deAk76NYLKLb7eL4+Bi+7yMSiSCbzWJnZ+fMxXUCweuGECKCV5bnGdZEo7qU8wCAKxnAiTkxGo3yuCXliQwGAzQaDQRBgI2NDTiOA9d12UsgSRJ7Ckho0O4Ymp4AflT9EAfPxUJBY2RMPWsKaT5uX1VV3hEzHzD3uc99DqVSCZFIhH92fN9HPp/HlStX2IhMU1QP83nYto1GowFd13mEt9PpsK9ofX2dza0iEVXwuiKEiOCV47SPg+LWn+WXNVUo6AABfrRnpN1uw/M8VCoVTkaVZRmapiEcDiMSiaBUKkHXdXQ6HbRaLV61TgFXQRBgMBgsmFBpTJeulkVI2cVDImM8Hp/5etNkjKIo/N5OJpOFEdr19XVsb29zOm48Hofv+7zwUNM0bG5u8gRUOp1+qFCer8I5joN6vQ7f93lfDO2MsSwLW1tbQowIXkuEEBG8Upzl4xiPx4/8Zf2oygltuKWvmV+fPp9k2uv1+D5DoRBGoxEsy8J0OkU+n0c6nYbrusjn85hOp4jFYmi325wT4vs+XNfl1E3yI4TDYTap0tSE4PlBIpCCwmgKhqL0TxMKhdhsKssywuEwEokEIpEI0uk0JEmCpmno9/uIxWJYXl7mvUKe53GFpNFo8FTN2tramY/tdBWu0+nAdV0OMAuFQnBdl/NEms0mNjc3L+y1EgguCyFEBK8Up30cwI+isamkTb+sH1U5AYDDw0PcuXMHvV6PJyFisRjeffddrm7ouo5UKoW7d+9yjHcsFsNsNoOmaVAUBbZtcyuGNu9StgiFkFmWxWO68x4EqopQbojwhTw/yPhJMfrzo7CyLCMUCnGLjEZ46c98iJksyygWi1hdXeXx7aOjI7zzzjuYTqeIRCJ8n5R8Wy6X8e677+Lzn//8Q6sY81U48iNRii/dL/mJYrEYBoOBCDcTvJYIISJ4ZTjLxzHP/C/r6XT60MpJu91Gv9/H7du3OWqbKhf1eh2u6+LatWucBwIAS0tLfP+GYSCTyUDTNMTjcViWhV6vxztCaCtuEARwXXdhXBQAC5EgCGDbNo/q0gZewbNDQoOmWqjadDpS/7TgoIrGfFsmk8ngK1/5ChRFwfHxMefLZDIZfq8TiQRXM/L5PCKRCL7yla8sCObT0JQMTVTRPiOCJqyoikPtPoHgdUMIEcErw1k+jnnmf1m3Wq2HVk6+973v4ebNm4jFYiiVSnxIOY6DyWQC0zRxfHzMI5S0wp023sqyzPdFK97pirbT6WAymaBcLvPX0yr4yWTCI7rkRZgXKUKEPD9otw+1ZIAfGVRPH+bz4XI06UIL7JaWlvD5z38ejuNgPB4jlUohFotxBH88Hke9Xken00E0GkU6neZU1ccFkdHm3U6ng1gsxt4VEr+WZfHEjed53CoSCF43hBARvDLMX0HOj0NSVsdkMuHPP6xy4nke74zZ2Njgsjr9dzQaYTabIZFIIJvN8nRMuVzGbDZDMplkATHv6cjlcjxB0+120e12+QChAxHAA6JDiI+Lgcah59sus9kM8Xicg+LItxMOhxe2KtPfc7kc3n//fVy5cgWHh4dIpVJIp9PIZDLY3d3FaDRCEATodrsAgBs3biCdTqPdbmMymaBWq0HTtEcaTMmUOhqNOPAuFApxuioJ6dFoJMLNBK8tQogIXhnmryBVVYXjOOh0OjBNE5PJBKPRiOO0H1Y5sW0btm1zrgdwIk76/T6P3pqmiUwmg2vXrgEAR3iPx2POhxgOh8hkMphMJhgMBuh2uzg4OMBoNMJwOITjOAuBZGcJDlFmvzhIlNLrTu0w8vZQSF0ikeCUW/IJZbNZrK6uolQqoVgs8rh1Pp/HysoKHMfBZz/7WXieh8PDQ86ZoXHuWCyGtbU19ig9ymBqGAa2trbQbDYxHo/Rbrdh2zYKhQJKpRIkSUKn0xHhZoLXGiFEBK8UdAVZqVTQ6/U45ZKudiVJQrlcxng8fqByQpBngIyijUYD4/EYuq4jHA6j3++j2+1iMBjw3hBN03gtO1U36Op6MBig1WrB931IksT3SeFkJHgEF898lYreD/JYxOPxBbOwoigoFou8kFCWZWQyGXzpS1/C9evXMRqNuDI2m82QTqfhOA5UVcXq6io8z+M9RK7rYjweI5fLIZvNsu/oPAZTWo5XKpWwvb2NbrcL13V5TDybzYocEcFrjRAiglcKuoL88MMPYZom4vE4HxK5XI6nXcbjMUaj0QNCxDAMTkkNggCj0Qjj8ZizII6Pj2FZFsLhMBqNBhzHQSgU4l0zdPWsKAqq1Sr7QKj9YhgGp6nSIUihWfOTMoLnD8WvE5QHomkaLyGklo1hGMjn87h69SqbimVZRqFQwPr6Onzfh6ZpiMVisG0byWQSlmVhdXWVf85msxmy2Syi0ShSqRTW19cXft6e1GCqaRo0TUM+n3+uYX0CwcuOECKCVw5JkpBIJPDuu++ygW/+AIjFYhiPxwiFQmwEpKmZ0WiEzc1NtFotDIdDtFotJJNJDIdDDizb2dnBysoKarUafvCDH/D4bz6f5yvT/f193qSrqiq3awDwtlbf99lgC4DFiRAiTwctqHvYMkD6OI3gqqoKTdMWPD20wC6RSGBrawvJZJL9PbQfKJVKYXV1FUtLS/B9H9FoFO+99x5POFELh4RsPB7H6urqA6J3PB4/tcFUiA/Bm4QQIoJXDjrcKWDqNLScbG1tDZZlYTAYYDQacZl7Y2MDBwcHuH37NguSbrcL3/dx48YN7OzsoNFooFqt8tVyNpuF53ns+6A01XA4jHa7zZMWJIA0TeNKCD1GqqYInhx6fcnLMR6PFzbozgsT2g9TKpU4dG6+QkYeDlmW4TgOT8Bcv34dmqYhm81iOp2i2+1iZ2cHuq5D0zSsr69zLg39PK2uri5E9c8jDKYCwfkQQkTwyvGw6RmCrkTj8fiZZW7XdRcmZhzH4YNrdXUVjUYDtVqNV7lblrWwB6Zery/EgJO/ZDKZwLZtDIdDjoCfTqfsSZFlmQ89SuIUPB5d1yHLMiRJguu67NnxPI9HoSn8i6ZeisUidnZ2cHh4CNu2WUAqioK33noLKysrCIIAvV4PqVQKS0tLyOfzUBSFR7pN04SmaVwxKZVK2NzcXPh5oryasypvwmAqEJwPIUQErxynp2dOc/pKlP5r2zYODg4WklaXlpZg2zay2SxisRgajQZu3bq1YITt9Xq8En46naLdbnP7pdVq8filbdsc/Q6cVGYol4Ki3UOh0EP3nAgehETb/CgutWcURWFDaigU4hTVYrGIVCqFyWSCaDSKUCiEbDbLXo/l5WWsrKzAdV0YhoEvfOELHHYWi8V47FuSJJimiWw2u7AV+XSFg6ZeTlfehMFUIDgfQogILp2nMebR9Mx5r0TP2lHT6XRg2zba7TbG4zGPULqui16vB9/3MRqN0O12MZlMkEwmuS00Ho9h2zavbp9fJU8eAmoj0NX4cDjkSHExuns+aEMuReBTIFkkEmGRRxUyWmiXSqUQjUah6zoGgwFUVUU4HMbKygquX78ORVFgmiYKhQJyuRxSqRSOjo44kIyg+P7HhYnR1IswmAoET4cQIoJL41m26M7nL5znSnR+R02328Xu7i4ajQaCIGCPCK14n6+aUCaJZVnwfZ/DpiKRCKbTKRzH4dTU0yFa1LqZbxvMH6yCR0OtM2przRtVVVXlipWqqjAMA6PRiGPd6XWPxWJQVRWKoiCfz8MwDBQKBW7raJqGUCiEpaUlAIvVDno/bdvG8vLyY8WFEB8CwdMhhIjgUniaLbqnOe+V6PyOmm63i+9///vcvqHD7tatW+zx6Pf78DyPw8uAk+wRz/Ng2zaLj/lYcKp00FU6iQ4yUtJWV9orIng01IKZn1Kh15beE2rPpFIpnoRxHIdHbx3HwTvvvMOeIV3XWZRomgZd13H16lUAQDqdRrlcRq/XQzQa5XAyRVEWFiUKBILnz4MjB8+Jg4MD/MN/+A+xtbUFXdexvb2Nf/kv/yWXrwVvNvMVChp/VVUV2WwWruui2Wye+7Y0TUM0Gn3oFSm1U6bTKT755BP0ej2sra3BMAxMJhPOCmm1WqjVauwL6fV6PLJp2zZXReZNrrZt874Y8ihQUJrv+/w9FJp11pSP4EFoUzEJuvkFgfl8nhfLUYw+JaKurKwgl8tBkiTefCzLMi9CTCQS/D5RuyaZTHKaaTKZhGmaODo6wmw2w87OzrlEsUAgeHourCJy+/ZtTKdT/PZv/zZ2dnbwySef4Bd/8RdhWRZ+/dd//aLuVvAK8CRbdJ9HuXswGODw8BCmaeLTTz9FIpFAs9lEMplEq9VCp9PBYDDgq+p4PI5oNIrRaMSR767r8jZWuionvwKN7FJeyOmtriS+yeBK46SCs6HKEplUqYokSRIikQhWV1ehaRqLQqqa6LqORCKB1dVV3Lt3D77vw/M8ZLNZ3LhxA8BJFW15eRm6rqPRaMB13YUWHwlaWoiYyWQu+dUQCF5/LkyI/PRP/zR++qd/mv995coV3LlzB7/5m78phMgbzpNs0X0WbNvG4eEhbt26hd3dXfT7fQyHQ2SzWXS7XRwdHbEZ1bIshEIhuK7LV+KqqnLbh6ZdqOJBVQ4AD2x0pbHO00ynU749wcOhcWcKqiNvCHDiG+l0OshkMsjlcvyzQt8HnFSqyAtCi+OWl5cBAKZpwrZtTKdTFAoFHgcWZlOB4PJ4oR6RwWAgrjAE584BeZaV5+RBuXnzJtrtNuLxONrtNsrlMizLQjabxWg0wmAwYJMs7ZeR5ZP/LajqMZvNeFSU0lJJbJwlKh4mNIQAeTTzpl7f96EoCvs6APB0VDgchuu6LBQpKI48Ja1WC8BJy24ymWB/fx/JZBLJZBKyLOPw8BCbm5ucJfKwsVyBQPBieGFCZHd3F7/xG7/xyGqI53kLIU+mab6IhyZ4wZw3BwQA73150kOi2WyiXq+j3W5jNpshmUzi3XffheM4+Pjjj9HpdJDP53kvDG3vnUwm8DyPTY3UDqArZ5qieZpFdqFQSIzuPgJqx1DbikapaWNusVhEKBRiQ6ppmuy9SSQSMAwDvu+jUqlgbW0NmUwG/X4frVYLn3zyCVZXV9m3k8lkcHR0hEgkgq2tLUSj0Ut+9gLBm8sTO+f++T//5xwy9LA/t2/fXvieSqWCn/7pn8bP/uzP4hd/8Rcfetvf+ta3+MolmUxibW3tyZ+R4JWgUChA0zR0Oh02G3qeh06ng9lsBsdxcOfOHdy+fRt37tzBwcEBbNs+1233+33UajWYpgnHcXg6Rtd1vPPOOyxAHMfhq2uatEilUpzUKcsyV0IoF4TyLEhUPAmnWziCRchTQyKPpo8A8PtEFRFKTn3rrbfY8Fyv19FoNLiqYts2p+MGQYBbt26h0+lAkiT4vo9arQbLslCr1c79syUQCJ4/odkTBhqQue9RXLlyhScLqtUqvva1r+Gv/bW/ht/7vd975C/vsyoia2trvI5d8HpxVo5IJBLhZNL5sV4KKnvUBEO328Xh4SEajQYODw8xGo3g+z5KpRJisRiAE6Psn//5n+Pg4ADD4XBhHwxdQVMVhZJUJ5MJLMvitNX5kdxHTYHR2KngfNAky2QywXQ6haqqkGUZmUyG2zD0M7G6usrmX+DEF1Kr1SDLMtLpNBRF4QoJeX6CIMDOzg42Nzd5A/P6+jpP22xubl7uCyAQvEaYpolkMnmu8/uJWzM0OnceKpUKfuInfgJf+MIX8Lu/+7uPvYKkcCLBm8FZOSD1eh2WZSGXy/HX0c9Fp9NBs9nkA4O+z/M8HBwc4C/+4i/Q7XYRDoe5rSdJEu7fv4/t7W3EYjE+5AzDgGmaWFpagqIo6PV66HQ6PJI7v7WVlp5RMipVRx4nMkRo2ZNBywo9z1vIaKENx5FIhCtb4/EYkiQhnU6jUCjg+PiYp5xUVcVsNsNgMMDy8jJGoxHq9TonqkYiEWSzWaTTaV569zyntAQCwZNxYR6RSqWCr33ta9jY2MCv//qvs4EMAEql0kXdreAVhH75nx7r9TyPBQptTR0MBuh2uzBNE4PBAMPhEEdHR7h37x7C4TCLlJs3b+Lu3btIp9OYTqcYDodcTen1emi1WnzVTImqNElD2SLRaBTZbBaz2QyWZSGRSLA4cV33sc9LCJHzQ9UNygCZzWYsJsPhMFe0dF1HLpdDNpuFJEkwDIOFpa7r6PV6CIVCyGQycBwHkUiEtyGnUimUSiVsbW0hmUwCOGkDkfAUbTOB4HK4MCHyR3/0R9jd3cXu7i5WV1cXPid+QQvOgsZ6gyBAq9XiHTCKoiCXyyGdTmM4HOL+/fsIhUKIx+NoNpuoVCrodrs8ogkAiUQCiqKg3+9jfX0dwP9r791jI7vL+//33M85c79f7LE99jq7WcgmkJCAQCJfhKAVSE1V0f6BKoJQJKpQgUCloVSlSFUDLVKroqpFqkTpTaCCSnoDQcWtSNCiBNJkN97NrtfXsed+OXNm5szlzO+P/T1Pxrv2rvfinbX9vKTVxt7xzJkZw+c9z/N+3g+wtbWFbreLVqvFUevVahU+n493xVA8uN/v5w25FIZF1Toa2yUjpXBzjPvJAHAUO7W7aLqFYtspEl9VVcTjcUxNTeG+++7D9vY2ut0uKpUKbDYbEokEdF3H1NQUCxefz8cm41QqBVVVd1RmXS4XGo0GZ5YIgnD3OTAh8uSTT+LJJ588qLsXjhDUYun3++j3+1hZWUG1Wt1xyJfLZYTDYdjtdiQSCUQiEWxsbODll19GqVTCYDBgIyKFYL3+9a/Hq6++ilqthmg0ikwmg0KhwNUO0zRhGAZ7UqjyQqFWNF5sWRYGgwHcbjd8Ph8Mw2DvyLhHRDwh10KHPmWB0GQMGYKpWkFChBYNRiIRxONxDAYDRKNRzM/P44EHHoDH40GxWEQsFoPT6USlUuF4/Wq1ikQiwffj9/u5TeP3+zm9l8azgSuTOaZpIhKJSFtGECaE7JoRJsZuZtVXX30Vy8vLmJqagtfrZfNiu93GuXPnEI/HMT8/j/X1ddTrddjtdhYVxWIRGxsb8Pv9CIVCUFUV2WwWg8EAfr8fwWAQFy9exHA4RDwe54oIGWEp6IqEB7VtaNW83W5Hp9Nhv8i46JDo9r2hULJOp8NVD2q3kDCwLAsulwter5ffF+BKey4UCiEej+PUqVMwTZM3JdNOGBKGiqLgzJkzKBaLaLfbXOlSFAUejwehUGiHGXYwGGBrawuJREIm9ARhgogQESbCbkvvDMNAoVDg/Szj0zE2mw1utxutVgvFYhHdbhfRaBT1eh21Wo3bKr1eD51OB4lEgsv65Au4ePEi8vk8APBBRwdgtVrlnzVNk6+H2gIOhwOtVotXwquqCsMweCSXfA0UqiVcgYLGqFXW6XRgt9t5Gy61TprNJkajETRNg2ma/P4kk0mcPHkSdrsda2trOHHiBN7+9rcjn89za0bTNCSTSTidTrTbbYRCIXi9Xl5QODMzw1MygUAAw+EQ5XIZpmkikUjgjW98o+ySEYQJIkJEmAjjS+8Ian9kMpkdMepOpxOBQADhcBhnz57F9vY2+0FUVeVE1F6vB13X0W634fV6WUwYhoGXX34Zly5dwmAwgNfrZdHRbDYxPT0NVVWxvr7OOSHdbheqqvJ1dbtddLtdbvuMG1zJ2yJci9Pp5EoE8FqqrqIoSCQSiMVi2N7eht1uZwFBVa50Oo3Tp08jEolga2sLhUIBc3NzSKfTiMViiMVicDgcOHHiBCKRCHRdx+bmJpaXl9FutxEIBPj3pt/vs+GYNvmGw2FefigIwuQQISLsizu5h+NGS+9oOoU+5VJvn9oi1WoVbrcb7XYb5XKZA6ncbjcSiQTq9TqWl5cRCoWwsLDAoWlOpxOtVouNqRTxbrPZoKoqhsMhIpEICxpKUB0Oh6hWq7DZbOwZoRA08jtIFWR3qPJB71uv12MjKgCecKE4936/j3A4jNe//vV4y1vegmAwCMuysLi4iNXVVeTzeaRSKXi9XuRyOSQSCb4vRVEQj8cxMzOD7e1ttFotFj6JRAKJRIKTbWWfjCDcO4gQEa7Lbj6OYDC44wC4WfZaeqdpGvx+P49dUguE0HUdiUQCxWIRq6urSCaTGI1G8Pl8cDqd3FKJRCJsOLXZbNja2uK/dV3ng5D8A5QhEQwGeSFep9NBtVrFYDDg7a+0kRcAT/fYbDa4XC7OFznOUNostajIi2GaJvx+P1RVhd/vRzabhc1mQ7PZ5ImZ06dPw+12c07M/Pw8EokE37eqqlhcXMTm5iamp6c5mXc3IpEIIpGILLEThEOCCBFhT3bzcfT7fVQqFRiGcd2U0+ux19I7j8eDbDaLl156iQ96y7LQ7/fRbrcxGAyQyWTg9XpRr9fR6/XQaDTg8/nYlGpZFnK5HOLxOJaXl/GDH/wAr7zyCoseqmDU63W+T4puDwaDCIVC6Pf7WF9fZ5MqRb3bbDZO6aRpGTJaHhcR4nA4WHg5HA5OQqZpGIfDwX+7XC6uaLlcLgQCATgcDm7BKIqCaDSKVCqFUCiETqfDkfy7LcccjUZwu938szdCxIcgHA5EiAh7spuPY6+U05vhekvvpqamsLW1BdM02XwKXDnopqam4HA4EAwGeR18KBTiZFQSFbquo1arYXt7GxsbGzBNk4PIqI3S6/XQ7XY5p4RGg7e3t9mrArz2Kb/dbrMwod04VLUZX0twmNirpXT1GLLL5eLb0SSK0+mE3+9Hq9VCp9PhMVyqEAWDQRYg09PTLPCoutRsNuH1eqGqKizLQqvVQiqVgt/vh8/n21VE6LqOYDAoC+oE4YghQkTYlRv5OCjl9FZjsROJBAzDQKVS4fXuVPm4//774fV6oes6er0eez9sNhv+7//+D3a7HZVKBaurq1heXuaY92AwiFgshna7jUuXLmF9fR2WZSEYDKLb7XI1o9PpsLmUDs54PI7hcAi3281eFLpfqniQKBrfQ0Nbeen6DxM0DURVH7fbfU1qLFU6qMVhGAZvJKb8DnotPB4PVFWF2+3mPS9erxeapqHb7bK4A8BmVKfTiXg8jocffhi5XA6FQgEvvfQSarUaNE3b8XsxGAyQy+V2/L5J+0UQDj8iRIRd2cvHQbhcLrRarVuOxdY0Dblcjv0nrVYLTqcT0WiU/SdXB51dvHgR5XKZ8x/Gd82cPHmSxVOpVEK73Ua/34fP54Ou67xQkdorHo8HvV4Po9EIlmVheXmZN+622220Wi0+OOmgHl9LT60jYnxh22GCpoSoymCz2XiPy2g0gsvlgsfjQb/f5+yNcQEzvnSOKiyWZcEwDPh8PqRSKfT7fXQ6HSSTScRiMcTjcV40F4vFoGkaXve610FRFCiKwhtxyY8DXHkP5ufnMTs7C+BgvEuCIEwGESLCruzl4yD6/T6cTudtxWLvtvRu/FOtZVkolUpoNBpYW1tDuVxGtVpFoVBAIBBAIpGAaZrY3NzE1tYWUqkUV1l6vd4O7wYJKsMwMBgMuM0yGo34j8fjgd1uh67rAAC32w2Px4PBYIDhcAhVVfl+r25rHDYBoigKPxcylZLAouh1mlYiky695wAQDocRj8eh6zpnftC/KYoCVVURjUa5ojU/P49MJgOPx8Oj19T2Ghdwmqbh9OnTiMViKBaLOypiJDIOyrskCMJkECEi7MpePg5aRFev15HJZO5IOXx86Z1hGHA4HLAsiw+b0WgE0zQxGAzQ6XQ444P8HZlMBisrK2i324hGoyw+yExJoWR0sFK7hWLGyWBJh6Hb7eYDkg7qdrvN90kBZuSloEOcIIMm7aq5l6AEWIpXJ+FBooAqHmQ4pdh78nbQ83Y4HNzCIY/N6dOnYZomV0WCwSB0Xec2jKZp8Pl8UFUVuq7zSK+iKDsELQnUVCq1q0A9KO+SIAiTQYSIsCfjPg6n04lGo4FarQZd16FpGsLhMNrt9m1/+tytzN5sNmGaJjweD0qlEpaXl9FoNNgQSZHhxWKRWzdutxvhcBgrKysoFot8uJGQoraKw+HgqQ+fz8f5ICR6aKzXbrfDMAw2qpKgoZbVeHtnXIjQhM1wOORETxIrw+GQqzMkcu4mlmVBVVXOajEMA6Zpot1u87VRpcjj8fDrTV/T+wOAA+e8Xi+mpqYQDAa54lQsFlGr1dg30mw2EQwGEQwGMRwO2ZNSq9X2NKfu9r2D9i4JgnD3ESEi7An5OFZXV3Hu3Dm02234/X7MzMwgEAhwifx2SuG7ldlbrRYuXboEwzCQSCTgcrlgmiYqlQqAK9MTw+GQD1PyfvR6Pbz44osol8vodDr8KXl82RpVKChAiyoj9IdSN+l2NCFC/0YGTVqKd/XYLlVX3G43hsMhiyASWVRRoPumNsidCEQbbzVd7zYU/NXr9dBut1lsEOMVI5pioUrHcDjkCRngyu/I+OtqWRYcDgfv6CFhM/7aGIYBTdOg6zpUVUUqldr3czxo75IgCHcfESLCddE0jQ+LcDjMpXridkvhu5XZnU4nt2FM00Sn0wFw5SCjuO6LFy/C7/cjEolwC6XdbsM0Tbjdbk7kJIMpVUMoi4KEBXk/6PvUjmg2m7Db7QgGg+j3+7DZbNB1HY1GA8PhkKsnVGGhCgi1ceig7HQ63Koh6DAHrhycdB23I0bo/sfvw+FwcIXn6ts2m00+sDVNY6Oo3W5Hq9Xi3S9kGKXXNRqNwu128/tF1ZR+v4+NjQ3E43FkMhnMzc3xZtxIJIKZmRmMRiPekByNRuFyuTiefb/cDe+SIAh3FxEiwnWhUngsFtv1//hvpxS+V5mdREgwGEQ+n4fP50Mul+PbU0mfltJ5vV4Ow0omkzAMg42n1DqhtgN5Tcg/QtMf5B+hRWntdhuj0Yjjx8kjQgJivFKym4Ag8QSABYvT6WTzJ02nDIdD9lrcyr6aca8KVUSA1zwgNAFDy/1IMDWbTa4sOJ1ObjlRxYEqSKPRiF9jqjJQTPq4X8Tv9/OOmGAwCEVR4PV6YRgGV4/cbjcWFhYQiUQ4QI7er/2O314vgwYAWq0WotGotGUE4RAhQkS4LgdZCt/rvinanYQH+Tjm5+dx4cIFnD17FoPBALFYjD/tUzUjGAyi1+the3ubr48OUoqPH99BQoxGI976S5+2yfhKEyNUvSBhQe0LMniOQ4c4CRcKPwNeGwd2u9082noryawOh4MX+I2//na7nQUICS3ys5BfRVVVriTRtTscDqiqytfucrngdrvhdrs5V4UMvk6nc0drJxqNotFooNlsYn19nStLZ86cweLiIhqNBorFIoLBIDRN47Hf9fX1mx6/3SuDptVq8TI9QRAODyJEhOtykKXwve6bTKRra2tYXV2FZVmo1Wrwer1wu90IhULsMwCuLMnzeDxYX1/H+vo6DMNAuVyGz+dDp9Ph+6fQM0oE9Xg8XCGg9gJ9WqfdM7QjhXbO0JZf4DWPx14ihCZser0eNE1js+d4K2d8ymT8Z6/H1RWQqwUVVVbIn0GPR4ZTTdPg9Xq5lUV+GvJ1UDvJ5/OxKTmbzfLCwH6/z74OqkxRBQUAqtUq/H4/4vE4TNPk8V5VVeH1elm03Or47X4yaARBODyIEBGuy0GWwve6b8uy0Gw2US6XYbfb+ZM2VVCCwSBsNhsvyYtGozh79ixM00S32+VwLfo03+l04HK5WBAoioJWq8Utm/EJkRMnTkBVVSwtLWE0GvEOFPJNkHgajUY7DKvj4oHEwHirhILZqCIxvtl3vJoxbpq9GjKBjk/ekFGUqiyUFEv/Ro9NFY5YLAaHw8FViU6ng2azyfejKAqcTicikQgCgQB7cIbDIVKpFNxuN6rVKlKpFILBIJrNJlZXV9FqtTj9VlVVnDp1CqqqotVqodvtwuv1IpPJwLIsnDt3DpqmYXp6mp/bzY7f3iiDRhCEw4MIEeGG7KcUfqsHwm73vby8jO3tbYRCIcTjcT7AK5UKlpeXEYvFMD8/j1KpxMvVqEJAf8fjcR4VJYOpqqowDAOWZSEajfKkDY0JK4rCn7RTqRQGgwGPAtOIsMvlgqIobDAdD+MiQUKZHNTG6PV6MAyDr4HEBoBrJm8ov4N8GOOx8W63m6swtHiOXvdx/waJsMFgwBMw41NCZOZttVpot9s8Vtvv93l3z9TUFHK5HNLpNFqtFi5fvswCsVKpwOVysV8nGAwilUpxC2YwGMDv96Pf7yMcDqNcLiMQCCCdTsNut+PChQs7qjjj3KznSMSHIBx+RIgIN+R6pXCfz3dbUdtX33elUsHly5cRj8eRzWZRKBTwi1/8Au12m8UCTdUoigK3282beMmMSrcj0UGtI0VR0Ol00Ov1eCeKqqrQNI2rAvV6nXMuHA4Ht2JILJimyc+r0+mwACDxQeKEfBrjBlRq6VDFgmLirx7pJX8FfY/Ehd/v58oFpcNSZYX8HSQ+qOpB3g7KTjEMA263G81mE5ZlIRQKwe/3o9FosMCZnZ3F/Pw8crkcPw9KldU0DaFQiKdfKEU1EAggGo2yZ6VWq+3IXEmn01BVld9HagtdXWWT8VtBOH6IEBH2xW6l8PH009uJ2h6/72KxiFdffRVTU1NQFAXtdhsnTpzgSY96vY5Op4NEIgGPxwOXy8UTIGSmpINMVVWe3mi1WjAMgz9pRyIRtNttbt/QqCsdrCRiAHALh0yp41kdJCLGQ7oAXGMgBa6IDBIRdN8kPGjDLT0P+r7T6YSiKJzn4XA4eDsxVV/I6zJueiUxQq8RhbGRp4T+RCIR+P1+fk1mZmbw0EMPcbWFxBR5SJLJJKanp1EqleByuTAcDnkD78WLF7GwsIBMJsPjv/Qa1Ot1aJrG10QJvVcj47eCcPwQISLcFOOl8JWVlZuK2r5R+4ZEg9vt5lh3wzAQj8fhcrl4qiWfzwO4ssGVKgJUIaH8CjJq0k4Zr9eLZrMJl8sFn8/HrRYyj1KVZXt7G1tbW2wybTabPLrr8XjYHwK8NiKrKApM00Sv12Pfx15TMONmUhIg1KoZn8ah7BF6vdLpNIArVRi3282vJQmf8VwU8qbQoU4CiULHRqMRvF4vTya53W7Mzs4iFAohnU4jkUjw60yiSVEU9ucMh0MkEgk0Gg1eMkhTSTabDbVaDb1ejyeYyBi7vr6ObDYLRVHYb3M1Mn4rCMcPESLCLXEzUduWZe27fUM5FLquw+/380EMXDn4yZhJAVrb29u814TaKuNL2mi8NBgMwuVy8YFJgqTVanFro91uw2azodFosHeDKg/jky6WZSESibD/gj7pb29v88+RB2Qv4yk9H7pPEiUAWKiRD8Tj8WBrawsA2KBLI8jUeqGKDAkZauuQUKPKCr0GmUwGnU4HXq8X9913Hx5//HGsr69zjorD4UAulwMAHoXudrvQdZ1fy3A4zGPV09PT0DQNW1tbvBCvUCggGo0imUxCURTUajWUy2Ue96WwNBm/FYTjjQgR4ZbYb76Iruucnrqf9g0ZRl966SX2MfT7ffR6Payvr2M4HGJubo4/kVMLIJ1OQ1EUFAoF9Pt9VKtVNqJSW8MwDD5I6batVouvtdlsIplMshCi50lthF6vx36RRqPB7Ska++10OqhWqzsqJiRmdoPaLxQ8Rl+TJ4Qi4scX1JHAsiyL97hYlsX5J+MJrdSGoWsOBALw+Xx8/blcDuFwGKFQCHa7Hffffz8A8MgzTQutr68jHo9jdnYWKysrGAwG0HWdc1vS6TRyuRxKpRIuXLjAi+2i0ShHwFOVZ2NjAydPnsTJkyfRarVk/FYQBBEiwq2x33yRarV6TfsGuOKt2N7ehtPpxMmTJwG81rqhtE2qAhQKBTZmnjx5kvMpzp07B8MwAFzxIFBoGGVgtNtt3o5rt9vhcrmg6zoKhQJSqRS63S4v2CuXyxztXq1W2b9w9d/9fp/NpF6vF3a7HZ1OB5VKhSsPdHtqa+yVDULR8fTf47tcyIxK1R5N03ZE35NAarVavDWX/CUAeCSZWjRUAYpEInA6nQiHw0gmk7AsCxsbG5ienobf74fb7UalUuHqBO0Woq3H1Dah1lG73WYxAwDpdBonT55kwVOpVLi9ZbPZ4PP5kM1mEYvFEIvFZPxWEAQRIsKtsZ98EZ/Ph263y+2bTqeDjY0NbG5uotlsot/v45VXXkG1WkUoFGKxQWIik8lAURSsrq5ibW0Nmqah1+vxSO3a2hrfdnynC1VfbDYbQqEQBoMBbwmmqZJCoQDTNOHz+dBsNtHpdODz+bj6QBHvLpeLWyTjCaoUjT4eh06GV/qahMZ4gul40BldL6WgklckGAwCuNLW6Xa7HKY2nuwKgCdZ6DmR2Not/dVmsyEWiyGbzXJrBbgiCKenp7G4uAifz4cLFy6g0+ng9OnTbOK1LAvr6+soFov8fNxuN0/ARKNRAFcWGMbjcfh8Pv6dmJ6e5ooStbXG23kiPgRBECEi3DI3yheJRCJYW1uDy+VCp9PBq6++irW1Ndjtdvh8PgyHQ2xubuL73/8+stkszpw5wy2TQqEAh8OBZDKJZDKJixcvcuWh3W7zYrlIJIJWq4VCocCtDWrN0HhqMBjE9vY2AoEANE2DYRjodDoIh8NwOp38PYfDwS2H8TAwOsjJY0Htlna7zSOt1N4h8yfleNDBTa2W8fuhiZvxcVWfzwev18s+FcoSIcOo2+1m/weNzdbr9R1jwLQXhto8LpeL2ziBQIDHdS9fvoxMJgNN07C+vg6/389CUNd1ZLNZfq+z2SycTieLSMMw+L2x2+2oVCoIBoMIh8OcWkvQf1cqFTGiCoJwDSJEhFvmRlHblPbZ7/dRLpf5EzWV7E3TRL1eh8fjQSgUQqlUgmVZ6Ha7LHIMw8ClS5dgGAZOnTqFTqeDWq0G4LUUUjqYq9XqjqVutKyOvB2UL0LJph6PB61WC6qqIhgMshl2fHU9TaCM+zyowjI+qULtHJ/Pxy0Z8oiMVyhIhNC4Ll0/3Z4C2MinMR5sFggE+Laj0YjHj8dHdMeTVQHwmDNVTgaDAbefAoEAQqEQstks/H4/qtUqCoUC5ubmoOv6jpwPVVUxNzcHRVGQyWQ4xZbaW/SeA8Dly5dlD4wgCPtGhIhwW9woaps26FYqFXS7XRiGgdFoBFVVOXpdVVUUCgUMh0Ok02neY2Kz2XDx4kUMBgMkEgnUarUdIVrkk6ADLp/P7xApkUiEV8xTFUNRFK5Q0KGu6/oOodDtduHxeHgHDQkqapGMB5CRGKFRYHo+7XabvSTU3qA2Ei3SGwwGXKUgcUHbeLvdLrdxaGsvVZZoMohaJJR7YhgGVzQCgQD6/T6CwSAnsiqKAk3TuBoVjUYRiUQQjUbh8XgQiUSwtbWFWq2GUCh0Tc4HLQ9MpVL8Oo2/5/R1Op1Gs9kUI6ogCPtChIhwRxgXH+MHVCKRQKlUQrlcRrVa5YV23W4XLpcLfr+fxUo+n8f8/DzfD1UH3G43NE3D0tISVzAajQYAwDAMBAIBJBIJrKyswOl0cm7FaDSCpmn8N7VjKACNfCr0yZ+8FnSgj0+g0GFOwoLGYSmgjATKaDRi0yyNp2qaxqLG6XRyxUVVVcRiMd5iS9tuu90uAPA4rsvlQigUgsfj4XaNy+ViEytVWGjLbjKZRCwWQ61Wg6qqfNtxEaYoCsLhMGZnZ/m983g8iMVi2N7eht/vvybn4+qMD/q73W5jZWXlmvHsbDYLj8cjRlRBEK6LCBHhjtFut3fNC0mn01hZWcHS0hKHidGIZ7VaxWAwgNvthmEYHGFuWRZ/TdkewJVpkGq1ilKpxJ+2aTtvpVLhiRDaf5PP5xEOh7kyoCgKp55Go9EdKaZ0/9TuoMoIBZBRa4MCwqjtMh4UZpome0RUVeXo9WKxyN4Yek507eNR8JQGO57SSrehn/d4PIjH47AsC51OB4FAALOzs1hfX2ePC72ugUAA4XAY09PTmJ2dxXA4hGEYyGQyCIVC1wiEWCyGtbU13nFDj71Xa6Xdbt8wXVdEiCAI10OEiHBHuN6BpCgK5ufncfnyZaiqikgkwodsp9NBoVAAcMWPsba2xm2Rer3OnpFyubwjFTWdTqPRaGBzcxOGYSAWi/H0Bi2Y83g8bExNpVL8aZ4SP2lkdnyEdjgcQlEUnmKhRFHyaZA3hH6Wrns8E6TX63Grx263s19lenqaPTM0kkxGVFVVMRqN+Nrpubrdbh4ZVlWV49Oj0SgGgwGq1Srcbjf8fj/8fj+63S7q9ToHw6XTaTgcDp5ccTqdmJqaQiqVQrPZRK1Wg9fr5daTruuYmZnB4uIiut3uDVsrlBGz33RdQRCEqxEhckw46LyGGx1IDocD09PTKBaLaDabXBkwDAPlcpl3pbzyyiscAx6JRKDrOtbW1niqxe/3Q9d1bltEIhGualCbwu/3Y2trC6PRiMeCu90uj63GYjG0Wq0dMeTkYSFvBvlFqDpDY6fjO21orFdVVX6NSXwEAgGuoFCFhUQBXRu1fmghHVVxKBskFovx/ZHhFABSqRSy2SyWl5d55JhGaem1o5yTQCCAYDCISCQCr9eLM2fO8HuSzWZRLpeh6zr/brjdbpw+fRr333//DX9nbiZdV6oigiDshQiRI85e7ZI7aRzcz4HU7XZx+vRp3hlD+0hM08Ti4iJ/7XK5UCgUEIvFMDMzg1AohKWlJfR6PczOzqJarfJ4q9PpxMzMDMrlMsLhMJstabFat9tFIBDgPTDNZhORSISNmKqq8uP2ej3O96A8EPJz9Ho9tFoteL1eFgTUwiE/B/DahA0ZP8kIm06nUSqVUK/X2URKkzs2m41HfSlWnZ5DLpdjwycllA4GA6RSKYRCITz66KMshizLQrvdZnHR7/cxNTUFt9sNXdeh6zoCgQDi8ThvJm6320gkEhws1ul0EAwGMTs7C+DGGR/7TdeVTbqCIFwPESJHmP307++EGNnvgTQzMwOXy8Xx6MVikadobDYbMpkMVFVFs9nksn4sFsOJEyewubkJTdPQarVYpNTrdbTbbd7IS5M029vb3Prp9/vs2ajVajwxMhqNMDU1xf4SEhXjIWBUzaBFdSQ+TNOE0+nkigHFrdPEDP03CZNMJoPRaIR8Po9erwfDMNhjQkmpdrsd1WqVPS5erxe9Xg+qqiKZTPLG2mAwiFQqhampKcRiMbTbbVy6dAnD4RB+vx+qqmJhYQGmaXJCKrVkYrEYhsPhNWPXJFAzmcxNCdT9puvKJl1BEK6HCJEjzN3q3+/3QPL7/fB6vSgWiygWi6hUKuzLoLhym82GZDLJu1vS6TR0XcfFixdhGAZPm7jdbly4cAGNRoOjxqkyQ7dRVZUP4NFoxIZW8mPk83n2fFBFgCZuKPG0Xq9zBcMwDPj9fs4kIdMpcGVZn2VZiMViUBSFBQ8txCNhQUFtAHakqVKYGgCcPHkS8/Pz8Pl80DQNHo8Huq7j/vvvx+zsLJrNJgqFApaXl6HrOntfXC4XotEonE4n8vk8fD4fYrEYnE4nGo0GTNPE+vo6vF7vdceu99vG20+6rgSYCYJwI+6KEDFNE4899hhefPFF/PznP8dDDz10Nx72WHM3+/c3eyDNzc3B4XBgaWkJoVAIPp8P+XyejZ1kLrUsC6urq5ySSobVCxcusJeCFtq1Wi0sLy+j1WphamqKBQiNr1YqFdjtdhiGAU3TEAqFoOs6+v0+arUaJ6LGYjEUi0Vud3S7Xa6qKIrC+1sopbVUKmE4HCKbzULXdXQ6Hd6pYrPZoKoqNE3jXTTjAWVkSB2PbacpHJrEoewQEjwUC08pq3Nzc0gmk1heXka73WYx0+v1EI/H+b9HoxFmZmYwGo12CNDx975arWJ7e5s3++6njXejdF0JMBME4UbcFSHyyU9+EplMBi+++OLdeDgBt96/v1VT680eSJSpEYlE4PF4EAgEUC6XeUtuuVxmUTIajfCGN7wBrVaLqynFYhG5XA5er5dbO5SMWigUuBpALY12u82ijHI9RqMRT65Q/giZT4fDIW/mJT8JVTfosaiN0u124fP52EtCUyqWZXEAGG3vbbVaPMHidrvZJ0OG1fGI+mg0ClVVkc1mMRwOUavV8D//8z/wer3IZDLw+/0stnq9HleI2u02gsEgp77m83kEg0G+v6sFaLvdxurqKs6dO8evUyQSQSAQuGEb70bpuhJgJgjCjThwIfKtb30L3/nOd/CNb3wD3/rWtw764YT/n5vt39+uqfVmDiSaTkmlUuwRIU9DPp+Hy+XC6uoq7HY7eyIymQy63S4sy8Lm5iYcDgdKpRIvqSsUCly1GJ+mIV8IcEV8UVWjWCxyFYJiymk3SyqVQrVaRb/fR7/f56qIqqrwer28TZeEFrWK6DXXdZ2neDRNQ7lcRjqdRiKRwPPPP4+1tTXegktihTwlFOOeTCbZB5LJZODxeFAoFLCysoJUKoWFhYUd72ssFuNxZhovbjQaqFQqcLvd8Hq93K6hqgy975cvX8by8jIAYHZ2FoPBgMVKNpvl34292ng3StcVBEG4HgcqRAqFAp566il885vf3NdhNl6SBoBms3mQl3ekuZl2yY1Mrel0el8JmVcfSNR+oDh0gqo1yWQSly5dwtLSEux2O0eDl0ollEolnhzJZDIAwBMzuVwOPp+PF9n1+32eKqE9KhsbG4hGowgGgzs22KqqCl3XOX/E5XJxjgYZV6vVKm/zpeA1ALzbJZFIcNQ6CTaqzHi9XpTLZdRqNR7D9Xq9eOtb34pUKsWvLbVY6DEsy4LdbofD4eBKFYklev1VVWWRcTWqqiKXy7HXhky3yWQSc3NznL9SLpdZ+JFfh8zDoVAIdrt9h7m3XC4jkUjsq40n4kMQhFvhwITIaDTCk08+iQ9/+MN45JFHsLKycsOfefbZZ/HZz372oC7p2LHfdsleplbLsnDx4kWsrq4imUzuu0piWRZKpdKe1RWqHDidTk4SpdHZUCiEcDiMubk5rK2tQVEUKIqCra0t9Ho9hEIh3sILAJFIBGfPnkWtVkMkEsHs7CybPymunRbszc3NIRAIYHV1Fb1ej6sfnU4HW1tbbJrtdrssEkzTRDgc5tYLAI51TyQSLHTIm9Hv9+H3+3mny/T0NADg/PnzmJ+fx5kzZ5DP57G1tcWR7gD48Nd1HV6vF9FoFO12G4ZhoFgsctXFbrezCLoap9OJEydOwGaz4fz58/D5fLy3h95TatU1m01omoZGo8EelqvbeF6vF7quIxaLcX6KIAjCneamhcgzzzyDz3/+89e9zSuvvILvfOc70HUdn/rUp/Z935/61Kfw8Y9/nL9uNps7VpELN8d+2iV7mVo7nQ7W19d5G62mabzu/Xqegf2ODNN+mX6/j/n5ef4ETxMwdN/b29uIRqNsMnW5XHA6nbxjplgsst8EuCIEstksvF4vqtUqqtUqRqMRTp48iWQyCbfbjfPnz3PbhNo2oVAIg8GABQhNoWiaxiO5qVQK/X6fM0c8Hg8WFhYwGAzwox/9iKdp0uk0bDYbNE1DOp2GYRjY2trC9vY2crkczpw5wy0fyh0hoUMGV+CKmE8mkzzxE4lEoGkaJ61eDVW5AoEALl68yB4YSk01DAMej4crHBTQRuLw6jYebQMeb10JgiDcaW5aiHziE5/Ak08+ed3bzM/P43vf+x5+8pOfXNMWeOSRR/D+978fX/nKV675ORotFa7PzfTib9S/38vUWi6XYZomH1p0YN5o9Hc/I8OpVIpbGdVqFZFIhEPEaL9LJpPBcDjECy+8gHK5zN+nJXUkdEqlEqrVKgsIVVWRSCTY/JnP5zn+nQRBp9PhkdxmswlFURAIBPj7dCBTu4J209BUz2AwwNTUFOx2O3q9HlcL/H4/UqkUVxAoH8Rut6PRaODs2bOc0PrmN78Zuq7z4j0y6kajUZimic3NTSSTSQQCAXg8Hm7z0N4cWqh3dZWLEl1DoRAv3qP3PRQKsYGXthRTiygQCKBWq+343x+ZZzudDjKZjLReBEE4EG5aiMTjcR4LvB5/8Rd/gT/6oz/ir/P5PN797nfja1/7Gh577LGbfVgBt2co3esQ2c3Uapomtwjo0/f4vhIKJbvaM3CjkWGn04lz586hWCzC4XDAMAzk83lsbm7C7XbD5XIhkUhgamoKqqoiFAohmUxiOBxyO2I0GkHXdcTjcTidTjSbTTgcDhYL1GYYv73D4eADfWNjA91ulys94XAYNpsNlmUhEolwrkk6nWZRYrPZeIKGRmZPnTrFQofyQ7xeLyKRCG/TpQC2QqGA4XDIzyMej3Oqa6VSQaVSQa/X47yTlZUVdDoddLtdbG1tQVEUdLtdOBwOnD59GnNzc2i1WjuqXPT+r6+v89RRNBpFJpNhI+34+0tTQuQjolZQrVbjyhMFvdHvmCAIwkFwYB6RmZmZHV9TCXxhYYH75sL+OaiU1N1MrXRoUhAWbY+lADLyd1z9Kfl6I8Pkw6hUKkin0zy6Sm2D+fl5jjrf2NjgDbs+n4/DwCjPIxaLweVycXw6eUFM0+Qlbh6PB1tbW7DZbEgkErzVNxQK4cSJE1hdXUWz2YTX690ROQ+AhQmNxZqmyW2O2dlZZDIZFlL9fh/NZhNutxvD4ZDD0BwOB3w+H2q1GkqlEk/PxGIxHq1ttVrsR7HZbOwzyeVyiEQiaDabbN7VNA2Li4s4ffo0NE3jWHbytVClZ3z5XT6f54yT8UrHuFGZfETtdhvJZBKNRgO1Wg26rkPTNJw4cQKzs7MyhisIwoEhyaqHhINMSb3a1Gqz2TAcDlEul+F0OlGr1dBoNGBZFoDXttTSIjU6pK43MpzP51GpVNjIWSqVYFkWzpw5g6WlJZRKJczPz8PhcODs2bMYjUa47777kMvl2LNx6dIl3qNCh+f29jZ0XWfxsLm5iampKczOzkLXdd4V43A40G63uaXRbrdRKpX4WqvVKur1OqeTjke2F4tF3rZLlQhFUfg18Pv9KBaLqNfrvNOF7lPXdaiqysvnTNPE888/D0VRoGkaLMvCwsICer0eVlZW2C/i9/tZzNfrdSiKgnQ6vUMQkAgslUrX/G6k02kMBgOuPuVyuV2Nylf7iLxeLxRFweLiIlKpFCKRyC39TgmCIOyXuyZE5ubmOLdBuDkOOiV1t90j9AkfuDKG7fF4eMy1Wq3C4/Fgc3MTkUgE999/P4DdqyudTgf5fB7nzp3jtsTGxgZXO2w2G+bn51EoFNBsNlEulzEcDhGNRjE9PQ2v1wvgysG6vLyMer3O22wNw+DFdLR8LhgMwuPxcEuBgtsuXLjAbRga1aVpHdpuS0mrmUyGo96pJROJRHDixAkWO/SaZDIZpNNppFIplEolbG1twbIs9Pt9TimNRqM8tUSVi9FoxAvn6vU6gsEgC67BYMBG4WAwiHg8ztWK/bbDKAjN6XSiXC5zBspuuS6SAyIIwiSRisgh4G5sOb36MMrlclhZWcGPf/xjAEAgEMBwOGTvSCaTQbPZxOXLl5HL5fjgGq+uOBwObG9vo1qtotvtIh6PIxgMYmlpCevr65ienuacDjJ6WpaFdDoNy7J4tBW4Yp7VNI3bLLRobmFhAS+//DIbammqxbIsLC4uotls8mI6WjZXr9d5Cy+NDUejUbRaLXQ6HRSLRSiKgpmZGdjtdmiaxmZdwzAQi8XQ6XQAgMeJKVKdTLO6rmNjY4N/nnwvJJ62t7fhcDjgcrkQCoUQiUSQSqVgmibsdju63S5qtRoCgQC3Vmq12jXv8fjvBnl4yA+iqirm5uagKApOnDiBQCAgOSCCINxziBA5BNzNLad0GJF3AgDnW5DpMxKJcIJpuVyGYRj8c+PVlXPnznF1hDbD0mI7MphScBZtqXW5XBzaNRgMALxmnqUJHpr4oCkaGmkNhUJseg2FQpyDQSIjHA4DAC+Tc7lcGAwG8Pv9MAwDkUgEg8EAzWYTkUgE4XCYQ8iGwyFefPFFjk+ndNaLFy9ibm4Opmmi1+thYWEB6XQaGxsbaLfbUBSFo9YB8Fiv3W5HPp9HOBxGKBTiMDSPx4NkMgnTNDE1NQW3282TQiQyrv7d6Pf7WFlZ2VHRCAQCiEajHKh2IxEiCIIwKUSIHAImteVU0zSuYlBC6vjj0yK23X4ulUphbW2NqxQ0MaNpGqanp3mfCgWlAeAkz0qlglAohI2NDfbBdLtduFwuJJNJdLtdvPzyy5wEahgG75cBwBUZTdOwubnJBtG5uTn0ej3OL3G5XPB4PLyvZTQawe12wzAMJBIJzjUhQUOju4FAgKs45XIZNpuNtwWTAZY2DcdiMTSbTVQqFX6eNM0zPiZMr22j0eDJJNqi2+120W63EYlEsL29vaO1QiPIhUKBhRwt8mu32/B6vZiamhIRIgjCPYsIkUPCJLac0nhnp9NBIBC45t8bjQbHm1+NruvY3t7mhXZOpxMbGxuo1+uw2WwIh8M8qhoOhxGJRHDp0iUWHIlEgsdbqbWiaRqy2SwSiQRcLhcMw2CzrNPpxKuvvopIJIJoNMrfDwQCvM+m2+1CVVXE43FOZqV2F1VISqUSPB4PbDYbH+bJZBL5fJ4nUqjd4/F4EI1G4XK5UCgUMBgMMDMzg3A4zBUIy7KQSCSu2W1D1+z3+zkOv9lsotvt4vz58wgGgxzGRoImlUpdMyVVLBahaRqSySQLD4qtz+fzSCQSMnorCMI9jQiRQ8IktpwqioJcLoeXXnqJx2LHUzrJS7Lbp+1qtYrBYIBoNMrG10QigeFwiO3tbW7H0K4bMnG++c1vxmg0wtraGux2OyKRCLdjqLISCoXwtre9DSsrKzz2uri4iIsXL7I/hMQZtYMoS2N+fh6qquKnP/0pNjY2kMlkMBgMOEnVsizous4mUcMw0Gw2uf2USCSgKAoajQYCgQD8fj+P+GYyGbzpTW9CMBhkU61hGLDb7QiFQkgkEohEImxoTaVSsNvt2Nragq7rGAwGvFen1WphZWWFF99NT09z4up4MFyj0UA8HodlWSiXy9B1ndsz6XQaXq/3ml0/giAI9xIiRA4Rk5humJ2dRbVa5RaB2+3mkLD5+XnMzs5e8zNXb9f1eDycrUGjv5cvX+YxW1VVsba2tmMihCZaqEISj8cRCASwvLwMt9vN0enlchnBYBAOh4MnUDqdDpLJJFRV5dYITZzQ4rypqSnO+KBYdZvNhlAoBJfLxWPGDocDzWYTmUwGuq6jWq3y4wFgkROLxbhaAwDJZJIrKVSJsSwLDocDqVQKoVAImUwGTqcTL7zwAjqdDubn51novPrqq3jggQcQDoehKAqLEOC1KSmKaKe2WTab3eEloVAy2REjCMK9jAiRQ8jd6vdTkisJnkajAeBKm2h2dnbPSsz4dt3NzU3UajU4HA5UKhWsra2h1WrBNE2oqor19XX4fD42ZzYaDRiGgYWFBQDg7JJut4twOIx6vc6ZKvV6Hd1ul7f1jkYjnr6h6kYqlUIikcDq6ioLJJvNhsXFRaTTaVy+fJkNr8FgkCdYAoEA0uk0er0ezp07hwsXLnCImt/vRzKZ3DE2TOPG45WjqakpVKtV9tq43W4WPel0mnfsBINBDmwjsRYKhTAzM8MTOKZpsj+HpqQAXGNiHvfwUIKq7IgRBOFeRoTIIWU/VZHbqZyMJ7mGw2H2qNC21uu1g8a362azWVQqFZw9exbFYpFTW6emphAMBtHv93H+/HmeJqGcDjqsKd2UJkESiQSq1Sra7Tb8fj/vnaHnGY1GEY/HMRwOUSwW4ff7EYlE2GtBkefRaBShUAjD4RCbm5u8UbdYLGJqaopj2IErI7qKomBzcxN+vx/xeBwejwdOp5MnY+bm5rCwsLCjPeJ0OnHy5EnMz89jOBzylBD5NjRN42mdcDjM1SJKl6XXkV4zglpU4xHtd9PELAiCcCcRIXLI2M++mdvZSUPsluRKZs0bJbmOT/mQMOj3+4jH45iensalS5fg8/nYvGmz2TAYDDAajRAOh3mRHY30djodhEIhBAIBlMtlbGxs4NSpU/B6vVhfX2ehsLq6ilarxc9xMBhgdXUV5XIZlmXhoYcewtzcHHRdx6VLl9Dv95FMJuHz+RAOh6FpGvx+P4/nEqqq4o1vfCM0TUO9XscDDzwAu92OtbU13vxLi+tisRh7Yeg5nTx5EgB2FYV7jWbTEjqv18u7fojdItrvpolZEAThTiJC5BCxn30zAG57J82dSHKlA3JzcxPr6+t48cUXWXD0ej0kk0nO94jFYmi1WhgMBhwz7nQ6YRgGVlZWMDMzA6/Xi0uXLmFpaQndbhfb29uo1+s8ueNwOHgrbbFY5O2zFy5cwNTUFB588EEoioJCoYBKpYLRaITRaIThcAhFUfjx/X4/Wq3WNRUG2upLm3XX1tYwGAywsLAAl8vFBtVOp4NsNsvL925UkdhrNJuW0OXzeaTTaQ4su1FE+90wMQuCINxJRIgcIvazbwbAbe+kuRNJrjRSeunSJZw7dw66rnP1Qdd1bG1tweFwsDCp1+uIxWJoNBpwu928aI7yOPL5PC5dugTDMJBKpTgPpFAoYH5+HtFoFIuLiygWi7DZbKjX62i32xyTXqlUkM/nUS6XAQD33XcfIpEIWq0WiyLKHlEUZdcKQygUQi6Xw/r6Ovr9PmeN0MZbarXk83mu0uynIrFbVYPySxKJBLxeL2q12p4CQyLaBUE4zIgQOSTsp0pBQiQYDO55m/3spLlTSa5kqDx16hQ8Hg96vR4SiQR6vR5WV1exsrIC0zR5SsXn8yEajUJVVV5tr+s68vk873xRVRXhcJgnYur1OtbX1+FyubjVk06nEY/Hsbm5iV6vB7vdjuFwCL/fj2q1il6vh/PnzyObzSISibCg8vl86Ha7yGazPGlzdYWB4tcTiQS/NuSDocCzSqWC6elprozciL2qGlNTU/yY+xEYIj4EQTiMiBA5JOynSkFr7PdbydjrE/SdSHLtdrsoFotckaDYc9pGG41Gsbq6ilKpxMLCsiwkk0mEQiHUajWeZLEsCz6fD4ZhwDAMmKbJ+RgejwfLy8tcPSHxMhgMOOCLUlCLxSKq1Sq3YtrtNhYXF1lQ0evj8Xj2rDAYhnHN+6CqKqanp2GaJgeTTU9P31RbRKoagiAcV0SIHBL2U6WgJXE3qmSYpolSqbSnmbXb7cLr9aJard6yCVLXdayuriKfz7PIILFkmiZP0CQSCWSzWZw+fRoOh4OFgqZpKBQKOHXqFE/FhMNhdDodXL58GYVCAZubm5xcSumkNO5KVR8awS0UCjzhQvtotre3OUiN9taMV3p2EwLXex/oazKY3goiPgRBOG6IEDkk7KdKQeLgerfRNI0P36vNrOVyGV6vF71eD4PBAP1+n//Q7pP9mCDb7Tb7JhwOBy95sywL3W4XzWYTDocDkUgEs7OzSKVScDqdnIJaKBTg9/s5pGxjYwO9Xg+BQADhcBibm5u4cOECisUi72qh+PepqSkWLYPBAD6fD1tbW6jX6zzWSwv8fD4fnE4nm1v3U+mZ1N4fQRCEo4oIkUPEfkc1r3cbYHczq2VZeOmll6AoCk6ePLnj52w2G7LZLPx+/74O2GKxCMuycOLECSwtLcE0TQQCAcTjcZTLZXS7XczMzKBWqyGXyyEajaLZbHI8e7VaRSQSQSKRQDweR7vdxsrKClqtFldMYrHYjnZVKpXCI488gmg0isFggG63y2O7dHvKIwGuBKX5/X6EQiHU63Xk83muCt2p90EQBEG4MSJEDhH7HdXc6zZutxtra2u7VjMqlQq3HQCw/4KmbQzDgN/v5yqHoii7+hnGTbU09bG2toZerwe/3w+bzYZisYh0Os3ba6k95HK5EIlE0O/3OSFVURRks1msrq7i7Nmz8Hg8nLDa6/Xg8XjYG2K327kN1Ol0EI1G0el00O/3eaeMZVkYDAYoFArodDpQFAXD4RChUAhzc3O3ZS6VkVlBEISbR4TIIWM/psarb2OaJprNJlZXV3Hp0iXeDhuLxaCqKv97IBDgnxnH4XDg3LlzHPc+3q6hlg1VE0aj0Y79J4uLi9A0Devr69je3uZdKIqiIBqN8tfAlZaOruu8bG88K+P06dNYXl7eYbYNhUKwLAvBYBCRSISNrDabDaZp4v777+dx2kKhgEgkAuCKWPL7/VhcXEQmk+G9OTfTThFzqSAIwp1BhMghZT+H3tWbbX0+H0KhEOx2+47wLQr2og2140bLTqeD7e1tVCoVZDIZuFwubG1toVarIRwOI5fLwel0ctUknU7vMHOqqoqpqSnesdLtdtHpdGCaJlKpFACgVqtxC6hSqWBxcRGnTp3aUVkIh8N44IEHWKw4nU60Wi0WAE6nE51OB91uF7VaDYlEAvfddx+AKwLnlVdeQbVaBXAltXRqagrT09Not9u35ekQ8SEIgnB7iBA54lwdgkajseFwGLVaDeVyGYlEAg6HA41GY0c+BgCUy2U2YKqqilKpBMuykMvlUKvVUK1Wkc1muYXTbDZ3mDk7nQ7W19fR7XYRj8dRq9WQTCYxGAywtLSE+fl5JJNJ+P1+6LqOaDSKdDp9zep6MpfS85idnWWBRSOz7XYb5XIZ6XSaI9kB4K1vfSui0ShqtRp8Ph8CgQDsdrt4OgRBEO4BRIgcYXYLQaPocErqJOFAi9XooDdNE+12G5VKBXa7HYFAAADQbDbh9XoBXBlTHd8MS4Fp2WyWzZyNRgPtdhuBQACGYcDtdiOdTiMQCGBtbQ2FQoFbG+l0GuFweNf20NX7azweDzRN4yVzFDL2ute97pogMU3TcOrUKfZ00H6Y2/V0HERbRlo9giAcN0SIHGF2C0FTVZWTQOv1Our1OqLRKE6cOAHDMFCtVtHtdlnEXL58GVNTU5ibm2OxQvdHm2Hb7TaGwyHvkvF4PByFfunSJTidTnS7XYRCIfj9fuTzeTidTuRyOei6zuFfHo/nuqvrr55W8Xg8XM2Jx+NYWFhgH8jV3ElPx51YKng37lMQBOEwIELkCLNX+BYlgQaDQUSjUZw6dQqhUAjlchkvvPACyuUyFEWBoii88n68hUP312q1UC6X+WAnn0kul0MkEsH09DQqlQoCgQBcLhdfg67rqNfrvKyOpnOA6+dw7DWtkslk9n1g326VYT+LB29WOBzEfQqCIBwWRIgcAm71U/yNwrd6vR7S6TRCoRCAKyKAQsbo8YrFIur1Om9+pfX0o9EIy8vL8Hg8CAQCcDqdLEq2tragKAocDge8Xu8OEQIAsVgMnU4HpVIJTqeTp1z249mY9LTKfhYP3mip4N24T0EQhMOCCJF7mDtRrt9v+Na4n2Q30aDrOiqVCrLZLOr1Ol566SUAV7bYjkYjNBoN+Hw+ZLNZvu65ublrhBBt1U0kEjBNEw6H45Y8G5PwT+xn8eB+lgoe9H0KgiAcJkSI3KPcqXL9fsO39lqqR56SUqmEzc1NtNttTiT1er0sJsLhME/W2O12PjxJCG1ubrL3xDRNmKaJaDSK06dPIxwOHwpz5n4WD47nnEzqPgVBEA4TIkTuUe5kuX4/7YzrLXNTVRXJZBKKomBhYQHAlU/qmqZhNBqxz4MYPzy9Xi+SySQ2NzfZe+J2uxEKhWCz2bC1tQVN0/Y0md5L7Gfx4F5G27t5n4IgCIcJESL3IAdVrr/dZW6JRALRaBTdbhdOp5Nj4K/m6sPzau9Jr9dDq9VCs9nE5uYmSqUSTp8+fc9PiBzEwjtZoicIwnHHfuObCHeb/ZTrB4PBHS/XJxIJKIqCSqUC0zRhWRZM00SlUtnhJ6HDs9Vq7Xo/rVYLwWCQ99GMe09o10y1WoXH40EqlUKv10M+n8fly5fRbrfv6HO60+z3NZr0fQqCIBwWRIjcg4yX63fjoMr15CehqketVkO320U0Gr3Gk7Lfw/NqUVWpVNDtdhGJRODxeDhWPhQKodvtolgs3tHndKe5mddokvcpCIJwWJDWzD3IJMv1+x2P3a8J9mpRNZ7MCgCDwYD32xyWCZGDGCGe9FiyIAjCpBAhco+y37Hbg2I/h+B+Ds9xUaWq6o5kVgAwDAOhUAgejweWZR2qCZGDEAoiPgRBOG6IELlH2W/F4V7gRocniap6vc4tHIfDAcMw4PF4eDJIJkQEQRCOHyJE7mGOSrl+XFTV63UUCgVEIhGEQiHEYjGoqgpAJkQEQRCOIyJEDgFH4WAmURUIBHDp0iX0+31Eo1G4XK59x7sLgiAIR48DnZr5j//4Dzz22GNQVRXhcBhPPPHEQT6ccAiIRCJ43eteh0wmIxMigiAIwsFVRL7xjW/gqaeewh//8R/jHe94BwaDAV5++eWDejhhQtxK2+iotJwEQRCE28c2Go1Gd/pOB4MB5ubm8NnPfhYf+tCHbvl+ms0mgsEgGo0GAoHAHbxC4Xa5Ewv5BEEQhKPJzZzfB9KaeeGFF7C5uQm73Y43vOENSKfT+OVf/uUbVkRM00Sz2dzxR7j3oIV8tDsmHA5zuNlhSEcVBEEQ7h0ORIgsLy8DAP7wD/8Qv//7v49///d/RzgcxuOPP45qtbrnzz377LMIBoP8J5vNHsTlCbfJ+EI+j8fDO2coGfReT0cVBEEQ7h1uSog888wzsNls1/2ztLQEy7IAAJ/+9Kfxa7/2a3j44Yfx5S9/GTabDf/8z/+85/1/6lOfQqPR4D/r6+u39+yEO87NLOTbz30ZhrGv2wqCIAhHk5syq37iE5/Ak08+ed3bzM/PY2trCwBw+vRp/r7H48H8/DzW1tb2/Flacy/cu+xnId+N0lHFXyIIgiAQNyVE4vE44vH4DW/38MMPw+Px4Pz583jb294G4Epq5srKCmZnZ2/tSoV7gvHdMbuJxhulo5K/pNPpwO/3c3R9pVKBYRgywisIgnDMOBCPSCAQwIc//GF85jOfwXe+8x2cP38ev/VbvwUAeN/73ncQDyncJWh3TKvV2vXfW60WgsHgnuO44i8RBEEQxjmwHJE//dM/hdPpxG/+5m+i0+ngsccew/e+9z2Ew+GDekjhLnGrC/luxl8iuSKCIAjHgwPJEblTSI7Ivcut+DwMw8DS0hLC4TDs9muLcZZloVar4dSpU/B6vQf9FARBEIQD4mbOb9k1I9wSt5KOerv+EkEQBOHoIULkmHKn4tVv5mfJX1KpVHYVIrJ9VxAE4fghQuSYMenR2Vv1lwiCIAhHExEix4h7YXRW0zTkcjkWQ61WC06nE9FoVHJEBEEQjiEiRI4R46OzBIXIVSoVFItFzM3NHfh1yPZdQRAEgRAhcky4F0dnRXwIgiAIBxJoJtx77CeafTAYXDeaXRAEQRDuNCJEjgnjo7O7IaOzgiAIwiQQIXJMuN1odkEQBEE4CESIHCMSiQQURUGlUoFpmrAsC6ZpolKpyOisIAiCMBHErHqMkNFZQRAE4V5DhMgxQ0ZnBUEQhHsJESLHFBEfgiAIwr2AeEQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYIkQEQRAEQZgYzklfwKTodrsYDodwOBxQFGXSlyMIgiAIx5JjJ0Ta7TaKxSIajQYGgwGcTieCwSASiQQ0TZv05QmCIAjCseJYCZF2u43Lly+j0+nA7/fD5XKh3++jUqnAMAzkcjkRI4IgCIJwFzlWHpFisYhOp4NYLAaPxwO73Q6Px4NoNIput4tisTjpSxQEQRCEY8WxESLdbheNRgN+v3/Xf/f5fGg0Guh2u3f5ygRBEATh+HJgQuTChQv4lV/5FcRiMQQCAbztbW/D97///YN6uBsyHA4xGAzgcrl2/XeXy4XBYIDhcHiXr0wQBEEQji8HJkTe+973YjAY4Hvf+x6ef/55PPjgg3jve9+L7e3tg3rI6+JwOOB0OtHv93f9936/D6fTCYfDcZevTBAEQRCOLwciRMrlMl599VU888wzOHPmDBYXF/G5z30O7XYbL7/88kE85A1RFAXBYBCtVmvXf2+1WggGgzLKKwiCIAh3kQMRItFoFCdPnsTf/d3fwTAMDAYDfOlLX0IikcDDDz+858+Zpolms7njz50kkUhAURRUKhWYpgnLsmCaJiqVChRFQSKRuKOPJwiCIAjC9TmQ8V2bzYb/+q//whNPPAG/3w+73Y5EIoFvf/vbCIfDe/7cs88+i89+9rMHcUkAAE3TkMvlOEek1WrB6XQiGo1KjoggCIIgTADbaDQa7ffGzzzzDD7/+c9f9zavvPIKTp48iSeeeAL9fh+f/vSnoaoq/uZv/gb/+q//ip/97GdIp9O7/qxpmjBNk79uNpvIZrNoNBoIBAL7vcx9IcmqgiAIgnAwNJtNBIPBfZ3fNyVESqUSKpXKdW8zPz+P//7v/8a73vUu1Gq1HRewuLiID33oQ3jmmWf29Xg380QEQRAEQbg3uJnz+6ZaM/F4HPF4/Ia3a7fbAAC7facFxW63w7Ksm3lIQRAEQRCOMAdiVn3LW96CcDiMD3zgA3jxxRdx4cIF/M7v/A4uX76M97znPQfxkIIgCIIgHEIORIjEYjF8+9vfRqvVwjve8Q488sgj+PGPf4znnnsODz744EE8pCAIgiAIh5Cb8ojcbcQjIgiCIAiHj5s5v4/NrhlBEARBEO49RIgIgiAIgjAxRIgIgiAIgjAxRIgIgiAIgjAxRIgIgiAIgjAxDmTXzJ2CBnru9PI7QRAEQRAODjq39zOYe08LEV3XAQDZbHbCVyIIgiAIws2i6zqCweB1b3NP54hYloV8Pg+/3w+bzTbpy7mnoIWA6+vrkrFyF5HXfXLIaz8Z5HWfHIf5tR+NRtB1HZlM5pp1L1dzT1dE7HY7pqenJ30Z9zSBQODQ/YIeBeR1nxzy2k8Ged0nx2F97W9UCSHErCoIgiAIwsQQISIIgiAIwsQQIXJI8Xg8+MxnPgOPxzPpSzlWyOs+OeS1nwzyuk+O4/La39NmVUEQBEEQjjZSEREEQRAEYWKIEBEEQRAEYWKIEBEEQRAEYWKIEBEEQRAEYWKIEDlCmKaJhx56CDabDb/4xS8mfTlHmpWVFXzoQx9CLpeDqqpYWFjAZz7zGfR6vUlf2pHkL//yLzE3NwdFUfDYY4/hf//3fyd9SUeeZ599Fm9605vg9/uRSCTwxBNP4Pz585O+rGPH5z73OdhsNnzsYx+b9KUcGCJEjhCf/OQnkclkJn0Zx4KlpSVYloUvfelLOHv2LP7sz/4Mf/3Xf43f+73fm/SlHTm+9rWv4eMf/zg+85nP4IUXXsCDDz6Id7/73SgWi5O+tCPND3/4Qzz99NP46U9/iu9+97vo9/t417veBcMwJn1px4af/exn+NKXvoQzZ85M+lIOlpFwJPjP//zP0alTp0Znz54dARj9/Oc/n/QlHTv+5E/+ZJTL5SZ9GUeORx99dPT000/z18PhcJTJZEbPPvvsBK/q+FEsFkcARj/84Q8nfSnHAl3XR4uLi6Pvfve7o7e//e2jj370o5O+pANDKiJHgEKhgKeeegp///d/D03TJn05x5ZGo4FIJDLpyzhS9Ho9PP/883jnO9/J37Pb7XjnO9+Jn/zkJxO8suNHo9EAAPkdv0s8/fTTeM973rPjd/+ock8vvRNuzGg0wpNPPokPf/jDeOSRR7CysjLpSzqWXLx4EV/84hfxhS98YdKXcqQol8sYDodIJpM7vp9MJrG0tDShqzp+WJaFj33sY3jrW9+K17/+9ZO+nCPPV7/6Vbzwwgv42c9+NulLuStIReQe5ZlnnoHNZrvun6WlJXzxi1+Eruv41Kc+NelLPhLs93UfZ3NzE7/0S7+E973vfXjqqacmdOWCcHA8/fTTePnll/HVr3510pdy5FlfX8dHP/pR/OM//iMURZn05dwVJOL9HqVUKqFSqVz3NvPz8/j1X/91/Nu//RtsNht/fzgcwuFw4P3vfz++8pWvHPSlHin2+7q73W4AQD6fx+OPP443v/nN+Nu//VvY7aLt7yS9Xg+apuHrX/86nnjiCf7+Bz7wAdTrdTz33HOTu7hjwkc+8hE899xz+NGPfoRcLjfpyznyfPOb38Sv/uqvwuFw8PeGwyFsNhvsdjtM09zxb0cBESKHnLW1NTSbTf46n8/j3e9+N77+9a/jsccew/T09ASv7mizubmJ//f//h8efvhh/MM//MOR+z+He4XHHnsMjz76KL74xS8CuNImmJmZwUc+8hE888wzE766o8toNMJv//Zv41/+5V/wgx/8AIuLi5O+pGOBrutYXV3d8b0PfvCDOHXqFH73d3/3SLbGxCNyyJmZmdnxtc/nAwAsLCyICDlANjc38fjjj2N2dhZf+MIXUCqV+N9SqdQEr+zo8fGPfxwf+MAH8Mgjj+DRRx/Fn//5n8MwDHzwgx+c9KUdaZ5++mn80z/9E5577jn4/X5sb28DAILBIFRVnfDVHV38fv81YsPr9SIajR5JEQKIEBGEW+K73/0uLl68iIsXL14j+KTIeGf5jd/4DZRKJfzBH/wBtre38dBDD+Hb3/72NQZW4c7yV3/1VwCAxx9/fMf3v/zlL+PJJ5+8+xckHFmkNSMIgiAIwsQQZ50gCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBNDhIggCIIgCBPj/wOHJkfMFaxzTgAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "## Remove the mean of the data\n", "Xavg = np.mean(X, axis=1) # Compute mean\n", - "B = X - np.tile(Xavg,(nPoints,1)).T # Mean-subtracted data" + "B = X - np.tile(Xavg,(nPoints,1)).T # Mean-subtracted data\n", + "\n", + "plt.scatter(B[0,:],B[1,:], color='k', alpha=0.125)" ] }, { @@ -379,28 +402,10 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 10, "id": "0e2f63a6", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 0.42469643 0.747179 0.85328813 ... 0.88246352 -1.884191\n", - " -1.32403592]\n", - " [-0.18730514 0.80047482 1.11341706 ... -0.09048239 -2.95497644\n", - " -0.18146037]]\n", - "[[ 0.42469643 -0.18730514]\n", - " [ 0.747179 0.80047482]\n", - " [ 0.85328813 1.11341706]\n", - " ...\n", - " [ 0.88246352 -0.09048239]\n", - " [-1.884191 -2.95497644]\n", - " [-1.32403592 -0.18146037]]\n" - ] - } - ], + "outputs": [], "source": [ "# Find principal components (SVD): \n", "# use the option full_matrices =0 will calculate the covariance of B\n", @@ -497,7 +502,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 11, "id": "3ff7e067-1e70-407a-9a65-463d84333559", "metadata": {}, "outputs": [], @@ -524,7 +529,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 12, "id": "c4af647d-efb8-460b-b92f-f164a8ad26ec", "metadata": {}, "outputs": [ @@ -552,7 +557,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 13, "id": "81ddd943-7cdb-4fed-8ced-552b2bfa5b59", "metadata": {}, "outputs": [ @@ -570,7 +575,7 @@ "{'tags': ['hide-output']}" ] }, - "execution_count": 91, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -590,7 +595,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 14, "id": "bb6d9182", "metadata": {}, "outputs": [], @@ -602,7 +607,7 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 15, "id": "916ebb13", "metadata": {}, "outputs": [ @@ -643,17 +648,17 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 16, "id": "1e976d56", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 98, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, @@ -717,7 +722,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 17, "id": "e00fa19e-43ef-4466-821b-40f3180b3768", "metadata": {}, "outputs": [ @@ -737,7 +742,7 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 18, "id": "d54c0de2-d376-4c3f-bfb6-7776ad850388", "metadata": {}, "outputs": [ @@ -758,7 +763,7 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 19, "id": "5a84699a-cbf1-46a6-91ea-21a265f24512", "metadata": {}, "outputs": [ @@ -785,7 +790,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 20, "id": "1785f2cb", "metadata": {}, "outputs": [ @@ -806,7 +811,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 21, "id": "242e1397-c23d-4b84-9480-f375a3d3e8ad", "metadata": {}, "outputs": [ @@ -823,7 +828,7 @@ "Text(0.5, 1.0, 'Cumulative PCs')" ] }, - "execution_count": 105, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, @@ -862,7 +867,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 22, "id": "e7c09351-6f23-4215-b5a5-6d1724e3884d", "metadata": {}, "outputs": [ @@ -870,7 +875,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "minimum dimension size to explain 95% of the variance: 1\n" + "Minimum dimension size to explain 95% of the variance: 1\n" ] } ], @@ -881,7 +886,7 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 23, "id": "fb2b0a52-c599-41ca-84d7-96b68823085f", "metadata": {}, "outputs": [ @@ -911,7 +916,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 24, "id": "f5024fcd-922c-43a1-a673-84951f8cbe98", "metadata": {}, "outputs": [ @@ -931,14 +936,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1.69 -0.668 -6.747]\n", - "[ 2.14194643 -1.44586065 -6.42108578]\n" - ] } ], "source": [ diff --git a/_sources/Chapter3-MachineLearning/3.3_binary_classification.ipynb b/_sources/Chapter3-MachineLearning/3.3_binary_classification.ipynb index bc1433e..687de92 100644 --- a/_sources/Chapter3-MachineLearning/3.3_binary_classification.ipynb +++ b/_sources/Chapter3-MachineLearning/3.3_binary_classification.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "id": "6107cdf4", "metadata": {}, "outputs": [], @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "id": "d396cc63", "metadata": {}, "outputs": [], @@ -72,13 +72,13 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "id": "be32d69c", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXb0lEQVR4nOzdd3QUZdvH8e/sbpJNb5AGIfTeQXrvIE0p0gUFAUVERBQr4Cs+j6KCjV4UaQrSpPfem4DUUEMP6W3rvH9EojxJkJLspFyfczwe5t7s/O5Nsrl25i6KqqoqQgghhBC5hE7rAEIIIYQQj0OKFyGEEELkKlK8CCGEECJXkeJFCCGEELmKFC9CCCGEyFWkeBFCCCFEriLFixBCCCFyFSlehBBCCJGrGLQOkNXsdjs3btzA09MTRVG0jiOEEEKIR6CqKvHx8YSEhKDTPfzaSp4rXm7cuEFoaKjWMYQQQgjxBK5du0bhwoUf+pg8V7x4enoCqZ338vLSOI3jWSwWNmzYQKtWrXByctI6jsPl9/6DvAb5vf8gr4H0P3f2Py4ujtDQ0LS/4w+T54qX+7eKvLy88m3x4ubmhpeXV676oc0q+b3/IK9Bfu8/yGsg/c/d/X+UIR8yYFcIIYQQuYoUL0IIIYTIVaR4EUIIIUSuIsWLEEIIIXIVKV6EEEIIkatI8SKEEEKIXEWKFyGEEELkKlK8CCGEECJXyXOL1AkhRHa4ePEie/fuRafT0ahRIwoVKqR1JCHyLSlehBDiIe7cucPAl1/m99WrUVUVAL1OT7du3Zg6bSre3t4aJxQi/5HiRQghMpGQkEDTxk24fuEK3dVqVKEQNlSO2q+xcskyLl++zI6dO3LlEuxC5GYy5kUIITIxZ84czp49yxBrPWorRTEqTrgrzjRQSvCyrQ779u9j6dKlWscUIt+R4kUIITIxd/YcKhJCoJJ+k9diij8l9QHMnTNHg2RC5G9SvAghRCZu3bxJoOqRaXuAzZ2b1286MJEQAqR4EUKITIUUKsRNJT7T9lv6BAoXCXVgIiEESPEihBCZemngy5ziBtfVmHRt59W7XLTd5aWXX3J8MCHyOSlehBAiEy+++CJVKldlmn4PO9QLxKrJRKtJbFHPMVu3jyaNGtOpUyetYwqR78hUaSGEyISbmxubt27mtVdf49dff2G57Q8AnJ2c6ffii0yePBmDQd5GhXA0+a0TQoiH8PX1ZcHCBXz51ZccOHAAnU5H3bp1KVCggNbRhMi3svW20Y4dO+jQoQMhISEoisLy5csf+vht27ahKEq6/27dupWdMYUQ4l8FBwfTqVMnOnToIIWLEBrL1uIlMTGRKlWq8P333z/W1509e5abN2+m/RcQEJBNCYUQQgiR22TrbaO2bdvStm3bx/66gIAAfHx8sj6QEEIIIXK9HDnmpWrVqphMJipWrMjYsWOpX79+po81mUyYTKa0f8fFxQFgsViwWCzZnjWnud/n/Nh3kP6DvAb5vf8gr4H0P3f2/3HyKur9bVKzmaIoLFu2jM6dO2f6mLNnz7Jt2zZq1qyJyWRi5syZzJs3j/3791O9evUMv2bs2LGMGzcu3fEFCxbg5uaWVfGFEEIIkY2SkpLo1asXsbGxeHml35Ljn3JU8ZKRxo0bU6RIEebNm5dhe0ZXXkJDQ4mMjPzXzudFFouFjRs30rJly3y5021+7z/Ia5Df+w/yGkj/c2f/4+LiKFCgwCMVLznyttE/1apVi127dmXa7uLigouLS7rjTk5OueqbltWk//m7/yCvQX7vP8hrIP3PXf1/nKw5foXdY8eOERwcrHUMIYQQQuQQ2XrlJSEhgQsXLqT9+9KlSxw7dgw/Pz+KFCnCmDFjuH79Oj/99BMAkyZNolixYlSoUIGUlBRmzpzJli1b2LBhQ3bGFEIIIUQukq3Fy6FDh2jatGnav0eOHAmk7hcyd+5cbt68ydWrV9PazWYzb731FtevX8fNzY3KlSuzadOmB55DCCGEEPlbthYvTZo04WHjgefOnfvAv0ePHs3o0aOzM5IQQgghcrkcP+ZFCCGEEOKfpHgRQgghRK6S46dKCyGESHX+/HlOnz6Nu7s7DRo0yHCZCCHyA7nyIoQQOdy5c+do1qQppUuXplOnTrRo0YJCQSF88cUXDx1XKEReJVdehBAiB7t8+TIN6tZHF2uhN89QmoLEY2JvzCVGjx7NvXv3+M9//qN1TCEcSq68CCFEDjZ+/Hgsccm8ZmtADSUUT8VIiOJNF6Uq7ajAF59/wZUrV7SOKYRDSfEihBA5VEpKCgsXLKSuNQwPJf34loaUwEXnlLbQpxD5hRQvQgiRQ0VHR5NiSiEE7wzbXRQDBXUeREREODiZENqS4kUIIXIoHx8fnAwGbhOfYbtFtXHPnkhgYKCDkwmhLSlehBAih3J1daVbt27sM1whRbWka9/HZRJtKfTt21eDdEJoR4oXIcRTuXXrFkePHuX69etaR8mTPvzoI8xGmKLfzWn1FjbVToyazFr1T1YoJxg8eDClSpXSOqYQDiXFixDiifzxxx+0a9uWkJAQqlevTuHChWnWpCn79u3TOlqeUrZsWbZu34ZvuULMYA9vs5zxrGWX8TJvj36b77//XuuIQjicrPMihHhsR44coVGDhnianeimVqUQPtwmnp27/qBxo8as37CeJk2aaB0zz6hevTrH/jjOgQMHOHXqFB4eHrRu3Rpv74wH8gqR10nxIoR4bK8OeRU/s5FXbQ1wUVLfRkLxpaqtENPVvbwycBBnz59DURSNk+YdiqJQu3ZtateurXUUITQnt42EEI/l1KlT7D+4n+a2UmmFy30GRU9re1nOh19gx44dGiUUQuR1UrwIIR7LhQsXACiGf4bt94+Hh4c7LJMQIn+R4kUI8Vh8fHwAiCYpw/b7x+8/TgghspoUL0KIx1K/fn2CAgLZScZXVnZwAS8PT1q3bu3gZEKI/EKKFyHEYzEYDHzy6f9xmGssU48TpyYDkKCaWKOeYifhjHn/Pdzd3TVOKoTIq2S2kRDisQ0cOJCEhATeGzOG3aZLeBvciLcmo9Pr+Pj9j3nnnXe0jiiEyMOkeBEiB4iJieHgwYOoqkrNmjXx8/PTOtK/GjFiBP379+fXX38lIiKCwMBAunXrRsGCBbWOJoTI46R4EUJDSUlJjBo1ijmz55BiSgHAxdmFvv368vXXX+Ph4aFxwofz8fFh0KBBWscQQuQzUrwIoRGr1UrH9h3YtX0nTe0lqUYoAMfN1/l5zk+cPvUnW7ZtxdnZWeOkT0dVVfbt28fs2bO5cuUKBQsWpE+fPrRu3RqdTobdCSEen7xzCKGR3377jc1btzDAXptWSjkKKh4UVDxooZRhkK0uu/fuYeHChVrHfCo2m43+/ftTr149ls9dzK2Np9i+eC3t2rWjRbPmJCQkaB1RCJELSfEihEZmz5xFCX1BSisB6dqKKf6U1QUxc8ZMDZJlnU8++YSf5/1MD2rwrrUFA5Q6jLQ14RXqs2/XHl6RW05CiCcgxYsQGrl65QohNq9M20PsXly7csWBibJWcnIyk7+eREO1OLWUMHR/7XOkKApllUDa2cqzePEvXL16VeOkQojcRooXITQSEBjIXV1ipu2RSiIBgYEOTJS1Dh48SExcLDUpkmF7TYqgqiobNmxwcDKR1aKiojh+/LgUosJhpHgRQiP9+r/IWfttrqsx6dpuq3Gc5CYvDujv8FxZxWw2A+CSybwAJ/QoipL2OJH7XLp0iRdeeIHAgACqVq1KWFgYdevUZdOmTVpHE3mcFC9CaKRnz55UrlSZ6fq9HFCvYFZtWFQbh9SrTDPspXSp0rz44otax3xilStXxslg4BQ3M2w/zS3sqp1nnnnGwclEVrh06RJ1atVh029reNZWgTdoQj9qcedgOK1btWbp0qVaRxR5mBQvQmjE1dWVTVs20bhNMxZxmHdZwTusYAGHqN20Ptt2bMvx67w8TEBAAN26d2eL/gK31bgH2uLVFFYb/qRm9RpSvORSb7/9NraYJN6wNqKxUpIwxY+qSmFetTegEsEMHvQKKSkpWscUeZSs8yKEhgoUKMCq33/nwoULbN++HVVVadCgAWXLltU6Wpb45ptvOHbkKF+f20YVeyEK48NdEjiqj8DD15v5CxdoHVE8gbt377J82XI62iviqRgfaNMpCm3V8vwneiPLly+nR48eGqUUeZkUL0LkACVLlqRkyZJax8hy/v7+7N2/jx9++IEZU6dz/Maf+Pv5M6z/CN544w2Cg4O1jiiewOXLl7HZbRTDP8P2AMUTL70bFy5ccHAykV9I8SKEyFZeXl68++67vPvuu1pHEVnEx8cHgBiSKIxPuvZk1UKS3YS3t7djg4l8Q8a8CCGEeCwlS5akcsVK7NZdQlXVdO37uIQKdOnSxfHhRL4gxYsQQojHoigKn3z6f5y132Yhh4lSkwBIUS1sU8+zRvmTIUOHEBISonFSkVfJbSMhhBCPrWPHjvz4448Me/U1jiStx8fgToLNhFW1MXjIYCZNmqR1RJGHSfEixP9ITk4mKioKHx8f3N3dtY4jRI7Vr18/nn/+eZYsWcLFixfx8fGhW7duhIaGah1N5HFSvAjxl8uXLzNu3DgWLliIyWzCyWDg+S5d+PjjjylXrpzW8fKkM2fOsGDBAiIjIylSpAh9+/alUKFCWscSj8HDw4P+/ftrHUPkM1K8CAGcO3eO+nXrYYtLobm1BCH4cMcaz5ala1jz+2q2bt9GjRo1tI6ZZ1gsFgYPHsycOXPwMBjxVdy5Y4/jg/c/4OOxH/PBBx+g/LWRoxBC/C8pXoQAhg4egj7WynBbEzwUFwDKE0Qda1GmqnsY8GJ/jp/4Q/6gZpG33nqLn+b+SFeqUssahkHRk6Ja2Mo5PvroI/z9/Xn11Ve1jimEyKFktpHI986fP8+WbVtpYSudVrjcZ1ScaGsry4lTJ9m/f79GCfOWu3fvMnXKVFqr5ainFMeg6IG/XmulAjUpwqef/B9Wq1XjpEKInEqKF5HvnT59GoBSFMywveRfx//880+HZcrLVq9ejcVqoS5FM2yvR3Fu3LrJwYMHHRtMCJFrSPEi8r37M4oSMGXYfv94bt4kMSdJSEjAoOhxwznDdk9c0h4nhBAZkeJF5HsNGjSggK8/e7iYYfseLuFqNNKqVSsHJ8ubypcvj1W1cYl7Gbaf5w6KouSZzSmFEFlPiheR77m4uPDOe++yh0tsVM9gUlPHWphVGzvVcDYr5xj+xhtp+7mIp9OkSRNKFi/BGv1pzOqD41ri1RS2GC7Qrm1bWStECJEpmW0kcgWLxcLKlSuZP38+UZH3KFaiOAMHDqRevXpZMgPorbfeIioqiv/+579s012ggM6TKHsiibYUhgwewqeffpoFvRAAOp2OH+f9RIvmLfha2U5daxgF8CCCaPYarmD09eTb777TOqYQIgeT4kXkeFFRUbRp3YaDhw5SVF8AX5uR1XuPMXfuXPr378/MmTPR6/VPdQ5FUZgwYQJDhgxh3rx5REREEBgYSO/evSlVqlQW9UTcV69ePfbt38cnn3zC8mXLsNpsuBqN9O7Th48++kiuugghHkqKF5Hj9e3dh9NHT/A6jSlm9wcF7FaVQ1zlpx9/pGTJkrz//vtZcq4iRYpk2XOJh6tcuTK//vorCQkJxMTEUKBAAYxGo9axhBC5gIx5ETna6dOnWbNuLZ1sFSmm+Kcd1ykKtZQw6qrFmPzVJMxms4YpxdPw8PCgcOHCUrgIIR6ZFC8iR9u4cSNOOgNVyHi/m5oU4W5UJMeOHXNsMCGEEJqR4kXkaFarFZ2ioMvkR9UJfdrjhBBC5A9SvIgcrVatWphsFi5wN8P2E9zA1WikYsWKDk4mhBBCK1K8iBytfv36VKpQkZWGk8SrKQ+0XVOj2aG/yIv9++Pl5aVRwsdz+/ZtPvzwQ4oUDsXN1ZUypUrzxRdfEB8fr3U0jh8/zquvvkrDBg1p26YtM2bMIDExUetYQgiRTrYWLzt27KBDhw6EhISgKArLly//16/Ztm0b1atXx8XFhZIlSzJ37tzsjChyOEVR+GXJr1h9nPmPfjNL1WNsU8/zEwf4RtlOhaqV+Pzzz7PkXCdPnmTYsGHUr1uPli1a8N133xEXF5clzw0QHh5OtSpV+fKzzwm97kSrlFJ4hpt4790x1KtTl6ioqCw71z+pqoqqqg99zNixY6latSqLZvxE0u4rXNpwlMGvDKZ82XKEh4dnSy4hhHhS2Vq8JCYmUqVKFb7//vtHevylS5d49tlnadq0KceOHWPEiBEMHDiQ9evXZ2dMkcOVLVuWY38cY8TokVwtZGazaziWsl58Nelrtu/Yjqen51Of47///S+VKlXi52lzSNkXwfUtp3hj+BuULV2GU6dOZUEvoHfPXtjuJTHa1pyuSjUaK6XoTU1G2pty+Ww4w4cPz5Lz3PfTTz9RrUpVDAYDrkZXunTpwt69e9M9btGiRYwbN462lOc9a0v6KM8wmPq8S0tMt+Jo16YtNpstS7M5gs1mY/Xq1Xz66adMnDiRM2fOaB1JCJFFsnWdl7Zt29K2bdtHfvzUqVMpVqwYX375JQDlypVj165dfP3117Ru3Tq7YopcIDg4mAkTJjBhwoQsf+5Vq1bx7rvv0oIytLaWQ6+k1vRRahJzIvfTtnUbzodfwMXF5YnPceTIEfYfPMBL1MFbcX2gLUjxopmtFL8sXsxXX31FQEDAU/XnfqEx/PXhFDf58Ly9MslmC3tXbqHh8hXM+3kePXv2THv8F//9nLK6IFqqD+4lVFDxoIe1GpMvbGPNmjV06NDhqXI5WpVKlTl34TyeBlfMditvv/02nTt24sd5P+Wa24xCiIzlqEXq9u7dS4sWLR441rp1a0aMGJHp15hMJkymv3cDvn+Z32KxYLFYsiVnTna/z/mx7/Bk/f9m0mTKe4TSzlblga0G/PGmn1qHSVHbWLp0Kd26dXviXIcOHcLd1Y0KhKIo6S94VlaLsJELHDt2jKZNmz7xeQDmz59PgQIF6OdalzJKgbTjzdQKLFWO8eqQoTRq1IiAgACio6M5ffYM3V2qoShO6Z6rKIGEGQLZvHkzbdq0eapcjnL/CotbLLzl2orCii821cZxrrNmy3a6d+3Gyt9XZcm2EjmVvA9I///5/9zicfIq6r/dDM8iiqKwbNkyOnfunOljSpcuzYABAxgzZkzasTVr1vDss8+SlJSEq6truq8ZO3Ys48aNS3d8wYIFuLm5ZUl2IYQQQmSvpKQkevXqRWxs7L9eHc1RV16exJgxYxg5cmTav+Pi4ggNDaVVq1b58tKwxWJh48aNtGzZEien9J+k87rH7X9KSgqBgYF0pSrVlSIZPma6bg+1uzZn+vTpT5zr2rVrVKpUiU5qJWopRVFVlXX8yU7C8cJIGH5Ek0QEMVQsX4FlK5Y/0e0jm81GoUKFmD17Npdf/hU1Of36N3PYR/mOdfnpp59QVZXKlSrhFwHdqZbusffUBL5kC1OmTKFXr15P1HdHUlWVYkWL8cOUHzLsv6qqTDZsp12f55k8ebJGKbOfvA9I/3Nj/x9ngkSOKl6CgoK4ffv2A8du376Nl5dXhlddAFxcXDIci+Dk5JSrvmlZTfr/aP13cnKiRLHiHD19hWoEp2uPUZM4q1zntZo1n+r1LF68OB3at2f50hX42Jy4SwIbOElHKtGQEmnjbK6qUcw5foAe3V9g5+5dj30eg8GAxZx66VVNtqImp78MG6tLQKfTpfVn8JAhjHprFGVVPyopIWmPM6lWFusO4u7jRvfu3XPFz5PJZCI6JhrIvP8uCkRGRuaK/jwteR+Q/uem/j9O1hy1zkvdunXZvHnzA8c2btxI3bp1NUok8oM33hzBKfUmh9WrDxw3qzZ+1R3Dw92dvn37PvV5ZsycSa16tZnCLlZygqoUpolSKq1wASii+NHFWplde3Zz8ODBxz6Hoii0atUSAHsGd4RvqXFcsd3j2WefTTv2+uuv89xzzzGHfUxTdrNZPcsK9Q8mGDZywyWBpct+y/TDQ07j4uJCUEBgpu0W1cYNJZbixYs7MJUQIqtla/GSkJDAsWPH0vaduXTpEseOHePq1dQ/EmPGjKFfv35pjx8yZAgXL15k9OjRnDlzhh9++IFffvmFN998MztjinzupZdeot+L/ZjPIb7X7WSTeoaV6gk+M2zkklMMS35bmiW3ID09Pdm8dQvTp0/HjI1nyPg2VXmC8TAYWbt27ROdZ/gbbwCwnOOkqH9febitxvGT4SBFi4TRpUuXtOMGg4HFvyzm559/xr92cXZ5XONcQAIDXh3E8RN/0KhRoyfKoZX+Lw0A4I6a/hL0Ns6TYEvh5ZdfdnQsIUQWytbbRocOHXpg5sT9sSkvvvgic+fO5ebNm2mFDECxYsVYvXo1b775JpMnT6Zw4cLMnDlTpkmLbKXT6ZgzZw7PPvssP3z3PXuPH8foYqR31/4MHz6cMmXKZNm59Ho99evXB8A5k18/naLgpBieeKZA3bp1WbNmDccNNzigv0gxux8mnY1LtkjCgouwfuOGdLda9Xo9vXv3pnfv3k90zpxk2LBh7Ny5kxn6fdRUgyhHEMlY2K9c4SjX+OCDDyhVqpTWMYUQTyFbi5cmTZo8dGXPjFbPbdKkCUePHs3GVEKkpygK3bp1e6rp0I+qePHi+Hr7cCr2JiUokK79mhpNtCWBZ5555qnOc+LkSebOncuRI0cwGo180qEDXbt2far1anKD+4sWdu/XkzmzZ7Mu5TQAxYoUZdp70xg0aJCW8YQQWSBHDdgV2UNVVY4dO0Z0dDTFihWjWLFiWkfK14xGI4MGv8LkL7+mki2EYop/WluyamG5/gShQYVp167dU50nODiYjz766Gnj5lqTJk3is88+4/z58xiNRsqVK4dOl6OG+QkhnpAUL3ncr7/+yvtj3uN8+IW0Y82aNGXyt9/ITswa+vjjj9m7ew/f79lJJUIopvoRQzKHDREoRgOblq3BYJBfz6fl5eVFjRo1tI4hhMhi8jEkD5szZw7du3fH+WIiQ2jAe7SiFzU5vfMo9evWy7I9e8Tjc3NzY8OmjUz+ZjK2ct6sdT7LKf9oBrw6iGN/HH/qW0ZCCJGXyUe7PCopKYkRw9/gGcLooVZPWwq9AB5UtAUzOXkHo99+m9Vr1micNP8yGo0MGzaMYcOGaR1FCCFyFbnykketXLmS+IQEWlM23R4uRsWJxrbirF23jps3b2qUUAghhHgyUrzkUdeuXcPTyRU/xT3D9lB8UVWVa9euOTiZEEII8XSkeMmj/P39SbSmkKiaMmyPJBGAAgXST9UVQgghcjIpXvKojh07otfr2Ul4ujabamenLpzaz9SWZdJFlrHb7ezZs4eVK1dy7Nixh67xJIQQT0OKlzyqQIECvP3OaDZyltXqSeLUFACuqzHMVfZzhWg+/exTjVOKvOLXX3+lZPES1K9fn06dOlGtWjWqVanKzp07tY4mhMiDZLZRHjZ+/Hj0ej2f//dzNpvO4awYMKtWggoG8tuM32jevLnWEUUeMH/+fPr06UNFJZhhNKIAHkQQw+ZT52jRvAWbt2ymQYMGWscUQuQhUrzkYTqdjnHjxjFixAhWrVpFdHQ0xYsXp02bNrlqm3SRc5lMJkYMf4NqSih91JppM9vKE0Rpe0F+YBcjR7zJgUOPv0O2EEJkRoqXfMDX1/eB3buFyCpr164lMuoeL1Et3ZR8g6Knqb0Ucw7vY9q0aSxb+hu7du1CURSaNmvKmyNHPrBxqxBCPCoZ8yKEeGIREREYFD1BileG7YXwBmDIkCGc2XKYpsnFaZxUlCPrdtOsWTMmTZrkwLRCiLxCrrwIIZ5YQEAAVtXGPRLxz2BNodvEA9CA4jxvrwp/XZxpZi3N75zkzTffpEmTJlStWtVxoYUQuZ5ceRFCPLH27dvj5eHJFs6la7OrKts4jzN6OlP5gTZFUWhHBXwM7kyZMsVRcYUQeYQUL0KIJ+bm5sann01gL5dYrB7hjhqPXVW5qkYxR9nHee5SliB0ig6raiNGTSJFtQCgV3SUtRZk/569GvdCCJHbyG0jIbKYqqpcunSJ5ORkihYtirt7xls05BXDhg1Dp9Px4XsfsD92Y9rxwsGFCLYG4nJHzxL1KIe5hgkrClBeDaIlZTFjw8nZWbvwQohcSa68CJGFFi1aRKUKFSlRogQVK1YksGAAw4YNIzo6Wuto2erVV1/l+q0bLF++nBkzZrB+/XouX71C2/bPcoQIjnOdRpRgIPV4nircI4nv2MEJ5QbPdmivdXwhRC4jV16EyCJffvklo0aNorwumJeogxvOnE2+w9ypM9m+dRu79uzG29tb65jZxmg00qlTpweO3blzB1eceJOm+Cpuacdrq0WZyR7C1XsMGDDA0VGFELmcXHkRIgtERETwzuh3aEopXrbXoaISQnGlAG2V8rxma8iFs+f54osvtI7pUPfu3WP9unU0o/QDhQukrgHTgUrYsHP06FGNEmZOVVWSk5Ox2WxaRxFCZECKFyGywJw5c3BS9LSkbLrF2oIUL2raCjN96nTsdrtGCR0vPDwci9VKKQpm2F5I8cHT4Mqff/7p4GSZM5lMTJw4keJFi+Hm5oaLswvPdX6Offv2ceLECYYMGULFcuWpXKESI0eOJDw8/canQojsJ7eNhMgC586do5Dig1HJeNuF4hRg172LJCQk4OWV8YJuec39gcrxmDJsN6lWUuwWPDw8HBkrUyaTibat27Bz506qqoWoR00S7Cb2r95G/VUrUe0q3gY3ylsDsKEy4+xUvv/uOxYtXsxzzz2ndXwh8hUpXoTIAt7e3sSSgqqq6a68AMSQjEFvwNXVVYN02ihfvjylSpRk78VLlFED0r0uB7mCVbWlGyejlS+//JKdO3cy2F6fEkqBtAX1GlpL8DMHOclNRlob46EYATDbbCy0H6bHCz04e+4sRYsW1S68EPmM3DYS4i/JycnMmTOHDh060KxJU4YPH86pU6ce6WtfeOEFIq1x/MmtdG1W1cZ+w1Wee/65fLUhpqIofDxuLCfUG6zkBImqGQCbauegeoXfdafo17cfYWFhGicFu93OD999Tw17aGrh8g96RcdzVEZF5SjX0447K3p6qNUx2BWmTp3q6MhC5Gty5UUI4OLFi7Ro1pzLV65QUlcQd7sTP+0+wLfffsunn37Ke++999Cvb9CgAc2aNGXhzj08b6tMFQqhV3TcVuNYoTtJjC6FMWPGOKg3OUfv3r25e/cuo99+m732ywTqvYlVk4mzJvFC1xeYOi1n/NGPiYnh+s0btKB2hu1eiiuFVB9uEPPAcRfFQDlbAFs2bXZASiHEfVK8iHzPZrPRrk1bEq9H8Q4tCFA9QQGr1c4mzvD+++9TunRpunbtmulzKIrCshXL6d2zFz+vWc1v+j9w1TlzzxJPgG9Bfl/0O9WqVXNgr3KOESNG0LNnT+bNm8fFixfx8/OjR48eVKxYUetoaVxcXABIwpxhu6qqJGPGgD5dm4KCqqrZmk8I8SApXkS+t2bNGs6eP8cImhCgeKYdNyg6WqvluKKL5vP/fv7Q4gXAy8uLVat/58SJE6xcuZLk5GQqVarEc889h3M+X0U2MDCQUaNGaR0jU+7u7jRt3IRDu05S21YU3f+MzwknkkgS6ULwA8fNqpXT+jsMbdbdkXGFyPekeBH53vr16wly8qGI1S9dm6Io1LCHsuDQQWJiYvDx8fnX56tUqRKVKlXKhqQiO7373hhat27NUo7RXq2Aq5JacF5S7zGPA3jiQol/TPu2qjZ+UY5iVqwMHTpUq9hC5EtSvIh8z2q14pTB7YD77rdZrVZHRRIaaNWqFTNmzODVoUM5Yo+giOJLomLmhjWG0JDCXLsRwX8NmyhvDcSOygnDLZIxM3/BAooXL651fCHyFZltJPKEs2fPsn79eo4cOfLYX1urVi0iLFFEqYkZtp9UblK0SBj+/v5PG1PkcAMHDuTK1at8OP5janZvTtsXu7Bq1SouXb3M4cOH6di3G7eKQWRJPX0HD+CPEyfo1q2b1rGFyHfkyovI1Q4fPszw14ezZ+8eAFxdXVm4cCErVqz41zEq9/Xo0YNRI9/i1/hjDLDXxln5+9filHqTo0oEX7zxRYbrt4i8Jzg4mPfffz/d8erVqzN79mwNEgkh/pcULyLXOnr0KI0aNsTPbKQftSiCHzFYAOjXrx9JSUn069fvX5/Hzc2Npct+49l2z/If62aqWQvhiQvndHc5o97iuU6dGT58eHZ3RwghNGWz2YiIiEBRFAoXLoxOl3NvzuTcZCJfs1qtrFixgo8//phPP/2UY8eOpXvMW2+OxNds5DVbQ6oqhfFT3NIWGKuqhDJi+BskJyc/0vmaNm3K0WNH6TGwLyf9o9jidhGv6qHMnTuXX5cswWCQOl8IkTfZbDa+/PJLihYLo2jRooSFhVG8ZHG+++67HLsfm7wjixxn7969dO/ajYgb1/Fxcsdst/LBBx/QsnkLFv2yGD8/Py5fvszW7dvoTU1clPQ/xs3VUuyNPcfKlSt54YUXHum8ZcqUYcqUKUyZMiWruySEEDmS3W6nT58+LF68GM+SRgq18gUVoi/eYfjw1zl+/DjTp0/PcbfNpXgROcq5c+do1aIlASY3RtKUwlZfbKqdE9zgt227eLbds+zes5tr164BUBifDJ/HX/HATe/C1atXHZheCCFylxUrVrBo0SJCmvngWfzvvdc8woy4hTgzc+ZMevToQfPmzTVMmZ7cNhKPJDk5mZMnT3LmzBlsNlu2nWfixIk4mWGQrS6FFV8gdW+Zqkph+tmeYd/+faxfv56CBVPX27hLQobPE68mk2wzpz1OCCFEelOnTsE9yPhA4XKfV2lX3PyNOXLvLilexEMlJSUxevRoQoKCqVSpEuXKlaN40WJ8++232bIk+qIFC6lpDc3wVlAJClDI4MuiRYsoU6YM1apUY4cuHHsGOXZxEaPRhc6dO2d5RiGEyCtOnf4Tl8CM17lSFAXnQB2n/jzp4FT/TooXkSmTyUTb1m345qtJVIsL4HUaM5j6FLyuMHz4cN54440sPZ/dbic+MQEf0n8CgNRfJC+rC7GxsSiKwn8+/w8X1XvMUfYTocYAEKMmAbCTcD748MNHWhFXCCHyKy9PL6xJmQ/KtSWpeHl5OzDRo5HiRWRq1qxZ7Nq9m1ds9eigVKKY4k8ZJZDe1OQ5qvDtt99y8ODBLDufTqejaJEwLitRGbZbVRsRhlhKliwJpK6Iumz5MqIC7HzFFkazgs/ZBMC4ceOydRdnVVVZuHAhdevVxehqxMvbiz59+jzRInlCCKGVnj16knTZjDU5/XAAS4KNxGsmevboqUGyh5PiRWRq6g9TqEgwxZT0K8vWpzj+Bg9mzpyZpecc8upQjinXiVCj07Vt4wLx1mQGDhyYdqxjx45cjbjG77//zqRvJ6ctIjZixIhsGx1vt9sZMGAAvXr14uS143hVcca5pMpvq5dQq1YtlixZki3nFUKIrDZ48GC8vX24uT6WlLupu6qrqkrybTM3N8QSFBTEiy++qHHK9GS2kchUeHg4LdSSkEENoFMUQq0+nD97LkvPOWzYMJb8soQpx3dTz1aU8gSTgoUDylWOE8H7779P2bJlH/gag8HAs88+C4DFYmHNmjVZmul/zZs3jx9//JHgJj54lfz7FpdaVeXW9lj69OlNo0aNCAgIyNYcQjhCQkICM2bMYNaMmUREXCegYEFefKk/Q4cOxc8v/WamIncJCAhg65atdOjYnisrruLqYwRVJTnWROkypVi18vcceftdiheRKW9vb2JSMl/kLVafQjFfnyw9p7u7O1u2beGDDz5gzqzZbE5MLY5KFC3O9DHTH7jqopXJ30zCs4jrA4ULgKJTCKjrxaXFkcyePZt3331Xo4RCZI2oqCiaNGrM6T9PU4kQGqiFuRufwPiPxjFz+gy279xBkSJFtI7pcPHx8SxcuJCzZ8/i6elJ165dqVixotaxnlilSpW4cD6cNWvWsHPnThRFoWnTprRu3TrHrrIrxYvIVM/evZg++Qda2cripjg/0HZNjeaSLZL/9Mz6e6Genp5MnjyZzz77jPDwcFxcXChZsmSO+CWy2+0cO3qcgHqeGbbrjTqMgU5ZOhZI5B4pKSncunULLy+vPHFVYtiwYVw6c4E31SYEK95pV2Fb2csx5cYuXuzbj63bt2ma0dEWLlzIoEGDSEpKwtXXiDXZyrhx4+jcuTM///wz7u7uWkd8IgaDgY4dO9KxY0etozwS7f8aiBzrjTfewMnDyHT9Xq6oUaiqil1VOaneYLZhP5UrVsrWqchubm5UqlSJ0qVL54jCBVJnPOn1euyWh0wTt4KTk5PjQgnN3blzh9dee42C/gUoVqwY/v7+tGzRgp07d2od7Yndvn2bX3/5hRa20qmFyz/4KW48ay3Pth3bOXXqlEYJHW/Tpk306dMHfZCdYj0KEvq8D0V7+hPU2Jvf16yiT58+WkfMN3LGXwSRIxUpUoTNW7dgCPViMtsYb1jPx/q1zGYflevUYMOmjTg7O//7E+UhiqLQunVrEi9ZMlznxhxrJfFWCm3btn2q8yQnJ3PkyBGOHj2KyWR6que6z263s2rVKjp26kj5iuVp1LgR06dPJzExMUueP7+6ffs2dWvX4afpc6ibFMpg6tOd6pzbdoxmTZuyfPlyrSM+kSNHjmC12ahESIbtFQkGYN++fY6Mpalx48fhGuBMUBNvnNxT10ZRdArepdwoWM+T5cuXc+LECY1T5g9SvIiHqlatGucunGf16tWMeP9t3h37PgcPHmTHzh0EBgZqHU8Tb7/9NsmRJu7sicNu/buAMcdbub01jpBCIXTv3v2JnttkMjFmzBiCgoOoUaMG1atXJ6RQCOPGjcNqtT5xZovFQpeuXejYsSNb9m3kpnqFo5cPMWTIEKrXqM7Nmzef+Lnzu/fee4+7Ebd4w9qItkp5yiiB1FGK8rqtIeXtQbzUf8AjbxCak+j1qX+cLWS8oraV1LVB8sumpXfv3mXXzl14lnHJcCajZ3Ejzm5OMtvQQfLHT514Knq9nnbt2tGuXTuto+QIjRs3Ztq0aQwZOoTESxZcAnWoVoWkGyYCgwLZsH4Drq4ZL7T3MFarlU6dOrJp8ya8yrlSpJg/qBB3MZnx48dz4uQJfln8yxPdQhs/fjwrV64kpIUvnkWNacdN0RaubLhM9xe6s3NH7rvFcfv2bQ4ePIiiKNSpUwd///TT+rNTfHw8C+YvoJm1OP7Kg2Md9IqOZ9UKfBa7gaVLl+a6Wwp16tTBzejG4ZRrtKV8uvbDXEOn6GjWrJkG6RwvISF1KxKDWyar0eoUnFwNxMXFOTJWviVXXoR4AoMGDSL8Qjij3hxFvTKNaVa9JdOmTePC+QtUqFDhiZ7zl19+Yf36DQS38CGgtheuAc64BjoTWNeboKZeLF2ylLVr1z7286akpPDtd9/iXc71gcIFwMXXCf9abuzauYujR48+UW4txMbG0q9fP0ILF6ZDhw60b9+eQiGFGDx4sEOvcly9epUUUwolyHgPrYKKB/5Onpw+fdphmbKK2WzGxejMZs7yh3r9gdukF9S7rNb9Sffu3QkNDdUwpeMEBQXh7u5G8i1zhu2WRBtJ0SnplnIQ2UOuvAjxhIoWLcqECROy7PmmTZ+GRyEj7oVd0rV5FDXiFmBk+ozpaWvaPKo//viD2JhYijTO+KqER5gRg5OerVu3Uq1atSfK7kgpKSm0aN6CP4+doK2tHFUohIrKEXMEP86aw5VLlxn62qsOyeLh4QFAPCkZtltUG0l2E56eGc9Oy8neeecdLPEplKAAc9lPMF4UUn24QzxXicZF78x333+ndUyHcXV1pX//AcyYPR2vkq44e//951NVVSIPxuPq6krPbJiBKdKTKy9C5BAXwi/gXOAhG6QV0HH+wvnHft77n5gfuuKwQrZstJkd5s2bx+HDhxlsq0cTpRS+iht+ijstlDK8ZKvNjl2Ou/1VpEgRqlWpxh7d5Qxfv8NcI9lm5vnnn3dYpqwQGxvLgvkLaGQrzmAaMJj6BOHFPRLxxpVOVMJkMbNjxw6tozrUuHHjKFK4CNd/jyHyUDyJN0zEnk/i+uoY4sNTmD5tOl5eXlrHzBekeBEih/Dz9cOa8JAN0hJU/P0ef0xHxYoVcfdwJ/5SxrdTEiNMWM02GjZs+NjPrYVZM2ZSThdEqOKbrq2UEkBRfQGHZVEUhY/Hfcw5+21+5RjxauoVGJtq55B6lRW6E7zQvTulS5d2WKasEB4eToophTIEolMUyiiB9FVq8brSmAFKHRorpfA2uOW7mTX+/v7s3bOPgQMGkXzOTsSaKG5tj6VKieqsW7eO3r17ax0x35DiRYgcom+fviReMWFJSD+7wxRjJeFaCn16P/6gT3d3d4YMHkLsnykk3nhw2rUl3sq9A0nUfKYGzzzzzBNnd6TrERGE2DP/dBtk83BgGujUqRPTp0/nmMtNPlHW86UhdVmBBRyifecOzJ4zx6F5soKbmxsACWQ8Td+i2khRLWmPy08KFCjA999/T2RkJBcuXOD27dvs3rWbVq1aaR0tX5HiRQCpiy91aN8eb08vfLy8ea7zc2zfvl3rWPnKwIEDCQ4O5ub6WBIjTKiqimpXSbiSwq0NsZQoWfyJZ6z83//9H00aNSZiTRTX18Vw92AcN7fGcHnJPQp6BfDrL0uybSPLrBYYFMQdJSHT9rs6x69bM2jQIK7fuM5Xk7+my9A+jBgzihMnTrBk6dJc+Qe+TJkylC5Ziv3KlQzbj3INk81Cp06dHJws53B1daVEiRKyh5lGHFK8fP/99xQtWhSj0Ujt2rU5cOBApo+dO3cuiqI88J/RaMz08eLpffbZZ7Rs2ZJj6/fSICGUevGFObB6O02aNGHy5Mlax8s3/Pz82LZ1O2WKliViXRSX5kdycX4k1zdGU7VCdbZu2fbES48bjUbWrl3HvHnzqFa8JsZIL8LcS/Lf//yX48eOU7Ro0aztTDZ6cUB/TnKTW2r6KalX1CjC7Xc1SJX6/Xv99deZPHky48ePz9V73SiKwvsffsAf6nV+V0+SoloAsKsqx9XrLNefpGuXLpQqVUrjpCK/yvbZRosXL2bkyJFMnTqV2rVrM2nSJFq3bs3Zs2czrVi9vLw4e/Zs2r9zyyfC3Gjv3r289957tKIsra3l0l7rFtYyrOIkI0aMoFGjRrliFkpeUKJECY4cPsqePXvSNkhr1qxZltzScXJyok+fPrluvZH/NWDAAKZ8/wPTwvfQ1vr3bKOjRLBGf5pqVatrHTFP6NevHzdv3uT9995nj3KZEMWbGJKJsibQtmUb5sydq3VEkY9le/Hy1VdfMWjQIAYMGADA1KlTWb169UN33VUUhaCgoOyOJoBvv/2WAIM3rf5RuEDq9+BZtQLHDTf5/vvvmTlzpoYp8xdFUahfvz7169fXOkqO5OHhwbYd23mp/wAWrV3DIg4DoFN0PN/5OaZMncru3bs1Tpk3vPPOO/Tu3Zs5c+YQHh6Oj48PPXv2pFatWvKhUmgqW4sXs9nM4cOHGTNmTNoxnU5HixYt2Lt3b6Zfl5CQQFhYGHa7nerVqzNhwoQnXvhLPNz+3XspZy2ILoM3Ir2io5y1IPv3ZP69EkILAQEB/L5mNRcuXGDPnj0oikKjRo0ICwvDYrFoHS9PKVy4MB9++KHWMYR4QLYWL5GRkdhstnR74AQGBnLmzJkMv6ZMmTLMnj2bypUrExsby8SJE6lXrx6nTp2icOHC6R5vMpke2Lju/tLMFoslX76J3e/zo/bd3cMdxdWGomS8C7KiOuHu7pFrXsvH7X9elJ9eg7CwMMLCwtL+/c/f+/zQ/8zk99dA+p81/b906RJr164lOTmZChUq0LJly7Q9r7LD4+RV1GxcmerGjRsUKlSIPXv2ULdu3bTjo0ePZvv27ezfv/9fn8NisVCuXDl69uzJJ598kq597NixjBs3Lt3xBQsW5MpR/kIIIUR+lJSURK9evYiNjf3Xxf6y9cpLgQIF0Ov13L59+4Hjt2/ffuQxLU5OTlSrVo0LFy5k2D5mzBhGjhyZ9u+4uDhCQ0Np1apVvlzp0GKxsHHjRlq2bImTU8ZXU/7p4sWL1K5Vm1LWAnRRK2NUnAFIUs38qjvKNZc4Dh46lOFVr5zocfufF+X318CR/bfZbGzevJlz587h4eFB27Ztc8Ru6/Iz4Lj+2+12Xn31VRYuXIhHIVeMwXrsFki+bMGcYGXOnDkOn1L+NP1XVZUXXniBzVs34VfDHc/irugMCin3LEQfTsQWq7B1y1bKlSuX5bkfZ1PLbC1enJ2dqVGjBps3b6Zz585A6jd68+bNDBs27JGew2azceLEiUx3NHZxccHFJf1eME5OTvnyl/a+R+1/mTJl+Hn+z3Tr2o0TlquUshdEReW87i5ORmeWL15BsWLFHJA4a+X37z/Ia5Dd/d+6dSsv9u3HtesRGPXOmO1WdDqFQa+8wuTJk3PEay8/A9nf/x9//JHZs2cT3MQHr5J//y1yL6/n1vZY+vTpzdWr1zRZD+ZJ+r9v3z6WL19OSHMfjMV0WDCBFRRv8GnkwrXl0fznP/9hwYIF2ZL3UWX7Oi8jR45kxowZ/Pjjj5w+fZqhQ4eSmJiYNvuoX79+DwzoHT9+PBs2bODixYscOXKEPn36cOXKFQYOHJjdUfOt9u3bc+nyJd4f+yFBzcsT0qIiY/9vPBcvXaJFixZaxxMixzl06BBtWrfB9aaZETRhgr09n6jtaGMrx4yp03nllVe0jigcZPI3k/AIdcWrpOsDxxWdQkBdL6x2G7Nnz9Yo3eNbuHAhRi8XPIqmX19NZ1DwKOXMkiVLNB9PlO1TpV944QXu3r3LRx99xK1bt6hatSrr1q1Lu7R69epVdLq/a6jo6GgGDRrErVu38PX1pUaNGuzZs4fy5ctnd9SHunjxIocPH8ZgMNCoUSP8/R9/j5mcLCgoKHVGgUwqEOJfjRs7Fn+7GwPtdTEoqQMYXRVnmlEaF9XA3LlzGTNmTK7b00g8HrvdzrGjxwmol/Gu4XqjDmOg00MXZs1poqOjMbjrMp0K7+Spx2KxkJiYiI+Pj2PD/UO2Fy8Aw4YNy/Q20bZt2x7499dff83XX3/tgFSP5saNGwwaOJC169al7Rrr4uzCSy+/xFdffSWr/wqRz8TGxrJ6zRq6qFXSCpd/qkUY6/RnWLhwIR9//LEGCYWjKIqCXq/HbnnIvBdr6hCK3KJ48eKYoizYLXZ0TulvzqTcseDj66P5mFLZ2+ghoqOjadSgIXs37uAFtRqf0J6PaENzcwlmTZtB1y5dsNsz3wVYCJH3REdHo6oq/mS8VYOTosdH50ZkZKSDkwlHUxSF1q1bk3jJQkYTd82xVhJvpdC2bVsN0j2ZAQMGYLPYifoj/R5h5lgrCedNDBo46IE7JlqQ4uUhvv/+e65ducZQa31qKUVxV5zxUdxooZSlj70mq9esYcuWLVrHFEI4UEBAAEYXI1eJzrA9UTVz1xaXKwe6i8f39ttvkxxp4s6eOOyWvz/MmuOs3N4aR0ihELp3765hwscTFhbGuHHjuHc0gZtbYki8biLlnoV7xxO4vjqGsCJhvPPOO1rHlOLlYebMnE1VeyEKKB7p2ioQTIjBh7myv4fQ0PHjx/nmm2/45ptvOH78uNZx8gU3Nzd69e7FHsNl4tTkdO2bOQs6JdfvISUeTePGjZk+fTpx51K4vPge1zdGEbEmiku/3sXb2Y8N6zfg6ur670+Ug3zwwQfMmjULPzWQiLVRXFkWSdzxFHp07cme3XtzxJhPh4x5ya1u3r5JJTIecKcoCgFWD65fi3BwKiHg+vXr9OjZg107d6E3pH4GsVntNGzUkJ/n/axxurxv7NixrP19Dd9G7aSJtSQlKUg8KexWLnGcCL747AtNpsYKbQwcOJDmzZszY8YMDh8+jIuLCx06dKBXr15PvBO81l566SX69+/Pn3/+SXJyMiVLlsTX11frWGmkeHmI4MBgbl3JeNEcVVW5Y0ikQmjuWLxN5B3x8fE0adqYiNvXCGnug0dY6qDxhCspHDiwn3bPtuXT/5ugccq8LTQ0lD379/LmiDdZtnIldjX1dkGxIkWZM3YO/fv31zbgX/bu3cv27dtRVZUGDRrQtGlT2VAxmxQrVowJE/LW751Op6NixYpax8iQFC8PMWDgS/zfx+NpYS+Dv/Jg9XyKm9ywRueYNymRf/z444+Eh1+kaJcCOHv//SvsWcwVF18nLq29rF24fKRo0aIsW76Mmzdvcv78eTw8PKhatarmAxkBrl27BkCbNm3QW0ABPrYmU6FceZatWE6pUqW0DSjEU5Li5SFeffVV5syazQ8Ru2ltLUNFgjFj4zBX2ag7S7vW7WjWrJnWMUU+M+/nn/AoYnygcLnP2ceAe2GZvu9IwcHBBAcHax0jTXx8PM+2bcd/Pv8vL1GHYlYfFOACkfx2/g+aNGrMHydP5IhxC3nB1atXOXHiBC4uLtSvXz/XjW/JrbT/iJCD+fn5sXP3Luo0b8AiDvMBvzOetWx0Os9Lrwxk6W9Lc8SnLJG/3Ll7F4Nn5j93Bg/5mczPfvzxR65FpI7FK6kEoFMUFEWhlFKQwda63L1zl5kzZ2qcMveLiIigffv2FC1alPbt29OyZUuCgoMYP368LKHhAHLl5V+EhISwZt1awsPDOXToEE5OTjRu3Fg+tQjNlCxegn1/3s603Rotb5z52cIFCyhLxptD+ihuVLIHs+Dn+TliumtudefOHerVr8fdmNsE1PfCPdQFu8lO7Llkxo4dy/Xr15k2bZrWMfM0KV4eUYkSJShRooTWMYRg4MBBbOqxmcQIV9wLP7gpaWKEiYSb6afvir8lJiaye/duzGYzlStXpkiRIlpHylIxUdEEqek3q73PB1fCo2McFygPmjhxIrfu3CK0sy9OHn+tsuyuJ6COE05eeqZPn86wYcOoVKmStkHzMLm+LEQu06VLF1q2bMHNzbHcPRhHyj0LKfcs3D0Yx83NsTRrLuOwMmKz2fjwww8JCQqmdevWdOjQgWJFi9GpY0du3LihdbwsU6pMaa4ZYjNtv6KPoWRpGbD7pFRVZeasmXiUdP67cPkHn7JuuHg4M2fOHA3S5R9SvAiRyxgMBlauXMWI4SMwhcOVZZFcWRaJKRxGDB/B4kWLtY6YIw0cOJAJn06gekIQ79CCj2lLF7UKO9duoUG9+nlmOf9XBg8mwprx6r+n1JuE2+7wypDBDk6Vd5jNZqKjonHxz/jGhaJTcPLRpc34EtlDbhsJkQsZjUYmTpzIuHHj0lbWrVKlCu7u7ppvVZ8THTp0iLlz59KdatRR/l62vy7FKGMNYOK1LXz66aeMHTsWb29vDZM+vbZt29KlSxcAlqnHqKgGoKBwnAj26a7Q8dkOae3i8Tk7O+Ph4Y45xpphu2pXscarBAZmPO5IZA258iJELubu7k69evWoV69erl3J0xHmzp2Ln8GDWhR94LhFtXGIq6h2lUmTJuHj40PD+g1YvXq1NkGzgKIozJgxA4ArBZL5gZ18zw7O+sXx/ocfsGTpUvT69Lc7xKNRFIUXX+xPwgUz1pT0g+PjL6WQEmuiX79+GqTLP+TKixAiz4uIiCDQ6oHuH6vLWlQb09nNFaKoSRHKEUQyFg7uP0f79u35/vvvefXVVzVM/eTuFyd/njnNpUuXUFWV0qVL4+zsrHGyvGH06NEsXLSQG2tj8KvuhnuoCzazSuzZJKKPJvJ8l+d55plntI6Zp0nxIoTI8wICAthjSMJuVdMKmF2Ec5l7DKUhxZUCaY99xlaEZfzB8NeH06lTJwoVKqRV7Kfm5OREhQoVtI6R5xQpUoRdO3fRt18fDm88knbcycmJQQNfYdKkSbINQzaT20ZCCIeJjo7mq6++onmzZjSoV58333yTs2fPZvt5+/bty11rHH9wPe3YHi5RjdAHChdIvS3QjvI4KXpmzZr1yOeIjo4mIiICs9mcZblFzlWuXDkOHTzMoUOHmDlzJj///DMRERFMmTIFF5fMp6qLrCHFixDCIQ4fPkypEiV5Z9Robm87Q/Lea8z6bhrlypXjhx9+yNZzN2jQgE4dO7JId4Qt6jli1CTukUgpCmb4eKPiRBHVl5MnT/7rc2/atIkmjRrj5+dHaGgoQQGBvP3228TGZj5dWeQdNWrU4OWXX6Z3796yk7gDyW0jIUS2i4+Pp23rNnjG6XhdbYWX4goKWK02VnGS1157jfLly9OkSZNsOb+iKCxavJg33niDObNn87s1tSiJx5Tp1yTozHh4eDz0eX/++Wf69etHmM6fHlTHAyMXYu/y/dffsGHdenbs2pnrZy8JkRPJlRchRLabP38+96Lu0ddWM7Vw+YtB0dOZyhQ2+PHVl19mawaj0ci0adOIuH6dn3/+mZo1anBQfxWbmn7GyCX1Hjes0Tz//POZPl90dDSvDHqFGhRhmK0htZSilFeC6KhU4jVbQ86fPsuECROys0tC5FtSvAiRTaxWKwcPHmTHjh3cvXtX6zia2rBhAyWUgvgqbunaFEWhqjWEDRs2OiRLQEAAvXv3ZsrUqUQpScxTDhKjJgGpq6eeV+8wz3CIKpUq07Zt20yf5+eff8ZiMtNerfDALCaAEMWbWrYizJw2Q9bdESIbSPEiRBZTVZXvvvuOsNAi1KpVi8aNG1MoJISePXty69YtreM9kZSUFH766Sd69epF9+7dmThxIvfu3Xvkr7fZbBjUzN9unNBjs9lQVTUr4j6SmjVrsmTpUi65xfJ/yga+NmznM6dNTGEXJSqVYe36dQ9dD+X06dMEGbzxUowZtpeiIFGx0fm+cBUiO8iYFyGy2AcffMCECRN4hjC60Bg3nDhjvcPaJSs5sG8/+w8eoECBAv/+RDnEqVOnaNW6FTeu38A9yIiih6W/LeXDjz5k0cJFdOrU6V+fo06dOqz7fS1JdjNuSvq1Rk7qb1K7dm2HTy/t2LEj12/eYP78+Rw7dgyj0UiHDh1o1qzZv2Zxd3cnUTVhV9V0V14A4v4aTyOLBwqR9eTKixBZKDw8nAkTJtCO8vRUalBM8SdQ8aKxUpJh1obcunaDzz//XOuYjyw+Pp4WLVsQY7pHsa4FKdzel0JtfSnWowDOQQrdunVL257gYV566SV0Tnp+VY5h/Z8xJnvUi5y33eGNEW9kVzceytPTkyFDhjB16lQmTZpE8+bNH6mI6tKlC9HWRE5xM12bXVXZr79C86bNZMCuENlAihchstCcOXNw1xtpRPpde/0Vd56xhTJrxkzs9vSDRHOi+fPnc/vWbQKbe+Hs8/eFWoOrnqAm3ujddEyaNOlfnycwMJCFixZyWn+bzwyb+F09yUb1DN/odrCEYwwbNoyuXbtmY0+yXu3atWnRrDmL9Uf5Q72O/a9bXrFqMguVw1yzR/PeB+9rnFKIvEluGwmRhS5fvkwwXjgrGY+VKIIv22MukJCQgJeXl4PTPb5Vq1bhFuKCs2f6twpFr+BWzIkVK5cDc/71uTp37syhI4eZPHkyv69YhdlipuYzNZn8+ut06NAh161IqigKS35bSrcuXZm7eRPeBjc8FSM3rDEYjUZ+nvUzzZo10zqmEHmSFC9CZCF/f3+ilKRMx0FEkoiLswtubuln3eREKSkpKE6Zt+udFRJTMl8r5X9VqlSJmTNnwswsCJcDeHt7s37jBg4ePMhvv/1GQkIC5cuXp3fv3nK7SIhsJMWLEFmoV69efPPNN/zBdapS+IG2FNXCfsNVevTsgcGQO371qlevzq69O1P3BDKkL8aSr1uoWq26BslyDkVRqFWrFrVq1dI6ihD5hox5ESIL3L17l//+97+MHz+ewIBAFilH2KWGY1KtqKrKRTWS6fq9WFzg3Xff1TruIxs8eDBWk427B+PSTWOOu5BMwvUUhr02TKN0Qoj8Knd8/MtB4uLiWLhwIefOncPb25uuXbtSvnx5rWMJDa1bt47nuzyP2WzCGOyE6qRiUW38xnFWKCcw6PSYbBZKFCnOpkWrKVu2rNaRH1nJkiX59ttvee211zDfteNR3BnFoJB01Uz81WRefPFFevTooXVMIUQ+I8XLY/jpp58YOmQoKSkpBBi8iFdT+Pjjj+nerRtzf/wRV1fXf38SkadcuHCBzs91xjlAR0ijghiMqRczrUk2bm6OxRaj8s4779KwYUOaNWuGTpf7Lna++uqrlClTholfTmTjhg3YbHaqVK3MG2NH8OKLL+a6gbZC5FYmkwm73S5/a5Di5ZGtWbOG/v37U1MtQjvK4211xaraOcI1flu6nJd0A1i4aJHWMYWDff/996g6O0HNfB8YE2Jw0xPSyofLiyNRFIUWLVpomPLpNW/enObNm2O327Hb7blmzI4QecHq1av5/IvP2bF9BwDlypfljeEjGDRoUK78QJQV8mevn8C4seMooRTgBarj/dfGcgZFRy0ljM72SixavJizZ886NNPly5f54IMPeO655+jTpw/Lli3DarU6NEN+t+r3lbiFOWU4mFXvosM11IlVq1ZqkCx72O12Vq1axejRoxkzZgybN2926JL+QuQ3X331Fe3bt+fwuQME1vciqLE315OvMGToEPr07ZNr1ozKavLx6RFcv36dAwcP0I9aGU5/rUEoq/SnWLJkCe+/75hFqSZPnszIkSMxKk4UsfuSqDMzf/58qletxkdjP3ZIBgEmsxmdW+a3TXROOkzmR59KnJMdOXKETp07EXEtAldvF1S7yn/+8x8qVa7EyhUrKVq0qNYRc5SzZ88yd+5cIiIiCAgIoE+fPlSrVk3rWCIXOXPmDKNGjcKvsjsFnvFMu0XrXcoNj4suLFywkPbPtqdXr14aJ3U8KV4eQXx8PABeZLwBm5Oix0NnTHtcdlu5ciUjRoygMSVpQ3lcFAPY4SpRLA4/BZBvq3FHq1OrDqu3/I76jJpu7IdqVzHdsFK7ax2N0mWdiIgImrdojsU5hbDOBTAWcEJVVZJvmjm/5xzNmjflxB8nZR8fUjfmHDlyJJMmTcLD4Eqg6sE9JYmvvvqKnj16MvfHuTg7p9/fSYj/NW3aNJzcDPjX8Ez3/uJZ3BWPsya++/47KV5ExgoXLozRxUi4KZLipN9QL0pNJNISR5kyZbItw9GjR9mzZw86nY7pU6dRSh9AR1ulB36giyh+dLVWBmDHjh20bNky2/KIVMOGDWPJkiVE/ZGIfxWPtOOqqhJ5OJ6UODPDhuX+qcTfffcdickJhD3rj/6vQcmKouAW4kJwCz2Xll5m4cKFDBw4UOOk2vv888+ZNGkSHalEfWtxnBQ9NtXOYa7x6y+/4F/An2+//VbrmCIXOHr0CC4BenT6jK/uuhYy8Mcffzg4Vc4gY14egYeHB7379GaX4RJRauIDbXZVZbVyCk8PD7p3757l57569Sr169WjevXqjHj9DYa9+hrH/jhOTVtohrM8iuEPpE7fFdmvcePGfPTRR0QejCdiVTRRfyQQ9UcCEStjiDqeyMSJE/PErYJFixfhXsw5rXD5J2cfAx6FjCxaLAPWU1JS+Pw/n1Of4jRRSuH01zYR+r/Gx7Wyl2X61GlERkZqnFTkBm5u7tjNmbfbTHZcjC6OC5SDSPHyiD799FMKFApksmEH69XTnFfvcki9ynf6nRznBjNmzczyS+YxMTE0btiIcwdP0p/afKZ24H1aAWAk4zXb7xc0JlPeGGeRG4wbN47ff/+dOhXrEXvcRNwfZhrVbMLGjRt56623tI6XJeLj4zG4Zf52oXNTiI2NdWCinGnv3r1ExURRh6IZttehKGarRT5ciEfSuXNnkm6YMMeln4hht6okXrTQ5bkumX79pk2b6NevH+3ateO1117j6NGj2RnXoaR4eUSBgYHs3b+PXi/3Y6fxMlPYyQIOEVavPBs2bsiWqy7Tp0/nesR1BlvrUVkphF7R4Y0b3hg5za0MvyZaTQKgatWqWZ5HZO7ZZ59l06bNmFJMpCSnsHbN2lw/PfqfypYtS8ptW4ZtqqpivmOnfDlZrDE5ORkAdzIe0+L21/H7jxPiYXr16kVwSDC3NsdhirKkHbcm2ri1NRbVDCNGjEj3dffHX3bp0oWla35l56ktzJ43k+rVq/Pqq6/miTGRUrw8hsDAQKZOncrde5GcP3+e27dvs23Hdpo3b54t55s39ycqqyH4K39f0dEpCvUozkGuckG9+8DjraqN1brUAbtdu3bNlkwi95g+fTo9evSgZ8+eTJ8+nYSEhCd+rqFDhpIQkUzCtZR0bTGnk0iJMTFkyJCniZsnVKhQAUVROMudDNvPchuAypUrOzKWyKU8PDzYvGkzBT0CufxbJBEro7m+OoZLi+9iv6dj+bLlGa7wPnToUAAKtfClcGcfCrXyo0g3PwLqeTFl6hS+/PJLR3cly8mA3Sfg5uZGyZIls/08kZGRVFZ94X+GtjSlFOFEMpVdVFZDKE0A8Zg4ZIjA/NfALpn1kX/t2rULgHfeGY3ibUdVYfHixYx5bwyrf19NnTqPP/upZ8+eLF68mDVr1+BZyoRnUSOqTSU+PIW4i8m8/vrr1K1bN6u7kuuEhYXRrm1bNm3YQRlrID7K3yuhJqlm1urPUKV8ZdnEUTyysmXLcv7ceZYtW8a6deuwWq3Url2bvn37Zrhz+YULF1i1ahW9evXCrZALJmvqBw5Fp+Bb3h1TlJWJX37BiBEjcHJ6yJbxOZxcecnBwoqGEaFLP47AoOh5mbp4Ka5cdI/jF46y1eUirbq3Z8vWLRokFTnF5cuX6da9GwBhzxegUDtfCj/rS7HuBTA5J9G6TWtu37792M+r1+v57bffGD9uPMYYDyLWRXF9YzQFlWCmTJnC5MmTs7orudYPU6ZgLOjFV4Zt/K6e5KgawXr1NF8atpLgbuOnn+fJlgrisTg7O/PCCy8wZ84c5s2bx7BhwzIsXCB1soZOn/mfdu9Srty5fTfXj3+R4iUHG/jKIE7bb3FZvZeu7Sy3iVGTWLB4ITabjaTkJH6eP59KlSppkFTkFD/88AMWe+q9cYO7Pu24k6eB4ObeJCUnMmPGjCd6bicnJ95//30irl0nPDycy5cvc+7ceYYMGSJ/jP+hSJEiHDx8iJdeHcQhj5vM4wDbXS7xXL8XOHTksNwyEtnKbDZnOrUaQOekpD0uN5PiJQfr27cv9erWZbp+LxvU09xW47ihxvK7epKfdAfp2KEDbdu2RafTPfUfD7vdzoULFzh79myu/6HOz5avWIZraMaXgvVGHW6hzixbvuypzmEwGChevDhhYWH5dl+VfxMcHMzkyZOJiokmJiaG+IR4Zs2aRYkSJbSOJvK4GjVqYDVnPLgeIOGaCWcX5wzHyuQm8s6Tg7m4uLBuw3oGvPIy242X+C+bmMhmDnncZOSot/h1yZKn/uOhqio//PADJYuXoFSpUpQtW5ZCQSF8+OGHMt06F0oxmdA7P+RTl7NCSorMdHEUvV6Pt7e3bGQpHKZRo0aULlMKAFvKg7OKTNEW4k6m0LtXb/z8/LSIl2XkNyqH8/Dw4IcffmDChAkcP34cnU5H9erVs2xA7htvvMG3335LdSWUFtTDgJ6T0Tf474T/sG/PXtasW5urB3XlNzWq12Dnge0Ztql2FdNNGzU7PuPgVEIIR1EUhR/n/sTly5eJWBWNLsSGs5eelLsWEi6ZKVe2XJ6YbSRXXnIJHx8fGjduTMOGDbOscNm/fz/ffvstz1GFPjxDOSWIUkpBnlOqMNBeh81btjB37twsOZdwjGGvDSMpKv10ZoCo4wkkx5h47bXXHJxKCOFI928JDew/COWGM3f3JuBtKsj4sePZs3sPvr6+Gid8enLlJR+bPn06BQye1LcWT9dWSgmgnBLEtClTGTRokAbpxJNo3rw5w4cPB+Dmxlh0QVZUFZIuWUi4mczYsWNlmq4Q+cRnn33GxIkTtY6RLeTKSz529vQZilh90GUy2Le43Z8zZ844OJV4WuPHjwegXOGK3N4dx9298VQrVZPly5fz8ccfa5xOCCGenlx5ycd8fH25pTsPasbtMSSTkpLCvXv38Pf3d2w48cTuzzzbtHETiqKgKAp6vf5fvkoIIXIPufKSj73Q4wXC7Xe5oaZfCC9JNXOYq9hVldmzZ2uQTmQFg8EghYsQIs+R4iUf69atG3pFx3R2c1q9hV1NvQRzTY1mGrtQUChBAbZskVV7hRBC5Bxy2ygfMxqNOLs4o0/RMYM9eOCCQdURQzJ+uDGE+qzjNKqayX0lIYQQQgNSvORzjRo14s9Nh+htr8k57mBHJQw/yhFEMhYu6CLp3aiR1jGFEEKINA65bfT9999TtGhRjEYjtWvX5sCBAw99/K+//krZsmUxGo1UqlSJNWvWOCJmvjTizTe5Zo/iAndpTTnaKRWooARjxc4i5Qh6ZycGDhyodUwhRD5js9mYP38+9RvUx7+AP0WLhfHOO+9w7do1raNlm8uXLzN37lxmz57N2bNntY6To2V78bJ48WJGjhzJxx9/zJEjR6hSpQqtW7fmzp07GT5+z5499OzZk5dffpmjR4/SuXNnOnfuzMmTJ7M7ar7Upk0bPvnkE9Zxms8NW1ipnmCJepT/06/ngtM9lv62lICAAK1jCiHyEYvFwvNdnqdPnz78ceUouqJmYl0j+fqbr6hUuRKHDh3SOmKWio6O5vnnn6d48eIMGDCAl19+mbJly9KyVUtu3rypdbwcKduLl6+++opBgwYxYMAAypcvz9SpU3Fzc8t0BsvkyZNp06YNb7/9NuXKleOTTz6hevXqfPfdd9kdNd/64IMP2LVrF026tOFKqJnIEnoGvj6Ek6dO0rZtW63jCSHymYkTJ/L7qt8p1NKXQm188K/mSWB9b8K6+WN1MdGpcycsFovWMbOE2WymZauWrF73OwH1vSj1YiCl+gcR3MSHnft20KhxQ+Li4rSOiaqqbNiwgU6dOxEaFkqZsmUYM2aMZlfCsnXMi9ls5vDhw4wZMybtmE6no0WLFuzduzfDr9m7dy8jR4584Fjr1q1Zvnx5ho83mUwPbCB4/5tssVjyzA/347jf58fte61atZg3b16mz5dbPGn/cxur1Yper89wN/H88hpkJr/3H3L3a2Cz2ZgxczoFK/riX8LrwUYDFGrsxLVV91i5ciUdO3bM8DlyU/9//fVX/jz1J0XbBWAs6Jx23LWsK97BnlxbdYs5c+bw6quvPvJzZnX/VVXlnXfeYdq0abj5G3EJ1hNrSuKHad8za9ZMli79jTp16jz1eR4nr6Jm41SSGzduUKhQIfbs2UPdunXTjo8ePZrt27ezf//+dF/j7OzMjz/+SM+ePdOO/fDDD4wbN47bt2+ne/zYsWMZN25cuuMLFizAzc0ti3oihBBCiOyUlJREr169iI2NxcvL66GPzfWzjcaMGfPAlZq4uDhCQ0Np1arVv3Y+L7JYLGzcuJGWLVvmy92g82r/4+LiaPdsO/48/SfuYS64BhiwJNhJumhGrxpYtmw5tWvXBvLua/Co8nv/IXe/Bjdu3KBcuXIEN/HBI8yYrl1VVSKWxTD4pSFpW2H8r3v37rF//37ee3cMl65cxtvTixd69uD111+nSJEi2d2Fx1Kvfl2umS8TWDfjv1f3jiZguO3K+XMXHvk5n+T7f+fOHebMmcNvy34jISGB8uXK8/LLL9O6dWsaNW7ExXvnCW7unf5c8VYuL4vkm8nf8OKLLz5yxow8zu2xbC1eChQogF6vT3fF5Pbt2wQFBWX4NUFBQY/1eBcXF1xcXNIdd3JyynW/tFlJ+p+3+v/xxx9z9PgRQtr6YPRP7ZcLOtzK6rixIZYePXtw+dJlDIa/f6Xz2mvwuPJ7/yF3vgZFihShcOFC3D57HadCPunak26aiL4TQ7NmzTLsW2RkJG1atWbcJ+MpeEWlYnI5IpMTmPP9DOb9+BNbt2+jcuXKDujJowkMCOL0oVP4WJ0zbI+7lUDZwLAn+j4+6vf/2LFjNGvejPiEONzCnDG46ti07xorVqygT58+7N+3n6CG3pisGexY7wo6L9ixY8dTz0x9nD5m64BdZ2dnatSowebNm9OO2e12Nm/e/MBtpH+qW7fuA48H2LhxY6aPFyKvS0xMZM6cOXiVM6YVLvfpnHQUqO3B9YjrDl1SICUlhfj4eFnAUGQ5RVF4++3RxF1MJvpk4gM/Y+ZYK3d3J1KhYgWaN2+e4dePfPNNblyOAKCzUoU6SlHaKxV529oMt3iFni/0yFE/ty+//DKJt1NIjDCla0u5aybhagqDBr6Sbee3WCy079AekyGZsG7+BDf2oWAtLwp38CWosTc///wzAA99yVQ1w/F32SnbZxuNHDmSGTNm8OOPP3L69GmGDh1KYmIiAwYMAKBfv34PDOh94403WLduHV9++SVnzpxh7NixHDp0iGHDhmV3VCFypAsXLpCUlIR7aPorjADGAk64eDhz5MiRbM+yefNmWrZsiaurK15eXhQtXpSJEydiNpuz/dz5idVqJSYmBpvNpnUUTQwcOJARI0ZwZ18cV5dGc3N7DNfXR3N5SSRBvkGsWrkKnS79n6/IyEgWLVpMI2vxdG3uijPtbeX588xpdu3a5YhuPJKOHTvSsmULbm6OJfJIPOZYK5Z4K1F/JHBjfSzVa1Snb9++2Xb+FStWcD3iOgENPDC4PrgPmncpN7xKuOJidCHxcsa/4+Y4K4m3U2jatGm2ZcxIthcvL7zwAhMnTuSjjz6iatWqHDt2jHXr1hEYGAjA1atXH5jHXq9ePRYsWMD06dOpUqUKS5YsYfny5VSsWDG7owqRIxmNqff97eaMP/qodhW7xZ72uOwyc+ZMWrZsyd4Tuwis70VwUx9iDXd555136NixQ66Y2ZHThYeH89JLL+Hp4Ymvry8+Xt4MGzaM69evax3NoRRF4euvv2bv3r306NyT0j4VqF2mPlOnTuXkiVMUK1Ysw6/7888/sVgtlCHjtalKURBnnYHDhw9nZ/zHotfrWbFiJUMHDyXxtJVLv97l4uK7xBxNodcLvdmyeUu2/m7v2LEDNz8jLn4Z37LxKGbElGIiISKZe8cTHrhqZU22cWd7PAUDCvLCCy9kW8aMOGTA7rBhwzK9crJt27Z0x7p160a3bt2yOZUQuUOpUqUoWqwoUedu4144/dWX+EspWExW2rdvn20Zbty4wZChQ/Au40pAfa+0S8ReJVzxLGViw/qN/PDDD7zxxhvZliGvO3HiBI0bNoJEC42txQjEkxtJsfw0bTa/LVnK7r17Mv2jnVfVqVPnsabgOjunjhtJwZphuxkbNtWe4ThJLbm6uvLtt9/yySefcODAAex2OzVq1KBgwYLZfm5FUeBfbgkBjBgxgkmTJpF43oxLsB6bWSXpihlPT0/WblyLq6trtmf9J9lVWogcTqfT8d6Y94i7mMy9o/HYralvJqqqknjdxL19ibRu0zpbr07OmjULRQcFanmmu7ftXsgFz6JGvvteFpJ8Uqqq8mLffrglKLxlbUprpRxVlcK0UyrwlrUJlnuJDB08ROuYOV716tUJKFCQI1zNsP0wV7Gj0q5dOwcnezQ+Pj60atWKNm3aOKRwAWjatClJ0SmkRGZ85TThkolSZUrx1VdfsXv3bp5/tivBujBK+ZZj/LjxnD1zlho1ajgk6z/l+qnSQuQHAwcO5OrVq/zf//0fcadNOPvrsSdB0r0U6tary8IFC7P1/H/88QfGgk7onTP+vONW2JkLOy5gsVhy3eyWnODQoUMcPX6MgdTDTXlw1omX4koLa2kWbdzApUuX8t3Vl0d19+5djh8/zvNdu/DTjz8BYFftKKQWh6e5xe/6P3mha3fCwsK0DZuDtG/fnrCiRbi76zbBLb0xuKeOe1FVldizycRdTObzqW+hKAr16tWjXr16GidOJcWLELmAoih88skn9O3bl5kzZ3LhwgV8fHzo0aMHLVq0yHDwYlZydXXF/pAxubYUOwAHDx7MMW9uucmJEycAMh2rUfav4ydPnpTi5X/cu3ePESNGsGjRIqzW1NtF99f4+sKwFV/VQJQhmdvWWFo0bs6MmTO1jJvjGAwGVv++hmbNm3H510jcQl3QuyqYb9tJupfCkCFDeOWV7Jvt9KSkeBEiFyldujSff/65w8/buXNn5s2bR8pd8wNLmEPqgOHYc0noXXS8Pvx1Dh/SbjBkUlISixcvxs/Pj+7du1OpUiUGDhyY4xYm+1/3xwskYcaT9IMzEzE/8DiRKj4+nsZNGnP+4jl8a7jiUcSI3api/uuuUUCxEIoVK4a/vz99+vShSZMmDp/SmxtUqFCB03+eZvbs2fzy62Li4uOp3KwyQ4YMoWnTpjnyNZPiRWjGZrNx9epVFEWhSJEi2X71QDy5jh07EloklOsbrxPSwhfXgNQCxppk486+OMyxNgo+48mRA0c4ceIElSpVcnjGM2fO0LJVS+5F3mPhwoXs+nMbv6/9nQmfTWDG9BlpyzPkRK1atcLF2YV95su0pGy69n1cxs/blwYNGmiQLuf64YcfOHPmNKGd/HDx/ft2pXdgagF4/vx5pkyZIlcDH4Gfnx+jRo1i1KhRWkd5JPLXQjiczWbjiy++oGiRMIoXL06xYsUoXrQYkyZNwm63ax1PZMBgMPDaq69hTbZzdeU9Li25y5WVkYQvukPCVRMhzXzwKpl6VeDSpUsOz5eSkkKr1q24l3SXsM4FAAhp5kuxF/zxKOnCyy+/zM6dOx2e61H5+/szZOgQNipn2adexqam/h5YVBvb1fPs4iJvjR6V7dPhc5vpM6bjUczlgcLln1y9XZg1a5aDUwlHkCsvwqHsdju9e/fm119+oaZahLbUQwWORUQw8s2RHD9+nNmzZ+fIy5T5XalSpUCFwAZepERaUW0qnsVd8S7pit6oI/l26q0Nf39/h+ZSVZX58+dz7eo1inYtiLP3329rOmcdgfW9sETa+WLiFzRs2NCh2R7HF198QVRUFPPmzWO94Qz+qjt3lAQSrMkMHz6cd999V+uIOU5ERAQ+1TIv6PQ+CpevXHZcIOEwUrwIh1q5ciWLFy+mH7WoqhROO16eIEpRkLlz59KzZ09atWqlYUqRkTZt2uDp5YnpnpWgBg9u0KaqKtEnEylSJPSx1uV4GlarlR9++IFvvv2G8AvhuBRwwsUn/Vuaoii4F3di7Zq1qBosY/6onJyc+Omnnxg1ahTz5s3j9u3bFC5cmP79+1O6dGmt4+VIfn5+pDxkMz97gkpgQKADEwlHkeJFONS0KVMppi9AVXvhdG01KcIOw0WmTZ0mxUsO5Obmxrix4xg5ciSKXsG3kjtO7nrMcVaijiUQfymFqfP/g16v//cne0pWq5XnnnuO1WtW41nUiEsBA3rnzIsSnbMOq9WK3W53SL6nUblyZb744gutY+QK/V/sz5eTJmKtasPglv77mnTPRJ8+fTRIJrKbjHkRDnXm9GmK2fwybFMUheJWP06fOuXgVOJRjRgxgs8//xzTRZWLi+5wcd5dLv1yF/W2EzNnzqRXr14OyTFjxgxWr15NSEsfgpv54FnUleTbZmymjMdMJV0zU7lKpRxfuIjH88Ybb+Dn48+NdbEkXElJ2yoj9mwiAPXr16d169YapxTZQa68CIfy9PIijswv88YqKXh5F3JgIvE4Unf8fZvBgwezfPnytFsbnTp1ws3NzWE5vv3uGzyLGvEITR3v4F3alXtH47m9J5aizR+cThx/MZmEq8kM/1C2LshrgoKC2LljJz179eDwxiMoOgVVVXF3cwfgl19+kYI1j5LiRTjUCz17MP6jcbS3p+ClPDjQLlpN4k/lFp/3fEujdOJReXl50a9fP03ObbPZOP3nGQL/Me7G4KYnqJEPN7fFcCUhEtpBzOlEoi/GE38tmZ69euboqdLiyZUqVYpDBw9z6NAhDh48iJOTE82aNePEiRN4eHhoHU9kEylehEO98sorfDPpG2ZE76WrrQpF8AXgMlH8ajhGYMFA+SMjHkqn0+Hk5JTuFpFXCVecPPUkn089HnkwgbLlyvH6+Nfp16+frCOUx9WsWZOaNWsCYLFY0lYtFnmTFC/CoQoWLMiWbVvo1KEjky9tw9/JExWVKEsCZYuXYcWqlfj4+GgdU+RgiqLQoWMH1mz5Hb9K7ii6vwfqugY4YzSm3iaYM2cO3bt31yqmECIbSfEiHK5ChQqcPX+OdevWsWPHDhRFoWnTprRs2VI+HYt/ZTabiY2JJSXazM1tMQTU9cLgmlqwpERaiNuXDL3g2Wef1TipuM9qtXLx4sXUQfnFi+fKcSh2u53169cza9YsLl66SEBAAH379KVr1664uLhoHS/fkeJFaEKv1/Pss8/KHxjx2EaPHs3W7VvxKe9G7NkkEi6nYCzohM2sYo62EhwSDICzs/O/PJPIbhaLhc8//5xvvv2GO7fvAFA4tBBvjhjJiBEjcs2HFbPZzAs9XmD5suW4FTTi5Kdw/sRp1vdZz8QvJ7Jp4yaHL86Y30nxIoTINaKjo5kydQq+VdwoUM2TAtU9iT2XRMo9C056BWdvA6Y4k9YxBakDq7t178aqlavwLG2kcHU/UCH+YhRvjXqLEydO5JrVtD/++GNWrlpJSAtfPMJc0jKn3DXz58ZT9O3bhzVr1mqcMn+R4kUIkWts2bIFs8mMd2kfAPRGHX6V/55RYo6zcmtVgkbpxD8tXbqUFctXUKilLx5hf88sdC/sgmuwM3PnzqV37960aNFCw5T/LjExke++/w6f8q54Fn1whqSxoDN+z7ixdu06zp49S5kyZTRKmf/kjmt2QmSze/fu8c033/Dmm2/yySefcP78ea0jiQyYTKlXVTJbTVfvLG9pOcWUqVPwCHF9oHC5z6ukK27+RqZPn65Bssdz5MgREuIT8CzhmmG7ZzFXFJ3Cli1bHJwsf5MrLyLf+/bbbxk16i2sdhuu3i6YEy189NFHDBgwgGnTpuHklPGOtcLxqlatCkDiNROexdP/MUm4luLgRCIzZ8+ewTkg44G5iqLgHKDj9Jk/HZzq8dlsNgCUTOpiRZfan/uPE44hxYvI1+bPn8/w4cPxKe+GfzVfDK567FaV2HNJ/PjTjxiNRn744QetY4q/lC9fngYNG3DoyEFcg5wf2M/Gkmgj5lgyTZs00zChuM/b24cbibGZttuSVLxDfRwX6AlVrVoVF6MLCZdTcPFN/0Em4aoJu81O/fr1NUiXf8k1VpFvqarKxx9/hGdR4wPTbXUGBd/y7vjXcGf69OncvHlT46Tin+bOmYu30Ydry6K5sz+O2HNJ3NkXx7Vl0fh5FOC7777XOqIAevXsRdIVM9ak9FckzHFWEq6l0LNHTw2SPR4fHx/6v9ifmJMpJN8xP9BmibcSdTCJOnXrUK1aNY0S5k9SvIh86+TJk4SHX8S7nFuGMx68y7qhqnaWL1/u+HAiUyVKlODI4SMMG/o6aoQTt3bEotx0YcTrIzh86DChoaFaRxTA4MGD8fXx4+aGWJJvm1FVFVVVSbph4taGOEJDQzXbYuJxTZw4kRrVanBtVRQ3NsYQeSQ+dSuK36II8Alk0cJFWkfMd6R4EflWfHw8AAa3jH8N9M469M76tMeJnCMkJIQvv/yS6KhozGYz9yLv8fnnnxMUFKR1NPGXgIAAtm3dRohvYa6uusfVX6K5sjiKa2uiKBFakm1bt+Hp6al1zEfi4eHBtq3bmDp1KqUKloOrLgQbivB/4/+Po0eOEhYWpnXEfEfGvIh8q0SJEuj0OpJumjO8l51yz4IlxUrZsmU1SCcelQyozrnKly/P2TPn2LBhA7t27UJRFJo1a0aTJk1yxfou/2Q0GnnllVd45ZVXtI4ikOJF5GOBgYF07NiRdZvX4FnU+MDgT9Wmcu9QIsEhQbRr107DlELkbjqdjjZt2tCmTRuto4g8RIoXka9N+noStevsJWJlNJ5lXTAWdMISbyP+TAqWWDtLf/8Rg0F+TYQQIieRMS8iXwsLC+PggYP07NqLuBMmItZGcWd3HA1rNmHHjh20atVK64hCCCH+hxQvIt8LDQ1lzpw53Iu8x4ULF4iMjGTd2nXUqVNH62hCCPHIVFVlwYIFNGueutZRYFAgzz3/HLt379Y4WdaT4kWIv3h4eFCiRAn8/Py0jiKEEI9FVVUGDRpE7969OXszdeVi93IGNuxYS6NGDZk7d662AbOYFC9CiBzLZrMxd+5caj5TA2dnZzy9POnbty/Hjh3TOpoQOcrixYuZNWsWQY28CW7hDYBfJQ8Kd/bFs5QrAwcN5MqVKxqnzDpSvAghciSbzUaPnj0YMGAA5+6cxreGKy6lYMmqX3nmmWdYuXKl1hGFyDG++fYbPAoZ8S7t9sBxRVEIqOOJTq/kio0wH5VMoxBC5EjTp09n6ZKlhDT3wbPY35sw+ldRubUtlh49e3A94jq+vr4aphQiZzhy5AheVZwzbNM56XAJ0nPo0CEHp8o+cuVFCJEjTf5mMp5FjQ8ULgCKXqFgXU9MJhM//vijRumEyFmcnJywW9RM21WrgrNzxsVNbiTFixAix0lOTubsmbO4hWb8Zmtw0+Ma4MzBgwcdnEyInKn9s+1JumhBtacvYCzxVpJumGjfvr0GybKHFC9CiBzHYDCgKAp2a+afJLGRpz5JauX06dMsWrSIZcuWERMTo3Uc8YRGjhyJKd7CrR2x2Ez2tOPmOCu3tsQTEBhA7969NUyYtaR4EULkOE5OTjRr1pTE8NTdiP+XKcpC4p0U2rZtq0G6vCE8PJxGjRtRvnx5evbsyfPPP09wSDCjRo3CYrFoHU88pmeeeYb5P88n+YqVq0vvAXBjQwyXfr2Lp96bjRs24uHhoXHKrCPFi8gyiYmJzJs3jwkTJjBjxgzu3bundSTxGM6fP8/w4cMpEhZKQGAA7Z5tx+rVqzMsHhxh9Oh3SLydwt19cQ9cgTHHWrm9LZ6ixcLo3LmzJtlyuxs3blC/QX0O/XGA4KY+lOwXSPEeAbiXNfD111/Rv39/rSOKJ9CjRw+uXLnCO6PfBaD5M62YMX0G4RfCqVSpksbpspYULyJLzJo1i5CgYF7s9yL/+fj/GDp4CIVCCjFu3DjN/viJR7d+/XoqVa7EtNlTSfCMwl4omR2Ht9K+fXuGDx+uyfewVatWfPfdd8SeTuHyokiub4wiYk00l369SwGPADas35itt42Sk5O5desWJpMp286hlYkTJxIdF0VIO2+8Sriid9bh5KGnQA1PAhp4sWDBAg4fPqx1TPEEgoODGT16NADz5s1j4MCBuLu7a5wq60nxIp7awoULGThwIGUT/Hmf1oyzteVjtS0NzUUZO3YsEyZM0DqieIjo6Gi6dO2CU4COsG7+BNT1pkANTwp38CWwvhffffcdixcv1iTba6+9xvnz53lrxCgalGtKq9ptmTNnDmfPnKVUqVLZcs7Tp0/Ts2dPvLy8CA4OxsfXh1deeYVr165ly/kcTVVVZs+ZjXsJ5wd2Ur/Pq6QrRi8XmcklcjRZ50U8Fbvdzvtj3qOSEsILajUURQHAQ3GhHRWwqnY++3QCr7/+Ol5eXhqnFRmZO3cuycnJFGtQAJ1BeaDNp5w7iVcsfD3pa3r06KFJvuLFi/PZZ5855FwHDx6kadOm2Jys+FZ3xdnbQMo9Cz8t/JEVK1ewd89eihcv7pAs2cVsNhMbE0tQFe8M2xWdgsFL4caNGw5OJsSjkysv4qkcOnSIS1cu01AtkVa4/FMjSpCYnMTq1as1SCcexZ49e3ANzPhTOIB7mBMHDxzEZrM5OJljqapKvxf7goeN0E4++FX2wCPMSIHqnhTu6EOcKYZXX3tV65hPzdnZGW8fb0xR1gzbVbuKNc5OSEiIg5MJ8eikeBFPJTo6GgB/Mr6n6o0rekVHVFSUI2OJx6DX6+EhQ1pUW+oS4xkVp3nJ7t27OXP6LL413NA5PfjWaHDT41PZlQ3rN3D58mVtAv5FVVW2bt3Kiy++SLNmzejduzfr1q3Dbrf/+xeT+r18acBLJF4wY01KX5DGXUgmJc4sg3b/h9VqJTIykpSUFK2jCKR4EU+pWLFiAFwm4+Ikghhsqj3XX2rPy5o3b07irRTM8ek/iauqSuIlM02bNkGny9tvF6dOnQIF3IIzHgTsFuKCqqqcOXPGwcn+Zjab6dK1C82aNePX3xdz6Mpelm/4jbZt29KmTWuSkpIe6Xnefvtt/Hz8ub4mlrgLydhMdszxViIPxXNnVxx9+vShevXq2dyb3OH27duMGDECXz9fChYsiKenJy+88AInTpzQOlq+lrffjUS2K126NA3rN2CL/jwm9cE/fjbVzjrdaQoFh9CqVSuNEop/06tXLwoUKMCdbfEPfBJX7SqRh+JJvJ3CqFFva5jQMdzd3UEFW0rGVzBsyamvjZubW4btjjBmzBhWrFxBSDMfQp/zJaSZL4U7+VCotS9bt29l2LBhj/Q8wcHB7Nm9h7rV63FzWwwX5t3m0uK7JJ2zMWrU28yZMyebe5I73Lhxg1q1azFl+g84F1cJaeGLb3VXVm1YQe06tdm9e7fWEfMtGbArnto3331Lw/oN+Ma0g8a2EhTGh7sksEMXzlWiWTFjReqtCZEjubu7s27tOlq2asnlXyJxK+yM4qxgumnDFG/m888/p02bNlrHzHZt27bF2dmJmDNJ+Ff2wBSTWow7exvQGRRiziRRMKAgderU0SRfbGwsU6ZOwbeSG57F/97vSVEUPEKNmKtZ09ZZ8vf3/9fnK1asGFs2b+Hs2bMcP34co9FIkyZNZGD9P4wcOZLbUbco3NEHJ8+//1z6lFe5sT6GXr17cTH8ory/aUCKl3zIZrNht9txcnLKkuerWrUqu/fuYfSot1m0cUPa8do1ajPrv5/RtGnTLDmPyD41atTg/LnzzJkzh+UrlpOcnEytZrUYOnQolStX1jqeQ/j7+zNkyFC+/fZbok8kYjenDgTSuSi4+BpIvmXh668naLYlwe7du0lOSiaoVMEM271KuXF3fzxbt26la9euj/y8ZcqUoUyZMlkVM8+4c+cOS5Yswf8Z9wcKFwCdQcH/GXeurrzKxo0b80Vxn9NI8ZKPbN68mYlffMGGjRux2+1UqlCR198Yzssvv/zU4xkqV67Mug3riYiIICIigoIFC1KiRIksSi4cwd/fn1GjRjFq1Cito2hCVVVu3ryJiop3CTc8S7iiKBB/KYXoPxMpXqI4r732GgAnTpxg5syZXL58GT8/P3r16kXz5s2zdVyQ1Zp6Jeh/p7Pfd/+4LO2fNc6dO4fNZsOtUMbFqrGgEwYXA6dOnZLiRQNSvOQT06ZNY8iQIYTq/ehor4gzBk6fvsXgVwazdctWfp7/c5a88RYuXJjChQtnQWIhHGvdunX8+uuvBDfzwesft2VcA51xL+zCxXUX+eWXXzhw4ADffPMNLh7OGHwV7Impa+U0btKYVStX4enpmS35qlevjk6nI+FKCj7l0s/uS7iSOgvmmWeeyZbz5zf3xzZlNgZKtajYLTZNx0DlZ1K85AOXLl3itVdfoz7Fed5WJW3Kax21KMeI4KdFC2nbri19+/bVOKkQ2pk2fRpuBY14FjOma3Mv7IJHISMfffwRF8MvUrCOF77l3VB0SuqMrAgTe7btpn///ixdujRb8hUuXJiOnTqyduMa3EJccPb+++3bkmAj+kgSjZs0ply5cnL1JQtUqVKF0CKFiT1zD7dgl3TtseeSQVHo0KGDBumEzDbKB2bMmIGLYqADFdOt1VFVKUxZXRDfTv5Go3RC5Aznz5/DuYAu0/VsnAsauHLlMt6lXfGr6I6iS33c/QGzfrXc+e233wgPD8+2jFOnTKVISBhXl0dxa0cMUScTubUrlqu/3aOAVwA//fhTtp07v9Hr9Xzw/ofEhScTeTgeuzn1CoxqV4k9n8S9w4n07dtXrjRrRIqXfODo0aMUt/nhrGR8oa2sPYDjf/zh4FRC5Cx+fv7YEjNfrc+aYMNms+NVOuPbBF4lXNHpdaxZsya7IhIYGMiB/Qf4ZNwn+FmDiDtmwjPRj/fHfMDRI0cpUqRItp37ScXExDBlyhTeeustPvnkE86ePat1pEc2aNAgxo8fT/TxJC4vvsf132O48ksUt7bH0rlTZ6ZOmap1xHxLbhvlA0ajkRSdNdNVVJOxYHRJf1lUiPykT+8+7B66G3OMFWefB98aLYk2Ei6bQAW9c8ZXZhQ96PS6bN+F2sfHhzFjxjBmzJhsPU9WmD17Nq8New2zyYTRx4glycpHH31Er969mD1rNi45/H1HURQ+/PBD+vfvz9y5c7l06RL+/v706tWLatWqaR0vX8vWKy9RUVH07t0bLy8vfHx8ePnll0lISHjo1zRp0iRtKfL7/w0ZMiQ7Y+Z5HTp0INweyV01/WtvU+0cMVynY6eOGiQTIufo06cPxUsU4+aGWBKupqDa1dTxLNdN3FwXS0DBAJycDCRcy7g4Sb5lxmq2ysq0f1mxYgUvv/wyLkV0FOtRkNDnfSja05/ABt4sXryIQa8M0jriIwsNDeXDDz9k9uzZfPHFF1K45ADZWrz07t2bU6dOsXHjRn7//Xd27NjBK6+88q9fN2jQIG7evJn23+eff56dMfO8Hj16ULhQIeYaDnBLjUs7nqCamK8cIoYk3hw5UsOEQmjP3d2dbVu3U7lcFa5viObSgkguL7hHxNooSoaWZueOnfTu3Ye4UymYoh8cEGsz2bl3MIlSZUrJukakTjv/6OMP8ShkJLCBV9qmnzq9gk9ZN/xrefDzvJ+5ePGixklFbpVtt41Onz7NunXrOHjwIDVr1gTg22+/pV27dkycOPGhO5a6ubkRFBSUXdHyHTc3NzZs2kjrlq34PGITYTp/nFU9l5Uo9E4GFi/8RT4tCkHqjJ59e/dz4MABtmzZgqqqNGjQgIYNG6IoCl9++SUHDh7g7MqzeBR3xljQGUu8lcQLFoxOrvyy6Jc8v4Hlo7h06RJ/HD9BSAvfDF8P79JuRB1K5Lfffsu36wqJp5NtxcvevXvx8fFJK1wAWrRogU6nY//+/Tz33HOZfu38+fP5+eefCQoKokOHDnz44YeZzqU3mUwP3GOOi0u9smCxWPLldMH7ff7fvpcoUYI/z5xmxYoVbNy4EbPZzJAaNejVqxf+/v555rXKrP/5SX5/DbKi/9WrV3+goL+/QJynpyc7d+xkypQpzJk7hxuHb+Dp5cngl3vw+uuvExYWliNed61/BmJjY3F1dcXD2w0XQwaLvBnA08eTxMTEbMmodf+1llv7/zh5FVVVMx9e/xQmTJjAjz/+mG5keUBAAOPGjWPo0KEZft306dMJCwsjJCSEP/74g3feeYdatWrx22+/Zfj4sWPHMm7cuHTHFyxYIIsHCSGEELlEUlISvXr1IjY29l/32HrsKy/vvvsu//3vfx/6mNOnTz/u06b555iYSpUqERwcTPPmzQkPD89wufkxY8Yw8h/jNeLi4ggNDaVVq1b5coMxi8XCxo0badmyZZbtXZSb5Pf+g7wGOb3/Bw4cYORbb3Lij5NpxwoGFOD99z5gwIABWXKOnPAavPLKKyxfvYzg1t44efy9caFqV7m1PQ59nDPnz53PlhlHOaH/Wsqt/b9/5+RRPHbx8tZbb9G/f/+HPqZ48eIEBQVx586dB45brVaioqIeazxL7dq1Abhw4UKGxYuLi0uGP/xOTk656puW1aT/+bv/IK9BTuz/oUOHaN6iOXpvBb9GrrgGOGOJtxF9KpLBgweTlJTEiBEjsux8Wr4Gn376KZs2byJ82U28yrrgGuiMJcFG3BkTKffMLF2yFA8Pj2zNkBN/Bhwpt/X/cbI+dvFSsGBBChbMeFfTf6pbty4xMTEcPnyYGjVqALBlyxbsdntaQfIojh07BkBwcPDjRhVCiBxl9Oi30XtAobY+aRsp6l10BDf2Qeek8N777/HSSy/liavGISEhHNh/gA8//JD5C+YTeTh1qYYmTZsw9uOxNG7cWNuAIlfLtqnS5cqVo02bNgwaNIgDBw6we/duhg0bRo8ePdJmGl2/fp2yZcty4MABAMLDw/nkk084fPgwly9fZuXKlfTr149GjRpRuXLl7IoqhBDZ7tq1a2zdug2vCsYMd4b2r+JBSnJKtu2NpIXg4GBmzpxJ5N1Izp8/z+3bt9m6ZasULuKpZesKu/Pnz2fYsGFpW8V36dKFb775ew8di8XC2bNnSUpKAsDZ2ZlNmzYxadIkEhMTCQ0NpUuXLnzwwQfZGVMIIbLdzZs3AXDxy/jSuMFdj7ObE9evX3dkLIdwd3enZMmSWscQeUi2Fi9+fn4sWLAg0/aiRYvyz8lOoaGhbN++PTsjCSGEJgIDAwEwR1sx+qcvYKxJNszJFlnjSohHIBszCiGEA4SFhdGgYQNi/0zGbku/QkXUiUScnZ3p2rWrBumEyF2keBFCCAf5/L+fY42xc2N9DEk3TNitKqYYK7d2xRJ9IpFxY8fh4+OjdUwhcjzZVVoIIRykbt26bNiwkUGDB3F+zfm04z6+PkyaNIHhw4drmE6I3EOKFyGEcKDGjRtz9vRZ9u7dy8WLF/Hx8aFFixYYjUatowmRa0jxIoQQDqYoCvXq1aNevXrZep6UlBT+/PNP9Ho9ZcuWxWCQt3yRN8hPshBC5DEpKSkAlCxVkju3U1c6Dw4J4q2Ro3jzzTfR6WS4o8lkYunSpaxduxaz2UytWrXo378//v7+WkcTj0B+goUQIg8xm8106doFAH2onSId/Alt50eSZxyj3h7FK6+8Qjbtx5trnDlzhlKlS9G7d2+WbVzCml0rGf3OaAqHFmb58uVaxxOPQIoXIYTIQ3766Sd27doFQMGanrgGOuMW4kJQQ28CG3gza9astPb8KDExkRYtWxCZeIeiXQpQuIMvhdr5UqxHAZyDFbp165a2LY3IuaR4EUI8kYiICD766COaNW9Gy1YtmThxIvfu3dM6Vr43ZdoUPAq7ZtjmXdoVV18XZsyY4eBUOcfChQu5fv06Qc28cPH9e7FAg6ueoMbeGNz1fPXVVxomFI9CxrwIIR7bL7/8Qp8+fVB1KsZgA9hTN1795JPxrF69hgYNGmgdMd8KvxCOZ3nnDNsURcGpgI5zF845OFXOsXLlStyDjTh7p//zp+gV3Is7sWLlCg2SicchxYsQ4rEcP36cXr174R7mTGB9L3TOqRdwrck2bm2No92z7Qi/EP5Iu8+LrOfj40NKYkKm7fZEFb9Sfg5MlLOkmFJQnDIf86Nz0WEymRyYSDwJuW0khHgskydPxskt9RL7/cIF/rrs3sybpOQkZs2a9cjPZ7FYWLNmDdOnT2f58uVpM2XEk+ndqzfJV8wZtqXcs5BwI4WePXo6OFXOUb1adUx37NitGRcwyRFmqlSp7OBU4nFJ8SKEeCxr1q7BragTik5J12Yw6nAt5MTqNasf6bl+/fVXQosU5tlnn2Xw4ME899xzBIcEM3369KyOnW8MGzYMTw8vAJJvm1FVFdWuknAlhVub4ihXvhzdunXTOKV2Bg0ahM1k4+6BuHSzruIuJpMQkcLrw2Sl45xObhsJIR6L1WpFMaQvXO5T9GC1Wv71eZYtW0b37t3xLOZK2HMFcPEzYIm1EfVHAoMHD0ZVVQYPHpyV0fOF4OBg1q5Zy8WLF4lYF4VNsaLaVSwpVurVr8fSJUvz9Wq+JUqU4LvvvuPVV1/FEmnHvbgzOieFxGtmEq4k07NXT3r16qV1TPEvpHgRQjyWOrXrsPXAZtRqKoryYBFjt6qYbtqo16n+Q5/Dbrcz6u238ChiJLiZd9rzOPsYCGrkgwqMeW8M/fv3x8XFJbu6kmeVLVuWixcvsmLFCvbt24fBYKBFixY888wzWkfLEYYOHUrp0qX5YuIXbNywEbvdTsVKFXhj+gheeuklWcQvE+Hh4cyePZvw8HB8fX3p2bMnDRs2TPc+4AhSvAghHsvw4cNZ3Xo10ScS8avskXZcVVXu7IvDmmJjyJAhD32OgwcPcjH8EqHt/DJ84/Or7MHlJXdZt24dnTp1yvI+5BdNmjShZcuWWsfIkZo3b07z5s2x2WzYbDacnTOeoSVSf7fHjh3LJ598gpPRgLOfHluiytSpU2nRojm//bYMT09Ph2aS4kUI8VhatWrFe++9x4QJE0i6YsG1iBOqTSXpsoWUaDMzZsygVKlSD32OO3dSl6x39vn/9u48Kqr7bgP4cweGGRaBEJRFcYEo2JiIaKTQFOgRJWqj9s2K1JrEhGq0r1SrwZNUjxprNEZzzGtjezyRNM1exdTEaIhrNIhRISIicaGQRAZxgRkYGJb5vX9YJiEsMsDMnTvzfM6ZP+be3x2e773D8OXOXTr+CPLwc2szjshW3Nzc4ObmJncMh7Zt2zasWrUKd8b4IOBeH6jcJQghUFduwqEjhzF79mzs3LnTrpm4b4yIrLZmzRp88sknuH9MIhrOCzRfdsOvJ0zDsWPHMGfOnNsuP2jQIAC3zn7piOl6MwAgLCys70ITkdXMZjPW/GUNfCM8ERjTD6r/Hu8mSRJ8hmgRGOuN7OxsfPONfa8dxOaFiHpkypQp2PvpXhj0BlTfrMYHH3yAuLi4bi0bHR2NUfeMQvWZeoiWtmd8CCFwo6AWIaHBSE5OtkV0Iuqm4uJilP2nDL4jOr5qc79wT7ip3bB792675mLzQkR2J0kSXtv8GkxVzfh+bzVqv21Ac10LjFdMuPJZNWrLTHht8//B3Z3fbBPJqb6+HgDgpum4XVC5S3BXu9n9+kxsXohIFklJScjJyUHEgOH4ft9NXHr3Kr7dcwMh2lt39n3ooYfkjkgKYzQasX37dssp9tu3b0dtbedXG6bbGz58ODRaDeq+6/iqw/VVjTAZGzF69Gi75mLzQkSySUpKQkH+18jPz8fu3buRl5eHkpJvMG3aNLmjOazGxka89957mDxlMmLGxuChhx7Cnj17YDab5Y4mq1OnTmHosKF4as5T2H1gFwDgj3/8IwaFDcIXX3whbzgF8/PzQ9rMNOjPNcBU3dxmnrnJjOsn6jAobBAmT55s11zcJ0tEspIkCdHR0YiOjpY7isO7efMmJqVMwsmvTsInVAs3HwnfHC3Gzp07MXXqVOzYscMlr4tTVVWF5InJaPJowLCH+6PfnbdO4R/ymzvx7cEqTJkyGUVF5zB48GCZkyrTyy+/jC9zj+Hi7kvwCfeAdoAazbUtqL3YCFWTO97Ped/uZ2xxzwsRkUI89dRTOHP2awyedicGTrkDwQn+GPigPwZOvAN7932K559/Xu6Isti2bRsMBgOCk33b3C1a3c8dwcl+MDU34vXXX5cxobIFBAQg98vjyFySCfV1b+gO18BwthGPzUjFyZMnER8fb/dMbF6IiBSg9Yq5d4zzgueAHy6o1nrKqt8oL2zd+joMBoOMKeWxM3sHvIZ4wN2z/X//bh4qeA1VY8fOHTIkcx7+/v5YvXo1KnWVMBqNMBrrkZWVhZEjR8qSh80LEZECHDx4EEII+EZ0fMqqb4QWdXVGnDhxws7J5Gc0GuHm0fkl6t00Euob6u2YyHlJkgRPT0/Zb6HA5oWISAFaWloACejsNjKSm/TDOBczNmYcTBUt7e4SDdy6blDDlRaMiR4jQzKyFTYvREQ9UFxcjIyMDCQmJmLy5Mn4+9//btPTcuPj4wEB1JZ1fD0NQ2kD1B5qxMTE2CyDo3r22WdRX23CjTN17eZVFxthrGrAgvkLZEhGtsLmhYjISq+88gp+9rOf4fVtf0X+dyfwxdlDmDt3LiKjInH+/Hmb/MxRo0bhlwm/xI2TRjQa2p6y2nCtCTWF9UibmYbAwECb/Hx7EELg8OHDyMzMxKJFi/DOO+/AZOr4+iI/9vOf/xwvvPACrn1lwPef3kTNN0YAQMX+Glz9Uo8//OEPvEGlk+Gp0kREVvj444/xpz/9CQH3euPOsf2g+u/XNY36Zuj2X0fKAym48M0Fm9yl+O1/vo3EpASU7yiH91AN1H5uaLzegtryBsTExODVV1/t859pL1euXMH0GdNw8qtT0PbzgEqtwqZNDViYsRA7/rUDCQkJXS6/evVqjB49Ghte2YAzuWeA/wUiAkdg4/L5SEtL6/Du5aRc3PNCRGSFdevXwTtEi8D7fmhcAMDD1x1Bif1QXlaO7Oxsm/zssLAwnD6Vj7+sWYtQ9RCgTIOIOyLx1y1/xRdHvoCfn59Nfq6tNTU1YeKkiSg8X4hBDwRg8KMBCPufOzD04f5o8KjFA5MfQElJyW1f5+GHH8bx3OOoqqoCABw5fAS//e1v2bg4ITYvRETdZDKZcPSLo/AJ9+jwD6ImQA3v/lrs27fPZhn8/f2xdOlSFJ8rxrWqa8g/nY+5c+fC07Pjs5CUIDs7G+eKziF4gi+8B2ks61bj746QZD+Y3VqwcePGbr+eLfZ6kWNh80JE1E2tZ/JI7l38J+8mobm5ufP51M6OHTvgFaSFNlDdbp5KrYJ3uBrvf/C+DMnIUbF5ISLqJk9PT0RGRcJY3tjh/Ka6FhivNmD8+PF2TqZser0eKm3705xbuXu7oa62/ZlE5LrYvBARdZMkSchYmAH9f+qhv9z2omfmZoGqYwZ4e3tj1qxZMiVUpqioKDRdM8Pc0nED01DRhOEjhts5FTkyNi9ERFZIT09HamoqKg5U4/tPq3HjTC2qTuhRvuMGTJUt+NeH/1LsgbNySU9Ph6muCTe+bn+dHOMVEwxlDXh23rMyJCNHxeaFiMgKKpUK/3zrn3jnnXdw79AxqC8WkCq0eGLmkyjIL0BKSorcERVn5MiRWLlyJa6frsWVnGoYSutR950JlcdqcOWzGiQmJuKZZ56ROyY5EF7nhYjISiqVCqmpqUhNTZU7itNYvnw5IiIisPaltSjaXwQACOwfiBeeX4Jly5ZBo9HInJAcCZsXIiJyCGlpaZg5cyYqKirQ2NiIgQMHQq1ufwYSEZsXIiJyGJIkITQ0VO4Y5OB4zAsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFYfNCREREisLmhYiIiBSFzQsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFsVnzsmbNGsTHx8PLywv+/v7dWkYIgeXLlyMkJASenp5ITk7GhQsXbBWRiIiIFMhmzUtjYyMeeeQRzJs3r9vLrF+/Hps3b8bWrVuRl5cHb29vpKSkoKGhwVYxiYiISGHcbfXCK1euBABkZWV1a7wQAq+++ipeeOEFTJ8+HQDwj3/8A0FBQdi1axcef/xxW0UlIiIiBbFZ82Kt0tJS6HQ6JCcnW6b5+fkhNjYWubm5nTYvJpMJJpPJ8lyv1wMAmpqa0NTUZNvQDqi1ZlesHWD9ANeBq9cPdL4OiouL8fXXX0Oj0SAxMREBAQFyxLM5V38PKLV+a/I6TPOi0+kAAEFBQW2mBwUFWeZ1ZO3atZa9PD/22WefwcvLq29DKkhOTo7cEWTl6vUDXAeuXj/Q8Trw9fUFABw/ftzecezO1d8DSqvfaDR2e6xVzUtmZibWrVvX5Zji4mJERUVZ87K9smzZMixatMjyXK/XIywsDJMmTbL8krqSpqYm5OTkYOLEiVCr1XLHsTtXrx/gOnD1+oG26+D69eu4/5f3o7ZRD//RWngN0sLcaIb+Qj1unjVi2q+nISsrC5IkyR27z7j6e0Cp9bd+c9IdVjUvixcvxhNPPNHlmPDwcGte0iI4OBgAUFlZiZCQEMv0yspKREdHd7qcRqOBRqNpN12tVitqo/U11u/a9QNcB65eP3BrHWzatAm6qxUI+80dcPeS0AQT4AF43+2OFo0a7777LhYuXIjY2Fi54/Y5V38PKK1+a7Ja1bz0798f/fv3tzpQdwwbNgzBwcHYv3+/pVnR6/XIy8uz6owlIiL6wfas7fC+ywPuXm7t5vUL1+JmvgZvvvmmUzYv5Lxsdqp0eXk5CgoKUF5ejpaWFhQUFKCgoAC1tbWWMVFRUcjOzgYASJKEjIwMvPjii/j3v/+NwsJC/O53v0NoaChmzJhhq5hERE6rubkZ1Terobmj4/9TJZUEd1+py+MKiRyRzQ7YXb58Od58803L8zFjxgAADh48iKSkJABASUkJampqLGOWLl2Kuro6pKeno7q6Gvfffz/27t0LrVZrq5hERE7L3d0dAXcGwHTD1OF8YRZorjZj4MCBdk5G1Ds22/OSlZUFIUS7R2vjAty6tsuPj6GRJAmrVq2CTqdDQ0MDPv/8c4wYMcJWEYmInN7Tc55G7UUTmmpb2s3TX6hHg6HxtscyEjka3tuIiMiJLV68GEH9g3BlTzVqvjGiub4FjTXNqPpKj8pjesyaNQtjx46VOyaRVdi8EBE5sQEDBuDLY7lIjEuC7kgNLr19FaUfVsF0USDzuUy88cYbckcksprDXKSOiIhsIywsDHv37sPly5ctV9hNSEiAj4+P3NGIeoTNCxGRiwgPD+/xtbiIHAm/NiIiIiJFYfNCREREisLmhYiIiBSFzQsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFcbor7AohAAB6vV7mJPJoamqC0WiEXq+HWq2WO47duXr9ANeBq9cPcB2wfmXW3/p3u/XveFecrnkxGAwAbt3Lg4iIiJTFYDDAz8+vyzGS6E6LoyBmsxlXrlxBv379IEmS3HHsTq/XIywsDN9++y18fX3ljmN3rl4/wHXg6vUDXAesX5n1CyFgMBgQGhoKlarro1qcbs+LSqXCoEGD5I4hO19fX0W9afuaq9cPcB24ev0A1wHrV179t9vj0ooH7BIREZGisHkhIiIiRWHz4mQ0Gg1WrFgBjUYjdxRZuHr9ANeBq9cPcB2wfuev3+kO2CUiIiLnxj0vREREpChsXoiIiEhR2LwQERGRorB5ISIiIkVh8+IE1qxZg/j4eHh5ecHf379bywghsHz5coSEhMDT0xPJycm4cOGCbYPayI0bN5CWlgZfX1/4+/tjzpw5qK2t7XKZpKQkSJLU5jF37lw7Je69LVu2YOjQodBqtYiNjcWJEye6HP/hhx8iKioKWq0W99xzD/bs2WOnpLZhTf1ZWVnttrVWq7Vj2r515MgRPPjggwgNDYUkSdi1a9dtlzl06BBiYmKg0Whw1113ISsry+Y5bcnadXDo0KF27wFJkqDT6ewTuA+tXbsW9913H/r164cBAwZgxowZKCkpue1yzvYZwObFCTQ2NuKRRx7BvHnzur3M+vXrsXnzZmzduhV5eXnw9vZGSkoKGhoabJjUNtLS0lBUVIScnBx8/PHHOHLkCNLT02+73DPPPIOKigrLY/369XZI23vvv/8+Fi1ahBUrVuD06dMYPXo0UlJScPXq1Q7Hf/nll0hNTcWcOXOQn5+PGTNmYMaMGTh79qydk/cNa+sHbl1p9MfbuqyszI6J+1ZdXR1Gjx6NLVu2dGt8aWkppk6dil/96lcoKChARkYGnn76aezbt8/GSW3H2nXQqqSkpM37YMCAATZKaDuHDx/G/Pnzcfz4ceTk5KCpqQmTJk1CXV1dp8s422cAAECQ09i+fbvw8/O77Tiz2SyCg4PFyy+/bJlWXV0tNBqNePfdd22YsO+dO3dOABBfffWVZdqnn34qJEkS33//fafLJSYmioULF9ohYd8bP368mD9/vuV5S0uLCA0NFWvXru1w/KOPPiqmTp3aZlpsbKz4/e9/b9OctmJt/d39vVAiACI7O7vLMUuXLhV33313m2mPPfaYSElJsWEy++nOOjh48KAAIG7evGmXTPZ09epVAUAcPny40zHO9hkghBDc8+KCSktLodPpkJycbJnm5+eH2NhY5ObmypjMerm5ufD398e4ceMs05KTk6FSqZCXl9flsm+//TYCAwMxatQoLFu2DEaj0dZxe62xsRGnTp1qs+1UKhWSk5M73Xa5ubltxgNASkqK4rY10LP6AaC2thZDhgxBWFgYpk+fjqKiInvEdQjOtP17Kzo6GiEhIZg4cSKOHTsmd5w+UVNTAwAICAjodIwzvgec7saMdHut3/MGBQW1mR4UFKS474B1Ol27Xb/u7u4ICAjospaZM2diyJAhCA0NxZkzZ/Dcc8+hpKQEO3futHXkXrl27RpaWlo63Hbnz5/vcBmdTucU2xroWf2RkZF44403cO+996KmpgYbNmxAfHw8ioqKXOImrp1tf71ej/r6enh6esqUzH5CQkKwdetWjBs3DiaTCdu2bUNSUhLy8vIQExMjd7weM5vNyMjIwC9+8QuMGjWq03HO9BnQis2Lg8rMzMS6deu6HFNcXIyoqCg7JbKv7tbfUz8+Juaee+5BSEgIJkyYgEuXLiEiIqLHr0uOJy4uDnFxcZbn8fHxGDlyJP72t79h9erVMiYje4mMjERkZKTleXx8PC5duoRNmzbhrbfekjFZ78yfPx9nz57F0aNH5Y5id2xeHNTixYvxxBNPdDkmPDy8R68dHBwMAKisrERISIhlemVlJaKjo3v0mn2tu/UHBwe3O1CzubkZN27csNTZHbGxsQCAixcvOnTzEhgYCDc3N1RWVraZXllZ2Wm9wcHBVo13ZD2p/6fUajXGjBmDixcv2iKiw+ls+/v6+rrEXpfOjB8/XtF/9BcsWGA5QeF2exCd6TOgFY95cVD9+/dHVFRUlw8PD48evfawYcMQHByM/fv3W6bp9Xrk5eW1+Q9VTt2tPy4uDtXV1Th16pRl2QMHDsBsNlsaku4oKCgAgDbNnCPy8PDA2LFj22w7s9mM/fv3d7rt4uLi2owHgJycHIfZ1tboSf0/1dLSgsLCQoff1n3FmbZ/XyooKFDke0AIgQULFiA7OxsHDhzAsGHDbruMU74H5D5imHqvrKxM5Ofni5UrVwofHx+Rn58v8vPzhcFgsIyJjIwUO3futDx/6aWXhL+/v/joo4/EmTNnxPTp08WwYcNEfX29HCX0ygMPPCDGjBkj8vLyxNGjR8Xw4cNFamqqZf53330nIiMjRV5enhBCiIsXL4pVq1aJkydPitLSUvHRRx+J8PBwkZCQIFcJVnnvvfeERqMRWVlZ4ty5cyI9PV34+/sLnU4nhBBi1qxZIjMz0zL+2LFjwt3dXWzYsEEUFxeLFStWCLVaLQoLC+UqoVesrX/lypVi37594tKlS+LUqVPi8ccfF1qtVhQVFclVQq8YDAbL7zgAsXHjRpGfny/KysqEEEJkZmaKWbNmWcZfvnxZeHl5iSVLloji4mKxZcsW4ebmJvbu3StXCb1m7TrYtGmT2LVrl7hw4YIoLCwUCxcuFCqVSnz++edyldBj8+bNE35+fuLQoUOioqLC8jAajZYxzv4ZIIQQbF6cwOzZswWAdo+DBw9axgAQ27dvtzw3m83iz3/+swgKChIajUZMmDBBlJSU2D98H7h+/bpITU0VPj4+wtfXVzz55JNtGrfS0tI266O8vFwkJCSIgIAAodFoxF133SWWLFkiampqZKrAeq+99poYPHiw8PDwEOPHjxfHjx+3zEtMTBSzZ89uM/6DDz4QI0aMEB4eHuLuu+8Wn3zyiZ0T9y1r6s/IyLCMDQoKElOmTBGnT5+WIXXfaD3t96eP1ppnz54tEhMT2y0THR0tPDw8RHh4eJvPAiWydh2sW7dORERECK1WKwICAkRSUpI4cOCAPOF7qaO6f/r57gqfAZIQQthtNw8RERFRL/GYFyIiIlIUNi9ERESkKGxeiIiISFHYvBAREZGisHkhIiIiRWHzQkRERIrC5oWIiIgUhc0LERERKQqbFyIiIlIUNi9ERESkKGxeiIiISFHYvBAREZGi/D8A63s0MIBnFAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXb0lEQVR4nOzdd3QUZdvH8e/sbpJNb5AGIfTeQXrvIE0p0gUFAUVERBQr4Cs+j6KCjV4UaQrSpPfem4DUUEMP6W3rvH9EojxJkJLspFyfczwe5t7s/O5Nsrl25i6KqqoqQgghhBC5hE7rAEIIIYQQj0OKFyGEEELkKlK8CCGEECJXkeJFCCGEELmKFC9CCCGEyFWkeBFCCCFEriLFixBCCCFyFSlehBBCCJGrGLQOkNXsdjs3btzA09MTRVG0jiOEEEKIR6CqKvHx8YSEhKDTPfzaSp4rXm7cuEFoaKjWMYQQQgjxBK5du0bhwoUf+pg8V7x4enoCqZ338vLSOI3jWSwWNmzYQKtWrXByctI6jsPl9/6DvAb5vf8gr4H0P3f2Py4ujtDQ0LS/4w+T54qX+7eKvLy88m3x4ubmhpeXV676oc0q+b3/IK9Bfu8/yGsg/c/d/X+UIR8yYFcIIYQQuYoUL0IIIYTIVaR4EUIIIUSuIsWLEEIIIXIVKV6EEEIIkatI8SKEEEKIXEWKFyGEEELkKlK8CCGEECJXyXOL1AkhRHa4ePEie/fuRafT0ahRIwoVKqR1JCHyLSlehBDiIe7cucPAl1/m99WrUVUVAL1OT7du3Zg6bSre3t4aJxQi/5HiRQghMpGQkEDTxk24fuEK3dVqVKEQNlSO2q+xcskyLl++zI6dO3LlEuxC5GYy5kUIITIxZ84czp49yxBrPWorRTEqTrgrzjRQSvCyrQ779u9j6dKlWscUIt+R4kUIITIxd/YcKhJCoJJ+k9diij8l9QHMnTNHg2RC5G9SvAghRCZu3bxJoOqRaXuAzZ2b1286MJEQAqR4EUKITIUUKsRNJT7T9lv6BAoXCXVgIiEESPEihBCZemngy5ziBtfVmHRt59W7XLTd5aWXX3J8MCHyOSlehBAiEy+++CJVKldlmn4PO9QLxKrJRKtJbFHPMVu3jyaNGtOpUyetYwqR78hUaSGEyISbmxubt27mtVdf49dff2G57Q8AnJ2c6ffii0yePBmDQd5GhXA0+a0TQoiH8PX1ZcHCBXz51ZccOHAAnU5H3bp1KVCggNbRhMi3svW20Y4dO+jQoQMhISEoisLy5csf+vht27ahKEq6/27dupWdMYUQ4l8FBwfTqVMnOnToIIWLEBrL1uIlMTGRKlWq8P333z/W1509e5abN2+m/RcQEJBNCYUQQgiR22TrbaO2bdvStm3bx/66gIAAfHx8sj6QEEIIIXK9HDnmpWrVqphMJipWrMjYsWOpX79+po81mUyYTKa0f8fFxQFgsViwWCzZnjWnud/n/Nh3kP6DvAb5vf8gr4H0P3f2/3HyKur9bVKzmaIoLFu2jM6dO2f6mLNnz7Jt2zZq1qyJyWRi5syZzJs3j/3791O9evUMv2bs2LGMGzcu3fEFCxbg5uaWVfGFEEIIkY2SkpLo1asXsbGxeHml35Ljn3JU8ZKRxo0bU6RIEebNm5dhe0ZXXkJDQ4mMjPzXzudFFouFjRs30rJly3y5021+7z/Ia5Df+w/yGkj/c2f/4+LiKFCgwCMVLznyttE/1apVi127dmXa7uLigouLS7rjTk5OueqbltWk//m7/yCvQX7vP8hrIP3PXf1/nKw5foXdY8eOERwcrHUMIYQQQuQQ2XrlJSEhgQsXLqT9+9KlSxw7dgw/Pz+KFCnCmDFjuH79Oj/99BMAkyZNolixYlSoUIGUlBRmzpzJli1b2LBhQ3bGFEIIIUQukq3Fy6FDh2jatGnav0eOHAmk7hcyd+5cbt68ydWrV9PazWYzb731FtevX8fNzY3KlSuzadOmB55DCCGEEPlbthYvTZo04WHjgefOnfvAv0ePHs3o0aOzM5IQQgghcrkcP+ZFCCGEEOKfpHgRQgghRK6S46dKCyGESHX+/HlOnz6Nu7s7DRo0yHCZCCHyA7nyIoQQOdy5c+do1qQppUuXplOnTrRo0YJCQSF88cUXDx1XKEReJVdehBAiB7t8+TIN6tZHF2uhN89QmoLEY2JvzCVGjx7NvXv3+M9//qN1TCEcSq68CCFEDjZ+/Hgsccm8ZmtADSUUT8VIiOJNF6Uq7ajAF59/wZUrV7SOKYRDSfEihBA5VEpKCgsXLKSuNQwPJf34loaUwEXnlLbQpxD5hRQvQgiRQ0VHR5NiSiEE7wzbXRQDBXUeREREODiZENqS4kUIIXIoHx8fnAwGbhOfYbtFtXHPnkhgYKCDkwmhLSlehBAih3J1daVbt27sM1whRbWka9/HZRJtKfTt21eDdEJoR4oXIcRTuXXrFkePHuX69etaR8mTPvzoI8xGmKLfzWn1FjbVToyazFr1T1YoJxg8eDClSpXSOqYQDiXFixDiifzxxx+0a9uWkJAQqlevTuHChWnWpCn79u3TOlqeUrZsWbZu34ZvuULMYA9vs5zxrGWX8TJvj36b77//XuuIQjicrPMihHhsR44coVGDhnianeimVqUQPtwmnp27/qBxo8as37CeJk2aaB0zz6hevTrH/jjOgQMHOHXqFB4eHrRu3Rpv74wH8gqR10nxIoR4bK8OeRU/s5FXbQ1wUVLfRkLxpaqtENPVvbwycBBnz59DURSNk+YdiqJQu3ZtateurXUUITQnt42EEI/l1KlT7D+4n+a2UmmFy30GRU9re1nOh19gx44dGiUUQuR1UrwIIR7LhQsXACiGf4bt94+Hh4c7LJMQIn+R4kUI8Vh8fHwAiCYpw/b7x+8/TgghspoUL0KIx1K/fn2CAgLZScZXVnZwAS8PT1q3bu3gZEKI/EKKFyHEYzEYDHzy6f9xmGssU48TpyYDkKCaWKOeYifhjHn/Pdzd3TVOKoTIq2S2kRDisQ0cOJCEhATeGzOG3aZLeBvciLcmo9Pr+Pj9j3nnnXe0jiiEyMOkeBEiB4iJieHgwYOoqkrNmjXx8/PTOtK/GjFiBP379+fXX38lIiKCwMBAunXrRsGCBbWOJoTI46R4EUJDSUlJjBo1ijmz55BiSgHAxdmFvv368vXXX+Ph4aFxwofz8fFh0KBBWscQQuQzUrwIoRGr1UrH9h3YtX0nTe0lqUYoAMfN1/l5zk+cPvUnW7ZtxdnZWeOkT0dVVfbt28fs2bO5cuUKBQsWpE+fPrRu3RqdTobdCSEen7xzCKGR3377jc1btzDAXptWSjkKKh4UVDxooZRhkK0uu/fuYeHChVrHfCo2m43+/ftTr149ls9dzK2Np9i+eC3t2rWjRbPmJCQkaB1RCJELSfEihEZmz5xFCX1BSisB6dqKKf6U1QUxc8ZMDZJlnU8++YSf5/1MD2rwrrUFA5Q6jLQ14RXqs2/XHl6RW05CiCcgxYsQGrl65QohNq9M20PsXly7csWBibJWcnIyk7+eREO1OLWUMHR/7XOkKApllUDa2cqzePEvXL16VeOkQojcRooXITQSEBjIXV1ipu2RSiIBgYEOTJS1Dh48SExcLDUpkmF7TYqgqiobNmxwcDKR1aKiojh+/LgUosJhpHgRQiP9+r/IWfttrqsx6dpuq3Gc5CYvDujv8FxZxWw2A+CSybwAJ/QoipL2OJH7XLp0iRdeeIHAgACqVq1KWFgYdevUZdOmTVpHE3mcFC9CaKRnz55UrlSZ6fq9HFCvYFZtWFQbh9SrTDPspXSp0rz44otax3xilStXxslg4BQ3M2w/zS3sqp1nnnnGwclEVrh06RJ1atVh029reNZWgTdoQj9qcedgOK1btWbp0qVaRxR5mBQvQmjE1dWVTVs20bhNMxZxmHdZwTusYAGHqN20Ptt2bMvx67w8TEBAAN26d2eL/gK31bgH2uLVFFYb/qRm9RpSvORSb7/9NraYJN6wNqKxUpIwxY+qSmFetTegEsEMHvQKKSkpWscUeZSs8yKEhgoUKMCq33/nwoULbN++HVVVadCgAWXLltU6Wpb45ptvOHbkKF+f20YVeyEK48NdEjiqj8DD15v5CxdoHVE8gbt377J82XI62iviqRgfaNMpCm3V8vwneiPLly+nR48eGqUUeZkUL0LkACVLlqRkyZJax8hy/v7+7N2/jx9++IEZU6dz/Maf+Pv5M6z/CN544w2Cg4O1jiiewOXLl7HZbRTDP8P2AMUTL70bFy5ccHAykV9I8SKEyFZeXl68++67vPvuu1pHEVnEx8cHgBiSKIxPuvZk1UKS3YS3t7djg4l8Q8a8CCGEeCwlS5akcsVK7NZdQlXVdO37uIQKdOnSxfHhRL4gxYsQQojHoigKn3z6f5y132Yhh4lSkwBIUS1sU8+zRvmTIUOHEBISonFSkVfJbSMhhBCPrWPHjvz4448Me/U1jiStx8fgToLNhFW1MXjIYCZNmqR1RJGHSfEixP9ITk4mKioKHx8f3N3dtY4jRI7Vr18/nn/+eZYsWcLFixfx8fGhW7duhIaGah1N5HFSvAjxl8uXLzNu3DgWLliIyWzCyWDg+S5d+PjjjylXrpzW8fKkM2fOsGDBAiIjIylSpAh9+/alUKFCWscSj8HDw4P+/ftrHUPkM1K8CAGcO3eO+nXrYYtLobm1BCH4cMcaz5ala1jz+2q2bt9GjRo1tI6ZZ1gsFgYPHsycOXPwMBjxVdy5Y4/jg/c/4OOxH/PBBx+g/LWRoxBC/C8pXoQAhg4egj7WynBbEzwUFwDKE0Qda1GmqnsY8GJ/jp/4Q/6gZpG33nqLn+b+SFeqUssahkHRk6Ja2Mo5PvroI/z9/Xn11Ve1jimEyKFktpHI986fP8+WbVtpYSudVrjcZ1ScaGsry4lTJ9m/f79GCfOWu3fvMnXKVFqr5ainFMeg6IG/XmulAjUpwqef/B9Wq1XjpEKInEqKF5HvnT59GoBSFMywveRfx//880+HZcrLVq9ejcVqoS5FM2yvR3Fu3LrJwYMHHRtMCJFrSPEi8r37M4oSMGXYfv94bt4kMSdJSEjAoOhxwznDdk9c0h4nhBAZkeJF5HsNGjSggK8/e7iYYfseLuFqNNKqVSsHJ8ubypcvj1W1cYl7Gbaf5w6KouSZzSmFEFlPiheR77m4uPDOe++yh0tsVM9gUlPHWphVGzvVcDYr5xj+xhtp+7mIp9OkSRNKFi/BGv1pzOqD41ri1RS2GC7Qrm1bWStECJEpmW0kcgWLxcLKlSuZP38+UZH3KFaiOAMHDqRevXpZMgPorbfeIioqiv/+579s012ggM6TKHsiibYUhgwewqeffpoFvRAAOp2OH+f9RIvmLfha2U5daxgF8CCCaPYarmD09eTb777TOqYQIgeT4kXkeFFRUbRp3YaDhw5SVF8AX5uR1XuPMXfuXPr378/MmTPR6/VPdQ5FUZgwYQJDhgxh3rx5REREEBgYSO/evSlVqlQW9UTcV69ePfbt38cnn3zC8mXLsNpsuBqN9O7Th48++kiuugghHkqKF5Hj9e3dh9NHT/A6jSlm9wcF7FaVQ1zlpx9/pGTJkrz//vtZcq4iRYpk2XOJh6tcuTK//vorCQkJxMTEUKBAAYxGo9axhBC5gIx5ETna6dOnWbNuLZ1sFSmm+Kcd1ykKtZQw6qrFmPzVJMxms4YpxdPw8PCgcOHCUrgIIR6ZFC8iR9u4cSNOOgNVyHi/m5oU4W5UJMeOHXNsMCGEEJqR4kXkaFarFZ2ioMvkR9UJfdrjhBBC5A9SvIgcrVatWphsFi5wN8P2E9zA1WikYsWKDk4mhBBCK1K8iBytfv36VKpQkZWGk8SrKQ+0XVOj2aG/yIv9++Pl5aVRwsdz+/ZtPvzwQ4oUDsXN1ZUypUrzxRdfEB8fr3U0jh8/zquvvkrDBg1p26YtM2bMIDExUetYQgiRTrYWLzt27KBDhw6EhISgKArLly//16/Ztm0b1atXx8XFhZIlSzJ37tzsjChyOEVR+GXJr1h9nPmPfjNL1WNsU8/zEwf4RtlOhaqV+Pzzz7PkXCdPnmTYsGHUr1uPli1a8N133xEXF5clzw0QHh5OtSpV+fKzzwm97kSrlFJ4hpt4790x1KtTl6ioqCw71z+pqoqqqg99zNixY6latSqLZvxE0u4rXNpwlMGvDKZ82XKEh4dnSy4hhHhS2Vq8JCYmUqVKFb7//vtHevylS5d49tlnadq0KceOHWPEiBEMHDiQ9evXZ2dMkcOVLVuWY38cY8TokVwtZGazaziWsl58Nelrtu/Yjqen51Of47///S+VKlXi52lzSNkXwfUtp3hj+BuULV2GU6dOZUEvoHfPXtjuJTHa1pyuSjUaK6XoTU1G2pty+Ww4w4cPz5Lz3PfTTz9RrUpVDAYDrkZXunTpwt69e9M9btGiRYwbN462lOc9a0v6KM8wmPq8S0tMt+Jo16YtNpstS7M5gs1mY/Xq1Xz66adMnDiRM2fOaB1JCJFFsnWdl7Zt29K2bdtHfvzUqVMpVqwYX375JQDlypVj165dfP3117Ru3Tq7YopcIDg4mAkTJjBhwoQsf+5Vq1bx7rvv0oIytLaWQ6+k1vRRahJzIvfTtnUbzodfwMXF5YnPceTIEfYfPMBL1MFbcX2gLUjxopmtFL8sXsxXX31FQEDAU/XnfqEx/PXhFDf58Ly9MslmC3tXbqHh8hXM+3kePXv2THv8F//9nLK6IFqqD+4lVFDxoIe1GpMvbGPNmjV06NDhqXI5WpVKlTl34TyeBlfMditvv/02nTt24sd5P+Wa24xCiIzlqEXq9u7dS4sWLR441rp1a0aMGJHp15hMJkymv3cDvn+Z32KxYLFYsiVnTna/z/mx7/Bk/f9m0mTKe4TSzlblga0G/PGmn1qHSVHbWLp0Kd26dXviXIcOHcLd1Y0KhKIo6S94VlaLsJELHDt2jKZNmz7xeQDmz59PgQIF6OdalzJKgbTjzdQKLFWO8eqQoTRq1IiAgACio6M5ffYM3V2qoShO6Z6rKIGEGQLZvHkzbdq0eapcjnL/CotbLLzl2orCii821cZxrrNmy3a6d+3Gyt9XZcm2EjmVvA9I///5/9zicfIq6r/dDM8iiqKwbNkyOnfunOljSpcuzYABAxgzZkzasTVr1vDss8+SlJSEq6truq8ZO3Ys48aNS3d8wYIFuLm5ZUl2IYQQQmSvpKQkevXqRWxs7L9eHc1RV16exJgxYxg5cmTav+Pi4ggNDaVVq1b58tKwxWJh48aNtGzZEien9J+k87rH7X9KSgqBgYF0pSrVlSIZPma6bg+1uzZn+vTpT5zr2rVrVKpUiU5qJWopRVFVlXX8yU7C8cJIGH5Ek0QEMVQsX4FlK5Y/0e0jm81GoUKFmD17Npdf/hU1Of36N3PYR/mOdfnpp59QVZXKlSrhFwHdqZbusffUBL5kC1OmTKFXr15P1HdHUlWVYkWL8cOUHzLsv6qqTDZsp12f55k8ebJGKbOfvA9I/3Nj/x9ngkSOKl6CgoK4ffv2A8du376Nl5dXhlddAFxcXDIci+Dk5JSrvmlZTfr/aP13cnKiRLHiHD19hWoEp2uPUZM4q1zntZo1n+r1LF68OB3at2f50hX42Jy4SwIbOElHKtGQEmnjbK6qUcw5foAe3V9g5+5dj30eg8GAxZx66VVNtqImp78MG6tLQKfTpfVn8JAhjHprFGVVPyopIWmPM6lWFusO4u7jRvfu3XPFz5PJZCI6JhrIvP8uCkRGRuaK/jwteR+Q/uem/j9O1hy1zkvdunXZvHnzA8c2btxI3bp1NUok8oM33hzBKfUmh9WrDxw3qzZ+1R3Dw92dvn37PvV5ZsycSa16tZnCLlZygqoUpolSKq1wASii+NHFWplde3Zz8ODBxz6Hoii0atUSAHsGd4RvqXFcsd3j2WefTTv2+uuv89xzzzGHfUxTdrNZPcsK9Q8mGDZywyWBpct+y/TDQ07j4uJCUEBgpu0W1cYNJZbixYs7MJUQIqtla/GSkJDAsWPH0vaduXTpEseOHePq1dQ/EmPGjKFfv35pjx8yZAgXL15k9OjRnDlzhh9++IFffvmFN998MztjinzupZdeot+L/ZjPIb7X7WSTeoaV6gk+M2zkklMMS35bmiW3ID09Pdm8dQvTp0/HjI1nyPg2VXmC8TAYWbt27ROdZ/gbbwCwnOOkqH9febitxvGT4SBFi4TRpUuXtOMGg4HFvyzm559/xr92cXZ5XONcQAIDXh3E8RN/0KhRoyfKoZX+Lw0A4I6a/hL0Ns6TYEvh5ZdfdnQsIUQWytbbRocOHXpg5sT9sSkvvvgic+fO5ebNm2mFDECxYsVYvXo1b775JpMnT6Zw4cLMnDlTpkmLbKXT6ZgzZw7PPvssP3z3PXuPH8foYqR31/4MHz6cMmXKZNm59Ho99evXB8A5k18/naLgpBieeKZA3bp1WbNmDccNNzigv0gxux8mnY1LtkjCgouwfuOGdLda9Xo9vXv3pnfv3k90zpxk2LBh7Ny5kxn6fdRUgyhHEMlY2K9c4SjX+OCDDyhVqpTWMYUQTyFbi5cmTZo8dGXPjFbPbdKkCUePHs3GVEKkpygK3bp1e6rp0I+qePHi+Hr7cCr2JiUokK79mhpNtCWBZ5555qnOc+LkSebOncuRI0cwGo180qEDXbt2far1anKD+4sWdu/XkzmzZ7Mu5TQAxYoUZdp70xg0aJCW8YQQWSBHDdgV2UNVVY4dO0Z0dDTFihWjWLFiWkfK14xGI4MGv8LkL7+mki2EYop/WluyamG5/gShQYVp167dU50nODiYjz766Gnj5lqTJk3is88+4/z58xiNRsqVK4dOl6OG+QkhnpAUL3ncr7/+yvtj3uN8+IW0Y82aNGXyt9/ITswa+vjjj9m7ew/f79lJJUIopvoRQzKHDREoRgOblq3BYJBfz6fl5eVFjRo1tI4hhMhi8jEkD5szZw7du3fH+WIiQ2jAe7SiFzU5vfMo9evWy7I9e8Tjc3NzY8OmjUz+ZjK2ct6sdT7LKf9oBrw6iGN/HH/qW0ZCCJGXyUe7PCopKYkRw9/gGcLooVZPWwq9AB5UtAUzOXkHo99+m9Vr1micNP8yGo0MGzaMYcOGaR1FCCFyFbnykketXLmS+IQEWlM23R4uRsWJxrbirF23jps3b2qUUAghhHgyUrzkUdeuXcPTyRU/xT3D9lB8UVWVa9euOTiZEEII8XSkeMmj/P39SbSmkKiaMmyPJBGAAgXST9UVQgghcjIpXvKojh07otfr2Ul4ujabamenLpzaz9SWZdJFlrHb7ezZs4eVK1dy7Nixh67xJIQQT0OKlzyqQIECvP3OaDZyltXqSeLUFACuqzHMVfZzhWg+/exTjVOKvOLXX3+lZPES1K9fn06dOlGtWjWqVanKzp07tY4mhMiDZLZRHjZ+/Hj0ej2f//dzNpvO4awYMKtWggoG8tuM32jevLnWEUUeMH/+fPr06UNFJZhhNKIAHkQQw+ZT52jRvAWbt2ymQYMGWscUQuQhUrzkYTqdjnHjxjFixAhWrVpFdHQ0xYsXp02bNrlqm3SRc5lMJkYMf4NqSih91JppM9vKE0Rpe0F+YBcjR7zJgUOPv0O2EEJkRoqXfMDX1/eB3buFyCpr164lMuoeL1Et3ZR8g6Knqb0Ucw7vY9q0aSxb+hu7du1CURSaNmvKmyNHPrBxqxBCPCoZ8yKEeGIREREYFD1BileG7YXwBmDIkCGc2XKYpsnFaZxUlCPrdtOsWTMmTZrkwLRCiLxCrrwIIZ5YQEAAVtXGPRLxz2BNodvEA9CA4jxvrwp/XZxpZi3N75zkzTffpEmTJlStWtVxoYUQuZ5ceRFCPLH27dvj5eHJFs6la7OrKts4jzN6OlP5gTZFUWhHBXwM7kyZMsVRcYUQeYQUL0KIJ+bm5sann01gL5dYrB7hjhqPXVW5qkYxR9nHee5SliB0ig6raiNGTSJFtQCgV3SUtRZk/569GvdCCJHbyG0jIbKYqqpcunSJ5ORkihYtirt7xls05BXDhg1Dp9Px4XsfsD92Y9rxwsGFCLYG4nJHzxL1KIe5hgkrClBeDaIlZTFjw8nZWbvwQohcSa68CJGFFi1aRKUKFSlRogQVK1YksGAAw4YNIzo6Wuto2erVV1/l+q0bLF++nBkzZrB+/XouX71C2/bPcoQIjnOdRpRgIPV4nircI4nv2MEJ5QbPdmivdXwhRC4jV16EyCJffvklo0aNorwumJeogxvOnE2+w9ypM9m+dRu79uzG29tb65jZxmg00qlTpweO3blzB1eceJOm+Cpuacdrq0WZyR7C1XsMGDDA0VGFELmcXHkRIgtERETwzuh3aEopXrbXoaISQnGlAG2V8rxma8iFs+f54osvtI7pUPfu3WP9unU0o/QDhQukrgHTgUrYsHP06FGNEmZOVVWSk5Ox2WxaRxFCZECKFyGywJw5c3BS9LSkbLrF2oIUL2raCjN96nTsdrtGCR0vPDwci9VKKQpm2F5I8cHT4Mqff/7p4GSZM5lMTJw4keJFi+Hm5oaLswvPdX6Offv2ceLECYYMGULFcuWpXKESI0eOJDw8/canQojsJ7eNhMgC586do5Dig1HJeNuF4hRg172LJCQk4OWV8YJuec39gcrxmDJsN6lWUuwWPDw8HBkrUyaTibat27Bz506qqoWoR00S7Cb2r95G/VUrUe0q3gY3ylsDsKEy4+xUvv/uOxYtXsxzzz2ndXwh8hUpXoTIAt7e3sSSgqqq6a68AMSQjEFvwNXVVYN02ihfvjylSpRk78VLlFED0r0uB7mCVbWlGyejlS+//JKdO3cy2F6fEkqBtAX1GlpL8DMHOclNRlob46EYATDbbCy0H6bHCz04e+4sRYsW1S68EPmM3DYS4i/JycnMmTOHDh060KxJU4YPH86pU6ce6WtfeOEFIq1x/MmtdG1W1cZ+w1Wee/65fLUhpqIofDxuLCfUG6zkBImqGQCbauegeoXfdafo17cfYWFhGicFu93OD999Tw17aGrh8g96RcdzVEZF5SjX0447K3p6qNUx2BWmTp3q6MhC5Gty5UUI4OLFi7Ro1pzLV65QUlcQd7sTP+0+wLfffsunn37Ke++999Cvb9CgAc2aNGXhzj08b6tMFQqhV3TcVuNYoTtJjC6FMWPGOKg3OUfv3r25e/cuo99+m732ywTqvYlVk4mzJvFC1xeYOi1n/NGPiYnh+s0btKB2hu1eiiuFVB9uEPPAcRfFQDlbAFs2bXZASiHEfVK8iHzPZrPRrk1bEq9H8Q4tCFA9QQGr1c4mzvD+++9TunRpunbtmulzKIrCshXL6d2zFz+vWc1v+j9w1TlzzxJPgG9Bfl/0O9WqVXNgr3KOESNG0LNnT+bNm8fFixfx8/OjR48eVKxYUetoaVxcXABIwpxhu6qqJGPGgD5dm4KCqqrZmk8I8SApXkS+t2bNGs6eP8cImhCgeKYdNyg6WqvluKKL5vP/fv7Q4gXAy8uLVat/58SJE6xcuZLk5GQqVarEc889h3M+X0U2MDCQUaNGaR0jU+7u7jRt3IRDu05S21YU3f+MzwknkkgS6ULwA8fNqpXT+jsMbdbdkXGFyPekeBH53vr16wly8qGI1S9dm6Io1LCHsuDQQWJiYvDx8fnX56tUqRKVKlXKhqQiO7373hhat27NUo7RXq2Aq5JacF5S7zGPA3jiQol/TPu2qjZ+UY5iVqwMHTpUq9hC5EtSvIh8z2q14pTB7YD77rdZrVZHRRIaaNWqFTNmzODVoUM5Yo+giOJLomLmhjWG0JDCXLsRwX8NmyhvDcSOygnDLZIxM3/BAooXL651fCHyFZltJPKEs2fPsn79eo4cOfLYX1urVi0iLFFEqYkZtp9UblK0SBj+/v5PG1PkcAMHDuTK1at8OP5janZvTtsXu7Bq1SouXb3M4cOH6di3G7eKQWRJPX0HD+CPEyfo1q2b1rGFyHfkyovI1Q4fPszw14ezZ+8eAFxdXVm4cCErVqz41zEq9/Xo0YNRI9/i1/hjDLDXxln5+9filHqTo0oEX7zxRYbrt4i8Jzg4mPfffz/d8erVqzN79mwNEgkh/pcULyLXOnr0KI0aNsTPbKQftSiCHzFYAOjXrx9JSUn069fvX5/Hzc2Npct+49l2z/If62aqWQvhiQvndHc5o97iuU6dGT58eHZ3RwghNGWz2YiIiEBRFAoXLoxOl3NvzuTcZCJfs1qtrFixgo8//phPP/2UY8eOpXvMW2+OxNds5DVbQ6oqhfFT3NIWGKuqhDJi+BskJyc/0vmaNm3K0WNH6TGwLyf9o9jidhGv6qHMnTuXX5cswWCQOl8IkTfZbDa+/PJLihYLo2jRooSFhVG8ZHG+++67HLsfm7wjixxn7969dO/ajYgb1/Fxcsdst/LBBx/QsnkLFv2yGD8/Py5fvszW7dvoTU1clPQ/xs3VUuyNPcfKlSt54YUXHum8ZcqUYcqUKUyZMiWruySEEDmS3W6nT58+LF68GM+SRgq18gUVoi/eYfjw1zl+/DjTp0/PcbfNpXgROcq5c+do1aIlASY3RtKUwlZfbKqdE9zgt227eLbds+zes5tr164BUBifDJ/HX/HATe/C1atXHZheCCFylxUrVrBo0SJCmvngWfzvvdc8woy4hTgzc+ZMevToQfPmzTVMmZ7cNhKPJDk5mZMnT3LmzBlsNlu2nWfixIk4mWGQrS6FFV8gdW+Zqkph+tmeYd/+faxfv56CBVPX27hLQobPE68mk2wzpz1OCCFEelOnTsE9yPhA4XKfV2lX3PyNOXLvLilexEMlJSUxevRoQoKCqVSpEuXKlaN40WJ8++232bIk+qIFC6lpDc3wVlAJClDI4MuiRYsoU6YM1apUY4cuHHsGOXZxEaPRhc6dO2d5RiGEyCtOnf4Tl8CM17lSFAXnQB2n/jzp4FT/TooXkSmTyUTb1m345qtJVIsL4HUaM5j6FLyuMHz4cN54440sPZ/dbic+MQEf0n8CgNRfJC+rC7GxsSiKwn8+/w8X1XvMUfYTocYAEKMmAbCTcD748MNHWhFXCCHyKy9PL6xJmQ/KtSWpeHl5OzDRo5HiRWRq1qxZ7Nq9m1ds9eigVKKY4k8ZJZDe1OQ5qvDtt99y8ODBLDufTqejaJEwLitRGbZbVRsRhlhKliwJpK6Iumz5MqIC7HzFFkazgs/ZBMC4ceOydRdnVVVZuHAhdevVxehqxMvbiz59+jzRInlCCKGVnj16knTZjDU5/XAAS4KNxGsmevboqUGyh5PiRWRq6g9TqEgwxZT0K8vWpzj+Bg9mzpyZpecc8upQjinXiVCj07Vt4wLx1mQGDhyYdqxjx45cjbjG77//zqRvJ6ctIjZixIhsGx1vt9sZMGAAvXr14uS143hVcca5pMpvq5dQq1YtlixZki3nFUKIrDZ48GC8vX24uT6WlLupu6qrqkrybTM3N8QSFBTEiy++qHHK9GS2kchUeHg4LdSSkEENoFMUQq0+nD97LkvPOWzYMJb8soQpx3dTz1aU8gSTgoUDylWOE8H7779P2bJlH/gag8HAs88+C4DFYmHNmjVZmul/zZs3jx9//JHgJj54lfz7FpdaVeXW9lj69OlNo0aNCAgIyNYcQjhCQkICM2bMYNaMmUREXCegYEFefKk/Q4cOxc8v/WamIncJCAhg65atdOjYnisrruLqYwRVJTnWROkypVi18vcceftdiheRKW9vb2JSMl/kLVafQjFfnyw9p7u7O1u2beGDDz5gzqzZbE5MLY5KFC3O9DHTH7jqopXJ30zCs4jrA4ULgKJTCKjrxaXFkcyePZt3331Xo4RCZI2oqCiaNGrM6T9PU4kQGqiFuRufwPiPxjFz+gy279xBkSJFtI7pcPHx8SxcuJCzZ8/i6elJ165dqVixotaxnlilSpW4cD6cNWvWsHPnThRFoWnTprRu3TrHrrIrxYvIVM/evZg++Qda2cripjg/0HZNjeaSLZL/9Mz6e6Genp5MnjyZzz77jPDwcFxcXChZsmSO+CWy2+0cO3qcgHqeGbbrjTqMgU5ZOhZI5B4pKSncunULLy+vPHFVYtiwYVw6c4E31SYEK95pV2Fb2csx5cYuXuzbj63bt2ma0dEWLlzIoEGDSEpKwtXXiDXZyrhx4+jcuTM///wz7u7uWkd8IgaDgY4dO9KxY0etozwS7f8aiBzrjTfewMnDyHT9Xq6oUaiqil1VOaneYLZhP5UrVsrWqchubm5UqlSJ0qVL54jCBVJnPOn1euyWh0wTt4KTk5PjQgnN3blzh9dee42C/gUoVqwY/v7+tGzRgp07d2od7Yndvn2bX3/5hRa20qmFyz/4KW48ay3Pth3bOXXqlEYJHW/Tpk306dMHfZCdYj0KEvq8D0V7+hPU2Jvf16yiT58+WkfMN3LGXwSRIxUpUoTNW7dgCPViMtsYb1jPx/q1zGYflevUYMOmjTg7O//7E+UhiqLQunVrEi9ZMlznxhxrJfFWCm3btn2q8yQnJ3PkyBGOHj2KyWR6que6z263s2rVKjp26kj5iuVp1LgR06dPJzExMUueP7+6ffs2dWvX4afpc6ibFMpg6tOd6pzbdoxmTZuyfPlyrSM+kSNHjmC12ahESIbtFQkGYN++fY6Mpalx48fhGuBMUBNvnNxT10ZRdArepdwoWM+T5cuXc+LECY1T5g9SvIiHqlatGucunGf16tWMeP9t3h37PgcPHmTHzh0EBgZqHU8Tb7/9NsmRJu7sicNu/buAMcdbub01jpBCIXTv3v2JnttkMjFmzBiCgoOoUaMG1atXJ6RQCOPGjcNqtT5xZovFQpeuXejYsSNb9m3kpnqFo5cPMWTIEKrXqM7Nmzef+Lnzu/fee4+7Ebd4w9qItkp5yiiB1FGK8rqtIeXtQbzUf8AjbxCak+j1qX+cLWS8oraV1LVB8sumpXfv3mXXzl14lnHJcCajZ3Ejzm5OMtvQQfLHT514Knq9nnbt2tGuXTuto+QIjRs3Ztq0aQwZOoTESxZcAnWoVoWkGyYCgwLZsH4Drq4ZL7T3MFarlU6dOrJp8ya8yrlSpJg/qBB3MZnx48dz4uQJfln8yxPdQhs/fjwrV64kpIUvnkWNacdN0RaubLhM9xe6s3NH7rvFcfv2bQ4ePIiiKNSpUwd///TT+rNTfHw8C+YvoJm1OP7Kg2Md9IqOZ9UKfBa7gaVLl+a6Wwp16tTBzejG4ZRrtKV8uvbDXEOn6GjWrJkG6RwvISF1KxKDWyar0eoUnFwNxMXFOTJWviVXXoR4AoMGDSL8Qjij3hxFvTKNaVa9JdOmTePC+QtUqFDhiZ7zl19+Yf36DQS38CGgtheuAc64BjoTWNeboKZeLF2ylLVr1z7286akpPDtd9/iXc71gcIFwMXXCf9abuzauYujR48+UW4txMbG0q9fP0ILF6ZDhw60b9+eQiGFGDx4sEOvcly9epUUUwolyHgPrYKKB/5Onpw+fdphmbKK2WzGxejMZs7yh3r9gdukF9S7rNb9Sffu3QkNDdUwpeMEBQXh7u5G8i1zhu2WRBtJ0SnplnIQ2UOuvAjxhIoWLcqECROy7PmmTZ+GRyEj7oVd0rV5FDXiFmBk+ozpaWvaPKo//viD2JhYijTO+KqER5gRg5OerVu3Uq1atSfK7kgpKSm0aN6CP4+doK2tHFUohIrKEXMEP86aw5VLlxn62qsOyeLh4QFAPCkZtltUG0l2E56eGc9Oy8neeecdLPEplKAAc9lPMF4UUn24QzxXicZF78x333+ndUyHcXV1pX//AcyYPR2vkq44e//951NVVSIPxuPq6krPbJiBKdKTKy9C5BAXwi/gXOAhG6QV0HH+wvnHft77n5gfuuKwQrZstJkd5s2bx+HDhxlsq0cTpRS+iht+ijstlDK8ZKvNjl2Ou/1VpEgRqlWpxh7d5Qxfv8NcI9lm5vnnn3dYpqwQGxvLgvkLaGQrzmAaMJj6BOHFPRLxxpVOVMJkMbNjxw6tozrUuHHjKFK4CNd/jyHyUDyJN0zEnk/i+uoY4sNTmD5tOl5eXlrHzBekeBEih/Dz9cOa8JAN0hJU/P0ef0xHxYoVcfdwJ/5SxrdTEiNMWM02GjZs+NjPrYVZM2ZSThdEqOKbrq2UEkBRfQGHZVEUhY/Hfcw5+21+5RjxauoVGJtq55B6lRW6E7zQvTulS5d2WKasEB4eToophTIEolMUyiiB9FVq8brSmAFKHRorpfA2uOW7mTX+/v7s3bOPgQMGkXzOTsSaKG5tj6VKieqsW7eO3r17ax0x35DiRYgcom+fviReMWFJSD+7wxRjJeFaCn16P/6gT3d3d4YMHkLsnykk3nhw2rUl3sq9A0nUfKYGzzzzzBNnd6TrERGE2DP/dBtk83BgGujUqRPTp0/nmMtNPlHW86UhdVmBBRyifecOzJ4zx6F5soKbmxsACWQ8Td+i2khRLWmPy08KFCjA999/T2RkJBcuXOD27dvs3rWbVq1aaR0tX5HiRQCpiy91aN8eb08vfLy8ea7zc2zfvl3rWPnKwIEDCQ4O5ub6WBIjTKiqimpXSbiSwq0NsZQoWfyJZ6z83//9H00aNSZiTRTX18Vw92AcN7fGcHnJPQp6BfDrL0uybSPLrBYYFMQdJSHT9rs6x69bM2jQIK7fuM5Xk7+my9A+jBgzihMnTrBk6dJc+Qe+TJkylC5Ziv3KlQzbj3INk81Cp06dHJws53B1daVEiRKyh5lGHFK8fP/99xQtWhSj0Ujt2rU5cOBApo+dO3cuiqI88J/RaMz08eLpffbZZ7Rs2ZJj6/fSICGUevGFObB6O02aNGHy5Mlax8s3/Pz82LZ1O2WKliViXRSX5kdycX4k1zdGU7VCdbZu2fbES48bjUbWrl3HvHnzqFa8JsZIL8LcS/Lf//yX48eOU7Ro0aztTDZ6cUB/TnKTW2r6KalX1CjC7Xc1SJX6/Xv99deZPHky48ePz9V73SiKwvsffsAf6nV+V0+SoloAsKsqx9XrLNefpGuXLpQqVUrjpCK/yvbZRosXL2bkyJFMnTqV2rVrM2nSJFq3bs3Zs2czrVi9vLw4e/Zs2r9zyyfC3Gjv3r289957tKIsra3l0l7rFtYyrOIkI0aMoFGjRrliFkpeUKJECY4cPsqePXvSNkhr1qxZltzScXJyok+fPrluvZH/NWDAAKZ8/wPTwvfQ1vr3bKOjRLBGf5pqVatrHTFP6NevHzdv3uT9995nj3KZEMWbGJKJsibQtmUb5sydq3VEkY9le/Hy1VdfMWjQIAYMGADA1KlTWb169UN33VUUhaCgoOyOJoBvv/2WAIM3rf5RuEDq9+BZtQLHDTf5/vvvmTlzpoYp8xdFUahfvz7169fXOkqO5OHhwbYd23mp/wAWrV3DIg4DoFN0PN/5OaZMncru3bs1Tpk3vPPOO/Tu3Zs5c+YQHh6Oj48PPXv2pFatWvKhUmgqW4sXs9nM4cOHGTNmTNoxnU5HixYt2Lt3b6Zfl5CQQFhYGHa7nerVqzNhwoQnXvhLPNz+3XspZy2ILoM3Ir2io5y1IPv3ZP69EkILAQEB/L5mNRcuXGDPnj0oikKjRo0ICwvDYrFoHS9PKVy4MB9++KHWMYR4QLYWL5GRkdhstnR74AQGBnLmzJkMv6ZMmTLMnj2bypUrExsby8SJE6lXrx6nTp2icOHC6R5vMpke2Lju/tLMFoslX76J3e/zo/bd3cMdxdWGomS8C7KiOuHu7pFrXsvH7X9elJ9eg7CwMMLCwtL+/c/f+/zQ/8zk99dA+p81/b906RJr164lOTmZChUq0LJly7Q9r7LD4+RV1GxcmerGjRsUKlSIPXv2ULdu3bTjo0ePZvv27ezfv/9fn8NisVCuXDl69uzJJ598kq597NixjBs3Lt3xBQsW5MpR/kIIIUR+lJSURK9evYiNjf3Xxf6y9cpLgQIF0Ov13L59+4Hjt2/ffuQxLU5OTlSrVo0LFy5k2D5mzBhGjhyZ9u+4uDhCQ0Np1apVvlzp0GKxsHHjRlq2bImTU8ZXU/7p4sWL1K5Vm1LWAnRRK2NUnAFIUs38qjvKNZc4Dh46lOFVr5zocfufF+X318CR/bfZbGzevJlz587h4eFB27Ztc8Ru6/Iz4Lj+2+12Xn31VRYuXIhHIVeMwXrsFki+bMGcYGXOnDkOn1L+NP1XVZUXXniBzVs34VfDHc/irugMCin3LEQfTsQWq7B1y1bKlSuX5bkfZ1PLbC1enJ2dqVGjBps3b6Zz585A6jd68+bNDBs27JGew2azceLEiUx3NHZxccHFJf1eME5OTvnyl/a+R+1/mTJl+Hn+z3Tr2o0TlquUshdEReW87i5ORmeWL15BsWLFHJA4a+X37z/Ia5Dd/d+6dSsv9u3HtesRGPXOmO1WdDqFQa+8wuTJk3PEay8/A9nf/x9//JHZs2cT3MQHr5J//y1yL6/n1vZY+vTpzdWr1zRZD+ZJ+r9v3z6WL19OSHMfjMV0WDCBFRRv8GnkwrXl0fznP/9hwYIF2ZL3UWX7Oi8jR45kxowZ/Pjjj5w+fZqhQ4eSmJiYNvuoX79+DwzoHT9+PBs2bODixYscOXKEPn36cOXKFQYOHJjdUfOt9u3bc+nyJd4f+yFBzcsT0qIiY/9vPBcvXaJFixZaxxMixzl06BBtWrfB9aaZETRhgr09n6jtaGMrx4yp03nllVe0jigcZPI3k/AIdcWrpOsDxxWdQkBdL6x2G7Nnz9Yo3eNbuHAhRi8XPIqmX19NZ1DwKOXMkiVLNB9PlO1TpV944QXu3r3LRx99xK1bt6hatSrr1q1Lu7R69epVdLq/a6jo6GgGDRrErVu38PX1pUaNGuzZs4fy5ctnd9SHunjxIocPH8ZgMNCoUSP8/R9/j5mcLCgoKHVGgUwqEOJfjRs7Fn+7GwPtdTEoqQMYXRVnmlEaF9XA3LlzGTNmTK7b00g8HrvdzrGjxwmol/Gu4XqjDmOg00MXZs1poqOjMbjrMp0K7+Spx2KxkJiYiI+Pj2PD/UO2Fy8Aw4YNy/Q20bZt2x7499dff83XX3/tgFSP5saNGwwaOJC169al7Rrr4uzCSy+/xFdffSWr/wqRz8TGxrJ6zRq6qFXSCpd/qkUY6/RnWLhwIR9//LEGCYWjKIqCXq/HbnnIvBdr6hCK3KJ48eKYoizYLXZ0TulvzqTcseDj66P5mFLZ2+ghoqOjadSgIXs37uAFtRqf0J6PaENzcwlmTZtB1y5dsNsz3wVYCJH3REdHo6oq/mS8VYOTosdH50ZkZKSDkwlHUxSF1q1bk3jJQkYTd82xVhJvpdC2bVsN0j2ZAQMGYLPYifoj/R5h5lgrCedNDBo46IE7JlqQ4uUhvv/+e65ducZQa31qKUVxV5zxUdxooZSlj70mq9esYcuWLVrHFEI4UEBAAEYXI1eJzrA9UTVz1xaXKwe6i8f39ttvkxxp4s6eOOyWvz/MmuOs3N4aR0ihELp3765hwscTFhbGuHHjuHc0gZtbYki8biLlnoV7xxO4vjqGsCJhvPPOO1rHlOLlYebMnE1VeyEKKB7p2ioQTIjBh7myv4fQ0PHjx/nmm2/45ptvOH78uNZx8gU3Nzd69e7FHsNl4tTkdO2bOQs6JdfvISUeTePGjZk+fTpx51K4vPge1zdGEbEmiku/3sXb2Y8N6zfg6ur670+Ug3zwwQfMmjULPzWQiLVRXFkWSdzxFHp07cme3XtzxJhPh4x5ya1u3r5JJTIecKcoCgFWD65fi3BwKiHg+vXr9OjZg107d6E3pH4GsVntNGzUkJ/n/axxurxv7NixrP19Dd9G7aSJtSQlKUg8KexWLnGcCL747AtNpsYKbQwcOJDmzZszY8YMDh8+jIuLCx06dKBXr15PvBO81l566SX69+/Pn3/+SXJyMiVLlsTX11frWGmkeHmI4MBgbl3JeNEcVVW5Y0ikQmjuWLxN5B3x8fE0adqYiNvXCGnug0dY6qDxhCspHDiwn3bPtuXT/5ugccq8LTQ0lD379/LmiDdZtnIldjX1dkGxIkWZM3YO/fv31zbgX/bu3cv27dtRVZUGDRrQtGlT2VAxmxQrVowJE/LW751Op6NixYpax8iQFC8PMWDgS/zfx+NpYS+Dv/Jg9XyKm9ywRueYNymRf/z444+Eh1+kaJcCOHv//SvsWcwVF18nLq29rF24fKRo0aIsW76Mmzdvcv78eTw8PKhatarmAxkBrl27BkCbNm3QW0ABPrYmU6FceZatWE6pUqW0DSjEU5Li5SFeffVV5syazQ8Ru2ltLUNFgjFj4zBX2ag7S7vW7WjWrJnWMUU+M+/nn/AoYnygcLnP2ceAe2GZvu9IwcHBBAcHax0jTXx8PM+2bcd/Pv8vL1GHYlYfFOACkfx2/g+aNGrMHydP5IhxC3nB1atXOXHiBC4uLtSvXz/XjW/JrbT/iJCD+fn5sXP3Luo0b8AiDvMBvzOetWx0Os9Lrwxk6W9Lc8SnLJG/3Ll7F4Nn5j93Bg/5mczPfvzxR65FpI7FK6kEoFMUFEWhlFKQwda63L1zl5kzZ2qcMveLiIigffv2FC1alPbt29OyZUuCgoMYP368LKHhAHLl5V+EhISwZt1awsPDOXToEE5OTjRu3Fg+tQjNlCxegn1/3s603Rotb5z52cIFCyhLxptD+ihuVLIHs+Dn+TliumtudefOHerVr8fdmNsE1PfCPdQFu8lO7Llkxo4dy/Xr15k2bZrWMfM0KV4eUYkSJShRooTWMYRg4MBBbOqxmcQIV9wLP7gpaWKEiYSb6afvir8lJiaye/duzGYzlStXpkiRIlpHylIxUdEEqek3q73PB1fCo2McFygPmjhxIrfu3CK0sy9OHn+tsuyuJ6COE05eeqZPn86wYcOoVKmStkHzMLm+LEQu06VLF1q2bMHNzbHcPRhHyj0LKfcs3D0Yx83NsTRrLuOwMmKz2fjwww8JCQqmdevWdOjQgWJFi9GpY0du3LihdbwsU6pMaa4ZYjNtv6KPoWRpGbD7pFRVZeasmXiUdP67cPkHn7JuuHg4M2fOHA3S5R9SvAiRyxgMBlauXMWI4SMwhcOVZZFcWRaJKRxGDB/B4kWLtY6YIw0cOJAJn06gekIQ79CCj2lLF7UKO9duoUG9+nlmOf9XBg8mwprx6r+n1JuE2+7wypDBDk6Vd5jNZqKjonHxz/jGhaJTcPLRpc34EtlDbhsJkQsZjUYmTpzIuHHj0lbWrVKlCu7u7ppvVZ8THTp0iLlz59KdatRR/l62vy7FKGMNYOK1LXz66aeMHTsWb29vDZM+vbZt29KlSxcAlqnHqKgGoKBwnAj26a7Q8dkOae3i8Tk7O+Ph4Y45xpphu2pXscarBAZmPO5IZA258iJELubu7k69evWoV69erl3J0xHmzp2Ln8GDWhR94LhFtXGIq6h2lUmTJuHj40PD+g1YvXq1NkGzgKIozJgxA4ArBZL5gZ18zw7O+sXx/ocfsGTpUvT69Lc7xKNRFIUXX+xPwgUz1pT0g+PjL6WQEmuiX79+GqTLP+TKixAiz4uIiCDQ6oHuH6vLWlQb09nNFaKoSRHKEUQyFg7uP0f79u35/vvvefXVVzVM/eTuFyd/njnNpUuXUFWV0qVL4+zsrHGyvGH06NEsXLSQG2tj8KvuhnuoCzazSuzZJKKPJvJ8l+d55plntI6Zp0nxIoTI8wICAthjSMJuVdMKmF2Ec5l7DKUhxZUCaY99xlaEZfzB8NeH06lTJwoVKqRV7Kfm5OREhQoVtI6R5xQpUoRdO3fRt18fDm88knbcycmJQQNfYdKkSbINQzaT20ZCCIeJjo7mq6++onmzZjSoV58333yTs2fPZvt5+/bty11rHH9wPe3YHi5RjdAHChdIvS3QjvI4KXpmzZr1yOeIjo4mIiICs9mcZblFzlWuXDkOHTzMoUOHmDlzJj///DMRERFMmTIFF5fMp6qLrCHFixDCIQ4fPkypEiV5Z9Robm87Q/Lea8z6bhrlypXjhx9+yNZzN2jQgE4dO7JId4Qt6jli1CTukUgpCmb4eKPiRBHVl5MnT/7rc2/atIkmjRrj5+dHaGgoQQGBvP3228TGZj5dWeQdNWrU4OWXX6Z3796yk7gDyW0jIUS2i4+Pp23rNnjG6XhdbYWX4goKWK02VnGS1157jfLly9OkSZNsOb+iKCxavJg33niDObNn87s1tSiJx5Tp1yTozHh4eDz0eX/++Wf69etHmM6fHlTHAyMXYu/y/dffsGHdenbs2pnrZy8JkRPJlRchRLabP38+96Lu0ddWM7Vw+YtB0dOZyhQ2+PHVl19mawaj0ci0adOIuH6dn3/+mZo1anBQfxWbmn7GyCX1Hjes0Tz//POZPl90dDSvDHqFGhRhmK0htZSilFeC6KhU4jVbQ86fPsuECROys0tC5FtSvAiRTaxWKwcPHmTHjh3cvXtX6zia2rBhAyWUgvgqbunaFEWhqjWEDRs2OiRLQEAAvXv3ZsrUqUQpScxTDhKjJgGpq6eeV+8wz3CIKpUq07Zt20yf5+eff8ZiMtNerfDALCaAEMWbWrYizJw2Q9bdESIbSPEiRBZTVZXvvvuOsNAi1KpVi8aNG1MoJISePXty69YtreM9kZSUFH766Sd69epF9+7dmThxIvfu3Xvkr7fZbBjUzN9unNBjs9lQVTUr4j6SmjVrsmTpUi65xfJ/yga+NmznM6dNTGEXJSqVYe36dQ9dD+X06dMEGbzxUowZtpeiIFGx0fm+cBUiO8iYFyGy2AcffMCECRN4hjC60Bg3nDhjvcPaJSs5sG8/+w8eoECBAv/+RDnEqVOnaNW6FTeu38A9yIiih6W/LeXDjz5k0cJFdOrU6V+fo06dOqz7fS1JdjNuSvq1Rk7qb1K7dm2HTy/t2LEj12/eYP78+Rw7dgyj0UiHDh1o1qzZv2Zxd3cnUTVhV9V0V14A4v4aTyOLBwqR9eTKixBZKDw8nAkTJtCO8vRUalBM8SdQ8aKxUpJh1obcunaDzz//XOuYjyw+Pp4WLVsQY7pHsa4FKdzel0JtfSnWowDOQQrdunVL257gYV566SV0Tnp+VY5h/Z8xJnvUi5y33eGNEW9kVzceytPTkyFDhjB16lQmTZpE8+bNH6mI6tKlC9HWRE5xM12bXVXZr79C86bNZMCuENlAihchstCcOXNw1xtpRPpde/0Vd56xhTJrxkzs9vSDRHOi+fPnc/vWbQKbe+Hs8/eFWoOrnqAm3ujddEyaNOlfnycwMJCFixZyWn+bzwyb+F09yUb1DN/odrCEYwwbNoyuXbtmY0+yXu3atWnRrDmL9Uf5Q72O/a9bXrFqMguVw1yzR/PeB+9rnFKIvEluGwmRhS5fvkwwXjgrGY+VKIIv22MukJCQgJeXl4PTPb5Vq1bhFuKCs2f6twpFr+BWzIkVK5cDc/71uTp37syhI4eZPHkyv69YhdlipuYzNZn8+ut06NAh161IqigKS35bSrcuXZm7eRPeBjc8FSM3rDEYjUZ+nvUzzZo10zqmEHmSFC9CZCF/f3+ilKRMx0FEkoiLswtubuln3eREKSkpKE6Zt+udFRJTMl8r5X9VqlSJmTNnwswsCJcDeHt7s37jBg4ePMhvv/1GQkIC5cuXp3fv3nK7SIhsJMWLEFmoV69efPPNN/zBdapS+IG2FNXCfsNVevTsgcGQO371qlevzq69O1P3BDKkL8aSr1uoWq26BslyDkVRqFWrFrVq1dI6ihD5hox5ESIL3L17l//+97+MHz+ewIBAFilH2KWGY1KtqKrKRTWS6fq9WFzg3Xff1TruIxs8eDBWk427B+PSTWOOu5BMwvUUhr02TKN0Qoj8Knd8/MtB4uLiWLhwIefOncPb25uuXbtSvnx5rWMJDa1bt47nuzyP2WzCGOyE6qRiUW38xnFWKCcw6PSYbBZKFCnOpkWrKVu2rNaRH1nJkiX59ttvee211zDfteNR3BnFoJB01Uz81WRefPFFevTooXVMIUQ+I8XLY/jpp58YOmQoKSkpBBi8iFdT+Pjjj+nerRtzf/wRV1fXf38SkadcuHCBzs91xjlAR0ijghiMqRczrUk2bm6OxRaj8s4779KwYUOaNWuGTpf7Lna++uqrlClTholfTmTjhg3YbHaqVK3MG2NH8OKLL+a6gbZC5FYmkwm73S5/a5Di5ZGtWbOG/v37U1MtQjvK4211xaraOcI1flu6nJd0A1i4aJHWMYWDff/996g6O0HNfB8YE2Jw0xPSyofLiyNRFIUWLVpomPLpNW/enObNm2O327Hb7blmzI4QecHq1av5/IvP2bF9BwDlypfljeEjGDRoUK78QJQV8mevn8C4seMooRTgBarj/dfGcgZFRy0ljM72SixavJizZ886NNPly5f54IMPeO655+jTpw/Lli3DarU6NEN+t+r3lbiFOWU4mFXvosM11IlVq1ZqkCx72O12Vq1axejRoxkzZgybN2926JL+QuQ3X331Fe3bt+fwuQME1vciqLE315OvMGToEPr07ZNr1ozKavLx6RFcv36dAwcP0I9aGU5/rUEoq/SnWLJkCe+/75hFqSZPnszIkSMxKk4UsfuSqDMzf/58qletxkdjP3ZIBgEmsxmdW+a3TXROOkzmR59KnJMdOXKETp07EXEtAldvF1S7yn/+8x8qVa7EyhUrKVq0qNYRc5SzZ88yd+5cIiIiCAgIoE+fPlSrVk3rWCIXOXPmDKNGjcKvsjsFnvFMu0XrXcoNj4suLFywkPbPtqdXr14aJ3U8KV4eQXx8PABeZLwBm5Oix0NnTHtcdlu5ciUjRoygMSVpQ3lcFAPY4SpRLA4/BZBvq3FHq1OrDqu3/I76jJpu7IdqVzHdsFK7ax2N0mWdiIgImrdojsU5hbDOBTAWcEJVVZJvmjm/5xzNmjflxB8nZR8fUjfmHDlyJJMmTcLD4Eqg6sE9JYmvvvqKnj16MvfHuTg7p9/fSYj/NW3aNJzcDPjX8Ez3/uJZ3BWPsya++/47KV5ExgoXLozRxUi4KZLipN9QL0pNJNISR5kyZbItw9GjR9mzZw86nY7pU6dRSh9AR1ulB36giyh+dLVWBmDHjh20bNky2/KIVMOGDWPJkiVE/ZGIfxWPtOOqqhJ5OJ6UODPDhuX+qcTfffcdickJhD3rj/6vQcmKouAW4kJwCz2Xll5m4cKFDBw4UOOk2vv888+ZNGkSHalEfWtxnBQ9NtXOYa7x6y+/4F/An2+//VbrmCIXOHr0CC4BenT6jK/uuhYy8Mcffzg4Vc4gY14egYeHB7379GaX4RJRauIDbXZVZbVyCk8PD7p3757l57569Sr169WjevXqjHj9DYa9+hrH/jhOTVtohrM8iuEPpE7fFdmvcePGfPTRR0QejCdiVTRRfyQQ9UcCEStjiDqeyMSJE/PErYJFixfhXsw5rXD5J2cfAx6FjCxaLAPWU1JS+Pw/n1Of4jRRSuH01zYR+r/Gx7Wyl2X61GlERkZqnFTkBm5u7tjNmbfbTHZcjC6OC5SDSPHyiD799FMKFApksmEH69XTnFfvcki9ynf6nRznBjNmzczyS+YxMTE0btiIcwdP0p/afKZ24H1aAWAk4zXb7xc0JlPeGGeRG4wbN47ff/+dOhXrEXvcRNwfZhrVbMLGjRt56623tI6XJeLj4zG4Zf52oXNTiI2NdWCinGnv3r1ExURRh6IZttehKGarRT5ciEfSuXNnkm6YMMeln4hht6okXrTQ5bkumX79pk2b6NevH+3ateO1117j6NGj2RnXoaR4eUSBgYHs3b+PXi/3Y6fxMlPYyQIOEVavPBs2bsiWqy7Tp0/nesR1BlvrUVkphF7R4Y0b3hg5za0MvyZaTQKgatWqWZ5HZO7ZZ59l06bNmFJMpCSnsHbN2lw/PfqfypYtS8ptW4ZtqqpivmOnfDlZrDE5ORkAdzIe0+L21/H7jxPiYXr16kVwSDC3NsdhirKkHbcm2ri1NRbVDCNGjEj3dffHX3bp0oWla35l56ktzJ43k+rVq/Pqq6/miTGRUrw8hsDAQKZOncrde5GcP3+e27dvs23Hdpo3b54t55s39ycqqyH4K39f0dEpCvUozkGuckG9+8DjraqN1brUAbtdu3bNlkwi95g+fTo9evSgZ8+eTJ8+nYSEhCd+rqFDhpIQkUzCtZR0bTGnk0iJMTFkyJCniZsnVKhQAUVROMudDNvPchuAypUrOzKWyKU8PDzYvGkzBT0CufxbJBEro7m+OoZLi+9iv6dj+bLlGa7wPnToUAAKtfClcGcfCrXyo0g3PwLqeTFl6hS+/PJLR3cly8mA3Sfg5uZGyZIls/08kZGRVFZ94X+GtjSlFOFEMpVdVFZDKE0A8Zg4ZIjA/NfALpn1kX/t2rULgHfeGY3ibUdVYfHixYx5bwyrf19NnTqPP/upZ8+eLF68mDVr1+BZyoRnUSOqTSU+PIW4i8m8/vrr1K1bN6u7kuuEhYXRrm1bNm3YQRlrID7K3yuhJqlm1urPUKV8ZdnEUTyysmXLcv7ceZYtW8a6deuwWq3Url2bvn37Zrhz+YULF1i1ahW9evXCrZALJmvqBw5Fp+Bb3h1TlJWJX37BiBEjcHJ6yJbxOZxcecnBwoqGEaFLP47AoOh5mbp4Ka5cdI/jF46y1eUirbq3Z8vWLRokFTnF5cuX6da9GwBhzxegUDtfCj/rS7HuBTA5J9G6TWtu37792M+r1+v57bffGD9uPMYYDyLWRXF9YzQFlWCmTJnC5MmTs7orudYPU6ZgLOjFV4Zt/K6e5KgawXr1NF8atpLgbuOnn+fJlgrisTg7O/PCCy8wZ84c5s2bx7BhwzIsXCB1soZOn/mfdu9Srty5fTfXj3+R4iUHG/jKIE7bb3FZvZeu7Sy3iVGTWLB4ITabjaTkJH6eP59KlSppkFTkFD/88AMWe+q9cYO7Pu24k6eB4ObeJCUnMmPGjCd6bicnJ95//30irl0nPDycy5cvc+7ceYYMGSJ/jP+hSJEiHDx8iJdeHcQhj5vM4wDbXS7xXL8XOHTksNwyEtnKbDZnOrUaQOekpD0uN5PiJQfr27cv9erWZbp+LxvU09xW47ihxvK7epKfdAfp2KEDbdu2RafTPfUfD7vdzoULFzh79myu/6HOz5avWIZraMaXgvVGHW6hzixbvuypzmEwGChevDhhYWH5dl+VfxMcHMzkyZOJiokmJiaG+IR4Zs2aRYkSJbSOJvK4GjVqYDVnPLgeIOGaCWcX5wzHyuQm8s6Tg7m4uLBuw3oGvPIy242X+C+bmMhmDnncZOSot/h1yZKn/uOhqio//PADJYuXoFSpUpQtW5ZCQSF8+OGHMt06F0oxmdA7P+RTl7NCSorMdHEUvV6Pt7e3bGQpHKZRo0aULlMKAFvKg7OKTNEW4k6m0LtXb/z8/LSIl2XkNyqH8/Dw4IcffmDChAkcP34cnU5H9erVs2xA7htvvMG3335LdSWUFtTDgJ6T0Tf474T/sG/PXtasW5urB3XlNzWq12Dnge0Ztql2FdNNGzU7PuPgVEIIR1EUhR/n/sTly5eJWBWNLsSGs5eelLsWEi6ZKVe2XJ6YbSRXXnIJHx8fGjduTMOGDbOscNm/fz/ffvstz1GFPjxDOSWIUkpBnlOqMNBeh81btjB37twsOZdwjGGvDSMpKv10ZoCo4wkkx5h47bXXHJxKCOFI928JDew/COWGM3f3JuBtKsj4sePZs3sPvr6+Gid8enLlJR+bPn06BQye1LcWT9dWSgmgnBLEtClTGTRokAbpxJNo3rw5w4cPB+Dmxlh0QVZUFZIuWUi4mczYsWNlmq4Q+cRnn33GxIkTtY6RLeTKSz529vQZilh90GUy2Le43Z8zZ844OJV4WuPHjwegXOGK3N4dx9298VQrVZPly5fz8ccfa5xOCCGenlx5ycd8fH25pTsPasbtMSSTkpLCvXv38Pf3d2w48cTuzzzbtHETiqKgKAp6vf5fvkoIIXIPufKSj73Q4wXC7Xe5oaZfCC9JNXOYq9hVldmzZ2uQTmQFg8EghYsQIs+R4iUf69atG3pFx3R2c1q9hV1NvQRzTY1mGrtQUChBAbZskVV7hRBC5Bxy2ygfMxqNOLs4o0/RMYM9eOCCQdURQzJ+uDGE+qzjNKqayX0lIYQQQgNSvORzjRo14s9Nh+htr8k57mBHJQw/yhFEMhYu6CLp3aiR1jGFEEKINA65bfT9999TtGhRjEYjtWvX5sCBAw99/K+//krZsmUxGo1UqlSJNWvWOCJmvjTizTe5Zo/iAndpTTnaKRWooARjxc4i5Qh6ZycGDhyodUwhRD5js9mYP38+9RvUx7+AP0WLhfHOO+9w7do1raNlm8uXLzN37lxmz57N2bNntY6To2V78bJ48WJGjhzJxx9/zJEjR6hSpQqtW7fmzp07GT5+z5499OzZk5dffpmjR4/SuXNnOnfuzMmTJ7M7ar7Upk0bPvnkE9Zxms8NW1ipnmCJepT/06/ngtM9lv62lICAAK1jCiHyEYvFwvNdnqdPnz78ceUouqJmYl0j+fqbr6hUuRKHDh3SOmKWio6O5vnnn6d48eIMGDCAl19+mbJly9KyVUtu3rypdbwcKduLl6+++opBgwYxYMAAypcvz9SpU3Fzc8t0BsvkyZNp06YNb7/9NuXKleOTTz6hevXqfPfdd9kdNd/64IMP2LVrF026tOFKqJnIEnoGvj6Ek6dO0rZtW63jCSHymYkTJ/L7qt8p1NKXQm188K/mSWB9b8K6+WN1MdGpcycsFovWMbOE2WymZauWrF73OwH1vSj1YiCl+gcR3MSHnft20KhxQ+Li4rSOiaqqbNiwgU6dOxEaFkqZsmUYM2aMZlfCsnXMi9ls5vDhw4wZMybtmE6no0WLFuzduzfDr9m7dy8jR4584Fjr1q1Zvnx5ho83mUwPbCB4/5tssVjyzA/347jf58fte61atZg3b16mz5dbPGn/cxur1Yper89wN/H88hpkJr/3H3L3a2Cz2ZgxczoFK/riX8LrwUYDFGrsxLVV91i5ciUdO3bM8DlyU/9//fVX/jz1J0XbBWAs6Jx23LWsK97BnlxbdYs5c+bw6quvPvJzZnX/VVXlnXfeYdq0abj5G3EJ1hNrSuKHad8za9ZMli79jTp16jz1eR4nr6Jm41SSGzduUKhQIfbs2UPdunXTjo8ePZrt27ezf//+dF/j7OzMjz/+SM+ePdOO/fDDD4wbN47bt2+ne/zYsWMZN25cuuMLFizAzc0ti3oihBBCiOyUlJREr169iI2NxcvL66GPzfWzjcaMGfPAlZq4uDhCQ0Np1arVv3Y+L7JYLGzcuJGWLVvmy92g82r/4+LiaPdsO/48/SfuYS64BhiwJNhJumhGrxpYtmw5tWvXBvLua/Co8nv/IXe/Bjdu3KBcuXIEN/HBI8yYrl1VVSKWxTD4pSFpW2H8r3v37rF//37ee3cMl65cxtvTixd69uD111+nSJEi2d2Fx1Kvfl2umS8TWDfjv1f3jiZguO3K+XMXHvk5n+T7f+fOHebMmcNvy34jISGB8uXK8/LLL9O6dWsaNW7ExXvnCW7unf5c8VYuL4vkm8nf8OKLLz5yxow8zu2xbC1eChQogF6vT3fF5Pbt2wQFBWX4NUFBQY/1eBcXF1xcXNIdd3JyynW/tFlJ+p+3+v/xxx9z9PgRQtr6YPRP7ZcLOtzK6rixIZYePXtw+dJlDIa/f6Xz2mvwuPJ7/yF3vgZFihShcOFC3D57HadCPunak26aiL4TQ7NmzTLsW2RkJG1atWbcJ+MpeEWlYnI5IpMTmPP9DOb9+BNbt2+jcuXKDujJowkMCOL0oVP4WJ0zbI+7lUDZwLAn+j4+6vf/2LFjNGvejPiEONzCnDG46ti07xorVqygT58+7N+3n6CG3pisGexY7wo6L9ixY8dTz0x9nD5m64BdZ2dnatSowebNm9OO2e12Nm/e/MBtpH+qW7fuA48H2LhxY6aPFyKvS0xMZM6cOXiVM6YVLvfpnHQUqO3B9YjrDl1SICUlhfj4eFnAUGQ5RVF4++3RxF1MJvpk4gM/Y+ZYK3d3J1KhYgWaN2+e4dePfPNNblyOAKCzUoU6SlHaKxV529oMt3iFni/0yFE/ty+//DKJt1NIjDCla0u5aybhagqDBr6Sbee3WCy079AekyGZsG7+BDf2oWAtLwp38CWosTc///wzAA99yVQ1w/F32SnbZxuNHDmSGTNm8OOPP3L69GmGDh1KYmIiAwYMAKBfv34PDOh94403WLduHV9++SVnzpxh7NixHDp0iGHDhmV3VCFypAsXLpCUlIR7aPorjADGAk64eDhz5MiRbM+yefNmWrZsiaurK15eXhQtXpSJEydiNpuz/dz5idVqJSYmBpvNpnUUTQwcOJARI0ZwZ18cV5dGc3N7DNfXR3N5SSRBvkGsWrkKnS79n6/IyEgWLVpMI2vxdG3uijPtbeX588xpdu3a5YhuPJKOHTvSsmULbm6OJfJIPOZYK5Z4K1F/JHBjfSzVa1Snb9++2Xb+FStWcD3iOgENPDC4PrgPmncpN7xKuOJidCHxcsa/4+Y4K4m3U2jatGm2ZcxIthcvL7zwAhMnTuSjjz6iatWqHDt2jHXr1hEYGAjA1atXH5jHXq9ePRYsWMD06dOpUqUKS5YsYfny5VSsWDG7owqRIxmNqff97eaMP/qodhW7xZ72uOwyc+ZMWrZsyd4Tuwis70VwUx9iDXd555136NixQ66Y2ZHThYeH89JLL+Hp4Ymvry8+Xt4MGzaM69evax3NoRRF4euvv2bv3r306NyT0j4VqF2mPlOnTuXkiVMUK1Ysw6/7888/sVgtlCHjtalKURBnnYHDhw9nZ/zHotfrWbFiJUMHDyXxtJVLv97l4uK7xBxNodcLvdmyeUu2/m7v2LEDNz8jLn4Z37LxKGbElGIiISKZe8cTHrhqZU22cWd7PAUDCvLCCy9kW8aMOGTA7rBhwzK9crJt27Z0x7p160a3bt2yOZUQuUOpUqUoWqwoUedu4144/dWX+EspWExW2rdvn20Zbty4wZChQ/Au40pAfa+0S8ReJVzxLGViw/qN/PDDD7zxxhvZliGvO3HiBI0bNoJEC42txQjEkxtJsfw0bTa/LVnK7r17Mv2jnVfVqVPnsabgOjunjhtJwZphuxkbNtWe4ThJLbm6uvLtt9/yySefcODAAex2OzVq1KBgwYLZfm5FUeBfbgkBjBgxgkmTJpF43oxLsB6bWSXpihlPT0/WblyLq6trtmf9J9lVWogcTqfT8d6Y94i7mMy9o/HYralvJqqqknjdxL19ibRu0zpbr07OmjULRQcFanmmu7ftXsgFz6JGvvteFpJ8Uqqq8mLffrglKLxlbUprpRxVlcK0UyrwlrUJlnuJDB08ROuYOV716tUJKFCQI1zNsP0wV7Gj0q5dOwcnezQ+Pj60atWKNm3aOKRwAWjatClJ0SmkRGZ85TThkolSZUrx1VdfsXv3bp5/tivBujBK+ZZj/LjxnD1zlho1ajgk6z/l+qnSQuQHAwcO5OrVq/zf//0fcadNOPvrsSdB0r0U6tary8IFC7P1/H/88QfGgk7onTP+vONW2JkLOy5gsVhy3eyWnODQoUMcPX6MgdTDTXlw1omX4koLa2kWbdzApUuX8t3Vl0d19+5djh8/zvNdu/DTjz8BYFftKKQWh6e5xe/6P3mha3fCwsK0DZuDtG/fnrCiRbi76zbBLb0xuKeOe1FVldizycRdTObzqW+hKAr16tWjXr16GidOJcWLELmAoih88skn9O3bl5kzZ3LhwgV8fHzo0aMHLVq0yHDwYlZydXXF/pAxubYUOwAHDx7MMW9uucmJEycAMh2rUfav4ydPnpTi5X/cu3ePESNGsGjRIqzW1NtF99f4+sKwFV/VQJQhmdvWWFo0bs6MmTO1jJvjGAwGVv++hmbNm3H510jcQl3QuyqYb9tJupfCkCFDeOWV7Jvt9KSkeBEiFyldujSff/65w8/buXNn5s2bR8pd8wNLmEPqgOHYc0noXXS8Pvx1Dh/SbjBkUlISixcvxs/Pj+7du1OpUiUGDhyY4xYm+1/3xwskYcaT9IMzEzE/8DiRKj4+nsZNGnP+4jl8a7jiUcSI3api/uuuUUCxEIoVK4a/vz99+vShSZMmDp/SmxtUqFCB03+eZvbs2fzy62Li4uOp3KwyQ4YMoWnTpjnyNZPiRWjGZrNx9epVFEWhSJEi2X71QDy5jh07EloklOsbrxPSwhfXgNQCxppk486+OMyxNgo+48mRA0c4ceIElSpVcnjGM2fO0LJVS+5F3mPhwoXs+nMbv6/9nQmfTWDG9BlpyzPkRK1atcLF2YV95su0pGy69n1cxs/blwYNGmiQLuf64YcfOHPmNKGd/HDx/ft2pXdgagF4/vx5pkyZIlcDH4Gfnx+jRo1i1KhRWkd5JPLXQjiczWbjiy++oGiRMIoXL06xYsUoXrQYkyZNwm63ax1PZMBgMPDaq69hTbZzdeU9Li25y5WVkYQvukPCVRMhzXzwKpl6VeDSpUsOz5eSkkKr1q24l3SXsM4FAAhp5kuxF/zxKOnCyy+/zM6dOx2e61H5+/szZOgQNipn2adexqam/h5YVBvb1fPs4iJvjR6V7dPhc5vpM6bjUczlgcLln1y9XZg1a5aDUwlHkCsvwqHsdju9e/fm119+oaZahLbUQwWORUQw8s2RHD9+nNmzZ+fIy5T5XalSpUCFwAZepERaUW0qnsVd8S7pit6oI/l26q0Nf39/h+ZSVZX58+dz7eo1inYtiLP3329rOmcdgfW9sETa+WLiFzRs2NCh2R7HF198QVRUFPPmzWO94Qz+qjt3lAQSrMkMHz6cd999V+uIOU5ERAQ+1TIv6PQ+CpevXHZcIOEwUrwIh1q5ciWLFy+mH7WoqhROO16eIEpRkLlz59KzZ09atWqlYUqRkTZt2uDp5YnpnpWgBg9u0KaqKtEnEylSJPSx1uV4GlarlR9++IFvvv2G8AvhuBRwwsUn/Vuaoii4F3di7Zq1qBosY/6onJyc+Omnnxg1ahTz5s3j9u3bFC5cmP79+1O6dGmt4+VIfn5+pDxkMz97gkpgQKADEwlHkeJFONS0KVMppi9AVXvhdG01KcIOw0WmTZ0mxUsO5Obmxrix4xg5ciSKXsG3kjtO7nrMcVaijiUQfymFqfP/g16v//cne0pWq5XnnnuO1WtW41nUiEsBA3rnzIsSnbMOq9WK3W53SL6nUblyZb744gutY+QK/V/sz5eTJmKtasPglv77mnTPRJ8+fTRIJrKbjHkRDnXm9GmK2fwybFMUheJWP06fOuXgVOJRjRgxgs8//xzTRZWLi+5wcd5dLv1yF/W2EzNnzqRXr14OyTFjxgxWr15NSEsfgpv54FnUleTbZmymjMdMJV0zU7lKpRxfuIjH88Ybb+Dn48+NdbEkXElJ2yoj9mwiAPXr16d169YapxTZQa68CIfy9PIijswv88YqKXh5F3JgIvE4Unf8fZvBgwezfPnytFsbnTp1ws3NzWE5vv3uGzyLGvEITR3v4F3alXtH47m9J5aizR+cThx/MZmEq8kM/1C2LshrgoKC2LljJz179eDwxiMoOgVVVXF3cwfgl19+kYI1j5LiRTjUCz17MP6jcbS3p+ClPDjQLlpN4k/lFp/3fEujdOJReXl50a9fP03ObbPZOP3nGQL/Me7G4KYnqJEPN7fFcCUhEtpBzOlEoi/GE38tmZ69euboqdLiyZUqVYpDBw9z6NAhDh48iJOTE82aNePEiRN4eHhoHU9kEylehEO98sorfDPpG2ZE76WrrQpF8AXgMlH8ajhGYMFA+SMjHkqn0+Hk5JTuFpFXCVecPPUkn089HnkwgbLlyvH6+Nfp16+frCOUx9WsWZOaNWsCYLFY0lYtFnmTFC/CoQoWLMiWbVvo1KEjky9tw9/JExWVKEsCZYuXYcWqlfj4+GgdU+RgiqLQoWMH1mz5Hb9K7ii6vwfqugY4YzSm3iaYM2cO3bt31yqmECIbSfEiHK5ChQqcPX+OdevWsWPHDhRFoWnTprRs2VI+HYt/ZTabiY2JJSXazM1tMQTU9cLgmlqwpERaiNuXDL3g2Wef1TipuM9qtXLx4sXUQfnFi+fKcSh2u53169cza9YsLl66SEBAAH379KVr1664uLhoHS/fkeJFaEKv1/Pss8/KHxjx2EaPHs3W7VvxKe9G7NkkEi6nYCzohM2sYo62EhwSDICzs/O/PJPIbhaLhc8//5xvvv2GO7fvAFA4tBBvjhjJiBEjcs2HFbPZzAs9XmD5suW4FTTi5Kdw/sRp1vdZz8QvJ7Jp4yaHL86Y30nxIoTINaKjo5kydQq+VdwoUM2TAtU9iT2XRMo9C056BWdvA6Y4k9YxBakDq7t178aqlavwLG2kcHU/UCH+YhRvjXqLEydO5JrVtD/++GNWrlpJSAtfPMJc0jKn3DXz58ZT9O3bhzVr1mqcMn+R4kUIkWts2bIFs8mMd2kfAPRGHX6V/55RYo6zcmtVgkbpxD8tXbqUFctXUKilLx5hf88sdC/sgmuwM3PnzqV37960aNFCw5T/LjExke++/w6f8q54Fn1whqSxoDN+z7ixdu06zp49S5kyZTRKmf/kjmt2QmSze/fu8c033/Dmm2/yySefcP78ea0jiQyYTKlXVTJbTVfvLG9pOcWUqVPwCHF9oHC5z6ukK27+RqZPn65Bssdz5MgREuIT8CzhmmG7ZzFXFJ3Cli1bHJwsf5MrLyLf+/bbbxk16i2sdhuu3i6YEy189NFHDBgwgGnTpuHklPGOtcLxqlatCkDiNROexdP/MUm4luLgRCIzZ8+ewTkg44G5iqLgHKDj9Jk/HZzq8dlsNgCUTOpiRZfan/uPE44hxYvI1+bPn8/w4cPxKe+GfzVfDK567FaV2HNJ/PjTjxiNRn744QetY4q/lC9fngYNG3DoyEFcg5wf2M/Gkmgj5lgyTZs00zChuM/b24cbibGZttuSVLxDfRwX6AlVrVoVF6MLCZdTcPFN/0Em4aoJu81O/fr1NUiXf8k1VpFvqarKxx9/hGdR4wPTbXUGBd/y7vjXcGf69OncvHlT46Tin+bOmYu30Ydry6K5sz+O2HNJ3NkXx7Vl0fh5FOC7777XOqIAevXsRdIVM9ak9FckzHFWEq6l0LNHTw2SPR4fHx/6v9ifmJMpJN8xP9BmibcSdTCJOnXrUK1aNY0S5k9SvIh86+TJk4SHX8S7nFuGMx68y7qhqnaWL1/u+HAiUyVKlODI4SMMG/o6aoQTt3bEotx0YcTrIzh86DChoaFaRxTA4MGD8fXx4+aGWJJvm1FVFVVVSbph4taGOEJDQzXbYuJxTZw4kRrVanBtVRQ3NsYQeSQ+dSuK36II8Alk0cJFWkfMd6R4EflWfHw8AAa3jH8N9M469M76tMeJnCMkJIQvv/yS6KhozGYz9yLv8fnnnxMUFKR1NPGXgIAAtm3dRohvYa6uusfVX6K5sjiKa2uiKBFakm1bt+Hp6al1zEfi4eHBtq3bmDp1KqUKloOrLgQbivB/4/+Po0eOEhYWpnXEfEfGvIh8q0SJEuj0OpJumjO8l51yz4IlxUrZsmU1SCcelQyozrnKly/P2TPn2LBhA7t27UJRFJo1a0aTJk1yxfou/2Q0GnnllVd45ZVXtI4ikOJF5GOBgYF07NiRdZvX4FnU+MDgT9Wmcu9QIsEhQbRr107DlELkbjqdjjZt2tCmTRuto4g8RIoXka9N+noStevsJWJlNJ5lXTAWdMISbyP+TAqWWDtLf/8Rg0F+TYQQIieRMS8iXwsLC+PggYP07NqLuBMmItZGcWd3HA1rNmHHjh20atVK64hCCCH+hxQvIt8LDQ1lzpw53Iu8x4ULF4iMjGTd2nXUqVNH62hCCPHIVFVlwYIFNGueutZRYFAgzz3/HLt379Y4WdaT4kWIv3h4eFCiRAn8/Py0jiKEEI9FVVUGDRpE7969OXszdeVi93IGNuxYS6NGDZk7d662AbOYFC9CiBzLZrMxd+5caj5TA2dnZzy9POnbty/Hjh3TOpoQOcrixYuZNWsWQY28CW7hDYBfJQ8Kd/bFs5QrAwcN5MqVKxqnzDpSvAghciSbzUaPnj0YMGAA5+6cxreGKy6lYMmqX3nmmWdYuXKl1hGFyDG++fYbPAoZ8S7t9sBxRVEIqOOJTq/kio0wH5VMoxBC5EjTp09n6ZKlhDT3wbPY35sw+ldRubUtlh49e3A94jq+vr4aphQiZzhy5AheVZwzbNM56XAJ0nPo0CEHp8o+cuVFCJEjTf5mMp5FjQ8ULgCKXqFgXU9MJhM//vijRumEyFmcnJywW9RM21WrgrNzxsVNbiTFixAix0lOTubsmbO4hWb8Zmtw0+Ma4MzBgwcdnEyInKn9s+1JumhBtacvYCzxVpJumGjfvr0GybKHFC9CiBzHYDCgKAp2a+afJLGRpz5JauX06dMsWrSIZcuWERMTo3Uc8YRGjhyJKd7CrR2x2Ez2tOPmOCu3tsQTEBhA7969NUyYtaR4EULkOE5OTjRr1pTE8NTdiP+XKcpC4p0U2rZtq0G6vCE8PJxGjRtRvnx5evbsyfPPP09wSDCjRo3CYrFoHU88pmeeeYb5P88n+YqVq0vvAXBjQwyXfr2Lp96bjRs24uHhoXHKrCPFi8gyiYmJzJs3jwkTJjBjxgzu3bundSTxGM6fP8/w4cMpEhZKQGAA7Z5tx+rVqzMsHhxh9Oh3SLydwt19cQ9cgTHHWrm9LZ6ixcLo3LmzJtlyuxs3blC/QX0O/XGA4KY+lOwXSPEeAbiXNfD111/Rv39/rSOKJ9CjRw+uXLnCO6PfBaD5M62YMX0G4RfCqVSpksbpspYULyJLzJo1i5CgYF7s9yL/+fj/GDp4CIVCCjFu3DjN/viJR7d+/XoqVa7EtNlTSfCMwl4omR2Ht9K+fXuGDx+uyfewVatWfPfdd8SeTuHyokiub4wiYk00l369SwGPADas35itt42Sk5O5desWJpMp286hlYkTJxIdF0VIO2+8Sriid9bh5KGnQA1PAhp4sWDBAg4fPqx1TPEEgoODGT16NADz5s1j4MCBuLu7a5wq60nxIp7awoULGThwIGUT/Hmf1oyzteVjtS0NzUUZO3YsEyZM0DqieIjo6Gi6dO2CU4COsG7+BNT1pkANTwp38CWwvhffffcdixcv1iTba6+9xvnz53lrxCgalGtKq9ptmTNnDmfPnKVUqVLZcs7Tp0/Ts2dPvLy8CA4OxsfXh1deeYVr165ly/kcTVVVZs+ZjXsJ5wd2Ur/Pq6QrRi8XmcklcjRZ50U8Fbvdzvtj3qOSEsILajUURQHAQ3GhHRWwqnY++3QCr7/+Ol5eXhqnFRmZO3cuycnJFGtQAJ1BeaDNp5w7iVcsfD3pa3r06KFJvuLFi/PZZ5855FwHDx6kadOm2Jys+FZ3xdnbQMo9Cz8t/JEVK1ewd89eihcv7pAs2cVsNhMbE0tQFe8M2xWdgsFL4caNGw5OJsSjkysv4qkcOnSIS1cu01AtkVa4/FMjSpCYnMTq1as1SCcexZ49e3ANzPhTOIB7mBMHDxzEZrM5OJljqapKvxf7goeN0E4++FX2wCPMSIHqnhTu6EOcKYZXX3tV65hPzdnZGW8fb0xR1gzbVbuKNc5OSEiIg5MJ8eikeBFPJTo6GgB/Mr6n6o0rekVHVFSUI2OJx6DX6+EhQ1pUW+oS4xkVp3nJ7t27OXP6LL413NA5PfjWaHDT41PZlQ3rN3D58mVtAv5FVVW2bt3Kiy++SLNmzejduzfr1q3Dbrf/+xeT+r18acBLJF4wY01KX5DGXUgmJc4sg3b/h9VqJTIykpSUFK2jCKR4EU+pWLFiAFwm4+Ikghhsqj3XX2rPy5o3b07irRTM8ek/iauqSuIlM02bNkGny9tvF6dOnQIF3IIzHgTsFuKCqqqcOXPGwcn+Zjab6dK1C82aNePX3xdz6Mpelm/4jbZt29KmTWuSkpIe6Xnefvtt/Hz8ub4mlrgLydhMdszxViIPxXNnVxx9+vShevXq2dyb3OH27duMGDECXz9fChYsiKenJy+88AInTpzQOlq+lrffjUS2K126NA3rN2CL/jwm9cE/fjbVzjrdaQoFh9CqVSuNEop/06tXLwoUKMCdbfEPfBJX7SqRh+JJvJ3CqFFva5jQMdzd3UEFW0rGVzBsyamvjZubW4btjjBmzBhWrFxBSDMfQp/zJaSZL4U7+VCotS9bt29l2LBhj/Q8wcHB7Nm9h7rV63FzWwwX5t3m0uK7JJ2zMWrU28yZMyebe5I73Lhxg1q1azFl+g84F1cJaeGLb3VXVm1YQe06tdm9e7fWEfMtGbArnto3331Lw/oN+Ma0g8a2EhTGh7sksEMXzlWiWTFjReqtCZEjubu7s27tOlq2asnlXyJxK+yM4qxgumnDFG/m888/p02bNlrHzHZt27bF2dmJmDNJ+Ff2wBSTWow7exvQGRRiziRRMKAgderU0SRfbGwsU6ZOwbeSG57F/97vSVEUPEKNmKtZ09ZZ8vf3/9fnK1asGFs2b+Hs2bMcP34co9FIkyZNZGD9P4wcOZLbUbco3NEHJ8+//1z6lFe5sT6GXr17cTH8ory/aUCKl3zIZrNht9txcnLKkuerWrUqu/fuYfSot1m0cUPa8do1ajPrv5/RtGnTLDmPyD41atTg/LnzzJkzh+UrlpOcnEytZrUYOnQolStX1jqeQ/j7+zNkyFC+/fZbok8kYjenDgTSuSi4+BpIvmXh668naLYlwe7du0lOSiaoVMEM271KuXF3fzxbt26la9euj/y8ZcqUoUyZMlkVM8+4c+cOS5Yswf8Z9wcKFwCdQcH/GXeurrzKxo0b80Vxn9NI8ZKPbN68mYlffMGGjRux2+1UqlCR198Yzssvv/zU4xkqV67Mug3riYiIICIigoIFC1KiRIksSi4cwd/fn1GjRjFq1Cito2hCVVVu3ryJiop3CTc8S7iiKBB/KYXoPxMpXqI4r732GgAnTpxg5syZXL58GT8/P3r16kXz5s2zdVyQ1Zp6Jeh/p7Pfd/+4LO2fNc6dO4fNZsOtUMbFqrGgEwYXA6dOnZLiRQNSvOQT06ZNY8iQIYTq/ehor4gzBk6fvsXgVwazdctWfp7/c5a88RYuXJjChQtnQWIhHGvdunX8+uuvBDfzwesft2VcA51xL+zCxXUX+eWXXzhw4ADffPMNLh7OGHwV7Impa+U0btKYVStX4enpmS35qlevjk6nI+FKCj7l0s/uS7iSOgvmmWeeyZbz5zf3xzZlNgZKtajYLTZNx0DlZ1K85AOXLl3itVdfoz7Fed5WJW3Kax21KMeI4KdFC2nbri19+/bVOKkQ2pk2fRpuBY14FjOma3Mv7IJHISMfffwRF8MvUrCOF77l3VB0SuqMrAgTe7btpn///ixdujRb8hUuXJiOnTqyduMa3EJccPb+++3bkmAj+kgSjZs0ply5cnL1JQtUqVKF0CKFiT1zD7dgl3TtseeSQVHo0KGDBumEzDbKB2bMmIGLYqADFdOt1VFVKUxZXRDfTv5Go3RC5Aznz5/DuYAu0/VsnAsauHLlMt6lXfGr6I6iS33c/QGzfrXc+e233wgPD8+2jFOnTKVISBhXl0dxa0cMUScTubUrlqu/3aOAVwA//fhTtp07v9Hr9Xzw/ofEhScTeTgeuzn1CoxqV4k9n8S9w4n07dtXrjRrRIqXfODo0aMUt/nhrGR8oa2sPYDjf/zh4FRC5Cx+fv7YEjNfrc+aYMNms+NVOuPbBF4lXNHpdaxZsya7IhIYGMiB/Qf4ZNwn+FmDiDtmwjPRj/fHfMDRI0cpUqRItp37ScXExDBlyhTeeustPvnkE86ePat1pEc2aNAgxo8fT/TxJC4vvsf132O48ksUt7bH0rlTZ6ZOmap1xHxLbhvlA0ajkRSdNdNVVJOxYHRJf1lUiPykT+8+7B66G3OMFWefB98aLYk2Ei6bQAW9c8ZXZhQ96PS6bN+F2sfHhzFjxjBmzJhsPU9WmD17Nq8New2zyYTRx4glycpHH31Er969mD1rNi45/H1HURQ+/PBD+vfvz9y5c7l06RL+/v706tWLatWqaR0vX8vWKy9RUVH07t0bLy8vfHx8ePnll0lISHjo1zRp0iRtKfL7/w0ZMiQ7Y+Z5HTp0INweyV01/WtvU+0cMVynY6eOGiQTIufo06cPxUsU4+aGWBKupqDa1dTxLNdN3FwXS0DBAJycDCRcy7g4Sb5lxmq2ysq0f1mxYgUvv/wyLkV0FOtRkNDnfSja05/ABt4sXryIQa8M0jriIwsNDeXDDz9k9uzZfPHFF1K45ADZWrz07t2bU6dOsXHjRn7//Xd27NjBK6+88q9fN2jQIG7evJn23+eff56dMfO8Hj16ULhQIeYaDnBLjUs7nqCamK8cIoYk3hw5UsOEQmjP3d2dbVu3U7lcFa5viObSgkguL7hHxNooSoaWZueOnfTu3Ye4UymYoh8cEGsz2bl3MIlSZUrJukakTjv/6OMP8ShkJLCBV9qmnzq9gk9ZN/xrefDzvJ+5ePGixklFbpVtt41Onz7NunXrOHjwIDVr1gTg22+/pV27dkycOPGhO5a6ubkRFBSUXdHyHTc3NzZs2kjrlq34PGITYTp/nFU9l5Uo9E4GFi/8RT4tCkHqjJ59e/dz4MABtmzZgqqqNGjQgIYNG6IoCl9++SUHDh7g7MqzeBR3xljQGUu8lcQLFoxOrvyy6Jc8v4Hlo7h06RJ/HD9BSAvfDF8P79JuRB1K5Lfffsu36wqJp5NtxcvevXvx8fFJK1wAWrRogU6nY//+/Tz33HOZfu38+fP5+eefCQoKokOHDnz44YeZzqU3mUwP3GOOi0u9smCxWPLldMH7ff7fvpcoUYI/z5xmxYoVbNy4EbPZzJAaNejVqxf+/v555rXKrP/5SX5/DbKi/9WrV3+goL+/QJynpyc7d+xkypQpzJk7hxuHb+Dp5cngl3vw+uuvExYWliNed61/BmJjY3F1dcXD2w0XQwaLvBnA08eTxMTEbMmodf+1llv7/zh5FVVVMx9e/xQmTJjAjz/+mG5keUBAAOPGjWPo0KEZft306dMJCwsjJCSEP/74g3feeYdatWrx22+/Zfj4sWPHMm7cuHTHFyxYIIsHCSGEELlEUlISvXr1IjY29l/32HrsKy/vvvsu//3vfx/6mNOnTz/u06b555iYSpUqERwcTPPmzQkPD89wufkxY8Yw8h/jNeLi4ggNDaVVq1b5coMxi8XCxo0badmyZZbtXZSb5Pf+g7wGOb3/Bw4cYORbb3Lij5NpxwoGFOD99z5gwIABWXKOnPAavPLKKyxfvYzg1t44efy9caFqV7m1PQ59nDPnz53PlhlHOaH/Wsqt/b9/5+RRPHbx8tZbb9G/f/+HPqZ48eIEBQVx586dB45brVaioqIeazxL7dq1Abhw4UKGxYuLi0uGP/xOTk656puW1aT/+bv/IK9BTuz/oUOHaN6iOXpvBb9GrrgGOGOJtxF9KpLBgweTlJTEiBEjsux8Wr4Gn376KZs2byJ82U28yrrgGuiMJcFG3BkTKffMLF2yFA8Pj2zNkBN/Bhwpt/X/cbI+dvFSsGBBChbMeFfTf6pbty4xMTEcPnyYGjVqALBlyxbsdntaQfIojh07BkBwcPDjRhVCiBxl9Oi30XtAobY+aRsp6l10BDf2Qeek8N777/HSSy/liavGISEhHNh/gA8//JD5C+YTeTh1qYYmTZsw9uOxNG7cWNuAIlfLtqnS5cqVo02bNgwaNIgDBw6we/duhg0bRo8ePdJmGl2/fp2yZcty4MABAMLDw/nkk084fPgwly9fZuXKlfTr149GjRpRuXLl7IoqhBDZ7tq1a2zdug2vCsYMd4b2r+JBSnJKtu2NpIXg4GBmzpxJ5N1Izp8/z+3bt9m6ZasULuKpZesKu/Pnz2fYsGFpW8V36dKFb775ew8di8XC2bNnSUpKAsDZ2ZlNmzYxadIkEhMTCQ0NpUuXLnzwwQfZGVMIIbLdzZs3AXDxy/jSuMFdj7ObE9evX3dkLIdwd3enZMmSWscQeUi2Fi9+fn4sWLAg0/aiRYvyz8lOoaGhbN++PTsjCSGEJgIDAwEwR1sx+qcvYKxJNszJFlnjSohHIBszCiGEA4SFhdGgYQNi/0zGbku/QkXUiUScnZ3p2rWrBumEyF2keBFCCAf5/L+fY42xc2N9DEk3TNitKqYYK7d2xRJ9IpFxY8fh4+OjdUwhcjzZVVoIIRykbt26bNiwkUGDB3F+zfm04z6+PkyaNIHhw4drmE6I3EOKFyGEcKDGjRtz9vRZ9u7dy8WLF/Hx8aFFixYYjUatowmRa0jxIoQQDqYoCvXq1aNevXrZep6UlBT+/PNP9Ho9ZcuWxWCQt3yRN8hPshBC5DEpKSkAlCxVkju3U1c6Dw4J4q2Ro3jzzTfR6WS4o8lkYunSpaxduxaz2UytWrXo378//v7+WkcTj0B+goUQIg8xm8106doFAH2onSId/Alt50eSZxyj3h7FK6+8Qjbtx5trnDlzhlKlS9G7d2+WbVzCml0rGf3OaAqHFmb58uVaxxOPQIoXIYTIQ3766Sd27doFQMGanrgGOuMW4kJQQ28CG3gza9astPb8KDExkRYtWxCZeIeiXQpQuIMvhdr5UqxHAZyDFbp165a2LY3IuaR4EUI8kYiICD766COaNW9Gy1YtmThxIvfu3dM6Vr43ZdoUPAq7ZtjmXdoVV18XZsyY4eBUOcfChQu5fv06Qc28cPH9e7FAg6ueoMbeGNz1fPXVVxomFI9CxrwIIR7bL7/8Qp8+fVB1KsZgA9hTN1795JPxrF69hgYNGmgdMd8KvxCOZ3nnDNsURcGpgI5zF845OFXOsXLlStyDjTh7p//zp+gV3Is7sWLlCg2SicchxYsQ4rEcP36cXr174R7mTGB9L3TOqRdwrck2bm2No92z7Qi/EP5Iu8+LrOfj40NKYkKm7fZEFb9Sfg5MlLOkmFJQnDIf86Nz0WEymRyYSDwJuW0khHgskydPxskt9RL7/cIF/rrs3sybpOQkZs2a9cjPZ7FYWLNmDdOnT2f58uVpM2XEk+ndqzfJV8wZtqXcs5BwI4WePXo6OFXOUb1adUx37NitGRcwyRFmqlSp7OBU4nFJ8SKEeCxr1q7BragTik5J12Yw6nAt5MTqNasf6bl+/fVXQosU5tlnn2Xw4ME899xzBIcEM3369KyOnW8MGzYMTw8vAJJvm1FVFdWuknAlhVub4ihXvhzdunXTOKV2Bg0ahM1k4+6BuHSzruIuJpMQkcLrw2Sl45xObhsJIR6L1WpFMaQvXO5T9GC1Wv71eZYtW0b37t3xLOZK2HMFcPEzYIm1EfVHAoMHD0ZVVQYPHpyV0fOF4OBg1q5Zy8WLF4lYF4VNsaLaVSwpVurVr8fSJUvz9Wq+JUqU4LvvvuPVV1/FEmnHvbgzOieFxGtmEq4k07NXT3r16qV1TPEvpHgRQjyWOrXrsPXAZtRqKoryYBFjt6qYbtqo16n+Q5/Dbrcz6u238ChiJLiZd9rzOPsYCGrkgwqMeW8M/fv3x8XFJbu6kmeVLVuWixcvsmLFCvbt24fBYKBFixY888wzWkfLEYYOHUrp0qX5YuIXbNywEbvdTsVKFXhj+gheeuklWcQvE+Hh4cyePZvw8HB8fX3p2bMnDRs2TPc+4AhSvAghHsvw4cNZ3Xo10ScS8avskXZcVVXu7IvDmmJjyJAhD32OgwcPcjH8EqHt/DJ84/Or7MHlJXdZt24dnTp1yvI+5BdNmjShZcuWWsfIkZo3b07z5s2x2WzYbDacnTOeoSVSf7fHjh3LJ598gpPRgLOfHluiytSpU2nRojm//bYMT09Ph2aS4kUI8VhatWrFe++9x4QJE0i6YsG1iBOqTSXpsoWUaDMzZsygVKlSD32OO3dSl6x39vn/9u48Kqr7bgP4cweGGRaBEJRFcYEo2JiIaKTQFOgRJWqj9s2K1JrEhGq0r1SrwZNUjxprNEZzzGtjezyRNM1exdTEaIhrNIhRISIicaGQRAZxgRkYGJb5vX9YJiEsMsDMnTvzfM6ZP+be3x2e773D8OXOXTr+CPLwc2szjshW3Nzc4ObmJncMh7Zt2zasWrUKd8b4IOBeH6jcJQghUFduwqEjhzF79mzs3LnTrpm4b4yIrLZmzRp88sknuH9MIhrOCzRfdsOvJ0zDsWPHMGfOnNsuP2jQIAC3zn7piOl6MwAgLCys70ITkdXMZjPW/GUNfCM8ERjTD6r/Hu8mSRJ8hmgRGOuN7OxsfPONfa8dxOaFiHpkypQp2PvpXhj0BlTfrMYHH3yAuLi4bi0bHR2NUfeMQvWZeoiWtmd8CCFwo6AWIaHBSE5OtkV0Iuqm4uJilP2nDL4jOr5qc79wT7ip3bB792675mLzQkR2J0kSXtv8GkxVzfh+bzVqv21Ac10LjFdMuPJZNWrLTHht8//B3Z3fbBPJqb6+HgDgpum4XVC5S3BXu9n9+kxsXohIFklJScjJyUHEgOH4ft9NXHr3Kr7dcwMh2lt39n3ooYfkjkgKYzQasX37dssp9tu3b0dtbedXG6bbGz58ODRaDeq+6/iqw/VVjTAZGzF69Gi75mLzQkSySUpKQkH+18jPz8fu3buRl5eHkpJvMG3aNLmjOazGxka89957mDxlMmLGxuChhx7Cnj17YDab5Y4mq1OnTmHosKF4as5T2H1gFwDgj3/8IwaFDcIXX3whbzgF8/PzQ9rMNOjPNcBU3dxmnrnJjOsn6jAobBAmT55s11zcJ0tEspIkCdHR0YiOjpY7isO7efMmJqVMwsmvTsInVAs3HwnfHC3Gzp07MXXqVOzYscMlr4tTVVWF5InJaPJowLCH+6PfnbdO4R/ymzvx7cEqTJkyGUVF5zB48GCZkyrTyy+/jC9zj+Hi7kvwCfeAdoAazbUtqL3YCFWTO97Ped/uZ2xxzwsRkUI89dRTOHP2awyedicGTrkDwQn+GPigPwZOvAN7932K559/Xu6Isti2bRsMBgOCk33b3C1a3c8dwcl+MDU34vXXX5cxobIFBAQg98vjyFySCfV1b+gO18BwthGPzUjFyZMnER8fb/dMbF6IiBSg9Yq5d4zzgueAHy6o1nrKqt8oL2zd+joMBoOMKeWxM3sHvIZ4wN2z/X//bh4qeA1VY8fOHTIkcx7+/v5YvXo1KnWVMBqNMBrrkZWVhZEjR8qSh80LEZECHDx4EEII+EZ0fMqqb4QWdXVGnDhxws7J5Gc0GuHm0fkl6t00Euob6u2YyHlJkgRPT0/Zb6HA5oWISAFaWloACejsNjKSm/TDOBczNmYcTBUt7e4SDdy6blDDlRaMiR4jQzKyFTYvREQ9UFxcjIyMDCQmJmLy5Mn4+9//btPTcuPj4wEB1JZ1fD0NQ2kD1B5qxMTE2CyDo3r22WdRX23CjTN17eZVFxthrGrAgvkLZEhGtsLmhYjISq+88gp+9rOf4fVtf0X+dyfwxdlDmDt3LiKjInH+/Hmb/MxRo0bhlwm/xI2TRjQa2p6y2nCtCTWF9UibmYbAwECb/Hx7EELg8OHDyMzMxKJFi/DOO+/AZOr4+iI/9vOf/xwvvPACrn1lwPef3kTNN0YAQMX+Glz9Uo8//OEPvEGlk+Gp0kREVvj444/xpz/9CQH3euPOsf2g+u/XNY36Zuj2X0fKAym48M0Fm9yl+O1/vo3EpASU7yiH91AN1H5uaLzegtryBsTExODVV1/t859pL1euXMH0GdNw8qtT0PbzgEqtwqZNDViYsRA7/rUDCQkJXS6/evVqjB49Ghte2YAzuWeA/wUiAkdg4/L5SEtL6/Du5aRc3PNCRGSFdevXwTtEi8D7fmhcAMDD1x1Bif1QXlaO7Oxsm/zssLAwnD6Vj7+sWYtQ9RCgTIOIOyLx1y1/xRdHvoCfn59Nfq6tNTU1YeKkiSg8X4hBDwRg8KMBCPufOzD04f5o8KjFA5MfQElJyW1f5+GHH8bx3OOoqqoCABw5fAS//e1v2bg4ITYvRETdZDKZcPSLo/AJ9+jwD6ImQA3v/lrs27fPZhn8/f2xdOlSFJ8rxrWqa8g/nY+5c+fC07Pjs5CUIDs7G+eKziF4gi+8B2ks61bj746QZD+Y3VqwcePGbr+eLfZ6kWNh80JE1E2tZ/JI7l38J+8mobm5ufP51M6OHTvgFaSFNlDdbp5KrYJ3uBrvf/C+DMnIUbF5ISLqJk9PT0RGRcJY3tjh/Ka6FhivNmD8+PF2TqZser0eKm3705xbuXu7oa62/ZlE5LrYvBARdZMkSchYmAH9f+qhv9z2omfmZoGqYwZ4e3tj1qxZMiVUpqioKDRdM8Pc0nED01DRhOEjhts5FTkyNi9ERFZIT09HamoqKg5U4/tPq3HjTC2qTuhRvuMGTJUt+NeH/1LsgbNySU9Ph6muCTe+bn+dHOMVEwxlDXh23rMyJCNHxeaFiMgKKpUK/3zrn3jnnXdw79AxqC8WkCq0eGLmkyjIL0BKSorcERVn5MiRWLlyJa6frsWVnGoYSutR950JlcdqcOWzGiQmJuKZZ56ROyY5EF7nhYjISiqVCqmpqUhNTZU7itNYvnw5IiIisPaltSjaXwQACOwfiBeeX4Jly5ZBo9HInJAcCZsXIiJyCGlpaZg5cyYqKirQ2NiIgQMHQq1ufwYSEZsXIiJyGJIkITQ0VO4Y5OB4zAsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFYfNCREREisLmhYiIiBSFzQsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFsVnzsmbNGsTHx8PLywv+/v7dWkYIgeXLlyMkJASenp5ITk7GhQsXbBWRiIiIFMhmzUtjYyMeeeQRzJs3r9vLrF+/Hps3b8bWrVuRl5cHb29vpKSkoKGhwVYxiYiISGHcbfXCK1euBABkZWV1a7wQAq+++ipeeOEFTJ8+HQDwj3/8A0FBQdi1axcef/xxW0UlIiIiBbFZ82Kt0tJS6HQ6JCcnW6b5+fkhNjYWubm5nTYvJpMJJpPJ8lyv1wMAmpqa0NTUZNvQDqi1ZlesHWD9ANeBq9cPdL4OiouL8fXXX0Oj0SAxMREBAQFyxLM5V38PKLV+a/I6TPOi0+kAAEFBQW2mBwUFWeZ1ZO3atZa9PD/22WefwcvLq29DKkhOTo7cEWTl6vUDXAeuXj/Q8Trw9fUFABw/ftzecezO1d8DSqvfaDR2e6xVzUtmZibWrVvX5Zji4mJERUVZ87K9smzZMixatMjyXK/XIywsDJMmTbL8krqSpqYm5OTkYOLEiVCr1XLHsTtXrx/gOnD1+oG26+D69eu4/5f3o7ZRD//RWngN0sLcaIb+Qj1unjVi2q+nISsrC5IkyR27z7j6e0Cp9bd+c9IdVjUvixcvxhNPPNHlmPDwcGte0iI4OBgAUFlZiZCQEMv0yspKREdHd7qcRqOBRqNpN12tVitqo/U11u/a9QNcB65eP3BrHWzatAm6qxUI+80dcPeS0AQT4AF43+2OFo0a7777LhYuXIjY2Fi54/Y5V38PKK1+a7Ja1bz0798f/fv3tzpQdwwbNgzBwcHYv3+/pVnR6/XIy8uz6owlIiL6wfas7fC+ywPuXm7t5vUL1+JmvgZvvvmmUzYv5Lxsdqp0eXk5CgoKUF5ejpaWFhQUFKCgoAC1tbWWMVFRUcjOzgYASJKEjIwMvPjii/j3v/+NwsJC/O53v0NoaChmzJhhq5hERE6rubkZ1Terobmj4/9TJZUEd1+py+MKiRyRzQ7YXb58Od58803L8zFjxgAADh48iKSkJABASUkJampqLGOWLl2Kuro6pKeno7q6Gvfffz/27t0LrVZrq5hERE7L3d0dAXcGwHTD1OF8YRZorjZj4MCBdk5G1Ds22/OSlZUFIUS7R2vjAty6tsuPj6GRJAmrVq2CTqdDQ0MDPv/8c4wYMcJWEYmInN7Tc55G7UUTmmpb2s3TX6hHg6HxtscyEjka3tuIiMiJLV68GEH9g3BlTzVqvjGiub4FjTXNqPpKj8pjesyaNQtjx46VOyaRVdi8EBE5sQEDBuDLY7lIjEuC7kgNLr19FaUfVsF0USDzuUy88cYbckcksprDXKSOiIhsIywsDHv37sPly5ctV9hNSEiAj4+P3NGIeoTNCxGRiwgPD+/xtbiIHAm/NiIiIiJFYfNCREREisLmhYiIiBSFzQsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFcbor7AohAAB6vV7mJPJoamqC0WiEXq+HWq2WO47duXr9ANeBq9cPcB2wfmXW3/p3u/XveFecrnkxGAwAbt3Lg4iIiJTFYDDAz8+vyzGS6E6LoyBmsxlXrlxBv379IEmS3HHsTq/XIywsDN9++y18fX3ljmN3rl4/wHXg6vUDXAesX5n1CyFgMBgQGhoKlarro1qcbs+LSqXCoEGD5I4hO19fX0W9afuaq9cPcB24ev0A1wHrV179t9vj0ooH7BIREZGisHkhIiIiRWHz4mQ0Gg1WrFgBjUYjdxRZuHr9ANeBq9cPcB2wfuev3+kO2CUiIiLnxj0vREREpChsXoiIiEhR2LwQERGRorB5ISIiIkVh8+IE1qxZg/j4eHh5ecHf379bywghsHz5coSEhMDT0xPJycm4cOGCbYPayI0bN5CWlgZfX1/4+/tjzpw5qK2t7XKZpKQkSJLU5jF37lw7Je69LVu2YOjQodBqtYiNjcWJEye6HP/hhx8iKioKWq0W99xzD/bs2WOnpLZhTf1ZWVnttrVWq7Vj2r515MgRPPjggwgNDYUkSdi1a9dtlzl06BBiYmKg0Whw1113ISsry+Y5bcnadXDo0KF27wFJkqDT6ewTuA+tXbsW9913H/r164cBAwZgxowZKCkpue1yzvYZwObFCTQ2NuKRRx7BvHnzur3M+vXrsXnzZmzduhV5eXnw9vZGSkoKGhoabJjUNtLS0lBUVIScnBx8/PHHOHLkCNLT02+73DPPPIOKigrLY/369XZI23vvv/8+Fi1ahBUrVuD06dMYPXo0UlJScPXq1Q7Hf/nll0hNTcWcOXOQn5+PGTNmYMaMGTh79qydk/cNa+sHbl1p9MfbuqyszI6J+1ZdXR1Gjx6NLVu2dGt8aWkppk6dil/96lcoKChARkYGnn76aezbt8/GSW3H2nXQqqSkpM37YMCAATZKaDuHDx/G/Pnzcfz4ceTk5KCpqQmTJk1CXV1dp8s422cAAECQ09i+fbvw8/O77Tiz2SyCg4PFyy+/bJlWXV0tNBqNePfdd22YsO+dO3dOABBfffWVZdqnn34qJEkS33//fafLJSYmioULF9ohYd8bP368mD9/vuV5S0uLCA0NFWvXru1w/KOPPiqmTp3aZlpsbKz4/e9/b9OctmJt/d39vVAiACI7O7vLMUuXLhV33313m2mPPfaYSElJsWEy++nOOjh48KAAIG7evGmXTPZ09epVAUAcPny40zHO9hkghBDc8+KCSktLodPpkJycbJnm5+eH2NhY5ObmypjMerm5ufD398e4ceMs05KTk6FSqZCXl9flsm+//TYCAwMxatQoLFu2DEaj0dZxe62xsRGnTp1qs+1UKhWSk5M73Xa5ubltxgNASkqK4rY10LP6AaC2thZDhgxBWFgYpk+fjqKiInvEdQjOtP17Kzo6GiEhIZg4cSKOHTsmd5w+UVNTAwAICAjodIwzvgec7saMdHut3/MGBQW1mR4UFKS474B1Ol27Xb/u7u4ICAjospaZM2diyJAhCA0NxZkzZ/Dcc8+hpKQEO3futHXkXrl27RpaWlo63Hbnz5/vcBmdTucU2xroWf2RkZF44403cO+996KmpgYbNmxAfHw8ioqKXOImrp1tf71ej/r6enh6esqUzH5CQkKwdetWjBs3DiaTCdu2bUNSUhLy8vIQExMjd7weM5vNyMjIwC9+8QuMGjWq03HO9BnQis2Lg8rMzMS6deu6HFNcXIyoqCg7JbKv7tbfUz8+Juaee+5BSEgIJkyYgEuXLiEiIqLHr0uOJy4uDnFxcZbn8fHxGDlyJP72t79h9erVMiYje4mMjERkZKTleXx8PC5duoRNmzbhrbfekjFZ78yfPx9nz57F0aNH5Y5id2xeHNTixYvxxBNPdDkmPDy8R68dHBwMAKisrERISIhlemVlJaKjo3v0mn2tu/UHBwe3O1CzubkZN27csNTZHbGxsQCAixcvOnTzEhgYCDc3N1RWVraZXllZ2Wm9wcHBVo13ZD2p/6fUajXGjBmDixcv2iKiw+ls+/v6+rrEXpfOjB8/XtF/9BcsWGA5QeF2exCd6TOgFY95cVD9+/dHVFRUlw8PD48evfawYcMQHByM/fv3W6bp9Xrk5eW1+Q9VTt2tPy4uDtXV1Th16pRl2QMHDsBsNlsaku4oKCgAgDbNnCPy8PDA2LFj22w7s9mM/fv3d7rt4uLi2owHgJycHIfZ1tboSf0/1dLSgsLCQoff1n3FmbZ/XyooKFDke0AIgQULFiA7OxsHDhzAsGHDbruMU74H5D5imHqvrKxM5Ofni5UrVwofHx+Rn58v8vPzhcFgsIyJjIwUO3futDx/6aWXhL+/v/joo4/EmTNnxPTp08WwYcNEfX29HCX0ygMPPCDGjBkj8vLyxNGjR8Xw4cNFamqqZf53330nIiMjRV5enhBCiIsXL4pVq1aJkydPitLSUvHRRx+J8PBwkZCQIFcJVnnvvfeERqMRWVlZ4ty5cyI9PV34+/sLnU4nhBBi1qxZIjMz0zL+2LFjwt3dXWzYsEEUFxeLFStWCLVaLQoLC+UqoVesrX/lypVi37594tKlS+LUqVPi8ccfF1qtVhQVFclVQq8YDAbL7zgAsXHjRpGfny/KysqEEEJkZmaKWbNmWcZfvnxZeHl5iSVLloji4mKxZcsW4ebmJvbu3StXCb1m7TrYtGmT2LVrl7hw4YIoLCwUCxcuFCqVSnz++edyldBj8+bNE35+fuLQoUOioqLC8jAajZYxzv4ZIIQQbF6cwOzZswWAdo+DBw9axgAQ27dvtzw3m83iz3/+swgKChIajUZMmDBBlJSU2D98H7h+/bpITU0VPj4+wtfXVzz55JNtGrfS0tI266O8vFwkJCSIgIAAodFoxF133SWWLFkiampqZKrAeq+99poYPHiw8PDwEOPHjxfHjx+3zEtMTBSzZ89uM/6DDz4QI0aMEB4eHuLuu+8Wn3zyiZ0T9y1r6s/IyLCMDQoKElOmTBGnT5+WIXXfaD3t96eP1ppnz54tEhMT2y0THR0tPDw8RHh4eJvPAiWydh2sW7dORERECK1WKwICAkRSUpI4cOCAPOF7qaO6f/r57gqfAZIQQthtNw8RERFRL/GYFyIiIlIUNi9ERESkKGxeiIiISFHYvBAREZGisHkhIiIiRWHzQkRERIrC5oWIiIgUhc0LERERKQqbFyIiIlIUNi9ERESkKGxeiIiISFHYvBAREZGi/D8A63s0MIBnFAAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -102,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "id": "85f7d5b3", "metadata": {}, "outputs": [ @@ -136,20 +136,29 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "id": "da24f78d", "metadata": {}, "outputs": [ { - "ename": "ImportError", - "evalue": "cannot import name 'DecisionBoundaryDisplay' from 'sklearn.inspection' (/Users/marinedenolle/opt/miniconda3/envs/mlgeo_sk/lib/python3.9/site-packages/sklearn/inspection/__init__.py)", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn [7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39msklearn\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39minspection\u001b[39;00m \u001b[39mimport\u001b[39;00m DecisionBoundaryDisplay\n\u001b[1;32m 2\u001b[0m ax \u001b[39m=\u001b[39m plt\u001b[39m.\u001b[39msubplot()\n\u001b[1;32m 3\u001b[0m \u001b[39m# plot the decision boundary as a background\u001b[39;00m\n", - "\u001b[0;31mImportError\u001b[0m: cannot import name 'DecisionBoundaryDisplay' from 'sklearn.inspection' (/Users/marinedenolle/opt/miniconda3/envs/mlgeo_sk/lib/python3.9/site-packages/sklearn/inspection/__init__.py)" - ] + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbAklEQVR4nOz9dXxc5533/7/OMGhGzEyWLINsmZnt2A5j0wZLKSSFbLu7Wfp9e9+7d7ew3XLatGkYGkYncWJmFllgySKLWSMaPr8/HMlWJJOs0YCu5+ORR2ud0Tkf0cx7rnNdn0uSZVlGEARBEATBCxTeLkAQBEEQhKlLBBFBEARBELxGBBFBEARBELxGBBFBEARBELxGBBFBEARBELxGBBFBEARBELxGBBFBEARBELxGBBFBEARBELxG5e0CLsftdtPY2IjJZEKSJG+XIwiCIAjCVZBlmd7eXuLi4lAoLj/m4dNBpLGxkcTERG+XIQiCIAjCOJw7d46EhITLPsang4jJZALg9SX/gkGl83I1gjBaRErUiH8HZURd4pGC4LuCpsUP/39NlMmLlQiBore/j2k3Lxx+Hb8cnw4iQ7djDCodRhFEBB8SmRY9/P9N02K8WIkgjJ8p+8I7VU2M2YuVCIHqaqZV+HQQEQRfIwKIEAhEABF8iQgignAFInwIgUCED8FXiSAiCJcgAogQCEQAEXydCCKC8AUigAj+7uLwASKACL5NBBFBQIQPITCI0Q/BH4kgIkxpIoAIgUAEEMGfiSAiTDkXhw8QAUTwTyJ8CIFCBBFhyhCjH0IgEAFECDQiiAgBTwQQIRCIACIEKhFEhIAkwocQCET4EKYCEUSEgCICiBAIRAARphIRRISAIAKI4O9E+BACgSrWeP5/e11X/zmeKkYQPE2EDyEQiAAiBIKhAAKgMGpQuDRX/7meKEgQPEkEECEQiAAi+LuLwwecDyDjOs9EFCMInibChxAIRPgQAsEXRz+u+3zXfQZB8CARQIRAIAKIEAgmOoAMn3fCziQIE0gEEMHfiY3nhEDgqfAx4hoeOasgjIMIH0IgEKMfQiCYjAAyfC2Pnl0QroIIIEIgEAFECASTGUCGrzkpVxGELxAbzwmBQIQPIRB4I3yMuP6kX1GY0sTohxAIRAARAoG3A8hwHV67sjCliAAiBAIRQAR/N1G9PyaSCCKCx4jwIQQCET6EQOArox9jEUFEmHAigAiBQAQQIRD4cgAZIoKIMGFEABH8nej9IQQCfwgfFxNBRLguInwI/kCWZWxOOyChU49+YhajH0Ig8LcAMkQEEWFcRAAR/IEsyxytKWZ/2UnqW5tAgpSYBFZmz2dOYhbm6YnDjxUBRPBX/hpAhoggIlw10ftD8CeyLPPWqR3sPnGQWJeZRYYUZGSqmzp5vuMDuje5uTNmhrfLFIRx8ffwcTERRIQrEqMfgj8qa65mz6nDLNZkkG1KQB1y/ol7BlDYV8O2/Z+Rt3A+aQkpXq1TEK5FIAWQISKICJckAojgzw6fLcRkUzMrNWv4Y0rD+SfuOfpMSqrOse/kYRFEBJ8XiOHjYiKICCOI8CEEAlN2Am17+0kKjRsOHxeTJIk4TSj1DfVeqE4Qrk6gB5AhIogIgAggQmC4ePWLIdSEvbnzko8ddNqI0GonoyxBuCZTJYAMEUFkihMBRPB3l1p6mzd7Dm8W/h2r045ONfLJvN8xSCM9rM+ZPWl1CsLlTLXwcTERRKYgET6EQHCl3h/L5y5m577dfFh7iHUJeYRoTQB0DPbwWcNJojMTWJK7YLLKFYQxTeUAMkQEkSlEBBAhEFxt87FQcwjfe/jbPPnS07xRfRCTS4uMTJ/aQUJOMt/9yjcw6g2TUbIgjOCLG895kwgiAU6EDyEQjLfzaWp8Mv/1+L9zqrSIynPVSJJEVko6szNnoFKJpz9hconRj7GJv8QAJQKIEAgmovW6WqVm4aw8Fs7Km6iyBOGaiAByeSKIBBgRQAR/JzaeEwKBCB9XTwSRACDChxAIxMZzQiAQAeTaiSDix0QAEQKBCCBCIBABZPxEEPEzYuM5IRCI8CEEAhE+JoYIIn5CjH4IgUAEECEQiAAysUQQ8XEigAiBQAQQwd+J3h+eI4KIDxLhQwgEInwIgUCMfnieCCI+RAQQIRCIACIEAhFAJo9Hg8hPf/pT3nrrLcrKytDr9SxdupSf/exnZGVlefKyfkcEEMHfid4fQiAQ4cM7PBpE9uzZw3e/+10WLFiA0+nkX/7lX9i4cSMlJSUYjcYrnyCAifAhBAIx+iEEAhFAvMujQeTjjz8e8e9nn32WqKgoTpw4wcqVKz15aZ8lAogQCEQAuTyn00lRZSkt7a1oNBpmT5tBREiYt8sSvkAEEN8wqXNEenp6AAgLm1p/kKL3hxAIRPi4OmXVFTzz+gs01Tagdkg4cKEJMbB82XK+svVO1Cq1t0uc0kT48D2TFkTcbjc/+MEPWLZsGTNnzhzzMTabDZvNNvxvi8UyWeV5hBj9EAKBCCBXr7bxHL95+g8Y29zcFrOIcH0wDreTss5adn34KU6Hg6/f+YC3y5ySRADxXZMWRL773e9SXFzM/v37L/mYn/70p/zkJz+ZrJI8RgQQIRCIAHLtPtr3GTQPsDVtNUqFEgC1QsWsiHRUChUHDx1i84oNxEfHernSqUH0/vAPkxJEHn30UT744AP27t1LQkLCJR/3xBNP8Pjjjw//22KxkJiYOBklXjcRPoRAIMLH+NnsNk6eOsns4OThEHKxaaGJHK0q50RpvggiHiZGP/yLR4OILMs89thjvP322+zevZvU1NTLPl6r1aLVaj1Z0oQTAUQIBCKAXL9BmxWn04lJYxjzuFJSoJc0DFitk1zZ1CECiH/yaBD57ne/y8svv8y7776LyWSiubkZgODgYPR6vScv7XEigAj+ToSPiRWkNxJkMtHU0UlqcNyo41anjV5sYvXMBBPhw/95NIg8+eSTAKxevXrEx5955hkeeughT17aI0T4EALB1QaQ3v4+Onu60Gq1RIdFIknSZJTnt1QqFSuWLGPb6+8yw5ZKsPbCC6QsyxxtLkUfaWbhzDwvVhk4RAAJHB6/NRMIRAARAsHVBpDOni7e2bmNI0ePYOu3olApSMtMZ+uaG5ibPWsySvVbNyxbR1FpMe8UH2BmUDIJpkgGnTaKOqpoN9h54Nb7MAeZvF2m3xKTTwOTJPtwWrBYLAQHB/Phiv+DUaWb1GuL8CEEgmu9/dJl6eZnf/5f2ssbmB2cQrwxkj7HIIUdZ+kyOfn6/Q+zdM5CT5bs9yx9vbyzaxuHjhxisHcAhVJBcnoqN67ZxLycOd4uzy+J0Q//Y7FYCE+No6enB7P58s89YtO7LxABRAgE453/8f6eT2gvr+eO5BUY1efncUUSQoo5hl31J3n57deYmz0Lvc6/53h5kjnIxAM33cOdG26mvasDjUYjbm2NkwggU4MIIp8TAUTwd9e78ZzVZuXQkcPMMCUPh5AhkiSxMDqHVxv3cqK0gOVzF193vYHOoNOTFHvpdgXC2ET4mHqmdBAR4UMIBBO1+qW7z4K1f5AYY/qYx4M0evSyio7urnFfQxAuRQSQqWtKBhERQIRAMNHLbw1aPUq1Eot9gPgxjjvcTqyyE512cudrCYFNBBBhygQRsfGcEAg82fvDHGRi1sxZFO3NJys0EYWkGHG8tKMGdbCevOmzJ/S6wtQjwodwsYAPImL0QwgEk9V8bMvqjfyipIRtNYdZGjuTMJ0Zu8vB6Y5qTgxUsenGLUSGhnvs+kJgEwFEGEvABhERQARf1tVvoaG7FaVCQWpEPDr12FsbTHb308ykNB772rd57s2XeKvuMGqXhEN2oQ01suWWG7lzwy0er0EILKL3h3AlARVERPgQfF3PYB9vn9hBQVUp9kEbkiRhMptYnjOfG2YuRalQer31+qzM6fz3j/4/iipKaOlsR6/VMXtaDqHmkEmvRfBfYvRDuFoBEUREABH8wYDdypM7XqWtrpl5xlRSwqJwuF2U9dXz0cFdWM1KHtx0F+D9vV9UKhVzLzMXxGqzsv/UEQ6eOEJXVyehoWEsnbeI5XMXicmsU5wIIMK18usgIgKI4E/2V56i8Vwjt4UvxKw+v0OrOdzIsshIIrojOHj0EOvXryctIcW7hV5Bb38f//vsHzlbWEaCIoQErZnOhmZeKHyOgyeO8MOHvoPJGOTtMoVJJMKHcD38LoiI8CH4qyMVBaQoIzCrDahDLjxxKw0apuvTOFlVzeHCEz4fRF7+8A1qT5Vze8JSQnUX9k3psvby3qlDvBz5Bo/c/ZD3ChQmjQggwkRQXPkhviEyLXo4hJimxYgQIvidnr5eosMih0OI0qBBaTj/5C1JEiGSge7ebi9WeGUdPV0cO36ceSGZI0IIQKjOxLyQDI4dP05Hj2h6FshUscbhEKIwakQIEa6LX4yIRKREAWIERPBPQ5NPI+Jj6G4fHA4fF5NlGYs8iDnIu3NDrqS2sQ5bbz8Z8XFjHs8IiedQ/RlqG+sIDw6d5OqEizW1NbP35CHKKs4AkJ05jZV5S4iNHN/zqBj9EDzFL4JIUEYUJp3xyg8UBB/yxdUvK9es4s2XXmOefQCTxjDisWd7GrAaYNGseZNd5jWRJAUSEi7ZPeZxp9sNkoRCoZzkyoSLHS06ydMvP4uzrZ9kbSQA2/M/YOfuXXztyw+xcFbeVZ9LBBDB0/wiiAiCP7nU8tvV85dz6MRR3i09wIKwLFLNcTjcTko7a8jvr2HZ+lVkJKZ6o+SrlpGYijHMTFlnHfOis0YdL++qIyjMTLqPz3MJZE1tzTz98rNE92hZk74E5ecdcl2ym13nzgeUxMfjLjsyInp/CJPJb+aICIIvM2UnDP+niTEP/zfiMcYg/uFrjzFj5QIOuap4tu5TXm7cQ4Whiy233cTXbr/P57eKNxmDWLFsOQX9NdRZWkYcq7O0kN9XzYply8WqGS/ae/IQzvZ+1iTMHQ4hAEpJwZrEPJzt/ew9eWjMzx1r7ocIIYKniRERQbgO19p8LDw4lO/f/whNm1uob25EqVQwLTmDIIP/3Hq8c8PNtHd18unho5jaVISqguhy9tOrczBv9RLu3HCzt0uc0sorzpCkiUA5xu0xpaQgSRNxft7IpgsfF7dfBG8SQUQQrtFEdD6NjYgmNiL6yg/0QRq1hkfv/TqnF67gcMExunu6SQoOYXHuAmakZ6FQiIFWfyDCh+ArRBARhKvk7dbrvkShUDArczqzMqd7uxThC7Izs/ik4H1cbteoURGX20Wd3MmWhWsAEUAE3yDeugjCFQzN/QDGnPshCL5kxbwlqCKM7Kw/icvtAkAyqHDrJHa3FaKONrF67RoRQgSfIUZEBGEMYvRD8FexEdF87csP8fTLz/Ji/a7h5bt1zg7UMUF88zvfJjZG9GQSfIcIIoLwuY6+bgpsDZTXnkVxSiIndxbL8xYT4e3C/Igsy9Q11dPe3YFep2daUjoqlXiamWxLN64gNTeTvYcPUFpRDsDmGWtYvXylCCGCzxHPEMKUZ8pO4FRFMU/vegl7ex+JhvPvIN8teYNPdn7KN+/7KnOzZ3m5St9XVV/Dy++/ztnySpxWOwqVksj4GG7ZtJUVeUu8XV7A++Lk0/i0JO5NS/JiRYJwdUQQEaasodsvzZ1tPPPR34kc0LEuaxmqzyf4OdxOdtSd4KkXn+Ynj/8bUWFibORSahrr+OWff4u62crayBxiI8Ox2AfIP1fB0889g8PpZO3CFd4uMyCJ1S+CvxOTVYUp54uTTw+fK8LR1sf6xHnDIQRArVCxPmk+thYL+y7RAEo4793PtiE19XNL6nKSzTFolGoi9MGsT5pPhiuct7e9y6B10NtlBhSx8ZwQKEQQEaaEy3U+LTlTRrImcswGUCqFkiR1BKVnyia7ZL/R2dNFYWEhc8IyRgS5IXlRWXQ3d5BfXuyF6gLLUPhQxRpF51MhYIhbM0JAu5rVL7LbDZfprC5JEm732Ju8CdDb34fL7iQsdOzvb5BGj0ZW0tPXO8mVBQ5x+0UIZCKICAHpWpbfTsvIZFfRJ7hlNwpp5CChS3ZTZ2tnQ8Zij9QZCEzGIJQaFZ2DFiL1IaOO99kHsUsugoNMk1+cHxMbzwlThbg1I/ilnsE+SpuqKG+uweqwAVe38dxYVs1fhhSuY29DAe6Ltrd3y2721OejiDCwap5Y9XEpYcGhzJ49m/yus8MNtC52srWckJhw5mTN9EJ1/kdsPCcEgj5t11U/VoyICH6l3zbIu6d2caKiGNugFYCQhChWL1zOTa4YDPFh13zOhOg4HvzSfTz7you8dHYHqfpoZGRqrK0QpuOr9z542S3TBbhl/RZ+XnGGd6r3syAymxhjOL32fk61VVCn7uH+zfeh1+m9XaZPE7dfhEDQp+08/39sV/85kizLsmfKuX4Wi4Xg4GBO/+QtTDr/2Z1U8Ayrw84fd7zCuao65kVlk2aKxSW7KO+u57S7kaXrVvLI3Q8hSZeZ8HEZdU317Dl+kNLyUiRJYnpWNqvmLyMxJn6Cv5LAVFlXzSsfvEHVmUocg3aU6vN9RG7euJWVYkRpTCJ8CIFgOHwAKM/faLFYekmOnk5PTw9m8+VHpkUQEfzGvoqTvHlwO7dGLSJMa0ZpuPDEXdXTyO7+Uv7xB/9ATlqWF6uc2mRZprbpHB3dnaKz6mWIACIEgrECyJBrCSLiGULwC6bsBE4deZMEKZTI0NGNxVLNsRxrL+dwwXERRLxIkiRS4pJIiRMdPcciAojg70aEDxgVQMZDBBHBZ31x5UuPvZ/k4PAxHytJEqEqI51dnWMeFwRvEeFDCASXG/24XiKICD7nUktvQ0KC6WzquOTn9TgHSDYHe7S28Rq0DtLa2Y5KqSI2MhqFwjsL1mRZxu6wo1Frxj2XRrg6IoAIgcCTAWSICCKCz7hS748l8xbzctEL9Nj6CdaOnDN0rrcVi9bBotnzr6sGS18vgzYrwUEmdFrddZ0LYMA6yDs7P2T/oYMM9PQhKSRiE+PYtGoDK+ctmbQw0NHTxWeHd3PgyCEG+voxmU0sX7yM9YtXERx05SXOwtURvT+EQDAZ4eNiIogIXnUtjcdW5C1m/9GDvFd8kIVhWaSHxON0uyjvquOE5SxzVyxgZkb2uOo4U3uWbXu2U1xcjNvhQhdkYOmixdy4ahMhpvGNslhtVv732T9QeaKEGcYkUkOysLkclFRW87fqv9Fl6ebWtVvGde6L1TXVU3muGlmWyUhMJTkuccTx5o5WfvmX39J1tolp+jjCdJG0t/Twwd/f5nj+SX70je8RHhx63XV40tCcel8dxRGjH0IgmOwAMkQEEcErriWADDHo9Dz+1e/ywnuvcSj/FHtqTwMShlATa2/ayD033DauWx755cX88Zk/o+1wsiA0FZPBQFNvO7ve/YSSM2X8+OvfI9Qccs3n3X38IGdOlXBr3GLC9RfCTIIpkhMt5by/7QMWzZ5HbET0NZ8boMvSzd/efJHThcW4++3InH8RzJk1g6/dcR9hn4eLF979O32Vrdydsgq9SgtAFpBrz+Cd8v28su1NHr336+OqwdOqG2rZcXgvJ/NP4XA4SE1JYdWi5SzJXeC121sXEwFECATeCiBDRBARJs14wscXhZpD+N5936R5cyu1jedQSAoyk9PGPWrhcDp4/s2XCetSckPa0uEW7wmmSLLtybxdup/3dn/Mgzd/6ZrPve/IflJUESNCyJA5kRkUV9dxqOAYt6+78ZrPbbVZ+fVzT9JYcJaVkTNIiTrfcK3W0sz+gwX8utfCE488TkdPF6XFp1kRkT0cQoYEafTMC8nk6ImTtN3QQWTo2BOBveX46VP8+fmnUXXYmWZKQKNUUZt/jqeKnqJsXSUP33qvV8KICB9CIPB2+LiYCCKCx01EAPmimPAoYsKjrvs8BeXFtJ9r5s64paP2mTFpDMwISubwkcPctfEWDNfQGdTtdtPa2kaeYWQzNLvLSUX3ObqtfVh6LVTX146r7qPFp6g+XcEdCUsJ1V3YwyU1OI5QnZk3SvZzuOgEBp0ee7+V5IixO8Mmm2M40FhOY1uzTwURS18vf3v1BaItWtanLxv+2cyKSKeyu4E9O3aSnZrBsrmLJq0mEUCEQOBLAWSICCKCx3gigEy01s52tC4lIdqxN2RLCIqksLeezp6uawoiCoUCvUGPpb1/+GPlXXV8VnWMwYEBDLKapsEOtn/2KREhYXx5652oVeqrPv/RguPEyKYRIWRIiDaIOEI4WnCcDcvWICkU2Fx2VIrR9VtddlAoUPtY07FDhcfpa+ni1qS1owJiRkg8Zd117D6yz+NBREw+FQKBL4aPi/nWs4/g9/whfFxMq9Fil1w43E7UitF/Dn2OQSSlclwraJYuXMKnb3xAniuL5v4OtpUfIM5hIs+QDS43dYoOjKZwdm77FEmSeOAabv/09fVjVhsuedysMdBr6SUrJRNTRAinO6pZGJMz6nGnO6oJjQ4nIzH1mr8+T6pvbiACIzrV2C/8KUHRnKqpxe12e+T2jBj9EAKBrweQIb5bmeBXhna9Ba5611tfkJs1E3WwgdKOmlHHZFmmqLOaadnTxrWqZN2ilZhTInm35gCf1hwjxKZhmTELp8NBg7WDqKgoFiXOZJEpkz1799La2X7V546MjKTV3nPJ4622bqKiojHqDaxduZpC6zlKOmqGdxd2uV0UtlVS7mph05r1aNS+9WKrVCpxyKN38h1idztRqZQTvopmrJ1vBcHf9Gk7L4QQpcKnQwiIICJch6Hw4Y8BZEhESBirV6zkaN9ZiturcH6+jX2ffZAd507QbXayZdWmcb3gRYaG88OvPYohK4rijip0LhUVfQ200kt0Qhw56dOQJInssGRcFiunyoqu+tzL8hbRo7VT3dM06litpZkujY3l887ftrht7VbWbd7AUVc1L1bt4O2qfbxYvZOTUj1bbtrKDcvWXfPX5mkzM7LpUdvoGBwdttyym/LeeubmzpmQIDIUPlSxxuHwIQKI4G+GwkeftvNC+PDxADJE3JoRrpm/3X65ki9tvh0Zmd179nC0pgKdpGZAchAcE843b/8as6eNvqVxtZJiE/jhg9+muuIsWVIa0YYwwswh6C+ab6JSKNFKKqw261Wfd3ZmDkuWL2Pnrn1M62tlWkgiSFDZ1UCpvZFFq5cxJ2sWcH504cFb7mXtopUcLT5Jb38fwUFmFs+eR2zk2JNYvW1O1iySpqXxcfExNicsJEx3/vfM5nKwr6EAR6iadYtXXdc1xO0XIRD4y+2XyxFBRLhqgRZAhqhUKu6/6R42LVvHqbIiBq2DRISGMT9nzoR0Vw01hxAZFYWrV0F8VOyo4xZbP4OSg6iw0Zv5XYpCoeDrd9xPfEwsO/ftpqLtFMgQEh3GHcvuYuuKDaPmTiTGxJMYEz/2CX2MSqXiew98i989/2feOnOIEIcWNSo6pH70UWa+ec9XSR/nvBYRQAR/54mN57xJkodaFvogi8VCcHAwp3/yFiad8cqfIIxLW28Xh6sKqWyqPd+dMzaZxemziTKFBWz4mGwvfvAau979hNsTl2PSXJhkKssy2+uO0Rur5Bf//H/RarSXOcvYHE4Hja3NyMjERcb43HyP6+F0OjlVVsTps2U4XU4SouJYnDv/mvvGiPAhBAJ/Gv2wWHpJjp5OT08PZvPlXzvEiMgUV1B/hhf3vIujx0qiMgwk2FW9j4O1RTx861eYT4IIIBPgptU3UHqmnLdK95NjTCQ+KJI+xyBFndX0h8K37vj6uEIIgFqlHtXWPVCoVCoWzJzLgplzx/f5IoAIAcCfAsh4iCAyhbX1dvHCnneJ6tOyKmo+KoUSdYgRl9vF7uYCnvv4NVJzMohFBJHrFRxk5h+/+X3e3/0xB48cprivCYVSyfQl09myeiM5aVneLjFgiN4fQiAI9PBxMRFEprBDVQW4eqxsmLYKpUIJgNKgQQmsS1/Ii2c/Y8+JQ3zphtu8W2iACA4yc9+Nd3Pnhpvp6u1Br9WNuzW9MJoY/RACwVQKIENEEJnC6uxdpJhjUSqUKA0jn7iVkoJkbSSlZ8rgBi8VGKB0Wh2xEzAJVjhPBBAhEEzFADJEBJEp5uLJp/JRNwqtelQIGSaB7PbZuczCFCbChxAIpnL4uJgIIlPEWKtfcnJn8UnF+7jcruFbM0Pcsps6WxvrshZOap2Cb5Flmar6GgrPlGB32omNiGHBjDkj+qBMJhFAhEAgAshIIogEuMstv10xbwk7du9kV/0p1iTmofx8czG37GZ3fT5SmJ6VeUsmtV7Bd/QPDvDUa89ReOoUqn4ZrUKFRbLyRmwED9/zAHOzZ01aLSKACP4u0Hp/TCQRRALQ1fb+iI2I5mtffoi/vvQsL1V9RpI2EgUSNbY2pDAdX/3yg8RHj27AJQQ+WZb509+f4fSBE6yOmE1KdAySJNFnH2R/YyFPPvsU//Tdx8fdVOxqiPAhBAIx+nFlIogEkPE0H1s4K4+Ex2PZc+IQpeVlgMyazDxWz18uQsgUVlFXRdGpAtZF5pJsvtAGPkijZ2PyAl4/u5ttez8lLyeXcy2NqJRKZqRnk52aed37v4gAIgQCEUCunggiAeB6u5/GRcVy7+bbYfNEViX4s4LyYrQDMkkx0aOOKSQFCeowXnz9FY5EHyAEAw63kw/075M1M4dv3/vV6+p8CiKACP5JhI/x8eh3au/evdx0003ExcUhSRLvvPOOJy83pVy88+3QrreiA6owUWwOO1pJPeboRv/gAI31DUj9Tm6NWsLdqav5cto6NppyOXv0NL974SlcLtdVXWdo11tA7Hwr+K3hXW/Br3a99RUe/W719/eTm5vLH/7wB09eZkoZCh+ACB+Cx8SER9HNIFanbdSxhtYm2ga6SQ9LINIQAoAkSSSYItkUN4+K0+UUVpRc9vxjBRBB8DcigEwMj96a2bx5M5s3i/H+63XxrRcQm88Jnrdo1jzein6XA03FrE3IGzEyUtFUQ5vUz6aYOVjsA/Q5BjCodITqTEQbwjA3qSkoLx61qkbM/RACgbj9MvF8ao6IzWbDZrvwDsxisXixGu8TO9/6D7fbzZnas3R0d2LQG8hJmzbuTex8gckYxAN3fZm/vvAMb1btISckBb1KQ62lhX2D5YSazNT2NHOwpgC3y41CqSA2JJLlCbloJRV2h334XCKACIFABBDP8akg8tOf/pSf/OQn3i7D60QA8S8lVeW8/O7r1FfV4rDaUaqVhMZEctPGLaxbtPK6V5F4y+LZ8zF/28T2/Ts5XlyM2+EmLCGcaGUSLeV1hFm1LNalEqo2YnENUtJaz+s9O5CC1KyOjBYBRPB7InxMDp8KIk888QSPP/748L8tFguJiYG5vfkXifDhnyrqqvjNX/9AULvMlui5RBvC6LUPcKq1ghdeehGX282mpWu8Xea45aRlkZOWxYB1EIfTgckQxKP/9Y8MFDexMjgLs/Z82AhRGUlQh/FO1zFqNZ0sW79ShA/Bb4kAMrl8KohotVq0Wv8dzh4PEUD82zuffYi21cGN6SuHO9OatUZWJcxB2VDIex9/wIq8xRi81BJ9opyvX09TWzODnb3Mj5lOY08XvY4BTBoDbgV0W3tJ0IdjDdbTOWghhniv1NrU3MzxUyfo6+8nPCyMhfPmE2wOpvZcHfUN9ShVKnKysgk2i52PhZFEAPEOnwoiU4WYfBoY2ro6KD1dwvKIjOEQcrG5UdMobdhNQXkxS3IXeKHCidfR04XL5mRJ1iJ6B3tpaGikeaAXSZIISQhnRcJs2loP09HZMem1uVwuXvz7y+z48FPkLisGhYY+2caz5mfQmvU4ugdw9tpAAYaIYFZvWsu9d96DWq2e9FoF3yHCh/d5NIj09fVRWVk5/O/q6mry8/MJCwsjKSnJk5f2SWL0I7D0DfThdjgJDTKNedyo1qF2K7H0901yZZ5j1BtQBWnoV9lJiEsgMSkJh8OBJClQqVT0WPuQ1EqMxqBJr+21t9/kk1feY5F5GjnTUlEqlFgG+njjwDZO9dVxw6wVrM9agN3lpKS1io9ffIfe3j6+841H/HYejzB+IoD4Do8GkePHj7NmzYX740PzPx588EGeffZZT17ap4gA4h8sfb0cKT5Bc3srWrWGOdmzyExKu+SLVHCQGaVWTetgN+H60cP8Fls/TqWbMHOIhyufHKpYIxkx00nITCG/uJK4kGhAQq2+MBfkVFM54YlRzJyeM6m1WSwWdmz7hDmGVGZFZwx/vL21lVRnKDqdkrqORkgHnUpDXlw2pg4j+z7bx8Z168lMz7jM2YVAITae800eDSKrV69GlmVPXsJnifDhXw6cOsILb7zCQFsPoRgYlO1sM2xj1txcvnXPwxj1hlGfExYcyuzcXPJ3nyAjJB614sKfkyzLHGspIzQ2ktnTJvdFeSKNtfLljnvu4nd1v+azs0dYkDCDEJ2JPvsAJxvLOavs4OE7voFGM7kTVYtKT9PX2sPMtIUjPt7c2IRZZSBUE8xnltO09ncRExQOQEZYAkfKSjh64rgIIgFOjH74NjFHZIKJAOJ/iitLefqlZ0keNLMkaS06lQZZlqnrbWHXgRM8JSn4wQPfGnNk5Pb1N/LzygreqtrHvIhpxBrD6LH1k99WQavRytduetgv+4lcbuntgrx5PPKD7/DqS6/weu0+FA5wKyEkIYIH7/oa61ZP/iohm9WKwg1a5YX5HrIsY7c7CFYaUSpUyDI4XM7h45IkYZJ0WHqndr+iQCYCiH8QQWSCiADivz7e+xnBFiWrU+cOhw1Jkkg2x7BKdrP7VD416+tIjU8e9bmJMfH86Jvf57WP32F/8WmcFjsKtYr4rES+vfFGFsycO9lfzrhdy8ZzyxYtYcHceRQUF9Hd001QUBBzZs5Gr/fO6qDYmFgkg5rmvg5iTRHA+Z+hTqdj0GKjV+49399Ff2E+j1t20y0PEhYa6pWaBc8Q4cP/iCByHUT48H99A/2UlZWxMCR5zBGPFHMsyo7TFJ4pGTOIACTHJfLjrz5GU1sz7d1dGPV6UuKSUCj840lwvI3HNBoNC/LmeaKka5Y9LYvk6ekcPFHELdNWolIoAYiNj6Wk8zTl9hYy0tMI0ly4xXa6tQo5RMPSRUu8VbYwgUQA8V8iiIyDCCCBw+F04Ha50WnHfgGWJAnNF1qWX0psZAyxkTETXaLHBFLnU0mS+OrDD/PL1l/y97LPmBGaQojORKOri6PKc/RIAyw0hmKx9mN3OShpq+aMs5nNX7mVxPiEK19A8FkigPg/EUSukuj94dtsdhtHi09ytOAEvX19xERFs3TuImZlTr/s0kyz0URoeBjnmlpJMceOOt5rH6BPshHnRwHjcgIpfHxRRlo6//of/8q2Tz7m6P5DOKwNGKKCuP+WR+jt7aXo2ClKGvchKSXCE6P5ypaH2bxhk7fLFsZBhI/AIoLIFYjRD9/XZenm1889SfXpCqLlIMxqIyVFtRzaf5ClK5bxtdvvQ6Ua+1ddqVSyauly3nrldbIGkogyXJgv4JLd7GsoJDQhivkz5kzSV+MZgRxALpYYn8AjX/06D33lfgatgxgNxuGGZd093TQ0NaJSqkhLSRWNzPyQCCCBSQSRSxABxLd09HRR21iHJCnISEzFdFHDrL+9+SINBWe5I2EpoboLkxGrehrZuXMP8dGx3Ljq0u98Ny1dS2nlGd4/dpRUVSQJQZEMOK2U9tThjtTxnXse8MuVLzB1AsgXjbVdREhwCCHBId4pSBi3QOn9YbH0cmDfYQ4fOoKlr5f42DhWrFzG/IVzUSqV3i7Pq0QQuYgIH77H0tfLK9ve5Njx49gs/SBJGENNrFi2nLs23kJzeyunC4tZGTljRAgBSAuOo6GvjZ37d7Np2VrUqrHfAWs1Wn7wwLfYmb2PXQf3cri9GoVGybyNS9m4bM0lJ6n6qqkaPoTAEkijH81NLfzyF7+hsr6SoBg9eqOOYxXnOHzyCKuXruKR73x1So/QiSCCCCC+ymqz8uvnnqT2VDnzQzNJT4jDJcuUdday/d2PaO/qJCc9C1e/nZSosedwTAtJ5MPWUzS1tZAUe+lJiVqNls3L13PDsnUM2qxoVOpL3s7xVSKACIEgkAIInO9n85c/P8PZ1krmbs5Bq7/wt9nR1MWOAztJTk7kplu3eLFK7/KvZ9oJJgLI9XO73VTUVdHTa8EcZGJacvqELVs9kH+Us4Vl3P6FWy7zorOItITw6ZFjGD7veCpxiQmpn3/4ajv8SpLkVzvlXkvvD0HwVYEWPi5WceYsp8+UkLkwZUQIAQiPDaUtsZMdO3dzw9YNU3ZUZMoFERE+Js6psiJe//AtGmrqcdkdKDUqYpPiuXPLrcyfcf2NvA6eOEy8FDLqlgtAkjkaU5uKjq4OFEY1tb3NY656qeiqJyQ6jLhLjJj4KzH6IQSCQA4gQ2qqa7G5rIRGj96PCiAmOYLaw820NLeRkBg3ydX5hikTREQAmVj55cX84W9/IqxbxY3ReUTog+m09nLsbBl/fOYpvvPwN687jHR1dhGvu/TPKlQVhAKJ6TNy2H+kiFCtmWDthRfoOksLZfYm7lh21yXnh4xXS0cbtY3nUCoVZCSlERw0Ob9TIoAIgWAqBJAhkiQhA8gw1sCt2y0jSRLKAP8+XE5ABxHR+8MzZFnmzY/eJbRbydbUJcN9OiINIWxOXsRHtUd4Y9s75E3Pva7bNKFhoXTUN1/yeJezn6SQUG7fcBP/2/cHXi/dR4IUikltoNXWTYfaysLVS9m6YsO4axh1TUs3z3/wdw6XHqPX3oskSYTqQ1mft5p7Nt3qkdU1InwIgWAqhY+LZWVnYlAZaWvoICoxYtTxpqoWEuMSiY6J8kJ1viEgg4gY/fCsqvoazlXXckNU7qhmYZIkMT8qi/frjlNeU8n0tGnjvs7SeYt5vuBZuqy9o27P1Fla6NU5WJy7gPDgUP7lW//A4cLjHMk/Tl9vL6nRs7kvbyFzs2dP2JyV/sEBfvH87yhoLiJ5ehzZcSm4XG4a61r4+8E36bR08b17vzlh1xMBRLgadrudEwWnaGxqRKPWkDtrNkkJid4ua9hUDSBDkpITmT8nj70n9qIP0mEKPd96QJZlGs+2MNDsYOM31vvNlhCeEFBBRASQyWHp78NldxB2idsm4TozLruT3v6+67rOsjkLOTD7MO+dOsS8kAwyQuJxut2Ud9WR31/NvFVLmJGeBYBBp2ftwhWsXbjiuq55OftOHqawoZjcVdMxGHUAKFVKUjITCDIb2HvyAOurVjEzY/p1XUcEEOFqFZUU85en/kJ7dRMGpwo7Tl4zaViwYjFff/irGAyGK5/EAzwZPmRZpqG+ic6OToxBBlLTUnz+Rfxr33iAvr4+8ncVogwCrVFNf5cVnVvPHTfdytr1q7xdolf5fRAR4WPyBQeZUGrUtA/2kGCKHHW8fbAHpUZNsOn6fh46rY4fPvQdXol6g6PHjnOo4QwSEsYwMzdsuJE7Ntw0qU9A+/IPEhSlGw4hF4uIDqNKe44jRSfGFURE+PAuWZZxOp2oVKrLbgngS2rqavnNL3+NudXNnUnLCdGZcMtuznY2sO/DPbjcLn7w6Pcm9evx9OhHdVUNr77yJkUlxdgcVtRKNWnJqdx++y3MX5g34debKMEhwTzxbz/i5PECThw/RW9fH7F50Sxdvpj0jFS/+Z3zFL8NIiKAeE9qfDLJ6amcKCojLigchXThCUeWZY63lhM/LYHMpLTrvpbJGMQ373qIOzbeQl3jOSSFgvSElBGdVSdLR28nhohLv8PUBmno6u25pnOKAOJdAwMDfLZ7J7t27KKrrQOdUc/SVcvZtHY90VHR3i7vsj7a/gk09rM5ex3Kz3cbVkgKMsMTUUoKdu87SuWWs2SmZ3i8lsm4/VJTXct///evaLe3kDI3AXO4icE+K9UlZ/nf3/6OR7/9bZYsW+iRa08EtVrNoiXzWbRkvrdL8Tl+FUTE5FPfIEkSd225ld80/IH3qw8yLzLr81UzFk60ltMZ7OTRrbdP6GhFeHAo4cGhV36gB0UFR1LWUzrmMVmWsfbaCU+/co1fDB8ul4vKqrMMDA4SHRlFXOzoZchXq7unm70H9nMs/zhWu5X0pDRWLVtJ9rSsKf+u64v6+vr4+a9+ydkjp0lTR5FhSqKnvZ+dz73Hkf2H+PE//piUJN/squtwODh28AgzQ5OHQ8jFUkPjONBazMmCUx4LIpM99+OtN9+jzdrMvI2zUKrOf81avYbgldM5feAMr7z6GvMXzp2yvTj8mV8EkaBp8ZgM598Bi/DhG2ZmTOf73/gur297h+1nC3F1OlBq1CTmJPPY5luYkzXT2yVOuJVzl3LynQL6LAMEmUeOjLQ2daB1aFmSu+CSnz/W6Me+g/t5/f23qGmqxulyotfomTdjHvfd/eVrnnBYVVPNz3/3S6rbqjBG6tFo1RQdLGT7/k+558Z7uPu2O0QYucib771NzaESbk9ZTqj+wvNKniuLdyv28pe//pX//Mn/8cnvmcPhwO1wYtQYcDod9Pb1IUkQZDQN317SS2psNvuEX9sbk0/b2zo4VZBP0oy44RAyRJIk0nKTOP1pJUUFp8mbP2dSahImjl8EERABxBfNzJjOjMeyqW6oHe6smpaQ4pNP3BNh+dxF7C84zLEDx4nLjCY6PgK3201DbQsd1d1szdtEVsrod5+Xuv3y6a4d/OH5P6IIc5OxNBGdUUdXWzd7T++h+n+q+f9+/B/Ex11dgyO73c6vnvwNdf21LLhhNmrt+XeFsixTe6ael957ieTEJBYv8L2ha1mWOVtdxanCfKxWG7HRMSxesJCgIM/dfuvv72f/zn3MNKeMCCEAGqWaZXGz+ajkFGVnypmele2xOsZLr9djDg/h+NFCmuzVOK3nA4dapyE2IZ64hDi65UGioyZmSai3N57r6enB5rAPrzj5IoNJjxsX3d3XdmtU8A1+EUQ0UaM7awq+QZIk0hJSvF3GpNBpdfzDfd/l1Y/fYl/RQQrLz6CQJCKDInho3Ve4dc2W4RB2pbkf/f39vPjWy2hjlOTMvzC5NSYxioiYMI5+WsDbH7zLo9/89lXVduzUCc42VjJ7XdZwCIHzP5+UrEQ6morYvvsznwsiAwMD/Pnpv3Bi31FUfS70kpoeBnkt7lUe+NpDLF+81CPXbWlrZaC7l5TwsScWx5oioNFJfWODTwYRl8tFr22AosYyYo1zSDWen8/SY+2jtvwsB+sL0c+OZMmCRdd1HV9ZemsymdCo1PT3DGAMHj1Py9pvRYECs1m8VvgjvwgiguArTMYgvnHHA9y54WbONTeiUJwPYkP701zt5NMT+Sdp6W4mb/GMUcdUahUJmTHsP3GAB3vvw2S68pPr2aoqFIbz7wzHEp0YTknFaWw2G1rtxDddG6+n/vZXTmzbz+roXFLj45AkCavDxoFzhTz12ycJCQ5m5vTR36PrpVKpkBQKbK6xb1043S5kSUbtoxsfHj91kv76TtLikjnZVYdlwEa8Ngyr0kHlYCune5r43opbMJvHN5LsKwFkSFR0JLNnzOJIyWEiE8KRFCNHXauKzxETEces3In/XRE8z/u/YYLgh0LNIcyelsPMjOmYUyNQxRqHQ4jCqLniCpjunh4UagmtbuzHmUKDsDqs9FgsE1Lv+S3/JJ+6bVZTV8uJ/UdYGTWLtLD44dp0ai1rU+dj6pbY9vFHHrl2Qlw8sWkJlLRWjXm8rL0GbVgQM3N884Vt/4H9xLhNPDz/ZuZNz+WcoZddjjIOy9WYEyOYEZfB4MDANZ2zT9s5/B9KxYX/fMStt99EsCKMkzuL6WrtQXbL9PcMcPpgOfYWN3fdeZtPhWzh6vlm3BcEP3A9S2/NJhNuh4zd5kCjHT3Lv6+nH61Kg/kqRkMAMjMykLdJ9FsGMJpHD1231LWzaNoSNBrfWSKcX1iAwuIkLSt+1DFJksgJT+HYySL6+vomfL6IQqFg69Yt/OXMkxxvKGVO7DRUCiWyLFPV1cDRrjOsuXszEeGjW3L7go7WdsJ1wWhVGlal5LEsKZc++wAqhZIgjYE9NSdpb227qnP52ujHpUzLyuDHP/oBL734KpWHzlLuqEalVJMQHc8dj9zC8pWeuY0neJ4IIsIVOZ1OTpUVcaToBD3d3YSHhbNk7kJmZUz3+Y6GnjARvT/mzckj0hxFdWkdWXPSRxxzOV3Un2lm8/wtVz20Pn9OHhkJmRQfLmfuyhloPh9pkWWZ6tJzKPpUbFq7cVy1eordYUcjqUb0obmYXqXDbXVjd0z8yg+AVctX0tXdzTt/f4uiMzWEoKdftmE3KVl00yruv/crHrnuRAgOC6HVdmEfJpVCSchF2yB023pJDE297Dn8JYBcbHpOFv/3v/6DyooqOju6MBgNZE/PFEt2/ZwIIsJlDVgH+d2LT3H6ZAHhTgPBaiMljrMc2n+ABUsX88hdD074zra+aKIbj5lMJu656S7+/MpTlDjPkJyVgN6oo6u1m8qiWqL1sdyy5aarPp9areYfvvMD/vu3v+D4x0XoI3RoNCos7f0YCeLB2x9g/lzf6jwZFxNLn8JGr20Ak3b0KM65nmZCEsMwX2eH3kuRJInbbrqFpYsWc/DIYdo7OzAajCzIm0dGWrpP3cb6oiWLF/PnPcfoGOgh3DBye/m2/i5alf3cvWTJqM/zx/DxRZIkkTkt/coPFPyGCCLCZb38weuUHSngxpj5xBjDhz9ea2nms10HiA6P5K6Nt3ixQs/yZOfTrZs2o9FoeP2DNzm9sxKHy4FBY2Bu+jweuveBa26mlZyYxM/+/b84cOTQ+YZmNitpOWmsWr5iUrprXqv5c+cRlhzD3ppTbM5cMmJkpK2/izO2Ju5Y9xVUHp4wGh0VzW03+dfv8OIFi9i1cDfvHzjA4sgcMsLP95w5017H0Y4ypi/PZWHehQ6egRBAhMAlybIse7uIS7FYLAQHB9O0owRzkFiWNdk6err4p//6d/LcCcyMGD3Me6SphJrgPn7xL/85vGokUExm63WbzUZJeRmD1kGiIiJJT03z6XfjE+lUYQG/+9VvULVYmR6aglGto97SSpWjhexlc/nRDx9Hpxu9t49w/vnxuZde4Pj+I1i7+kECXaiRhSuW8MCX70OKcIz8BBFAhElksfSSHD2dnp6eK95iFiMiwiVV1lVh7eljWtLYHT6zwhIpaj1MTWMdOWlZk1zdxPPWvi9arZa5s3Mn7Xq+ZO7sXP71//dvfLT9E04eOobL6SIsNZy71j3ApnUbRAi5DLPZzGPf/i4td9xJRdXZ87cs0tIxJKiAz0OICB+CHxBBRLgkWZZBBsUl3p0rUAAyPjyodlXExnPelZ6axqOPfBv7w1/DbrdjMBim5CTo8YqOiiY6KnpK335pa23nTHkFbrebpOREkpITfX5UsbGhiX17DpJfUIDL5SJn+nRWrl5GWvrlJxkHIhFEhEtKjU9GazZwtruBrLCkUccruusxhphIikkY47N928XhA0QA8QUajWbSlxdbrVZkWUan0/n8C9dYpnL4ABgYGOTlF/7O3gP7sQxYQJIxaIzMmZnLw1+7n8go31x+ffJ4Pn/445/pGGgnJN6EQqHg3Z0V7Ni9i4ceuJ91G1Z7u8RJJYKIcEnR4ZHMmTuXI7sOE20MJUR7YZ5Oy0AnhX01rFt3Ayaj5/YEmWhi9EOQZZmjJ47z6aefUllaDjKkTEtn/Yb1LFu0xC8CyVQPIABut5sn//AX9h3bR8KsGLJSk1EoFLQ3dnIo/xAdv+jgX//9n3yu7XtnRxdP/ukvDOr6WLg+d3j0T86Tqcyv4ZnnXyA5JYmMzDQvVzp5RBARLuuBW+7hV53tvFF8gAQplBBtEG3WHloUvcxYlMsd669+iak3iQAiDHn7/Xd56/m/EzGoY0FYMhISZ4/U8sdTv6X2S3V8+a57fDaMiABywemiUo6cOMq0pamExYQMfzwyIRxzuIlTH5Wwf89Btty0yXtFjuHAvkO0WdpYcPOsEbcgJUkiY04KxxoK2bN7vwgiwsRxu93UNNYxaLMSERJOdHikt0u6JsFBZp745g85VHicQyeO0NHTQ2R4GrfOW8zCWXk+3UNEhA/hiyqrzvLOK28wV53M3KQLE6yzI1M43VrFR2+8R+6sWR7Z32a8RPgY2/GjJ3FpnSNCyBCtXoMp1sC+/b4XRCoqzqIP16BUKUcdkySJsIRgTpeUeKEy7xFBxIOOFp3k3U8/pKH2HG6nC5VOw8xZs7hn823ER8d6u7yrptPqWLNgOWsWLPd2KVdFBBDhUvbu34e628Wc7GmjjuVEplJcVsWefft8IoiIAHJ5lt5eNIZLv4QZzXp62nsmsaKrIymky07wd7vdKKfYZO2p9dVOor0nDvHk357CfaaTG0y53BO9nKWqdCr25/OzP/8vTW3NVz6JcE2udeM5Yeo5V1tHnDZszFsvkiSRYIikrqpm8gv7nK9vPOdLIiMjsPbYLvmibunoIyY6ZpKrurLp07Oxdjpw2Byjjsluma56C7NnzfJCZROnrHs7FT07r/rx4jfcAwatg7z+/psk24O5IXkRcUERmDQGpoUmckfqSmx1Xby70zO7ik41Q+FDFWscDh8igAiXotXpsLpslzw+4LSi009+75Lh8AEifFylRUvmo5eMNFa1jDpm6ezD2u5g5cplXqjs8pYsW0h8eDxF+8txOpzDH3e73JQeqSBYE8KqNSu8WOH4lXVvp6x7OwAK6epv24tbMx6QX15MT3Mnm+NWjnrnpVGqyQ1J48TJE1i23ik6xo7TVLr90tvby4Ejh8gvLsDhdJCZmsHKpSuIi/Wf23u+Im9eHs/uPkq/fRCjZmQ3YKvTTp2jg3sW3Dhp9YjbL+OXlp7K5vWbeOej97B09BGfHo1CpaS1rp3Wig4W5y5mybKF3i5zlOBgM9/7/nf47W/+yPH3i9CHa1EoFfS3DxKmD+eRR75OUrL/tEQYCh5DlNLQ87Fz9IMvQQQRD+iydKOVlQRpxm57HmkIwdFTTU+fRQSRazCVwseQqppqfv67/6G6tQptmBqVSsn+on28s/09vnXfN1i9YpW3S/QrSxcu5qPsj3i/ZD8bkhcObxjXPdjLZ7XHCMuIZeUyz86FGit8uN1u7FYrGo1GNHO7SpIk8ZUH7yEiKoJPPvmUs/vrkWWZEHMI99x8N7fcfiNardbbZY4pKzuT//fT/48D+49w+nQJbpeLzFWZLFuxmOiYKG+Xd1UuDiAXwsf4iCDiAUGGIGw4sTpt6FSj/xC6rX0o1SqCDMYxPlv4oqkYQAAGBgb4xR9+xbmBGubfMBON7vzX7na7KTtZyR+ee5LYmFiyMkdPvBTGFhQUxD88/ji//d3veLvsICaHBmQZi9pObE4Sjz32GCHBIR659lgBpLurmx2f7uHAp/sZ6OlHbzawZN1S1m9cQ1h4qEfqCCQKhYLNWzewfuNq6s814HK5iY2LwWgcvZuzrwkOCWbLjRvZcuNGb5dyTSYygAwRQcQD5mbPwhBuJr+tksWxI2ffu9wuCjrPMmtlLqHmEO8U6CemagAZcuT4Uaqbq5i7cfpwCIHzT77T52Vy5JN8Pt21QwSRa5QQH8//+8//5FRhAWcqK5BlmYy0dObNmYtaPbHL0UeEDxhx+6W9rYNf/ddv6CisJ9MQR4Qxis5WCzue+oCTB07ww3/7vt+8O/YWp9OJzWZHp9OSmpbi7XIClifCx8VEEPEAkzGIGzdt4bXXXsfZ4CI3MoMgtZ7mgU6OtJTijNJy05obvF2mT5rq4eNiZRVnUJokdIbRkyclSSIyMZQTxSe9UJn/U6lULMibx4K8eR45/9XM/Xj1hdfpKWjkzsyVGDQXfsazHRm8e3o/Lz37Ko//8/c8Up+/a2ttZ/vHO9i7bz+DNismYxBrVq9iw6Y1BIcEe7u8gOHpADJEBBEP2bpyIyqVmg8/3UZp0z7kz/uIJOQk881b7iE9ceptbHQ5IoCM5na7uVyDT0lS4Ha7Jq8g4YqudvJpa0sbRQcLWBSZOSKEAOjVWhZEZ7P/6Gka6huJT4jzVLl+qaG+kZ//7H+pbashMi2MMHMQvZ19vPj2Sxw7fpx//KfHCY8I83aZfm2yAsgQEUQ8RJIkbli2ltXzl1JSVc6AdZCIkHCyUjJ8tn30ZBMbz11eemoajr1u7DYHGu3oWwbtDZ2snbneC5V5X0NjI7X1dSgVSqZPy8JsNnutlvGsfGlqbMZhsZKcOnafi6TQaBwVhTQ1NosgchFZlnnu2Zc4113HvC2zUGvOv4TFpESSlG3j1GclvPbqW3z70a97uVL/M9nh42IiiHiYTqsjb3qut8vwKWL04+osW7SE195/g+LDZeQuyxluCS3LMtWl51Dbdaxfvc7LVU6utvY2nn3heYqO5mOzDCApJIIig1m9aR333H7XhM/xuJzrWXqr1qiRVAoGnXZ06tET2m1OO5JSMalfjz+oqz1HUUkxqfMSh0PIEK1BS8L0GA4fO8Ld7beLUZGr5M0AMkQEEWHSiABybUwmEz/45vf45R9/xZFt+YTEmVCplHQ2W9C7DDx42/3kzvTvDozXosfSw89+/gs6C+tYHp1DamYcDpeT061VbHv+bXp6LHznG494fMRxInp/pGekEhwfRkljNctSZ486frqlGlNcGJlZGeMtMyA1NjQzYBsgInbsFUUR8WE0F1XQ3NwigshlXLr3h3eIICJ4lAgf12f2jJn8/D9+yu79eziafwyH08nShatYu3I107OyvV3epNqxexctxdXcnbFmuBmZUqEkLy6bwVobb776GlqthrWr1pCanDKhgWSiG49ptVrW37KBN373KqYmAzOiU1EqlLjcbspaaykerOfWm+/EYBi7F9FUpdGoUSqU2G0OtPrRzyd2qwOFQolGI55rxuILox9jEUFE8AgRQCZOTHQ0X7rjbr50x93eLsWr9u3ZR5ouZkRH1I6BHj4o3UdrZxuDlh5e/8Pz7Nm2gxkLcvnWN7553T1BPNn59IYt6+nr7WPHm5+SX1aFSdLTJ1txh6pZf/8N3HjL5gm9XiDIzskiIiSC+jNNpOcmjzpef6aJhJg4UtNGH5vKfDWADBFBRJhQIoAIniDLMj1d3aToLkzu7LcP8kbBp7i7rKwz5mDVD2AOjyLIEMqez47zP/39/PsT/3rN744v1/tjIikUCu6+93ZWrFrK8aMn6emxYDIFMX9hnpigeglGo4EbNm3kxddeRqtvIi4jGoVCgcvpoq6sgYEmO1u/vhmVSry0+Xr4uJj4aQnXTYSPqc3hcJBfVEhTcxMajYbcmbOJjZnYXU8lSSI8MoK28q7hjxW1VNLX3cut5vnolGoqBnrRaXWkhMZh0hp568QBjp06wbJFS67qGt7a9yU2Loabbt0yadfzd7fctpWB/kE+/mw79SWFqPRKnAMugrXB3H/PvaxdP7W3PfCnADJEBBFh3EQAEYpLT/P0X56m+Ww9OqcCu+zi5RAdy9av5KGvPDChe32sXL2SV4ufpcfaR7AuiLKWGpIUYeiVGrqsFmSNguio851Iww3BRDoNHDt+7JJBxGKxsHv/XvYc2km/pY+o+GiWrVvKwsXzUYsN6HyWUqnkvgfvYd2GVRw/epK+vn6Cg80sXDyfiMhwb5fnNf4YQIaIICJcE9H7QxhSXVvDb375a4wtTu5MXEao3ozL7aK8vY69b2zH6XDy3Ue+PWHXW7tyNYcPHeado/vIC8+kz9pPKEE093XQ5eonIT0JU1DQ8OOD1Ab6e/vHPNfZ7jJ+/dPf03a6gRRNJEk6I601dTx9qJhj607w7e9/w2c3TBPOEyNJ/h0+LiaCiHBVxOiH8EUfbf8YGvrYmr0OpeJ8jxOlQklOVCoqhZIDuw5w45atJCcmTcj1jEYj//ijH/Hya69ydO8hah0d9A/0EB4ZQkbSNJISk4DzK2VkWabV3sOS2JG3iPq0nciyzDN/eoH+4lbuyVw1orNps6WDjz45zoepSdx+180TUrcgTLRACSBDRBARLksEkGvT19dHflEBA4ODhIeFkztzVkBOnLPZbBw/eJRZYanDIeRiGeEJHCov4cSpkxMWRACCzcF8++uP8KU772bb9k/4+19eID4+leSw+BGPK22rwWqSWL50GTBy/sfZ6lrO5p9hXfysUe3VY8zhTO+KZ98n+9h68yYxKiL4jEALHxcLvGdI4bqJ8HHtZFnm3Q/f58N3PqCvuROVrMClhui0BO574H7mzZnr7RIvqaikmJ17d1NUVoRCqWTB7PmsW7WGtJRL74dks9lw2Z0Eacbuc6GQFBgkDYNWq0dqDg0J5Ut33EVHRzs7PtxDpqWFzLBEXLKbMx21VMsdrL5vHXEzwumTOkdMPq2tqUPuc5KQGDnmudPC4yltOUlLcytJyYkeqV8QrlYgB5AhIogIw0QAGb93P3yf1/76IjPVCeSm5qFXa+kctHDoTBG//9Vv+IcnfszM6TO8XeYo7374Ps+++Tw29QARcaG43W7e3PsGnx3YwWNf/S7LFy8d8/OMRiPm8BCaGtpJD0sYddzqtNODlajIsV/sJ4JSqeQ73/gWyUnJ7Nj+GR83FSBJEJ4TwZe2fJk1a1cgqUaP1igUCmRJxi3LKMdoeuZyu5AUEpIkJqwK3jMVAsgQEUQEEUCuU29vLx++/T4z1YksTpw5/PEwvZktmUt5u3wP77z7LjOyc3xqw8PTZSU89+bzmFN1pOVkDX88Y5ZM8dFy/vjsk0xLzyAqMmrU5yqVSlatW827f36VmYPphOhNw8dkWebwuSIMsSEsnr/Qo1+DSqXilq03sermRbS0tKFQSETHxaBQXDpEZGVnogzWUdXRQGbk6BGPstY6IjKjiY2L9mTpgjDKVAofF5uUyP+HP/yBlJQUdDodixYt4ujRo5NxWeEyVLHG4f8URs3wf8K1yy8qoK+lizkxmaOOSZJEblQGZwpKaW1r9UJ1l7Zr7x6sqgFSp4+cwyFJEjnzMmkfaGfvwf2X/PzN6zeRsnA6b9Xs4/C5YhotbZztrOf9M/uo1nZz34P3YTKZLvn5E6FP20mfthOVSkV8UjyxCXGXDSEAcfGx5K6Yy8HWUlp6L8wdkWWZ0pYaquR21t64JiDn9gi+qax7+3AIUUqaKRVCYBJGRP7+97/z+OOP86c//YlFixbx61//mk2bNlFeXk5U1Oh3WoJnidGPidc/MIBKVoy5iypAsDYIV5+T/oGBSa7s8korSwmLDR5zlEapUmIM11FRVXnJzzcajfzTj37Mu9s+YO+O3ZR0FaBQKchclsUDW28kL3eOx2q/3uZjD3z9KzzZ188HB44Tek5LkEpPh6MXe7CC9ffdwLoNqyeuWEEYg69tPOdNHg8iv/rVr/jGN77Bww8/DMCf/vQnPvzwQ/72t7/xz//8z56+vIAIH54WHhaOUyXTPdg74hbFkOa+DjQGLWGhY+8Y6i1KpRKX033J4y6X64qjAkFBQXzl7i9xx8230tnVhUajJjws3CO3oCay86nJFMTjT3yPwvxiTh7Pp6+nj8yYCJYsW0haeqpP3UITAstUvf1yOR4NIna7nRMnTvDEE08Mf0yhULB+/XoOHTo06vE2mw2bzTb8b4vF4snyAp4IIJ7X0NhIxdkK2qw9vH3iM27KWUF46IUXYqvTTkFHJfNuW3XdG7BNtPm583npkxdxz3GPup1ht9qxdTnJnTF6i/qx6HQ64mJjPVGmx1qvq1Qq8ubPIW/+nAk7pyBcigggl+bRINLe3o7L5SI6euSkr+joaMrKykY9/qc//Sk/+clPPFmS11j6ejlUeJzG1iZUKhWzMnOYnZlzxfvZ4yECiOfJsszb77/LK++9isVpwR5u42hDDY37m8mLnsa8nDm0DfZwqr0CY1YUd9xym7dLHmXtitV8vPsTCg+VMnNhFir1+acDm9VOwf4SUqNSWbJgkVdqm6yN5wTBk0T4uDo+NRvriSee4PHHHx/+t8ViITHR/9fxHy48znOvvchAm4Vw2YBNdvKpZjsZOdN49L5vEBZ8/UP2InxMrn0H9/PsW88Rmh5ETvYcFAoFLQvbKNh7mvdKj3KooIrM7Gnk3bKCO2+7Y8I3gZsICfHxPP7ID/jd07/n6LZCtCEq3G4ZZ4+blKhUfvzo4x6fbPpF3tp4ThAuJssydbXn6Om2YA42kZySdE2360QAuTYeDSIREREolUpaWlpGfLylpYWYMZ6YtVptwHUyPFN7lr++8AzxA0aWJa5Bpzr/S9ky0Mn2Uyf4g/RX/vVb/zDukZGrDSBOp5OBgQH0ej1qtXpc1xLOk2WZ97d/iCIU0nKShz8enRjJhi+voup0Ha2lXfz4iX8iZ/p0L1Z6ZfPn5vHr//wf9h86SGX1WRQKBTOycliycBFGo/HKJ5ggIoAIvqK0pJy/v/om5ZXl2Jx2NCoN09Iyuevu25k1O+eynysCyPh4NIhoNBrmzZvHjh07uPXWWwFwu93s2LGDRx991JOX9hmfHtyNttvF2rS8EYk62hDGxth5fFByguLKMmZPu/wv+MWuZeO57p5utm3/hH07d9Nv6Uet07Bk5VK2bNzssXv6ga65pYWz9VUkzh39/ZMkibScJFrOtlPXcM7ngwic71K6btUaFAoFuw7s5kTRST78bBtrlq1mzYpVHhsV8dXw4Xa76ersRpZlwsJDPXL7VPBNJafL+OX//JpeuklZkIgpNIi+7n5Ki0/zP7+q4/EffI/Zc2aO+BwRPq6fx2/NPP744zz44IPMnz+fhQsX8utf/5r+/v7hVTSBzOVyUVBYwCxz4pjDetHGMIzNSooqS64qiFzr7ZeOzg5++rOf0VJQzXRTIlHGeLr7eznwyiecOHKcf/ynfyQ1OeWavibh/M/VLbtRjtG1EzjflVOhwOVyTXJl42OxWPjpr3/OqYqTGKP1mOOCqLfU8IdX/8ieQ3v5lx/+E+FhE7e9uq8GEFmW2bNrPzu37aK5qhGQiUqOZc2W1axZt1IEkgAnyzKvvfomvVIPeetmISnOP2eHxYQQGh1M/q4SXn31DWbOPj+3TwSQiePxIHLPPffQ1tbGf/zHf9Dc3MycOXP4+OOPR01gDUQutwu3y4VWeelbIWpJhdPpvOx5rjWAWCwWevv6+Psbr9FeUMvdGWswXrQnyMzodN6t2MfTz/yN//v/+4lYqniNoiIjiQiOoLW+jdDI4FHHu9t70KAhyU/mN7342iucrDpB7rrpGE2G4Y8P9ls5tbuIZ15+nh89+sPrvo6vBhA4/yL0yguvseOVT0hyh7I6IhuAqtIGXi55nnN19Tz41a+Iv5UAVltTR/nZM6QuTBwOIUMkSSJtdiKFu4+y/cQLpGSeHw0VAWRiTMpk1UcffXTK3Iq5mFqlJi4+ntqyFrLDkkcdH3Ta6JIGSIiOG3VsPJNP6+rP8c7773Lq0HH6e/spKy9nXdgscLjholNolGqWxM5ke3E+FWcrmZYxuiOocGkajYZNqzbw9FtP051kISTcPHzM6XBSfrKaGckzmZF99bfbvKWzq5O9R/eSkB0zIoQA6I06UmbEczj/ME3NzeOacOvL4eNiZaVn2PXGZyw1ZZEddeFvNTk0hsT2eva9vZu8eXNGDcsLgaOn24LNYcMUOnpuVLetHrfBjd3pYKDXIQLIBPOpVTOBRpIkVi9ZwbNlz1BnaSHJfGEUyC272ddQgCk6jMWz5w9/fLyrX85WV/GL//4Fztpu8iIysGpsNDmqUbfaOWU/Se6cOZiCLtzrjzdH4myy09TcJILIONx0w1bOnK1g//796CLUhEYEM9hvpbO+h+TwFL77tW/7xVB+XX09lkELaQnZYx6PToik5mQjtefqrimI+EsAGXJw32EMfQqyEpNGHcuISKCw7SwH9h4WQSSABZmMaNQa+noGCI06P9LZbasfPj7Yc37iqsGoG/F5breb6vIGKkrqcDpdRMWFMXteJjpDYC288CQRRDxsZd4SSs+eYfu+AyR0hpBkisbqslPeW48rXMMjX/oaRr3hupbfyrLMiy+9hFTXy93Z61AplDRa2gjSGYjShNPf20dlZSVzL9qK3ua0gwLUGpHsx0On0/Hjxx5n0YGFfLZvB/X1DYQYI7nl5ttZt2oNkRGe23V2IqlUShSSAqfTxVhPm06nC0mSUCrHng9zMX/u/dFc10y0NuSSt15i9GE01TZOclXCZEpLTyUjJZ2CU4fJWZWCJElIn2/HJssy50paiY+LInXahRHs3p5+Xn7qI8rKqnGpXCjVEs5+N5Fvh3HXgxuZnpvqrS/Hr4gg4mEqlYpv3f0QMzKz2X1oHycazqHUqJi3dBkbb7qB9JTzv6jX0/ujpq6WisIy1sfORKU4/4IRHRROsMlMZXcTs/VJNHV00d/fh9EYBEBRSyWm6DBm+eDW9P5Co9Gwfs1a1q9Z65XrDw4OcujoYY7nn6TfOkBKfBIrl60gPTXtqs+RnpJGVGg0DWebmDYnfdTx+rNNRJgjyM6cdslz+Nvox1j0QXo6HdZLHu+3D2Iw+VaLfmFilfd8yoIb4ih5Uk3Z/nMk5kRhDNUz0GPlXEkrUq+SG768bHik0+1289Kft1F8ppL0xXGYIwxIkoR90MHZk428+NQHfOcf7yE+WeypdiUiiEwCpVLJ6vnLWD1/GU6nE22Cefid10Q0H2tpbcU5YCUu7sK7cKVCwcLkWXxqOYDerkHjVjBotaLT6ylpq6ZgsJab77l70htWCROjuaWFn/3ul5TUnEYbpkajVXGk/BAf7PqQe2/+EnfcfNtVTazU6/VsXbeZv7z+VxpDmolNjkaSJGRZprW+nZaKdu6/8f4xf08CIYAMyVs0lxd2nMRi7cesGzlHYMBu5Zyriy8tudFL1QmedPHql5zcTB769m1se3MfNQdbcDgdqFUq4mKjuOGby5mZlzH82MrSc5SXV5OxJA5zxIXfGY1eTfaSJAo+qeTQrkLufGj9pH49/kgEkUkydOtl6Bs+kd1PDQYDCpWKXls/ofoLEydzYzKxOm3sKj9G10A3zedcyO0KCNay6d6buevW2yesBmHyuN1ufv2n31LaVMzcjTPQf37PWpZlasrref7tF4iLjWPpwsVXdb5bttxEe2cHH+/9mNrTDWiC1NgHnOhcerYuv5F7br9r+LGBFD4utmjJfHbM2cmHJw6zMmE2ceYIAFp6O9lzroDo2YksXrrQy1UKE+VyS2+n56aSNSuZmoom+iz9GIP0pEyLR/mF3/czxbW4Ne4RIWSIpJAITw6m4EQ5tz+w1i/mi3mTCCIeNhmt16dPyyI8KZqCcxWsTp03/HFJklicOIv2gW6qjRbW334bZpOZhfMW+GTLceHqFJWc5nTVaaYvyxwOIXD+552anUhXSxEfffYxSxYsuqpREZVKxTcf/BprV6zm0NEjdHZ3EmIOYfGChWRlTkOSpIANIEP0ej3f+8fv8pff/43tpwpRN8pIgF0PSUvS+eZjX8VkCvJ2mcJ1utreHwqFgrSs+Muey+lwoVRf+m9BrVNhc1lxu2VEDrk8EUQ8ZDL3flGr1dx82y08+/u/oKkrIC82G51ay4DDysnGMlr1g3z/scdYvWLVuM5fVVPN/sMHaWlqxmA0Mj9vHvPmzL3iFvGCZ5RXlONUO0YsG75YTHIU5WXl9PX1XfWtN0mSyEzPIDM9Y8THAz2AXCwyKoInfvJjzpRXUnnmLLIsk5aRyvScLNE/xI95qvFYZEwo9l4XTrsLlWb0ZO7u5l4S4uJQXaLxoXCBeCWZQN7ceG796rXY7Xbeef0tSqp3oEWFDSfG2FDuu+dhVi1fec3nlGWZV998nY/efA9lt5MolZl+l5X9H+4ka/5Mfvj97xNsHt3QS/AsWZYv+8KoUEjInz9uPKZS+PgiSZLIys4kK1ssafd3nu58mrtwGh+/d4Dq/CYyFsSP+Jvsbu7F2uZk8Y2zJvy6gUgEkQngCzvfSpLE1k2bWbl0OSfyT9JjsRASHMz8ufPGvXnZ7n17eP+lN1moT2dWdsbwH1pbfxfbDhzmT4an+MfHfyTeLU6ytJQ0JJuC3u4+TCGjbxc017WRlZBzzRORp3IAEQLHZLVeDzIbuPO+Dbz8t20UflZFZEowKo2SrsZeBlsdLFo0k7ylvr/XlC8QQeQ6+EIA+SKTyTTuWzAXc7vdfPLxJyS5QpgVnU57RzutbW04HQ70Bj15pjSOHc2npq5W7FczyebOziUzcRolR0uZu2omGu2FLQQaa5qxd7i44faNVxUQRfgQAoG39n3JXTgNc4iRgzsLOF1YiVuWiYmJYvEDs1mwYoa4LXOVRBC5Rr4YPjyhrb2NhqpzrAqZxqn8fLrbOtC4VKglJd1yGy4VtOkbOF1aIoLIJFOpVPzgkcf479/+guMfFWKKMaDVaehq7UVl03DHhjuueCtOBBAhEPjCxnOp0+JJnRaP0+HE6XCh1WvEKPE1EkHkKk2VADLE5XKDLFNdU4uidZDkoCj06s+XiSLTNWChp62YkwX53HjDFi9XO/WkJCXz03/7v+w9sJ/DJ47Qbx1gQe4SVi1fxZxZsy/5RCgCiODvLg4f4Dsbz6nUKlRq8ZI6HuK7dhlTLXxcLCoyEo3ZwJmTZ1ltyhkOIQASEi61hKyQqKqoxOVyXVULcGFihYaEcsvWm7hl602XfZwIH0Ig8IXRD8EzxLPSGFSxxuEQojBqplwIgfPD/0kZKZx1tDAgOUYcs7kdHO2rIC4iGkePlcbmJi9VKVxOn7bzQghRKkQIEfxSWff24RCilDQihAQgMSJykak8AjKW+XPy+DDkHXYOlhAzaCZKZWbAZaPG3YEuxMi6jPkctlXidru9XarwOX/eeE4QhojRj6llygcRET4uLTM9g4z0dNKc4TT3tlPZ34VOpWVBzBxyY6ZR1FJBcHQoMVHR3i51yhO3X4TJUFdbT1FBMXa7g+iYKPLm56LT6a78iVfJGwHEZrVjtznQG3VilYuXTNkgIgLIlWWmZzBtTg4NB0q5dcZqDBfNE2m0tFE62MCtG76EVjvWBvLCZBABRJgMVquVZ/76AvsPH2TA2Y9CrcBtlUmISuDrX3+I3LnX17jLGwGkobaVfZ+epPBUBS6XC7M5iEXLZ7FsXe6IrRMEz5Pk8bZfnAQWi4Xg4GCadpRgDrr+XWIvDh8gAsjVaGpu5he//AUtJXWkaiIxa4No7u+gSWEhb+1ivv+dx9BoxPdxMonwIUwmWZZ58vd/Yfu+z0jJiyc6KQJJIWHtt1J+vBq91ci//us/kp6Rdk3n9ebtl4qSOp578n16nb1EpoagNajpaeun51w/WRmpfPX7t2KY5DBiHbBRdLKSqrJ63G438clRzFmUjTlkfA0pva2vd4C1md+kp6cHs3ns7SiGTIkgIkY/rk+PpYc9+/dxcP9B+iy9xCbEsnLlSpYsXCz2m/Ewh8OBw+FAr9fTr+u6cEAEEGGS1NbU8cS//gfRs0OJTo4ccUx2yxz7uJD1C9bznce+cVXn8/b8D6fDyS/+/TnabZ1MX5GCQnFhqfugxUbZ7jq2bFnB5juXT1pNjXVtPP/k+zQ0taAKVqJQSNi6HYSZQ/jSQ5vImZs+abVMlGsJIgH9KiICyMQINgdz85YbuXnLjd4uZcoorzjDxzu2c/jUEeySlfjYONauWcXq9StF+BMmVcGpIgbdA0Qljt5/R1JIxGZEcvTEcb5qvf+S80WO1b6DzWrHFGxEq1N7dQJqWVENTS1tTFuTMCKEAOjNWsJSTBw5UMy6mxaN6Fo8UWRZxuV0oVQpkSQJ64CN5598n2ZLGzkbk9Eazn9vnA4XlcfqeenpbTz2z/cSkxAx4bX4ioB7RhPhQ/B3h44d4ZdP/5I+LESnRWDQGalrqOHJZ8opKS3nO499Q4QRYdJYrTaUGiWSYuwmeVq9BotrEJvNPiqIbDvyDPs/yqc2vwGcoDFryV2dzarN8wgyGyaj/FHaW7qR1GAwjx2aQmJNNJxrp6erj8iY0Am77mC/lSN7izmyr4ju7l50Og3zF81Aq9fQ0NxCzsYUtPoLwUelVpK1OImCjys5uu80N997/Vt3+KqAeTYTAUQIBE32On73wu9wmW3MX3ahQ2psahSdzd3sPriHmbNyWLs+cJ+UBN8SHROFa9CNbdCOVj/6ubWzuZvw0AiCgi48B5d1b6ckv5q3fvMZwZ0aloSnYQjS0tLTzckX8qkqPsfDP77VK2FEo1Hjcsi4XW4UY9zidAw6UCqUqDUT9/LY3zfI337zLmfOVmOK1WPOMGDts/Pxp/vpb7ZiSNSMCCFDJIVEcFwQJYVnRRDxZSKACP7u4smnR/edoNXSSt6KGaPatIfFhKCPbGbHjt2sWbdywvezcDgcFOYX09LcilqjZnbuTKJjoib0GoL/mb8wj+hXo6k4Wc2MpdNG/N71dvXTc66P2++9g4reHcMfd9kltj17gLgeE6unXfhdjjWHkhERwwf5p9jz0Qm23rNi0r+eaTOTMGr0tNZ2E5MWNuKYLMs0ne1kemY6waGjd7Yer8/ePUx5VRXTVyejN19YZRg/PZJPnzqGtd16yc9VqhU4+10TVosv8ssgIsKHEAjGWv3S1NyC2qi85L3p8LhQGs40YLfbJ3TZ9OniUp7+63PUNtYiq9zITpkgrYm1q1bz5fvvFku0L0GWZc6UV1JUcBqHw0FsXAwLFs3DaPTObQdPMBoNPPzQA/zhT3/mxPYi4jKi0ejVdDR20X2ul9TMcJIWnW9qODT3o7jgDP11vWxKnD8qMAdp9WSbYinYXcb6Wxah1U3uc3hEdCgLlsxk955jKJQSkYkhSAoJh81JTWEzaquaVZvmTVjQH+i3cuxwCVEZISNCCJy//ZKQE0XFqTq6O/sICRsdfrqb+lgw8/qWR/s6vwoiIoAIgeByy2/VGjUuhxtZlsd8InTYHCiVygmdI1JTXcv//u/v6FX2kLMuHWOwAbfLTWNVC+9t/wCXy8XXH3lowq4XKCyWXp763dOUHT6Nrl9Cq1DRzSBvJ77N/d++j/kL87xd4oRZtGQ+JnMQn3z8GfkFBbjcLpTGQdbfmMuydbMxGkeuauxs60HvVhOk1Y95vhhTCMWWJnp7+ic9iADcfO8qXC43x48U01DUjkqrxNnvIjQ4mLseXEPWrJQJu1Z7Szf9AwNEx8WOeTx9fhxnDtdy9lg9eRuzRvzdN5S3obSpWLBixoTV44v8IoioYgyoTBf2fhEEf3O1vT9mzsrhzXc1dLdZCI0KHnFMdsu0VHewacmmCd1k8KMPP6XT3s78zbNRKBTIMrhcLmJSI1EoFezat4cbtmwkITFuwq7p72RZ5i+//xsVnxWyIX4O8UmRSJLEgN3Kwdoinv6fpwn5zxAyMq+tt4Yvy5mRjSK+jpV9iTjtLszBwZfsRKrVabDLTpxuFyrF6Mf0221IKoVXQgiARqvmnq9tZOXGPMoKq7FZ7YRFBjMjLx1j0NjhabxUqvPLcZ32sW+vaHVqImJCcXdB/seVhCWYUCgVdDf2orApueHG5WTmJE1oTb7GL4KIwjA1N54T/N+1Nh+bnpPFnJm5HD14hGmLUwmNDkaSJGyDdsqPnSVYFcKGTWsmrD6r1crRE8eJzYhCQqKhvpGGhib6+/uQJImQkBA6e/rIP1kggshFzpRXUnqomA3xc0gIuTCPxqDRsTZjHm+V7uXTj3YGTBC5uPeH2RR8mUeC2+0mLNKMVeukvLmRGXGJI47LskxpRwMpaxIwBXu3WVdsYgSxiZ5dFhuTEE5sbBTNZ9sJjhz99bZUdxEXH8UDj9xIaWE1JQVncbll8mbMZNGKmWTOSJrw+WC+xi+CiCD4m/F2P1UoFHz30W8g/UEi/0g+lcpaFGoFrj4X0WGxfPO7D5OWnjphddqsNpxOB1q9gdKScuqbG1DpFOjCdMhuN209bbS0dXPi2CluvGXzhF3X3xUVnEbbD/FJkaOOKSQFWaGJFBzKx/4tu992Hr7WxmOyLHPyYCl7tp+gsbGVxp52mppaaWvpYvGMbHQaDX22QY6dO4sl3MlNmwPn1tXlKBQKVm7I45Vnt3HudAtx2ZEolQpkWabjXA8tZV2sX7eY6blpTM9N4/b713m75EkngoggTJCJar0eHBLMP//L45SVnqGo4DQul8tjkyCNQUZCgkOoqaij292JKcqI3nhhQp1Gp6XJ2cnR4ydoa20nMmpymirV1Z5j/95DnK2uRqvWMDt3FkuXL8Jsvv6tHiaCw+FAJ6ku+U5Vr9Yiu9w4nS78LYeMt/Pp7m3Hee+t3WjClcTNDydhUQRFO6r46HQ+xzurSIqPxqpyYkwycceDG0nPTvBE+T5pwfIZ9PUMsP3DgxRWnUVlVOKyutHIapYtncuWuyZ/9ZAvEUFE8BktrS1UnK1ElmXSU9OJix17cpev8cTeL5IkMT0ni+k5WRNyvktRqVSsWbWK//rVfxM0XTMihMiyTHtFF6GhIUhGOHTgCDffttWj9QB8+slOnn/pZfqcFoIiDTgdTg6ePMRHH33CDx9/lJTUZI/XcCWxcTF0S1YG7FYMmtGNsc51txAxPQq93n82T7ue1uvtrd18/MEBQtIMJM64sBv3sntm0dHQQ+FHVQQvjmDrhrlMz031SMdSXyZJEmtvXEjuoiwKj56hp6sPnUHLzLx04pOjAv7Wy5WIICJ4XV9fH8+++DzH9h3G1tWPjIw2xMjcJfN5+IEHCQkO8XaJowTSxnMbN6/j5z//FZ2lvahcKowRepw2F13nepF7JfJWzqK9sYumphaP13K6uJRnXngBQ4KanNm5w9087TYHhbtL+c2v/8hPf/aTCd16fjwWLJrH24lvc7C2iHUZI5eoNls6qHF1cPemG3z+BWai9n0pPHqGAfsgmdmj5xGFxwcTPyuCQauV3IXTxn2NQBAeGcyarQu8XYbPEUFE8CqHw8H//vY3VOwrYFFENpnTkpCAs50NHPrwAL/s6ODf/vlfvP7CMySQAsiQoCAjc+bO5mxLJbYWGy11XUiSgojocDKXphKdHElLTTtarefuMciyTGVFFX/87VM0WxqZnzgbLnoR12jVzFw+jcKPz3D86EmWr1zqsVquhtFo4P5v38fT//M0b5TuJis0EYNax7nuFmpcHczaOI8161Z6tcbLmeiN57o7e1EFKcfsVApgjjTSWdmD0+m65EobYeoSQUTwqmOnTlB6pICbkxYTZbywr8O0iCQijSG8cXwfh44eZs3K1d4rksAMIBdbuWI5LR81s/zWBditTlRqJTqjFkmSsHT2IQ0omZ070yPX7mjv5M9/epqC04UUFhQTlK7l5Kl8QoJDyMnJwvD5vBidUYciCCrOVHk9iMD5jqMh/xnCZx/vpPBQAW6ni4jpUdy96QbWrFuJWu1btx8uDh8wsTvf6g1aXIOX7n9j7bOh02tRBuDfjnD9RBARvOrIkSNEOA0jQsiQUL2ZOEI4ePCgV4JIoIePi61Zt5I9+/Zx+mAF0xdloA/SIcsyXa09lB+qYk72XGbPmfggYrVa+d9f/Y7immIyFiRT33YOQ4yGoCg9nW0dFBYWkzdvLhrN5y/qPnanIyMzjYzMNBzfcuBwONHrdT53O2aiRz/GkjM3nc8+OUxno4Xw+JHLe50OF111fWzetMLnvjeCbxBBRPCqnq5ugtWX7iUQqguip6tnEiuaWgFkSGxcDD/84WP86cm/ULT9DAq9hNvlRu3SsCBnAd/5rmd2/D1+9CQlFaXM3pCNwawnMi6CluZmwpODCY8PpaOui5bmVhKT4rEN2nH1yqSlp0x4HddLrVb79AiIpwLIkKS0GPLmTefQkULsg06iUkNRKCQs7QPU5jcTFRLO4tWB3aZcGD8RRASvioiK5LS98pLH2wZ7SIjxzC2Bi40IHzBlAsjFsqdP42e/+E9OHMvn3Ll6VEoV02ecX7njqXeyJ47now5RYDCf72aZkpNI0yfNdFR3E5YSjEqvpLW1ldjYGE4fOENCdAILFs3zSC2BYDLDx8UkSeLOhzag02s5eriY5tOdoJBQS0rSU5K444H1hEVevhGaMHWJICJ41bKlyzi4fS81XU2khI5crttoaaNV1c89y5Z57PpTcfTjcrRaLUuXLwIWTcr1+vr60BguvGBGJ0eQMy+LkpNn6GnoR9LK9Dps2OsKiQ+P57HHvo3BMLEtuAOBtwLIxbQ6DXc8uJ41WxZQWXYOl9NNVGwYaVnx4paMcFkiiAhelTtzFos3LOezD/Ywo7edaRFJKCSJio5zFPXVkLdxCQvz5k/4dUUA8Q3x8XEcLDpIxZmz9Pb2opAUhEWGsWTTPJqqWik/cZaEyCi+du9DLFuxhPCIsCufdArxhQDyRWGRwSz04OiH0+lCqVSIcBNARBARvEqhUPDtrz9CbGwsOz/5jNMthwEZU0QIW+68kztvuW3C5iaI8OF7JEmipvQcbY4WQhNNuN0yLR2tBOmNxMXEMy0jkyd+/GPmzsv1dqk+Y6LCR1/vAGeK67BZ7YRHBpM+PdFnV7U4HU6OHyjl8N5CWps7UKvV5M6fxtI1ucQkTE63X8FzRBARvE6tVnPXrXdw0w1bqamrBSApIRGDYWLamYsA4ptKS8r5ZMenxKZG0dPdw4DaRnBcEBqjTH1ZM7VtzXzr4W+QO1dMcoSJCyBut5tP3z3M3h0n6enrRVJKKGUFCfHR3PbltaRPT7zySSaR0+HkxT9t4+SpUvQRaoLTjTisTnbvO0r+sTIe/PbNPlezcG1EEBF8hk6nI3vaxLU0FwHEt+3asRebysrae5dRV9ZIVXEt7UUWZCBYH4rbJDN9xnQUiqn7s/NE749P3jrIRx/uJzzDxKzMVNQaFX1dg9QUNPPMH9/jkcfvIDE15rqvM1EO7SrkxKkS0pbEjti9Nj47ktIDtfz92U/40f95cMq1jQ8kIogIAWW84UOWZZoam7HZbIRHhPvM5mqBSpZl8gsLiUwKRaFQkJKTQHJ2PAN9gyCD3qTj5GfFVJ2tZs26qbchmKfmfnR39LJ35wkisoJJyL6wc3BQqJ6clSkUfXqWvZ+c4Cvf8vyeQlfD7XZzaE8BQbG6ESEEQKFUkJ4XT9mOOkryq5izyLP7MgmeI4KIEBCuZ/Tj5PF83ntvG2fOVuB0OQnSG1m6ZAm333EzYeGjG60JE0SWR7RxlxQSRvPI23Gy2z3ZVXmVpyeflhZU0Ts4QFrG6A0lFQqJ6IxQigoq6esdIMg0sTs9j0d/7yAd7T1EzBr7jYEuSINCJ9HS2DHJlQmXs6P0Taz9jqt+vAgigt+aiN4f+/ce5Mmn/oLTYCcxLxatQUtXSzcf7PqAM2cqeOJf/oHQMBFGJpokScyckcPegr2k5IzeDv588zI36ZlpXqhuck3mypfBARtKjYRSNfbfii5IS5erH+ug3SeCiEqlRFJIOB2uMY/Lsozb6fZIsz3h2uwofXP4/xtVYShU9qv+3Kl781XwW33azgshRKm48N81GhgY5MWXXkUZLjNnTQ4R8WGYQo0kZcczd+MMztSX8+H7n0xw9cKQNetWo7ZrqSqqQ5bl4Y87HS5OHzxDQlQiCxdP/NJtX1HWvX04hCglzaQsvw0JM+G2ydgHx3632tsxgF6vw2T2fggB0Bt1TMtKprW6e8TvyJDu5j7UqMnIEZNVvWVH6ZvDIcSoCsOouvYl9iJGCn5joiefnjx+ipauFuZsnj6qJ4FWryEqPZy9+/dz5z23+szuv4Fk1uwc7r/3y7z091c5VltIcEwQToeL3uYBYkNjefSxb2E0+sYL4kTyZu+PnDlpRISFUlPYTObChBG/93arg/aqHtavXYJW5xs9SQCWb5hL6W+rqDrZSMrsGJRqJbIsY2kfoOZ4M3NnTScpzXcm104FXxz9uF4iiAg+zZMrXzraO1FoJLT6sZ90QyLN1Ne2YenpFUHEQ7bctIlp2Zns23OAispK1Ho1eavmsHzl0oBqXuYrjcd0Bi033bmKV577iJJ9NcRmhKM1auhp6aOloovE6FhW3eBbLfSnzUjm7vs38c6ruyj4qAqNSYnT5kbpUDJ7RhZ3f22jaG42SSY6gAwRQUTwSZOx9NZgNOC2u3E5XShVylHHB3oHUSvV6EVLcY8a2sE2EPlKALlY3tLp6Axadn10jJr8BlxuFzqtllXLFrD+pkWEhPneirEFy2eQNTOFgqPltLd0o9aoyJ6dSlpW/JRe3j1ZPBVAhoggIviUyez9MTcvl+CXQ6ivaCZ5evyIY263m8aKVtbOX4vJFOTROoTA4ovh44ty5qQxPTeV9pZubFY7IeEmn5icejnmECMrNuZ5u4wpw9Ph42IiiAhe563GYxGR4WzetIm/v/06LqeLxGmxqLVqLJ19VJ6qIUwdztYbN01aPYJ/84cAcjFJkoiMESvChJEmM4AMEUFE8Bpf6Hx65z23olQp2fbxJ5woP42klFChIi0pjQcfuo/UtBSv1CX4D38LIMLEsNsclORXca6qGUmSSEqPIWdOGiq1/72sXhw+YPICyBD/+44Jfs0XwsfFlEold959Kxs2raW4qATroJWoqEhyZmajVI6eNyIIIMLHVFdf08KLf/6QxuZWFIbzE2Xdn8gkxsdw3yM3EpvoHxvxeWP0YywiiAiTwtcCyBcFB5tZtnyxt8sIeHW159i35+D5FTJqDXNyZ7FsxWJCQkO8XdpVEQFEsHT388zv36PD1kn2uiR0Qed/DwYtNiqO1PPs79/le//+ZYxBvjvJ3VcCyBARRASP8vUAIkyez7bv4rkXXqTP1Ysp2ojL4eLYi0fZ9tEnfP8H32VaVoa3SxyTJzaeE/zXyUOltHS0MXtzOirNhVFTvVlL9ookTn9SQ8GRMyxdl+vFKkfztfBxMRFEhAknwofwRaUl5Tzz/PPoE9Tk5OYO931wOpwU7i7ld799kv/++f/1qQZmYvRDGEvxqUqConUjQsgQjU6NLkJDSUGVzwQRXw4gQ0QQESaMCCDCpezeuQ+rcpCZuRkjmk+p1CpmLM8i/6NSjh4+zpp1K71Y5XkigAiX43A4UGkv/dKp0iixO65+wzdP8YcAMkQEEeG6TMTGc0LgKywuIiIxZMwOmFq9BpVZQeWZs14LIiJ8CFcrITGammMNyLI86vdZlmX62waJz4n0Sm3+FD4u5rEg8l//9V98+OGH5Ofno9Fo6O7u9tSlBC8Qox/CtZDdMlyhDfcYe5p5nK8HEOugncLjZygrrMZqtROXEMncxdnEJ0d5u7Qpa96yGRw5VERTRQdx00aujqkvbUMn6Zi3LGdSa/LXADLEY0HEbrdz1113sWTJEp5++mlPXUaYZOMJILIs09vbhyzLmM0msS+El7jdbkpOl9FQ34RKpSRnRjaxcZOzWdjsWbPYcXwHKTkJo37+tkE7zh43GdMmr827rwcQgPaWLp79w/vU1DWgDVOh1igpLj/D3p0n2HzzclZvmS/+lrwgdVocG7cu5eMP9tPV2Et4ohlZho5zFqQBiZtuX01CSrTH6/B274+J5LEg8pOf/ASAZ5991lOXECbJeEc/ZFnm4IEj7PhwFw0VdQDEZyay5oZVLF+5VDyJTqLamjqe+vPfqKiuxCk5cLtkgrQmVixZxv0P3YvBw/vprF67gv1HDlJVWEva7OSLJqu6OH3gDPGR8SxassCjNfhD+Bjicrl56c/bqGtpYMaGZLTG8/XKskx9aRvvv72HyNhQZub55kqjQCZJEhtuWUxcUiSHdhdSXVkPwMxpmSxePZucOZ4N1P4++jEWn5ojYrPZsNlsw/+2WCxerEa4ntsvsizz+qtv88kLHxLvNLMs7PwT5tkT9TxX8DfO1TVw7313iTAyCVpb2vjFL35Nc38jmctTCI4w43a5aa5t46PdHzEwOMAPHv+uR38WOTOyeei++3j+pZc5WptPcKwJp8NFX/MAceHxPPa9b0/Yipn6c43s23OA0yUlAISluJm3bDrR8WE+H0CGVJbUUV3TQMby+OEQAudfBBNzouhprebAzgJmzE0Xf0NeIEkSM/MymJmXgdPhBPB4R9VADCBDfCqI/PSnPx0eSRG8ZyLmf5wpr+TTVz9mkSGDGTGpwx9Pj4inrLWWXa9/ypy82eTMyL7ecoUr2PnZHuo7zjF/66zhJ0uFUkFcWjQanZojx45SXraR7OnTPFrHxhvWkTktnf17DnGmsgK1Sc3ctbksW7GEsPCJ2fPk8MFj/Pmpv9LYX4U55nywsXw6wKG9Rdzz4A3kLvTs1zhRaiobkTVugsLGDmeRycFUn6nHNmhHZ9BOcnXCxTwZQAI5fFzsmr6D//zP/8zPfvazyz6mtLSU7Ozxvbg88cQTPP7448P/tlgsJCYmjutcwrWZ6MmnB/YewtArkTM9ZdSxrMgkikqr2b/noAgiHibLMvsPHCQ8OWTMJ8zw2FCqlOc4daLA40EEIDUtxWP79zQ2NPHLP/w/5GAXc1ZloFCc7/Mgu2UqjtXz9+c+JjYxgqhY339Cl90ykuLSIx3nj8nI3pjhK3jcVAkgQ64piPzDP/wDDz300GUfk5Y2/vtjWq0WrVak+8nkqdUvjdUNxOhCxxw2liSJOH0YjdWNE3Y9YWyyLNM/0I8xVjfmcUmSUOoUDA5aJ7myiVXWvZ1PPj5Er72fOQsyUVz0Ii4pJDIWJFCwrZITB0rYfOfySavL0t3PyUOllBRWYbc5SEyOZt7SHFIy4y77efEp0bgHZQYsVgzm0T+7jvoekhISpsxoiM1qp7m+HYCYhAi0Ov+4xXatploAGXJNQSQyMpLISO+sjxYmzmT0/tAZ9VgcrZc8Pui0oTNOnT80b1EoFMTGxFDXWkNCZuyo426XG0evk4gI//tZfHHyaXVFE6Zow4gQMkShkAiK1nP2TP2k1Vdf08Izv3+Plo42jNE6VGolVQfrOHygkM03L2fN1gWXnN8xfXYKCXExVB5tIGdlyogunq01Xdg73Cy9dXbAzw9x2J3s2naMQ3sL6O45P2cwJNjMkpW5rNmyALXGp2YXjMtUDR8X89hPsa6ujs7OTurq6nC5XOTn5wOQkZFBUFCQpy4rXMZk9v6Yu2gOL+/Op882SJB25IqMAbuVOmcH9yze4tEahPNWr17Jn/5WhqWzD3PYyL+96tPnMGtDWLx0oZequ3aXW/0iuy9zq2ISb2PYbQ5e+NOHdNg6R+xJIssyDeXtfPjOXmISIi65wkKlVvGVb27hmd+/S9HHVQTF6FDrVPS2DiBZlaxbv5C8pdMn7evxBrfbzWt/+4TDRwoJTQ0iLff8KFJ7bTfvvbublqZOvvzNzSj9tI+RCCAXeCyI/Md//AfPPffc8L/nzp0LwK5du1i9erWnLiuMwRvNxxYvXciOGTv5sPAwa5LnEBV0fjJiW183u2tPETkjgSXLFk1KLVPdqjXLOXkin8N7jhCRGkJkQhgOu5PGihZc3fDAvV8hKtr3RzqvtPw2c3oyZe9X0dsxQGtNF4O9NlQaJVEpoQRHGelrGSRzQdKk1Fp88iyNza1M35A0YjRDkiQSsiPpburj8O7Cyy71jE+O4rF/uZeTB0spPFmBzWYna2Ya85fNYNrM5IAfDSkrqObY0dOkLoohJMY0/HHj7BiCo4M4ceQ08xZnkzM33YtVXhsRPsbmsSDy7LPPih4iXjTe8FF/rpHjR0/S399PSEgwCxfPJzIq4sqf+AVGo4HH/uk7PPWbv/JB0XEM584/GQ9oXcTPT+GR738Nk0mMjE0GrVbL9x//DunvprFrzx6q65pQSArSkjPY/JVNLPXhQHgtvT/mLsnmjec+5bPnjqEL06AxKXFZZWpKm1C4FaQmxTNvWQ42q526qmZcThdRsWGERQZPeN3nqptRBUnojGPXHJ5govJMHS6X+7Lv6INDg1izdQFrtnq2x4ovOnmkDMnIiBAyJCQ6iHPGVk4eKfOLICICyOX5/w02YYTxBhCn08lLz/+dAx/sRdntxKjQYXEP8n7Ee2z+0hZuvm3rNb8Di42L4d9/+i+cLiqlsqIKWZZJz0hlVu4MFAr/HE71V3q9nru+dBs33bqZ9rZOVCol0TFRPvuuejzNx86dbQY1mBP1aCPUqI2q85N1W630nrUSHR1O0bEK9u44SWd3D7LbjV6nY/acaWy9ewUhYaNf8MZLQuKKN4J881vvMzraezCEXHoyriFES0db9+QVNA4igFwdEUQCxPXefnnnzffZ+8pnLA3NZtr0RBSSAqfbRWFjJe/99W1MZhNr16+65vMqFApm5c5gVu6Ma/5cYeLpdDoSEi+/YsNbLg4fcG3dT91uN3s/PUlIipG5eRm0t3Rj6ekHIGF2DGTCqf1llJVXE5kVwrS8eFRqJZ2NFg6fKKC5sYNHfnwHQaaJaaqWmBaN+1MZa58dXdDor6PjnIVZWVl+O79hMphMRs51NlzyuK3fjinC90ZVRfi4diKI+LGJmvthsfSy+/3d5BpTyI5KHv64SqEkLyGLnsp+tr+znZWrl6FSiV8ZYWJNROv1jtYe6htaiM0LQ6vTEJ8cRfxFx/ssA3T0dJORkkDqnAurh6JTwwiJDqLks1qO7ilm7Y0TM2l3xtx0EuKiOXP4HNNXJKP+fNv4oRbt0qCCJatnT8i1AtWchVmcOlVKf48VY/DIJcz9PVZsnS7m3JXlpepGEwFk/MSrih+a6MmnZSVn6G/uYUZ63pjHZ8Sk8mHNCWpr6kjPmLyNyYTANpF7v7icLmTZjUqtHPN4V4cFWZIJjhr9Dlpr0GCON3B0/8QFEY1WzVe+uZXn/vgeRR9XY4jQoNIo6WsbRCfpuOn21WTPTr3yiTzE6XRxpqiG2rNNyDIkpESRMyfN423Kr8XMvHRystM4vbeShFmRRCSen8vTfq6HhuJ2pmelMTPPu/NDAmnjOW/ynd864bI8ufLF4XQgu91oVWO/GOhUGmSXjN3umNDrClOPpzaeC40wYzYF0dlgwRQ++vaKpX0A3Ix5DMAYosNytu+Kk0evRXxyFN/7ty9z6lA5pUVVOOwO4qdHM395zqTsznoprU2dvPTnbdTUNiB9vrLePSiTEBfNV765lfjkKK/VdjGNVs39372Rd1/aTeGpM5w71YYkgVFrYPH8XG75ymo0WrVXahOjHxNLBBEfNxlLb+PiYlCbdNT3tJIYMvoJsq67BY1ZR2ys9548Bf/m6Z1vtToNi5bP5sMP9hCeGExQ6IXeNU6Hi44qCypJRUj02HMKBnqsBJmCJnzORpDJwIqNc1mxce6Enne8BvutPPv792jobCZjVTzGkPPfp0GLjYpj9Tzz+3f53r9+GXOI0cuVnhdkMvCVb21hU8sS6qpaAEhKiyYiemL2JrpWIoB4hggiPmoye3+kpCaTNieTw/tKiAoKQ6u68C6jzzZAfvtZ5t69jJDQEI/WIQSW65l8Oh6rN8+nrrqJon0VGKI0mMMNWPsddJ/rIy40GpPSSNu5bqJTR76A2Acd9NQPsPrWxR6tzxcUHq/gXGMTORuS0Rou/Dz0Zi05K1Io+riKEwdLWLPFt5YLR0SHivARwEQQ8SHeaDwG55ss3f/1r/Drlt/yevlusswJhOiCaOvvpmKgiej5ydx97+2TVo/g3zw9+nEpOr2Ghx69meP7Szi6v4jWmi4MBh1bt+SxYOUM9n58kp07j2LttROTHoZKo6Sj0ULD6XaSE+JZtGrmpNXqLaWF1WjD1CNCyBCVRokxWkfRyUqfCyLeIALI5BFBxAd4K4BcLCExjn/6Pz/is+27OLzjELb+NozxJjZvuI11G1djNk9cjwUhMHkrgFxMo1WzdF0uS9flIsvyiD4pN927iiCzgf27TlFaXYcsy+i1OubPnsnNX1qFKfjKtyPcbjdulxulSumzPVguxzpoG9Hp9YvUWhV2m30SK/I9IoBMPhFEvGQyNp67VpFREdx7313c8+U7sFpt6HRa0XhMuCxfCB+X8sWgoFIp2XDLYlZsmEtNZSNOp4vouHAiY6485N9Q28qhXYUUnCjH6XIRHR3OopWzWLA8x6dWmlxJXGIUJZWVo0LakN62AXLmZHqhMu8S4cO7/OcvKED4wujHlSgUCgwG/ZUfKExZvhxArkRn0F7T0tnyohqe//P79Dr7iUg2Y9DpaGpu4ZUX6qksrePeb9zgN2Fk3tLp7N99kvrSNhJzRq6Oaa7qRGlXMn9Zjpeqm3wigPgG//jrCQD+EEAE4Ur8OYCMh3XQzmvPbseus5G7NB1JcX4UITo1jJ7WPo4dLiZtWgLL1s/xbqFXKT45is23LOeDt/dQ3FpNZFIwSBId9T04u91s2LiEjOmJ3i7To0TvD98jgogHifAhBIKpFj4udvpkJa0dHeRsTB4OIUOCo4IwRGs5tLeQpety/WbOyOrN84mODePArgKqKuqRkUlPTmLxXbOZsyjLb76OayVGP3yXCCIeIAKIEAimcgAZ0tLYicqoGHOVCUBYrIm20k4GB2wYjLoxH+NrJEkiZ246OXPTsVntyDJodWoRQASvEUFkAokAIvi7ye794etUaiUuh3zJyZ0OuwuFpPDbzeu0usD8+Yrw4V9EELlOInwIgUCMfowtMycJ1Qcqelr6CIkZuYRdlmXaqruZN3NGwL6g+xsRQPyTCCLjJAKIEAhEALm8lMw4cnLSKTheRtoiBeYIA5Ik4bA7qclvRuvSsnTtHG+XOeWJAOLfRBC5Br7Y+0MQrpUIH1dPkiS+9I1NuJ9yU3q4CrfahUKtwNHnItRk5vaH1pGeneDtMqckET4ChwgiV0GMfgiBQASQ8QkyGfj6D2+jqryB8qIaHA4nkdGh5C6cRpB57N18r5Xb7cZhd6LRBu6k0YkiAkjgEUHkMkQAEQKBCCDXT6FQkDE9ccJ7bHS29XBoZyHHDp/GZrVhMhlZuHwWi9fMIsg0MSHHl9ltDkryq2ht6kSlUjJtZjLxyVGjwpjo/RHYRBD5AhE+hEAgwofva2no4OnfvE1TZxthSSaCzQb6Ovt5952dFJ2q4Os/uO2q9r/xVxUldbz2zHZa2ttR6CTcThnNu2pmzs7k7q9uxGDUidGPKUIEkc+JACIEAhFA/IMsy7z14k5aetuZuTEVteb8U3FUSijWLDulu2r55O1D3PnQei9X6hmNdW089+T7WNWDZK9LQhekQZZluhp7OXGymIr/V8Sar5xvriYCSOCb8kFEBBDB3010+Ghp6ODI3mKK8ytwOFwkp8aycMVMpuemivkLE6ShtpXKyjqS8qKHQ8gQnVFDdFYoJ4+WsOm2JQE5KnJwZwEWu4XZazJQfN6xtrGnBoygz3LRlD9IX4OSmJQQr9YpTI4pGURE+BACgSdGP8qLanjhqQ/psVoITQhCqVZScKaMwoJy1m5YxNa7V4gwMgFaGjqw2W2ExASNeTws1kx7aT3tLd0BF0RcLjf5J8qJSAlGoZBo6K4ePqZSaAmJ1tCmGuDcmXYRRKaIKRVERAARAoGnbr/09w3yyt8+xqYbJPeid6qJOVG0VHWyY/sRkjPimDUvY8KuOVWdHwWRcDpco0ZEABw2JwqFAqVKOfnFeZjL6aKpq46QKANSdz9wPoAMkSQJpUaB0+H2VonCJAv4ICLChxAIJmPuR+GxCjq6u5h5Q+pwCBkSnRZGW10PR/cWXTaIOOxOTh0p4/iB07S1dBFkMpC3aDrzl+cE3Dv765GWnUCwyURzZSeJOVGjjjdVdhAd/f9v7+5jm7rvPY5/zrFjx3Zi58lxnhNCIClPoUDICB0kG2tZ127c3XFX7VaDquL2VoBu10pX3O5KaJqmahrSJlHGiibRbbpdu92NduvW6dLw2BVoCU0hQDJSAglOYhJC7MQkdmKf+wdNmpQk5Mn5Hf/8eUlIIbbJtzoNfvPLOb+Tiqw8p4DpIqf68h+gaRoSk+PR1xlCWr75nueEBsIY6A3BnmIRMCGJIG2IMEBIBnN58mlrcweMdgPizGP/tZCSlYimT9zj3ncl0B/Eb37+F5y/0ABzmhGJ6Vbc6u3CH//wLj74ex2e/o9NSHMlR/S/IVokJFqxtnI53vnLSZgsRqTnJ0NRFYRCYbQ2dKLfM4D1310FoyQrIiOvfkmIS8XSVYU4+bfL8HcFYEv5LEY0TUPbxduwxptRuNQlYlQSQLoQYYBQtBN14zmDQYUW0sZ9PDQYhqqO/z119K9nUXuhHgseykZi6md7YAT7B3Dp2HX8/tV38e//+S2eY/KphzetQf+dAE699zFaL96C0WrAYG8IVrMFj21aj/L1S0SPOCMTXXpbXJaNG590oemMB7ZMM+wZFgwGw7h9rRdKv4p1X18ES0JsXfWlaRo6WnzobPUBigJXngMpGQkx8f0iRYgwPkgGoi+9nbcwG0eqNfT1BGBJHL1krmkaulp8qFj14LirIWfeO4/UeYmjIgQATPFxyF/uQmPNdTRfbUf+/MyI/ndEC6PRgG9+98tYU1WKunONuOPvhz3JhmVlC5HqdIgeb9oms/eHMc6AL317KS6fTkL9OTc6z/dCUYC8eU4sXpOH7KLYumTX19WHk4cuobW5CyGEoWka4lQjcuen4YubHoA18d4fYckkqkOEAUIyEB0gQxYtL0Rebhb+8X4Litfe3dsBuHuVQ9O5VsRr8fhC5bIxX9vp6YbX14uCJfee7wAASa4ENIXa0dbSyRD5nMzcNGTmpokeY8amuvlYnMmAZesKsGRtHvrvDMBgUGG2xkVyRF3qvxPE4f+pRafXh8wVyUhwxgMa4PP0oem8B4HfDuDRp1bAGCfHj+nGEnUhwhvPkQz0Eh8jxZmM+O6zj+HX+99GfXUzDIkqDEYF/d2DsFsS8O0tXxk3IlRVhaIAoXF+tKOFNUADVIP8y8yxZDZ2PlUNqvT/4p/IJx97cPOmF4VVLpgsn74lK4Aj0wqzzYjr73Xi+uUOzF+WIXbQCIqaEOHqB8lAjwEyUnpmCna++AQufnQVVy5ex+BgCFm5TiwvL0Zymn3812WlwJWeCs/VLjic914d09Hshc1kQeHC7EiOT3OEW6/Pnqt1HljTTZ9FyAjxdhPiHAZcu8QQEa7XfBt2JDJAKGrpPUBGMsebsGJNCVasKZn0awwGFV/csBKv/+YdtF3pREZR6vC5JN4OP9wXOvDQmhW8aiaKTfXGc5qmIdA3AC0MxNt4V+Hx9PcFEWcb/604zmJAoG9gDieae1ERIjCojBCKOtEUH7PhC5VL0dXhxbF3P0T7P27DbI/DQN8g1ICKB5c+gG98p1L0iEL03wmguakdWliDKzsVSSmJokeakqmufmiahqa6m7h0pgU3W70AgJS0BDywOgcLVmTds0dNrEtKtaG5tWPMxzRNQ3/3ABy5ct+JOTpChCiKxFqADFEUBY9ufgjLy4tRe6YBXZ1eWG0WLFkxHwsW50146a+MBgdDqP7zGbx//GN0e33QoMFmseLBlSV49F8eQkKivt9cpvvjl4+PX8MHRxthdKhIKrFCMSjodvtx9K06dLp7UPH1Yq6OjFC0PBNX69vh8/TB7hq9iVv3DT+UoCL1j2UAhgjRrBC194feKIqC7Px0ZOePffVMrNA0DX/8VTVOnqxByvxEFK/KhWpUcOuGDyfePwtPexe2fe+fEG/V10maMz33o7PVh5rjV+GYb0H6gs8uQU7KsqH7hh8Xa5qRW5yKvBK5doydifySNCxcmo2GmhvoybEgKdsKLQzcbunFnfYgSssL4MqP3su5J4MhQjQDsbr6QRO7dqUVZ06fR+4KJ9LykoY/n1mUiqT0BNQfbcK5U/Wo+HKpuCFHmK2TTz+pbcegMghn0b2hkZRjw62rvbjyURtDZATVoGLdNxchNSMBl87eQNvZbigAHMk2rPpaEUpW50i/gsQQIZoGBghN5PzZKxgwDCI1995/yVrsZlhdZpw9dVF4iMz21S+3O/yITzGN+8ZpTTPhlqd3xl9HNgajimXrCrC4Ig++W3cARYEj1QI1Rs6NZIgQTRLjgybL190Lc4Jx3DdkmyMetzt8czzVXZG89DbObMRgZ2jcxwcDYVhM8m7MNVMGo4pkV4LoMeYcQ4ToPhggcrnd6cPZ9y7hQu0VBAIDyMlzoWztIhQvLZi1JfBEuw2B3sFxbxB4xxtAZtLcnkczF3t/5BWn4crFVgT8AzDbRu+SGhoIw+8JoPRLBRH52hS9GCJE42CAyOf6J2341b4/ocN7C4mZNsRZDTh36SI+qrmMqg1leOzb62YlRpauWoATx2rQ1epDavboH8/09QbQ6+nHqn9dPOOvcz9T3fvj83q7+9FY24aWK7cQDoeRnuPAwhVZSM0c+xLkgkVOpL/vwPVTnchekTJ8Z91+XxA3PupCst2Goge5xT+NxhAhGoHxIa9gYACvHfgrukNeLNs4H4YR9+7wNHWh+vAHyClw4cEvTH4jt/EUFmejrHwJ/v7+R7jjDcA1LxmqUcWtFi/cl25hQWH+lDaMm6rZWP1oa7qN6jfOo6evD9Z0M1SDgraa27hccwNrHinGA+U597wmzmzEV75TiqO/q0PrmS5ocYCiAuF+Dc50Oyr/eQlsdn1dKUTiMUSIwACJBRc/+gStng488JW8URECAK55Kbh1w4fTxy9gefnM97lQFAWbt26AIykBp05+jEtXrkPTNFjjLagoW47Hn1gHiy1+Rl9jLLP145c+fxBHf38BgbgBLFibCYPx7kmTmqah7VI33v9bA1IyEuDKT7rntYnJFjy2bRXart6Gp7kbWlhDWrYdOQtSh/8copEYIhSzGB+xxX39Jgw2BfG2sY91ao4dzf9oQzAwAHP8zP9/MMYZ8ejmh7D+qytxvbENWlhDZm4aUpyzuydEJM79aLrggbfnDoo2ZIyKB0VRkLkoCY2edtSfdY8ZIgCgqgqyi1KQXcT70ND9MUQo5jBAYpOiKMDYNwcGAIRDGhQFs74DrC3BgkXLC2f1zwQie/Kpp9kLU5IRxjGucFEUBYlZFribusZ4JdHUMUQoZjBAYtu8BVnQ3gH83X2wJVnuebyz2YtlJcWIM+n3r8WZnnxKpEf6/Y4jmgWMDxqycGkBCgqy0XjmBkoeyoP50x/RaGENzXUeGPoMqKjSx06nnzcXl96O5MpzoP7CDQwGQ/esimiahp7WPpSUZEd8DooNDBGSEgOEPs9oNODJZ76GX/38z7h0+DpMyUYY4lT0dQVhNVrwjc1fQvHSAtFjjjLXATKkcJkLtSevofnDTuSXOz87WTV892RVw6ABxasYIjQ7GCIkDd54ju7HmZGMHf/1BOpqGlF/oQmBwACyVqdhxZoH4MpOFT0eAHHxMVK81YSqby3Bkd+dx5V322F1mqAaFPhvBmBSjKj4avG4J6oSAcCxsx9O+rmKpmkTnL4lls/ng8PhwHXPZdjtY2+gQ8TVD5KBHgLk8/zefjTWtqOl8RbCobsbmi14MHPcDc2I3j1zGgAw0B/CO/9dD6/XC7vdPuFruCJCUYsBQjLQY4AMsTniUbq+AKXrC0SPQjo2FB9D0hMKEDQMAKif1OsZIhRVGB8kAz3HB9FkjQyQ9ISCaf85DBGKCgwQkgEDhGQwWwEyhCFCusYAoWjHvT9IBrMdHyMxREh3GB8kA65+kAwiGSBDGCKkGwwQkgEDhGQwFwEyhCFCQnHvD5IB44NkMJfxMVLEQuTatWv44Q9/iCNHjqC9vR1ZWVl48skn8f3vfx8mE99sYh1XP0gGDBCSgagAGRKxEKmvr0c4HMYrr7yCoqIi1NXVYdu2bfD7/dizZ0+kvizpHAOEZMAAoWg31t4fokQsRDZu3IiNGzcO/76wsBANDQ3Yv38/QyTGMD5IBowPkoHo1Y+xzOk5Il6vFykp438DBwIBBAKB4d/7fL65GIsihAFCMmCAkAz0GCBD5ixEGhsbsXfv3glXQ1566SX84Ac/mKuRKEIYIBTtuPcHyUDP8THSlG96t2vXLvz4xz+e8DmXL19GSUnJ8O/dbjfWr1+PyspK/PKXvxz3dWOtiOTm5vKmd1GA8UEy4OoHyUAPARLsG8Cvv/d/kbnp3QsvvICtW7dO+JzCwsLhj1tbW1FVVYWKigocOHBgwteZzWaYzeapjkQCMUBIBgwQkoEeAmQ6phwiTqcTTqdzUs91u92oqqrCypUrcfDgQaiqOuUBSX+49wfJgPFBMojW+BgpYueIuN1uVFZWIj8/H3v27EFHR8fwYxkZGZH6shRBXP0gGTBASAYyBMiQiIXI4cOH0djYiMbGRuTk5Ix6bIqnpZBgDBCKdtFy8mngzgCu1nlwu70XqkFFZmEychakwmDkajLJFR8jTflk1bnk8/ngcDh4sqoAjA+SQTStfrQ0dOL4m5fQ03sHcQkGhMMawnc0ZGQl4ctPLENiskX0iCRINAZIRE9WJbkxQEgG0RQgANDV3oMj/3sBYZuGovIMGM0GAECfN4iWD2+h+rfn8fi/lXFlJMZEY4BMB0OEePIpSSHa4mOk+g/d6A8HsaAsE4qqDH/e4jAhrzwV1092ormhE/MWpwuckuZCrMTHSAyRGMbVD5JBNAfIkKbLN2HPto6KkCHxiSYYbCpaG7sYIhKLxQAZwhCJQQwQkoEMATIkNBhGnClu3MfVOAWDA6E5nIjmgp5uPCcSQyRGMD5IBjLFx0jOLDvaPLfhnH/vSX2hwTCC3kEkuxIETEaREMurH2NhiEiOAUIykDVAhhSvzEbL7zvR7fYjKds2/HlN09B6oQtWsxnzS7n/UrRjgIyNISIpBghFu2jZ+2M2FCxOx+KreairacbtZj/smRaEBzV0t/hhHDRg/TcWw2bn7S+iEePj/hgiEmF8kAxkX/0Yi6oqWPN4MVz5DtSfdaOz0QdFVbBgYRYWrc6BKz9J9Ig0RQyQyWOISIABQjKIxQAZSVUVFC3PRNHyTIQGw1BUBeoYV9GQvjFApo4hEqW49wfJINbjYzzcuCy6MD5mhiESZbj6QTJggJAMGCCzgyESJRggJAMGCEU77v0x+xgiOsb4IBkwPkgGXP2IHIaIDjFASAYMEJIBAyTyGCI6wgChaBdLe3+QvBgfc4shIhjjg2TA1Q+SAQNEDIaIIAwQkgEDhGTAABGLITKHuPcHyYDxQTJgfOgHQ2QOcPWDZMAAIRkwQPSHIRJBDBCSAQOEoh3jQ98YIrOM8UEyYHyQDBgg0YEhMksYICQDBgjJgAESXRgiM8CTT0kGjA+SAeMjejFEpoGrHyQDBgjJgAES/RgiU8AAIRkwQCja8cZzcmGI3Afjg2TA+CAZcPVDTgyRcTBASAYMEJIBA0RuDJHPYYBQtOON50gGjI/YwRAB44PkwNUPkgEDJPbEdIgwQEgGDBCSAQMkdsVciHDvD5IB44NkwPggIIZChKsfJAMGCMmAAUIjSR8iDBCSAQOEoh33/qDxSBkijA+SAeODZMDVD7ofqUKEAUIyYICQDBggNFlShAgDhKId9/4gGTA+aDp0HSKapgEAenp673nsivfI8MeqEjfikcFIj0U0a443/Gn4Y6sxefjjvkBQxDhE03Ls7IfDHztteQCAYN+AqHFIB4L9d9+Lh97HJ6LrEOnp6QEALCkqEzwJERFNTr3oAUhHenp64HA4JnyOok0mVwQJh8NobW1FYmIiFEURPc6s8/l8yM3NRUtLC+x2u+hxYh6Ph77weOgLj4f+6PmYaJqGnp4eZGVlQVXVCZ+r6xURVVWRk5MjeoyIs9vtuvufKJbxeOgLj4e+8Hjoj16Pyf1WQoZMnClEREREEcQQISIiImEYIgKZzWbs3r0bZrNZ9CgEHg+94fHQFx4P/ZHlmOj6ZFUiIiKSG1dEiIiISBiGCBEREQnDECEiIiJhGCJEREQkDENEB65du4ann34a8+bNg8Viwfz587F7924Eg7zfiCg/+tGPUFFRAavViqSkJNHjxKR9+/ahoKAA8fHxKC8vxwcffCB6pJh04sQJPP7448jKyoKiKHjzzTdFjxTTXnrpJZSVlSExMRHp6enYtGkTGhoaRI81IwwRHaivr0c4HMYrr7yCixcv4qc//Sl+8Ytf4MUXXxQ9WswKBoPYvHkznn32WdGjxKQ33ngDzz//PHbv3o1z586htLQUjzzyCG7evCl6tJjj9/tRWlqKffv2iR6FABw/fhzbt2/H6dOncfjwYQwMDODhhx+G3+8XPdq08fJdnfrJT36C/fv34+rVq6JHiWmvvvoqnnvuOXR3d4seJaaUl5ejrKwML7/8MoC7953Kzc3Fzp07sWvXLsHTxS5FUXDo0CFs2rRJ9Cj0qY6ODqSnp+P48eNYt26d6HGmhSsiOuX1epGSkiJ6DKI5FwwGUVNTgw0bNgx/TlVVbNiwAadOnRI4GZH+eL1eAIjq9wuGiA41NjZi7969eOaZZ0SPQjTnOjs7EQqF4HK5Rn3e5XKhvb1d0FRE+hMOh/Hcc89h7dq1WLJkiehxpo0hEkG7du2CoigT/qqvrx/1GrfbjY0bN2Lz5s3Ytm2boMnlNJ3jQUSkV9u3b0ddXR1ef/110aPMiFH0ADJ74YUXsHXr1gmfU1hYOPxxa2srqqqqUFFRgQMHDkR4utgz1eNBYqSlpcFgMMDj8Yz6vMfjQUZGhqCpiPRlx44dePvtt3HixAnk5OSIHmdGGCIR5HQ64XQ6J/Vct9uNqqoqrFy5EgcPHoSqcrFqtk3leJA4JpMJK1euRHV19fBJkeFwGNXV1dixY4fY4YgE0zQNO3fuxKFDh3Ds2DHMmzdP9EgzxhDRAbfbjcrKSuTn52PPnj3o6OgYfoz/AhSjubkZXV1daG5uRigUQm1tLQCgqKgICQkJYoeLAc8//zy2bNmCVatWYfXq1fjZz34Gv9+Pp556SvRoMae3txeNjY3Dv29qakJtbS1SUlKQl5cncLLYtH37drz22mt46623kJiYOHzelMPhgMViETzdNGkk3MGDBzUAY/4iMbZs2TLm8Th69Kjo0WLG3r17tby8PM1kMmmrV6/WTp8+LXqkmHT06NExvxe2bNkierSYNN57xcGDB0WPNm3cR4SIiIiE4YkIREREJAxDhIiIiIRhiBAREZEwDBEiIiIShiFCREREwjBEiIiISBiGCBEREQnDECEiIiJhGCJEREQkDEOEiIiIhGGIEBERkTAMESIiIhLm/wGdDGNJwBq6UAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -174,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "id": "76e3f16d", "metadata": {}, "outputs": [ @@ -188,16 +197,16 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACT7ElEQVR4nOzddXyd9f3//8d1PCdy4p7Gk7ZpKqlLatSgQvHBxmAwYANmbIwxNj6w4VqYMTbYcHdK3V3TNtW4u/vR6/dHf5TlmxQqSU7kdb/d+kfPOznX87TJuV7nrYqqqipCCCGEEG6gcXcAIYQQQgxdUogIIYQQwm2kEBFCCCGE20ghIoQQQgi3kUJECCGEEG4jhYgQQggh3EYKESGEEEK4jRQiQgghhHAbnbsDfBuXy0VZWRne3t4oiuLuOEIIIYQ4B6qq0tzcTHh4OBrNt/d59OtCpKysjKioKHfHEEIIIcQFKC4uJjIy8lu/pl8XIt7e3sDpF+Lj4+PmNEIIIYQ4F01NTURFRZ25j3+bfl2IfD0c4+PjI4WIEEIIMcCcy7QKmawqhBBCCLeRQkQIIYQQbiOFiBBCCCHcRgoRIYQQQriNFCJCCCGEcBspRIQQQgjhNlKICCGEEMJtpBARQgghhNv06w3NhBCiN5SVlVFUVIROp2PEiBF4enq6O5IQQ5YUIkKIIaOqqor/vvIqh3cewNbYhqLV4BXix/zLL+Waa65Bp5O3RCH6mvzWCSGGhIaGBp7406PUHixgRlgKMUnh2Jx2jlXk8ulLb9PY2Mgdd9whJ30L0cdkjogQYkhYt24dFYfyuDJ5NomBw9BrdXgaPJg0bBQz/VPY+vk68vPz3R1TiCFHChEhxJCwdd0mEj3C8DR4dGlLCopG1+hg165dbkgmxNAmhYgQYtBzuVw01tbjb7Z0264oCj6Kiaampj5OJoSQQkQIMehpNBp8A/2paW3ott2lumhU2/H19e3TXEIIKUSEEEPE7IWXkNNRTrO1tUvbicp8XH4Gpk2b5oZkQgxtUogIIYaE+fPnEzkhmU+yt3CsIpc2Wwf17U3sKDjEjsaTXHLFpURHR7s7phBDjqKqquruEGfT1NSExWKhsbERHx8fd8cRQgxw9fX1vP7aa+zbvOv0PiIaBd/IYC69YgnLli1Do5HPZkL0hPO5f0shIoQYcmpqaiguLkav15OYmIjRaHR3JCEGlfO5f8uGZkKIIScwMJDAwEB3xxBCIHNEhBBCCOFGUogIIYQQwm2kEBFCCCGE20ghIoQQQgi3kUJECCGEEG4jhYgQQggh3EYKESGEEEK4jRQiQgghhHAbKUSEEEII4TZSiAghhBDCbXq1EHn88ceZOHEi3t7eBAcHs3z5ck6dOtWblxRCCCHEANKrhciWLVu466672L17N+vWrcNut7NgwQJaW1t787JCCCGEGCD69PTd6upqgoOD2bJlCzNnzvzOr5fTd4UQg1VJSQm1tbWYzWbi4+PRaGSkXAwe/fb03cbGRgD8/f378rJCCNFv5Ofn89brb3J832EcrVa0Bh0RybFcdf01TJ061d3xhOhzfVaIuFwufvnLXzJ9+nRGjRrV7ddYrVasVuuZvzc1NfVVPCGE6HWFhYU8/uCfUXMbmR0+gtCgQJqsrRw8fJK/5D6L/b6fn1NvsRCDSZ/1Bd51110cPXqUd99996xf8/jjj2OxWM78iYqK6qt4QgjR6z54/wOcufVclTKXuIBIzAYTod4BXJo8jWHt3rz96uudPowJMRT0SSFy99138+WXX7Jp0yYiIyPP+nX3338/jY2NZ/4UFxf3RTwhhOh1tbW1HNq+j7EhSeg02k5tiqIwKWoUdYWVZGRkuCmhEO7Rq0Mzqqrys5/9jE8++YTNmzcTGxv7rV9vNBoxGo29GUkIIdyisbERR4eNoCC/btt9TJ7oHAr19fV9nEwI9+rVQuSuu+7i7bff5rPPPsPb25uKigoALBYLHh4evXlpIYToV3x8fNAZ9dS1NRLo6dulvdXWjkPjkhWCYsjp1aGZf/zjHzQ2NjJ79mzCwsLO/Hnvvfd687JCCNHvBAYGMmryWDIqsnC6XF3a95ccxxIVxLhx49yQTgj36fWhGSHEwFFXV0drayu+vr54e3u7O86gc9W11/DYkRN8dmIzU6JSCfUOoLGjhYzSU+Tp6vjRjT/BbDa7O6YQfapPNzQ7X7KhmRB9Iysri08+/IjMPRk4rQ70nkYmz5nOVVdfTWhoqLvjDSonTpzgtX+/SuHRHOxtVjR6HYGxYVx5/TVccsklKIri7ohCXLTzuX9LISLEEHf06FGeefhx9GUdjA1OxNfDm4rmWo7U5uI1Mow//Pn/CAsLc3fMQUVVVbKysqipqcHT05OUlBT0er27YwnRY6QQEUKcE5fLxb2/+DW2QxUsHZGORvlm2liHw8aHJzYy5uqZ/Oqee9yYUggx0JzP/VsONxBiCDt27BilJ/OZOiy1UxECYNIZSAtO4sDWPdTW1ropoRBisJNCRIghrKqqCrXdTrBX9+c/hfsEYW/poLq6uo+TCSGGCilEhBjCzGYzLq1Cq6292/Ymaytag05Wcggheo0UIkIMYaNHj8YSEcjhsqwubaqqcqjsFDEpiXLukxCi10ghIsQQ5unpydLrruCYo5Q9RZl0OGwANFtbWZ+zl1qLgyuuvUqWlAohek2vbmgmhOj/li1bhtPp5PN3PuJI9loMqg6rxoFfTCg/+fHPmThxorsjCiEGMVm+K0QPa2pqori4GK1WS2xs7IA5yLGpqYkDBw7Q0tKCv78/48ePx2QyuTuWEGIAOp/7t/SICNFDWltbefutt9ixbgvtdc0oGg2+EYEsvHwxy5YtQ6vVfveTuJGPjw9z5sxxdwwhxBAjhYgQPaCjo4OnHnuC7M2HGOsXT0LkOOwuJ8fL8nhnxStUV1Vx2+23D/i5FqqqcuLECXbv3k1TYyP+AQFMnz6duLi4Af/ahBDuIYWIED1gy5YtnNyWwRWxMzod8Z4eO47gKj82f7aW2XPmkJSU5L6QF8lqtfL3v/2NvWu24dEC3hoPMlxtrH73M+ZesYhbbr0VjUbmvwshzo8UIkL0gK0bNhGl8e9UhHwtKSiafUdPsmPHjgFdiLz91lvs+WQjl4SOIyY6HEVRUFWVk9UFrH3rcwKDgli+fLm7YwohBhj5+CJED6guryLY06/bNkVR8Nd5UVtd08epek5DQwObv9rAeEsCsf4RZ4ZhFEVhRHAsIwzhrPlsJVar1c1JhRADjRQiQvQAi78f9e3N3bapqkqjsw0fX0sfp+o5J0+epK2qgREhcd22jwyJo76kmry8vD5OJnpaU1MTJSUlNDY2ujuKGCJkaEaIHpB+ySzePvgyzdZWvI2endqKGipo9XQxdepUN6W7eA6HA9Wlotd0/5ah1+hwOV04nc4+TiZ6SnFxMR9/9BEHtu7B0W5FazIwfuZkrrjySqKjo90dTwxi0iMiRA+YM2cOkWlJfJK1lZyaYpwuFzaHncNlWawrO8D4edNJSUlxd8wLFhMTg9HXTH5dabfteXUlePh7ExkZ2cfJRE8oKCjgkQce4tD7m0lzRnCZ33gmuKI48sFW/vz7/yM3N9fdEcUgJoWIED3A29ub3/3x96QsmcI2axb/OvElr2av5rC+nHk3L+fnv/j5gF5REhkZSerUNHaVH6XF2taprb6tiYy6XKbPn4mvr697AoqL8sZ/X8eZ08A1Iy9hVGgCod4BpITGc23KPDQFLbz26n/px3tfigFOhmaE6CGBgYHc9/v7KSkpIT8/H61Wy4gRI/Dz634S60Bz6+238URFNe9mbCTOGIK/2Yfq1gYKHNUkpo/m+htucHdEcQGKi4s5se8Is8NHYNDqO7XpNFomR6SwIeMo+fn5xMV1P0dIiIshhYgQPSwyMnJQDlEEBQXxf48+zMaNG9m6fjMnausISAjipvnXMHv2bMxms7sjigtQVVWFo7WD8NDgbtsjLMHYKzqorq6WQkT0CilEhBDnzMfHh+XLl8t+IYOI2WxGo9fR3NGKycvQpb25oxWNQYeHh4cb0omhYOAOWgshhLhoiYmJBMdFcKgsq9v2jLJTBMWEMWLEiD5OJoYKKUSEEGII0+l0XPG9qykyNLAt7yBttg4A2u0d7Cg4RJ62lsuvuwq9Xv8dzyTEhZGhGSGEGOJmz56NzWbjg9fe4UTeBkwuLR2KA69wf2688TbmzZvn7ohiEFPUfrwmq6mpCYvFQmNjIz4+Pu6OIwYgq9VKe3s7np6e8olOiO/Q2trK/v37aWhowGKxMGHCBLy8vNwdSwxA53P/lh4RMSiVlJTw5RdfsHvTDhwdNswWL2YunMvixYsHzXLa/qawsJADBw5gtVoJDg5mypQpeHp6fvc3in7D09OTWbNmuTuGGGKkEBGDTm5uLk8+9Ci23DpG+sfg5+FNZXUdq/7xPgd37+OBhx8kICDA3TEHjY6ODl7+5z/ZvXYbSqMND42BZsXKO5EB/OjO25g+fbq7Iwoh+jEpRMSgoqoq//7Hyyj5zVw3ch567ekf8Vj/CFJtCXx4cBPvvv0Od/3sbjcnHTz+/a9/sfODdcwMTiVhZBQaRUObrYMdhYf5x5Mv4POoD6mpqe6OKYTop2TVjBhUTp48SX5mFtOjRp8pQr7mafAgLTCRPZt20NDQ4J6Ag0xJSQm71m4lPWgUSUHRaJTTbylmg4l5CZPwroMvPv3czSmFEP2ZFCJiUCkvL8fVaiPMO7Db9ijfUKxNbVRUVPRxssEpIyMDtb6DhMBhXdoURWFUUBzHDxyRI+WFEGclhYgYVIxGI6oGrE57t+1t9g40Oi0mk6mPkw1OVqsVg6JDe5YD/cwGEy6HE6vV2sfJhBADhRQiYlBJTU3FK9SPzPKcbtuPlOcQkRTDsGFdP8GL8xcWFkab1kFTR0u37cUNlfgE+MpKJSHEWUkhIgYVHx8f5i+/jEOt+WSWZ+N0OQGwOmzsLDhMqbGJZVcvR3OWT/Di/EyYMIHAuDC2FWTgUl2d2urbmjjRWsLsS+fJHi5CiLOSVTOiz9ntdvbt28fBgwdpb2snMiqS9PT0Hjux9rrrrsNmtbL+k1XsO5GFWTHSghVTqA83/ug20tPTe+Q64vRQ2I/v/gkvPPYM7x9bT0pALF5GMyUNlWS1lxOfPpqlS5e6O6YQoh+TnVVFn6qtreWZx58i98Bx/G0mzDojVY4mCPTguh//oEdvWuXl5ezdu5eWlhYCAgKYMmUKvr6+Pfb84hvZ2dms/PJLDm7fi8vuxCfIjzmL5nHZZZfJpmZCDEHnc/+WQkT0GVVV+b8/PEjBpiMsjp9GgNkCgNPl4kDJcTLVMn758H1MnjzZzUnFhWpvb8dqteLl5YVOJx2uQgxV53P/loFy0WeOHz9O1r6jzIuecKYIAdBqNEwaNoqgNiOrV35FP66NxXfw8PDA19dXihAhxDmTQkT0mePHj2NsU8+6x0dyYAzZR07S0tL9CgwhhBCDjxQios84nU60igZFUbpt12m04FJxOp19nEwIIYS7SCEi+kxsbCwtOjv1bU3dtufWlhAaE4nFYum2XQghxOAjA7miz6SlpRGaHM3Go/tZOjwdg/abvSXy60opVGu5ZfH1Z+0x6W9qamrYsGEDuzZvp62llcjYYcyeN5dp06a5dY6Eqqrk5uaybds2qisq8fTxZtKkSYwbN07mbggh+h1ZNSP6VHZ2Ns/8+Qmac6tIMIdhNpgoba6mWt9G+vL5/OTOn6LVai/6Onl5eWzdupXykjI8vTyZNGUy48eP77GNtQoKCnjy4cdozConwRyGl8GDspYayjTNTLpsJr/45S96ZRMvVVW/tVBzuVy88cYbrHnvc/QNDoL0Fpqd7TQYrYycnsY99/4ab2/vHs8lhBD/S5bvin6tqqqKjRs3snvLDtrb2hkWH82ceZcwZcqUi97xVFVV3nnnHb58+2N09XaC9RZa7O3UGTpImjKa39x370XvJeJ0Ovntr35Dy8FiLk+ehUH3TcFR0lDJ6ooDXH/PrVx++eUXdZ2v2e12tmzZwsY16ynJL8LsZWbK7BksXLiQsLCwTl+7evVq/vPU35nmnczIkLgzRUtFcy1fFexm/JWz+fVvft0jufqSw+Hg0KFDVFVVYTQaGTduHP7+/u6OJYQ4CylExJC1adMmXnp0BZM84hkdlnjmRlzT2sDK/J2MWDSZ+//w+4sa/snIyOCJex9iecgUgry6nqGyKWcfzQkmnvvbCxc9FGKz2Vjx7HMcWLODKMWPCO8gWm0dnGouwRTrz70P3k9SUhJwukC65+5fYj7VyiWJk7o816nqQnbac3jyH8/32C62feHw4cO88o+XqcgqRm9XsOPEFOTN/OWXcv0NN8hwkxD9kOwjIoYkl8vFqs9XEuWwMCY8qVOxEejpy8zwMRzddZC8vLyLuk5BQQEmq6bbIgQgPjCKmtJK6urqLuo6AF999RUHVu1gcdgkFiVNIzUskSnRqXx/5AIMhW389bkXcTgcAJSWllJdUMqIkNhunyshIApHfTsnTpy46Fx9JSsri+f+/BQcr+fqiOn8aOSl3Jy0kFG2EL585QPeevNNd0cUQlwkKUTEoFFdXU1JdgEjgru/Ecf4hUOT7aJvxBqNBqfq7LTxmqqqlDRWsTZrF6tP7CCvuIDs7OyL2pzN4XCw4au1JBlCCfcJ6tSm02iZHTOeiqwiDh48CJwuxFQVtEr3v9YaRUGDgsvl6ra9P/rs088wlHWwZPgM/P//TfAMOj1pEcOZ5JPI+k9XU11d7eaUQoiLIYWIGDRcLhe41LPeiAG0ivai9ylJSUnB5a2jsL4cOL1F/aqTO3h75xdknThFe2EdnjUu/vLwMzz/7HNYrdYLuk5DQwN1ZdXE+Id32+5n9sFs11JUVARAWFgYPiH+5NaWdPv1xY2V4KUnNrb7Qq2/aWpq4sjOA6QGx6Pp5v80JTQeR20r+/fvd0M6IURPkUJEDBpBQUEERIac9UZc0VyL3QPi4uIu6jrx8fGMmjaeLWWHqGqpY1fhEY5mn2CKNpbphkRSfIZx8/ilzLOksvezTRc8fKDValE0Cjanvdt2VVVxqM4zcySMRiNzL5vP8bZiyps69xK02TrYXnKYxPEpJCYmXlCevtbe3o7T7sDH5NVtu06jxajoaWtr6+NkQoieJIWIGDR0Oh3zFi8ky1ZOUUNFp7Z2u5UtRQeJHZ1MSkrKRV1HURTu/NldxMwazUelO/jk0HoCrCYc7TbqNe3Ej0wiNCyMGP9wxlsS2LJqIw0NDed9HV9fXxJGD+dEdX637QX1Zbh89KSmpp55bPny5Yy7dDpfVuzjy5Pb2Fd8nA3Ze3k7ez3eoyP56d13Dph9WiwWCyYfc5ei6mst1jbaFBtBQUHdtgshBgYpRMSgsnjxYiYvm8OamoN8dnwL+4qPsTFnH29nrcMjJZS7fvmzi14iDKeLhP/700Ncd+dNeAdYSI6NZ1hKApNmTCE2Jpavb/UjQuJoq2rg5MmT530NRVFYfPlSajyt7Cw4jMP1zZBSeVM1m0sPMXr6hE49PEajkXvu/Q13PvRr/GclUhTcjnO0P9ffext/euKRLst9+zOTyUT6gjkcbSig1dbeqU1VVXYVZeIXHcLEiRPdlFAI0RNk3ZsYVHQ6Hb/41S/ZPXUKm9ZvpKSwBLO3hWtmLWbOnDn4+XW/0uVCrzVy5EgiwiMYHTkGH5Nnl6/Ra3SoF3F+zsSJE/nBz37MO/9+nZMnVuOPJ+2qjVazi5HzJ3DXz+/u0sOh1+uZNWsWs2bNuqBr9ifLly8n8+BhPjy4iVS/OCItwbRY2zhSmUO9r5Of3v4LPDw83B1TCHERZB8RIS5CY2MjP7/1TlKtwYwNT+7Snl1TxHZrNk++dHF7d1RVVbF9+3YqKiowmUyMHz+e1NTUHund6e/q6ur46MMP2bFuC9bmdjR6LYljRnD5VVcwbtw4d8cTQnRDNjQbxFwuF0VFRVitVkJCQi56l1Bx8V7+5z/Z/NqXXBGfjp/5m5/TFmsbn2RtYeSSKdz3+/vdmHBwaGlpoba2FpPJRHBw8ICZ6yLEUHQ+928ZmhkgVFVly5YtfPHRp5RlF6E6XRgtZibPncH111/fo0MO4vxcf8MNFBUU8eGObURrAwjy9KW+vZk8WxUR4xO49fbb3B1xUPDy8sLLq/sVNEKIgUt6RAaIL774grf+8ipRdh9SQxPw0Bspqq8gozabkAkJPPjnh7BYLO6OOWS1t7ezefNmtqzfRE1FFb4BfqRfMps5c+YM+Z9dIcTQI0Mzg0xdXR2/uu1uElp9mRo9ulNbi7WN97M3sfTuG7j++uvdlFAIIYT4hpw1M8js2rULW1Uz4yNHdGnzMpoZ7hXJljUbLnrHUCGEEKKvSSEyANTW1uKtmDBo9d22h3gH0FLfLDtMCiGEGHCkEBkAvLy8aHVZcZ7lsLL69iYMHgZMJlMfJxNCCCEujhQiA8CkSZPAz8jJqq5bfducdo7XFzB1bjp6ffc9JkKcL6fTSVZWFkeOHKGystLdcYQQg5gs3x0AIiMjmXv5Qta+8RntDiujQhMwavWUNVWzs+QIHglBLF6yxN0xxSDw9TLxT9//mIqcYlwOJwYvE2Omjef7P7yR8PDuTwIWQogLJYXIAHHTzTdjNBpZ//lqDmTnolEVNGY9MVOSuO3OO+QGIXrE6tWreX3Fy0TZfFgaNgEvo5mSxir2f76LR3PyefDRhwkJCXF3TCHEICLLdweYxsZGMjMzsdlshIeHk5ycLDtMih7R3NzMz398J8PqzaTHdt46vcNh4/0TG5hx02XcfscdbkoohBgoZGfVQcxisTBjxgx3xxCD0N69e2ktq2dC4oQubSadgVH+sezcsJURI0eyY+s2ck9kozfoGT99MvPnz2fYsGFuSC2EGOh6dbLq1q1bWbp0KeHh4SiKwqefftqblxNCXIT6+no8FQMeemO37UGefuSdyuHZPzxK0erDJNb7EF6mZ+urX/Dgr+/n4MGDfZxYCDEY9Goh0traypgxY/jb3/7Wm5cRQvQAb29v2lUbNoe92/a8sgKqyquY4TOCK0fOIS1yBFOiU7lh5AICqjX8/dkXaWpq6uPUQoiBrlcLkUsvvZRHHnmEK664ojcvI4ToAZMmTcIQ7M3h8qwubQ6Xk90FmYR4+zM2PLlTm1ajYXbcBJqLatixY0dfxRVCDBKyj4gQAgA/Pz+WXX8Vh6yFbMvPoNnaikt1UdxQwSfHN1GmaWJmbBoAdqeDZmsrNufp3hMPvZFAl5nCwkJ3vgQhxADUryarWq1WrFbrmb9LN69wN1VVqaqqwuVyERQUhE7Xr35letxVV12F0Wjkyw8+5Z3CzbjsTvReJuJmDGfkcRdqu8qqkzs4WZqLw+5Ap9cxPCKeKcNSceBCq9W6+yUIIQaYfvWu+vjjj/Pwww+7O4YQqKrK5s2bWfXFV5Rm5aOqEBARzCWXLWDx4sWDdhdbRVFYunQp8+fP59ixY3R0dBASEkJ8fDyPPfoY7/3lP0TjzwhjGH46LxpsrZw6lcWJ0lw0QR7clJLi7pcghBhg+lUhcv/993PPPfec+XtTUxNRUVFuTCSGqnfffZdPX3mXKIeFOUEj0Wm05OaV8O7zr5CXk8vPf/mLQd07YjKZGD9+fKfH6mvr8HEYGW+MZphnCFpFQyQBxNiDeL9yB64AmDhxopsSCyEGqn71Tmo0GjEau186KERfyc/P58u3PmKSRzxjwpPOPB7pG0JcQwWrv9rC7imTh9R+LqWlpZTnFLEodQYdxfVkN5TggR4XKh2Kg1HBcVR4Q0VFRb/78KCqKna7Hb1eL5v/CdEP9Woh0tLSQk5Ozpm/5+fnc+jQIfz9/WXzI9Fvbd26FW29ndEpiV3aonxDCSn3YvOGTUOqECkvL8fW3M7Y+BSIcVFRXkFzczMajQb/AH98A/x4PXc95eXl/aYQaW9vZ926dWxYtY66ympMZg+mzk3n0ksvpa2tjc2bNpGfnYfeYCBt0nhmzpyJxWJxd2whhpxeLUT279/PnDlzzvz962GXm266if/+97+9eWkhLlhFaRnBOstZPz2HeQVSXFDcx6ncy2g0otFpabd14Gf2ISYmplN7Q3szilbTb3o0W1tbefLRx8nafpg4fTAJPtE01bay+ZVP+fDN99Chwd9qJMIUQLPTzlub9/PVJ1/wmwfuIz4+3t3xhRhSerUQmT17Nv34KBshumX28qTV2XHW9hZrK54+Q+uTc3JyMgHDQjlSlM2s+PFd2jPLs/EfFszw4cPdkK6rjz/+mJyth7kidgYB5m/+r4ZVBfLq5o9QLXrumn8rWs3pVT4dDhtfntrO808+w7N/WdFvCiohhgLZR0QMSm1tbWzYsIEXVqzguWef5dNPP6W2tvacvnfipEnU6tupbqnv0tZut5JnrWLqrKEzLANgMBhYcvXlZKmV7Cs+fmb/ELvTwYGSE5x0VbDk6uX94gbe0dHBltUbSPGO7lSEAFSWVTBaH4nBoaGwvvzM4yadgYUJk6k6VcyePXv6OrIQQ1q/mqwqRE8oLCzk2cefpuJ4AcEuL3SKln3qJj57+0Nu/9VdTJ069Vu/f/z48SRNGc1XW3cxM3wMMX7hAFS21LG58CABIyM7DTkOFZdeeint7e189taHHD6Vj5dipFW1og/y5Moffp/Fixe7OyIAVVVVtNY2EePfeY6Pikp9TR3R5mByrLVUtzYQFxB5pt3b6Imf04NTp04xc+bMvo4txJAlhYgYVNrb23n28adpzyznhsS5eBnNANicdrbkHeQfT79I6LOhxMbGnvU59Ho9v7nvXv5u/hubdh1EqTiMBgW7h0L05ETu/tXP8fPz66uX1G8oisJVV13F7Nmz2bNnDw0NDVgsFiZPnkxgYKC7452h1+tRtBo6HLZu252qCwdOtJquHcIKsqpGiL4mhYgYVHbv3k3F8YJORQiAQavnkoSJvH1sLevWruX2O+741ufx9fXl/j/8nvz8fI4fP47T6SQuLo6UlBQ03dzAhpKAgAAuu+wyd8c4q9DQUIYNj+XY/lyi/cLOPK6g4Bfgx/HcLPDSEu8f2en7mq2t1OnaSUzsulpKCNF7hvY7qhh0jh49SrDLs1MR8jWNoiHRJ4KM3fvP6bkURSEuLo4lS5Zw+eWXk5qaOuSLkIFAURSWXHE55aZWdhdmYnc6gNP7iTh99GS4ijF7eeLr4X3me2wOO+ty9hCUEMGUKVPcFV2IIUl6RMSg4nI40SpnLxa0Gi0up6sPEwl3mD59OvV31/PBf97m2Mk1+OFBq2rD5q1h3LJ02qoaePvYWqLMQVgdNgrtNfgmhPLr+36NyWRyd3whhhQpRES/oqoqpaWlNDY24uvrS3h4+HnthhkbH8cudT02px2Dtut5MPmN5STMmtSTkUU/9PWZOVOmTGHHjh3U1NTg4eHBpEmTSEhIIDs7m82bNpF7Kgej0cj3Ji9n1qxZQ3LujxDuJoWI6DdOnDjBe2+9Q1bGcZwdNrQeBoaPT+W6G75HcnLyOT1Heno6n779AZty9zM/cTKa/+kdOVyWRZOXk3nz5/XWSxD9TFBQEMuXL+/yeFJSEklJSV2/QQjR5xS1H+841tTUhMViobGxER8fH3fHEb3o6NGjPP3Q43iU2xgfPpwAsy81rfUcKD+FLdLEfQ8/cM6bZe3du5e/PfUClLeS4B2OTqOjoKmcJi8nl998Ldddd52cOSKEGNScTif19fXodDoslrPvFN1bzuf+LYWI6HV2u52MjAwqKiowGo2MGzeO4ODgM+2qqnL/b35L855iLh85s1MvhtPl4pPjmwhMT+TPjz96zr9MhYWFrF+/noM79+GwO0hMHc68+fMYM2aMFCFCiEHLbrfz1VdfsXrdKsqrytFoNIwansrSxUv79HRsKUREv3H48GH+9deXqMopweTQYsOBLsCT2Uvmc9NNN6HX68nKyuL/fnYfl/qnEe4T1OU5CuvL2dCcyaN/f/Zb9/8QQoihzG638+xzz7Bh13p8IjwJjgrEYXdSllOOts3AT350Z58tvT+f+7fMERG9Jjs7m+cfeQqfSpVrotPxM/vgcDk5UZnHutc/xeVycfvtt1NXV4e93Uawl3+3zxPiHYCjykZdXZ0UIkIIcRZbtmxh0+4NJM+Iwz/km4nXYTEhnDqYw6tvvsKECRM69Uj3B7IpwhDU0dFBSUkJVVVVvXoo4Reff46urJ0lw2fgZz5dEes0WlLDEpnmN4KtX54+Nt7b2xudUU99W1O3z9PQ3ozGqMfb27vbdiGEELBuwzqMAfpORcjXEkbH0tBWx7Zt29yQ7NtJj8gQ0trayieffMKW1RtorW1E0WmJS01m2RWX9/jYYWtrKxk79jE+ML7TnI+vDQ+OYc+Jk+zfv59LL72UkIQoDpw4wcKkqZ3mcKiqyv6S40SOjSUhIaFHMwohxGChqiqFJQX4R3e/BF2r06L30VFRUdHHyb6b9IgMEa2trTz+50f56qX3iKk1c6nvOGYZk2ncnsvzDz3J+vXre/R67e3tuOxOvLvZ4RRObyxmUvS0t7ej0+m49gffo8yrjXXZu6lvP90zUtfWyJqsXVRbbFzz/etkV1MhhDgLRVEwm8x0tHWc9WucNme/3LBPekSGiNWrV5OzI5OrYtPPDJMAxPpHsDX/IG++/F8mTJiAr69vj1zPYrHg5edDWVV1p/M+vtZqa6dFsREUdHpy6vTp03Hd5+K9197ig7ztYHOiGLWEJEdx100/YfLkyT2SqzsOh4OdO3eyfsM68ovy8TR7MnP6LObNm9fvxlKFEOJsZs2YzRuf/5f4VCdanbZTW31VAzqbgQkTJrgp3dlJITIEuFwuNq1aR6IptFMRAqer6MnDUsnOWsuuXbu49NJLe+Saer2emQvnsvLv75LSEYePyetMm6qq7CrMxDIsqFOBkZ6ezpQpU8jMzDwz4zo1NRWdrvd+TB0OByteWMG6bWvQ+2vxC7VQ21rJqx+8zLqNa3ngd3+QISEhxICwYMECNmzdwIGNhxk5ORkviyeqqlJdWkPOvnymj55Famqqu2N2IYXIENDW1kZDTT2jfLq/oZp0BnzwoLq6ukevu3TpUo4cOMSHu7cwyhJNlG8IrbYOMitzaPBz8ZM7fo7Z3HnoRq/Xk5aW1qM5vs3q1atZu201CdNiCAz7ZtWOY6yDjI1HeOEvK3j+2RW9WgwJ0VdaWlrYvHkz2zdtpamugaCIUGbNnc2MGTMwGAzujicuUlhYGH+47w+s+MvzHF+fjWpw4nS4MGs9mTNhHj+7++f9cohb3l2HAKPRiN6gp6mttdt2l+qizWXFw8OjR6/r4+PDAw/9kY8//phtazdxtL4MRaclae5IfnzFcsaNG9ej1ztfLpeLr9Z8hWeYqVMRAqDT6xg+OYkTG7LIyMjo042AhOgNNTU1PPHnxyg5mE20LpAoD2+q8vJ4adtBdszZzq9/+5suHwyGgpaWFvbs2UNdXR1eXl5MnDiRwMBAd8e6YElJSbz4/F84ePAghYWF6PV6UlNTiYuL67ebOUohMgTo9Xomzp7G3jfXMiYsEa2m89hhbm0JLou+V262Pj4+3HzzzVx33XXU1tZiMpkICAjoF78Q9fX1lFWVEjq2+3kg3r5eqAYnBQUFUogMQVarlZaWFjw9PfvlBL/z9a+XXqZqXy7XJc3G2+h55vGqljq+WL+L92Pe5+abb3ZfQDdYv349/3nzP1Q1lKM1anBYnfi+4c8Vi6/k+uuv75e9B+dCp9MxadIkJk0aGAd8SiEyRCxevJj923bzxcltzIgeS6CnL06Xk5NVBeyqPcG0a+YTHR3da9f38PAgMjKy157/Qmi1WjSKBqfD2W27qqq4nC60Wm237WJwqqmp4fPPP2f7us1YW9rRexiZPGc6y5YtIyIiwt3xLkhRURGZuw8yKzy1UxECEOzlz2ifWLau3sg111yDp6fnWZ5lcNm5cycv/nMFhlAt42eMxmA04HQ4KTpVwmsf/Ae9Xs+1117r7phDghQiQ0R0dDT3Png/L734dz7J2onBpsGOA52fmVk3LOaWW2/pF70UfclisTAycSQZufsJiwnp0l5TVodJMTNq1KiLuk5HRweVlZVotVrCw8N75FOWw+Hg4MGDbN++nZr6GoL8g5gxYwZpaWlSOF2EyspKHvnjw9QfLSHFN4Zgr1jq25vY88YaDu3az30PPUBcXJy7Y563/Px87A3txI4M77Y9ITCSQ2WFFBcXn/PhkgOZy+Xio08+RPV2MHLSyDOPa3VaYlOicTicfLbyEy677DK8vLy+5ZlET5BCZAgZMWIEz/7leQ4fPkxZWRkGg4ExY8YQGhrq7mhuoSgKSxYv5dAzh8g+nEf8qBg02tNFQmNtE9l780gfN5vExMQLev62tjY++eQT1mxYTV1THRpFQ3x0AssWL2P27NkXXPh1dHTw3PPPsnXPFhQvFQ+LiYz8dtZsXcWsybP51S/vGRRDCe7wxutv0JRZynUjLsFDbwQg2i+MkSFxfHpiC//51yv86bFHBlzRrtFoQAGXqqIoKk6HE61We+Z1OF0uFI0yYIcizldxcTFZ+VkMmxzVbXv08EgOZGdy5MgRpk2b1sfphh4pRIYYnU7H+PHjGT9+vLuj9AuTJ0/mjpt+wn/f+g+7c/dj9DXgsDpR2rRMHjWVX/zsFxd00+no6OCJp55g5+FtBMX5E58ahcPuIC/7FE//5Unq6uq46qqrLijzm2++ycY96xk+I6HTVs51lfVs2L6OkLdDueWWWy7oud2ptraWkpISdDodCQkJGI3GPr1+VVUVh7btZUroiDNFyNcMWj1TIkex7tARcnNzB9yS7hEjRqD1MbL+4DbMLQoOmx2dXkdoRDjDhg3jRFU+/pHBxMTEuDtqn+jo6MDpcmAyd/8zpjfoUXHR3t7ex8mGJilExJCmKApLly5l/PjxbNu2jdKyUsweZsaPH8+4ceMueNnupk2b2H1oB6PmDMfH/5szcgLC/Mk7WsBbH7zJ1KlTCQ/vvqv8bBoaGli3eS3hI0K6nCfhH+JHaHIQ6zat5eqrrx4wJ1Y3NDTw1htvsmfTdjoa2lA0Cn6RQSxavoRly5b12af0yspKbC0dRA7rfvJylCUEe2kH5eXlA64QcblcVDXVkZ1dzCWeKUR6BNLRYaP4eC6H8o9TGebiR8vuHDJLeIODgzGbPKmrqMPTp+tKocaaJow605DtLe5rUogIAYSHh3Pdddf12POt27gOc7CpUxHytZgRw9idfYDt27ef92S4nJwc6pvrGBfb/byV8LgwDp86Tm5urtuXR5+LlpYWHv/To5TtOcX4wCRioyOwOewcLcvl7RWvUF9Xx4/6qHfHaDSi0Wlos3fg1c3RBG32DjQ6zYAc9nr9tdcJs3kSmTCcjMpSCtvr8FZM1NBCbmMl8amjWbp0qbtj9hk/Pz/Sp8zki62fEBwVjNHjmwLM5XSRlZFLStxoRowY4caUQ4cUIkL0MFVVKS0vwTfG0m27RqtB76WjpqbmQq9AN+cIAqd7eFTUXj1VuSetX7+ewn0nuTZh1pnddz0NHqTHjsO/wof1H3/FnLlz+2TIIC4ujpD4KA6fzGZ+UtcjBQ6XZWGJCCIlJaXXs/Skr4ecpoankhQ0jLzaUo5X5tFmbSfOI5RxprGcdFVTVlZGVFT3cyYGoxuuv4Gs7FMcWH2YkPhALEEW2praKDlVTqhnOLf/+I4hM2fG3eRfWYgepigK3l4+tLV0P76sqipOq/OCNo+Ki4vD4ulHeX5lt+3lBRX4evkPmJUdm9duJM4Q3OkIgK+NCIlFU29n165dfZJFp9Nx+TVXUKivZ2fBYawOGwB2p4ODJSc4aivhsquXDbhNv0pLS7E1txPtF4pG0ZAQGMWylFl8L20Rl42YweToVOzNHZSWlro7ap8KCgri4f/7EzcsuRGqDZTtr6It387S9OU88tCjJCcnuzvikCE9IkL0grkz5/LKBy9jT7WjN+g7tdWU1WFwmC5okzR/f3/mpM/lo7Xv4xfs22nop7G2idLjFVx76fU9dnhhb1JVlbqqGmK8up8no1E0WBQP6uvr+yzTnDlzaGtr48PX3uF41jo8MdCKDUOgJ1f84AYuv/zyPsvSUwwGA4pWQ7vdioe+67BSu70DjVYzZOaH/K/AwEBuueUWbrjhBpqbmzGbzUNmH5X+RAqRQUZVVTIyMtiwfgM5x06h0+sYP20S8+fPH1Ldru42f/58Nm7dyMF1h0mamIBvkAXVpVJeUEHBoVLmT13AyJEjv/uJunHTD2+iorKCXRt3YPDT4elrpq2hDVuDk/Rxs7nxxht79sX0EkVR8A3wozavsdt2VVVpVjv6dNKtoigsWbKEGTNmsGfPHurr6/Hx8WHSpEkDdtvvxMREAoaFklmcw6y4rqvljlbkYokIHNLzIUwm04Cc+zNYKGo/Hkz++gTWxsbGAbMCwJ1UVeWtt95i5RsfYWnTE+MTis1hJ6elFE24Nz+//9d9eqDcUFdYWMhf//5Xjuccw+bqQFVVfEy+zJk+l1tvvfWiuvhtNhu7d+9m89bN1NRWExQYzKz0WUyZMmVAfbL94IMP+PiF1/le4lw8DZ3POsqqLmR7RxZ/evHJAbdKpb/58ssveeO5lxlvjmN0WCI6jRany8mxyjx2N2Vx7d03cfXVV7s7phhEzuf+LYXIILJv3z6efeAxpngkMCo0/szjTpeLtdm7aIzQ8tw/XpR/yz6kqirHjx+nqKgInU7HqFGjCAsLc3esfqOhoYGHH3iQ+owipoSlEOsfjtVh51hlHhnNecy67lLuvOvOAbeBWH+jqirvvvsuK9/9FFdtGz6KB81qB4q/iflXLebGG2+UiZmiR0khMkQ9/shjlKw5whUjZ3dp63DYeCNrLTfdfyeXXXZZ34cT4iyqqqp49V//JnNXBtbGVhStBu9QP+YuWch1112HXq//7icR56SyspJdu3ZRX1+PxWJhypQp572XjRDn4nzu3zJHZJBQVZWszBOk+Hb/adukMxCkepGfn9/HyYT4dsHBwfzugd9TUlJCUVERer2e4cOH4+3ddQ8WcXFCQkJYvny5u2MI0YkUIoOIVqfF7uz+JFkAh+qUA9FEvxUZGdnvTmgWYrAoKSnh+PHjuFwu4uLiSExM7DdDnlKIDBKKojBuygQOvLuRCZEjuvyANXa0UKfvGHCbMQkhRF9yOBzs2LGD9RvWUVBcgKfZk/RpM5k/fz7Bwd1v/9+fNTc388+X/8n2vdtosTYBYNKZGTN8DHff9bN+MWdNZicNIgsWLcQeZGBT7n7sTseZx5utrazK2UVESiyTJk1yY0Ih+i+Hw8HBgwdZt24dO3fupK2tzd2RRB9zOByseGEFjz3/CBkl+yHUTq22klc//Bf3/f635OTkuDvieXE4HDz73LOs2v4lQaN8mXLFeKZeOYHoSWHszdrFI4/9mcbG7pfP9yXpERlEEhMTuf3Xd/HKX/7J6yfXEKrxwe5yUqVtIWx0LPf87t4+P9FUiIFg//79vP6v/1CRXYzWruLUqPhEBrL8+qtZvHhxv+nCFr1r9erVrN22ioRpsQSG+Z953DHWQcbGI7zwlxU8/+yKCz4Ms69lZGSw+9BOUtKT8Q365siJgDB/0uZ5ceCrw2zatMnt84YGxr+mOGfp6emMGDGCrVu3kp+Xh16v5+oxY5gyZYps2CNENw4fPswLjzxDYL2Oq4ZNJ8BsodXWzsHSk7yx4l8ALFmyxM0pRW9zuVx8teYrPMM8OhUhADq9juGTkzixIYuMjIwL2hXZHfbu3Yvq4exUhHzN6GHAO8yTrdu3SCHiDmVlZZSVlWEwGEhOTh50vQSBgYFceeWV7o4hRL+nqiofvf8hPjUql42cfqbn4+uD98jP4LN3P2Lu3LkD7owZcX7q6+spqyoldGz380C8fb1QDU4KCgoGTCHS1NyE0Xz2DQ7NXh40NDb0XaCzGFKFSEVFBa+9+h+O7DqIrbkdjVaDX1Qwi6+6nCVLlkj3qxBDTHl5OTmHTjA3bGS3v/9pEcM5kb+Bw4cPM3XqVDckFH1Fq9WiUTQ4Hd2vPFRVFZdTHVArD0NDQmk/cHpX5+5+vhtrm0kb5v6t/YfMZNWamhoe/b8/cfLLPcwwJHJz/AKujphBSKmGN5//F++88467Iwoh+lhLSwsumwOLR9fTf+F0z4jGefrrxOBmsVgYmTiSstzybttryuowKR6MGjWqj5NduPT0dMyKFyXZXU9Wrq9qwFbnYO7suW5I1tmQKURWrlxJ/dESrhw+h8TAYRh1Bvw8fEiPS2O8OY6v3v+Mysruj1YXQgxOAQEB6MxGKppru22vbWtENWgG7IF34twpisKSxUtRWvRkH87D5XSdaWusbSJ7bx4TxkwiMTHRjSnPT3x8PFcuvpqyzGoydx6nrrKehppGTh3I5sS2HOZMmcv06dPdHXNoDM04HA62r9vMCJ8oPPRd54OMDkvk0Ilcdu/ePSCP+RYDn6qq5ObmUlBQgE6nIyUlhaCgIHfHGvQCAgIYO2MiBz/ZTnxAJAbtN9vJq6rK7qJMQkZEkZqa6saUoq9MmTKFO276Cf996z/szt2P0deAvcOBpl3H5FFT+cXPfjGghvAVReGHP/whoaGhfLHyc4r2FOJSVYL8grnqhuu5/PLL+8URCkOiEGlvb6e9uY0Ac/dnKug0WrwVEw0NDX0bTAhOz1P4+0t/5/DxDFptraCCr9mPuTMv4ZYf3YKHh8d3P4m4YN+7/ns8cuwkHxzfQFpIMqFeATR0NHOoPIvmIIWf//hHA2a5prh4S5cuZfz48Wzbto3SslLMHmbGjx/PuHHjBuTPgaIoLFy4kHnz5lFWVobL5SI0NLRfLdIYeP+qF8DDwwOTlwe1dY0kENWl3eFy0qx24Ovr2/fhxJBWX1/Pnx77EzlVJ0kYH0dguD8up4uy/Ao+Wfchzc1N/Pbe++Rk1F4UGRnJHx55iPfeeZc92/fhqDyFxqAjafZI7rj2akaPHu3uiLhcLo4fP05BQQEajYaUlBSio6PdHWvQCg8P57rrrnN3jB6l1WqJiup6/+sPhkQhotPpSF8wh3X//IjR9sQuwzOZ5dloAsxMmTLFTQnFULVhwwayS04y4bIxGEynl9lpdVqiEiPw8DSxbe9WlhxfOqAmyA1EkZGR/Pre31B7Sy11dXV4enoSFhbWL7rhi4uL+fsLfyX/yCl07SpO1YViMTIufSJ33PlTOZlcDHhDohABWLx4Mft37OHjo5uYFDaSaN8w2h1WjpRnc8JezvLbvkdISIi7Y4ohZtPWjVgivM8UIf8rIMyfbF0+e/bskUKkjwQEBBAQEODuGGfU19fz5J8eo+N4JYuHjSfUOxAVlfy6MrZ+vp3n29p44ME/Dsghg/6osrKSyspKTCYT8fHxA2qp7kA2ZH56AwMD+f3Df+S1V//D9l0ZbMw5gqLV4B8VzA+u+rHsnCjcoqGxAc+I7jfKUhQFg1lHc0tzH6cS/cWGDRuoO1HC9cnzzvTkKijEB0TiZfDg8x17OHToEBMmTHBz0oGtrKyM1994jT0H99BubUOn1RETEcs1V13LzJkz+0XP2GA2ZAoRgLCwMH73wO8pLS09s7Pq8OHD+9WkHTG0hIdFkFV9DLrZU0h1qdia7AQFyuqZoWrn5u3EmUK6Xe0X4h2Ab6GBvXv2SCFyESorK/m/Pz1IQV0u0SlR+IdG09HWQeGJfJ7+y1O0t7ezaNEid8cc1IbkDLiIiAgmTpzImDFjpAgRbjVvzjzaqq001XXt9SjOLsVT690v1vn3V21tbRw9epSjR4/S3Dz4eo5am5rxNnqetd1TZ6K1VU4JvhiffPIJ+dU5TFgwlvC4UExmI76BFsakj8IjXMcb774uG9r1siHVIyJEfzNr1ix27NrBzk3bCE4MJGRYEE67k5KcMlrLOvjBVT8kJibG3TH7HZvNxgcffMDGlWtpqaxHVcEz0MLMS+dy/fXXD5oDHsOjIykv7P7oeZfqosbRzLiw0D5ONXi0tbWxeccmwpNC0Ru77qcRPzqWA18eYe/evcyd6/4dSAcrKUSEcCOTycTvfvs7PvggnnWb1nIqNx+NRkNUaBTL7rhcuoS74XK5+OuLf2HvZ5tI9YpheGQqCpBdU8yaf39EWXEpv73/vn6xUdPFmnXJHP6xPYOypmrCfToP0WWW5+D0N5Cenu6mdANfc3Mz7dY2Avy7L+YMRgMag4b6+vo+Tja0SCEihJuZzWZuuukmrrnmGkpLS9HpdERFRclKiLM4dOgQe1ZvZUHYeKL9ws48Pj5yBBGWYD7buIuNkzcye/bsAT/0OmPGDPYt2stXK7eRXBNGfGAUdqeDE1UFFOsaWH7r96TH7CJ4enpi1JtobWwlINSvS7vD5sBpc+Ht7e2GdEOHvNMJ0U+YzeYBdY6Fu2zftg3fDn2nIgSgw2Eju7qQvJPZPPiL3zF81AjGz5jM4qVLiI+Pd1Pai6PT6fjlPb/i84R4Nny1luzyQ6AoRIyN5o5lNzFnzhx3RxzQvLy8mD55Bl9u/5SI+DC0us7LdQtOFBHgFcikSZPclHBokEJECDGg1FbWEGC0dHqs3W7l/Yw11FRUMcIejMVhIc4ayuH3N3Nwx15+9YffMmbMGDclvjh6vZ6rrrqKZcuWUVVVhUajISQkRHbb7SFXLL+CAxn72L/uEAljY/EP9aOjzUrB8SJaitv58Q9ul123e5n8JAshBhSLvy8Nts6rGHYVHqGmvIpF3mNIMoYR7RvGmPAkrk2Zj28VvPyXf2C3292UuGfo9XoiIiIICwuTIqQHDRs2jAcfeIhxMRMo3FvOzg/2cXj1cTzbLNx5y91ceeWV7o446EmPiBDigjQ0NLB9+3ZOHDsOQPKI4aSnp+Pn13WsvSdNmzGd3V9toaK5llDvAOxOB0eLs0jWh2JCTzk2YsJOD9toNRpmRI/l/dytHDhw4JyOcVBVlZaWFpxOJz4+PnLTHwISEhJ4/NEnyMnJObOz6qhRowbN6qv+TgoRIcR5O3r0KC8++RxNBVWEYkFR4MAXW/n8vY+5+95fMnbs2F679oQJExg9ayJfrdvNRP8kgr38aW9vx6wGUdBUgSUsgJDQb45r8PXwxuzUU1pa+p3PvX//flZ9+RWnDh0Dl0rwsDDmXbaQBQsWyOThQU5RFBITE2WelhvIb5YQ4rzU1tay4vFnMBdbuTxpAUbd6XNybA4763J28+KTz/H4iqd77ewmnU7HPff+mteCXmPX+i005GdS1FZNpMHC6LjhJA9PRqv5ZtKh0+XC6rJ/5wqaVatW8cZf/o1/s56pgbHoDTryjpfy+tGXyDp5irt//jMpRoToBdLnKIQ4L1u2bKG1sJZFSdPOFCEABp2ehUnT6CiqZ/Pmzb2awWw289M7f8rz//ob9z/3MLOXL0Q3zIdRo0Zh0Hc+QDC7pgiNn4lx48ad9fkqKyt5++XXGO4MZvnI2SQHxxAXEMm8xMksCElj15eb2LFjR6++JiGGKilEhDgHdrudvLw8cnJyaG9vd3cctzpy8BBRen8M2q4bhuk0WmJMwRzen9EnWQICApg6dSp3/vwu2oJ1bMrdR7vdCpzeeTS7pojt1UeZumAmERERZ32erVu34qxqZfKwrqccD/MNJczpzcZ1G3rtdQgxlEk/oxDfwuVysXLlStZ8tpLa4kpUVcU72I/Zl87jqquuGpCT2To6Oti9ezfZ2dkAJCcnM3ny5HPe/Et1udBpzn48ulajweZ09kjWczVmzBjuuPdnvPbSK7yZsw4LHrS7bDgteqZePY8f33bbt35/eXk5gYpXpyGd/xXlE8KxnPzeiC7EkCeFiBBnoaoqr77yCmvf+pxkXShTgyeg1WjJrS3mi3+8Q1F+Ab+577cDaivx7Oxsnn7uKfLL8tB6nT7a3PmlSnxUIr+957fExcV953MkjEhm7ZYjuFQXGqVzp6qqqhS2VTF71NReyf9tZs6cybhx49i9ezeVlZV4eHgwfvz4c9p51Gg00qGefXlvq60dU5C5B9MKIb4mhYgQZ5GVlcXGj1cx0y+F4cExZx4P9PQlujmcLzbsZseMHcyePdttGc9HXV0djz/1GGUdxYy7NAWT5+nenPaWdjK3Hefxpx7jmSefxWKxfOvzzJkzh3WffMW2vAxmxqWhKKcLGlVV2VFwGFegyW07fnp7ezN//vzz/r60tDQ2vLeSqpY6gr38O7U5XE6yW0qZP/vqnoophPgffTJH5G9/+xsxMTGYTCYmT57M3r17++KyQlyU7du3Y2xSSQ6K7tIW6h1AmMuHLRs2uSHZhdm8eTNF1QWkzR59pggB8PDyYOzcVPLLc9m2bdt3Pk9kZCS3/PwO8r2aeOvYGnYWHGZX4RHePraWHFMdN939Y2JjY3vzpfS4cePGkTQ5lVX5uylpOD0EB1Df3sQXJ7dhig24oAJHCPHder1H5L333uOee+7hpZdeYvLkyaxYsYKFCxdy6tQpgoODe/vyQlywqvJKAvTeZz7x/79CPP0pLinv41QXbt+BvXiFmtEZuv7aG4wGzEEm9h3cx5IlS77zuWbPnk1UVBQb1q8nc/9hACanLeCSefMG5D4MOp2OX//2N/zF8AJr9hxGX+pCr2hp1tkIGRnFr3/1c8LCwr77iYQQ563XC5HnnnuO2267jR/96EcAvPTSS6xcuZJXX32V3/3ud719eSEumI+vDwX2trO2N7S34OMfdNb2/sZqs6HTn/1XXmfQYbVaz/n54uPjTx8md0dPpHM/Pz8//vjQ/3Hq1CkyMzNxOp1ER0czYcKEATUPSIiBplcLEZvNxoEDB7j//vvPPKbRaJg3bx67du3qzUsLcdEmT5nC1k/WntlK/H+1WNsodFTz/dkD5xyKxLhEMjdloKpql14eVVVpqmwhaUKSm9L1D4qiMHz4cIYPH+7uKEIMGb06R6Smpgan09llh8WQkBAqKiq6fL3VaqWpqanTHyH6Wl1dHZ999hnbtm2j3UPl3cy1HKvIxelyoqoq+XWlfJq1lfCxCQNmoirA3Llz8cSb/GOFXdpyj+TjrbMMqNcjhBgc+tWqmccff5yHH364z67X3NzM3r17qaurw9vbm4kTJxIQEPDd3ygGrZ07d/KXl16kuqkSvUWLzdNBGRUUH11JXGAkBr0erY+JEQvSuOPOn+Dt7e3uyOcsOTmZH37vZv7z9ivsK80gODoQVVWpLqpBbzVx2w/vOKflu0II0ZN6tRAJDAxEq9VSWVnZ6fHKykpCQ0O7fP3999/PPffcc+bvTU1NREVF9XguVVVZs2YN7//3LdrKGvBQ9bRj4+0gby679nKuvfZaOXFzCMrJyeG5vz6L08fKpNnjzsynaJ3Zxr41B1GMXvzo1ttJTk4mJibmrJNY+7MrrriCmJgY1qxdzeFjpyeZzh49n4ULFvbqQXVCiM7sdjuKosj5RfRyIWIwGBg/fjwbNmxg+fLlwOmdKjds2MDdd9/d5euNRuM57+54MbZt28ZrK14myRXEhIQJeOiN2Jx2Mstz+Pifb2Mymc7kFUPH6jWraXTUMWXahE5FhqePmYkLx5G57hQ+Pj4Dbmnq/1IUhbS0NNLS0nC5XABSdAvRR1RVZe/evaxes5pjJzMBGJ0yhkULL2XChAluTuc+vV6K3XPPPdx0001MmDCBSZMmsWLFClpbW8+soulrLpeLT9//iIgOL9KTvzkEy6DVMz5yBNYCG19+8CkLFizAbO67nRTLysrYsWMH1dXVeHp6MmnSJIYPHz4gP3UPRKqqsmffLoJjArv9N/f08UQxqxw9epRp06a5IWHPczqdHDhwgJKSEvR6PWPGjDmnXUiFEOdPVVXee+893vjgdVQvByEJQaCq7Di5lT0Zu7n1B7cN2Q/AvV6IXHfddVRXV/Pggw9SUVHB2LFjWb16da8dEf5d8vPzKc8uYnF499XnmPAkjuZvIDMzk8mTJ/d6HlVV+eijj/j0jfdRazvww0yramX125+Sdsk0fvbznw3I80wGIrvTgfFblrdqtAoOh6MPE/We48eP8+LfXiS/NBcMLlwOFbPOkxmTZnLnT+/E09PT3RH7lcLCQvbu3UtzczP+/v5MmzZN9kES5+XEiRO8/dFbBA63ED38mykHUUmR5Gbm8993/kNqaurpJfFDTJ8MTt19993dDsW4Q0dHBy6HE09D9zd3s96Ey+E6r/0ULsbmzZv58J9vMs4QzdgRSWg12tPnddSXs+HzLbzqaebOu+7qkyxDmaIojEgayZ6cHZ3eJL5mt9qxNzkHRY9BcXExjz71KPVqFaPmJ+Hp44nqUqksrmL19pXYbDZ+f//vpTcOcDgcvPLKK2z5Yh2aehteGhNNajsfBb7L8huv4corr5R/J3FONm7aSIemlWHJXZeGx42KYVfefjZt2iSFyFAQEhKC3stESWMVI4K7jvWXNlWj9zL1Wo+Nqqrk5ORQUlKCRqPhw3feJ8phYXzciDNfoygKMf7hTLG1s3PtVq66+mq39SANJQvmLWBPxi5Kc8uJiP9mF03VpXJs90nC/MKZMWOGGxP2jK+++oqqljImLxmPRnt6foiiUQiNDkGr07Fr/w5OnjzJiBEjvuOZBr9333mHjW99wXT/kQxPiUGjaHC4nGSUnuL9f7yOxWJh3rx57o4pBoCcvBwsIT7dFq6KouAT7EV+YZ4bkrnfkCtEAgMDSUufzP6PthLjF46H/pvJsQ6Xk90lR4mdmkRSUs9v7FRSUsLL//gn2QeP4Wy20mprp6CokKuHzcDpcqH9fyYNJgfHsPPkCY4ePSqFSB+YMmUKVy+5lg+/fJ+y3AoCI/1x2J3UFNTibwriF7/8FT4+Pu6OeVFcLhdbd20lODbwTBHyvwLD/clR8jlw4MCQL0SamppY//lqxnnHMTLkm2XNOo2WiVEjacxu5ouPPmP27Nmy8kF8J5PRhL317Cc82612DIbeX6zRHw3J357v3/gD8k7l8MHxDaT4xhLs5Ud9ezOZNbloY3350e239nh3a01NDU88/CjtxyuZHzmaqKgQihsq+Vf++1QXVHBCf4yUUan871W1igYNmkEzL6G/UxSFH/3oR6SkpLBu/VpOZp/EpDdzzYIFLFiwYFAMyzidTmw2Kz6e3Q9NKoqCzqilo6Ojj5P1P0ePHqWlsoFRid3PFUsNTeCLvP0UFBSQkJDQx+nEQDNl0hT2/3cPdpsdvaHzkQHWdhvtNTYmXT2p2+91Op0cOnSIgwcP0tHRQXh4OOnp6YNmntKQLERCQkJ48NGH+fyzz9i5fiuHW0vRmwxM/N4lLFt+OcOGDevxa65du5b646VcP3weJp0BgGBvfwIsfrhaVCqLy4kaNgyLzzdHsJc316Catb2SR3RPURQmT57cJxOV3UGn0xEWEk5xRR4R8eFd2h02B/YWh/TAcfqICsWlYtR2f86MSW9Edbqw28/+KVeIr82aNYsvvvqcjI2ZjJo+ArO3BwCtTa0c3X6S+IiEbod+GxoaePrZpzlwdB+q0YHWqMXW6OC9j97hlh/+mEWLFvX1S+lxQ7IQAQgODubHt93GD268kaamJjw9PXttpYCqqmxdu5Fkr4gzRQiASWcgJSqRIyeOYmjXUFVVdaYQsTpsbCs6TOzUJDn3Yohrbm5mx44dFBUVodPpSE1NZdy4cRc0HKAoCovmL2LFy8/SWNOEJfCboSZVVck6lEugd/CgmAtzsSIjI9F5myhurGSYb9cNGAvryzH6mOVUXnFO/Pz8+P19D/D0809zZO0JNObTv3Nqu0LSsOHc++vfdtmpWVVVXnjxBfYc28nImUn4Bp6+PzgdTnIO5/H3V/5GUFAQ48ePd8dL6jFDthD5mslk6vXlsS6Xi7bmViymyC5t6XFplDfWsCP3JPUlLqxeGpo6WshqKcVneBg/+dmdMit/CNu/fz8v/G0F5XVl6Hw0qA6V9z/XkpKYyn333ndBXbOXXHIJ+w/sY9uWLViivAmODMRutVOaU46+w4Of3H4bfn5+vfBqBpb4+HgSxo1k55ZMQrz8Mf7Ph4hmaysZtdlM/f4ifH193RdSDCjx8fG88OwL7N27l5ycHOD00QsTJ07s9oTnU6dOse/IXpImx50pQgC0Oi1JaQkcqDvElyu/lEJEfDetVot/SBCVp+pIofPSLJPOwDVj5lHUXk1zrImD+lI8/b24bP73mD9/PkFBA+eYedGz8vPzeWrFU3SYmpmwdDQG4+kbYXN9C0e2HeTJp5/giceePO8j6o1GI7+99z5SVo5i1bpVlB2oQqPRMmnEdJYuWTrg39R6iqIo3P7TO3is4s+8e3I9w32G4evhTVVzLdnt5URMTOL66693d0wxwBiNRtLT00lPT//Orz169ChW2gkI8+/SpigK4fGhHDlxmObm5gF17tX/SwqRPjJn4SW8k/kvxrU34efReeXFieoCIhOjeeqlFYSFhUkPiABgzZo11FurmTJ/Aormm58Jbz8vRs0cwdENmRw8ePCC5rOYTCauuuoqLr/8curr69Hr9VgsFvnZ+39ERUXx0ON/ZtWqVexYv4WO1hq8h1lYvvBGFi1aNOBXUYn+zeFwoNEqZ/291Oq0uFyuAb+gQQqRPjJv3jz27NjFpzu2M8Yvjlj/cKwOO8cqcslTarjithsID+86efBCOJ1OampqUBSFwMBAOUtkgNq5dwdB0QGdipCveft6gdnFkSNHLmpirU6nk1637xASEsLNN9/MD3/4Q6xWK0ajUX6nRJ+Ijo5GtSq0NrXh6dP1yJGqkhoiw2KxWCzdfPfAIYVIH/H09OT+Pz7Au++8w451WzhYXoCiUQhOjuTWK04Pw1wsp9PJmjVrWPvlaqoKy0CB8LhhLFp2GZdccol82h1AVFXFZrdhNJ592EWjVWTFRh/SaDR4eHi4O4YYQiZMmEBcRDzH95wibc5otDrtmbba8jpayztYdNuiAV8YSyHSh7y9vbnt9tv53vXXU1ZWhl6vZ9iwYT2yGZLL5eKfL/2TzR+sIl4TxLygUaiqyqnMQv517EVKSkq46aabpBgZIBRFITlhOPvzd3W75bzD5sDe7CQqqmubEGJw0Ov1/PJnv+KxJx9hzxcHCYzxw+hhpLa8Hnu9kwXpi1i4cKG7Y140KUTcwNvbm+Tk5B59zoMHD7L107VcEjiG+IBvVudE+4VxvDKPte99zuTJk4f8bpkDyYJ5C9j77G7KCyoJi/lmXw9VVTmxL4sgnxBZZivEIDd8+HCefOxp1q5dy9adW2iraWP0sDTm3zif9PT0QbGr78B/BQKAzZs249thIC4uksbGRsrKy2hpakGn0xIQFIi+3sHWLVukEBlApk6dyvKFV/Lp6o8pz6sgKDIAu81BVUENPlo/fnb3z2WZrRBDQFhYGDfddBM33XSTu6P0CilEBomygmLCzAHk5eVSkJWH1qpi1hnpcDnJKqmiVVtH1vFT7o4pzoNGo+G2225j5MiRrF23hlO5p9BpdSxNv4JFCxeRmJjo7ohCCHHRpBAZJDy9vSirPkZ7tUKQ1ocAf8uZc2vsLieHygo4cOAATqcTrVb7rc8l+g+NRnNmzwGn04lGo5F5PkKIQWVgT7UVZ0yeMZUj1blo7BBotnQ6PK/dZaPDQ0Vpd3Do0CF3RRQXSavVShEihBh0pBAZJCZMmECzzk6GvZAqW+PpMwxUlTJrHeubMgkNCSXSFMipUzI8I4QQov+QoZlB4vRKnCTa8mpY13YMY6sWFRWbTiUsPIRlqbNZmbsTVVXdHVUIIYQ4QwqRQcJsNjNi7Cha2goYFZJAWVM1AMN8Q4mwBFPX3kSLwSETHIUQQvQrUogMEoqisOCyRfxt/7PE2tqZGj36zHyCdruV9Xl7iUyLIy0tzc1JhRBDjd1uZ9euXWzYvIGKinL8fP2YOWMWs2bNwtPT093xekVZWRn5+fkoisKIESNkqf23kEJkEElPT6fghwWsevtTjh7PI9wcSLu9gyJHLYEjo/jFb341KDa/EUIMHB0dHTzz3DNs3bsZva8Wn0BvKmtK2f/PvazfuI7f/+4BAgMD3R2zx9TX1/Ovf7/Mrv27aGprRFEU/L38mTd7AT/84Q8xmUzujtjvKGo/njTQ1NSExWKhsbFRTrk8R6qqcuzYMTZt3EhRTgEmsweTpk9h5syZA/5gJCHEwPPGG2/w2kevMnJmEr5B37wHtbd2kLE+k9nj5vKHB/7oxoQ9p7W1lQcf+iOH8zKIGR1FaHQwLqeL0rxySo6WM3/aIn5772/dfjaMy+Xi0KFDbNy0keLSIry9fJg+dTrp6el4eXn1yDXO5/4tH48HGUVRGDVqFKNGjXJ3FHGOXC6X29+YhOgNbW1trN24hqCEgE5FCICHp4m4cdHsP7yPwsJCoqOj3ZSy52zZsoXDWYcYu3AUZu/TByRqtBqih0fhZfFk6+7NLDqyiLFjx7oto9Pp5KV/vsTK9V/i8rDjE+RNflkHu1/ayao1X/HA/X8gJCTku5+oB0khIoQbNDc3s27dOtZvWkdNXQ2+Pr7MmzOfBQsW4Ovr6+54QvSIkpISahtrSE6L67Y9JDKIvD2F5OXlnVMhoqpqv95LZ9PWTXiFeJwpQv5XQJg/OcZ8du7c6dZCZM2aNXy29hNiJkYSOiz4zOMdrR1kbMhkxYsreOyRx/r031kKESH6WH19PX9+9E8cyTmEJdIbn3hv6huqePntf7Bl22b+748PERwc/J3PI0R/d3onYA0up6vbdpfLhQrfetNraGhg/fr1bF23iYbaevyDA5m9YC6XXHIJ3t7evZT8wtTX1+FpMZ+13ehloL6hrtdz1NTUsGXLFvYe2IvdbiM5YThz584lLi6Olau+xDPM1KkIATB5mkienEDm7sOcPHmyT88lk0JEiD72+uuvczgvg7SFqXh4ffPJyTrKyoG1h/nXv//FA79/wI0JhegZw4YNIywonLK8ciwBXecJlBdU4mv2PetNr7q6msce+jOVh/NJ8AgjzhxB9ak63j3yb3Zu3cH9f/x9v1qNEhIcwpGy0m7bVFWlvamDoMDe/ZBx4sQJnnjmcUpri/EO80Sr05K5/hCrNn7FlYuvoqSyhIjx3Q+9+AX7csqVS3Z2dp8WIjIwLUQfqq2tZduerQxLCe9UhAAYPYzEjolm36G9lJSU9Fkmm82G1Wrts+uJocNgMLBk0RIaClsoz6/otKFiQ3UjRUdKmTVtzlnnJPzn369Qn1HEdYlzmRmXxqjQeOYkTOTa+NmU7T7Fm2+80Vcv5ZzMmTWXjlo7TXXNXdoqCqswOj1IT0/vteu3trbyzPNPU+0oZ9KycaROG8nISclMWToBc5Setz54k+amJr5riUpfD39Jj4gQfaikpITmtibio0Z22x4SFUT+vmKKioqIjIzs1SwHDhxg1eqvOHzsMADDE0ewcP5Cpk+f3q/H4Qcah8OBzWbDw8NjSP67Ll26lPLyclZu+JLCYyV4WExYW23QqiE9bTa33nprt99XWlrK4Z0HmBE2Ek9D56Ldx+TFhKBk9m3aSe33v09AQEBfvJTvlJ6eztbtW9mxaSvhw0MIjQ7G6XRRmltOXX4Dl8+/kuHDh/fa9Xfs2EFhZQHjF49Gp//m9q4oCglj4qgtPYC93EF5fgVBEV3/zWrL6zBpPEhOTu61jN2RQkSIPqTT6dBoNNhtDowexi7tdpsDjaJBr9f3ao7PP/+cf7/xMnaTldCEYBRFIaNoLwee28f38m7gxhtvHJI3zZ5UXFzMVytXsnvTDhxWO34hAcy99PSEZLP57PMIBhutVstPfvITZs+ezdatW6msqsRisTBt6jTGjRt31r2NiouLsTa2EZsc0W17rH84OwtOUlxc3G8KEaPRyH333sc77wxj/ZZ1ZJ46hUbREOwfwu3fv54rrriiV3+vsrKy0PtoMHoYum0PGhZAeU0N7ZU2SnPLCI8LO5OnrbmN7H15TB2V3uc7cEshIkQfSkhIICwgnOKsUkZMTOrSXpxdSpBvcK+OzxYWFvLft1/FK9pEwphvemYiE8Ipzi7l/c/fY8yYMYwZM6bXMgx2J0+e5Jk/PYG9oJ6RfjF4Gc2U51bz7rP/5sDe/fzugfsH7Y6i3fl6d9Hz+bnWarVoNAo2hx2dQdul3eawo2g1/W6TRk9PT3784x9z7bXXUlRUhFarJTY2tk82MlMU5TvPEwuPCGN2+lw+XfUxxSfK8Ar0xNpqxVbvZHTSOH5+989laEaIwcxoNLJs8eX8/b9/pdhSQmRCBIrm9JtHeX4lVVm13HLdj3tsU6HubN68mWZ7IympE04/oKq0trbhcDoIGRZIWXYFGzdulELkAjkcDl568W8Yi9u5OmUBOs3pm2hyUDSpbY18unU7n6Z8yve//303J+3fRowYgVeoH8cq85jYzVDmsco8/CKC+u35WT4+Pn2+n9Pw4cP5dK2Ktd3apcdVVVWqi2pZNGkJt9xyC1OmTGHLli0UlxXjFeHFtKnTmDp1qlt2fpVCRIg+tmzZMhoaGvj0q48pPr4fvVmLo92Fh+LJVYuu4dprr+3V6+cV5GEO9EDRKFRXV5Ofn0d9Yz0u1YVeq0e1acg8fqRXMwxmhw8fpvxUIVdETztThHwtwGxhpFcUW9ds5Oqrr8Zo7Do8J04vca+oqCB1chq7Pt6AT7UnSYHDUBQFl+riRGU+x22l3HDFrfJv+D+mTp1K9AdxHN52jHGzU9EbTg/xqi6VrEO5eDg9WbBgAYqikJKSQkpKipsTnyaFiBB9TKPRcPPNNzNnzhx27dpFfX09Pj4+TJ06ldjY2F7vFvUwmXBYnVSUl3Pk2BGcWgfeQZ5odTqs7VaKcytoL3RQVVUl+5lcgNLSUgw2DYGevt22x/iFcaLmEDU1NUREdD//Yaiqra3l7XfeZuvOLbR0NKOg0K7r4PPSXYRWnsBbMdGotuP007PoxuUsW7bM3ZH7FbPZzG/v+S1PPPM4ez8/hGewCZ1eR1NlCz56X35yy539pvj4X1KICOEm0dHRbtnWesL4iazbvoajmcfAQyUo5JuJfhqNBq1Dh1Pn4OOPP+YnP/lJn+f7WltbG7t37+bkyZOoqkpCQgLTp0/v1WGrnqDX67HjxOlyotV0ndvQbreiaHt/QvJA09DQwMN/fpjjxUeIHBFOdHgi1g4bhSeKaSpqIyAljoSEBPz8/Jg6dSoxMTHujtwvJSUl8dxTz7Nt2zb2Z+zHZrORPCmZOXPm9Ntt9KUQET3C4XBQX1+PTqfD19dXVlz0Y9OmTcPyT39OHjlB4sxhZx63tdkpy6zG2+xDYmo8m3ds4sYbb3TLpMrc3FyeevZJ8kpz0PpoUAD7WhfvfhjNb375m375qe5rY8eO5S0/D7JqihgRHNupTVVVjlblEjcjmaCgIDcl7J9WrlzJ8cJM0haOxuR5ep6C2duMX5AvWRm5lFQW84c//AF/f383J+3/fH19Wbp0KUuXLnV3lHMihYi4KHa7nZUrV7Lhq7XUlVWhaDTEjkpi8bIlTJkyxd3xRDfMZjOLFy3mYOZ+yvbVojUDioKj1YXF28LkRRPRaBQKS8uor6/v80KkqamJJ55+nOLmAsZdOurMTcnWYSNzx3GeeOZxnn3yuX47bBQWFsbUBTPZ9u5qDFo9cf4RKMrp1R97io9S42XjB8uXSbH+PxwOB+s2rSUw1u/M//f/ihsVzd68DHbt2sXixYvdkFD0JilExAWz2+08/8yzHFi1gyRDKGP9U7A7HRzfnscLB5+i5u5bWLJkibtjim5ER0cTlxTHsNRw6msaQD29vXN4XCg6vY7S3HL0WkOfD4OoqsrGjRvJL89lwtIxGIzf7IdgMBkYOyuVPZ8fZPPmzb0+qfdi3PrjH2O32dmyfjs7KjLxUIw00oYp1MLNt93BpEmT3B2xX2lra6OppYnAWEu37Tq9Dp2Hlrq63j+nRfQ9KUTEBdu6dSv71+xgScQkwn2+6WZOCIxid2Em7/37TSZMmEBoaKgbU4rujB8/nkCfYOx2O2NmdF5iqLpUik+Wcknawj47CdhqtbJhwwZWr1vNxk0b6PBqwTfXk2HDhnUqhrQ6LT7hXuzdv6dfFyImk4lf/OqX5F2+jH379tHe3k5wcDDTpk3rV2ej9BceHh6YjCbamtq6bXc5XTg6nP3ukDvRM6QQERds09oNROHbqQj52sSokRw/vprt27dz9dVXuyGd+DZ+fn5cueRK/vPeK7hceUQPj8RgNNBU10x2Ri7++kCuWH5Fn2SxWq08+dQTbD+wFXOoCb2fFpsW8ktzqagsZ9yYNPz8v7l56/Q6rDZbn2S7GIqiEB8fT3x8vLuj9Ht6vZ7Z0+fw/pq3GZYc2Wl7coCSnDK8DRbpSRqkpBARF0RVVUryixjt0/1hVVqNlkCNF+Xl5X2cTJyra6+9Fq1Wy6dffsyB7ExUxYVeMRA/LInbb72dpKSuO7/2hpUrV7LtwBZGzErEN9ACKhw/3kxQVCB15XUcPZ7J9Gkz0Gg0qKpKfVkDs2fP75Nsou8sWbKEXXt3sn/dIRLHxeEf6ofdZqfoVCnV2XV8b+kNhIeHuzum6AVSiIgLoigKHp5mWhq770oFaHOdPuhL9E8ajYZrrrmGRYsWcejQIdrb2wkJCWHUqFFotV2XnfYGh8PB6nWrsER5ny5CgJiRw8g+lkNVVi0BcRbqSxuprq4mJCSE/GOFmPFm7ty5fZJP9J3w8HD+7w8P8dLL/+Do3qOctOWioBDsF8It1/24Xw/FiYsjhYi4YFPnzGDdPz9kgnMkBm3nPRHKm2po9nAwfvx4N6UT58rb27tXjyb/Ng0NDVTVVhGWFnjmMR9/b8ZNH8PB7Ycorq3EpXGQm5lP4cFSDHYTt3z/x716gqlwn5iYGB5/9Amys7MpKyvDYDCQmpoqc0MGOSlExAVbsGABO9Zv4cuT25gVO54AswVVVSmoL2NL2WFGXjJOzisR30qv16PVaLBb7Z0ejxsVg7efN7mZ+RzbfRwHCgsXLWTB/AXyMzXIKYpCUlJSnw0NCveTQkRcsNDQUH7zx9/xt+df5KOTO/CwaXDiwuWjJ/XSKdz187vRaDTujin6MYvFQurIMWw6vI5meyNOpxMPkwehoaEERQTgdDox2Tx58em/yE6aQgxSUoiIi5KYmMgzLz5PRkbGmSOvU1NTiYuLkw2bxHdqb2+nrraOnEN5lNQU4hvtDS7Izs0ixBJKS7GVRTMu67dbUw9Fdrud2tpadDodAQEBA/L33Ol0kpGRwc5dO6mrryMoIIgZM2aQmpoqH57cQFFVVXV3iLNpamrCYrHQ2NiIj4+Pu+MIIXrYX//6Vz5Z/yEeASYKswrpcHag99TQ2tCBvc7B4kuWseL5FW7ZZl50ZrVa+eKLL1i9fjXVdZVoFC3DE0awbMkypk6d6u5456y9vZ3nVzzH1r1bwOzC5G2kvbEDrdXA/PQF3H333XIOUA84n/u39IgIIdyivLycjdvXEz0mksiEcEZMTKI4q5TWxla08Voaa5rw9vGSlVf9gM1m4+lnnmLLvk34DvMmckIIDruDzJyDZD57hJ/c/NMBs4vyG2+8wYY96xkxIwH/kG/2p6kqqWHl5i8ICQnhhhtucGPCoUcKESGEWxw9epSmjkZGxiYA4OFpImncN5t/1ZTVkrM/h4qKCtk/ws02bdrE1n1bGDEzEd+gb7ZhDxkWTFZGLv996z9MmjSp357/87X6+nrWb15LZEpopyIEIDgykMaERlat+4rly5djNpvdlHLokcEwMejU19ezZs0a3n//fdasWUNDQ4O7I4luOBwOFEVBo+3+bUhn0OFSXdjt9m7bRd9Zt2EtHkGGTkXI1+JTY2hor2P79u1uSHZ+Tp06RV1LHRFxYd22h8eFUd1QRV5eXh8nG9qkR0QMGqqq8sknn/Dex+9S11qL1qDgsLoIfDOQ66/+PsuWyYmn/UlUVBR6xUhDdWO3N7jqkhr8ffwJCel+917RN1wuF8WlxfjF+nbbrtVp0fvoqKys7NtgF8DlcgGgaLp/H9BoNaB+83Wib0iPiBg0Vq9ezb/e+CeaUBcTl4xh0pI0Ji4dA0FO/vnaP1i3bp27I4r/MXLkSEbEj+DU/hwcNkentub6Fqpy61gwdyEmU9dj4UXfURQFs4eZjraObttVVcVpdQ6I/6f4+Hh8zBYqCrsvmioKKvHz9pel4n1MChExKFitVj789APMEUYSx8ShM5zu7NMb9CSNi8cUqufDTz6Qbv5+RKPR8LO7fk6E1zD2rjxIVkYOxdmlZO44ztGNJ5k2ZgZXXnmlu2MOeYqiMDt9DjUF9Tjsji7tdZUN6OxGJkyY4IZ05yckJIQZk9MpPFJCa1Nrp7bG2ibKTlZyyax5skqzj8nQjBgUTp06RWlVCSnzErttjx4RxalNeZw6dYpRo0Z1+zWi78XExPD4n59g7dq1bNyygdbKVqJD4pl/2wIuueSSAfEpeyhYsGABm7ZtJGPjEYZPSsLbzwvVpVJZXEXegSJmjZ9DSkqKu2Oek1tvuZXKqgoOrjuAKUCPp8WTloZWbHUO0sfNlhUzbiCFiBgUOjo6cDgdmMzd37hMHkYcTgcdHd13Lwv3CQkJ4cYbb+QHP/gBLperzw7cE+cuLCyMB+77A3/524uc2HQKl86Jy+HCU+/NwumX8tOf3DlgNgKzWCw89ODDbN++nS3btlBTV0NyzCjm/HAO06ZNw2AwuDvikCOFiBgUQkJC8DR5UltRR3BkUJf22oo6zEYzoaGhbkgnzoWiKFKE9GOJiYk8/+wKDh8+TFFRETqdjtTU1AG5662Hhwfz589n/vz57o4ikEJEDBLDhg1jbEoauw5vwz/Y78wcEQCHzUH+kSJmjZlLZGSkG1MKMbBptVrS0tJIS0tzdxQxiEghIgYFRVG49Ue3UvxIEXtXHSQsMQRvXy+a61soz64kJjCem2/6kbtjCiGE+H/IWTNiUCkrK+Ozzz5jy87NdFjbMRk9mDNjLsuWLSMsrPtNjIQQQvSs87l/SyEiBqX29nZaWlrw8pKzSoQQA4/T6WTbtm1s2LienIIcPIwepE+byYIFC4iIiHB3vO8khYgQQggxQDkcDv7617+yavNK9P5aAsL8sLZbqSmsJ8wngt/95v5+v1xaTt8VQvQ7drudbdu2sX7jOgqLC/Hy9GJ2+hzmzZtHUFDXlU5CDFXr16/nq81fEj8lmqCIgDOPx6c6ydh8hBf+uoK/rPgrRqPRjSl7zsBY+C2EGNBsNhvPPvcMT7z4GJnlGWjDXdTpqnjl/X9y3wO/JT8/390RhegXVFVl9dpVmIONnYoQOH2uz8jJwykoz2fv3r1uStjzpEdECNHrvvzySzbsWkfyjPhOx687xjg4uOEwL/71BZ59+rkBsymWEL2lpaWF4rIiglICu203e3ugmFSKior6OFnvkd96IUSvstvtrF63CkuUd6ciBEBn0JE8KZFT+Sc5cuSImxIK0X9otVoUjQanw9ltu6qqqA51UG3+J4WIEKJX1dTUUFlbQUhU9/NALAE+ODQ2CgoK+jaYEP2Q2WxmbMpYynIr6G4tSX1VAwbVRGpqqhvS9Y5eK0QeffRRpk2bhtlsxtfXt7cuI4To53Q6HYqiwek8yyc8l4rLqaLTyUjxxVBVlcLCQvbt28eRI0fkpOkBbMnipZhsZk7uz+7UM9JY28TJXTmkpU5g5MiRbkzYs3rtN99ms3HNNdcwdepUXnnlld66jBCinwsMDCQpNpkTOUe6PQeoqqQaT72XnIp8EQoLC3n1v69y6NhB2jpa0Wp1RIYM45orrmHBggUoiuLuiOI8jB07lrtu+xn/+u/L7P7sIEaLDofVicaqY9LIKfzqF78aVP+nvVaIPPzwwwD897//7a1LiF7U2trKwYMHaWlpwc/Pj3Hjxg2apWJDQVFRERs3buTAof24XC5Gp4xh3rx5xMfH93kWRVFYungpx1ZkkpuZT2xK9JlJqQ3VjeTsL2De5IUD8vC0/qC0tJSH/vx/lLUUETsuGv+QRDrarBScKOKFfz5PR0cHl19+ubtjivM0f/58xo4dy7Zt2ygtLcVkMjFu3DjGjh076HoPB9erERdNVVVWrVrFx2++T1NpDXqXBrtOxT86hO/fehPp6enujii+w86dO1nxt+ep66jBL8KColH4cP0J1mxazU9vvdMtJ47OmDGDW6tv483332B3zn6MFgOOdgcaq54ZY2Zx91139+onPKvVitVqxdPTc1BN8gP47LPPKG4oYNJlaej0p9/SvSw6Rk0ZQVZGDu98+DZz5syRTSEHoKCgIK688kp3x+h1/aoQ+frN4mtNTU1uTDM0rVmzhtdXvEwyISyLm4fZYKKpo5U9hUd56ckXMBgMTJ482d0xxVlUVlby4j9ewO7dztQFE1A0p2/uaprKqYM5/OOVvxMfH09cXFyf5lIUhSuvvJLJkyezbds2Kior8DR7MmHCBEaPHt1rxUFeXh5frvySHXu2Y3fY8fcNYOElC7nsssvw9PTslWv2pba2Njbv2ER4UuiZIuR/xY6MZt+Xh9m7dy/z5s1zQ0Ihvtt5TVb93e9+h6Io3/rn5MmTFxzm8ccfx2KxnPkTFRV1wc8lzp/VauXTdz8k0RVEeuw4zAYTAD4mT+YlTiKoychH736Ay+Vyc1JxNps3b6ampYqUKcPPFCFwuhBITkug2dHA+vXr3ZYvIiKC733ve/zyF7/ktttuY9y4cb1WhBw5coQHHvo9X2z/FFO0lqBUC42Gav751t955LFHaG1t7ZXr9qXm5mas9g68/by7bdcb9WgNCg0NDX0bTIjzcF49Ir/+9a+5+eabv/VrLuaT1v33388999xz5u9NTU1SjPShzMxM6gorWTBsVpc2RVFIixjOqhMZFBQU9PknanFujp88jmeQBxpt188YiqLgG27h2MmjbkjWt+x2O3976a80aeqZfFnamTkpIcOCaUlqZd+G3Xz22WfccMMNbk56cby9vfEwetBc30xAqF+XdrvVjsumyspF0a+dVyESFBTUq2dCGI1GmRDpRm1tbbjsTryN3XdZ+xg9cdocg+KT5GCl1WhRXWc/x1JVVRRl8G8fdPDgQQrK8hk1P6nLbq1eFk8CY/1Yu3ENV111lVvfc1wuF5mZmezZs4empiaCg4OZPn06cXFx5zRnxmw2M3PqbD7e+D6R8eHoDJ3f0vOPFxLgHcSkSZN66yUMSA6Hg46ODkwm06Cb+DkQ9dr/QFFREXV1dRQVFeF0Ojl06BAACQkJeHl59dZlxUUICgpCZzZQ0VxLmE/X7YXLm2vQexoJDOx+62HhfqNTR7P1wCYcNkeXm5LL5aKhtJHLrxjvpnR9p6ysDFXvwtOn+6I6ICyA4uIK6uvrCQ0N7eN0p7W3t/PCiyvYumcLToMNvVmPdbeNj778gOWXXslNN910TlveL1++nP2H9rF/3SFiU4fhH+pHR5uVwhPFdFTY+cnNd8pE1f9fdXU1K1euZOOW9bS2t+Ll6c282fO57LLLCAgI+O4nEL2i1wqRBx98kNdee+3M38eNGwfApk2bmD17dm9dVlyE5ORkokbGs3v/UZaNmIn2f94EbU47+8tPkrp4AmFhYW5MKb7NzJkz+fjzjzi87Shj0kedKUacDidHd54g0DOYuXPnujll7zMajbjsLlxOV7fDVLYOGzqtDoPB4IZ0p7366qus27WW4dPiCQjzB073WJXmlPHOZ28RHBzM4sWLv/N5wsPDeegPD/Of1/5DxuED5O8tRqvVERUyjKt/co1bVkn1R2VlZTz8yEPkVmQTFBdAgK8PTXUtvPbJK+zcu5OH/vAQISEh7o45JClqd3vI9hNNTU1YLBYaGxulou8jx44d4+mHH8dQ2sHYkET8PHyobq0noyoLQ2Igv//TH2W/h37u6NGjPPXcU5TWFmMONKJoFFqrOwj2DuFXP7tnSHTTl5WVcdev7sRvuBdhMSG0NLaiKArevl6gwP51GUxJTOfBPz7olo2hqqqq+OnPf4JPkgdRiRFd2o/tPkkQYfz1hb+d19BBcXExlZWVmEwmkpOT0ev1PRl7QHvk0T+z5fBGJiwYi974zb+LrcPG/jWHmD/pUu777X1uTDi4nM/9WwbHBrivV7D01KmlKSkp/P6RB/n4gw/ZuecQzho7Wg8D46+eydXXXCOThweAUaNG8cKzL7Bt2zYyjx7BpaqMXDSSmTNn9uocr/4kPDyc2dPm8O83X8ausYFGRVEUPL08MRlNBHgEs2zpMrftTnn8+HEa2uoZHhvbbXtEQhh5O4opKio6r4nhUVFR8jvajeLiYvYf3kfsmOhORQiAwWQgJjWK3Qd2UVFR4bahuqFMCpEBSFVVMjIyWLd6DccOZgKQkpbK/EULGTdu3EW/uSYlJfG7B35PTU0NTU1N+Pn54efXdUa+6L/8/PxYtmwZy5Ytc3cUt3A4HDS3NONUnDg9bBj99Cio1FRW4SpUmHX1JYwdOxZVVcnLy2PXrl1nPsFNmzaNmJiYXi1SznyA6GbYCECr0+JyqWc9n0ecn7KyMlo6WkgJT+y2PTAigKKD5ZSVlUkh4gZSiAxAn332Ge/983V8m3WM9T/96Sdn1SGe3rqPa++4kSuuuKJHrhMYGCgTU8WAtGPHDrbu28zca9PRm3XUVNfgcDrwmOSBrcHBsexMsrKy2LhxI6s2fkW72oLOrMPR5uT9z95lyfxl3HLLLb22x0lMTAyeRi+qS2sJjuz6O1ZZVI2/jz/h4eG9cv2hxmAwoNVosbbbMHt7dGm3ddjRarRunTM0lEkhMsBkZ2fzwb/fZIwmkgkp35y+ODoskf0lx/nwlbcYNWoUiYndV/5CDAUbNm3A4K/DP+R0T5639zcbfqkRKrtz97NixQpyyrOIHhdOWOxwFEVBdamU5pXz/pfv4u/vz1VXXdUr+WJjY0lLHc+Og1uwBHhj9PhmCXFTXTOV2TX88IqbB8Xur/3BiBEjCAsMpyirhOHju743Fp0qISIkiqSkJDekE4N/Q4FBZvOmTejrHYyPGNGlbXzECPR1DjZt3OiGZEL0H8WlRVgCu99tVFEUDN56du/fRWCCH+FxYWeGYRSNQmRCOP6xPnyx6nM6Ojp6JZ+iKPz0jp+SFDaSA18d4eiuE+QfK+TQlkyOb8pmxtiZXHPNNb1y7aHIZDKxfMkVNBQ0U3C8CJfz9NCY0+Ek72gBLSXtLF+yXHpE3ER6RAaYguw8ojyCuh2/VhSFKHMQ+Vm5bkgmRP9h8fGlqKX2rO2NdU2029qJSuh+6CMqKYKj67LIyspi9OjRvZIxJCSEx/78GJs2bWLjlg00VNYzMmwMl1x3CTNnzuyXmzs2NTWxd+9e6uvr8fHxYdKkSQNm/tiyZctoaWnh4y8/YvfJA+jNWuxtTixGP26+7pZzWioteocUIgOM3mig1WE7a7vVacPD1P/ewIToS7NmzOJvrx3G1mHDYOr8KbehphFXC1gs3l02ffuazqDD5XLhcDh6NafFYmH58uUsX768V69zsb4+lfuNd1+nuqkKnVGD0+rC7/UArrvye1x55ZVuW4F0rjQaDT/4wQ+YN28eu3fvprGxEV9fX6ZOnUpwcLC74w1pUogMMGmTJvD25oN0OGyYdJ3fYDscNoocdVw/afAfGy3Et5kzZw5rN6zhwPojJE2Ixz/EF1SoKKoi/2AhU8ZOI7coh6riGsLjuq6SqCqqxtvDR5bC/v82bdrE3175K15RRibOHIPeqMdhc1Bwsph/v/kyBoOBpUuXujvmOQkNDe33hd9QI3NEBpiZM2filxTOl6e202z95syXZmsrK09txy8hjFmzuh5aJ8RQ4uvryx9//yDj4ydRuKeUXZ/sZ9cn+6nOrGfh9Mt4+KGHmT5pOgWZRXS0dp4H0t7aQdGxMmZMTh8y+658G4fDwYeffIA+SCF5fOKZfTh0Bh0Jo2PxijLx0Wcf9tp8GjH4SY/IAOPr68tvHriP5598hndObcLPeXopWr22neARUfzqd7+RkzaF4PSmZo8/+jgnT54kPz8frVbLyJEjz/Ry3PKjWyktK+XgmkwsEd54+3rRXN9CY2kzoxPGctNNN7n5FfQPOTk5FJQWkDiz+x2Vo4cPI3PtSY4fP05aWlofpxODgRQiA1B8fDzP/mUFe/bsISsrCzi9CdmkSZMwmUxuTidE/6EoCiNGjGDEiK6rzAIDA/nzw4+wbt06NmxeT21+LSH+kfzgpvnMmzev05LfocxqteJ0OTCZu39v8fA04XQ6pEdEXDApRAYoo9HIzJkzmTlzprujCDFg+fj4cNVVV3HVVVehquoFTbj8enfWhoYGLBYL8fHx/X7i5vkIDg7GbPSkrqKOsNiu82lqyuswmzzlwDhxwaQQEUIIuKDi4ciRI7zx1uucyD2BzW7FoDcyPG4437/+B2dOHB/owsLCmJw2mQ0H1hIYHtDprBaH3UHu4XwmJk85rzNxhPhfUogIIcQFOHLkCI888SeadY3ETY7Bx8+L5oYWjmdm8ujTj/DAvX8YNMXID2+8idz8XPatyiAsMQRvf29aGlooy6og0jeaW2/58aDqBRJ9S1FVVXV3iLM5n2OEhRCir6iqym9/dy9Hyw8zYd7YTjdhVVU5uPEwSYEpPPvUsz12Mra7VVZW8tlnn7Fp20barW0Y9EZmTpvF8suXExkZ6e54op85n/u39IgIIcR5ys3N5UTuCeImdz2lV1EU4kfHkrXjFNnZ2SQnJ7spZc8KCQnh9ttv58Ybb6S5uRkvLy/MZrO7Y4lBQAoRIYQ4Tw0NDdjsHfj4e3Xb7u3nhdXeQUNDQ98G6wMeHh54eHQ9wVaICzU4+gyFEKIPWSwWDHojzfUt3bY3N7Rg1BtlSFmIcyCFiBBCnKf4+HiSY4eTl1nI/zvNTlVV8o4UED8scdAMywjRm6QQEUKI86TRaPjBDTfiYfXi4MYjNFQ34nQ4aahpJGPTEQztZm684cZBM1FViN4kq2aEEOICHTx4kNfffI3swiysdisGnZGE6ERuvOFGJk6c6O54QriNrJoRQog+kJaWxtixY8nKyjqzs2pycrL0hAhxHqQQEUKIi6DRaBg+fHivX6ejo4Pq6mr0ej0hISGygZgYNKQQEUKIfqy1tZVPPvmEtRvXUN9Uj1ajITl+OJcvXc60adPcHa9f6OjoYO/evWcOAU1OTmbSpEkYjUY3JxPnQgoRIYTop9ra2njs8UfZc3QXQfH+xI6KwGa1cyz7CMefO8ZPG+7isssuc3dMt8rNzeXpZ58itzQHrefpx5xfQHxUIvf+6l7i4+PdG1B8JylEhBCin1q3bh17j+4m9ZIRePt+s3lacGQgpw5k89+3/sPkyZMJCAhwY0r3qa+v5/GnHqO0tZCxi0bi4XV6o7X2lnYyt5/g8acf55knnsHX19e9QcW3khlVQggqKyv54IMPeOrpp3jxxRfZtm0bVqvV3bGGNFVVWbN+Dd7hnp2KkK/Fj46lrrWGnTt3uiFd/7B161YKKvMYOzv1TBEC4OHlwbg5qRRU5LJt2zY3JhTnQnpEhBji1q9fz8uvvkRdey0mPwNOu5MvNnzGyPhR/O7e3xEWFubuiEOS1WqlurYK/2Tfbtt1eh16Lx3V1dV9G6wf2XdgL57BHuiN+i5teqMec5CJffv3snTpUjekE+dKChEhhrCjR4/y13/9BX0ITEkbj0Z7upO0rbmNw5uP8MxzT/Pk40+h08lbRV8zGAyYDEbaWzq6bVdVFUeHc0if+9Jh7ei2CPma3qjHapOevf5OhmaEGMJWrV5Fh7aF4ROSzhQhAGZvM6NmjOBY9lEyMjLO+fnsdjsZGRls27aNY8eO4XK5eiP2kKDRaJg1Yw6VeTU4Hc4u7ZXF1XgoZiZMmOCGdP1DYlwSjRVNXbbZh9OFWlNFM/GxCW5IJs6HfMwRYohyOBzsz9hHSGxwt3tSePt5oZqcHDt27Dt3CVVVlc2bN/PWe29RUlGEzWnDpDeREJ3ErTffypgxY3rrZQxql156KVt3beXA+sMkT0zAEuCDy+miLK+coiNlLEpfTELC0L3Rzpkzh1UbVpJ/rJC4UTGd2vKOFuCp8WHu3LnuCSfOmRQiQgxRqqriUl1otWfv2lY0nFOvxsaNG1nxj+fRBUHK/ETM3maaapvJOXySR5/8Mw/+/iFGjRrVk/GHhIiICP74uz/y17//haytp3AoDlSnCx+TL1fMv5pbb711SG9slpSUxA+/dzP/efsV9pdlEDQsEICqwhp0HUZu/cGPh3ShNlBIISLEEKXX60mOT+ZQyQEiEyO6tHe0WXG2qsTGxn7r81itVt567010QZA6beSZxy2BPqTNGcO+dQd57/13SUn585C+aV6oxMREnn92BUeOHKGkpAS9Xs+YMWMIDQ11d7R+4YorriAmJoZVq1dx5NhhAGamzmHhgkWkpaW5OV3/VVJSwq5du84cTTB16lSioqLckkUKESGGsIULFnHg+f2U5VUQHvfNjc3ldHFs1wmGhcQwZcqUb32OzMxMSqtKSF3QdZtzRaMQkxLNkYzDlJaWEhkZ2eOvYSjQaDSMHTuWsWPHujtKv6MoCmlpaaSlpZ3pvZOzfs7O5XLxxhtv8OlXn9Bib0TnqcPR5uDtD99i6cJl3HzzzWi12j7NJIWIEEPYjBkzuOrUNXz81YeU5ZTjF+aL3eagrriBEO9wfvXze75zVUZzczMOlwOzd/df52UxY7PbaG5u7o2XIMQZUoB8t88//5y3P3mDsFHBpCQmoNFoUF0qJbllvPv52/j4+HDNNdf0aSYpRIQYwhRF4dZbT08mXbd+Hdl5WXgbjCxdfiWXXHIJ4eHh3/kcvr6+6LV6mhtaut14q7G2GaPBhJ+fX2+8BCHEObJarXy28lMs0V4MS/6md1LRKEQlRtDe0s4Xqz5n8eLFmM3mPsslhYgQQ5yiKEycOPE7V8acTWpqKrERceQcymPsrNRO80BcTheFx4qZOXqOzGkQws2ysrIorykjZV5St+1RSZEcWX2CkydP9un8GunHEkJcFJ1Ox49+eAv6Vg8ObDhMbXkdHa0dVBZVsXfNQYJNYVz/vRvcHVOIIc9ut+NyudAbu++D0Bt0uFxO7HZ7n+aSHhEhxEWbNGkSf/jtH3nnvXc4ufcEdocNk8HE9NRZ/OCGH8gJqOK8tbW1sWfPHvLz89FoNIwcOZK0tDTZ5fciRERE4OXhTXVJLRHxXY9uqC6txdPDu89Xz8j/qBCiR6SlpTFu3DgKCgpobm4mICCAiIiuy4LFN6xWK3v37mXv3r00tzUTFR7FzJkzSUhIGNJLnY8dO8ZzLzxLUWUBWk8F1QXKp1pGJqRw769/K+cfXaCQkBCmTpjGmt0rCQz3x+hhPNNmbbeRf7iQeRMXntPcsJ6kqN3tjdtPNDU1YbFYaGxsxMfHx91xhBCix9TW1vLEU09w+ORBdBYNeg89bXXtmBUvrll2Hd///veHZDFSXl7Ob39/L3VqFSlTR2Ayn75ZNje0cHTbCUZGpPLUE09jNBq/45lEd2pqavjTIw9zvCATv2G++Ph70dzQSl1hA8mRI3jwD/9HSEjIRV/nfO7f0iMihBB9TFVVXvzri2Tk7Gf0/JF4WTzPPF6cVcpbH71BREQEc+bMcXPSvrdhwwbKG0uYvHQ8Wt03+1l4+3oxZnYKh9ccY8+ePcycOdONKQeuwMBA/vTQn1m7di1rN66lMasBHy8/rrzuOhYuXOiW1W1SiAghRB/Lzs7mYOZ+kibFnSlC4PQKpmHJkdRV1PPlV18we/bsIdcrsmPPdvyjfDsVIV8ze5vR+ShkHMqQQuQi+Pr6cu2113LNNddgt9vR6/Vu/TmTVTNCCNHHTpw4QYernYAw/27bw+NDyS3Mpaampo+TuV9HRwd6w9nPP9IZdFit1j5MNHgpioLBYHB7sSuFiBBC9DH1/2vv3oOiuvI8gH+7hW5ABCQgjxGQh2IiJiiKgdkNIERQN4HRmMRxM2bGYDQ6K5k8hmRrhnFqUiZKjTuxrNGpTGBTlVXjlsaKmcRBFA0R8YUTQGEFAUPzUhRo3mj/9g/X3iDPBrovj++nqqv03nO7fz8Ol/ur2+eeIwKVGn1eAO7PECqDWnBwvAkMCMTt6oZe9xnuGdB2uwMzfGZYNCYyL341Q0QTXnl5ObKzs6Gr0sF+sj1CQ0Mxb948sz0q6ufnByuDBg03G+Hk6thjf3V5LTzdvOHi4mKWzx/NohfH4HTuaVRdr4an3/8/HSMiKL5Ugqm2j/BrmXGGhQgRTVgiggMHDmD/4X1oudsEGyctutq68EXGESx4PBRvv/m2WZ7YCwoKwmMBQfhH7iWExDwOjY3GuK+u8hZaqtux7JVlFl98bCQZDAYUFBTg2rVrEBHMmjULQUFBA64Hs2DBAqxc/hz++8vPUFNWB1dvFxjuGVBbdhM2dydj8/oNnKV3nOHju0Q0YZ08eRI7dn0Al0An+Mz2gkp9/6uSxvomFJ4uwuKFS/BO8jtm+Q69srIS773/B1yrLIa9ux1sJ9ugoa4JaFZj6eLleG3ja2N28q7q6mr8x4c7kV+cjy71/fEc1gYN5syci9e3vD7gPBUiguzsbPw94xiKSoqgVqmxYN5CLI1biqCgIEukQMNkyvWbhQgRTUgigjfffgPX7lxFcMTcHvtrb9Sh+nI9/rT9Q/j6+polhsbGRmRlZSH7zDfQtzTDZ7oPFkctxsKFC8fsSrItLS1459+TcbWqAI8+Ocv41VPDzUZczf0fzJr2KD7Yth329j0XSOxNV1cXVCrVmC3KJirOI0JENIC6ujqUVpTAc17vs3ROm+6K0gsVKCwsNFsh4ujoiPj4eMTHx5vl/ZWQnZ2NK2WFmL90Lmwm2xi3O7k6Yt7ix3Hpq3x88803WLp06aDez9q67ydoaHwYmyU3EdEwGQwGGER6na8CAKC6vzz6RHxyZTjOnjsL20c03YqQB2zstLBz0eJsbo4CkdFoxUKEiCYkFxcXuLu4o/ZGXa/7G281wVq0mDFjhmUDG+NaWlugsdP0uV9rp0Fza4sFI6LRjoUIEU1I1tbWiHt6KRq/16O+5k63fV0dXSg+dw2P+j/GwZEm8p7uDf2tZvQ2/FBE0Finh4+XjwKR0WjFMSJENGE988wzKL1eiuPZf0fF1BtwmuaItpZ2NFbq4ecRgKR/Sxqzg0aVEhUZhWMnv4aupArTZ3ZffbnqejU0d20RGRGpTHA0KvGpGSKa0O7evYszZ84g82QmblRWwH7yFET+cySioqLg7Nz7FOzUNxHBJ598gv1H/gvWzmp4+N5fybW6rBad9few6l9ewC9+8QvFpxUn8+Lju0REpBgRQVZWFr786ihKK0oBAH7eflgWtxyLFy9mETIBsBAhIiLFiQgaGhogIpg6dSoLkAmE84gQEZHiVCoVpk6dqnQYNMpxFBYREREphoUIERERKYaFCBERESmGhQgREREphoUIERERKYaFCBERESmGhQgREREpxmyFSHl5OdatWwdfX1/Y2trC398fKSkp6OzsNNdHEhER0RhjtgnNioqKYDAYsHfvXgQEBKCgoACJiYloaWlBamqquT6WiIiIxhCLTvG+Y8cO/PnPf8b169cH1Z5TvBMREY09ply/LTpGpLGxkatZEhERkZHF1popKSnBrl27+v1apqOjAx0dHcb/NzU1WSI0IiIiUojJd0SSk5OhUqn6fRUVFXU7RqfTIS4uDqtWrUJiYmKf771t2zY4OjoaX15eXqZnRERERGOGyWNEbt68ifr6+n7b+Pn5QaPRAACqqqoQGRmJJ598Eunp6VCr+659ersj4uXlxTEiREREY4gpY0RM/mrG1dUVrq6ug2qr0+kQFRWFkJAQpKWl9VuEAIBWq4VWqzU1JCIiIhqjzDZGRKfTITIyEj4+PkhNTcXNmzeN+9zd3c31sURERDSGmK0QycjIQElJCUpKSjB9+vRu+yz4xDARERGNYhadR8RUnEeEiKgnEUF5eTlqa2uh1Wrx2GOP8WttGlXMOkaEiIiUU15ejr+m/RX/uJKH1o5WWKmt4OH6IzyX8ByWLVsGlUqldIhEJmEhQkQ0Ruh0Omz9w+9Q1XwDfiEz8Ii7M9pb21F+9Xvs+uhP6OjowIoVK5QOk8gkXH2XiGiMOHLkCL5vKEfIkmC4/sgF6klq2E2xw2OhgXD2d8CBQ/tx584dpcMkMgkLESKiMaC1tRWnzmTBc5Y7rKx73sye8ag36ptv4dy5cwpERzR0LESIiMaA5uZmdHS2w97Jvtf9VhorWGnVXBqDxhwWIkREY8CUKVNgo7WF/ra+1/1dHV2422GAk5OTZQMjGiYWIkREY4CtrS2i/mkxqq/Voquzq8f+64UVcJniitDQUAWiIxo6FiJERGNEfHw8fF0DcP7YZVSX16KzoxNNt/XIP3MF+oo2rHn+X+Ho6Kh0mEQm4YRmRERjiE6nQ/p/puP8P86htaMFVmoreHvOwHMJzyE6OprziNCoYMr1m4UIEdEYVFVVhdraWtjY2GDmzJmwsuK0UDR6cGZVIqJxztPTE56enkqHQTRsHCNCREREimEhQkRERIphIUJERESKYSFCREREimEhQkRERIphIUJERESKYSFCREREimEhQkRERIphIUJERESKGdUzqz6Yfb6pqUnhSIiIiGiwHly3B7OKzKguRPR6PQDAy8tL4UiIiIjIVHq9fsAVoUf1oncGgwFVVVWYMmWKxVaUbGpqgpeXF77//vtxu9AecxwfmOP4wBzHh4mQIzD4PEUEer0enp6eUKv7HwUyqu+IqNVqTJ8+XZHPdnBwGNe/TABzHC+Y4/jAHMeHiZAjMLg8B7oT8gAHqxIREZFiWIgQERGRYliIPESr1SIlJQVarVbpUMyGOY4PzHF8YI7jw0TIETBPnqN6sCoRERGNb7wjQkRERIphIUJERESKYSFCREREimEhQkRERIqZ0IVIeXk51q1bB19fX9ja2sLf3x8pKSno7Ozs97j29nZs2rQJjzzyCOzt7bFy5UrU1tZaKGrTvffeewgPD4ednR2cnJwGdczLL78MlUrV7RUXF2feQIdpKHmKCH7729/Cw8MDtra2iImJwbVr18wb6DDcvn0ba9asgYODA5ycnLBu3To0Nzf3e0xkZGSPvtywYYOFIh7Y7t27MWPGDNjY2GDRokU4d+5cv+0PHjyI2bNnw8bGBnPnzsXf/vY3C0U6dKbkmJ6e3qO/bGxsLBit6U6fPo1nnnkGnp6eUKlU+Pzzzwc8JisrC/Pnz4dWq0VAQADS09PNHudwmJpjVlZWj35UqVSoqamxTMBDsG3bNixcuBBTpkzBtGnTkJCQgOLi4gGPG+45OaELkaKiIhgMBuzduxeFhYXYuXMn9uzZg3fffbff415//XV88cUXOHjwIE6dOoWqqiqsWLHCQlGbrrOzE6tWrcLGjRtNOi4uLg7V1dXG1759+8wU4cgYSp7bt2/Hhx9+iD179iA3NxeTJ09GbGws2tvbzRjp0K1ZswaFhYXIyMjA0aNHcfr0aaxfv37A4xITE7v15fbt2y0Q7cAOHDiAX/3qV0hJScGlS5fwxBNPIDY2FnV1db22P3PmDFavXo1169YhLy8PCQkJSEhIQEFBgYUjHzxTcwTuz1r5w/6qqKiwYMSma2lpwRNPPIHdu3cPqn1ZWRmWL1+OqKgoXL58GUlJSXjllVdw7NgxM0c6dKbm+EBxcXG3vpw2bZqZIhy+U6dOYdOmTTh79iwyMjLQ1dWFJUuWoKWlpc9jRuScFOpm+/bt4uvr2+f+hoYGsba2loMHDxq3Xb16VQBITk6OJUIcsrS0NHF0dBxU27Vr10p8fLxZ4zGXweZpMBjE3d1dduzYYdzW0NAgWq1W9u3bZ8YIh+bKlSsCQM6fP2/c9tVXX4lKpRKdTtfncREREbJlyxYLRGi60NBQ2bRpk/H/9+7dE09PT9m2bVuv7Z9//nlZvnx5t22LFi2SV1991axxDoepOZpyno5GAOTw4cP9tnn77bdlzpw53ba98MILEhsba8bIRs5gcjx58qQAkDt37lgkJnOoq6sTAHLq1Kk+24zEOTmh74j0prGxEc7Ozn3uv3jxIrq6uhATE2PcNnv2bHh7eyMnJ8cSIVpMVlYWpk2bhsDAQGzcuBH19fVKhzSiysrKUFNT060vHR0dsWjRolHZlzk5OXBycsKCBQuM22JiYqBWq5Gbm9vvsZ9++ilcXFwQFBSEd955B62treYOd0CdnZ24ePFit5+/Wq1GTExMnz//nJycbu0BIDY2dlT2FzC0HAGgubkZPj4+8PLyQnx8PAoLCy0RrsWMtX4cjuDgYHh4eODpp5/Gt99+q3Q4JmlsbASAfq+JI9GXo3rRO0srKSnBrl27kJqa2mebmpoaaDSaHmMQ3NzcRvV3f6aKi4vDihUr4Ovri9LSUrz77rtYunQpcnJyMGnSJKXDGxEP+svNza3b9tHalzU1NT1u61pZWcHZ2bnfeH/605/Cx8cHnp6e+O677/DrX/8axcXFOHTokLlD7tetW7dw7969Xn/+RUVFvR5TU1MzZvoLGFqOgYGB+Pjjj/H444+jsbERqampCA8PR2FhoWKLgI60vvqxqakJbW1tsLW1VSiykePh4YE9e/ZgwYIF6OjowEcffYTIyEjk5uZi/vz5Soc3IIPBgKSkJPz4xz9GUFBQn+1G4pwcl3dEkpOTex0k9MPXw38EdDod4uLisGrVKiQmJioU+eANJUdTvPjii3j22Wcxd+5cJCQk4OjRozh//jyysrJGLolBMHeeo4G5c1y/fj1iY2Mxd+5crFmzBp988gkOHz6M0tLSEcyCRkpYWBh+9rOfITg4GBERETh06BBcXV2xd+9epUMjEwQGBuLVV19FSEgIwsPD8fHHHyM8PBw7d+5UOrRB2bRpEwoKCrB//36zf9a4vCPyxhtv4OWXX+63jZ+fn/HfVVVViIqKQnh4OP7yl7/0e5y7uzs6OzvR0NDQ7a5IbW0t3N3dhxO2SUzNcbj8/Pzg4uKCkpISREdHj9j7DsSceT7or9raWnh4eBi319bWIjg4eEjvORSDzdHd3b3HAMe7d+/i9u3bJv3uLVq0CMD9O4D+/v4mxztSXFxcMGnSpB5PnPV3Lrm7u5vUXmlDyfFh1tbWmDdvHkpKSswRoiL66kcHB4dxcTekL6GhocjOzlY6jAFt3rzZOBh+oLtwI3FOjstCxNXVFa6uroNqq9PpEBUVhZCQEKSlpUGt7v8mUUhICKytrZGZmYmVK1cCuD8q+saNGwgLCxt27INlSo4jobKyEvX19d0u2JZgzjx9fX3h7u6OzMxMY+HR1NSE3Nxck58wGo7B5hgWFoaGhgZcvHgRISEhAIATJ07AYDAYi4vBuHz5MgBYvC8fptFoEBISgszMTCQkJAC4fzs4MzMTmzdv7vWYsLAwZGZmIikpybgtIyPDoueeKYaS48Pu3buH/Px8LFu2zIyRWlZYWFiPRzxHcz+OlMuXLyt+3vVHRPDLX/4Shw8fRlZWFnx9fQc8ZkTOyaGOph0PKisrJSAgQKKjo6WyslKqq6uNrx+2CQwMlNzcXOO2DRs2iLe3t5w4cUIuXLggYWFhEhYWpkQKg1JRUSF5eXmydetWsbe3l7y8PMnLyxO9Xm9sExgYKIcOHRIREb1eL2+++abk5ORIWVmZHD9+XObPny8zZ86U9vZ2pdIYkKl5ioi8//774uTkJEeOHJHvvvtO4uPjxdfXV9ra2pRIYUBxcXEyb948yc3NlezsbJk5c6asXr3auP/h39eSkhL5/e9/LxcuXJCysjI5cuSI+Pn5yVNPPaVUCt3s379ftFqtpKeny5UrV2T9+vXi5OQkNTU1IiLy0ksvSXJysrH9t99+K1ZWVpKamipXr16VlJQUsba2lvz8fKVSGJCpOW7dulWOHTsmpaWlcvHiRXnxxRfFxsZGCgsLlUphQHq93ni+AZA//vGPkpeXJxUVFSIikpycLC+99JKx/fXr18XOzk7eeustuXr1quzevVsmTZokX3/9tVIpDMjUHHfu3Cmff/65XLt2TfLz82XLli2iVqvl+PHjSqUwoI0bN4qjo6NkZWV1ux62trYa25jjnJzQhUhaWpoA6PX1QFlZmQCQkydPGre1tbXJa6+9JlOnThU7Ozv5yU9+0q14GW3Wrl3ba44/zAmApKWliYhIa2urLFmyRFxdXcXa2lp8fHwkMTHR+IdztDI1T5H7j/D+5je/ETc3N9FqtRIdHS3FxcWWD36Q6uvrZfXq1WJvby8ODg7y85//vFuh9fDv640bN+Spp54SZ2dn0Wq1EhAQIG+99ZY0NjYqlEFPu3btEm9vb9FoNBIaGipnz5417ouIiJC1a9d2a//ZZ5/JrFmzRKPRyJw5c+TLL7+0cMSmMyXHpKQkY1s3NzdZtmyZXLp0SYGoB+/Bo6oPvx7ktXbtWomIiOhxTHBwsGg0GvHz8+t2Xo5Gpub4wQcfiL+/v9jY2Iizs7NERkbKiRMnlAl+kPq6Hv6wb8xxTqr+78OJiIiILG5cPjVDREREYwMLESIiIlIMCxEiIiJSDAsRIiIiUgwLESIiIlIMCxEiIiJSDAsRIiIiUgwLESIiIlIMCxEiIiJSDAsRIiIiUgwLESIiIlIMCxEiIiJSzP8CQfXKhfStt4MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChXUlEQVR4nOz9d3wl553f+X6q6uSEA+Ag59BAZ3RusptskmISJVGBI4maZEnj0dgeyeuxvLZH3l3dneudle3ZOx57bI/s6/FIsuKMMiVmskk2O5GdM9BAI+d4cq7aP8CDRjjIJwF43q8XX1KjgKoHwEGdbz3h90iapmkIgiAIgiBkgZztBgiCIAiCsHWJICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtbost2ApaiqysDAAHa7HUmSst0cQRAEQRBWQNM0vF4v5eXlyPLSfR45HUQGBgaoqqrKdjMEQRAEQViD3t5eKisrl/ycnA4idrsdgJ8c+9+x6kxZbo0gCIKQLsW7q7BuK852MzLKvqMcAH2hPcstST2vz0v9Yy0z7+NLyekgkhiOsepMIogIgiBsYjajBZvZmu1mZIxj13Qvgd61+ULIbCuZViEmqwqCIAhCBm2VELJSIogIgiAIQoaJEHKfCCKCIAiCIGSNCCKCIAiCIGSNCCKCIAhCVpW01GS7CRmTmB8i3CeCiCAIgpA1iRBiay7JckvST0xSTS6nl+8KgiAIm9dWCSGze0FECFlIBBFBEAQho7ZKAAHRC7ISYmhGEARByDgRQoQE0SMiCIIgCCkkAsjqiB4RQRAEQUgREUJWTwQRQRAEQUgBEULWRgQRQRAEQUgREUJWTwQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEIWMS+8xsNrM3thNWRwQRQRAEISM262Z3opDZ+oi9ZgRBEIS0mt0LsplCiAggqSGCiCAIgpA2ohdEWI4YmhEEQRDSarOFkAQRQlJDBBFBEARBELJGDM0IgrDpaZpGRI0BYFT0WW6NIAiziSAiCMKmpWka19ydXBhvY9g/AUC5rYjDhU3sdFQjSVKWWygIgggigiBsSpqm8erQRd4bukO55uABfR0qGp1TI/zMc4rR8r08Wrw3280UNhgxSTX1RBARBGFT6vAP8v7wHY4qdTQZS2c+3mgo4Uaoj9ODN9hmK6fC4spiK4WNRISQ9BCTVQVB2JSuTHSQFzfOCSEJu4wVmGIKl6c6stAyYSMSISR9RI+IIAib0khoijIlP+kxSZIokx2MBqcy2yhhQ3LsqhQBJI1Ej4ggCJuSQdYR1qKLHg9pUfSyeBYThGwTQUQQhE2pKa+KbnWcsLowjATUMAOamyaH2KhMELJNBBFBEDal/c56zBYLrwdu4o4HZj4+Gffzmv8meVYHe5y12WugIAiAmCMiCMImZddbeL72EX7S/S6/DFwhTzOhoeGRwxQ6nHy6+mHMijHbzRRyXGKSqpA+IogIgrBplZsL+UdNH6PV20dvYAxJghpLMY22cnSyku3mCTlsdgARE1XTSwQRQRA2NZ2ssCuvhl15Nct/siAglupmmpgjIgiCIAgfECEk80QQEQRBEIRZRAjJLBFEBEEQBEHIGhFEBEEQBEHIGhFEBEEQBAGxVDdbRBARBEEQtjwxSTV7RBARBEEQtjQRQrJL1BERBEEQtiRRtCw3pLVH5Bvf+AaHDx/GbrdTXFzMJz/5SVpbW9N5SUEQBCFHlLTkfhE5vcsuQkiWpTWIvP3223z5y1/m3LlzvPbaa0SjUZ566in8fn86LysIgiBkWSKE2JpLstwSIdeldWjm5ZdfnvPvb33rWxQXF3Px4kVOnDiRzksLgiBkTUyN0+EfZDzswSDraLRV4DRYs92sjBEhRFiNjM4RcbvdABQUFGTysoIgCBnT5R/mV33nmAx4MKo6IsRQ9Dr2uOr5cOmhTb3ZngggwlpkLIioqsof/dEfcfz4cXbv3p30c8LhMOFweObfHo8nU80TBEFYt8HgBH/b+RbOsJGPmVvIV6zEtDjtkWEuDt4lpsb5ZOWxbDczrUQIEVYrY8t3v/zlL3Pjxg1++MMfLvo53/jGN8jLy5v5r6qqKlPNEwRBWLczY7fQhyUet+4iX5keitFJCtuN5Rw11HFzvIuR0FR2GykIOSYjQeQrX/kKv/rVrzh58iSVlYtXrvva176G2+2e+a+3tzcTzRMEQVi3iBqjbaqX7fpSFGnhrbVeX4wuBne84r4mCLOldWhG0zT+8T/+x/zsZz/jrbfeoq6ubsnPNxqNGI3GdDZJEAQhLcLxKJqmYZVNSY/LkowZPaF4NMMtE4TcltYg8uUvf5nvf//7/OIXv8ButzM0NARAXl4eZrM5nZcWBEHIKLNiwKgzMhLxUK0vXHA8pEbxEsap35yrZzZCzRAhN6U1iPzVX/0VAI8++uicj//N3/wNX/jCF9J5aUEQ1ikQC+GOBjDIOgoMdiRJynaTcppOVmgprOdC3y2a46XYlfsPW5qmcTXUjc6oZ1fe5nrDFitlhPVK+9CMIAgbiyca4K2Ra9ya6CIWjyFJMmW2Qo4X76LZLnYnXcqxwh10eAZ40XONHboyynX5BLUId8KDjOh8PF1+BKsu+dDNRiRCiJAKYq8ZQRBmeKMB/ue91wl4/ewxlFOqdxLQwtyeGuDHvnd4tuZB9jqXnuu1lVl0Jn6n7nHeGrnGzYlOrkX7kSSJkrwCnit+mB2O6mw3MWU2egiZvc+MkF0iiAiCMOOd0Rv4vX4+Zm3BIk9PHC/ERqWugDPBu7zaf4FmeyVGRZ/lluYuq87ER8uP8HjJPqYiPvSbeGhro4cQscdMbshYHRFBEHJbOB7l5kQX2/WlMyEkQZIk9plqCIZD3Pb0ZKmFG4tJMVBqLqDQ6NiUIWSjEiEk94geEUEQAPDFgkTjUYp1jqTHrbIRq2bAHQ1kuGWCsH4igOQu0SMiCAIw/QQvSRI+NZT0eEyLEyKKURHPL8LGJEJIbhJBRBAEYHpuQ11eObcjg6hJVrzdjQyBXqHZLrZeEAQhdUQQEQRhxvGiXfgNMd7032Qq7gcgosW4EerjYqyb/UWN5BtsWW6lIAibiehjFYQscEf9DIemkCWJKnNRzqxCqbYU8em6E7zY9x4vBK5i0BSixFEMOg4X7+Txkn3ZbqIgCJuMCCKCkEHeaJBXhy7SNtlLLBYDCcxGMwdd2zhRtCfpZmmZ1mgr5w+bnqXDN8hExItR0bPNVo5db8l204QcIcq5C6kkgoggZEgwHub7XW/icXs4aKiiylxITItzNzLE6b5reKNBni0/mhNLPXWyQrNj8YJP4XiUq1P3uD7ZiTcawK63sCe/jhZnfc707gipNzuAbNQaIkLuEUFEEDLk4kQ7455JnrXsm7MPyQFzHXkRC+dGOziY30iFxZXFVi4vEAvx/a6TDHvGqCCfOsXJZDDAa573uDZ5j9+qfQzLJipjLkzb6JVUhdwlgoggZMjVyQ5q5MI5ISShXl/MlXAP193dOR9EXh68yLh7ko+Z95Gn3B+ucccDvOy+zsuDF3mu6ngWWyikmgghQjplf0BaELYIbyRAgZJ8xYkkSeRJZnyx3C4W5o76aZ3sYZ++ek4IAchTLOzTV9E62YM76s9SC4V02aghxLGrEseuSlFDJIeJHhFByBCb3sJUIPkbtKZpeAhRkeNDGoPBCaKxKDXm5L02Nfoizgc7GQxOkKe3Zrh1wmxjYTeXJzvo9g0DUGMrYX9+Ay5jXpZbljmimurGIHpEBCFD9hbU06mO4VfDC451R8cIKFF25dVmvmGrIEkSEhIqatLjcVQkJOQcWP2zld10d/Pf217iUv8drF4Jq1fiUv8d/nvbS9x0d2e7eRkhQsjGIXpEBCFDDuU3cmOyk5c919hvrKFKf3/VzLVYHzuL66lapKchV1SZXRgNBjoiI+wxLaywei8ygtFgoNJcmIXWCTDdE/JCz1kqYw6OWbfNhMKjmsqZ4F1e6DlLSZNz0/aMiACy8YjHFkHIEIvOxG/XfYiKolLOaZ38IHCOHwcvcEcZ4XD5Tj5e8UBOLN1dikVnYm9hA9djffRHJ+cc649Oci3Wx97CBrFqJosuT3YgRVQeNG+b0zMlSzLHzNuQIiqXJzuy2ML0ESFkYxI9IoKQQXl6K5+reZSxsIfh0CSKJFNtKcaiM2a7aSv2eMk+3BE/JyfukBc24pQsTGkB3HKYba4qUX01y3p8w1TJ+UmL48mSTJWcPzNvZDMRIWTjEkFEELLAZXTgMjqy3Yw10cs6PlP9MPcKh7gx1YU3GqRKn88zzlrqraVifoiQUSKAbHwiiAiCsGqyJNNoK6fRVp7tpgjz1NhKuei+TVxTF/SKxDWVXnWSg7YdWWpdaokQsjmIRxdBEIRNZF9+A5pB5kygjbh2f3VTXFM5G7yLZpDZl9+QxRamhgghm4foEREEQdhEXEYHz1Y/yAs9Z/mx/32q5HwAetVJNIPMs9UPbthhQRABZDMSQUQQPjAZ8XFlqoMe3wgSEtW2YvY5G3AaRGGuldI0jaHQJFNRHybZQJWlCJ2sZLtZW86uvBpKmvK5MtlBt28IgAO27ezPbxQhRMg5IogIAnDH08sves6ghWNUSE404Ozkdd4bucMnao7RbF98J1phWn9gjFcGLzDgHUdV48iSjMNs4+GSPezfBEMBG43L6OCJ0v3rPs/sHXezSYSQzUsEEWHLGwt7+EXPGUojVo5bm9BJ00/wMS3OqUArv+g+zZeaPkK+QdwAFzMQHOf7nW9iCSk8ZmyiSOfAp4a4Fezn191niWtxDhU0ZbuZwirkykZ3IoBsfmKyqrDlXZnsgHCchyzNMyEEQCcpPGxpRg3HNm0BqFR5e+Q6hqDE09Y9VOgLMEg6ChQbD1ma2aYV8fbQNcLxaLabKayQCCFCJokgImx5nd4hquWCpAWgdJJClVxA1yYsAJUqnmiATvcAu40Vc4Jcwm5TFYFQkFZvXxZaJ6xWLoSQxI65IELIViCGZgQBDVi8tLoEaFryTd4E8MdCqKpK/iKTeq2yEYOm4I+FMtwyYa2yHUJABJCtRPSICFtepa2IvvgkqqYtOKZqKn3qJFW27HZR5zKrzoQsy0zG/UmP+9UwESmOVew/IyxDhJCtSQQRYUPyRoO0+wa45xtc99yDA/nbiBnhfLB9ThhRNY2zwXbiBokDYtXHohx6C3V55dyM9M8poJVwI9SLxWQWK4+ERYmhmK1NDM0IG0ogFub14cvcmugiGo2CBGaDiQOubZwo2rOmmhUlJifPVB7hpd736Pe/T41SiAZ0x8eJGeCjVQ9s2i3TU+WR4j18z/cGL/uvsc9YQ/EHq2ZuhvvokiZ4uvQIRkWf7WYKOUwEkK1LBBFhwwjHo/yw+y1Gp8Zp0VdSbXYR11Q6IsOc6bvOZMTHc5XHkaTF53ssZl9+A6WmfC5NttPlG0ZCYpetkYMFjZSY8tPw3Wwu5eZCPlf3GK8OXuSktxU1cr+OyEdLHmB/fmO2mygIQo4SQUTYMK67Oxlwj/AxcwtO5f7EyP3mWgqiNk6N36Urv5E6W+mazl9qLuAj5iOpau6WU2Up4vfqn2YwNIE76heVVQVBWBERRIQN4+rEPSpxzgkhCdW6QuzhHq67u9YcRIT1kySJcnMh5ebCbDdFEIQNQkxWFTYMTzRAgWJLekySJPIlC55I8pUbgiAsL1fKuQtbiwgiwoZh05uYigcWPe7Wgtj05gy2aOXC8SiDwQlGQlOoWaxJomkaETWGlmSpsrC15UIhM2FrEkMzwoaxJ7+ON9wX8caD2JW5gWMgOolbDvFMXu26ruGPhQirUayKKSWrPELxCG+NXOP6xD3C0QggUWBx8EDRDvY7G9Y0sXYt3FE/7423cm2ik3AsjFlvoqWgniOFzdh0uRnehMwQAUTINhFEhA1jn7OBq457vOy5zgFDDTX6D1bNREe4Eu2hwVVB/Rrnh/T4Rzg9dpNO9yCapmHQ6dmVX8fDRbuxr7GXJRyP8oOukwxNjbFDV0aVvpCIFuOub4gX/efwVAR4tHjvms4921Bwgr7gGBpQaXZRZi6Yc3w87OF7nW8S9AdoVIpxKhYmwn7e67vJbXcPv1P3OHn65FVRc0WiBydTwW2rECFEyAUiiAgbhkkx8Fu1j/HiwPucd3dx2t8OEhj0BlrKmniy9ABykv1iltPm7eenXaewRnQcMdRglU2MxNxcH7xLl2+I3617HLvesurzXppsZ2BqlI+Y95I/a4Jtmd7J9VAvZ4ZusDuvFpfRsepzA3ijAX7Zf44u9yBSbPqNWtNJVDtK+UTlgzg+aPOLA+8T94X5hPUAJnm6l6cB2KlW8LLnGq8MXuSz1SfW1IZ0GwiO8954K21TfcS1OKWWQg4UNrInr3ZNv2thoVwo5y5sPmqJccWfK4KIsKHY9Raer3mE8bCHwdAEEhLVluI191rE1Dgv9r1HUdTCY9adyB88cZfpnTSqpfzae5W3R6/zsfKjqz73lYl2auSCOSEkYaexgtv+Aa67O3msuGXV557ubXkLt8fNQ8ZGqozTq1T6YhO8N97BD2In+UL9U0xF/fR4hnjI2DgTQhKsspG9hiren+pmstRHviH5ROBsueXp4RfdpzGFZbbrizFIOvrck7zgOUN38QgfKz8iwsgGJiqpbl5qmQk8kRV/vggiwoZUaHRQuMaehNnafP14gz4eM+2bCSEJVtnIDl0Ztya6eKJkPybFsOLzqprKVNhHg1I15+NRLU5nZAS3GsQfDTEQGF9Tu295uhnxjvOseR95yv3emmp9IU7Zwi88l7nu7sKk6InH4lRYkxdlq9QXcC54j7GwO6eCiD8W4lc956iIOnjI1jzzu9luLKcrMsq7I+3UWItpcdZnuaXCWogQsnmpZdN7SkmmlccL8TghbGmTES8mTTfnzXy2Ul0ekVgMd3Tx1TrJyJKMQTHgVe/vOHsvMsIPJs/wtucWbb5+xsMe3hu5w68GzhNT46s6/82pbko1R9J2OxQzFVIet9zd6CQFSZKIaLGk5wlrMZAkdFJuFR277u4kEg5z1NywICDWGooo1RxcGr+bpdYJ6yFCyOaklplQy0xIJt2qQgiIHhFhizPIeiLEiWnxpG/GATWCJEkY5dWvoNlTUMeV/jvs0aoYjXk46b1JhZpHi247kga9TKDTGbk6eBcJiY+Wr7yqazAWwSEvvputXTYxHg1RYy3GZDTSFhlin2lhjYi2yCBWo5lKi2vV3186DYemKMK26M+9SpfPpUAfqqaK4Zk1yPYkVRFCNpe19ILMJv6ChS1tm60CWa9wNzK04JimadyJDFBpLyJvDZNVDxc0obeYeMV/nVP+O+THzTygqyeuxhmMT5FvsrPPUsMhfQ1Xx9qZjHhXfG6n0caY6lv0+GjcR77RjlkxcsDVxI14P23hoZndheOayu1wP63qMEeLt6OXc+uZRJZkIizeSxTRpveykRCraFYr2yFE2FzWG0JABBFhi3MarLS4GrkY7aY1PEBMm37z86thTgfbGNcHOV60a2bZaElLzcx/y8k32PjN2keRbHpuRwYxazruxUYYxYfTbKfOWookSTQYSiCq0urtW3G7W/LrmZSD9EYXzjHpj04wIQdoyZ+eP/Fo8V72lTbxvtbNj/3v85LvKj/xv89l+jhStpMHC3es+LqZ0mArY0oKMhlfWClX1TQ6YiM05VWK5byrJEKIkCrrGYqZL7cegwQhC54qPQBoXBxr56K/GxN6AlIEs8nMsxXHaLSXA3Nv4r7WYUpaahi+2r3kuUvNBTxf8yiDvnFqpBKKFAcOvWVOsTSdpGBETziefB5HMo22Mna4anlntI1tsWLq9EVISHRGR2mND9FcVEuTvQIARZL5WPlRDhc0cdPdjT8exqYzsSevFpcxb5U/rcxoslVQZM/npPs2H7LsmNlfKKLFeC/YQVAf53Bhc5ZbubGUtNSIACKkRCp6QWYTQUTY8nSywkfKj/Cgawet3j5C8ShOvZUdjuqZwDD/SXJ2GAGWDCQOvQWnyUY0plJkWvjG742HCEiRVa1akSWZT1Q8SJHJycWxNtrCIwBYjRYeLtzHcdfOBXMnSkz5lJiSr57JNTpZ4fmaR/jb7nd4wXuVfM2CHplx/ChGPR+vOpZz81oEYStIdQgBEUQEYCLi5cpkB92+YTSg2lbMfmdDSpbHbiT5BjsPzBumWKorO/Gx5XpHjMp0ldbrg3dpVEuxyvcL/WiaxqVQJ1aThe2OqqRfvxidrHCiaDfHCncwGnajoVFkzMu5+R5rlW+w8/cbPkyrt497/iHiWpw9Rid78urWXDdGEIS1SUcASdgcdyxhze54evlFzxm0cIxKOR8JiYtTt7kw2sqzVQ+yK2/r7sa50vH0lQzVnCjeTbdvmF95r7BdV0qpzolfDXMnMoBbH+ETlccxLBEgZs9JmX8NnawsKOu+WehkhV15NVv6dSgI2ZbOEAIiiGxpExEvv+g5Q2nEynFr08zy1bimcibQxgs9ZylpcubsPIJMWOmY+nJDNTadmd+tf5x3Rm5wc7KTG9FBJFmiuqCEZ4p2UbfEHjmLBaLl5qcIgiCs11pCSHfgLL7AwonmixFBZAu7PNkB4TgPWZtRZs0nUCSZ45Ymfux/n0uTHR9M5hSWs9xQjU1n5iPlh3m8ZB/eWBCjrF9yiGGxALKaybKCIAhrsdZekO7A2emvW8WKNrF8dwvr9g1TKefPCSEJsiRTJRfQ7V1YX0NYWiI4LLbE16jocRkdawohK73GSqznawVB2LzWG0JkSeKt9u+v+OtEj8gWlthafcnPYfnP2YzW+ya9nmGU1cxNWe81VrLqRxCErWOtQzEJsiTxetu3V3VNEUS2sBpbCRfdt4lr6oJeEVXT6FUnabE3Zal12ZPKok+rGUZZ63XXe42lvlbTNPqD49z19RNT47iMDnY6aubUQRGElRB7zOS2VPSCADMhxKis/Pcshma2sH35DWgGmbPBu6iaOvNxVdM4G7xL3AD7nQ1ZbGHmpaPy5EqGUdZ73fVcY7GvDcbD/LD7Lb7V9goXem9xq7+DX907y39q/cWqqsAKggghuS0VIeT1tm+vKYSA6BHZ0lxGB89WP8gLPWf5sf8CVXI+MhI98QliRvho1QMUm5zZbmZGzH4TTkf1yZWcc73XXc815n986EoXP+09Te/4II8Yt1FpKkCSJPxqmPeCHfys611+p+EJUVRMWJYIIbltPUMx6+kFmU0EkS1uV14NxU1OLk220+0dQgN22xo5mL9ty4WQTJS/zvVrJIZ5egOjdE4N8KixmUr9/RolVtnII5YdvOC/xOmxm2x3VDEcmkKRZOptpdRaSsT+L8IMx65KEUBy1EoCyOy5H/OlKoSACCICUGTM4+nSg7B4KYtNS2wCllybrx9zXEdFkpLwsiRRKeXz674L3DF248RMjDhnlRtUOkr4jaqHROVTQchhqwkh8iIPFrMnpK4nhECag8g777zDn/3Zn3Hx4kUGBwf52c9+xic/+cl0XlIQViTdQzHJJLqoATw3VzfHYvbXrsdKrxtVY5jQJ+3dCMbCjAXd6OISH3XsxaW3o2kaQzE370608bfa23yh/qmky8IFQciu5ULIcgEEVtYL8ur5d1fcprQGEb/fT0tLC7/3e7/Hc889l85LCcKKZaMXZPY4eXTMi2NX5YpDQarG2Fdz3UKDg4sECKlRTPLcFTKjYTeTMR81xkIKddMb9UmSRJneyWPSDl7y3KDdN0CzPTXhSRCE9VtLL8hSy3CXCiEvnnl7VW1LaxB55plneOaZZ9J5CUFYk2yFkMT/JkIBLN1LkcqJfolzrOS6jz30MG8NXuVC6B7HzU1zeka6Q6OMSD4eMu3Ap4bwa2HMkoE8xYJLZ8cZMtLm7RdBJIeI4nVb22pDyFqHXRIBxGWpJiJFgZsr+rqcmiMSDocJh8Mz//Z4PFlsjSCsnKqqdAz3MOFzYzaaaC6ro2hfPZA8RCQ+tlgvRTpXGizXK2NrLsEG/PbYx/nRhZf59dhVmvSlmGQ9/dEJTsc7cOjM9EcnuBS4h6ZpSJJEkT6Pw+Z6jOiJqbGUt1tYGzEPamtb7VDMWiefzg4hq5VTQeQb3/gGf/Inf5LtZgjCopLN1bjV2cYPXvgJvV09xEIRFL1CfomLZyPP8PQyPYLze0fmH0uXlQwRnXjsBHaDhbfvXeJC6y1QwWa2YMeO2+fFpYY4KteRL1vwaEHuhIZ4MXqFuE5ju7ExbW0XViYb86CE3LGeoZjFQshSQy5rCSAJORVEvva1r/HVr3515t8ej4eqqqostkgQps0OCrMDQltnB3/5vf+ObTTOx0oPU2ItwBsJcHm4je/+5EdgM/DhE08see5sLW9cyVDN/uOH2OaqIrj/wwxc68SiGPmz2z9G8kR4SN+AXZleHZOHmQrZya8j12iXJtjtEEMB2SR6Qba2dAzFrKfHYzk5FUSMRiNGozHbzRA2qbWOky81TPKzl3+JYSTCxxoeQZGnV4k4jFYeqd6P0neVX7zwS04cPobFbFl7w9NspUM1Zr2RYd8E0asR9pqrGYp68MfCWGUTKiqeeJAy2cmkEsUd81NgzE7AGgt7uOPpJRgP49Bb2emoxqYzMRSaZCQ8XfOk1lqCTbc5lxiLELI1JMLGYlI5FJPOEAI5FkQEIV3WenNeKoSMToxx+/pNjrkaZ0LIbPtLmrnde5Irt69z7MDRNbQ6c1YyVGNrLqH1dDd6q5EWQx2BaJCxkBtffHoul81oZr+xnt6oF3fED9ZMfgcQ11ReGbzIlbG7yFENC0a8hHhZ9x46nQ4tGkeNqyCBQW+gxdXAkyUH0MlKZhuaJmIoZuvI1L4ws4di0hVCIM1BxOfz0d7ePvPvzs5Orly5QkFBAdXV6fumBGG2tYSQxYZiZvP6fcQjMQpsjqTHrXoTek3G4/OuorXZs5KhGldTJfI7MnGHQq2xiuJxJzFNRQYUWcEbDyLFJMy6zPdsvjl8hUtDdzisq6XRWooiyfjjIV6ZvMrteD8P23bwkLWZqBbjbmSYiwN3CMTCPFd5fMNXgxW9IFtHqvaFgez2gsyW1iBy4cIFHnvssZl/J+Z/fP7zn+db3/pWOi8tCKu+OXuDfi7eu8mwe5y8wRIOHT1KU+3im/457XkoRj0jgUkKzXkLjnvCfmKKRkHewuqkuWyp3pFqVxmVjTXc7B6kVHNiKbQTnPDNHL8R7sNqslBvzWyZXn8sxKXRu+xVKmk2ls98fCrsp14rwCTrGIhOAmCU9ew2VWKLGHl3vIO+wmaqLEUZbW8qiRCyNcweikn3vjCZDCGQ5iDy6KOPomlaOi8hCEmt9uZ8/u5VfvT2rwlN+nBKFqKXJV5+4zX2HtrPH/7u72O1LBxnKHDms+/APq68/j6Nzkr0yv0/J03TeG/wFgUVxbTs2J2abyqDEmFkPkmS+Njhx/jrkR9xKnyXFqWSvAIbY2Pj3Aj30SGN8XTpEfRyZkd9O3yDRCIRmi1lcz4+EfbgkMw4ZAtvxFoZj3sp0k33YNXoXVwMd3HL07OhgwiIELJRLTfPY77NMhQzn5gjImw6qw0ht/s7+O5rP6MmnMcDJfsxKnp0Tit9kQlOvv0+35Rlvvr7X0naff/cM5+gra2Nn3a8zcGiZsqshbgjfq4MtzFiC/Gl576E0bC5JmDvq93B7z79G/z8zKv8cuwauKPEZQ1biY0nDYc5lL8t422KqDEkwCDNDYMxLY5BMiNLMjD97wRJkrBLJgKxUMbbKwhrHWJZqaWGYtK1DHetRBARNo21dlG/fvUseX49J8p2z4QNSZKoySvlhLaXt9+/ROeHu6mvql3wtdXllfyL/+Wf8aNf/oR3r94g5r6BbNBRuauGL3/k4xxpObju7ysXHWncw77a7dzqa2cq4MVmslAbdGBaZG7I8NXutLbHZXSAIjEa91L8QY+HJEnoZR2hWBSPGkKWZBzK/dVLqqYxRZB6fe6uaBI2n7UOsazUcr0gmR52WQkRRIRNYa0hxB8KcLe7gyO2mpkQos+3zRyvyyvj3bEbXLt9I2kQAaitqOZf/qN/ysDIEOOT41jMFuoqa5CTrKTZTAw6Pftqdyz7eb7W4bS3pcZSTJE1nwueezxl3YNOml4JU2h00B0ZppVhqi0urPL9oHQ3MkhUp7Enry7t7duKUrVR42aSyV4QmBtCsjXsshIiiAgb3nom60XjcTRVw6Q3zAkgsml6ozdJkjBIOiLR6KLnSNxcSstqKaX2/scT5xpcvOt/tWPEy50vlfQu+4r2pckFkiTx0Yqj/DBykl/6LtNsKMUhmxnW3LwndePWguxWavDGQ0SZXjXTpg5zuGwHJSZntpu/6aRzi4KNYKm/62wOxeRaAEkQQUTYsGYHkHA0wtm2K1zsuIE/EKAov5CjTS3srGhYMLdj9pOaNR7H9VY5g4M+GrkfQBK8YT9eOUx5SfJVIMs94WihGGqZKWl4WMvT0VLnS4e17BacLZUWF7/b8CRnx25xfaoHVVUxGPQ8WnyQQCzEXc8Qt8KDSEjYTBY+VHSQBwu3Z7vZm8pKlr1vZukedklmIw7FzCeCiLAhzQ4hU34v33z5+3R3dVOqObDrzNy9d4sL169weO9+fvfEx9F9sKJlwU64wONPPsGPv/0DdsR9FHN/qW1cVTnVf5WCqhIO7z2woA0rCRKSSTcTHuB+b8Zau2gTnz//fOm0kcJIicnJJyuPESk/QjgexawYZgqWeaNBxsJuFEmm3Fy4aQqZ5QrRC5LeYZdkVjIUk8sBJEEEEWFDcEf9DAYnkCSJA0emQ0FiKOa77/yCoY4+nis6gtNwf3il0zfEW5cuUpZfxGd/+zdnPj7/RvnhR57gVtsdXjh7njpdEZX2IgLRMLfd3ajFJv7x735xzsqX1d5wEp83O5Cs92Y1O+BkKowAGyKMABhkHYZ5S4jtejN2/eYs655tIoQs/3ft8Xg4deoU7555F4/PS2V5JY+eeIQjR46gKKsPxYkQ8ubd78x8bCP1gswmgoiQ0/yxEK8MXqR1sgfJNP3H+tq52zy4+wCfjD3BiHucOx13OZHXPCeEANTZShkITnCu9yafikWxlBYkvYbRYOSrX/oKr+98m5On3uLcSBeKSeHgQw/x9CNPzJmkup4gkeonpfm9LfNlavhG2Lo261BMqut7DA4O8m/+7N/Q1tuKrdSM2Wri3N0uzlx8l8ePP8GX//DL6PX6Jc+RsFQAgY0XQkAEESEHJYZdwrEIPzj7EwZ9QxxzNFFrLkZxmGj19vH26XeZ8LppLq9DC8WocSafqLqjspEXRy8zGvdTQ/IgAtNh5KOPPcVHHn2SYCiIQW9Ap7v/55GNsd+VWKotmRy+EbaezdoLkuohFk3T+Kv/+lfcHb7DgWf2YDTf710dH5zg1Xdfobamlk9+8pPLnmt+CHnj/KUFn7ORAkhC7txRhQ1J1VR6A2P4YkGsOhPVlqIPiketzey5Hxdvvc+Ae5RPVT84p7djf34DroCD12/dxGz84KaR5Fz6fBty3Itk0KGxsgq/kiQt2Ck3G2O/qZDp4Rth6xAhZOXa2tq43nqNpiMNc0IIQGFZASNVY7z65qt89KMfXbRXJBFA3rj7HSTuB5CNGDqS2Vh3ViGntHr7eGPwMhMBN2pcRZZl8i0OHivbx07H6v5Aki3Bfa/1KhU4Fwy5AFRZinBM6ZnwupFMOnoCo9RYixd83t3JXvJLC6koLltwbL5sLLlLNxFGhK0s3SXUV6Kzs5OwGiK/xJn0eGlNMT3nBxkaGqKqqmrB8dm9IJsxhIAIIsIatXn7+WnnKYqiFp427aLAZGMqHuCqv4efd70LtQ+tOIwsVgdkyuuhKkkISchXrMjAttoGTt+6Q77BhmNWlcwe7zCtkQE+/chvLjn+upZhl+HhYbq6ulAUhW3btpGXt3DTu1yRjZU2wuaWmLCcyz0judKTKUnS9J5rGkm7blV1+kCyCauLDcVsphACIogIa6BpGieHruCKWnjcumumTkehzsZjyg5OBm5zcvAK2+2Vc4ZpEoEjmWTFyJx2B+Ojk4t+zWTczw5bA88eeoz/EvweP+4+R6XkxK4zMxLx4HaqPPjEI3zsQx9e9ByrvVlNTk7yrW9/i3MXz+IJeJAliXx7IU8++iSf+9znMBpzd18Z0TsipJrnZh+OXZVEx7w5FUZyJYQANDdvx6q3Mdo/RnHVws0VB+8NUlNeS2np/VpFm30oZr7s/5aEDac/OM6of5InTTsXFAuTJIm9xipeDtygOzBCnbV0zZVPjzS38KN7P2cq4lswPNMbGMWjj3K4cQ8Ftjy++onf40LHDS623yBkkthWso1j+w5z5PixRUutr/Zm5ff7+bd/9m+5eu8SNXsq2V5dTzyu0t8xyA9/9X0mJif4J//LP8np0u4ijGw+kXiUC/duMDQ5hl6nY1fVNioLMrcbby6FkVwKIAm1tTUc2XeUNy+8jtlmwp4//TPSNI32tptMDkzw8S88Rm/o/Jyv28xDMfPlzm9L2DD88RCqquKUk28Wlq9YUVWVQCy8rvLrR7ft5XzrFV64e4EDtjoabGXENJW73n6uBHto2beX7eXT+4RYDCY+9ulP8jE+CUx3FSduSupiF2B1N6xTp05x7e4VWp7ajcU2XY9C0SnU7azG7rTy9tmTPPnEk+zevXvV32smJcLIWm2Usu9bQYdvkNfffA1vJIBV1RPRYrxgfo2W5l389iMfx2JY/RYCa5EII5mgaRo96jjj4+PYbFbq6+rnhP9cCiEJf/ClP8Dr83L55EVkOxgtRibGRzCqBj76kcc58fjhOQ91icJkWyGEgAgiwhrYFBOyLDMR91MmOxccn4j7kBWZmt0N05+/hhACYNIb+cNnfpsfO1/hcut1zo12TK9qsVv50KETfPzQh2ZuQImboLJnuuszET5SeVN6+9TbWEvMMyFkNld5IR2GLs6dO5fzQWQ9Ek+8G6XS6kppmkZcU1EkeUEvX64aDE7w4653KNM7earyCHkGK6qm0ekf4t0rV4mrcf7BU5/bMN/PSnT0dPLdkz/l6p2rhONh9Do9DdWNfPY3PsuRI0ey3bxFOZ1Ovv6/f50LFy7w6pm/w+cLcGT3Lo4eb6G2oZI3ZtUEga0TQBJEEBFWrdxcSLG1gGueHkp0eTPlhWH6hn5bN0JlWSV7ju5b9zCFzWThC499io8f/hB940NIkkRdcSU20/3emPkhJF1PROOT41jzF98y3mQzMjk1lZZr55qNVPZ9KaF4hPcn2rgy3oE3GsAg69hVUMvRwu0UGHJnzkMy58ZvYwjBE8V7MRmswHSp7wZbGYok81bbbTr39VFfsnAlxkbUER7kX3/n/8dobJjag9XkFToI+oLcu9XKn/2Hf8cf/eE/5fjx49lu5qL0ej3lLfCFls/MKcnecXf6eK7vkJtOIogIqyZJEo+X7edvQ2/xmv86e43VFChWptQA10K9eAo1Pr/ziZTOlSiw5VFgW7gyJVMhBKDYVczt0etJj2maRsgbprBg8aJpi4nH43R0dBAIBCguLqa8vHzNbZyamuLUqVO8f/EC4UiI+pp6HnnkEZqbmxc8Ga93nshqwkhJSw3DV7vXfK10CMTCfL/rTUbc49TJLnboXHijIW70t3N7soffrHuMMvPqf5+ZEFPj3JnsZa9hOnTMV2MpxuBu5VpP26YJIj/+2U8YiQxx6Kl9KLrpFSZGs4GWE3u4cfoW3/3Bdzly5MiKK5RmWrLdcWFrB5AEEUSENWmwlfHZukd5Y/Ayb/hvo0am64gUOfJ5tnAfu0rq8bUOr3lYZiXmLB0cDK26ZsBqPfLwo1z6bxfwuf3Y8qxzjo30jmGImzh27Niqznnq1Lv85Oc/pqu/k1g8itlg4cDeQ/z2b/4W1dWruyHdu9fJn/37f0fX0D2sxWYMJj033rnKq2+/yvOf/Byf+cynZ8LIcuXhk0kWWhJhZCnzXwO5EkjeGrnKuHuSj5pbyFPu93Tt0ip51X+dF/rO8aXGZ3JyaCOmxdE0FatkJKbGCQR8AFhNZnSygiRJmCU9kVgkyy1NjdGJMS5cv0j1nsqZEJIgSRINLfXceK2Vq1evcujQoSy1MrlEAIG5IWSj7guTDiKICGvWYCujvrGUgeA4vlgIq85EhbkQSZIYvtpNSUtN2sLIYvULtFAsbb0iDz/8EKdOv8P7b56jfEcpJdXFqB+smhnrmORjH/o4zc3NKz7fa6+9zl/9j/+MXKDR8FA1JouJqdEp3r1+kq7ue3z9f/v/UFFRsaJzRSIR/uIv/z193m4OfbQFvXH6qVDTNHpa+/j+T79LTU01R48enfma1fycUrHSxtZcgq91eEHviKZp9AfHafP2EVFjFBod7HLUYNGlbyl0MB7mxkQnO3Rlc0IIgEHScdhUz2v+W3QHRqi1Zm4FykoZZT0WvYkbnl58/UHiqEiATq+npMBFSUERU1qQIkdu9uis1pTHTTgaxp6fvK6QxW5GleJMTk5ltmHLWGp3XBAhJEEEEWFdJEmiwuJKemx2GIG1T1qdb7EQIn/QK5KuMGIymfjn/+yf84Mf/IC3z7zNtVu3kSWJovwSfu/55/jUpz614qdnv9/PD/7uexjLdOw43DTz8ZLqYgrLCrjw8hV+/otf8OU//MMVne/ChQvc62tn95PbZ0IITP9+arZXMd4/wWuvvzYniKxGqoqizQ8joXiEn/edoX2yH1NcxoieCwQ5abzChysPs9dZt6brLGcy4iMSi1JpSP5GXaw4kEMwEprKySAS11T8apje0CA15FP3QRs9UT99gwOcm2jFWG3jUP3mmDjtsNkx6Az43YEFvZEAQX8IWZPJy3NkoXXJrWQoZqsHkAQRRIS0Sjz5LlXMbKVWUsUx3WHEbrfzB3/wB3zmM5+ht7cXWZapr6/HYll8EmsyFy9eYmhyiP0PLHyjCEnj5DcYee3ML3j0N5qx2eeeu8by4IKv6ei4h2SZfjJMprimiFttNwmHw+squpaKOiSJMALwi76zdI72c8K0jSpTAZIkEVKjXAx18ques9h0Jupty5fnX63peRUSES35MuY4KioaOnn127NnQqu3j2goQpWxkEtaL95IlHK9k7AcpT06yq3AIH+/+Texmxe+aee6ZMOFRWXV7NvRwtlbZyiudCHJcwP/vRtdlBdV0tLSkqlmLkoMxayeCCLChrCaUtKJN8h0FjfKz88nPz9/zV/vdk8h6yWMZsOcj/ti02/Q9nwLk21e/N4ADsfcN5PEjW5BIFlqXz8NQErJfIdUFUUbDE7QPtXHcWMD1frCmY+bZD3HzNtw+69ydux2WoJIkTGPfIudNt8QpTrnguMdkWEUvY56a+qvnQrXJu9RhoPHnDu5qQzRGhmkLToCSJQVFLJd1RMMb6yCdcv9vX76+c9y+9+0cunNq9TvrcXpysPvDdB1s5vYGDz/+9mvbCyGYtZGBBEh5611P4vZvSPJZLPwkd3uQI2qRMJRDEb9TABJxISugVY8oRAXhn+O2X8/rDzR9HlkSULVNLoDZ2fCyLZtjWi/BL8ngNWxsHdmuGeUI9uPYTAYFhxbi/lF0dayjPeurx99TKLaunBoT5IkmgylvOfpJhALp3y+iCzJPFi0kxf957gW6mGnsQKdpEzPqYmNczHazZ6SRpyG3OxRcEf8FCpWDJKOY87tHHfsxR8LocgKNp2Jd0dvMuGZynYzV2wlDw3Nzc38q3/+r/j2//w2bedaCUXa0St6Kkur+ew/eJ5HHjmRqeYmJYZi1k4EEWFZMTVOq7ePm+5u/NEgDoOVvc7pSqdykqWDqZKKDbUWe2JP5/DNShw8eICivGK6bnZTvnf6+0uEkJ6JO4x1+Ni9qxZn3v2egnDcO3ODe6Lp8zNhBMC1I0ZJmYNLp95n1yMNFNimf3aaptF1qwfZr+PpJ59K6fcgmXSoZSb0sOzKmWSiahwDujl1aGYzSQY0dXqFSDrsdzbgrQhyeug6t/yDODHjJ0xQidNUVM3T5bm1+mI2q96MO+6b+bdOVsibFZqmon5KrAv3Nck1q91wcufOnfyb//vfcPfuXcbHx7FarezYsSOrS3ZFL8j6iSAiLCkUj/C3Pe/QPTmIS7PikM0MqkPcHuuiqbCa5yqPr3gcfTUraNK9q6ecgeW+S7Hb7Xz2U8/zH7/17/CFJ6jaXsJ4rBvfWIiRO34ceisHHm2Y8zWJG1sikDzR9Pn7xwx6vvTlz/FX//F7XHvpLmZXN3qjjsiEghU7f++zn+fgwYNp+V7UMhOsorhZYn6Iy+jAK4Xxq2Gs8sIej4HYJFajCYuSnu52SZJ4pHgPe5y1XJ/qwh31Y1IM7HBUUWl25eSy3YTdzhp+PXmWqbgfM3NXkoyFPYwofj7auCdLrVuZtQ6dSpJEU1PT8p+YASKEpIYIIsKSXh68wMDEME+bdlOsuz8jvS86wVujd3jLaOeJkv3Lnmc1K2hyeWvxVOkOnGXXo/l8XvsNXvrVW5z91XnUuIrBYKS8qoCHP7YTV3nyFQBGxZ40jFRUl/Ivv/4PuXjuOtcu3yEciVC5s4znnvwijY2Nafk+EkM0Ky1ulvj9D1/tZru9ijdMFs4H23nUsnNOz8hE3Ed7fIRjhXvTPmG0wGDnkeLcftOeb1deLZfy2nll6gbHAnGaHbUAtPsGeN/bQUNzA/vrdmS3kUvIxc3pVksMxaTOxn0VCGnnjvq5PdHNAX3NnBACUKkvYFesnCtj7Tzk2oVJWX7uwewVNMl6R7ZCAIH7NzBFlnn48SP4Sm6wrXM/RI3YC8wUV+Yt+zQ+O4wsUAs7ayWeaPoDVE0DRoH0BJGE2UM0ycLI7ACSYFT0fKzqAX7adYoX/Jdo0pdilgwMxqboVMcozy/hwcLcfTPNJoOs43M1j/Ki/n3eU7s5O9QFEhgsJvYf2sdnj30EvZJ7t/fVDsXkItELknob85UgZERvYJRoNEq9tTjp8XpDMTfCgwwGJ6izla74vMmKnW3kEDJ7ud5KzX6KspmdNO50rvociRtfMvN7TBZdaZMCsyeuLtUzkqyiapO9gt9teIKzY3e44u5D01RsZgsPFe7jaEEzRiU3y3XnAqvOxGeqH0ZpzKNrahBLdSH1xZW4HGtfzZVOW6UXBEQIWa2N+4oQ0i6xGnSxZ3MZGdDQllw3mlwijMy2kUPIYhMuFzP/KSrV5g/fJFtpky6LlX1fbL+ZCouLT1c/RFSNEVXjmBR9WidBbzbxdjeHWnZAHGxZCiGJBwlIXgckIV0hZGRkhDt3WlFVlZqaGmpra1I+xyfxt/7mrJ1y19ML4psM0n9njPE+D6qqUVBqp2K7i7yS3FyplU4iiAiLqjAXotPr6I6O0WBYOKejKzqKUW+g1JSbT2DplqshJCFx/mQrbdIdRuZbyX4zelmHXs7sLSkcjwLTQx25PDl1OeneUmEl9C57xns9AoEA3/mf3+Gtd0/iDkyBBBaDjQO7D/Cl3/8SxcXJe3NXY34Amd/7kbCaEDLSOcX1tzqJajGsJUYkGXq7Rui/O8b2B6qo2r3+dm8kIogIiyow2Gl0VnJxpBuXYp+zJ8dYzMuNWD8tRU1YdNlbfZINi1VOXKl0B5Bk18vkUM1SFttvJpM0TeOWp4f3x9sY8I0CUGIt4HBhM3vyajdsIJn/88xWIMlUCFFVlb/8T/+Jt95/g6o95TTX1SHLMqMD45y+8g7j/26M//Prf4LDsfay7/NDyBvnL80cW+vwS8gX4cbbnShOqNhTNFMl1tWkMX7Xy+1zvdhdFpylyffV2YxEEBGW9JHyw3w/7OMF7xUqcJInW5hQfQzioaagjMdL9qXsWtExb8aGZ9a6dHe5iWq5KhtDNYutoJld4j0b3h69zrsD1yhRbRzR1yAh0Tk1yi89pxksneCp0gMbNoxA5ntHEsMymV4Of/36dc5cfJfmYw0UlN7vlS2udJFXaOfSS9d5++23efbZZ9d0/u7AWd64+x0k4PVzF5AkOSVzPwZax4nEotTsLppTql6SJAq32fGPjNF/Z2xLBRExEJtmqqbSHxjjnm+Qicjqiz5lm01n5vP1T/Lh2gcgz8CAyYch38rH64/zWzWPpWwyoedmH56bfUTHvGsqjrUaa+0+3qghJMGo2DEqdl5v+zavt3175vtYy2Tb5SQC5ey5A7mgLzDG6cHr7JeqeNK6h0ZDKQ2GEp6w7eaIUsv7w7fp9A9lu5nrlugdyVTgS/y+MzkR9b333iNujM4JIQlGsxF7mZW33104hLKc7sBZugNnefODEPLG+UspCyEAUyN+jAV6ZGXh268kSVhLjEwMbrz3ivUQPSJpdNPdzTvD1xkPTKFpGrKsUJdXxhOl+yk2ObPdvBUzKnoOFWzjUMG2tF/Lc7MPx67KtPWOrCWELLeJ1UaTqaGaldYWyaTLkx2YYzp2WisWHNtmKOWOf5DLkx1p2d8m09I9VDN7pVs2igN6PG4MlsUfhKwOC1NjU6s652JDMalcBSNJLLkvlKZqSPLW6iPYWt9tBl2ebOfnXe9i8mk8qd/Jc6aDPCjXMTI2ynfvvcFY2J3tJuasxJtWKntG1DITapkJyaRbUwiRJWlThJCE+RNZ09U7onfZ0bvsOHZV5kTvyGhokjI5eZ0WSZIoV5yMBKcy37A0SkfvSLLl9plelltUVELIE0bTkr+re8Y9lJWUr/h8iaGYN+9+h9fPXeCN85dwWapTvhS3oMxOaDJKPKouOKZpGv7hMIWLFDPcrEQQSYNwPMqbg1eoVQt41LKDEl0eVtlIvaGYj9haIBDj7ZHr2W5mTkvlE/R6Z/LPXxWz0UNIwvzvY7Wrf1Yq3UNtq6GX9YS06KLHQ1oUQ5oruWZDKicG50rNn2PHHsSMlYF7gwuOeSa8hMaiPHri0WXPk+6hmPlKtxVgNhoZvDpJPHY/jKiqxvDNKRRVoXLnwo0gNzMxNJMGrd4+gqEg+8w7Fzx5GSQduwzlXJrqxV8WwrrFVpxk2mYoohT0R7h7ZYCeu2PEY3FKKvNpPlhOflHuT2ZLhJBcGZppclTy2sR7BNUIZnluNeCwGqVHneDhvH3ZaVwOWar3KtsBJKGhoYGPPfksP3np73CPe6loKEPRKQz3jDByd5xjLQ/x0EPHlzxHJoZi5jNa9LQ8Xs/VN+7R/fYopkI9kiwRGo+ikxR2n6jFXrhwB+3NbOPenXOYNxbAqOmSbuQFUKjYiUfj+GJBEUTSZDMEEICRPjcvffci4xNejAV6FJ1ER8cQl0938Ogn9rDjUPaHOxaTayEEYE9eLeett3nVd4NHLM04leniUe54gHeDbZgtFvY5G5Y5S+qpmkpUjaOXlawXc8uVHo/lSJLE5z//eYqLi/n1K7/m3ru9qJpKvqOA3/7E7/Lcc89hNC6+YWK6VsWsRH65nQd/YyeDbeOM93vQNKjcY6O8uQBL3tZ7T9jYd+kcZVGMhKUYITWKSV44mcqtBpBlOW27im4ma5m0ullCSDgU5aXvXcQTCbDtiTL0xukhA1XV6L8+zps/u4bTZaWsNvcKyuViCAGw6Ix8rvZR/q7nFC/4ruLQTEiAWwrhtDp4vuYh7HpzxtrjjQY4P9HK1fF7hGNhjDoDewrqOVrYTJ4+8xU2N0oISZBlmY9+9KM89dRT9PT0oqpxysvLsVoX/9nN7gXJxFDMYowWPbX7Sqndt/LtMTarjX2nzlHN9kpeNRi4Fe7ngLl2zrG4pnIz0k+dqwy7fmt1vyWzVK2D9ayg2eghBODe9SHGx7w0Pl46E0IAZFmicm8hrScHuHm+J6tBJLHHjDwYWnAs10JIQrHJyT9o/Ah3ff30BEbRNKiyuGi2V6Z9p9/ZJiM+vtf5Bn6fnwalmALFylQkwOX+O9yZ6uG36z5EoTHzkxY3SggBiMVihMNhTCYTDQ31y35+NoZihOVt/Lt1DrLoTBwr2cVbfVeIB+PsNFZikQyMxr1cDnURNKo8XLSxth1Ph5UsL0z3ct5cNtA5ic6hYDAv/DOVJAlnuYXutpEstGzaUiEk1+lkhR2OanY4svcG9MrgBcLeIB+37p8zX2WnWsFLvqu8NPA+v1P3eNbal8tGRkZ4+eWXOXnqJMFQELvNzhOPPsHTTz+N0+lM+jXZHIoRliaCSJo85NqFTlI4M3KTO8GL03VEFBmXw8nz5ceotGytWdFLWa4SZOLJeqN1G6+XpmksNV1AkiVUdeESwEzYyCEkF0xEvNxzD3DEWLtg0qxJ1rPfWMNpTwcjoakNVXMoE/r6+vjTf/undI10UFzvosBhwzPh4Vs//R+cf/8c/+qP/zdcrvv311wZihEWJ4JImkiSxIOuHRzIb6TTP0QoHsFpsFFjKd7Q5aPTZSVlqTPdOzK/psZq95RZr+LKPK5d7CIWjqMzLhwycA8G2NawsDDXWqmL1GOYTwvFsh5ARsNuhkKTyEjUWks23KTv0bCbeCxOpbkg6fFKfQHxQBujYXfGgsha67yku5jZ7L9DTdP4j//tW9wdv8nep7ahM0y/hdkq7RQ2Grny5jn+y3e+wef/4afnnEMMxeQ2EUTSzKjo2e6oynYzNoREGFnK7DAC6esdyYVy7tv2lfP+yXa6L45Sd7R4piS0pmmM3HWjBVSaDhYSjq+/TkcihGR6E7zVmoz4eGngPTrdQ8RjMZDAqDeyz9XA4yX7MzrHYz30kgKSRFiLYmLhhPawFkNCytj3s9bexnRODJ9f0Rigt2eI1tZ2aveXoTfMvabJYqBiezGXLt7gExNPUVCYN/N3K4ZicpsIIsKGM3uoJh29I7NDyOxekEwXMjNbDTz1/D5e/v4l7rw2gL3UhKyT8Y4EkSMaR59o4Asf+6frvs5GCSG+WJDvd75JyBfguKGeKmshUS3O3cgQFwbu4IuFeK7y+Ibocay0FGExmmmLDHLYvHC5cGt4ELPRRI0l/dvBryWEpHtl2vwHgYThgTEC4SAFZXlJvy5kG6VvcpQXzv8NFY3Tk7jFUEzuE0FE2LBSPVSTC70g81Vtc/HZLx/n9oV+Om8PEQ+qVO5w0HyonN99+p+s69yzh2JyPYQAXJi4i8fn5ROW/Vg+qNGjSDK7jZUE1QhvD15FL+s4VLCNMlNBTgcSg6zjaNF2TvZewhY20WQoQ5FkVE3lbmSYW+oADxW1YFIMy59sjXKxFwQW/zsE6BoaxRMepWv0DnrTwt6iWFhFkXWYjfaZYRgQQzG5TgQRIWcsNyyTTCKMJKx3vDoXy7nnuaw88OEm9j85vRFbYqO6lc7pWEo2A0ji973S8uPXJ+5RL7tmQgjAVNzPG76bTES9EIvxbs9Vro92UJ1Xyicrj2W0JshqHXPtwB8LcXG0lWv+PuyY8BEiqoMDpds5UbQ77W3IpRCyks0la7eZcNjamewKUrZj4bL1yc4pfBEvF3uvUmxf/f1EyA4RRISsS7whrXd30M1SyCyZxDyQ+SFkI/RkJJP4XftahylpqVk2jGiahi8aYptSOPOxoBrh154rKDH4kNJMRI5i0Jsw6AycG+/gh/G3+EL9k+jl3Hw9yJLM02UHOVjQyE13D75YEIvOyC5HTc6tlMlWL8j8BwGjWU/Lg7Wcfv02OqNCYa0dWZZQ4yoj7R5674xQd6RAhJANJjf/QoVNaakej1RtUb7ZQ0guDqdEo1Gu3rnBwMgQBr2elu27cckrqwpqay6ZCSPJJAKKJEk4jBbG/b6ZY7fDA4RjET6m24tJ0tEpjWJX9FTqC7HLJl7wXOW2p5e9zrr1f5Np5DLm8Uhx7tYVypUQknDo8UbCoRjXzncy1uZBMSmMDk8gI7HzcAP1B8rS0k4hfTbfXVvISanq9ZjPsasSvcue9iWE2bARekFutt3mr7//bYY7+zDGFaJanB/mmTi67yCfqD+GUb/8HIfFXhPze0ta8ht4x3uZvfEgdsXMvcgwVeRjlvS41QBxWSPfML0RoFOxUqzZuO3uWTSI+GMhLk22c3Oyi2A8Qr7RTkt+PXvyajfM6pt0y/ZQTDKyIvPwx3ey+8Fq7l0f4vzV69SUONm2qwmzXWybsRGJICKkVboCSKrNvilmul5IMhshhHT2dfMfvvmfsI3E+Y2K4+Sb7MTVOK0Tvbz7+tv4dozxex/69PInWkSityThYEEjt6a6ecl9nRZDJX41TLFkZTTmYYoAhWbnnP2brLKRcDyS9NzjYQ/f7zyJ1++lRi6kXM5nJODhV1NnuFXQzWeqT2DI0SGdtVisx2klE73TGULWMzE8v8jGsKmf2qMFYjLqBrd5/tKEnJPuEJLoDYHpCp9r6RXJxZUyuT4Uk/DyW6/BoJ+PND6G8kEPgiIr7HTVIsdU3rl1nadaHqKyMDWbepkVI79V9xivDV7i0lQPveokkVgEp9FCmclFqSl/ZqWMpmmMql4ajQvfgDVN45d9Z4n7w3zKcnBOZdORmIfXx29yynyDx0v2paTd2TQ7gMz/O8xWxeLVLo9/8czbi55LBJDNQQQRIS3SGUIWqwCZCCMrfYJLRwgJBSL0tI4SCcWwOc1UbXOh6Fa2rXsu9IJoodiKfn7hSJgL719gj7N2JoTM1phXwen+a1ztvpOyIAJg05n5VNVxvKX7OTN+i7f7rpJvzKPMMLdCaXtkGL8So8W5cCO03uAY/d5RPmTcvqC8erHOQbNSypXxdh4u2r1hekXWM/8qUxWL1zIUkwghInBsbhvjr0zYUEpaatLaCwKLP72tNIwkeypbTwDRNI1Lb93j5mvdxEfj6DWZqC6OucrEA89tp3bH0oWpshlCbty4wZsn3+T69WsoisyhvYf40GOPUb992+LtjUSIR2PYDcmXx8qSjEUyEIomHxpZL7vewhMlB3BHArwz1kpjrJhaQxGqptIRHaGTcQ6WbKfKUrTgaweDE8hxKFtkZUqN3sXtyBDjYQ9li5RgzyWpCP2pDCPzt0aYbTWhX4SQrUMEEWHDWc+NMl1DMZfeuse1H91jp76UpqoSjDo9nlCQa919vPXX13jiH+6nsrFwyXMkQkhCJkLIL3/5S779w28R1gUpLHeiBWL87PW/443Tb/Llv/+HPPTYiZnPnb3RndVswZGfx8DQOPXOhfvdhGIR3IQotDvT1nZFknmu8jhnzAVcGrvL3fBtJMBptfN04REOFzQlLWomSxIaoKEhsfB4HBWQFtSUyTVLDbusxfyaPGuxWEXUhNUMxYgAsnWIICJsGekKIUF/hJuvdrNTX8qesvs3cofJzPGaRt68d4fLb3RQ0ZBb1T5v3brFd370bRz1Fup27YC4ihSI07hL4+aFNv7qb77JtsZtFBfd71VIbHanKAqPPHyCX3z3x+wO1eE03f8ZaprG+eFbmJxWDtWntyiXTlY4UbSbY4U7mIh4kSWJAoMdeYlti2utJaCT6YqOUW9Y2FPVHhkmz2yj0OBIZ9PXJdcmgS8XQED0ggiLy0gQ+c//+T/zZ3/2ZwwNDdHS0sJf/uVfcuTIkUxcWhCA1A/FzNbTOkp8LE5T1cK5EJIk0VxYyuk7HXgmguQVWlJyzVQ4+dZbhJQAe3Y2z/m4JEnsONDI+ZeucvpXb/KpLz4PsGDH3Q+feIKrN67zs0un2WmtospRQjAa5uZEJ2OGAJ954MPYTJn5fnWysuIiYEXGPBqdFbw32oldNlGkmw4cmqZxNzLMPW2MJ4sO5cQS3kzU3lmvpUqyzydCiJBM2oPIj370I7761a/yzW9+k6NHj/IXf/EXPP3007S2tlJcnP4NnYTNZyXj2LMnXa7kaW09wsEoek3GqEv+52QzGiEw/XlLeb3t23OGZ7oDZ9M6PHO77Rb5Zc6kvTSKomApNHG3u2NBAEmwWqz8i3/0R/zyjZc4deoUt9xXkRWZxsNN/NahE9THnClp50oqr67WsxVH+dv4KV6eukFByIJNMjKm+QkpMQ6WbudIQfPyJ0mzdM61SmYtwzKp2iDyxTNviwCyhaU9iPz5n/85X/rSl/jiF78IwDe/+U1+/etf8z/+x//gj//4j9N9eWGTmT2pDpLPF0lMWE2EkRrLg3QHzqJqGrIk8UTT53m97duE496U9IrYnWaiShxvKITdtHAJ8bjfh2SSsOUtvrzYqNgJx70zYUSWJFRNS2sY0SkK8Vh80eNqXEXJNy+5LNo2CL/18c/w3NPPMuGewqDXU+gsIDbum1keuh7zK6+mKpBYdCZ+p/ZD3PX1c9vTSzAWZruhmL3OOirNrpwaQsuE1S7hzcVl78LGldYgEolEuHjxIl/72tdmPibLMk888QRnzy6cWR0OhwmHwzP/9ng86WyesEHNrn+wWO9I4ik+8SaarjAyOeJjqGeS8YiPUzdaebixCVuemcT7WCQW487UEJVPFmFZpupjoh2Jm3qijkjipp/qQHJo/2G+/+v/iaqqyPLcORWRcISwP87e3XsWXYGkhWKoZSbkwRAmo4ny4tQt051ttfvSrJROVtjhqGaHY2s8iS/X4yFCiJAtKytwsEZjY2PE43FKSuZ2L5aUlDA0NLTg87/xjW+Ql5c3819VVVU6m5dR/liIc+O3+WX/OV4cfJ82bz+qpma7WRtaIpAkekeSSQQSLRSjxvIgNZYHUTUNVdNmhkHCce/M8tmV0jSNC2+08/3/8A7n3mklXqhxNdTLLy9e5uLVe0z4/HSMj/Ba5y2idXDoycYVn3t2IJGl+6s3lloWuRaPPvooBaYirr97i1g0NvPxcCjClQut1BTX8eCJ44t+vWTSIZl0qGWmjJTYTwSStezSvNXN7vFY7L+VmD8UI0KIkAo5tWrma1/7Gl/96ldn/u3xeDZFGLnu7uLF3vPEwlEKsRImxkW5lTJ7IZ+teQSHPncmMK5Xpt8kVjJUM9/s3pFEGFlt70jbpQFOv3abvHoLdduKkWWJqYN+us6O8FrbbRx3uiiqz6PySReHntqG07WyTeASlhqqWex7Wq3Kykr+6Vf+Kf/pm3/JhReuYshTUFWNmDtObXk9/+yP/jl2+/I/D8mkm1nam27zy75vVqn8O1pr5dTZ4TKdvSBLVU7NFk3T8I4FiQSjGMw67C7Llhuuy6S0BhGXy4WiKAwPz71xDA8PU1q6sBvXaDRiNG6uTYt6/CO80H2W6ngehy31GGU9AGMxL29N3ebvpHf4Yv1TSy43TIWYGiesRjHK+rSsBsjmcsKlhmoW27RrdhgBVjVUo2kaV969h6FAR2mzc+bjznIrLc/VMtw6xfgdH0/+o/1UNCxdO2QpyYZqklnP8M3Bgwf583/37zl9+jTtHe24Y70cb/kIDz74AFbr6sJTptiaS1I+eTWXrOVvKVXDLrDwbyZVIWSjlGqf6Pdy970+3GN+4pqKLMnkFVppPFyBqyp3l3RvZGkNIgaDgYMHD/LGG2/wyU9+EgBVVXnjjTf4yle+ks5L54zz463YojqOW+cWV3Lp7Dxi3s4rnpvc8w3RaC9Py/W90SBnx29zfeIe4VgEWZbZmV/LMdcOXMa8lFwjV2oaLFYdcrE5Dok37dm9I4kwAovfaN3jAUaHPRTvW3hTkiSJkiYnE/f8jA951xVEEmb3jiQzuxrrWia3eox3aHzAylhU5c7pYf7rjX/Pj37t4IHjB/js0/9gRb0im4mqqXiiQTQ08vSWtD8kJKz17yiVe8UsFULWuipmIy3Lnej3cPnVDjSziqvFjtGhJ+KLMdHh5cqr7ex7sgFXdWrum8J9aR+a+epXv8rnP/95Dh06xJEjR/iLv/gL/H7/zCqazSyuqbS7+2nRlyft1ivSObCFDLT7BtISRNxRP9+99wZer48mXQkunR1PPEjrYBd33X38Zt1jlJvX90aZKyEkYXZ1yJXOW1jtUI0a19A0DXmRPWQkWUJWJFRVS3p8LRa78a9npU3iTcbn8fPNv/gep6+dwlJiwJxnYNgTpeMHXbx39gr/6J/+DvsqP5yy7yUV0rGkV9M0Lk7e5f2xNiaCHkDDabZzqLCZwwXb0hpIci2EpLoXZCOEEE3TaDvfDxaVykOFM/dsXYGCOd/AwKUJ2s73UVjpQJLFME0qpT2IPP/884yOjvL1r3+doaEh9u3bx8svv7xgAutmpGoqmqZikBb/MRtQiKd40qo/FiIQD/P60GWCXj8ft+7DIn8w5KWHZmMZr/iv86u+83yp8Zl1j33mSghZj9UM1TgKzNhsJtwDfmyFC8OOfyKEpEq4ytLfk5DoLUlIhJHlzH6j+Xf/+f/ixs0+6k8UYbFPz1eKa1EigRjtF+/x0++/RP5Xpp8Clwo4iRU0CY5dlSlZwruYVIYRTdN4afACF4dbqdHy2WOY3menyz/Ka773GA5N8mz50bTME1jvUMxahl2Smd9zOL/uzlrng2yEEALgHQvgHvdTvM+x4PcsSRIFDXaGL04xNewnv8yWpVZuThmZrPqVr3xlywzFzKaTFFzmPPq9EzQaFt5kQmqUCQIcXmFFyOUMhyZ5e+Q6He5+QtEI3YERHtE3IanMWR+llxQOGmt5w3+b3uAY1Uk2BtuoHLsqZ27M8+uJLGelQzU6vcKuIzW8+/otnBUhrAX3b+7xqEr/tQlKy5yU169/WCbV5j/p/uL9/0b79WGKm/JnQgiAIukxWMBQ4+Py5VuMDU/gKilYtLcl8fNNvNHpmV7NlHjDTHUgmV1fJBVhpMs/zKWRVh7U1dFouD9/rVJfQGVklHdH29nuqKLJvnBfnbXKdC/IYvOlhGnhQAxVVTE69EmPGx164qpGJLB0YUJh9cQrMo0kSeJA4TZe9p6nPzpJhT5/5piqaZwPtmM0mdidt/4Z8v2BMX7QeRIlpHJQX0VYieHRvFgiCne9/TTaK7Do7k8ELtXloYU1xsPuTRFEFrs5J8LIaqxkqGb/iTqGeyZpPzeEyaXHWmgk4o/hGQiSb7fx+GdakHOs+zZZd/vEsI9IRMNZvnDlliLpcZZbaL12j5+f/h/8wW/882WHfhIraNQyE4nbeSKQpCOMLGelIeXq1D3scSMNpoXnrDUUcdPXz5XJjpQFkUyGkNmvfxFCFqc3KciyTMQXxZy/cNFExBdFliT0836GmqoxOehlrNeDFtewFpgpqc9Hb8z+FgEbhXhVptk+ZwOdrmFOjt2mIuKkQldAWIvSERshZFD5RNUxzMr6VgppmsYrgxcwBSU+bNuPTlIYjrmxyAZcsoNgLExfYJQmx/3u3LAWQ5M0dPLaXwK5Vs9hsZtzIoys5ia8XAE0vVHHM3/vIK0X+7l1oZfJHh8ms55jj+xg59EqHPnmVH1bK5KsPHwy8ycdmvR2JAniMY2kz4FxHbKkQ1bkOddYqqZJjeXBOcXO9C572sIILP5mvpoek/GQm2LZvujQS7HiYCyUmgKL6xmKEb0g6ZNXbMWRb2G8w0fFQcOc14KmaUx0+LDlmecMy4QDUa69fo+JYQ8YJGS9ROxmnPb3jew6UUNRrTML38nGI16daaaTFZ6rOs4VWymXJtq5EOxBkWWaC6s4XNBEhcW17msMhiYY8I7zmKkZnTSdwosUOzadmXvRUXYr5QxG3QRjYcwf9Iq0RgYwGYw0WNdWDTPXJqkudoNeT6GtRBhJSISRBJ1eYdcD1ex6IDtj4JFQjPZrg3TdHiYQDHC6pI0v/MYfUlO3+FP7/EmHxZUx7HYL411eKnYXLPj88W4vNquJ6voKIDxnYmwy83tMMjVUk8xqhm8MioGA5l/0eEANY1KSd9mv1EYZipn9mt9KBcskSaLxcAVXXm9n4PIEhQ12jHY9YV+MiXteopMqOz9UMTNRVVM1rr1+j/FxN6UHnJic0+ElFo4zctvNtTfvcfjZZhxFubkMPpeIIJIBiiRzsGAbBwu2EVPjKJKc0klvkxEfqhqnRHd/OaksybSYazgdu4MprseATFiNYdD0tEeGuB7v54GS3Vh0q3ujnt0LkishZDGb+WnQPebn1//zIkMDkxgLdOiMCj0Xxvlf3/tXHHqsnn/xD7++4DWW7E3FYNLR8kAtp169idmhJ7/KhiRJaJqGezDARLuPBx5pxmw1AIY5y4iT1TWZv3JnqaGaZNI9fLNYINmRV8XLk+fxxkPYlbl/E0E1Qq82yRPOQ2tux0pCyFK1QDIxFCNKt0NRTR77Hm+g7b1+Bt+fmukRtTnM7HysgpL6+8Pr4/1exoc8lB7Kx+w0zHxcZ1Qoa8mn+/QovTdG2fWYCCLL2Xx36ByXjmJiRkWPJEn41TB5yv2x/h2GckLWKOf9d/HEgvSEvMQjGqoeDpRu57GSllVdJ9d6QZaymUOIqmq8+oMrjExM0fChEoyW6bd4TdMYaffw3hsd/Lei/4eGvQt3t072prL/0Xq87iA3LnQz3OpBb1WIBeLIMZk9+2s48vS2BV+/kroms4uszR+qSSbdwzezN8+b7/FYKTekQd4ausvD1u2UGpwAjETdnPK0UVZTweMPPYLNsHDIbbneluX+btJZB2SlRAi5r6jWias6j8khH5HAdGVVZ5l9wZyv8R43slmaE0ISJEnCUWFmuGuSnWqNWO67jM13l96Cai0l2ExWboX6edBy/01DkiQOmGuZjPtoV8bZXdyIVW9mp6Mal3FtFQJzMYTMfpJMx8S8xFNRQqp27V2rvvYxBvomqHqgcCaEwAfF1Lbl4RsNcfvcCDv21a+o503RyTz63G52Hq6i/dogfk8Is81I495SSmvyk55jtXVNYDqQJBsqSyz5zdZcEgAb8E+qfp+/eeMnvNl7F31IQgLCeo3q3dV88YnfoCRv4TDqUkM/q+kFybUQshUDyGySLFFQvvTPIB5XkfWL/30pehlVm645NP1qEhYjgsgmoJMVjhfv4tWe99EHdew2VmKS9QTVCDfCfQwqXj5Tc4ID+SvfeG22geA4V6fuEQ1fJm/Axb7aHeytbkKn5ObLJ5W9IOnatXc9hromwaDNWTY8W36VleE7k4QC0Q+GVJYnSRIl1U5Kqp3rattiZenn75OTmEOS6ClJSMwlyQaXI5//9ZN/n/ahbtqHe0HTqCuupLm8btFAt9jQT7pCyHJzntb62l9szo+wOKvTRLQ1TjyqougXFrvzj4WxOc3ISmYq825kuflOIqza4YImolqc00PXaQ0OYkRPiCgGg5Enyg6y39mw6nNqmsbrw5d5b/g2pqhCmcfF+NAo71++RH1dHf/gw5/DYc6dwj6rXRmzUuvZlyYdNA0We8DqHR7EPxlmciIAqSvsumrJNu1LWGxvnNkb56W7GNpiJEliW1kt28pqV/V1yYZ+Uj0Us5mHGzei0sYCOi4NMNrqpmSXc05YDYyHCY1F2fbQ0nsACdPEK3qTkCSJ466d7HfWc8fbhy8Wwq4zsd1RteblwZcm2zk3eItDSg3bbWVYCuzonWbGwh5evnuZbxt/xlee+Z2s7kq52nLua5Ws2BlkZyy9uDIPLQRBdwRz3v0ej97hQQDCoxKWPD1vXj2DJEl85NgjGWvbbCvZI2d2L0m1fHhmUmu2ekXWIxFG0jEUI0JI7jFa9Ow4XsONdzrpPTeGo8KCrJfwj4YJjUQory2kvDn3ihrmIvGq3mQsOtOah2BmUzWV98amy103G8qYivrpH59C9cqY9Qb2m2p4v6Od3vFBql3p2bBvpfQuOyqZuUkvt6Q3E6qbiyguzaPn0hgNx0oYnBqZORYZkQmPxdhzooEiq4uxQA8vnnk7q2EkmUS12kRPiappc1bYyEUGFpvFlI2ekpVK51CMCCG5p2xbASarnp6bI4zec6NpYHWYaDhWTsUOlxiWWSHxyhaSmor6mQi62aVr5K63H38kgFlnwqDT49XcxBSNCf0YdwY6VxxEltuqfLaVvNlkqjck1yg6mac+t59ff+cC5392B3OxAbPZQmAigurXqNlRMvMk5rJUZz2MrMbMm20ohrJnbsXfxKTWlb6OshFYUrUEF0QvyEaRX24nv9xOPKaixjV0htSWZ9gKxCtcSErVVNCmi6UZozJVSiE2owXZqKBp07VLvF4v17vbeGrv8WXPt5qnwZWsnJh9vkz1huQSV7mDvEMa1U4noQEdUXec4iInFQ+5KKyau2nX7DAC5HwgSVa1NTFsA6B88L+zN9hLJpPF02ZfL5srYITsUXQyOTp/P+eJH5uQlFNvQ9EpdHpHOKHbhkmevUwU4oqGKkH3cB9xNY6ySH2UtdycE5+b7I1k/vm2Wm9Iwotn3sZg0dHywJ4VfX5iB9Rc6h1Zqiz9m3e/M/P/P7Tt79Gjvj/z79l1SWDxQJLu5cCziRAiCGsnBrCEpHSyQpEln051HD+RmY+r4ThhNcr74XuU2QuJBSIMTY0tea613pznB5LFbvbZuGGrmjazigbuz3nIpLVsr574mkTvSLbMX+YrSxKyJPHm3e/MhJDE5ySOzV55I5l0K/q9z38NpZpjV+XMjs+pCCEJIoQIW4l4tQuL2uGo4rzuFm/F2yiLOyiK2Qnp4nSHJjAYDTxa0sK5WCealr51orOfahP/zrZcWkGzFvOHajIhWQ/M/CW+6fr5pTuM5MJrUhA2MhFEhEVVWoqotLho1FyMxb20xUcxoGOHqYIDpU3cmurFVm6nyLFws7RUytUbfS4WO1uptfSmrNVSw0Hze0bS+XPL1dfRRjI26KGndZRYVMXpslC3swS9cWO/jcSi00XJ9EZFrHLJko39ChLSqsrsosJRxPCUhw/b9mCW79esGB4f545uiA8VPIhRv3T1zuiYd9O+CczuHdloYSRTVrJyZz0/q8QeNptBrs55ioZjnPzpDdqu9xPVYsh6mXhIJd9p40PP7aFm+8J9jXKdZ9RP17URRron0VQNg1lPZbOL6j3FGz5cbTTipy0sSpIkPlF5jB9ET/Iz/0Vq5ELssomRuJdB3DRYK3mi8fCS5/Dc7MOxqzLlYSSXJ/Rlo7ZIrkuEkVSbXXskmVwIKMtNqp3/eZl6Tc9fnbRYr5SmaZz8yXVuXO2hbK8TZ7kVSZaIBGL0XRvnpe9f4lO//8C6twfIpPFeD1df7yCmi+OoM6M3KwQnIty90sdYr5sDz2xDn+F7SzQcZ+TeJBMDXjRNw+GyULatAOMKt2nYyHLvLi7kFJfRwRcbn+LyZAc3J7sYiU9SYLTzbP4udufVYlD0y54jsWIhVfM8cjmEpFosFiceUzEYdaI2wSIWex3M3vE3G2a/TpdqSzZez6vZbXdswEPrjQHK9jrJr7y/pYPBoqPuSDFtbw1y9d1Onvqt/Rlo+frFYyo3T3Wj2TSq97tmdsa1FZvJq7LS9944nZeHaHowc+XZPWMBrr7Wgc8bxJCnIMkS/Z1j3LsyyO5H6iiuc2asLdmw+e/kwrrZdGYeLtrNw0W713WeVPSObJUQMtg1yfUzXdy7PYyqaRS4bOw6Us3OI1UoOjGOvRKJ18hKeyRSaf7rdLG25HoIAei+M0qMOM5y64JjkixRUGuj4/YQ0XBs0SGNcCBKLBLHaNWj0ydf6p8pYz1uAr4gFQ8UzISQBINVh6PSTP/dMRoOlaGkoa2apqHGNWRFQpIkouE4V1/rIKRFqHrIhd40fc14TGXk5hTX3+rkiGM79kJzytuSKzb33VzIOesJI+na1C7V1jss035tkNf+9goRJUp+nQ2dQWFq2M/rv7hK371x4jUeZGVj9o6stoaJUbEnrTcye7O85SzXI5FqS4WLZENJ2Q4hy83PiUbiKAZpwZt2gt6koKoa0Wh8QRBxD4bou92OryuAFAPJKlG4M5/a/SUYLcv3pqZDwB1GMkgYbMmvb3UZ8fd6CPmjWJ2pCyLRcIy+W2P03RklHIii6GXKGwrRGRV83iDVD7nQme5fT9HJlO7Np/vUKH23R9nxUOYmmGeaeLQSMs5zsw/PzT6iY94NubnZSqx18mXQH+Hkz64j5Us0PVZOcUMeBVU2ag8VodTFOfPuDcI9loyuekmVtdYwSYSR19u+PfMG2h04m7QC62Lm90ikg1pmmgnLS4WL2b0k2QjW8iqH+PIKLcQDKtFQPOlx72gQm92EyTz3jb3z5jDdv57EekPmqFTLCfM2dvnLCLzj5eovOwgHomv+HtZD0cloMQ1VTV52IBZWkZBS2vMYCcW4+Ou7tF7sQbOpOJrMGEoUOluHuPr6PRSrNCeEJEiShLXUxFivO2VtyUW5/3gpbFqze0eS2YgrbWb3hqylTsfQbS/dQxNUHnfSNzI055i5QI+9xEbv7VEqd7pSPmckHlOnu63dYRSdjKvagSUvtW/ca937Zn7NEZguKrea3pF0DtWsdohlI/TsJTTsKcX+ioX+GxPUHJz7ugu6I3j7Q5x4qmHO0tdoJM6ZH9+mPuDicHnjzNcUWmxURvN5p7ONrsvDNB/P3DyMhMIqB8p5Be9AgLzKucNNmqbh7g3gLLFhtKaux6bj/QGmJr1UHC3EYL3/u8+vs3HzJz0EfRE0INlftKxIRNXkIXCz2Dh/DcKmtFjp7XSstMkUo2LnxTNvr6nXYizYg8URwmpJvvesxRXA0xZEjakpHb8e7/Nw61Q3fm8QSS+hxTWU8wrl21xsP1aZ0mvN7xlZaSCZH0ZkSVp1GIHUDtVomsZtbzdXT18nqsUpLy/ngQeOYrUunE+xURnNeh79+G5e/bsr3H1niMJaG3qTgmc4iKc/SF19CXuO18z5mq5bw0QGIuwsKFkQmM16A/XmIm7eGiR2pCzjc0asThNljYX0to4gKRL2UjOSJBGPqIzd9RD3atQ9WJqyoB8NxRhsHyev1jonhMB070xBg42Ru25C3ghm+8IVMv7RMMVF+SlpS64SQURYk5KWmuU/aR0SvSUbQWKIIBVLdmVFRo2qaJqW9EaoRlUkWUJKYeElz6ifq691gE2j4oECDDY9qqrhHQjQ2zaMpmrsfqw2ZddLWMuS3vlDXokwslrLLftdCY/Hw3/5q7/i9vvXMPrBKOuYkoL8uPKHfPEPf58jR46s+dy5prGlDJPVwLXTnXS1jaJqKjabmYef2Mneh2oxmub2HngmAljiBsym5L0KhRYrWkAj7I+iS+E8jJXacbwKTdUYvD3OeKsPxSARC6oYDXp2P1yLqzovZdfyu0NEojFcRckfqop25DF0fYrhW1PUHCma83c/2e1D82tUPOxKWXtykQgiwqolQoituSTLLcmu2XMUEuPu6+kNgelu43vXBwlNRTDnG+cc0zQNT3+QsppC5EUmDq5F19VhYrr4zFJG7YNr2cstSLLEwJ0xaltKsBVsrln76xke0TSNv/rv/43Wk5d4svIglTXFSJJEIBLi3a7L/Nf/5z+R/6f/B9u2bUthi7OrsrGQysZCgv4I8Wgcs8246DwKvVFHmBhxVU16PBiNoimgM2RnBY2iV9jzoTpqW0oY7XITi8axOIwU1+djSPGwmazISJKEGk3+s9AbFSxOE5GRON3vjmIrMyHLEv6RMHG/RkNLGYWVG69neDVEEBFWRYSQaWtZfbASBeV2CksdDF2bomSPE3O+AUmSiIXjjN5xI0dlqnelroplLBpnpGeKvHoLSBK+iSC+qRCxyPSYtMGsIxKNMto1temCyHq0trZy68xlnqw8SJXz/t+CxWDiiW1H+fGtN3n5pZc3VRBJMC9TYEtVNfIKLAQNUQbcbrYVzR1m1DSNLu8Ytt2WrK2cSbAXWrAXWtJ7jQIzNocJd19gwcMFgLs/gN1ppuXxeka73Yz2utE0FVexk8qHXBRWOTZ9DSERRIQVK2mp2XIBZKmVGbIkpbyCqiRL7H2inmtv3GPkshsMErJeIuaLYzIa2PtYHXklqZt/EI+qaKqGYlSYGPAQ8IRRzDLGfB2aqhEJxAj4wwx3TlF3oCxl112v9S7pXa+rV69i8GtU1iwMhbIks72ghitnLhD5hxEMhtRWxlzNaqFM0jSN1ov9XD51j7ERD+NeL8N9E0S80FRVhl6vIxiNcGdskBG7nx37a7Pd5IyQZImavaXcONXJuNVLfo0NWZHQNA3fcIipDj81zaUU1TopqnVmu7lZIYKIsCFkeg+OZMMu86VrozajRc+hjzUxOeBjrNeNFtew5psoachP+R4YeqOCwaTHPeBDM2mYC/XoZnVNK3oZLa4x0j1F0BPG7Fj4RJcOYwMe7lzsY6TfjU6nUN1cRPP+Csy2+2/q6520uh6RSBSTpF/0SdWsN6LGVWKxWEqDyPyeuLVKxxYEl0528O4rtzEU6Sg96KTscD6XX2nn1L12btwZoCDfRkCJorkkGh+tpKBicw83zFaxvZBIIErHlQE83QF0VoV4SEWKSpTXFWW0imsuEkFEyBmjngnuDfeioVFbVImD6T/ObO3BsdTNPt27xUqSREGFPe03a1mRqWhycfmtu+TtNM8JIZqm4e4KYrToUYwSg3cnqD+Y/l6Ra6e7ePfFW4SJYik0Eo+ptL8wyJXTnXzkdw5SXJk3ZwUNTO/vk8kwUl5ezpQcJBAJYTEsDMndU0MU7yjFbE7NcFaqAgik57XrHvNz/s028urNlG6/v8Kj9vFCovsVek6NYq63Uru3guLavLRULM1lkiRRf7CM0sYChtonCPkj6I06iuucOIosm37oZTkiiAhZ5w8F+OHpF7nSepOoP4QGWEryaOlu4Yv/8g9xkrmKqrNv+Ms9NW6W3XVr9hZz6aU23G0BiEmY8vXEIyq+wRCxqThlewoIjIXxT6W/Kmlf+xjv/PomlkoDdTuKZ6p5xsJx7p0b4eXvXeI3/+hh9EbdzM9/9pLeRBgB0hpIHnjgKD+u/CHvdl3myW0PzHkjGfSM0R0f47ef/lRK3mAWK8m+Hql+7d69Okg4HqV228KhKnuxmcJmO7FgnLJtBSm97kZjyTNmJMxvNCKICFkVjcf45qs/pPvOPY7aG2koLUOSJHpkN+fPXubP//zP+d/+v1/HlIGXarKnzs0SNpaiN+lw1TgJRIIEByL4ekJISJjzDJQdKsBeasY7GErrHjeapjHUPcUr37uMJxSgtNI5p6S4zqhQe7iIjpNDdFwfYvuh+13ZqSh2tlpWq5Vnfu8BfvAffsr/vP4zmvIrMOuN9LlH6YpP8MAzT/H4448v+vWrnecxPxjn2uvSNxVCZ1XmbD3QOzw48//NTgOesRBqXJ1T+EwQQAQRYRWGr3bP/P9UTVq90nWb9vYOnnUdoMh4f+1+k7OKIpOTn54+z9m3T/PY04vf1FOlxvIg3YGzqJqGLEk80fT5NXdjJ+pjbJRS7OXbCum+O0Tdw4XEIyqyIqEzK0iSRMgTJe6Lp7S2QoLLUs3PXn2D9lNjGKIWetpGsdeb6WodxmI1UdFQMFOjwmDRodhkhrqn5gQRIKNDNYkQsf/wTpz/p513XjvPtXOtaDGNgu35PPvEMxx79BB6/cIVIWsdYkn3UOB6Gc064qH79W8SIcSkm96tNxqMo9Mri+5XI2xtIogIqzJ8tZuSlhp8rcMpCSMX229QrFrnhBCA6KSP/Hw7FVIeZ06f4dFHHsnI8MxiYSQc9674TSBRKfTFM28zFujZEGGkalcRg+3jDF2fomRnHnqLDk3TCE6GGbrmJr/Ijqs6ebXX9YhF4/S8E8LniVCwXYfdbcZWbMRaZMI3HqKnbYz6HSUo+g+eopd4A082VAOkdKhmfpCoa6yirrGK6O/HiEVjmMzGmeGY+dfdjCEkUR3XGwkzMTZF680Y1qLpybmJEBKPqXj7Q9TtSF21UmFzEUFEWLVUhhFvwI9DWXwdv9Nox9M/DoAWimUsjMD9N47ZYQRW/obwkWOPbJgwYnWaaHmygRsnO+k7M45imV4to0WgsMTBng/VpaVLfbhjkqkJH9UPlqEaQ0xaggRGIuRVW3GUmvH0B5ka91NYaicaihHzxCmuWrpnJlWl4Odbzfyh+ddNWOuS71wLIYkAknhdF9ZoeOplBm+Po8SMOMotaJpGaCrCaKsXs8GQ0vo3wuYigoiwJqkKIwUOJx2xwUWPj4XcVBTvRB4MoZaZMhZG4H7vCDDzdL3aN5GNFEYKyu0c/+wuRjqn8I4HkZXplTv55fa0PcmOdk1hyNd9sAeHjeIGha73hhhq0yjZlo/OLOOZCOB0Wel+f5T8fBsNe0uXPe9SQzVrNX+y6GLhINl1V/q1G8ns17MkSex6rBbdGR0D7WNMtPmQZJBUibxCGztP1GRs6bew8YggIqxaKqurHtm2l4vXr9DjH6HaOveJadA/zoji47OHHwCYE0Zg4+xgmggjG4GiVyhrKiRT8/ojkTg64/2eFluJidKmAobuThAYGsZkM+KNhgh2RXDabXz4t/Yv2NdkMYsN1azHSoLEYtfdTCEkGZ1eYdcjNdTvL2W834sWV7Hmm8kvt4khGWFJG+NOLuSMVJd431XZyP7de3njylV2hibZZi9HRqLdN8hteYT9Txzj8J4DM5+f2C11diCZb6MEFAFseSbGO6aYHPQSDceRJAlTkYHa/FLGeyYZv+ulvLiQEx/bTfPBCuzO1dflmN87sh6rCRHJrrtZQ8hsZoeRyjT2fqjxDzZ+FOFm0xB3bGHF0rHPjCzLfOGx5yhxunj3+vvccl8EwGK38eGnP8pnP/NZdLqFL9PFtm/P9PCNsE4STHb7iRni2CtMaKpGcCSMTqeQV+JAc+soP2FmxNzPIWfjmi+TrQCQy8Ej6IvQ0zZKNBzDUWChsrEwZ5fWxmMqA63j9N0exe8JISsypbX5VO0uxl4o9kDa6MTdWlhWuje60ys6Pn7oQzzVcpze8SEAdhw/gMVkRm9Y3ZPV7B4TSE3vyOwxfmBVK2jmT+oT7pvo99LbOoK93ER0PEZAiWApNqI3SUzeCzA85GbHAzVsa6pjPNTLi2fenlmRJKydqmq891obV8904g+EkRSQNJmiYgePfGI3lY2F2W7iHPGYyrXX7zHcO4HJpcfRaCIWUentGmGoc4J9TzZQUJH6FV1C5uRm/BVyRiZ32zXpjWwrreHg48enQ4hr7U+TiUCy2PDNStVYHqTG8iCqpqFq2sx4fzjunVlFsxgRQpbWd2sU2SLR+HgZZbsL0QIwedPH5E0/SkzGYNRRWG5HkqWZn+FGmWuTy86/3MrZN+5gLNfR9FQZO56ppPpYIZMhHy9+9wLDvVPZbuIcvTdGGeqdoPSAk7KWAvIqrRTW26k+XgRWjRtvdRGPxrPdTGEdRBARFpXJEALg2FWJY9d0oar1hJCE1YQRTdPo7++no+MeHo9nwfHEss9EGJkdSOZ78czbIoQsQ9M0xgbc2ErNyLJMQZ2NhkdLaXysnMZHy2h6shxHtQX3iH/ma1yWalyW6jk/X2F1vFNBrpztpGCbjdLt+egM03u+WJxG6o+VENTCXHm7M8utvE9TNfrujGAtNWLOn9s7KssSxTvyCPhDjHS5s9RCIRXE0IywQKYDCJDSADLbSoZqLly4wM9+8XNa790mFo9hM9t4+IETfPrTn6aw8H439WqKnYkAsgLa3H9KkvTBMt5Zn6LN+ySmf7ZjgR4xVLMGXbdGCEYiVNe7FhyTZYnCOjsdd4YI+iJzdjrOlkgoRtAXoaDWmvS43qJDNsv4JoIZbpmQSqJHRJgjGyEkIdUhZLbFekfefvsd/u2//zfcHLpC2f4itp2oxVit8POTP+H/+r//NRMTE3M+f35BrMWWhCZKvAvJSZJEQZkd/3DyScexcJyoJ05eiS3p8dlDNaJ3ZOXCwSiyXlp03yCjTY+qqkRC0aTHEz/vTAVtWZFAkohHFwZSmA6qWkybs8eNsPGIHhFhRjZDSCbML4oWCAT49ve+hVyosv+BvTPLAe35Nkprirn0ynVeeOEFPv/51dWfmF3iHUTvyGIqdxYz8vIU4/e8FNTdrzWhxlSGrk9hsRgpbcxf9OsTP1fRO5JcsoA22udjbHSKzh7m1G9JmOoMEPBGeOfme/fL6s+Tydez3qijoNTOZL8HR7l5wZLdwHgYYhKFlWKy6kYmgoiw6QPIbLOHat4/fZ6hyUH2P7NrwQ3OaDZS0uDi5KmTPP/885hMplVfayNVVc0GV5WDbYcquXuxD99AEIvLSDymEhiNYNIb2PtEPXrj8rcoMVQz1+wAMv91l7c9ztDV6/g645TsmlsxNxaOExzwU9tURUle7rxea/aWMP6Km9E7Hlzb7Mg6eaZ8/MgNN0Xl+eSVJB+6ETYGEUS2uK0UQmaTB0OMTYwjGySM5uRLhPOK8ujvHsbtdi8IIitd0ivCyNLq9peSX2ajv3Uc94gfnSJR2VJMebMLs33lcxRmhxFABBKS91zojQrNR6u4caqTgfAEzmorOrNCYDzMVFcAm9lC3f7lS+hnkqvKwa7jtdw510v34Ch6u0I8rKGGNFxlTvZ8qFYUN9vgRBDZwrZqCEmwWiyoUZV4LI6iUxYcD3qD6BUDFsvcTflWu0PvRirxng3OUhvO0uRzQVZDDNVMWy78ljcXojMqdF4eZOy6F03TUBSFqroi6g+VY8qBSarzVexw4ap2MHh3koA7hKKTcdXkUfDB8m5hYxNBZAva6gEk4cD+/eT9OJ/eu/3U7ph7w1ZVlf67gzx56MPY7QvDxewwAiwbRoTMmd87shKbLbQsF0aKa50U1eQRcIeJReKY7QYM5pXt4ZMtRquB2n1b+561WYkgssWIEHJfkauIZ59+lu/97LuoMZWqpgr0Rj2eCS/tl+9RqC/m2Y99fNGvT6ygSQSS2WEEcru892a3mmGwzTqks9ykaUmSsDpXP/dJEFJNBJEtRISQhZ5//nkURccLL/+SC23XkBTQaXoaq7fx97/4+zQ01C97jkTvCLBgp1Uh9232IR0xNJge8WickS437mE/SOAssVJU61x0abSwOBFEtgARQBanKArPP/9ZPvzhp7l27TqhUJDi4mJ2796NoiycNyJsXmL1jbBS7hE/1964h98bRLFOB4/Omyp2h4WWJ+uxF1qWOYMwmwgim5wIISuTl5fHww8/lO1mbHqesQADd8aYGvWjKDKuqjzKmwowWnNjgqRYfSMsJ+yPcOXVdqJKjMpjhegt02+jEX+MoWuTXH6lgwee24FB7AC+YqIPaZMqaakRIUTIKT03Rjj/89t0tw8T0UXwq0HuXOzh7E9vMznoy3bzZiT2tAGxyZ6w0EDbBIFQmPIDBTMhBMBg1VF+oAC/P8jQ3YklziDMJ4LIJjQ7gGyEEJLYZ2ajS+zQm7Dc7rxbyUS/lzvnerBUGah5uIiSXU7K9uZTc6KIuCHGtTc6iIbXt1Nyqom6L0IyI12TWIoMSSvP6owKpkI9o91TmW/YBib6jjaZjdYLkq7N7jJtqRU0YvUM9N0eRTJBYePcap6KTqZ0bz49744x1D5J1a6iLLYyc5bqaRHDQbktHtNm5oUko+hl4nE1gy3a+ESPyCax0YZiHLsqceyqRO+yb/gQMlsikCTCCNzvGdnKG+GND3iwlZqSVsDUGRUMDoWp4dwZnkmn2ctp5/83+7iQmxwuC4HxSNKdoTVNIzgRwV4gJquuRtqCyJ/+6Z9y7NgxLBYLTqczXZcR2LhDMbkQQObvxpsKycLIln/K1YDlCmAm32B105i9c+1iwz7zw0gkFOPWe728+J2L/Pz/f553X7jFaL971dcVUqe8uRDCMNXjX3BsstOHFJWnP0dYsbQNzUQiET7zmc/w4IMP8td//dfpusyWtxF6QTRNwxcKoKFhN01vTpULIWT+brypNLu2SK7QVI2Jfi++ySCyLFFQ6chYQavCcgfDQxPk19oW9IrEwnEinjjO3esv855qLkt1SlbQrGYn5sTn/OSl12l9cxQTFgwFOnQGma6uYa6e6+SBx5s58FjDsnusiB2gUy+/zEbd3jLuXR3APxrGXmpC08A3FCTm0Wg6VElesdiEbzXSFkT+5E/+BIBvfetb6brElpYIIJC7IUTTNM63X+Wta+fpHx4CoLy4hA9HPsrjTz6ZExtVpTOM5BLPaICbb3XhnvQj6UCNayiSQlldAdsfqkZvTG/NlMqdLoa6Jxjv8FLYcH+eiBpTGbo+hdlkpLQxP61tWKv11hdZSxhQVY2+02HC0Tj5B0Bn0oA4lkoJd3eAX/ztGW4N3aWwdvkhABFCUkuSJBoPl+NwWei9OcpU+/SQYn6Jg6qjRRTXOrPbwA0op+684XCYcDg882+Px5PF1uSujdIL8tP3XuONs+9QEXfwkG26QmlH9xB/851vM+Af53c/+bmcCSMAatl078BmCyQBd5jLr9wlKscoPeTE7DSgqhq+oSD9d0aJRePse3r5p+v1KKhw0Hykitb3+vANjmJxGVFjKsHRCCajkZbH69EbU/Nz900E6b89xsTQ9NycglI7FTtc2ArMaz7nWsLIenojJvo8uCf8VB4pXrAJnbnRTmxqHE+7RNOOqpz4G9pqJEmipD6fkvp84rHpiamioura5dQd9xvf+MZMT4qQ3EYIIQDtQ928+d67HDXUszPv/o243lZGhzbO6y++wsFd+9jVtCOLrZxrs/aO9N4cIRiJUP2Qa+ZmKcsSjnILikFm5OoUk4M+CsrTO1xWs7cEZ6mNgdZx3CM+JEWman8J5c2FKdvxdfDuBDdPdRGTYliLjAB0tg3S2zrKrodrKdtWsOZzz5+/sVQgWe+QyOSgD9kkYXIk/7nYy8xMtfmJRdS092YJSxMBZP1W9RP84z/+YyRJWvK/O3furLkxX/va13C73TP/9fb2rvlcm81GWxVztu0K1qDCDkfVgmPN+dVY/TJvn383Cy1bWqJ3JNWTWLO1ckbTNIbuTWAvNyW9YVoKjUhGjdHOqYy0J6/Yyo6Hq3ngN3Zy9JPbqT9YlrIQ4psMcvNUF3qXTO2JYop3Oine6aT2RDF6l8zNU134JoPrvs5yq1tSMS9D0zSW6uiQZJie3bvJZ/gKW8KqHvv+2T/7Z3zhC19Y8nPq65ffJGwxRqMRo9G45q/frDZSAEkYGBum1OBM2m0sSRLl5kL6+vqz0LLlpXqoJlFTZLmt2dNCg2gkjmmRLd4lSUIxysSiG7/uwUDrODHiVO4smPO6kySJkp1Out4ZZeDOOE0Prr+A3vxS8POPJYT9EQbaJhjtmSIeU3EUWihvdpFftvTE3LwiK/FrKhFfFINt4e/ONxTCnm9BZ9gavSGxaBzf+HSItBWa0em3xve9VazqDltUVERR0dYoOJQrNmIIATAZjPjjiy8zDETDWMyuDLZo9VI9VBOOezMeRiRZwmI3EpqKQNXCmfyqqhH1xTE35sZeL+sxOejDUmRAkpOEX1nCUmSYmTeSCsv9/twjfq682k4gFMZSZEA2yfT1jNLfPkbj/grqDpQuOr/DVZOHzWFh6OYUFQcK51Tx9AwECE/EaHq4aNPPD4nHVDovDdLbOkY4GAHAaDZQ1eyi7kCZGBbZJNI2EN7T08PExAQ9PT3E43GuXLkCQGNjIzZb7i3TyzUbYVXMUvbV7+RvW9vwxULYdPeXiOrzbQRiIXrj4/z2/mez2MKVmR1GYO29I4leEbg/tyBRUyLdKppd3DrfTcgTxeSY+3Q92elDQaG0ce1zJ3JJsiJTs2XqbTsejXPt9XtElRg1DxfNBAlN05js8nP3Uj+2QvOiKywUnczex+u4/EoHPadGsZQYUQwywfEIcb9GzY6STV+rQlM1brzZyUD3OI5qM4Vl06uqvINB7l7txzcZYu+T9chJgqewsaQtiHz961/n29/+9sy/9+/fD8DJkyd59NFH03XZTWGj9oLMdqRxDycrzvFi7wUeK9xDkSkPfb6N0eAUb41do7ipiocOPZjtZq7I7KGajTiRtXKHi9HuKQYuTOCoMmMtMqHGVNx9ASLjMZoOVWHJ2/hDooUVdtqvewm6I3gHgkQDMWS9jKPMjKnAQGAkQtnuzPTCDXdO4fMFqTo+tzdDkiQK6mwExkL03hxdcqmno8jK0U9uZ6B1nOGuSeIBlSKXk4qHXBRWOTZ9b8hot5vBrglK9zuxFN5/fRq36bEUGBm6PEF5dyHFdc7sNVJIibTdUb/1rW+JGiJrkO0Q0j8xzKXOW/jDQfIsdg7X78blWH19B4vRzD965rf469f/jl/1XcYetoIbQhao2lPHl7/4D7BbN1bP2EZdVaPoFfY93Ujn5SH628YY7nEjSWB3Wmh+pHpdK0lySVlTATff6eb2r3sx5evR2xTiEY2Jbi9aVMPhtFKxvZBYNI57yI+qatjyTZgdqQ9h7mE/epuC3pz8dWIrMTN5z4uqaks+0ZtsBuoPllF/sCzlbcx1g3fH0TnkOSEkwVJoROeQGbw7LoLIJrBx7qabXLYDSCwe40dnXuLs1QvoghpWyYhHC/KS7U2eOvIIHz3wyKqfwEqdLr7xf/xrbnTcoXNqEE3TaKypp2XHHmR5Y47tbtQwojMobDs6PS8h5I1Mz5nIM26qp2r3cADZIGFzmTC5dOgsOjRNIzQWwdMRwuowMdQ+Sc+tEULB6b1CdIpCcY2T5gerUrZ6B0CSxHqW9Qr6whjtySdZAxjtegLe8KLHhY1j49xJN7FshxCAFy6e5PR75zhm2ca2sgpkSSKmxrnu7uLX77yOzWzh0Z1HVnXOxJ4yBx88ysF0NDpLEmFkMfNLuyfmhiTbhTejK2gAnV5ZV2GvXKWpGl3Xh7FXmSjakUfAHSYUiIAEtloL+cVxBt+fZHzEQ36jjYrKAhSdjG80xFDHBL4XQxx+tgnDIquLViuv2ErXrSGigRh6y8LbrHc4SEGpQ8xvWILBpCfgDy16PBqIYbVuvtfyVrQxH0s3kVwIId6gn3euvkeLsYpmRyXyB0/JOllhf34D9RTyxuXTxOIrr62RSxvbZVIihMiShCxJS4aQxKTVsUDPlt6ZNxUCnjC+qQCOiuklrY4iC8U1ToprnOQVWbAWmQhHIphdeoqaHBgsOhSDTF6FhYojhXg9fvpujaWsPcV1Tqx2C0PXpohH7i+N1jSNiXte4h6Nql3FKbveZlTaWEB4MkbYF11wLOyLEp6MbZpJ1lud6BHJklwIIAmtg50E3T52Fu9PenyXo5pfj12hZ2yQ+pKFBcpm26oBBOaGEFi6JyRh9gqaTPeObCZqXEPTmDMxdLagNwwymPMXzjfQmxSsZSb6W8dSNhdD0Su0PFHPlVfb6T41itmlR9bJBCciSFGZpkOVFNXkpeRaa6HGVcZ6PEwNTe+T4iiyUFTrzKnlsCV1TgpvORi4MEFhkx1b6XTvh28oyHibj4IiByVifsimIIJIFuRSCIHp+SGaBkY5ebe0UdGjqirRZXpERAiZG0KWCiDzZaXY2SZidhgwmvT4RkKY8hbO9QhORdHiJD0GYLTr8AyHlp08uhqOIgsPPLeDwbYJRnvcxGMqRXVOyre7sro7q28yyLXX7+GZ9KOYZTQJ4tdUbA4LLU/U4SjKjZ1jpydZN3D73R5G7kwxetODJEnoZIWymgJ2PFSNIgqbbQoiiGRYroUQgFJnETqTnr7gGFWWhQXregOjGMxGSvKWX/q4FUNIgrzOiZ+JMCKsnk6vUNHkov16P7YS85x6KfGYircngKRKWFzJg0jYF8Ng0qd8zobBrKempYSaltz4e4+GY1x5pYNANET50YKZyaARf4zhG1NcfqWDBz61HaM1NwrcGcx6Wp5swD8Vwj3iB6bn31idi8/REjYeEUQyJBcDSEKNq5y6qhrO322j2OjEqNy/ifuiQa74umg5tA+ndeuGDCH31e0vxT3iY+D9CcxFBsxOA9FQHN9AELPOhFwo4x0MkVdhmfN1sXAc32CIppb1l37PdUPtk3i9AaqOu9Cb7vcmGKw6yg8U0H1qlIHWceoO5NZyYavTJMLHJiaCSAbkcgiB6SJLv3niY/xnz3f58dAZms3l5OmtjIXd3I0MU1xbxnNHn8p2MwVhSTqDwv4PN9J/Z5y+1jG890LoDTrqd5ZTucNF19Vhum8PEw3EyKu0ouglfKMhJu76cNgsVO7c/NtXjPa4Mebr5oSQBEUvYyk2MNw1lXNBRNjcRBDJkFwNIQkVBSV89ZO/x5s3z/He7atEwiNY8608ufNDPLbrKHbz0uPGifkhW5mqaXOGZ8Jx76rmiSSIeSJrp+gVqvcUU72n+IMdbO//PrYfr8Jg0tF7e5S+7rHpya2KQnFlPtuPV2G0LL90V1O16XkkirQha7DEonEUw+ITUhWDQiwYz2CLBEEEEWEWlyOfzz74DJ8++jShWASTzrCiwmNbeZJqQo3lQboDZ2fCSGJvmdWGETFp9f9t795io7rvPIB/z5n7eC72XHwZezzYmFtM6hACLLBJoEsTlCorthLPUEUoqkikKHmhfeGpykORWolGafJC+1K1T2mkKNttQhPobsJmGwIBggFjjO3xbXyZ+3hu5+yDGcfG9/GMz8w5349kCXvG9g8Oc853fv/LKZ3Hg4KoE9GxtxmBrkaER+KQ8hJsLsuqWv7RUBIDN8cw2jcFSZJhdZrh3+6Bb7unolaarMTusmCqJ7ogpBWkJtJoaOCSWNpY1fMKog0jiiKsRjNDyBoFrPsRsO6HJMuQZBlHtp4AMNMZWYu5+4tQ6RlMOngDTjS0160qhIz3R/B/H91BcGAcllYjHFstyOgzuPVlH25c7EU+J634MypF8zY3hJyIqb74gscigwlIyZmbJBJtJHZEqChzh2IYQuab2x0phJHV7Cky19zOCLDyLeepPHKZPG5e6oPoAJqf8sx2EZzNViQn0xj5ZhJ139kR+EFlD70WOLw12PK0D3e/DiI5kYG9yQJBAGIj08hM5tDW2QhXC1/PtLHYESmjhq4AGroCFT8/ZK3mdkG0GEKW2969IGCdubOw9Oi29MV0R1468Pxsd4SUMdo7hVQqDe8O54KhDKvLBEu9EYO3Q5Dl6rmzzKZdjdh1pANOiw3RuymE76Rg01vQdagdWw+0VOXcF6pu7IiUSaWvlCmW1odiCiFkNTe8K4SRwmZnxc4bIeUkpqahr9EtusoEAGq8ZkzdTiCXzsNQJTdBFAQB9W21qG+rRS6bBx7tSMsAQkqpjldOlVFjCNH6UMxaAsjjSjFUQ8oQdQKkrLTk5M58VoIAAYKuOi/ieu5MShWAQzMlNHcoRo0hROtDMcWEkIJSDNXQxnO3OICsgNRkZsFjsiwjGkzB0+LgBZ1oHRhESkSNXRCAQzGlCCEFhTBSUAgjVLlqm2zwNDkweiOC1FR6di5IPith9FYYSAKtO9X1mifaaByaKQE1hhAOxZQugFD1EgQBT/5bG779tBcjX0cgmgWIRgHZWB4mgwE7n9sEV7P2Xh9EpcSz7DqoMYAA7IIwhNBcRosBu3+8FZNDMYz3RyHlJFhrTWjscK1qN9bVkCUZ+bwEnZ6TRkl7eKYtEkOIOjGE0GIEUYC7xTEzZ6SEUtE0+m+MYahnAvmcBKNZj+ZtHvg7vTBaShNyKlk+m8dYXwSJqRREnQi33wGH18owpjE82xZBrSGkQIshhAGENlp8MoWr/3kPyXQa9mYzjDUmTEezuHdtEGMPwnj6x1tK1nGpRBMDUdy83IdUYhqiRYSUkyFeFeD112LnoU1Vsxya1o9Heg3UHkC0iiGENposy/juHw8xLWXQetADnWFm3YDDB2QDNRj8agI9/xtE5+FNyhZaJtHxJK5/eh+wAy1dbhisesiyjEQojdFbU5Auynj6pQ52RjSCZ95VYghRJ4aQheKTKQx8F0LoYRiSJMPprUHzdg+8gYW7i1JxoqEkwmNxeLrssyGkwGDRo67NhuHeSXTsa1ZlV2TgxhiyuhwCT3khiDP/pwRBgK3eDEEEQtcjCA/HUefTXndWi7h8dw3UHkLmrpRRO6nJDKnJDMGsZwiZY7w/gq8+7Eb/vVHo3AJMTTpMhCP45pN7uPvFYFVtZV7J4pMp5GUJVrdp0cdrPCbkcnkkw9MbXFn5SZKMkb4pOJqtsyFkLqvbBBhlhPojClRHSuAZmABoa5IquyCLy0zncOOzBxAcQKDr+3eqrnY7IsEkHtwaQW2jDQ2b6xSutPrp9CIgA1JOhs6wxI6tQvXu2LocOS9BlmToTYu/DxYEATqjCKmK7mpM68MzMTGEEABgtGcS05kMAp3eBe9Unc1WxIZTGOweXzaI5HMShu9NInhnHMnoNIxmA5o2u9C8w6PKIYZiuZrtMBoNiAwm4Gpb+LoLDyRQYzfB4bEqUF15iXoRFrsJyYk0HL6Ff798VkI2nofFsXi3iNSHQzOrUJgfojaOzhY4Ols0sXU7h2JWFh1PweDQQ2dc/LRQ4zUhPBZfcngml83j2l97cOMfvUjmUzA3G5C35HD3mwF89WE3EiocZiiW0WKAf7sX4d4kIsHk7L+plJcx+SCG1EgWgScbIerUd4oWBAEt2z1IjmWQCs/fOl+WZYzfjcKoN6Cxw6VQhbTReEZegVonqbILQo8TRECWlm6Hy5KM5eaqPrg6gtBIGL49dTA7jbNfz3XkEfznJG5d6sOef9/GCa+PdOz1IZvJI3gnhMl7ceitIrKJPPTQYcvTzWh5wqN0iWXT8oQX4wNRjHw9BWuTCTUeM/JZCdFgElIc6PzXgOY6aLIsIzKaQDSUBASgttEGu9uiidcLz8zLYAipfgwhq1fXZEd/9ygyiRyMNfP/vWRZRmx4Gk2t7kVPjLlsHoN3x2H3W+aFEADQm3TwbLMjdD2GyGgCtY22sv49qoWoE9H5fACtO70Y7Q0jO52DucaAhs0uWJ3qHpbQ6UU89UI7+m+GMNgdwsRIHIIAuJscCBxsgNtf2o3jKl0yksatz/swORaDLEiQAeggwuNzovPQJtWHMp6dFzF3KEZNIYQBhJZT31YL+zdWDF+bgm9XHQzWmX87KS8j1B2BkBbgf8K76Pcmw2lkprNwNTgXfdzqNkEWIohNpBhEHmN3W2F3q28uyEp0Bh3adjUi0NWAbCoLUSdqchOzzHQO3/z1HuLpFOqfcsLimgnyidA0xm5PIftfeTzz8taZCc4qpb2jvgJ2QaqfmkLIx19c2rDfpdOL6PrRZlz/230MfDEBg1MHUScgE85BL+rR+eymJUOE8OgcKecXnz8iyzMfiy3XJG0TRQGmGuPKT1Sp4bsTiEaT8B/0wGDWzX7dVm+BwarH0JVJjD0Io2mLeufMVP+ZuoTUGkIK1B5CCgEEUFcI8VhbN+x32uos2PeTHRh7EMbEQBRSXoa9zYKmrS5Y7EsPF9TUWVBjNyESTMJSt/B58ZEU9IIOdU3shhDNNdI7BYvXOC+EFJhsBhhq9RjtnWIQUTu1DsVoiZq6IIAyIaRAb9DBt9UN31b3qr9HFAUEdjbg1hcPEXYk4PR/f+Oy1FQa490xNG/yoKbWvMJPIrWQZRnZdB6yJMNo0Wti0mUxsukcDLULQ0iB3iwim8ltYEUbTx1n7XVQexdEC9QUQpQMIOvV0ulFMprGw+9GEe5LwGjXIzedRz4ho765Djuerb6/Uylk03lExhKALMPmssBsU/cwhCzLGL0/hf5bY4iMJwAZsNVa4H/Ci+btHg7PPabGacZkePFdZGVZRjqSg7dV3QG++s/c68AQUt3UNhRTUI0hBJjZH2Lr/hY0bXFh+N4UUrFpGNx6NLTXwd3i0NwFSMpLuP/PYQx2h5BOZyADMOj0aGirw7b9LTBa1LkS4sHVEdy7GoShVkTt9plt3OMjKdz87z5EQ0nseK6V3ZE5fFvcGL04hcT4NGo88wNHbDgFeRqqHpYBNBpEtDQUo9ZJqmrqgqiJIAhweGvg8NYoXYqiZFnGrUsPMXg/BEfAAq/PDUEnID42jeD9EBLhaez+8VYYTEu35KtRNJRAzzdDcLRb4Gr7fj6QvcGC2EgK/TfH4Ak4Ub+pVrkiK4y3rRa+NjeC18dh86Vhb7RAlmVEh5JIjWQQ2NGIWpXPrdLcWVxLXRCGECJlhIfjGLo/AW+nA/ZGy+zXa/01sLpMGLwygeG7E2h9sl7BKktv6O4kZL2Euk0Lg6i90YLwwwSG7owziMwhigJ2/nAT7N9aMXB7DGNDM8M0VrsZT+z3wd/pVX0HSVNncoaQ6qbWoRhSn5H7UxBMgK1h4di+sUYPi9eIIRUGkUQ4BXOdYckLp8VlRGwytcFVVT5RJ6JtVyNan6xHKpoGAFhrzRA1MpypubO52kOIGgMIoI4uyMPkl/M+//TuHxSqhMotnczAYNMteUE22Q2YHsos+lg10+l1yCWWvk1APiPBYFDn3JhS0OlF2FyWlZ+oMtV7VqcFGEIqVyGEiIIwL4CYdOo6VtUgFUsjeHsCYw+nkMtKcLitaN7ugafVUbIWuNFiQHYsD1mWF/2ZmXgWJov6Vs94A04MX55AJpmD0Tr/9ZrPSkiOprF1l7q6QLR+1Xtmp3nUGELUMBQzN4AA33dBGECUER6J49on9zGdyaCmwQidU8T4RBijf5tC4IkGbDvQUpIw0rjZhYE7ISRCadjq5w/PZJI5JMcy2LSvad2/p9xSsQyG704gNBCBLMlw1tegebsHDs/iW9I3bK6D80YNhr6eRMOTtbDUzoStdDyLsZsRWCxm+Latfn8a0obqPLsXYe5KGTVRYwAB1NcFARhClJbP5vHtxV7kjTkE9nkgFu7d0QFEgkn0fTcCp9eKpjVs5LaUOp8NTW0uBG+MI9OWhaPZOrNqZnQakz0x1LpsFX9BngzGcP3T+0hnM7DUGyHqBfT3xDHYHcL2f/HDv3NhZ0Nv0GHXix24/mkvRv4ZhmCaWUklTUuwO6148oftqt9Hhdaues/ya6DWSapqDSEF1RxCCsTH3l0zhChn7EEYicQ0/Afd34eQR5zNVsRHpzFwO4TGLa51d0UEQZi5a2qNAcE74wjfHwcA6PU6+Fo92HbQD4Opcv9/Z1JZfPv3XsgWCYH93tl/L1mWMX4vhttXBmBzWxfdst/iMGHfse2YDMYwNRIHZBkObw08rQ6IOvXeuI2KV7mvhBJhCCEiAIiGktDXiDBYFj/t2RrMiN5NIp+ToDesf38PnV7Etv1+tO1qQngkDlmS4fBYYXEsfc+eSjHSM4XUdBqBPd55oU0QBHi22NEfGsfg7dCS9w4SRAFuvwNuv2OjSqYqptogwgBCRPMIAuTFbw4MAJAlGRBQ8j0bjGZ91e2bER6Jw+jUQ2dc2MEQBAG2RjMmh6IKVEZqpMo+GUMIET2urskGKSkhHcsu+nhsOAVXox06vSpPi2ujje0rqEKo7hWn1hBSoPYQIjWZ562W0aLxZL/SJaiSp9UBR50NI9+GkU3lZ78+M+8hCikmo3WRCZhaVNtgQyaSQz6zcE8QWZYRH5mGy8dhFyoN1QzNqD2AaIEaVsqs10sHngdQ3XfhrVSiTkTXj9px7b96MPA/4zDWzgw9TE9moZNFbNvrh6fVqXSZFaFxiwu914Yx/O0UfE/VzZ+sejcKpAW07PAqXCWphSrO+Awh1Y8hZL6XDjyPj7+4hPFkP8NICdXUmrHvP3ZgtHcKoYcR5HN5+HZY4dvm1uSOlksxmvX4wQ/bcf3ifTy8HILFa4QgCkiNZyBKInbsb11yoirRWlX9WV8rIaQwP0RtGECWxjBSHnqjDs3bPWje7lG6lIrmarZj/0+ewNCdCYwPRiDlZNRvqYNvmQ3NiIpRtWd/rQQQQL2TVBlCVlYII0RKMNuMaN/dhPbdlb8LLFWvqpysyhBS/RhCiIgIqMKOiFZCyNyhGDWFEAYQIiKaq2quBloJIIB6uyAFWgohkizP2+Y9nY+tept3DskQkRZUxdBM/U4/AIYQqi4B634ErPshyTIkWcaRrScAzISRlcxdvsuJqkSkZlXz1lTtIUStQzE0E0geJr+cF0aWuxMv9xAhIi2pio5IzRZ173Y4twvCEKJOAet+ADNDNQCW7I58/MUldkGISFPKFkT6+vrwyiuvoK2tDRaLBZs3b8bZs2eRyWTK9SurmhYCiNa3bi+EkYJCGCEi0rKyDc10d3dDkiS899576OjowM2bN3Hq1CkkEgmcO3euXL+WKhBXyhAR0VLKdmU4evQojh49Ovt5e3s77ty5g3fffZdBREMYQoiIaDkbenWIRCJwuVxLPp5Op5FOp2c/j0ajG1EWlQlDCBERrWTDJqv29PTg/PnzePXVV5d8zttvvw2n0zn74ff7N6o8RTg6W1R7D5kChhAiIlrOmoPImTNnIAjCsh/d3d3zvicYDOLo0aM4fvw4Tp06teTP/vnPf45IJDL7MTAwsPa/UZXgShkiIqIihmbeeustnDx5ctnntLe3z/55aGgIhw8fxoEDB/D+++8v+30mkwkmk2mtJVUdblpGREQ0Y81BxOv1wuv1ruq5wWAQhw8fxu7du3HhwgWIYlVsW1I2Wtq0TOtLdYmIaHXKNoAfDAZx6NAhBAIBnDt3DqFQaPaxxsbGcv3aiqWlLggnqRIR0WqV7UrxySefoKenBz09PWhpmT8hU360u6RWMIQQ0Wpkp3MYuT+F2EQSoijC1WyHp9UBUaftbjKpW9muFidPnlxxLonaMYAQ0WqFHkZw8/MHmM5kYLDpIOdl9H03DKfLhqde2AyLQ/3z50ibeNUoEy2FkAKGEKLixCaS+PbvvRAdQGunB3qjDgCQjmUxfG0K1/52H3uPbYdOz84IqQ//V5eBFkMIERVv4FYIOTGHpq662RACACa7AU276hCZjGP8YUTBConKh29hS4gBhIiKMfYwDHuTGYIoLHjMZDNAZxcxMRhFw+Y6BaojKi92REqEIYTW6+MvLildAilEyksQDUufjkWdiHxO2sCKiDYOg0gJaTWEcM+Q4nx69w+zfy6EEI+1ValySEEOdw2SofSij0k5CZloDjaXZYOrItoYDCJUNKnJDKnJDMGs50TVIpl0doYQQssODzKRPGIjqXlfl2UZoTtRGHUGNG1Z+oahRNWMVw8qCpfrrk+hG8IQQgDQ0F6H1mA9+m+NITqUgq3eBCknIzqUgpAWsPPZTTDbjEqXSVQWvIrQmswdhmEIWR+TbmYojyGEBFHAjmdbUdtkw+DtEKI9SQiCgEa/C/7OetQ12ZQukahseCVZJy1NUmUXhKh8BFGAb6sbvq1uSHlp5m7mi6yiIVIbXlHWgSGEiMqBW7qTlvCqUiSthBAOxRARUTnxyrJGWgkgczGAlMbD5JcA5i/bJSLSOvb/1kCLIYRKoxBCRGFmzH/usl0iIi3jW91VYgihYjweQB7vhnDFDBFpHYPIChhAqFhLhZDCsl0iIuLQzLK0HkK4dfv6FUJIAUMIEdF87IgsQcshhCtliIhoo/Aq8xgtBxCA+4UQEdHG4tDMHAwhDCFERLSxGEQe0XoIKWAIISKijaT5qw4DCBERkXI03RFhCCEiIlKWJjsihQACMIQUcKluaRX2ECngtu5ERIvTXBBhF2QhTlItLW5kRkS0epq68jCELMQQUlpzQ8jcLghDCBHR4jRx9eFQzEIMIKXFLggRUXFUfxViF2RpDCGlxe3ciYjWTtWrZhhCiIiIKpsq3xJzKIaIiKg6qC6IsAtCRERUPVQVRBhCVod7hpTW3D1DOEmViGhtVBFEOBSzOlwpU1pcKUNEtH5Vf0ViF2R1GEJKiyGEiKg0qvqqxBCyOgwhpbVYCGEAISIqTlVemTgUs3YMIaX1+J4hRERUnKq7OrELQkREpB4VHURkWQYAxKcTAAD7Dh+iiRgMbjtS8ZiSpVUVKZqBkKnoQ11V4skEhDkdkVQ8A0mXWfPPyabyyAjZUpZGRFQRMqkcgO+v48sR5NU8SyGDg4Pw+/1Kl0FERERFGBgYQEtLy7LPqeggIkkShoaGYLfb570DVYtoNAq/34+BgQE4HA6ly9E8Ho/KwuNRWXg8Kk8lHxNZlhGLxeDz+SCKy99NpqL79aIorpik1MDhcFTcfyIt4/GoLDwelYXHo/JU6jFxOp2rep6qb3pHRERElY1BhIiIiBTDIKIgk8mEs2fPwmQyKV0Kgcej0vB4VBYej8qjlmNS0ZNViYiISN3YESEiIiLFMIgQERGRYhhEiIiISDEMIkRERKQYBpEK0NfXh1deeQVtbW2wWCzYvHkzzp49i0xm7fcvodL45S9/iQMHDsBqtaK2tlbpcjTpnXfewaZNm2A2m7Fv3z589dVXSpekSZcvX8bLL78Mn88HQRDwl7/8RemSNO3tt9/Gnj17YLfbUV9fj2PHjuHOnTtKl7UuDCIVoLu7G5Ik4b333sOtW7fw61//Gr/73e/wi1/8QunSNCuTyeD48eP42c9+pnQpmvTnP/8Zb775Js6ePYurV6+iq6sLL774IsbGxpQuTXMSiQS6urrwzjvvKF0KAbh06RJOnz6NK1eu4JNPPkE2m8ULL7yARCKhdGlF4/LdCvWrX/0K7777Lnp7e5UuRdN+//vf44033kA4HFa6FE3Zt28f9uzZg9/+9rcAZu475ff78frrr+PMmTMKV6ddgiDggw8+wLFjx5QuhR4JhUKor6/HpUuX8NxzzyldTlHYEalQkUgELpdL6TKINlwmk8HXX3+NI0eOzH5NFEUcOXIEX375pYKVEVWeSCQCAFV9vWAQqUA9PT04f/48Xn31VaVLIdpw4+PjyOfzaGhomPf1hoYGjIyMKFQVUeWRJAlvvPEGDh48iJ07dypdTtEYRMrozJkzEARh2Y/u7u553xMMBnH06FEcP34cp06dUqhydSrmeBARVarTp0/j5s2b+NOf/qR0KeuiV7oANXvrrbdw8uTJZZ/T3t4+++ehoSEcPnwYBw4cwPvvv1/m6rRnrceDlOHxeKDT6TA6Ojrv66Ojo2hsbFSoKqLK8tprr+Gjjz7C5cuX0dLSonQ568IgUkZerxder3dVzw0Ggzh8+DB2796NCxcuQBTZrCq1tRwPUo7RaMTu3btx8eLF2UmRkiTh4sWLeO2115Qtjkhhsizj9ddfxwcffIDPP/8cbW1tSpe0bgwiFSAYDOLQoUMIBAI4d+4cQqHQ7GN8B6iM/v5+TE5Oor+/H/l8HteuXQMAdHR0wGazKVucBrz55ps4ceIEnnnmGezduxe/+c1vkEgk8NOf/lTp0jQnHo+jp6dn9vMHDx7g2rVrcLlcaG1tVbAybTp9+jT++Mc/4sMPP4Tdbp+dN+V0OmGxWBSurkgyKe7ChQsygEU/SBknTpxY9Hh89tlnSpemGefPn5dbW1tlo9Eo7927V75y5YrSJWnSZ599tuhr4cSJE0qXpklLXSsuXLigdGlF4z4iREREpBhORCAiIiLFMIgQERGRYhhEiIiISDEMIkRERKQYBhEiIiJSDIMIERERKYZBhIiIiBTDIEJERESKYRAhIiIixTCIEBERkWIYRIiIiEgxDCJERESkmP8HQLBLnyhqkFoAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -207,7 +216,6 @@ } ], "source": [ - "\n", "# define ML\n", "K = 5\n", "clf= KNeighborsClassifier(K)\n", @@ -223,60 +231,28 @@ "\n", "# calculate the mean accuracy on the given test data and labels.\n", "score = clf.score(X_test, y_test)\n", - "print(\"The mean accuracy on the given test and labels is %f\" %score)\n", - "\n", - "# plot the decision boundary as a background\n", - "ax = plt.subplot()\n", - "# DecisionBoundaryDisplay.from_estimator(clf, X, cmap='PiYG', alpha=0.8, ax=ax, eps=0.5)\n", - "ax.scatter(X[:, 0], X[:, 1], c=y, cmap='PiYG', alpha=0.6, edgecolors=\"k\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "c44c8f0d", - "metadata": {}, - "source": [ - "Now we will test the effect of **data normalization** before the classification. We will stretch the first axis of the data to see the effects." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "77348ef0", - "metadata": {}, - "outputs": [], - "source": [ - "# make a data set\n", - "X, y = make_moons(noise=0.3, random_state=0)\n", - "X[:,0] = 10*X[:,0] " + "print(\"The mean accuracy on the given test and labels is %f\" %score)" ] }, { "cell_type": "code", - "execution_count": 11, - "id": "1152fc32", + "execution_count": 9, + "id": "df9ebb0c", "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mean accuracy on the given test and labels is 0.775000\n" - ] - }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 11, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWs0lEQVR4nOzddVxd9/3H8de5il3cHUKAhIQoEHdP29RSWbvKuq1dZV3bbW23dt6lumZ1+63e1S3uJCFESIgSJ2hw98uV8/sjKx2DNAZc5PN8PPgj53vvuW8I3PO53/MVRVVVFSGEEEKIPkLj6ABCCCGEEBdCihchhBBC9ClSvAghhBCiT5HiRQghhBB9ihQvQgghhOhTpHgRQgghRJ8ixYsQQggh+hQpXoQQQgjRp+gcHaCr2e12ioqKMJlMKIri6DhCCCGEOA+qqlJfX09wcDAazQ/3rfS74qWoqIiwsDBHxxBCCCHERSgoKCA0NPQHH9PviheTyQSc+ebd3d0dnEYIIYQQ56Ouro6wsLC26/gP6XfFy3e3itzd3aV4EUIIIfqY8xnyIQN2hRBCCNGnSPEihBBCiD5FihchhBBC9ClSvAghhBCiT5HiRQghhBB9ihQvQgghhOhTpHgRQgghRJ8ixYsQQggh+pR+t0idEEJ0h4qKCrKzs9FoNAwePBhPT09HRxJiwJLiRQghfkB9fT3vvvMOOzduo6WqARRw8XVn4pxp/PjHP8bZ2dnREYUYcKR4EUKIszCbzTy95ClOpe4nyS+e2JhwbKqd4+V5bHz3W6rKK/jNIw+j1WodHVWIAUXGvAghxFmkp6dzbNs+rhg0iWGBgzDo9DjrjYwIjmVBeAp7N+4gMzPT0TGFGHCkeBFCiLNIS91CCB74uHh0aAt298PL7MS2tDQHJBNiYJPiRQghzqK6vBJv546Fy3e8DG7UVFb3YCIhBEjxIoQQZ+Ud4EdFU+1Z26ta6/Dx8+3BREIIkOJFCCHOavK0KRQrtZQ1VHVoK6gpocbJwsTJkxyQTIiBTWYbCSHEWYwfP54t05NZti6d0V4xDPYNx66qHCvPY3/9KcZePpWRI0c6OqYQA46iqqrq6BBdqa6uDg8PD2pra3F3d3d0HCFEH9fU1MRHH37I1jWpNFfWgaLg5u/J9IWzuf766zEYDI6OKES/cCHXbylehBDiPNTW1pKbm4uiKERHR+Pm5uboSEL0Kxdy/e7WMS9btmzh8ssvJzg4GEVR+Prrr3/w8ampqSiK0uGrpKSkO2MKIcQ5eXh4MGLECBITE6VwEcLBurV4aWxsZMSIEbz88ssX9Lxjx45RXFzc9uXv799NCYUQQgjR13TrgN358+czf/78C36ev7+/bHomhBBCiE71yqnSI0eOJCgoiNmzZ7Nt27YffKzZbKaurq7dlxBCCCH6r15VvAQFBfHaa6/xxRdf8MUXXxAWFsa0adN+cO+QJUuW4OHh0fYVFhbWg4mFEEII0dN6bLaRoih89dVXXHnllRf0vKlTpxIeHs7777/fabvZbMZsNrf9u66ujrCwMJltJIQQQvQhFzLbqNcvUpecnEzaD2x8ZjQaMRqNPZhICCGEEI7Uq24bdWbfvn0EBQU5OoYQQggheolu7XlpaGjg5MmTbf/Oyclh3759eHt7Ex4ezqOPPsrp06d57733AFi6dClRUVEkJCTQ0tLCW2+9xcaNG1m7dm13xhRCCCFEH9Ktxcvu3buZPn16278ffPBBAG699VbeeecdiouLyc/Pb2tvbW3loYce4vTp07i4uJCYmMj69evbnUMIIYQQA5tsDyCEEEIIh+s12wMIIYQQQnQ1KV6EEEII0af0+qnSQgghzigrK6O4uBij0UhMTAw6nbyFi4FJfvOFEKKXKy0t5f333mff1l201jej0Wnxiwrm8muvZPbs2SiK4uiIQvQoKV6EEKIXq6ys5Ik//pXaA4WMC4gnLDKAZouZA9kn+L+nX6ahoYGrr77a0TGF6FEy5kUIIXqx5cuXU3Uwn2vjpxHvH4mrwRlfV09mxCQxQh/G1x98RmVlpaNjCtGjpHgRQoheymKxsHXtJoa4h+Osd+rQPjIkjtbyBnbs2OGAdEI4jhQvQgjRSzU1NdFS34Sfq2en7QatHhNGqqurezaYEA4mxYsQQvRSLi4uGFyMVDXXddputdtoUM2yIKcYcKR4EUKIXkqv1zNh1lSyqnNptVo6tB8qOYnWx4Vx48Y5IJ0QjiPFixDiktTV1VFQUEBNTY2jo/RLl112GW7xgXx5dBO5VUXYVTsN5ibSc/eT0XCSeYsvx9/f39ExhehRsreREOKiFBYW8sXnn7Nny04sTWa0TnpGTkzi6muuJjo62tHx+pX8/HzefvP/OLbnUNs6Lx4hvsy/+nKuvPJKNBr5HCr6vgu5fkvxIoS4YPn5+Tzx+F9oPVHBCL8Y/Fy9qGyqZX/ZSdQINx7582PExsY6Oma/oqoqubm5FBUVYTQaSUhIwNnZ2dGxhOgyF3L9lkXqhBAX7IN338d6oorFQ2di0OoBCDD5EOcXwddHNvPOm//iiaeXyMqvXUhRFKKiooiKinJ0FCEcTvoahRAXpKioiKyd+0gKGtJWuHxHq9GSEjqMnIPHOXHihIMSCiH6OylehBAXpLy8HEtjC8Hufp22B7v7Ymlsoby8vIeTCSEGCilehBAXxNnZGY1BR525sdP2enMTGr0OFxeXHk4mhBgopHgRQlyQmJgYggeHs+/0sU7b950+hk9EAEOHDu3hZEKIgUKKFyHEBdFoNFx9w2KKXBtJzd5NY2szAM2WFrbl7uOEUs6i66/BaDQ6OKkQor+S2UZCiAs2adIkzA+Z+fjtD/jw1AaMdh1mxYpbsDc33XQHc+fOdXREIUQ/JsWLEL1AU1MTeXl5qKpKREQErq6ujo50TjNnzmT8+PHs2bOHmpoaTCYTY8aMwWQyOTqaEKKfk+JFCAdqbW3l888/Z+OKtdSXntkZ2M3fk2nzZ3Hdddf1+lsvLi4uTJ482dExhBADjBQvQjiI3W7npRdeZNc3mxjuFkFs8JkBrifK81nx+icUFRTy0G9/g07Xt/9MVVUlJyeHbdu2UVlRgcndnZSUFBISEmQROyHERenb74pC9GGZmZnsXL2FucFjCfcMbDueHD6M0LoAlq/fTsb0DMaPH+/AlJfGbrfz7jvvsO6LlehqLHhpXKm3t7Duk+WMnT2R+355X6/vXRJC9D5SvAjhIGlbt+LZYmhXuHwn2N0Pv0IXtqZu7tPFy4oVK1j9/ldMcI9naEI0iqKgqip51cWs/yaV9zw9+NnPfubomEKIPkamSgvhIBUl5fg5eZy13dfZg/KSvrtKrcViYdXXy4nVBZIQOKjtFpGiKER6B5PkFcvWVRupqqpycFIhRF8jxYsQDuLh5UGNueGs7bXmBjx9PHsuUBfLzc2lqqCUof7RnbYPCYiiuaKOw4cP93Ay0dUaGxspLCyUQlT0GLltJISDTJg8iYw1aZQ1VOHv5t2urbKpliKljiun9N2ZPFarFdWuotd2/jaj02jBrmK1Wns4megqFRUVfPnFF6Rv2EprfRMag45hySNZdPVVDBkyxNHxRD8mPS9COEhycjIJk8ewPHc7WSXZWO02rHYbR8py+DY7jdjxiX16vEtoaCgu3iZOVRZ22p5bVYTew4XIyMieDSa6REVFBX99/M9sfXcFQ5t8me85mvHaQeSszGTJ7/9CZmamoyOKfkyKFyEcRK/X89Bvf83462eToeTz1tEVvHVkBTttOSRdO4PfPvpwn56JYzKZmDRnGvtqTlHZVNuurbG1mfSiQwxNHiHFSx/1+WefUbU/j8VxMxgdEk+Quy9xfhFckzADn0oNb7/2FhaLxdExRT8lt42EcCA3Nzfu++Uvuf6GGzhx4gSqqhITE0NgYMcZSH3RDTfeSO6pXL5KSyNM602AmzfVTXWcMpcROCqKn931c0dHFBehvr6e7RvSGOEzCBeDU7s2jaJhQvgIPjuZxr59+0hKSnJQStGfSfEiRC/g7++Pv7+/o2N0OVdXV37/h8dITU0ldd1GjhSV4h7uweKZtzNz5kw8PM4+20r0XpWVlbQ2NBPs49dpu5eLO3qLQnl5350tJ3o3KV6EEN3KycmJefPmMW/ePEdHEV3ExcUFjV5Lvbmpw2BzALO1Fatiw9nZ2QHpxEAgY16EEEJcED8/P2JHDuVAyZlbnf/rYMlJnPw9GDVqlAPSiYFAihchhBAXRFEUrrz2amq9VdYc30Fdy5n1ilqtFjILj5DZmMO8ay7D09PTsUFFv6WonZXNfVhdXR0eHh7U1tbi7u7u6DhCCNFv7dixg3de/z+qckpwsmkxY8XoZ2LetZdzww03oNHI52Nx/i7k+i1jXoT4HxaLhcbGRpydnfv0VGUhutu4ceMYNWoUe/bsoaKiAhcXF8aMGYOXl5ejo4l+TooXIf6jsrKSZcuWkbYulZb6JgwuRsbPmMxll19OUFCQo+P1SyUlJezatYuGhga8vb0ZN26c3GroY4xGIxMmTHB0DDHAyG0jIYDS0lKe+ONfqTqQz1CPcPzcvKhqqiOrOheXWD8e/fPjREREODpmv2Gz2fjg/fdZ9+VK7FXNuGiMNKhmnALdWXzbj1iwYEHbRo5CiIFBbhsJcYHef+99ag8Ucn38DJz1ZxbdivIOYXhgDF8eTeXtN/+PP/71z3JB7SKfffYZK97+nHEecSQMiUar0dJqtbC78DDvv/AWrq6uTJs2zdExhRC9lIymEgNeWVkZ+7buIikgvq1w+Y5Bp2d8yDCOZ2aRk5PjoIT9S319PWu/XsFIl0gSgwaj1WiBMz/rCZEjCDW7s+yLr7Hb7Q5OKoToraR4EQNecXExrQ3NhHkGdNoe5hlAa30zxcXFPZysfzp48CD1RVUMDxrcafuIoBiKTuSTm5vbs8GEEH2GFC9iwDMajWh0WppaWzptb2ptQaPTysyjLmI2m8Gu4qQzdNruYnDGbrWdeZwQQnRCihcx4MXExOAfFcLBkhOdth8oPoFHsC9Dhw7t4WT9U1BQEDpXI0V1ne97U1BTgtHdud9sTimE6HpSvIgBT6fTcdk1i8hWKtmZf4hWmwUAq93GvqJjZLUWMv+ay3FxcXFw0v4hLi6OqMQ40gsOYLFZ27U1tjaTWX6C5GkTZa0QIcRZyWwj0SfYbDb279/Pzh07aKhvwC/An8mTJxMdHd0lM4Bmz55NU1MTX77/CYeOrcUVI42qGa2vC1f89AauvPLKS/8mBHBmafk77voZT5U8wSeH1zPUOxIvZxNlDVUcrs3Hf1QUN/zoRkfHFEL0YrLOi+j1GhsbWfrc8xzYkoF7sw6TzplKaz0WDx1zrrucW265pcuWIa+qqmLHjh1UV1fj7u5OSkoK/v7+XXJu0V5hYSErli9n+8Y0rC2tOLu7MmXuDC677DLpdRFiALqQ67cUL6LXe2HpP9n+2Trmh6cQ7O4HgKqqHC49xba6Y9z2m7tYsGCBg1OKi2U2m2lqasLNzQ29Xu/oOEIIB7mQ67eMeRG9WnFxMbs2bmOCf0Jb4QJnbj0kBA4iRuPH6m9XYLVaf+AsojczGo14eXlJ4SKEOG9SvIhe7ciRI7RWNxLrG95p+xD/KMpziyksLOzhZEIIIRxFihfRq9ntdjQoaJTOf1V1Gi2qqmKz2Xo4mRBCCEeR4kX0apGRkWjcDOTXlHTanl1ZiMnPk5CQkB5OJoQQwlFkqrTo1QYNGkTsmGFs23QAX1dPXA3ObW2l9ZUcasjj8h/fiJOT0w+cpfeoq6tj06ZNpG3cTE1lNf7BgUydNZ0pU6Y4/HsoLCxky5YtFObl4+TszKgxo0lOTpaVhYUQvU63zjbasmULzzzzDHv27KG4uJivvvrqnOtlpKam8uCDD5KVlUVYWBiPPfYYt91223m/psw26n9KSkpY8ucnKD2YQ7QxAA8nN0obKilUakmcnsyvH/5Nl1z4i4qK2Lx5M3mncjE4GRg1ejTjx4/vsqKivLycJX95gqJ92UQb/PB0MlHWWE2BWs2QyaP4zaMP4+rq2iWv9d+++xP/ofVwli1bxidvfQAVzQTqPGm2mSnXNRIxKp7f/u5h/Pz8zvpcIYToChdy/e7WnpfGxkZGjBjBT37yE66++upzPj4nJ4eFCxdy11138eGHH7JhwwZ++tOfEhQUxNy5c7szqujFAgMD+cuTf2PTpk1s27SFU9W1BIyI5K5ZM5g0aRIGQ+d75FyINWvW8MGrb2MvayRI70WLrZUd325iWWIMv370twQHB1/ya7z52htU7snhhtjpuBm/X623orGGbzal8XHkv7njpz+95NeBM2OF0tPT2bh2PaeOnkCn1zN2Ugpz5s4lOjq63WMzMjL46JW3GUYwSQlD28YXVTfXsWJnOkuf/Qd/XfJEl62l01PsdjtZWVkUFBSg0+lITEyULQeE6Cd6bJ0XRVHO2fPy8MMPs2LFCg4dOtR27IYbbqCmpobVq1ef1+tIz4u4UAcOHODJ3/2FOIsv48IT0f7nIl3X0sDyk+n4JEWx5Nmn0OkuvtbPz8/nkbsfZKpTPIN8Qju0ZxYe4YhrFS/83yuYTKaLfh04c9F+88032fTZSvxbXYn0DMJstXC8tgB7oDP3PvIASUlJbY//65/+QumGw1w5dFqHc5XUV7K8PIPfPfcXEhMTLylXTzp16hSvvvAyBVnZaFvs2LCj83Jhwtyp/OSOOxx+i04I0VGfXedl+/btzJo1q92xuXPnsn379rM+x2w2U1dX1+5LiAuxZuUqTDUKEyJGtBUuAO5ObsyNTiHvwAkyMzMv6TVyc3NprWkiyrvzHpxon1Caquq6ZMr3tm3b2PTpSqZ5DOOKIVNIDBpMUthQbkyYjV+lnteef6nt76SxsZHj+w8T5xvR6bkCTT44NyscPnz4knP1lJKSEp7689+p253HZX5J3D50AbfHzydZE8nWf6/ipRdfop+tzSnEgNOripeSkhICAgLaHQsICKCuro7m5uZOn7NkyRI8PDzavsLCwnoiqugnrFYrBzP2Ee8d3umYEB8XDzxa9Rw5cuSSXker1aJoFKz29lO6yxqq2Hgyg28PbSb7dB5Hjhy55GnfG9asI8DqRoxv+78FjaJh2qAxNBRUsm3bNuBML41qV9FptGfPrmj61FT01atX03iijEXxUwk0+QCg1WgZGhDNjKBR7NmQzvHjxx2cUghxKXpV8XIxHn30UWpra9u+CgoKHB1J9CGqqqKqKtofuHhrFO0lX7zj4+Nx9jVxtCy37XW3nsrk3bSvOZh1kPqcMjyq4N8vvc3f/vyXi+5BtNvtnDp6kkiPzsd2OOkM+Kqu5OfnA+Dm5kbwoHCyKzvv8alurqNO19phnExvpaoq6Ru2EO8ehkHbccXeSK9gjPV2MjIyHJBOCNFVelXxEhgYSGlpabtjpaWluLu74+zs3OlzjEYj7u7u7b6EOF96vZ7oobGcrOr84l1vbqRa03TJF28fHx8mzZ3Brspj5NeUcLDkJNuPZJJIMDOchhLnHMyNo+axKHAcx9dn8trLr1zU6yiKglanpdV29u0SWlVb2/gdRVGYs2AuBZoaTla0L/xbbRY2ndpNYFwEY8eOvag8Pc1ms9HS1Iy7U+ezthRFwVVjpKmpqYeTCSG6Uq8qXsaPH8+GDRvaHVu3bh3jx493UCIxEMyeN4cyQxNHynLaHbfabWzIzsA3JoRx48Zd8uvccustjLliCmuq9vLB7hW4NIDRrFBmryd0cAQREREEmnyYEjyCfWm7yc3NveDXUBSFsRNTOFZT0Om4jsqmWmqNrQwfPrzt2IwZM5i2eD6bag/x1eFUMgoOs/nUHj44shZbtIn7Hrq/z+w7pNPp8A3yp7iuotN2q91GtdqEr69vDycTQnSlbi1eGhoa2LdvH/v27QPOTIXet29fW5f1o48+yi233NL2+LvuuotTp07x29/+lqNHj/LKK6/w6aef8sADD3RnTDHATZw4kXk3LWJb43E+P7yRXfmH2HIqk/cPr6El3In7fv2rLpmd4uTkxEO/+TW/+P0DuPq6Mzh8EMFDohg7MZm4+CEonBlzE+UdDLXmdrPuLsTc+fOw+htYf3IXrVZL2/HKplpWZW8ncmQco0ePbjuu0Wi48847efCJ3xE+fwQFAS00xDqz6Jc387fnnmTw4MGX9o33sOlzZ5FjLaeyqbZD257CI2j9XJk0aZIDkgkhukq3rvOye/dupk+f3vbvBx98EIBbb72Vd955h+Li4rZCBiAqKooVK1bwwAMP8M9//pPQ0FDeeustWeNFdCtFUbj1ttsYnpjIxg0byT12EoPRicsm38iMGTM6DCK/FBqNhri4OMJCw0hwTyDUw7/jYxTNJQ2SjYmJ4Re/vZ83//kK7x1fg6/qSqtqo8ZoJnJcPA89/OsO0741Gg0pKSmkpKRc1Gv2JrNnz2bPzgy+Tk1jmCmcSK9gWqytZJWeosipgRtvuw1//44/dyFE39Fj67z0FFnnRfR2FouFB35xH955dqZEj+7QXlpfybLyDB599s+MGDHiol+npqaGtLQ08vPz0ev1JCYmMmbMmEtar6avaGpq4ssvv2Tz6g00VNSiaDWExUdx2ZVXMGnSpB9cbVgI4RgXcv2W4mUAUFWVwsJCGhsb8fX1lfv9vcCXX37Jp0vfZkFIMsHu3y+9b7a28u2xLbiPjeCpfzzT51a17W1aWlooLS1Fr9cTFBQkRYsQvViv2R5AON6ePXv44pPPyD10AlurFb2rE6MmJXHjTT/qkiXvxcW57LLLOHnsOCvWbiO4yJ1gkx8N5iZONBXjERfEPb+6TwqXLuDk5EREROcL8Akh+i7peenH0tPTeXnJ8/jU6BgZHIe70ZXi+goyS4/hFO/P43/7kxQwDmSxWEhLSyN1/UZO5xbganJjwvTJzJw5U3rHhBADjtw2kuIFs9nMr+66D1NuK7MHp7TrLm+1Wvjk8HrG3DCDX95/vwNTCiGEEGf02b2NRNfZu3cvlbnFjAsf1uE+v0GnZ5T/YHZv3k5tbcfppEIIIURvJsVLP1VVVYXepsHdya3T9gA3HyyNZqqrq3s4mRBCCHFppHjpp9zc3LBgo9li7rS9pqUerVGPm1vnxY0QQgjRW0nx0k+NGjUKt2Bv9hUd69BmV+3sKznO0KQRMjBUdBlVVcnOzmb//v0UFHS+PYEQQnQFmSrdT5lMJhbdeA3/fvFf2HPtjAyOw9XgTHlDNdsLDtASZOTqxdc4OqboJ/bs2cOnH31MflY2tlYrOmcDcWMS+NGPb+5z2wsIIXo/mW3Uj6mqyvLly/nm4y+oPV2BxqqCk46Q+Ehu/dlPLmn1ViG+s3PnTl584jm8q7WMCRmCp7OJsoYqdhcdwRLuwu/++gdiYmIcHVMI0cvJVGkpXtppamriwIEDNDY24ufnR0JCAlqt1tGxRD9gtVp58J770R2tY37chHYz22x2G59nbSRy3ih+/4fHHJhSCNEXyAq7oh0XFxfGjRvn6BiiHzp06BClJwu4Onxihyn5Wo2WMUHxbM3Yz6ZNm9i/bx9H9h4CRSFx7EhmzZlNXFycg5ILIfoyKV6EEBeturoatdWGj4tHp+3+bl6U7Cvi2T8uIcTuTrRHMKqqkvnxRrav28Lt99/JzJkzezi1EKKvk+JFCHHRTCYT6DTUtjTg0cmaQvllRRSXFHO59xRmD/m+929s6FDScvbyzktvEhsbS1hYWE/GFkL0cTJVWghx0RITE/GJDGJ3weEObXbVzpYTu3HWG5kZk9yuTVEUJkaNRC1tYvPmzT0VVwjRT0jxIoS4aAaDgetuuZE8Yw3rju+kuqkOVVUpqa9k+dGt5KiVJIcPQ6PRYLPbqDc30mq1AKBRNIQ6+XDyyHEHfxdCiL5GbhsJ0cVUVaWyspLW1lZ8fHwwGo2OjtStpk+fjqIofP7Bx3yek4bNbEXnYiB0ZDSjIo245NnYeHIXhwpOYDab0Wg1xARFkBKRiNVmQ6eXtyEhxIWRdw0hulBGRgbLvv6W7ANHUW12TL6eTJs/i0WLFuHi4uLoeN1m2rRpTJw4kcOHD1NfX4+3tzfx8fG88847/OOxJYTbPBhsCMRf70G9rZnj2fl8UJyHxsvIL8YsdnR8IUQfI8WLEF1k3bp1vP38a/g2GJjiH4eTzkBeaTHfvvwRx7KO8PDvH8XZ2dnRMbuNXq/vsPBhbW0tbhYdw7UhxLqGodOcuVMd7RTAlyXplBgamTBhgiPiCiH6MClehOgC1dXVfPjmuwy2+DApflTbmichHv7ENkbw9eZtrE1ay6JFixyctOc0NjZyYEcms4aMR1PSzInaQpzRowItioWhvlHovRopKCjAx8fH0XHbUVUVq9WKVqtFo5GhgUL0NlK8CNEF0tPTaSmuISU2pcNibb6ungwy+LNx9XquuOKKDu39VXl5OS01DQwNS8Izxo3SklJqamtQUPD09CQgMJDS42spLi5m5MiRjo4LnFkxeOPGjaxfvY6S3EK0eh1JU8czb948jEYjqampHD14GI1Gw7BRiUybNg0/Pz9HxxZiwJHiRYguUFpaiicuGHT6TtuDPfzZUZKD2WzGycmph9M5hsFgQNFraWptwd/Nm7CwsHbrubTaLFiw95oBzVarlaXPLyVjxWbC8GasZxgtDWYyPljLyk+/QdWAl9lImNEXu6ry5ea9rPpyGff99gFGjRrl6PhCDChSvAjRBZydnWlWW1FVtdOelQZzEzo3PXp958VNfxQUFETk0BgO7jhJhFdQh5/LkdIcnPzces0GoevWrWP3ii3MD0wi1MO/7fggj2D+b+2nlOub+Pm8O3E1nCk+rXYba45v56VnlvL0i//odbe+hOjP5GauEP9hsVhIT0/npZde4rlnnuXjjz+mqKjovJ47duxYWk0acqpOd2iz2W0cqc5j/IxJA2pDTEVRWHTNVZS7mdmSk0mzxQyAzW7ncOkpdtWeYMblc3vFRV9VVdavXEuExqdd4QJQUlTCEE0gnjhzoiKv7bhOo2X24BSa8itloT0hepj0vAgBVFRU8OySpziVeRQfizPOGgOZti2s+PhrfnTnrcyfP/8Hnx8TE8OYGRPY9E0qFpuVGN9wtBoNlU21bM3dizbSg/kLFvTQd9N7pKSkcMdDd/Phm+/wwcl1mHCiWW0FTyMzb76cm26+2dERgTM7r5cWFDHRa1CHtuqKKvwMHnjZailvqG7XZtDqCdF6c+RQFlx9dU/FFWLAk+JFDHh2u52lz/6D4u3HWTxoMl4uZ7Zit9lt7CrI4v0X3yIgIIDRo0ef9RyKonDvfffyptFA+rqtpB3JQq9oadHbCRoWwa9/efeA3b9n5syZJCUlsWPHDioqKnB1dSUpKYng4GBHR2uj0+nQaDW0/Kd36L+pqKhAq2pDq+mk50wB1a52f0ghRBspXsSAd+jQIU7uOcxlkclthQuAVqNlXPhwSo5Usmr5yh8sXgCcnJy475e/5OprrmH//v1YLBZCQkIYOXIkOt3A/lNzd3dnzpw5jo5xVkajkcRxYzj6zQ6GBca0G5/j5evNoZIsmpwsDPIJbfc8i83KaWs144cn9HRkIQa0gf2OKgSQlZWFU7NCoKnj2AtFUYjziSBj7yGamprOa5XckJAQQkJCuiOq6EYLFi7g72m72JidwcTIkTjpDABo3Z3Yq+bjYjC1Gw9js9tYf3IXzqGeTJ061VGxhRiQpHgRA57dbkennH0grV6rQ7Wp2O32HkwletrQoUO56ze/5F8vvc4Hx9fipbpgVi00uaokXDaepqo6Pji8lkhnf2yqndyWMoyhntz7m1/h6+vr6PhCDChSvIh+obS0tG08RURExAUtBBcZGUmd1kxdSwPuTm4d2rMrCwkeHY6rq2tXRha90KRJkxg+fDjbtm2jqKgIg8HAyJEjGTZsGIWFhWzatImjB7LQaLVcPmoW06dPJzAw0NGxhRhwpHgRfVpeXh4ff/gRB3fsxdJkRmvQEZkwmGtvvO6cY1S+k5SUhP/gUDYczeCyuMnotd//WZyqLKRAU8PPFtwyYFbGHeg8PDxY0MnMsPDwcG699VYHJBJC/C9FVdV+NUy+rq4ODw8PamtrcXd3P/cTRJ9VUFDA337/J6wnqxkTGEegyYfalgb2Fh2jysvGvb97kHHjxp3XuY4dO8Zzf3uKplMVDHINwkXvREFdKeXGZqZeNZe7fnGX7HEjhOjX7HY71dXVKIqCl5dXj39gu5DrtxQvoley2+0cPHiQ/Px8tFotw4cP7zDV+NlnnuXIV9u4ZugMDNrvV65VVZU1x7fTEuPC86++eN6r2paWlrJ+/Xp2bd1OS1MLEYMjmT5rJikpKVK4CCH6LbvdzoYNG1i5ZiW5BTkADIoYxML5lzFt2rQeK2Iu5Pott41Er3Pq1Cle/edL5GdlozeDTbWj8TQyZvoE7rzrTlxdXamsrGRfWgYpAbHtChc4M0MoJXwYn53ayv79+xk7dux5vW5AQAA33XQTN910U3d8W0II0euoqspbb73FFys/w8lfT+CIAFBVjuccJuvFQxQWFnLzzTf3utvmUryIXqW0tJSn//J31JM1LIpIwd/NG5vdTnZlAVu/3EhrSwsP/+5RqqqqsDab8Q/w7vQ8Xs7uaC1QVVXVw9+BEEL0Hfv27eObNV8TPjqIoKjvB58HhPtTcLyQz779hKSkJOLj4x2YsiPpCxfnxWKxUFRURElJSbdOGV63bh0NJ8pYFD8Vf7czhYlWoyHWL4K5oUns27yLrKwsTCYTWoOemub6Ts/T2NqMTaPi5tZx9pAQQogzUlNTsRnN7QqX74QODqFZaSQ1NbXng52D9LyIH9Ta2sqyZcvYsHItNcUVoCiEDI5gwaLuuReatj6VWLeQDreCAEI8/HEp1JCRkcFtt91G/Njh7F13kCjvYDRK+zo8s/AIHmF+jBw5skvzCSFEf5JbkIO7f+fjSxRFweTrRn5hXqftjiQ9L+KsrFYr/3x+KZ/98x388lXmeYxkpmsC6r5yXntiKZ988kmXvp6qqjQ1NGEydr6KraIouCgGmpubURSFa667lqZAHcuPbqWs4cztoXpzI5tP7eGYUsbVN113XiviCiHEQOXm6oa5qeOeXt9pbW7F1aX3rXElPS/irNLS0ti9Oo2FIckEu/u1HY/wCmJf0TGWffgF48aNIzIyskteT1EUAsNDKNpbxvCgwR3abXYb1TTh739mifahQ4fy0B8e4d03/8W3x3Zhz7OAXoNXeAC3/+gX3bqXjqqq7N69m7Xr1nLsxBEMRiPjkyYwe/ZswsPDu+11hRCiK00YN5Gdb27H3NyK0dnQrq25oRlzlZVxKeMdlO7spHgRZ7Vp/UaC7KZ2hct3EoMGsz/rFGlpaV1WvADMnDuLf+15ibKGqrYxL9/ZU3gExdeZSZMmtR0bMWIEz77wPFlZWVRWVuLq6srw4cNxcnLqskz/S1VV3nnnHT5b9imqqxWfYC8aLM18vOoD1qWu4bcPPHLeC+QJIYQjTZkyheWrl5O5fj9Dxsfi6euBqqpUl9VwbOdJhg5KZPx4KV5EH1KSf5pBbp3v2aJRNPhpTZQUl3Tpa06bNo2MHbtYtn478S4hRHmHYLa2crgsh2KnRm68/bYOy7FrNBqGDx/epTl+yI4dO/hs2ScEJfoSMii47bh9RBQHtmax9KXnefmfr2AymXoskxDdxWw2s3XrVrZsTKWiuAwPHy8mz5jK1KlTZcuMfsBkMvHYI4/xj6X/4MjWLKxaC6qqYlCNjI0fx69++ateeftdihdxVi4mV+qLms7a3mBrwdWta9+8jEYjv374N3wT/w2bVq3jWNk+FI1CeNIg7ll0WbteF0dZu24tmOztChc4U0QNHRfH7uUH2LZtG/PmzXNQQiG6RmNjI88seYrDW/cSpngS5uJFdW4p7+58hdT1m3jksUfx9u58uYL+rKWlhYyMDEpKSnBycmLMmDEEBwef+4m9VEhICM889QwHDx7k5MmTAMTFxZGQkNDr1nf5jhQv4qwmTJvMV/vfI8XaipOu/b3Q0vpKap1aSUpK6vLXdXJy4vrrr+eqq66ivLwcnU6Hv79/r/gjUlWVIycO4xfu02m7wWhAZ9KQm5vbs8FEr2CxWKirq8PJyalf9Er8+6OPOLYpk6ujJuHr6tl2vK6lga93buH/3nyL3zz8W8cFdICMjAxeffMVCkrz0RgVbBYbbh+4M3vqHH56x08xGo2OjnhRNBoNI0aMYMSIEY6Ocl6keBFnNXPmTDav3cjXhzczNXwUgSYfVFRyqorYUrSfobNGd+tUZIPBQEhISLed/2JptTpsVstZ2+1WO1qttgcTCUerr69n+fLlpK7eQENVLRq9llETk7j8iisYPLjj4PO+oK6ujrS1qYz2imlXuAC4O7mREpBAeloGRT8u6tO9DhfiyJEjPP38U5hdGhk5PwFnVyfsdjvFOSV8tfZzAO65+x4HpxwYpHgRZ+Xt7c3Df/gdr/zzJVYc2I2u0I5NVVE8jIy6YhJ33v0LdLqB9SukKAopY1JYnvY1UQkRHXqDGusaoVnDsGHDLul1LBYLxcXFKIpCUFBQl/ycVVXl4MGDbN6ymZLSYtxN7kwYP5Hk5OQ++2mxN6irq2PJX54gb8dh4l1DCfEYSr25iUNfprN/eyYPPPabPrneUH5+Ps1V9QwK7XzweYxPKJuO7icnJ2fAFC/fLvuGOqpJnjK67W9fo9G03UJet3ktVy66sld+6OpvBtaVR1ywsLAwnnh6CYcPHyYnJwetVktCQgIRERGOjuYw8+bOY0t6Koe2H2Fochxa3Zlelqb6Jg5sOcLQ6OHnvZ/S/7JarSxbtowVa1ZQWlEMKIQGhrJw3mUsWLDgojeItNlsvPb6a6zasAKL3oyrtwst+S1sSF/P2IQkHv7tI3h4eFzUuQe6r776irzth7kmZioeTt+v6Dw0IIqVx7bx1suv8/wrL5z3BqG9hUajAUXBZrehomKz2tBoNW0LQtrsdhRFGTCbltbX15OxdxchsUGd3sIOigokb/9pMjMzpXjpAVK8iHPSaM70JFxqb0J/ERsby/13P8DLb7zEzm8zMXrqsVls2OthSNQwHv71wxd1obLb7bz00kusSP0Wz3ATURNCUVWVolNFvPDmUgoLC7nzzjsvauzP8uXL+Xrtl0SNDSUwIqDteH1NAzs3bee111/l4d8+csHndbS6ujpyc3NRFIXo6OgeH2fS0tLC1rWbGOYe0a5wgTMz8iZGjOCzk1vJzMwkJSWlR7NdqujoaFz9PEg9tAO/FmdaW1rRaDUEBAcSFh5Gdm0Rzr7uvW7Pm+5iNpux2qw4uXTeS6nRaNAZdTQ3N/dwsoFJihchLsLkyZMZOnQoW7duJTcvF71OT2Ji4iXdgtm9ezdrNq8iZlwUfiHfDwj28vekOLeU5eu/ZeLEiRc8LdxisbBi9XI8wtzaFS4AJk83okdFsH13OgUFBYSFhV1U9p7W3NzMvz/6iK1rUmmsqEVRwM3fi+kLZ3PddddhMBjOfZIuUFVVRVN1PaGegzpt93J2x8mmo7i4uEfydCWr1UpNUz27T+1jqjGOGNcgLBYbpcfzOZJ3ktM+LSy863q8vLwcHbVHeHh44OXhTWVJNb7BHQfstzS2YG9WOyzlILqHFC9CXCQfHx+uvPLKLjtf6uZN4GpvV7h8JzDCn7ysAjZv2XzBxcvp06cpKi8iekJop+2B4f7k7Mnn2LFjfaJ4sVgsPPf0s2St28Uoj2gGh49EVVWOluWy/PWPKS0u4YGHHuyR2xlGoxGNTktTa0un7Va7DYtq7dZFE7vLF198gaG8laTYERwrKaSouQ4vjQu1NHO8thiP4GBuuukmR8fsMXq9njkz5vJ/n75BY0wjru7f9/KpqsrR3ScI8QslOTnZgSkHDilehOglThefxuTb+S7YiqLg5u1KcUnRBZ9XVVVAPeftpjOP6/127NjBgdRdLAofR4Dp+0IvOXwYgTW+rFmzlX0zZ/TIKsfe3t7EjR7GwQ1ZDPIJ7fAzPlqWi9bbmVGjRnV7lq7U3NzM1rWbSPSIIiksgfyaErJKsqlrbiDY6McY9zFkmnM5fvx4n/veLsUVV1zBvgN72bM+A58IT3yCvDE3myk8XowJT+66/xd9slDtiwbGSCsh+gAPkwctDZ1/ggcwN5pxN3W+++sPCQ4Oxt8rgOLczldDLjtdgYverc9M6d2auoVAm1u7wuU74Z6BeLbo2bplS49kURSFK65aRK2XyoaTGTS2nhnvYLPbOVx6ih1VR5myYBYBAQHnOFPvUl5eTmNlHRFeZwanRngFsWDIJG4YPY/LE6YyNmwohlaF06dPOzpqj3J1deXx3/+BO677Oc4N7hTtKaf2WBPTR8ziL4/9tc+Na+rLpOdFiF5i4oRJpL+yjebGFpxd2396a6hpoLXGxvhxEy74vEajkQVzF/LaB69QEVzZ7n59U30z2XtymDJqRp+ZQVZZWo6vs+dZ232MHlSVVfRYnhEjRnDnb+7jvdf/xYfZGzBhpEW1gKeRqTcu4Lbbb+uxLF3FYDCg0WlotnS+27DVbsOKvcfGFvUmbm5u3HjjjVx77bXU1NTg5OQkW4E4gBQvAjiz+NKGdevJ2nsABYVhSSOZNWsWsbGxjo42YEyaNIk161azb/0+YsZGnSkyVCgrLOfknlzGDk2+6E92ixYtIjcvl/Vpa8l1y8fNx43m+mZaKltJjBnFPb+4p1esYHw+vHy9qThw7KztNeZ6YryH9mCiMwO4R48eza5duygrK8PZ2ZmxY8f22fVPAgICiEwYzKHt2UR6d/wejpXlovN26ZPr13QVvV6Pn1/HTWtFz1DUHrjR/fLLL/PMM89QUlLCiBEjePHFF886qOmdd97h9ttvb3fMaDTS0nL27vT/VldXh4eHB7W1tbi7X3gX+0C0atUqPnj5XzjX2Ik2BaEC2XWnafXRc/v9dzJz5kxHRxwwysvLefnVl8k8uJtmaxOqquJqcCN5ZAp3/+KeS5rZYbPZ2L17N6mbN3G6+DSe7p5MmjiZSZMm9cqN185m06ZNvPqn57gmfDI+Lu3Xpimuq2BZ6S4eWvJ76cK/RDt27OCFPz9NrM2f5LAEDDo9qqpysrKAzaUHmHbTZdz1i7scHVP0Ixdy/e72npdPPvmEBx98kNdee42UlBSWLl3K3LlzOXbsGP7+/p0+x93dnWPHvv9k1Vc+EfZFp06d4sNX3ybe6se4ocPbftbJagJpOXt558U3iY2N7ROzUPoDPz8//vj4Hzl16hQnTpxAURTi4uKIjIy85HNrtVpSUlL6/EV9woQJbJy4gW9T00j2i2ewXziocKw8l12Vx0ick8KYMWMcHbPPGzduHLW/upN/v/UeR4+vwRMXGu1mbB46xl87i9t/cvu5TyJEN+n2npeUlBSSkpJ46aWXgDMLcYWFhXHffffxyCMdF8V65513+NWvfkVNTc1FvZ70vFyYt958k61vL+fmYfM6FIl21c77WauZfee13HLLLQ5KKERH9fX1vPP22+zcuI2WqgYUwNnXxITZ07jl1lv6VE9Sb1ddXU16ejrl5eW4uLiQlJREZGSkfKgUXa7X9Ly0trayZ88eHn300bZjGo2GWbNmsX379rM+r6GhgYiICOx2O6NHj+bvf/87CQkJ3Rl1wDpx+Bjhrp3v2KxRNIQ5+ZJ99LgDkglxdiaTift++Uuuv+EGTp06BcDgwYPx8el8t29x8by8vFi4cKGjYwjRTrcWLxUVFdhstg7TBAMCAjh69Ginz4mLi+Nf//oXiYmJ1NbW8uyzzzJhwgSysrIIDe24yJbZbMZs/n5EfF1dXdd+E/2cVqfDZredtd1is2HUyrhu0Tv5+/uf9fazEOLSlJeXc+DAAVpbWwkJCWHYsGG9Zi+rXndVGj9+POPHj2/794QJExgyZAivv/46f/3rXzs8fsmSJfz5z3/uyYj9ysik0Xyd/j5Wuw2dRtuurdVqocBayQ1jrnJQOiGE6P1UVWXXrl2s37COYyeOYjAYGZ88gdmzZxMeHu7oeBfMbDbzzrvvsG7TGmqaalA0oFcMxEcP4Rd33t0r1oTq1hLK19cXrVZLaWlpu+OlpaXnvf+DXq9n1KhRnDx5stP2Rx99lNra2ravgoKCS849kEybNg3nCG9WHUunxdradrzZYmbl8W14RAcwZcoUByYUovey2+0cOnSI9evXs3XrVmprax0dSfQwVVV5++23+fNTfyLtyGbs/q00uNbw8aoP+O3vf01mZqajI14QVVV5/fXX+WzlJ7gNciLlylGMv3osMZMjOFx8kCee+htFRRe+0ndX69aeF4PBwJgxY9iwYUPbHjB2u50NGzZw7733ntc5bDYbBw8eZMGCBZ22G43Gi94IT5zpdr//kYd48enn+eD4WgJwR0WlVKnHMzqQXz3yEN7e3o6OKUSvc+zYMd569Q0KsrKhxYpdUXH292Tu1Qu5/vrr0Wq15z6J6PN27NjB58s/JSjRl5BB36+JYx8RxYGtWSx96Xle/ucrfWYhu5ycHNZvXUfUmDCCIr8f8uHp68GYWSPYuXwPK1eu5Kc//akDU/bAbaMHH3yQW2+9lbFjx5KcnMzSpUtpbGxsW8vllltuISQkhCVLlgDwl7/8hXHjxhETE0NNTQ3PPPMMeXl5Dv9B9WeJiYk898o/2bp1K8ePHkNRFOYPiWfSpEl95g9OiJ6Ul5fH03/6O8aCZi4LTyLQ5EOLtZVDJSf55vV/02o2c9vtMpV4IFi7bi2YbO0KFzgzOWXouDh2Lz/Atm3bmDdvnoMSXpiMjAya7A0ERsR3aNPqtARE+5Gatonbb7/doQV6txcv119/PeXl5fzhD3+gpKSEkSNHsnr16rZBvPn5+e0GAFVXV/Ozn/2MkpISvLy8GDNmDOnp6Qwd2rMrZv6viooK8vLy0Gg0xMbG4urqeu4n9SHu7u4sXLhQZhUIcR6WffMtal4dixJmof3PWDEnnYGxoUPRF+lY//Vq5i9Y0Of2NBIXRlVVjpw4jF+4b6ftBqMBnUlDbm5uzwa7BE1NTeidtGedCu/s5kxNYQNms9mhSxL0yIDde++996y3iVJTU9v9+/nnn+f555/vgVTnp6amhvfefZeMTdsx1zSAomAK9Gbm5XNZvHgxer3e0RGFED2oubmZjC3bGeEb3Va4/LeEwEHsPnqSjIwMLrvsMgckFD1Jq9Vhs1rO2q7a1D51C9HX1xdLow2rxYpO37FEqKmoxccrAGdnZwek+17vmPPUSzU1NfHU35aw65MNjFXD+HH0bG6MmMagGhPfvPYRr7/6Gj2wu4IQohdpamrCarbg4eTWabtOo8UFPQ0NDT2cTPQ0RVFIGZNCWW5Fp9eChtpG1CaFYcOGOSDdxZkwYQLerr5kH8zt0NZY10hNQR1zZs51+CKFUrz8gNTUVE7tzOLKmMkkBA7CWW/EZHQlOXwYM/xHsm3lprOuVyOE6J9MJhPO7q6U1Fd22t5sMdOgtOLr2/mtBNG/zJs7D3eNJ1nbj2C1WNuON9U3cXDrYYZGJzB27FgHJrwwPj4+3HbT7TQWmNm76QAVRZXUVtaRfSCH/esPM2ZIUq8Yv9Pr1nnpTbZsSCVS74enc8dBq9HeIewsziI9PZ0hQ4Y4IJ0QUFhYyPHjZ1ZAjo2N7XQhR9G1DAYDk+dMZ+3rnzOsdRCuhvbd5xkFWbgGe/X5PaTE+YmNjeVX9zzIy6+/xK5v92Lw1GG32LE3KgyNGs5vf/1wnxtesGDBAjw8PPjq2684secYNrsNDzdPbrriFq699tpeMeZTipcfUFlazuD/2bX2O4qi4Kl1pbqyqodTCXFmLNbrb7zG9t3p1LfUA2ByMjF+7ATu/PldeHp6OjZgP3fFFVewPyOTL/ZuYoR3DGGeATS1trC/+ASlbs3c9pM7ZabeADJp0iTi4+NJS0sjNy8XvU5PYmIiycnJfXYpj4kTJzJhwgSKi4tpbW3F39+/V+0ZJsXLD/AJ8KOyqLzTNlVVqbE1kuAja6CIntXS0sKSp/7OnmMZRI0KZ3h43Jm1efLLWbdjDVXVVfzlT3/ts2+afYGXlxe///Mf+OSTT9ixYSsZpafQ6LSEJUVz7zVXMWHCBEdHRFVVTp48yfHjx1FVlZiYGOLi4hw+VqG/8vX1bVvPrL9QFIXg4OBzP9ABpHj5AVNmTuO9Xa9S29LQYXDeqarTNJuUXvEmJQaW7du3k3l4D4mzh+Lmcab7VkEhKDIAk5cbe9dlsn37dqZNm+bYoP2cj48Pd999NzfddBNlZWUYjUbCwsJ6RXFQWVnJKy++zJGd+6DegqIo2F11DB6TwL333yf7QYk+T4qXHzB16lS2btzM19u3MNY3jkG+YVhtVo6U5bCvPodJ184hPr7jQj5CdKdt6WkYvHRthct/c/NwRe+lZVt6mhQvPcTDwwMPj85vLztCS0sLz/z9SYp2HGdmyEjCw85sxVJYW8rmTft4qm4Jf3nyb71i3EJ/UFVVxenTp9HpdMTExPS58S19lRQvP8DV1ZWHH3uUd995h4zU7aRlH0FRFNwCvLjiphu57rrresWnLDGwVNfW4OLudNZ2Z5MT1bU1PRdI9Crbt2/n1O4jLB40BS9n97bjYZ6BLHKezL/3bSItLY25c+c6MGXfV11dzfsfvM/W7Vuob6pDo9EQ7B/KlZddycKFC+Xa0M2keDkHT09P7v/Vryi/6Sby8vLQarX9coVd0XcEBwZzOHP/WdsbqxsJju6d96lF99u1fQeBdlO7wuU7JqMrYVpvtqelS/FyCerr6/nrE39h/6m9hA0NJio0Hkurlfzjhbz41j+pqanh5ptvdnTMfk2Kl/Pk5+eHn5+fo2MIwdQpU1mftpby05X4hfi0ays/XYHSpGPqlKkOStf7mc1msrOzsVqthIaG9ruNR+tr6zEZzj4rxGRwobG2vgcT9T9r167lQPY+Rs8ZjrPbmanyTq6QkBJPrns+Xyz7nOnTpxMSEuLgpP2XFC9C9DGjR49mzuR5rNy8jMrIKoKjzoxpKMopoTq3lgVTL2fUqFEOTtn72O12li1bxuqvl1NVUIZqV3HydCFl+iRu+vHN/WZ6eVBYCJlpR1FVtdNbFyXNVQwOH+yAZP2Dqqqs27gWz1D3tsLlv4XHhbLz6B7S09NZvHixAxIODFK8CNHHaDQa7r33XsLCwli5ZgUntuShAP7eAVx3801ceeWV7TY7FWe89957rHr3C+J1QUwLmoBRqyen6jTb/72Wgtw8HvvzH3Fz63zJ/75k6rSppC3fwPGKfOL8Itq1naospMaplanTpGfuYtlsNqqqK3Ef3Pk6PhqNBp2rlqoqWQOsO0nxIkQfpNfrufbaa7n88sspLCwEIDQ0VNZ2OYu8vDzWfb6c8e5xDAuMaTs+PGgwEV5BfLozleXLl7No0SKHbzh3qRISEphx9TzW/3s5BTUlxPtFgqJwojyPk7Yyplwzl9GjRzs6Zp+l1WoxublTX1vdabtqV7E223F37zjmSHQdKV6E6MOMRiODBg1ydIxeLz09HU11K0MTotsdt9ptHCnLIS83jycf/TMrPv2a4UkjmX/ZQoYPH+6gtJdGURTu+OlPCQ0LY82yVazNPQCA7+BAbl74cxYsWCA9c5dAURRmTZ/NW5++TmtCKwYnQ7v24twSXDSujB8/3kEJBwYpXoQQ/V51dTUeigsa5fuLttVu48sDG8gryCO61RNn1YlhtjCOrsjkyfQ9/Oyhe/rsWjkajYb58+czZ84cSktLAfD390enk7f8rjB37ly2bNvMnnX7iR4RgX+oH5ZWCwXHT1N2opKr5y4mIiLi3CcSF01+k4UQ/Z67uzv1aku7Qaz7io6RW5DHLJcE7BorZncNwwIHkRAQTWr2bt555S1GjhzZpwfyarXaXru8e1/m7e3NH37/R9546w0y9+/m5I5cNIoWfy9/blt8B9dff72s89LNpHgRQvSYpqYm0tPT2b9vHzaLlchB0UydOpWAgIBufd2UlBRWfvQVJyryif3PINb9BccIxwtvnYls22miQmKBM7cFJkaO5L3ja0hLS+Oyyy47r9doamrCbDZjMpmkh2MACAoK4o+P/5G8vDwKCwvR6XQMHTpUNuTsIfIXJoToEXl5eTz796coPZJPoGpCr9Gxz7qNFZ9+ze33/rxbb9HExMQwccEMNn+6mjpzI/F+EVTV1xCIPzk1RTj7mAgJDW17vEGnx1t1oaio6JznPnLkCMu/XcaBnZmoVjue/t5Mnz+bBQsW9PnBv+LcIiIi5BaRA0jxIoTodi0tLTy35BnMh8q4KXYmroYzF3Wb3cbWnL289fwrBAcHExsb2y2vrygKP7/z53h4erDh2zXsPpVNbkMJXoqeMZEJxA+Jx2hoP/CyRbWcc/bWzp07efnJ53EqszLWNwoXoxMFeaV8vvQdDu07wG9/94gUMEJ0AylehBDdbteuXZQcyeWGmOlthQuAVqNlavQYirPWsW7N2m4rXuDM9PKbb76ZRYsWcfjwYb74/AsKNh0kccQItP8z+6aorpwmV/UHF/tramri/156Hf9qI3MTpraNcYjyDmFoYw3fpG5j1ahVXH311d32PQkxUMl8OSG6id1uJzc3lxMnTlBfP7CXYz98+DA+VhfcnTruCaYoCoM9Q9m7Y3ePZDGZTKSkpHDPvffgFO3LquPbqDc3AmdWT82vKWFtXgZDxo1g2LBhZz3Pzp07qckvZ3LUyA6DM31dPYlxCmTjyrXYbLZu/X6EGIik50WILqaqKqmpqSz/8huKTuaj2uw4e5qYMGsy199wQ59cvMpisbBnzx4OHTqE3W4nMjKSiRMnnvcGpTabDa1y9s9KOo0Wm9V21iXtu0NERAS/+v2veXXpS/w7JxV3m5FW1YLFTUvC3CTu+9Uvf3A9lOLiYtzthnY9Sf8t3DOQnLJj1NfX9+kZS0L0RlK8CNHFvvnmGz5+5R3CLZ7MDxyFUWcgr7qY1HeWcep4Nr//0+N9ahn6oqIinn72KY6cOoziYgetgnWFndBPwnjglw8yYsSIc54jOjqaLcoqWqytOOkMHdqzq08zZMLoHp9eOmLECJa++iK7du2ioKAAvV5PYmIicXFx58xiNBoxq9azFlyNrS0oOo2seixEN5DiRYguVF5ezhfvfkyiNpTkqO9vOfi4eDDIJ5TPd2xmzZo1XHPNNQ5Mef5aWlp48uknOVJ0kOGzhuLmcaanxdzcStaOozz9jyd56olnCP2vmTqdmThxIl9GfMqGkzuZFzsBrUbb1nag+AQ1rhZmzpndrd/L2Tg5OTFlypQLft6oUaP4wv0jsisLifENa9dmV+1kVZxi1FUTZMCuEN1AxrwI0YXS09OxljcyOnRIhzYPJzdinAPZtHo9qqo6IN2F27VrF0dyshgxLaGtcAEwOhsYOWUYZQ0lrF+//pzncXd3555f309tkIYPDq9ha85eduYf4tOs9WRYcrjituv63H47UVFRjJkxgc2lBzhZUYBdtQPQYG5i7fEdmP31LLhsoYNTCtE/Sc+LEF2osrISD8UZ3X/1LPy3QDcfcityMZvNODk59XC6C7d//3507gouJpcObRqtBu8wT9J3pXPbbbed81wjR47kr889yYYNG8hMz8BiaWVIwgRmzJxJYmJin1uRVFEU7r7nbl5VFLZsTGfr4YM4awzUKS14RQZy3733ER8f7+iYQvRLUrwI0YVcXV1ptLdgV+3t9tH5Tk1LA04+zhgMHcd99Eatra1odD8w0Nago7XBfN7nCwkJ4ZZbbuGWW27pingO5+zszAMPPkDeNVeTmZmJ2WwmKCiIlJQUuV0kRDeS4kWILpScnMw3Hp9yoqKAOL/2q262Wi0crc1nxnVX9ZldfSMjIzFvtWCz2tDqOvYmVRXVMHV437rd09UURSEyMpLIyEhHRxFiwOgb76BC9HL19fWsWbOG5cuXY3XV8O2JrWQWHKHVZkFVVU7XlvH10c24xvozf/58R8c9b5MnT8bb1Zeju090GKdzOrsYpUnHzBmzHJROCDFQSc/LBWppaWHXrl2Ulpbi7OzMmDFjCAoKcnQs4UBZWVk8u/RZCsry0LtrsBnsnNZW8t6R1USVheDq7ILioidyfCx33vsLAgMDHR35vPn7+3P3z+7hhdeWsmtlJv6Rvmh1WsoLKlDrNSy+/HrGjh3r6JhCiAFGipcLsGPHDt5+9S2q80pxtelpUS187O3M5AUz+ckdP0Gv1zs6ouhhZWVlPPXsEirtZYy9LBGD05mxLOapZjLW7cPW4sQNd/yUuLg44uPj+9ygVIBp06YRGBjI6tWr2ZW5k1ablbGx45k7ey7jx4/vk9+TEH2R1XpmXSG51kjxct4OHTrEy08uJbDWyPzI6bgZXbDZbRwty2Xjh8vaNn4TA0tqaiqnqwsZt2hMuzEhRmcjKXNHk7F8H1qtliFDOk6d7kvi4+OJj49HVVVUVe0zY3aE6A8OHjzIqtWr2L0vA1VViY2OZe6ceUyePHnAfniQ4uU8ffvVN7iW25iTMK7tl0Wr0ZIQOAgV2LJiPYuuXERAQECPZaqsrCQtLY2ioiKMRiOjRo1ixIgRcmHpQRl7duERbOp0MKveqMfF14nMfZlcfvnlDkjX9VRVZf/+/Zw6dQqNRsOQIUPOazVaIcTFWb9+PS+98QItukYCovzR6rQcKMgkc+kejh9fzB133DEg//6keDkPNTU1HN59gPEBMZ3+ksT7R7Lj6FH27NnDggULeiTThg0beO/V/6O1pB4fXGhRLaxx/ob4lEQe+M1DspdKD7FYLZ0WLt/R6rW0trb2YKLuk5+fz9IXnufoqSNYNK2gglFxYvSwsdx/3/34+Pg4OmKvUlpaSnp6OtXV1ZhMJsaNG0dYWNi5nyjEf5SUlPDGv15DH6hh+Njvt88IjQmmOKeEL1d+TmJiIsnJyQ5O2vOkeDkPLS0t2C1W3M6yboNOo8Wo6GlpaemRPPv37+dfz79KtNmL8fHjMWjP3P8sqa9kTepOXtS/wGN/fHxAVuM9LX7wEA5vPNjp/jaqXaW+rJHYcbEOStd1qqureeLJv5FbnU38lMF4+LijqipVJdWk79xK89PN/O0vf5N9fDjTO/XZZ5/x7UdfYK9owl1xpsHewtdenzJ90Rxuu/12dDp56xXntmXLFqqaKxk3ekyH95egqEBOnyhm/Yb1UryIznl5eeHiZaKwqowQD/8O7XUtDTRrLd06i6SgoIDs7GwURWHtqjW412iYMrT9RnaBJh9mho5hzfa9HD16tM+Ps+gLZsyYweqNq8g+mEtMYlTbcVVVOZZ5Ag+DFzNmzHBgwq6xadMmsotOMPayERiMZwYlK4qCT5A3idON7F+/l4yMDCZNmuTgpI63du1avnj9A8Y4RZE4JBadRotdtXOkNId1H3yLq5sbN954o6Njij4gNy8XJy8DGm3nQwG8gjw5cep4D6fqHaR4OQ9Go5Epc2ew+vXPGNISibvT9zsC21U7abn78B0UxJgxY7r8tauqqnjztdc5kL4HS00zFpuNo7nHmeM7CqvNil7XftR5iIc/htMqBw8elOKlB8TGxnLHj3/Km++9wa7Te/AN80FVVcrzKnHBxD0//UW/uFWwbXsapiDXtsLlv7l5uKI1wc6dOwd88WKxWFj++dcMwq/d/lYaRUNC4CAaW5tZ981KLr/88j61s7hwDCejEzaL7aztFrMFk2Fg9nZK8XKerrzySg7vP8jnOzYz1BROiIcf9eYmDpWfoiVAzy/v/nmXd5k3NTXx1N+WULzzGJMDhxM9NIQGcxPP5RZSX1TFgX0HGDVmVLtl6BVFQa9osVgsXZpFnN3ll19OZGQka9au4cChfaAoLJhwBXPnzO03BWRDYwNOrmffi8ngbKCppakHE/VOp06dojyvmAmBKZ22Dw+KYW/2erKyskhJ6fwxQnxn1KhRLN/wDU31TR32F7NZbVQV1HDF1dd2+lxVVTl8+DC7du2ivr4ePz8/Jk2a1C8+TIEUL+fN3d2d3/3xcZYtW8aWNRs5UnUIjV5H4hXJXL7oim7ZgG3r1q3k7j7CdTHT8PhPb4+b0YVg7wDUSpXqknLKy8sJ8P9+hlNdSwN1WjPh4eFdnkec3fDhwxk+fLijY3SbyPAotmTldNqmqiqNlc2Ejg/t4VS9j8ViwW6146TvfO8qo86AarP3m0HconslJyczZNAw9m86wLDJQzB5nbkOtDS2kLXjKIHuIcycObPD81paWvjnC/9k687NmLXN6J11tDZY+fTrT1i86DpuvPHGPj8mUoqXC+Du7s5NN93E4sWLqampwdnZGZPJ1G2vl74ljTCNd1vhAme6n0eGD2FL9Q7cWvWUlZa2FS82u43UnEx8B4cMyAFc4nvNzc3s2LGDkydPoigKcXFxJCcnX3Tv4IzpM9iyM5WywnL8Q/3ateUdLcBNa2Lq1KldEb1PCwoKwsnDhbzqEoYFDurQnl9dgsHdmdBQKfTEuRmNRh797aM889zTZG06hN1oRavVYG1QCQ+I4IFfPtjpCu//evtfrEtfzeBx0fgGe6MoCqpdJe9YAe9/9i6+vr7MmTPHAd9R15Hi5SIYDAb8/TsO3O1qtVU1+Dh1vC8+NnQIBdUl7Dh2gKLTTSh+LjS2tnC8rhBtmDsPPnCfzPoYwI4fP86zzz9DTtEptG4KqCq2ZRATHstvHvgN0dHRF3zOpKQkFsy8jGXrv6Ekr4zAiABUu52iUyXYquGW6267qPP2Nz4+PiRPn8jOj9cR6RWEm/H7rv4Wayvbiw4RN2O4bOIozltgYCBPLXmaffv2kZWVhc1mIyoqinHjxnW6c3lZWRkbNq8nbHgQfiHfL1+gaBQih4RTX93At8u/YebMmWi1Z1/mobeT4qUX8w8OoCQrq8NxrUbLlcOmkV9fQnOIK5n6IowmI1OuvZw5c+b0m3ua4sJVVlay5Om/U2IuZNT8hLZxKk31zRxMO8ySp//Oc0//A3d39ws6r0aj4e5f3M2g6EGsWruKgr35KIrCkKhELrv1MiZPntwd306f9KObbyLn5Ck+zdzEYJdg/N28qW6q42hdAR5Dg7njzp/1+S570bN0Oh1jx449r33EsrKyqG2uIT56VKftoTHB5G7PpaCgoE8X0VK89GJTpk/jhY27KK4rJ8j9f7rqa0pwD/Xj98/+hWHDhgHIG6IgNTWV/Io8Ui4fhc7w/Z+3i8mZUTOGs3v5AdLS0i5qMUWtVsuCBQuYN28eVVVVKIqCt7e3/N79D29vb/7w1z+xevVqUldv4FRNDk6+zsy+8RoWLFiAn5/fuU8ixEWy2WygqGedXq3T67CrdqxWaw8n61pSvPRi48aNY9vs8axYuY3hpghifMOx2+0cLc/lqLmIKdfOZdiwYV1y8VBVlfLyclRVxcfHRxbR6qN27dmFKdClXeHyHYPRgLOPgYw9GZe0ErRGo8HX1/dSYvZ7Hh4eXH/99SxevBiz2YzRaJRtO0SPCA8Px1nnQmVJNb5B3h3aSwvK8TJ5dzpWpi+RK1QvptPp+NVDD/JFZASbVq7jYMl2UMArxI/rL7+dK6644pILF1VV2bx5M6uWraDwWA6qCr6hAcxcMIeFCxdKEdPHmM0t6A1n33FWZ9DJTJcepNFoOh2XIER3GTx4MInxI9i1Zwfus93arc1UX91A2YkKfnzVbbi6ujow5aWTK1MvZzQa+dGPfsSVV15JYWEhiqIQHh7eZQNyP/nkE75669+EWNyZ5j8EnUZLdnYhH/3jLbJPnOT+B37Vpwd1DTSxg+LISj1w1u0KGsobiUmOcVA6IUR3UxSFu39xD5V/r2T3iv14hbnjYnKhtryOxrIWxo+YxOLFix0d85JJ8dJHuLi4EBvbtXvk5OTksOyDL0hyjmbkoLi242GegUTXlLBm5WbSU5JlMGYfMmPGDNakriL3SD5RQyPatZ08mINJ58H06dMdlE4I0RNCQkL4+1+XsH79ejZu2UhNfg2DAuOYddVspk+fjpPT2Rec7CukeBnAtmzZgrbaTGLCYBoaGyg6XURdbS2KosHHzwefFiObN2yS4qUPiY+P55brb+Ptf/+LysK9+IX7oqoqZXkVGFqd+fmtd/bpGQZCiPPj7e3Nddddx3XXXefoKN1CipcBrLSoGH+dJ8VFxRzLOgrNFty0zthVOyeLyqnV1lB7oONUbdG7XX311URERJzZruDwfhRFYfqI2cybO48RI0Y4Op4QQlwyKV4GMBc3VyoaqjiW14S7zUigdyAKZ8ZJ2Ox2TpYUc+roURobG/v84K6BRFGUtjUh7HY7gMx0EUL0K/KONoCNTUriRN1pGhsbCTT5tBUuAFZs1ButOKNj27ZtDkwpLoVGo5HCRQjR78i72gA2ZswYzEY4YC2gyFyJqqoAVFjqWFdzABcvE0PcIzh69KiDkwohhBDfk9tGA5her2fYsARKWk+R2nIcfaOCRlEwa214+3tz1fBpbM87iPqfWw9CCCFEbyDFywA3MmUMhwqamBw2kvyaEuyqnSCTL5HewZitFsqUehbExZ37REIIIUQP6ZHbRi+//DKRkZE4OTmRkpLCrl27fvDxn332GfHx8Tg5OTF8+HBWrlzZEzEHpNlz5tDkpaGwtpRx4cOZGDmSaJ9Q7KrKupM78IgKYNKkSY6OKYQYYOx2Ozt37mTJk0u48+6f89BvHuTLL7+kurra0dG6TWVlJenp6Wzbto3S0lJHx+nVFPW7gQ7d5JNPPuGWW27htddeIyUlhaVLl/LZZ59x7Ngx/P39Ozw+PT2dKVOmsGTJEi677DI++ugjnnrqKTIzM9s2IPwhdXV1eHh4UFtbe8E75w5UK1eu5MNX30ZfZSHCxR+L3UpOSxmukb786tFfn9fPXQghuorNZuPV115lxYZl4GrHM8CDlsYW6oobGBQ0mN8/8hgRERHnPlEf0dTUxDvvvsPGrRuoaagGVcXd1ZNJKZO54yd34OHh4eiIPeJCrt/dXrykpKSQlJTESy+9BJyppsPCwrjvvvt45JFHOjz++uuvp7GxkeXLl7cdGzduHCNHjuS111475+tJ8XJxsrOz2bhhAycOH0en1zEyaTTTpk3rtMAUQojutGrVKp5//TmikkIJCP/+PchitpC5fj9Dgofz3DP/6Bdbl1itVv6+5Am27EkldFgQwdGBKIpCSV4peQcKGROXzJ//+BeHr4qrqipHjhxh46aNnDx1AqPRiXFJ45g2bRpeXl5d8hoXcv3u1jEvra2t7Nmzh0cffbTtmEajYdasWWzfvr3T52zfvp0HH3yw3bG5c+fy9ddfd/p4s9mM2Wxu+3ddXd2lBx+ABg0axKBBgxwdQ5wnu92OoihdsqO4EL2J3W5n1dpVuAY6tStcAPRGPUPGx3Es9Sj79+9n9OjRDkrZdfbs2UP6nm0MnRKLp9/3PSwhg4Lx8PUgc90etm3bxsyZMx2WUVVVPvnkEz764kNaNI14BLhjabSw591dLF+1jN89/Psev35065iXiooKbDYbAQEB7Y4HBARQUlLS6XNKSkou6PFLlizBw8Oj7SssLKxrwgvRy5jNZlatWsUDv36AG358PT/52e28++67cm9c9CvV1dXkF+UREOHXabu7twm73kp2dvZ5na+bby5csvT09DO3xvw63hpy83DFyVfP5i2pPR/sv+zatYsPPnsPz8GupCwcw5CkWBInJpB0+UiKmvJ55vln2nUi9IQ+P9vo0UcfbddTU1dXJwWM6Heam5t56umnSN+7FZcAJ7yiPWhurOP9b98hNS2Vxx55THrORL+g0WjQKAp2W+dLNKiqit2m/uDii01NTWzcuJFNa9ZTXlyGycPE5NnTmT17Nj4+Pt0V/aJU1VTi7H72W0Iu7i5UVld2e466ujq2bNnCjl3baWhsJDoimmnTpjF8+HBWr1mN3dVC5JDwds/RG/QkTBjCgbVH2LVrV4/ug9etxYuvry9arbbDJ8PS0lICAwM7fU5gYOAFPd5oNGI0GrsmsBC91Ndff03a3s0Mmx6Pu7ep7Xj0MCuZ6/fz0isv8twz/5DVdEWf5+npSWx0HIdO7ScwIqBDe1VpDUbFiaFDh3b6/IaGBp58Ygkntx0gSufHaFMINQX1fPvih6Rt2Mwjf/w9oaGh3f1tnDc/X3+aTzSftb2huoFhg4O6NUNBQQFPPPk3Tp4+gau/EwYnA0fSD7J2yxoWzb2SQ0cPEjCo854wF5MzGhc4efJkjxYv3fpOZzAYGDNmDBs2bGg7Zrfb2bBhA+PHj+/0OePHj2/3eIB169ad9fFC9Hdms5k1G1bjE+XVrnAB0Ol1xCUN5ljOUQ4ePNhjmSwWCy0tLb2+S170PYqisHD+ZdhrFHIO57X7HWusa+TYzhOMShhDfHx8p8//9NNPObXlANdETGbm4GSGBQ5iUtRIboybRfPhUl5/5bVe9Xs7edJkNC16ygorOrTVVNRiqbEzbcq0bnt9m83GP5Y+R07lCcYsSGTE5GEMSYolZeEYAoZ58fmKT6moqOCHfmSO+Hl2+22jBx98kFtvvZWxY8eSnJzM0qVLaWxs5PbbbwfglltuISQkhCVLlgBw//33M3XqVJ577jkWLlzIxx9/zO7du3njjTe6O6oQvVJ5eTlVtZVEDAnutN3D1x2LYiE/P7/bd40+evQoK1euZMee7djtdiJCI5g7ex4zZsxAp+vzd6F7DbvdTktLC05OTgOyN23SpEncVnw7H33+IduP78bVxxlLiwVrncrI2LHcf9/9nQ5Wb2hoIG3tJkZ4RuPl0n62irPeyMTQRNbtPcDJkycZPHhwT307P2jEiBHMnjyXFanfUjOolpBBgSiKhuLcEkqOlzN1zHTGjRvXba+/f/9+jpw6zJBpcRidDe3aQgYFU15YSdOJZkrzygmP69hj1VjXhNqsENfDi5l2+7vN9ddfT3l5OX/4wx8oKSlh5MiRrF69um1Qbn5+frs/zgkTJvDRRx/x2GOP8bvf/Y7Bgwfz9ddfy1ojYsDS6/VoFA2WVmun7Xa7HdVmR6/Xd2uOtLQ0lr78D+qpJTDaH71Bx8nCoxx85QCHDx/mvvvu6xdTVx2pvLyclStXkrYulZaGZlw93Zg6dybz58/H09PT0fF6jKIoXHfddYwdO5YtW7ZQcLoAFycXkpOTSU5OPutQgeLiYpqq6okK6Px6EeYRgP20mfz8/F5TvGg0Gu69916CgoJYuXYFh9efREXFx92HH195GzfccEO3/m0fP34cu97WoVf3OwER/tTnt0C9luwDOUQPj2wrHM3NrRxKO0JseDxJSUndlrEzPfJR6d577+Xee+/ttC01NbXDscWLF7N48eJuTiVE3+Dv78/gqFiOnjyEf6hvh/aS3FJMRg8SExO7LUNNTQ2vvPEyds9WksePbnvzCo4Oovx0Jas2r2D48OEOnc7Z150+fZolf/obNVmniXcPw9slkPLiapa99BEZ6Tv53R8fw9e34/9/fxYdHU10dPR5P16r1aJoNLTaOi/0LXYrdoVe10uo1+u54YYbuOKKK8jNzUVVVcLDwzGZOi8oupKiKHCOuz7e3p5cu+g6Pvn6Y3bk7Mbk74bFbKG5opVBITH85qHfdvuHp//Vu/4HhRAdKIrCFZct4sjSw5zYf4rohAi0Oi2qqlJRVEXu3kIWTruC4ODObyt1hW3btlFeV8rYqSPaCpfmpmZaLa2YfFwxeGtZu36tFC8XSVVV/vXGWzQfLuWGIbNw0p3pvo/1i2Bkaxxf7Enlg/ff51cPPODgpL1beHg4/lEhZB3LJtDUcVbR0bJcnP1MvbYn38XF5awDkbtLXFwcOpue2so6PHw6LgxXnFPK8EEjueGGG0hOTiY1NZVTudkYDEaSr01m0qRJPVJk/S8pXoToAyZNmkRV1Z28//G77MzORO+mxWa2Y7A5MXPcbO78+Z3d+vqFhYVoTRr0Bj01NTVkn8qmsqoCm92GVqND12og68hBbDab3Dq6CHl5eRzJOMD04IS2wuU7rgZnxvjFkrF5BxU/rhhwvS/nq76+nsLCQkYkjWL1sa/xKTrG8MDBaDUaVFUlt7qIXVXHmPHjK3rddGlHSkxMZMigBA5sz2TU9OE4uZ6Ztq2qKgXHT2Ovgfm3LUBRlF61mKkUL0L0AYqisGjRIsaNG0daWhrl5eU4OzuTlJTEkCFDun2lXYPBgN1ip7qqisx9mZjVFty8XdEb9FjMrZzOKqG4sILc3Nxe8+bWl5w+fZrW+mYiQjufEhvpHcy2vGMUFRVJ8fI/Ghsb+eSTT1iXupbahhoAWhQzq0v3sK8qG0/FhQa1BbNJQ/KV07n1tlsdG7iX0Wg0PPTAQ/z9qb+TueoQTj56DM4GGioacbK7ctM1P+7RKdDnS4oXIfqQgIAArrnmmh5/3ZEjR/Lptx+zd88+WnXmdmNvdHotmlYtOlc9H370AX94/I89nu87ra2t7N69m4MHD2KxWAgPD2fSpEl4e3s7LNP5MBgMaLQami1mXA3OHdqbLWY0Wk2Pjyvo7VpaWnjy6SdJ37+VoDh/hoQPwma1U3iyiPLjlbhGBjEkMRGTyURKSgqxsbGypUYngoODeervT7Ft2zZ2ZuyksamRqMQopk6dSlxcXK/8mUnxIhzGbrdTVVWFoih4e3v3yj8QccaIESMID4xk+dZ9RIz/vnfAYrZScrgCg92JhKlDyTy4h9OnTxMSEtLjGUtKSnj62ac4dOIgipuKVqehdb2Vf3/+Effd9UsmTJjQ45nO19ChQzEF+XCoJJuU8I7jMQ6VnMQ3MpCYmBgHpOu9Nm/ezI7920icMRSTl1vb8aHJcRR6nab4SBG/nfdb6Q08D66ursyZM4c5c+Y4Osp5keJF9Di73c769etZu3w1xTkFAITERDD3svnMmDFDipheSKPRsOjyRazdtJrKQ/VUnaxDo1WwNNpxc3Jj7JzReAd4sj/7CBUVFT1evFgsFp5+9ikO5u1j+OyhuHm4AmBttXIk4zj/eOk5/Pz8es302P/l6urKnCsX8OUrH+Ba4swQ/yi0Gg1Wu40DRcc5oZZz2zV3Sc/L/1i/aT0ufk7tCpfvhMQEk3+4iG3btknx0g9J8SJ6lKqq/N9bb7Hu38uJxJtpvmdWyTy2N583DrxAQUEBt956qxQwvVBQUBCxcbEEJPhQV1WP3WbHw8edkJggDEYDVaXV6HR63Nw6Xki6k6qq7Ny5k0MnDjJ81pC2wgVAZ9AxbMIQdq7Yw+o1q3tt8QJw7bXX0tjQwIavV5Nx5BhuihP1ajMaXxeuvuVHzJs3z9ERe52S0mLcAzuf6aIoCkaTnvLy8h5OJXqCFC+iR+3fv58NX6ximlcCsX4RbcejvEM4XHqKNZ98S3Jyco9PFxTnlpCQQFhQBFU1pSROTGjXpqoquVn5xEUlEBUV1SN57HY7qamprF67mo2bNlBhK8U1X0cY4e0WdFMUBf9IX3bs3sG96r29tjDWarX85I47mDN3Ljt37qSurg4vLy/Gjx/ftqinaM/Tw4vTdbmdtqmqSmujBQ+Pjrs1i75PihfRozanpuLRqCM2MqJD2xD/KPZnnWTz5s1SvPRCBoOBG669gaWv/YOsnUcZNCwSJ1cnGuuayN6fg67JiesX39Ajy9nb7XZefuVlVmxYht5bg8FXi7ZOoaAsn5LyEhITEgn4r81cdXodzRYLqqr22uLlO6Ghob1q48DebMbUGbz87guYm80YnduvultRVIXB5tStS+sLx5HiRfSowpwCAl06n/mhKApBzt6czi3o4VTifM2cORO73c5Hn37IvtWHsWNDi47wwAhu++XtJCcn90iOrVu3snz9t0SlhOIf6sfJ/aco31aGT5AXtVX1HDpyCC8vLwz/WUa+vLCCMYPHDch9gvqzmTNnsmnzRjLXHiB6VAT+oX7YbDZOZxdzOquE2RPmyQehfkqKF9GjXEyuNLZ23D31O42WZvzcXM/aLhxLURTmzJnDlClT2LdvX9utjREjRmAwGM59gi6ydt0a9N5a/EP9AAiLDSFr9xGKDlcQPMyPivxKSkpKCI+IoDinBHudwtzZc3ssn+gZ7u7uPPa7x3n19VfJ3L+bEzty0SgKXm4+LF5wA7fecqsUrP2UFC+iR6VMGMe7mzNpbG3usJ5FXUsjp9VaFo5PcVA6cb6cnBzXHW+32zmZcxLfqO978IzORpKmj2Hn+gxy04uw662csudRdrwKGrRcs2Bxr54qLS6ev78/f3z8j+Tl5ZGbm4tWq2XIkCGyim4/J8WL6FGTJ09mzbJVfHNgK9PDR7ftP1JcX8HGvD2EjR0sFxnxgxRFwaA/s7LvfwuODmT6VVPIPpTL/rSDtDarpMydxOyZsxk/fnyvH+siLk1ERAQRER3H0on+SYoX0aNMJhMPP/4oL/7jn6w4sBtDwZkNTS2uCjFThnLfA/fj4uLi6JiiF1MUhQkpk/ho1fvYna1YLBYMBgOBAQF4+nkweEQ0tmqVv/3+74wdO9bRcYUQ3UCKF9HjgoODeeLpJWRlZXHixAngzM6mQ4cOlU/H4pysVitVVVXkHs4nvzwHn0HuKIqGUzkn8XX3p6XYypj4ZEaOHOnoqOI/7HY75eXlKIqCr69vnxyHoqoqWVlZbN26ldLyUjzdPRk/fjxjxoxBp5NLaU9TVFVVHR2iK9XV1eHh4UFtbS3u7h239xZC9G2ffPIJ//fvN3D2N5B7PJ8mcxM6Nw0tDWaay8xMGDWJN157UzYw7AVsNhtr1qxh5eoVFJacmUUYFT6IhfMWMnPmzD7zYcVqtfL6G6+zauMKWrUtuHg5Y24wozZoGD96Ir9+6Ne4uspEg0t1IddvKReFEH1GU1MTy1Z9i88gTwaPHMSQ5DgKTxRRW1mHRqOhuaEZk7Opx1f5FR3Z7XZee/01vln7Fa5BTgSPCUBVVXJOHefZl7MoLCzsM6tpL1u2jG/WfkXEmBACI/zbMtdU1LJlyyY83/Lk/vvvd3DKgUWKFyFEn3H06FHKa8oYMW4IAAajgehhkW3tTfVNHFp3nOPHj5OYmOiglAIgMzOTFeuXEZkUSmC4f9txvxBfCk8W8eWKz0lJSWHIkCEOTHluZrOZ5auX4RHuRlBk+5WOPX09iEgMZfP2VG644QZZCbkH9b0bj0J0g8bGRjZu3Minn37KihUrKCsrc3Qk0Qmr1YrdbkNn6Pxzl86gw263Y7VaeziZ+F+bUjehuljbFS7fCRkURLPSyJYtWxyQ7MLk5+dTUlFMyKCgTtuDIgOobazm6NGjPZxsYJOeFzHgbdq0if979y1Ka0rQGBXsrXbc3/fk8nlX8OMf/xitVuvoiOI/wsLCcHN2p7ywgqCowA7tZQUVmJxNsrx+L5BfkIe779k3TXTzcaXgdO9fTVtV1TPbSmg6v72l0WhAUbDb7T2cbGCT4kUMaDt37mTpq/9A6wejJwzH6GzAZrVRcOI0H379PgaDgR/96EeOjin+IygoiHFjxrFu12q8A73a7WfT0thC/qFC5k+8HH//jp/2Rc8ymUzkl5nP2t7a3IpbHxjkGhoaio+HLyV5ZZg8O46lKi0ow+RkIiYmxgHpBi65bSQGLFVV+eKrL7C5tpKQEo/R+czy9lqdlsgh4fjHevPNyq+pra11cFLx335y+x0MDR3OnpUHOLzrGAUnTnN41zEy1xwkIWIEt916m6MjCmDi+Ek0ljVjbu5YwDTVN9FabWNcyngHJLswLi4uzJ05j/KTlVSX17Rra6pv5tTefJJGphAWFuaYgAOU9LyIAauoqIij2UcIGxPa6YyH8LhQMo7uZ9++fUydOtUBCUVn/Pz8+Muf/sq6detYv2kd1dnV+HkFcePNtzB79mxZIqGXmDJlCitXryBzwwHikwfj6ecBQFVJNcd3ZZMYO6rP7Pi8ePFi8gvySN2yCb2nBpO3ieb6ZprKWxgxeBR33XmXoyMOOFK8iAGrpaUFm92Kk6ux03a9QY+iPfM40bt4enqyePFiFi9ejM1mk3FJvZDJZOKx3z3O0hee51D6ISzKSVQ7GDXOjEuYxP333Y+Tk5OjY54Xo9HIb379WybvmMLG1I0UlxYTHeDFlGumMnnyZFnjxQGkeBEDlp+fH27OJiqLqzq9l11bWYdeMRAY2HFgqOg9pHDpvYKCgnjy709x+PBhTp48CUB8fDyxsbF9Yn2X/6bX65k8eTKTJ092dBSBFC9iAHN3d2fqhGl8seFTAiMCcHL5vgfGbrNzIjObmIghDB8+3IEphejbFEUhISGBhIQER0cR/YgUL2JAu/766zl6/AiZa/bjH+2Lp58HTfXNnD5ejL9zEHf97K4+uQ+LEEL0Z7K3kRjwqqur+eabb9iweT31jXUY9EYmJE3kiiuuIDo62tHxhBBiQLiQ67cUL0L8h9lspq6uDhcXFxmAJ4Toc1RVJSMjg7Xr1nD42GH0ej0pY8Yxd+5cBg0a5Oh45yTFixQvQgghBhBVVXn//ff5+Ot/o7pa8Qv1wWq1UZ5bgYfemwfvfYgJEyY4OuYPkl2lhRD9gt1uZ8eOHazbsI4T2ccxGo1MTJnE7NmzZVEwIf7L7t27+eSbfxM4zJvQwSFtxwcNj+RQ+hFefPUF4uLi8PHxcWDKriMjEYUQvZLdbufNN9/kr8/8mZ0nt6EEWWl0reXfK9/n4d//hv379zs6ohC9xrr167A7W9sVLnBmtteQ5FjK60vZunWrg9J1PSlehBC90tatW/l69ZeEjg5k7KyRRA2NIHbUIFIuG0OdroalLz5PU1OTo2MK0SscPX4YnxCvTtt0eh0GDx25ebk9G6obSfEihOiV1qxbg85LISgyoN1xjVZDwrg4Csvz2b59u4PSCdG76PUGrBbbWdvtNjs6bf8ZKSLFixCi17FYLJw4dRy/0M7vzxudjWjdNOTm5vZsMCF6qZSx46jMr0K1d5yD01TfjK0eEhMTHZCse0jxIoTodTQaDVqtFqv1HJ8kdf3nk6SjFBcXk5GRwd69e+U2XB82Z84cvJ382L/1EBazpe14U30T+zdnMSRqKCkpKQ5M2LXkL18I0etotVrGjkxi3e5VRMSHddgHp66qHo1ZJ0vOX4Ly8nL+9fa/2LFnOw3N9Wg1Wvy9A7hiwSKuuuoq2TOqj4mMjOTX9/+GF15eSsbyfehNWux2FbVRYUjkMB7+zcMYjZ1vQtsXSfEiuozZbGbv3r1UV1fj5ubG6NGjZbG3PqSsrIyNGzeyc/cOzGYzcTHxzJgxg2HDhjlkE70F8xeQnpHG4V3HiB8zGK3uzMW0obaRrLSjjBw8hpEjR/Z4rv6gpqaGvz7xF44UHiJieBhDQqOxtFooOHGa199/lZqaGn760586Oqa4QElJSbz0z1dIS0sjJycHnU7HsGHDSEpK6leFC8gidaKLbNu2jQ/eepfK3GL0VgWLxo4pxIerfrSYhQsX9rkdZAearKwsnnp2CUU1p/EIMaE36KguqsVoc+bGq2/ihhtucMj/YWpqKq++9QqVjeUYPHTYLHbURoVhMcN55LeP4u/v322vbbFYaG5uxsXFpd/dnvrss894/cNXGLMgEaNz+4tawYnTVB+t55/PvEhERISDEoqBSBapEz0qIyODV55cSmijG7PDp+Lu5EZTawt7i47y/tI30Wg0LFiwwNExxVk0NTXxj38+R4W9lJQrRrf1cDAK8o4W8OEX7xMTE0NSUlKPZ5s2bRrDhg1j69atFBQUoNfrGTFiBElJSej1+m55zeLiYpYtW0bqtk20mFswuZqYPX0OCxcuxMur86mofYmqqqzbuBavcPcOhQtA6KBgCrJ2s337dileRK8lxYu4JKqq8sXHn+Jbq2dWfHLbp3MXgxMTI0diO2Xnm4+/YMaMGTg5OTk4rehMeno6+aW5jF44/PvC5T8i4sMoy69gzdrVDileAHx9fbnqqqt65LVyc3P5y9//TH5lDoEx/vi5e1BbWc/bX7zFjowd/OnxP+Hr69sjWbqLzWajprYa02BTp+2KRkHvoqW2traHkwlx/mS2kbgkeXl55B/OZlRQXKe3FUaFxFGdX8rBgwcdkE6cj+zsbLQmTaefwgH8w305dPQQdru9h5P1LFVVefOtNzhdl0fywtFED4skINyf2FGDGDt/BEcLD/HBBx84OuYl02q1eHp4UV9d32m7alexNtnx8PDo4WRCnD8pXsQlaWxsxNZqxd3JrdN2N4MLqtVOY2NjDycT50uj0UAna0N850zRovT7cUvZ2dkcOHqAQaOi0Onbd0obnY2EJYSQtnMLlZWVDkp4hqqqHDt2jLfffptnn32Wt956i6ysLM53+KKiKMyeMYfqgjpamswd2guzi3DVuvX6Tfx6mt1up6GhAYvFcu4Hi24nt43EJfH19UXv6kRxfQXuTh1nFpU1VKF1NvT5rvb+LD4+HvsKhab6JlxMLu3aVFWlPK+CWWPm9/vipaioiCZzAz5BQzpt9w32ofjgUUpKShy2uZ3VauXNN99k5YYVtCiNGE0GWhstfL3qS2ZOms0999yDwWA453nmzJnD1m1byVy3n4hhYfiH+p6ZbXT8NNU59Vx/xY2Eh4f3wHfU+9XV1bF69WrWblhDdW01TkYnpkyYymWXXUZISMi5TyC6hRQv4pIEBASQOH40mct2EuUdjEH7/SBKu2pnR8EhQkZGMXToUAemFD8kOTmZweFxHNxymJEzhrfdPrLb7Rzfm42T1ZX58+Y7OGX3MxqNaDVaWlssGJ07FgDmZjM6je68ioPu8tVXX/Hlms+JHB1CYOQQFEU5U2CermDF5mV4eXlx2223nfM8Hh4e/OGxP/DOu++QnrGNgr1FaBQtgb5BXH/rj7nyyiu7/XvpC76bUr7/xF68IzzwDvWguaGZz9d9zPaMdB5/9A8MGjTI0TEHJJkqLS5ZQUEBTzz+Z8zHKxjpNxh/N29qWurZV3Icc7CRh/7wCMOHD3d0TPED8vLyWPL03zlZeAKjtw6dXkdjRTOeRi9+fvtdzJkzx9ERu11jYyM/v+dn2H3MDBoeRUNtI6qq4ubhilan5cC2LIL1Ebzw/AsOmTrd3NzMXffdidm9gdhRMR3aTx3KxVqk8MbLb17Qe19paWnbTK64uDgZWP9f3njjDT5d/REjZw3HxeTcdtxmtbFn/X4SghN55qlnz9x6FZdMpkqLH2S321FVtctW0AwLC+Oxv/2Jzz/7jN2bd2KtOInWqGfovFFcc921xMXFdcnriO4TERHBc0//g23btpG5dw8trWYGTx3M1KlTCQ0NdXS8HuHq6srl867gqaVPsi/tAKpGBQVcnF1wdXPFVXHnmvuucdiaL9nZ2ZRWlpAwKrbT9tCYYDKPHuTYsWMXNDMsICCAgICAcz9wgKmvr2fj1vUExQa0K1wAtDotg0dHczT9CEeOHJGVnh1AipcB5OjRo6xZvZq96bux22xEDxnMzLmzmTRp0iWPZwgNDeVXDzxA9W3VVFdXYzKZ8PPz66Lkoie4uroyZ86cAdHL0hlVVamtrcWODYuxFaOXDq1OoaasirJj5cydtIBp06YBcPr0adLS0qisrMTV1ZXk5GTi4+O7dVyQzWY786FD1/mHDq1Oi11VsdnOvh+UOH+lpaXUN9UTGxLVabunnwdm2wmKioqkeHEAKV4GiC1btvDGcy/hVGElwSscvVZPztZsXt6xn2PXH+WOn/60S954vby8+sVCXmLgycrKYtm6b0iaPwqvQHdKy8qwWCwYRxvRWnUU7Stk9+7d5Obm8slX/6autRa9qxZri43Pln3C1HHTue/e+7rttkt4eDgeLh6U5pcRER/Wob00vwx3F3dZWK6LGAyGM2OgmlvBs2O7zWIDOw4dAzWQSfEyAFRUVPCvl94gvMHE9ISxbUXKsMBBHC/PY90nyxk2fDjjxo1zcFIhHGfLli20alsIigpAURQiIyPbtRedKOWt/3uLwvJ8fOM8GTpkDBqNpm3A7Jq0lbi6unL3L+7ulnxeXl5MmzSDL9Z9im+wN67u38/ua25sIfdAAXPHLyQoKKhbXn+gCQ0NJSZiMCePH8UnyLtDe8HJ03i7+5GYmOiAdEJGGQ0AaWlpmItqmBw1qkPvSqxfBH5mZzasXe+gdEL0DqeLT+Pm43rWHkiTrxsZmbsw+GuJSohoG6SpKAr+oX6EDQ9iw+b1lJeXd1vGm2++maQh4ziw7ggHtmaRk5XHgW1Z7F19iMSoUdzxkzu67bUHGo1Gw1WLrsZeo3As8yTWVitwZhG/09lFlBwpZ/7M+dLT7CDS8zIA5Ofn44cJvbbz/+5wj0COHT3Rw6mE6F3cTSbM+R0XbftOTWUNTc1NhA3ufG2P4OggCg7s5dChQ0yfPr17Mrq784fH/sDmzZvZkLqBstISorwHM+OOmUyfPh03t84Xi3SkpqYmMjIyKCsrw8XFhbFjx/aZAcKTJk2iru4e3v3oHXYt34feRYOl2YabzsQ1867j5ptvdnTEAUuKlwFAp9PRqlrP2t5qtWAwyn1bMbCNHzeB9dvW0VDbiJtH+wUXmxtbaCoz4+nlid7Q+YaQGq0GFLXbV2B1cXFh/vz5zJ/f+9fe2bZtG2/863WKKk6jMSrYLXZM73uwYNZCbrvttl6/W7eiKCxcuJAJEyaQnp5ORUUFbm5uJCcnExbWcdyR6DndetuoqqqKm266CXd3dzw9PbnjjjtoaGj4wedMmzYNRVHafd11113dGbPfGzFiBFWGFqqb6zq02ex2jtcXMnaSjHcRA1tKSgqjh45h/6YsSgvKUe3qf8azVLJv/UFGxI4kKiKKsoLObwtVlVTjpHORlWn/Y//+/Tz34jPU6ioZvXAYKZePJmXRaNxjnPl42Ue89957jo543ry8vFi4cCG33nor11xzjRQuvUC3Fi833XQTWVlZrFu3juXLl7NlyxZ+/vOfn/N5P/vZzyguLm77evrpp7szZr+XlJRExIhYVp5Mp7Lp+51imy0trDmejjbExOzZsx2YUAjHMxqNPPLbR5k+eibFeyvY/tVutn+1m8LdpYwfNpk/Pv4n5s9eQOmJcupr2n8Is5gtnMzMYXjccFnXiP/sNv/VFzTrGxg+cWjbqs0arYbwuFCCE/xZuX4FFRUVDk4q+qpu67M7cuQIq1evJiMjg7FjxwLw4osvsmDBAp599lmCg4PP+lwXFxcCAwO7K9qAYzAYeOiR3/DcU8/yxf5teLYa0KKhUmnCI8KPXz70S/m0KARnPmH//nePkZuby9GjRwGIiYkhJiYGRVFYvHgxJ0+dZMeGdNwCnfH09aCpoZmqvGqiAwdz91339Ps9oM5HZWUlB48cIGx4SKc/j7DBIew8nElmZuaAXVdIXJpuK162b9+Op6dnW+ECMGvWLDQaDTt37uSqq64663M//PBDPvjgAwIDA7n88st5/PHHcXFx6fSxZrMZs/n7QXZ1dR1vjQgIDAxkyTNPkpmZyaFDh7DZbERERDBhwoReOchPCEdRFIWoqCiiojouTubq6spjv3uMDRs2sH7jOopyinA3+XDVddcxe/Zs2YD0P1paWrDarDi5dL7mjVanRaPTtHvvFuJCdFvxUlJSgr+/f/sX0+nw9vampKTkrM/70Y9+REREBMHBwRw4cICHH36YY8eO8eWXX3b6+CVLlvDnP/+5S7P3VzqdjuTkZJKTkx0dRYg+y8nJiYULF7Jw4UJUVb2onhZVVSkoKKC8vBwXFxdiY2O7bLuO3sDb2xt3N3cqS6rw9PPo0N5Q24hi1fSZWUei97ng4uWRRx7hqaee+sHHHDly5KID/feYmOHDhxMUFMTMmTPJzs7udPfORx99lAcffLDt33V1dTKYSgjRIy6mcDl16hTvvv8u+7IyaTY3o9PqiQ6N5rprr2fKlCndkLLnubi4MHPKLD5c9h7B0UE4u37fA6PaVY7vOUlkcBSjRo1yYErRl11w8fLQQw+dc8v16OhoAgMDKSsra3fcarVSVVV1QeNZUlJSADh58mSnxYvRaMRoNJ73+YQQwlHy8vL409/+SEnzaaJHReDl50lTQzO5h3N49sWnsVgszJw509Exu8TVV1/NocMHyVyzF/9Bvnj5e9LS0Mzp48V46nz5xf13o9d3Pu1ciHO54OLFz8/vvDbcGz9+PDU1NezZs4cxY8YAsHHjRux2e1tBcj727dsHIEteCyH6vE8/+5TihkKS549u22DRw6hnxORhHNpxhPf//R4TJ07stv2RepKnpyd/fPxPfPPNN6xPXUdRfhk6rZ5ZY+ez6IpFxMZ2vju2EOdDUVVV7a6Tz58/n9LSUl577TUsFgu33347Y8eO5aOPPgLO7Mw6c+ZM3nvvPZKTk8nOzuajjz5iwYIF+Pj4cODAAR544AFCQ0PZvHnzeb1mXV0dHh4e1NbW4u7u3l3fmhBCXJDq6mp++os78IhzITSm42zLlsYW9q7K4s8P/5UJEyY4IGH3MZvN1NbW4uzsjMlkcnQc0UtdyPW7W5c3/PDDD7n33nuZOXMmGo2Ga665hhdeeKGt3WKxcOzYMZqamoAzU3rXr1/P0qVLaWxsJCwsjGuuuYbHHnusO2MKIUS3q62txWxtwd2780GqTq5OoIWampqeDdYDjEZjhwkcQlyKbi1evL2923pZOhMZGcl/d/yEhYWddw+LEEL0JSaTCaPOSH11A+7eHXsfzM1mFJsiPcZCnAfZVVoIIXqAj48PyaPHUXD0NHabvUN79sFcAr0DGT16tAPSCdG3SPEihBA9ZPG1i/FzCiJj3V4qiquwWW001DRwMP0wLcUWbrrhx2ddkFMI8b1uHbDrCDJgVwjRmx0/fpy33/0Xh44dorm1Cb1WT1hgONdfewMzZsyQ7QXEgHUh128pXoQQooepqsqpU6eoqKjA2dmZIUOGyJonYsDrNbONhBBCdKQoCoMGDep04c2uZLFYKC0tRaPREBgYiEYjIwVE/yDFixBC9DMWi4Vly5axcu1KyipLAIXI0CguX3A5s2bNkltTnFnx/b83qo2MjGTChAm4uro6Opo4D1K8CCFEP2K1Wln6z6WsTVuFZ7iJ8JQgVLtKfnY2z73yDMXFxfz4xz8e0AVMSUkJTz/7FIdPZqE621A0CtYGO6Efh/Gr+x5g5MiRjo4ozkGKFyGE6Ed27NjB+rS1xE4chE+gV9txnyBvCo4X8sXyzxg/fjyDBw92YErHMZvNPPXMkxwq2M+wmUMwebqdOd7cStaOozz9jyd56olnZIPfXk5ugAohLkp1dTXffvstzz77LP94/h+sXbuWxsZGR8ca8DZs2oDOQ2lXuHwndHAITfYGtm7d6oBkvUNGRgZZ2YdInDq0rXABMDobGDllGGWNpaxbt86BCcX5kJ4XIcQF2717N0tfep6SmiKMXnpUu8qqzcv57MtoHv71I8TExDg64oBVeLoAD7/OZ2ooioKLtzNFJUU9nKr32L9/P4qrHVf3jmNbNFoNvhFepO/axk9+8hMHpBPnS4oXIcQFKSws5Nl/PkOTsY7ky0ehM5x5GzE3t7J/8yGeevZJ/vHM87IBn4O4mzyoaCg5a7u5sRWT28D9v2m1tLb9znZGb9DTWm3uwUTiYshtIyHEBdmwYQMVjWUkTk5odxEwOhsYOW0YOSWn2LZt23mfz2azcejQIbZu3cq+ffuwWCzdEXvAmDxxMvXFjZibWzu01VXVozYqpCSnOCBZ7xARHkFLtQWb1dZpe8XpSmJj4no4lbhQ0vMihLggGXt24RXq0emaIQYnA0YvHfsP7GfevHnnPNeePXt45723yS44SYulBYPOQHhgBD/+0S1Mnjy5O+L3e9OnT2fNhjXs3XCAwWMH4R3gCSqUFpZzak8uKcMnMmbMGEfHdJjJkyfzyZcfc2T3cRJS4tvNuio6VYLSqGP2rDkOTCjOhxQvQogLYrXb0Bq0Z23XarVYrefuPdm7dy9/f+YJzC5NxE6NwuTlRmNdE9kHc3j2xadRVZUpU6Z0ZfQBwcPDg8cffZwXX36BgzsPcNyejWpXcTW4MTN5Lvfcfc+AXs3Xz8+Pu392D/98dSm7VmbiH+WLTqelvKASWx1cs2AxycnJjo4pzkGKl/9v7+6joqoTPoB/Z3gZZngZQJgZJuRdBVPxpUBNN0vkZa20XI+1ZdrpVEfJHnzZnmxLskejdGv3sacn9+zTqvvs5rads/bC01rIKr4BCoGKKSJBYLyjw/AibzO/54+O0xKooMxc7vD9nDPnwL2Xme+9MzBf7tz7u0Q0JBMnTETmsU8gpop+Y4VYei3oaLqK8Uk33u0uhMCHf/0QHe6tuGveVNv9eGk9ETtnEk4dKcGHH/0Fs2fPhqsr/0wNldFoxBtbMnD+/Hl8++23UCqViImJQVhYmNTRRoR7770Xer0e+/fvR15hHrqsPZgWFYekBUm45557RvUYODfS2NiIY8eOobGxERqNBnFxcYiKipJke/GvAhENScL8BGQfycK3JZWInBxumy6EwDcnSjHGS4d77733hvdRWVmJ8+XnEBEXOuAfvsjJYfjmnxdx9uxZxMbGDvs6jAYKhQIxMTGIiYmROsqIFB0djejoaFitVlitVpbkGxBCIDMzE3/auwdXrjbDzdMVvZ29+Ou+vZg3+z6krk6Fh4eHQzPx2SKiIZk4cSKe+uXT+ONfPkB+dSHGBPvDarGiufoytG7+eCH136DT6W54H62trejp7YaX78BDsXtqPdHd2w2z2WyPVSCyUSqVvObTTRw9ehS/3/M+vELUiJ88HS6uLhBCoKG6Ef84nAm1Wo3Vq1Y7NBPLCxEN2eLFixEVFYUDBw7g9Den4KJ0wX0JiViwYAEiIiJu+vN+fn5QuavQ0myGLjiw33xzcys83Dzg7+9vj/hENEhCCHz6+SdQaK0YP+3HC4kqFAroQ3To7upBdk4WljyyBHq93mG5WF6I6JZMmjQJkyZNuqWfDQ4OxpSYqThx5jgCgsZA6fLjf75CCFw8VYGo0An8yINIYrW1tSirvICxM+4YcL4x3IDqU1/j9OnTWLBggcNycV8ZETmcQqHA8seXY4yrDie/KkLDpUZ0tneiqfYyCg4UQ93thZXLV3J3PpHEenp6YLFa4eY+8BlqLq4uULooHD4+E/e8EJEkxo8fj9de2Yw/f/hnnCoqRmX393B3c0fsuOl4bNkveaAuDVl3dzcKCgpQWloKIQSioqIQHx8PlUoldTTZ0ul08PP2Q+P3TdAG9L/shKmxBa5wR3BwsENzsbwQkWTGjx+PzembcenSJVy5cgU+Pj4IDR34DCT6QW9vL4qKinDs+DGYzCboA/SYO3cu7rzzzlG93b777jtsf3sbyqouAGorFArA8ikQeUcU1q/dMGqvon271Go1EuYtwP/u2wVDqA5e/3Ixy96eXlwoLMfEiMm3/BHyrVIIIYRDH9HOzGYztFotWlpa4OMz8MXJiIjkqKOjA2+/8xscKzwKaKxQebmjs6ULbj0qJM5LxupVq0flKb+tra3Y8O/rUXmlHJPmRNsuutjRehUlx87B6DkWv3nzbR4Afova29vxRsZWnCjJg7fRE346LTraOtFY0YxgvxC8unETIiMjb35HNzGU9+/R9yonIpKpXbt3IafgIGLmjoOfzhcAbKesfp79CYxBRvziF7+QNqQEjh49ivLvL2LGwilQqd1t0zXeaky/fwpOZBYhJycHDz/8sIQp5cvT0xO/fvkVZGVl4csDX6LxQgPUHmo8/sCTSE5ORlBQkMMzsbwQEclAU1MTDh79J8ZODrIVF+DHU1ZNjS34vy8z8cADDzh8wDCpnSw8CXWAe5/ico2ruyu89BrkncxjebkNGo0GixYtwkMPPYTe3l64urpK+jElD+UnIpKB0tJSmFovwxgx8H+5xsgg1DfXobKy0rHBRoCurq4+Vzj/KXeVG7q6Oh2YyHkpFAq4ublJfnwVywsRkQxYrVYIBa77pqFUKiGEgNVqdXAy6UWGR6KtsR0DHcIphICpzozI8CgJkpG98GMjIqJbUFtbiyNHjqCisgIeHh6YPm064uLi7HZabmRkJLzVPqivakBQuKHf/LrKevj7jEFISIhdHn8kmzdvHj7/8jOUn6lE1JTwPvOqSi/Bw6rB/PvnS5SO7IHlhYhoiLKysvD7XTthunoZHn7usPRYkJn9GSZGTsLGFzfCYOhfLm6X0WjErBmz8FX+fmgDfKDx1tjmtTSZUX+xCU8sWgEvL68b3MvIJoRAWVkZSkpKYLFYEBoaiunTp9/0DKqIiAis/OVT+ODPf8DJ2iLowwKhUAD13zVC0e6G5Uuf5GjNToblhYhoCE6fPo33/vAu3AxKzJw+w3Zpg47WDpw6eBrb396GtzK22eWU5WefeQ5Nzc0o+rIQmkAVPLUatF5uQ/cVC342Yx6WLVs27I/pKCaTCTv+awdOFuejU1yF0kUBRbcLIkPGIW1N2k3HaVm0aBHGjh2Lf+z/B06dLQaEQHzMHCQnJiMuLk7yYzRoeHGcFyKiIXhr21s4WPwV7k6e3u8N0Xy5FecPlWPLr9/AXXfdZZfH7+jowJEjR5Bz5BAum65Ar9Nj/rz5mDVrFtzcBh7CfaSzWCxI35yOvJKjGBcXiQCjPxQKBdpMbfgm/wIMHnfgra3bBn3hv97eXgAYlWPeyBnHeSEisoPe3l4UniqAPlw34H/yPv7esKp6cfbsWbuVF41Gg6SkJCQlJdnl/qVQVFSEgjMnMPFnE+AboLVN9/L1so3TkpWVhSeeeGJQ98fS4vx4thER0SBZrVYIIeDi6nLdZZRK5ag84+d2FBUVwarq7VNcrnF1c4V/iC9yjuVIkIxGKpYXIqJBcnNzw7iI8Wiobhpwfmd7JyztAmFhYY4NJnNXr16Fq8f1C6GHRoWOjnYHJqKRjuWFiGiQFAoFkhOTYTEJ1Hxb12eepdeCs7nnEWIIw8yZMyVKKE8GgwHdLb2wWgbeY3W5zoSwkPAB59HoxPJCRDQEc+fOxZKfL0XNqQYUfFWE8jMVOHfyAvI//xr+Sh3WvbAOarVa6piyMnfuXPh6+OHi6Yp+85prL6PnigUJ9ydIkIxGKp5tREQ0REIIFBQU4ED2AZR9ewEqlQpzZs7F/fffL8lF6pxBZmYmfr97J6xe3TBGBsHF1QUN1Y1oq+nAgjnJWJu2lgfiOrmhvH+zvBAR0YiQn5+PzC8ycba0BFZhhVF3B1ISU5CSksLiMgrwVGkiIpKd+Ph4xMXFoaWlBRaLBb6+vnBxuf6BvDR6sbwQEdGIoVAo4OvrK3UMGuF4wC4RERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyYrdysvWrVsxe/ZsaDSaQV/eXAiBTZs2ISgoCGq1GgkJCSgrK7NXRCIiIpIhu5WX7u5uLF26FKtWrRr0z2zbtg07duzAzp07kZ+fD09PTyQlJaGzs9NeMYmIiEhmFEIIYc8H2L17N9LS0mAymW64nBACRqMR69evx4YNGwAALS0t0Ov12L17Nx599NFBPZ7ZbIZWq0VLSwt8fHxuNz4RERE5wFDev0fMMS8VFRWoq6tDQkKCbZpWq0V8fDxyc3Ov+3NdXV0wm819bkRE1F9NTQ3y8vJQUFCA9vZ2qeMQ3TJXqQNcU1dXBwDQ6/V9puv1etu8gWRkZGDz5s12zUZEJGcNDQ34464PkPd1HtqutkKpVELnq8fCpAewdOlSuLqOmLcCokEZ0p6Xl156CQqF4oa38+fP2yvrgDZu3IiWlhbbrbq62qGPT0Q0kplMJvzH1tdx4OSXCJzki/iHp2Fqyp2wBHThjx/9Dz744APY+egBomE3pLq9fv16rFy58obLRERE3FIQg8EAAKivr0dQUJBten19PaZOnXrdn1OpVFCpVLf0mEREzi4rKwvnvjuLGT+PhUr9w99KF1cXjIuNgMarFl9kZyIxMRHh4eESJyUavCGVl8DAQAQGBtolSHh4OAwGA7Kzs21lxWw2Iz8/f0hnLBER0Y+y/vkV/EJ8bMXlXxnDDagq+R65ubksLyQrdjtgt6qqCsXFxaiqqoLFYkFxcTGKi4vR1tZmWyY6Ohr79u0DACgUCqSlpWHLli347LPPcObMGTz55JMwGo1YvHixvWISETktq9UKk9kEL1+vAecrlAq4qpU80YFkx25HaW3atAl79uyxfT9t2jQAwMGDBzFv3jwAQGlpKVpaWmzLvPjii2hvb8ezzz4Lk8mEOXPmYP/+/fDw8LBXTCIip6VUKjHGbwwaLtcMOF9YBXo6LIMeSJRopLD7OC+OxnFeiIh+9Pe//x3//ad3MS15MtSeff8RrL5wCVdK2/Cf299FaGioRAmJfiDLcV6IiGj4LViwAFOipqIo6wyqy75H19VutJvbcb7gAr4/04AHkxaxuJDscM8LEZGTu3LlCvbs2YMjeYfR2mmGUqFEUIARixYuxkMPPQSlkv/HkvSG8v7N8kJENEo0NTWhuroabm5uGDduHIeZoBFlKO/fHFaRiGiUCAgIQEBAgNQxiG4b9xUSERGRrLC8EBERkaywvBAREZGssLwQERGRrLC8EBERkaywvBAREZGssLwQERGRrLC8EBERkaywvBAREZGsON0Iu9eudmA2myVOQkRERIN17X17MFctcrry0traCgAYO3asxEmIiIhoqFpbW6HVam+4jNNdmNFqtaKmpgbe3t5QKBRSx3E4s9mMsWPHorq6elRemHK0rz/AbTDa1x/gNuD6y3P9hRBobW2F0Wi86ZXOnW7Pi1KpRHBwsNQxJOfj4yOrF+1wG+3rD3AbjPb1B7gNuP7yW/+b7XG5hgfsEhERkaywvBAREZGssLw4GZVKhfT0dKhUKqmjSGK0rz/AbTDa1x/gNuD6O//6O90Bu0REROTcuOeFiIiIZIXlhYiIiGSF5YWIiIhkheWFiIiIZIXlxYls3boVs2fPhkajga+v74DLVFVVYeHChdBoNNDpdPjVr36F3t5exwZ1oLCwMCgUij63N998U+pYdvPee+8hLCwMHh4eiI+Px4kTJ6SO5DCvvfZav+c6Ojpa6lh2c/jwYTz44IMwGo1QKBT45JNP+swXQmDTpk0ICgqCWq1GQkICysrKpAlrJzfbBitXruz3mkhOTpYmrB1kZGTg7rvvhre3N3Q6HRYvXozS0tI+y3R2diI1NRVjxoyBl5cXlixZgvr6eokSDx+WFyfS3d2NpUuXYtWqVQPOt1gsWLhwIbq7u3H8+HHs2bMHu3fvxqZNmxyc1LFef/111NbW2m5r1qyROpJdfPTRR1i3bh3S09Px9ddfIzY2FklJSWhoaJA6msPceeedfZ7ro0ePSh3Jbtrb2xEbG4v33ntvwPnbtm3Djh07sHPnTuTn58PT0xNJSUno7Ox0cFL7udk2AIDk5OQ+r4m9e/c6MKF95eTkIDU1FXl5ecjKykJPTw8SExPR3t5uW2bt2rX4/PPP8fHHHyMnJwc1NTV45JFHJEw9TAQ5nV27dgmtVttv+hdffCGUSqWoq6uzTXv//feFj4+P6OrqcmBCxwkNDRW//e1vpY7hEHFxcSI1NdX2vcViEUajUWRkZEiYynHS09NFbGys1DEkAUDs27fP9r3VahUGg0Fs377dNs1kMgmVSiX27t0rQUL7++k2EEKIFStWiEWLFkmSRwoNDQ0CgMjJyRFC/PCcu7m5iY8//ti2zLlz5wQAkZubK1XMYcE9L6NIbm4uJk+eDL1eb5uWlJQEs9mMs2fPSpjMvt58802MGTMG06ZNw/bt253yY7Lu7m4UFhYiISHBNk2pVCIhIQG5ubkSJnOssrIyGI1GRERE4PHHH0dVVZXUkSRRUVGBurq6Pq8HrVaL+Pj4UfV6AIBDhw5Bp9NhwoQJWLVqFZqbm6WOZDctLS0AAH9/fwBAYWEhenp6+rwOoqOjERISIvvXgdNdmJGur66urk9xAWD7vq6uTopIdvfCCy9g+vTp8Pf3x/Hjx7Fx40bU1tbinXfekTrasGpqaoLFYhnw+T1//rxEqRwrPj4eu3fvxoQJE1BbW4vNmzdj7ty5KCkpgbe3t9TxHOra7/NArwdn/V0fSHJyMh555BGEh4ejvLwcL7/8MlJSUpCbmwsXFxep4w0rq9WKtLQ03HPPPZg0aRKAH14H7u7u/Y6BdIbXAcvLCPfSSy/hrbfeuuEy586dc+oDE39qKNtk3bp1tmlTpkyBu7s7nnvuOWRkZDj10NmjUUpKiu3rKVOmID4+HqGhofjb3/6Gp59+WsJkJJVHH33U9vXkyZMxZcoUREZG4tChQ5g/f76EyYZfamoqSkpKnPo4r3/F8jLCrV+/HitXrrzhMhEREYO6L4PB0O/sk2tHnRsMhlvKJ4Xb2Sbx8fHo7e1FZWUlJkyYYId00ggICICLi0u/swjq6+tl9dwOJ19fX4wfPx4XL16UOorDXXvO6+vrERQUZJteX1+PqVOnSpRKehEREQgICMDFixedqrw8//zzyMzMxOHDhxEcHGybbjAY0N3dDZPJ1GfvizP8XWB5GeECAwMRGBg4LPc1a9YsbN26FQ0NDdDpdACArKws+Pj4YOLEicPyGI5wO9ukuLgYSqXStv7Owt3dHTNmzEB2djYWL14M4IfdyNnZ2Xj++eelDSeRtrY2lJeXY/ny5VJHcbjw8HAYDAZkZ2fbyorZbEZ+fv51z0YcDS5duoTm5uY+hU7OhBBYs2YN9u3bh0OHDiE8PLzP/BkzZsDNzQ3Z2dlYsmQJAKC0tBRVVVWYNWuWFJGHDcuLE6mqqsLly5dRVVUFi8WC4uJiAEBUVBS8vLyQmJiIiRMnYvny5di2bRvq6urwyiuvIDU11Sk/QsnNzUV+fj7uu+8+eHt7Izc3F2vXrsUTTzwBPz8/qeMNu3Xr1mHFihW46667EBcXh9/97ndob2/HU089JXU0h9iwYQMefPBBhIaGoqamBunp6XBxccFjjz0mdTS7aGtr67NXqaKiAsXFxfD390dISAjS0tKwZcsWjBs3DuHh4Xj11VdhNBpt5dYZ3Ggb+Pv7Y/PmzViyZAkMBgPKy8vx4osvIioqCklJSRKmHj6pqan48MMP8emnn8Lb29t2HItWq4VarYZWq8XTTz+NdevWwd/fHz4+PlizZg1mzZqFmTNnSpz+Nkl9uhMNnxUrVggA/W4HDx60LVNZWSlSUlKEWq0WAQEBYv369aKnp0e60HZUWFgo4uPjhVarFR4eHiImJka88cYborOzU+podvPuu++KkJAQ4e7uLuLi4kReXp7UkRxm2bJlIigoSLi7u4s77rhDLFu2TFy8eFHqWHZz8ODBAX/fV6xYIYT44XTpV199Vej1eqFSqcT8+fNFaWmptKGH2Y22QUdHh0hMTBSBgYHCzc1NhIaGimeeeabPUBFyN9C6AxC7du2yLXP16lWxevVq4efnJzQajXj44YdFbW2tdKGHiUIIIRzaloiIiIhuA8d5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWfl/lnY1PUvA8c8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChXUlEQVR4nOz9d3wl553f+X6q6uSEA+Ag59BAZ3RusptskmISJVGBI4maZEnj0dgeyeuxvLZH3l3dneudle3ZOx57bI/s6/FIsuKMMiVmskk2O5GdM9BAI+d4cq7aP8CDRjjIJwF43q8XX1KjgKoHwEGdbz3h90iapmkIgiAIgiBkgZztBgiCIAiCsHWJICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtbost2ApaiqysDAAHa7HUmSst0cQRAEQRBWQNM0vF4v5eXlyPLSfR45HUQGBgaoqqrKdjMEQRAEQViD3t5eKisrl/ycnA4idrsdgJ8c+9+x6kxZbo0gCIKQLsW7q7BuK852MzLKvqMcAH2hPcstST2vz0v9Yy0z7+NLyekgkhiOsepMIogIgiBsYjajBZvZmu1mZIxj13Qvgd61+ULIbCuZViEmqwqCIAhCBm2VELJSIogIgiAIQoaJEHKfCCKCIAiCIGSNCCKCIAiCIGSNCCKCIAhCVpW01GS7CRmTmB8i3CeCiCAIgpA1iRBiay7JckvST0xSTS6nl+8KgiAIm9dWCSGze0FECFlIBBFBEAQho7ZKAAHRC7ISYmhGEARByDgRQoQE0SMiCIIgCCkkAsjqiB4RQRAEQUgREUJWTwQRQRAEQUgBEULWRgQRQRAEQUgREUJWTwQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEIWMS+8xsNrM3thNWRwQRQRAEISM262Z3opDZ+oi9ZgRBEIS0mt0LsplCiAggqSGCiCAIgpA2ohdEWI4YmhEEQRDSarOFkAQRQlJDBBFBEARBELJGDM0IgrDpaZpGRI0BYFT0WW6NIAiziSAiCMKmpWka19ydXBhvY9g/AUC5rYjDhU3sdFQjSVKWWygIgggigiBsSpqm8erQRd4bukO55uABfR0qGp1TI/zMc4rR8r08Wrw3280UNhgxSTX1RBARBGFT6vAP8v7wHY4qdTQZS2c+3mgo4Uaoj9ODN9hmK6fC4spiK4WNRISQ9BCTVQVB2JSuTHSQFzfOCSEJu4wVmGIKl6c6stAyYSMSISR9RI+IIAib0khoijIlP+kxSZIokx2MBqcy2yhhQ3LsqhQBJI1Ej4ggCJuSQdYR1qKLHg9pUfSyeBYThGwTQUQQhE2pKa+KbnWcsLowjATUMAOamyaH2KhMELJNBBFBEDal/c56zBYLrwdu4o4HZj4+Gffzmv8meVYHe5y12WugIAiAmCMiCMImZddbeL72EX7S/S6/DFwhTzOhoeGRwxQ6nHy6+mHMijHbzRRyXGKSqpA+IogIgrBplZsL+UdNH6PV20dvYAxJghpLMY22cnSyku3mCTlsdgARE1XTSwQRQRA2NZ2ssCuvhl15Nct/siAglupmmpgjIgiCIAgfECEk80QQEQRBEIRZRAjJLBFEBEEQBEHIGhFEBEEQBEHIGhFEBEEQBAGxVDdbRBARBEEQtjwxSTV7RBARBEEQtjQRQrJL1BERBEEQtiRRtCw3pLVH5Bvf+AaHDx/GbrdTXFzMJz/5SVpbW9N5SUEQBCFHlLTkfhE5vcsuQkiWpTWIvP3223z5y1/m3LlzvPbaa0SjUZ566in8fn86LysIgiBkWSKE2JpLstwSIdeldWjm5ZdfnvPvb33rWxQXF3Px4kVOnDiRzksLgiBkTUyN0+EfZDzswSDraLRV4DRYs92sjBEhRFiNjM4RcbvdABQUFGTysoIgCBnT5R/mV33nmAx4MKo6IsRQ9Dr2uOr5cOmhTb3ZngggwlpkLIioqsof/dEfcfz4cXbv3p30c8LhMOFweObfHo8nU80TBEFYt8HgBH/b+RbOsJGPmVvIV6zEtDjtkWEuDt4lpsb5ZOWxbDczrUQIEVYrY8t3v/zlL3Pjxg1++MMfLvo53/jGN8jLy5v5r6qqKlPNEwRBWLczY7fQhyUet+4iX5keitFJCtuN5Rw11HFzvIuR0FR2GykIOSYjQeQrX/kKv/rVrzh58iSVlYtXrvva176G2+2e+a+3tzcTzRMEQVi3iBqjbaqX7fpSFGnhrbVeX4wuBne84r4mCLOldWhG0zT+8T/+x/zsZz/jrbfeoq6ubsnPNxqNGI3GdDZJEAQhLcLxKJqmYZVNSY/LkowZPaF4NMMtE4TcltYg8uUvf5nvf//7/OIXv8ButzM0NARAXl4eZrM5nZcWBEHIKLNiwKgzMhLxUK0vXHA8pEbxEsap35yrZzZCzRAhN6U1iPzVX/0VAI8++uicj//N3/wNX/jCF9J5aUEQ1ikQC+GOBjDIOgoMdiRJynaTcppOVmgprOdC3y2a46XYlfsPW5qmcTXUjc6oZ1fe5nrDFitlhPVK+9CMIAgbiyca4K2Ra9ya6CIWjyFJMmW2Qo4X76LZLnYnXcqxwh10eAZ40XONHboyynX5BLUId8KDjOh8PF1+BKsu+dDNRiRCiJAKYq8ZQRBmeKMB/ue91wl4/ewxlFOqdxLQwtyeGuDHvnd4tuZB9jqXnuu1lVl0Jn6n7nHeGrnGzYlOrkX7kSSJkrwCnit+mB2O6mw3MWU2egiZvc+MkF0iiAiCMOOd0Rv4vX4+Zm3BIk9PHC/ERqWugDPBu7zaf4FmeyVGRZ/lluYuq87ER8uP8HjJPqYiPvSbeGhro4cQscdMbshYHRFBEHJbOB7l5kQX2/WlMyEkQZIk9plqCIZD3Pb0ZKmFG4tJMVBqLqDQ6NiUIWSjEiEk94geEUEQAPDFgkTjUYp1jqTHrbIRq2bAHQ1kuGWCsH4igOQu0SMiCAIw/QQvSRI+NZT0eEyLEyKKURHPL8LGJEJIbhJBRBAEYHpuQ11eObcjg6hJVrzdjQyBXqHZLrZeEAQhdUQQEQRhxvGiXfgNMd7032Qq7gcgosW4EerjYqyb/UWN5BtsWW6lIAibiehjFYQscEf9DIemkCWJKnNRzqxCqbYU8em6E7zY9x4vBK5i0BSixFEMOg4X7+Txkn3ZbqIgCJuMCCKCkEHeaJBXhy7SNtlLLBYDCcxGMwdd2zhRtCfpZmmZ1mgr5w+bnqXDN8hExItR0bPNVo5db8l204QcIcq5C6kkgoggZEgwHub7XW/icXs4aKiiylxITItzNzLE6b5reKNBni0/mhNLPXWyQrNj8YJP4XiUq1P3uD7ZiTcawK63sCe/jhZnfc707gipNzuAbNQaIkLuEUFEEDLk4kQ7455JnrXsm7MPyQFzHXkRC+dGOziY30iFxZXFVi4vEAvx/a6TDHvGqCCfOsXJZDDAa573uDZ5j9+qfQzLJipjLkzb6JVUhdwlgoggZMjVyQ5q5MI5ISShXl/MlXAP193dOR9EXh68yLh7ko+Z95Gn3B+ucccDvOy+zsuDF3mu6ngWWyikmgghQjplf0BaELYIbyRAgZJ8xYkkSeRJZnyx3C4W5o76aZ3sYZ++ek4IAchTLOzTV9E62YM76s9SC4V02aghxLGrEseuSlFDJIeJHhFByBCb3sJUIPkbtKZpeAhRkeNDGoPBCaKxKDXm5L02Nfoizgc7GQxOkKe3Zrh1wmxjYTeXJzvo9g0DUGMrYX9+Ay5jXpZbljmimurGIHpEBCFD9hbU06mO4VfDC451R8cIKFF25dVmvmGrIEkSEhIqatLjcVQkJOQcWP2zld10d/Pf217iUv8drF4Jq1fiUv8d/nvbS9x0d2e7eRkhQsjGIXpEBCFDDuU3cmOyk5c919hvrKFKf3/VzLVYHzuL66lapKchV1SZXRgNBjoiI+wxLaywei8ygtFgoNJcmIXWCTDdE/JCz1kqYw6OWbfNhMKjmsqZ4F1e6DlLSZNz0/aMiACy8YjHFkHIEIvOxG/XfYiKolLOaZ38IHCOHwcvcEcZ4XD5Tj5e8UBOLN1dikVnYm9hA9djffRHJ+cc649Oci3Wx97CBrFqJosuT3YgRVQeNG+b0zMlSzLHzNuQIiqXJzuy2ML0ESFkYxI9IoKQQXl6K5+reZSxsIfh0CSKJFNtKcaiM2a7aSv2eMk+3BE/JyfukBc24pQsTGkB3HKYba4qUX01y3p8w1TJ+UmL48mSTJWcPzNvZDMRIWTjEkFEELLAZXTgMjqy3Yw10cs6PlP9MPcKh7gx1YU3GqRKn88zzlrqraVifoiQUSKAbHwiiAiCsGqyJNNoK6fRVp7tpgjz1NhKuei+TVxTF/SKxDWVXnWSg7YdWWpdaokQsjmIRxdBEIRNZF9+A5pB5kygjbh2f3VTXFM5G7yLZpDZl9+QxRamhgghm4foEREEQdhEXEYHz1Y/yAs9Z/mx/32q5HwAetVJNIPMs9UPbthhQRABZDMSQUQQPjAZ8XFlqoMe3wgSEtW2YvY5G3AaRGGuldI0jaHQJFNRHybZQJWlCJ2sZLtZW86uvBpKmvK5MtlBt28IgAO27ezPbxQhRMg5IogIAnDH08sves6ghWNUSE404Ozkdd4bucMnao7RbF98J1phWn9gjFcGLzDgHUdV48iSjMNs4+GSPezfBEMBG43L6OCJ0v3rPs/sHXezSYSQzUsEEWHLGwt7+EXPGUojVo5bm9BJ00/wMS3OqUArv+g+zZeaPkK+QdwAFzMQHOf7nW9iCSk8ZmyiSOfAp4a4Fezn191niWtxDhU0ZbuZwirkykZ3IoBsfmKyqrDlXZnsgHCchyzNMyEEQCcpPGxpRg3HNm0BqFR5e+Q6hqDE09Y9VOgLMEg6ChQbD1ma2aYV8fbQNcLxaLabKayQCCFCJokgImx5nd4hquWCpAWgdJJClVxA1yYsAJUqnmiATvcAu40Vc4Jcwm5TFYFQkFZvXxZaJ6xWLoSQxI65IELIViCGZgQBDVi8tLoEaFryTd4E8MdCqKpK/iKTeq2yEYOm4I+FMtwyYa2yHUJABJCtRPSICFtepa2IvvgkqqYtOKZqKn3qJFW27HZR5zKrzoQsy0zG/UmP+9UwESmOVew/IyxDhJCtSQQRYUPyRoO0+wa45xtc99yDA/nbiBnhfLB9ThhRNY2zwXbiBokDYtXHohx6C3V55dyM9M8poJVwI9SLxWQWK4+ERYmhmK1NDM0IG0ogFub14cvcmugiGo2CBGaDiQOubZwo2rOmmhUlJifPVB7hpd736Pe/T41SiAZ0x8eJGeCjVQ9s2i3TU+WR4j18z/cGL/uvsc9YQ/EHq2ZuhvvokiZ4uvQIRkWf7WYKOUwEkK1LBBFhwwjHo/yw+y1Gp8Zp0VdSbXYR11Q6IsOc6bvOZMTHc5XHkaTF53ssZl9+A6WmfC5NttPlG0ZCYpetkYMFjZSY8tPw3Wwu5eZCPlf3GK8OXuSktxU1cr+OyEdLHmB/fmO2mygIQo4SQUTYMK67Oxlwj/AxcwtO5f7EyP3mWgqiNk6N36Urv5E6W+mazl9qLuAj5iOpau6WU2Up4vfqn2YwNIE76heVVQVBWBERRIQN4+rEPSpxzgkhCdW6QuzhHq67u9YcRIT1kySJcnMh5ebCbDdFEIQNQkxWFTYMTzRAgWJLekySJPIlC55I8pUbgiAsL1fKuQtbiwgiwoZh05uYigcWPe7Wgtj05gy2aOXC8SiDwQlGQlOoWaxJomkaETWGlmSpsrC15UIhM2FrEkMzwoaxJ7+ON9wX8caD2JW5gWMgOolbDvFMXu26ruGPhQirUayKKSWrPELxCG+NXOP6xD3C0QggUWBx8EDRDvY7G9Y0sXYt3FE/7423cm2ik3AsjFlvoqWgniOFzdh0uRnehMwQAUTINhFEhA1jn7OBq457vOy5zgFDDTX6D1bNREe4Eu2hwVVB/Rrnh/T4Rzg9dpNO9yCapmHQ6dmVX8fDRbuxr7GXJRyP8oOukwxNjbFDV0aVvpCIFuOub4gX/efwVAR4tHjvms4921Bwgr7gGBpQaXZRZi6Yc3w87OF7nW8S9AdoVIpxKhYmwn7e67vJbXcPv1P3OHn65FVRc0WiBydTwW2rECFEyAUiiAgbhkkx8Fu1j/HiwPucd3dx2t8OEhj0BlrKmniy9ABykv1iltPm7eenXaewRnQcMdRglU2MxNxcH7xLl2+I3617HLvesurzXppsZ2BqlI+Y95I/a4Jtmd7J9VAvZ4ZusDuvFpfRsepzA3ijAX7Zf44u9yBSbPqNWtNJVDtK+UTlgzg+aPOLA+8T94X5hPUAJnm6l6cB2KlW8LLnGq8MXuSz1SfW1IZ0GwiO8954K21TfcS1OKWWQg4UNrInr3ZNv2thoVwo5y5sPmqJccWfK4KIsKHY9Raer3mE8bCHwdAEEhLVluI191rE1Dgv9r1HUdTCY9adyB88cZfpnTSqpfzae5W3R6/zsfKjqz73lYl2auSCOSEkYaexgtv+Aa67O3msuGXV557ubXkLt8fNQ8ZGqozTq1T6YhO8N97BD2In+UL9U0xF/fR4hnjI2DgTQhKsspG9hiren+pmstRHviH5ROBsueXp4RfdpzGFZbbrizFIOvrck7zgOUN38QgfKz8iwsgGJiqpbl5qmQk8kRV/vggiwoZUaHRQuMaehNnafP14gz4eM+2bCSEJVtnIDl0Ztya6eKJkPybFsOLzqprKVNhHg1I15+NRLU5nZAS3GsQfDTEQGF9Tu295uhnxjvOseR95yv3emmp9IU7Zwi88l7nu7sKk6InH4lRYkxdlq9QXcC54j7GwO6eCiD8W4lc956iIOnjI1jzzu9luLKcrMsq7I+3UWItpcdZnuaXCWogQsnmpZdN7SkmmlccL8TghbGmTES8mTTfnzXy2Ul0ekVgMd3Tx1TrJyJKMQTHgVe/vOHsvMsIPJs/wtucWbb5+xsMe3hu5w68GzhNT46s6/82pbko1R9J2OxQzFVIet9zd6CQFSZKIaLGk5wlrMZAkdFJuFR277u4kEg5z1NywICDWGooo1RxcGr+bpdYJ6yFCyOaklplQy0xIJt2qQgiIHhFhizPIeiLEiWnxpG/GATWCJEkY5dWvoNlTUMeV/jvs0aoYjXk46b1JhZpHi247kga9TKDTGbk6eBcJiY+Wr7yqazAWwSEvvputXTYxHg1RYy3GZDTSFhlin2lhjYi2yCBWo5lKi2vV3186DYemKMK26M+9SpfPpUAfqqaK4Zk1yPYkVRFCNpe19ILMJv6ChS1tm60CWa9wNzK04JimadyJDFBpLyJvDZNVDxc0obeYeMV/nVP+O+THzTygqyeuxhmMT5FvsrPPUsMhfQ1Xx9qZjHhXfG6n0caY6lv0+GjcR77RjlkxcsDVxI14P23hoZndheOayu1wP63qMEeLt6OXc+uZRJZkIizeSxTRpveykRCraFYr2yFE2FzWG0JABBFhi3MarLS4GrkY7aY1PEBMm37z86thTgfbGNcHOV60a2bZaElLzcx/y8k32PjN2keRbHpuRwYxazruxUYYxYfTbKfOWookSTQYSiCq0urtW3G7W/LrmZSD9EYXzjHpj04wIQdoyZ+eP/Fo8V72lTbxvtbNj/3v85LvKj/xv89l+jhStpMHC3es+LqZ0mArY0oKMhlfWClX1TQ6YiM05VWK5byrJEKIkCrrGYqZL7cegwQhC54qPQBoXBxr56K/GxN6AlIEs8nMsxXHaLSXA3Nv4r7WYUpaahi+2r3kuUvNBTxf8yiDvnFqpBKKFAcOvWVOsTSdpGBETziefB5HMo22Mna4anlntI1tsWLq9EVISHRGR2mND9FcVEuTvQIARZL5WPlRDhc0cdPdjT8exqYzsSevFpcxb5U/rcxoslVQZM/npPs2H7LsmNlfKKLFeC/YQVAf53Bhc5ZbubGUtNSIACKkRCp6QWYTQUTY8nSywkfKj/Cgawet3j5C8ShOvZUdjuqZwDD/SXJ2GAGWDCQOvQWnyUY0plJkWvjG742HCEiRVa1akSWZT1Q8SJHJycWxNtrCIwBYjRYeLtzHcdfOBXMnSkz5lJiSr57JNTpZ4fmaR/jb7nd4wXuVfM2CHplx/ChGPR+vOpZz81oEYStIdQgBEUQEYCLi5cpkB92+YTSg2lbMfmdDSpbHbiT5BjsPzBumWKorO/Gx5XpHjMp0ldbrg3dpVEuxyvcL/WiaxqVQJ1aThe2OqqRfvxidrHCiaDfHCncwGnajoVFkzMu5+R5rlW+w8/cbPkyrt497/iHiWpw9Rid78urWXDdGEIS1SUcASdgcdyxhze54evlFzxm0cIxKOR8JiYtTt7kw2sqzVQ+yK2/r7sa50vH0lQzVnCjeTbdvmF95r7BdV0qpzolfDXMnMoBbH+ETlccxLBEgZs9JmX8NnawsKOu+WehkhV15NVv6dSgI2ZbOEAIiiGxpExEvv+g5Q2nEynFr08zy1bimcibQxgs9ZylpcubsPIJMWOmY+nJDNTadmd+tf5x3Rm5wc7KTG9FBJFmiuqCEZ4p2UbfEHjmLBaLl5qcIgiCs11pCSHfgLL7AwonmixFBZAu7PNkB4TgPWZtRZs0nUCSZ45Ymfux/n0uTHR9M5hSWs9xQjU1n5iPlh3m8ZB/eWBCjrF9yiGGxALKaybKCIAhrsdZekO7A2emvW8WKNrF8dwvr9g1TKefPCSEJsiRTJRfQ7V1YX0NYWiI4LLbE16jocRkdawohK73GSqznawVB2LzWG0JkSeKt9u+v+OtEj8gWlthafcnPYfnP2YzW+ya9nmGU1cxNWe81VrLqRxCErWOtQzEJsiTxetu3V3VNEUS2sBpbCRfdt4lr6oJeEVXT6FUnabE3Zal12ZPKok+rGUZZ63XXe42lvlbTNPqD49z19RNT47iMDnY6aubUQRGElRB7zOS2VPSCADMhxKis/Pcshma2sH35DWgGmbPBu6iaOvNxVdM4G7xL3AD7nQ1ZbGHmpaPy5EqGUdZ73fVcY7GvDcbD/LD7Lb7V9goXem9xq7+DX907y39q/cWqqsAKggghuS0VIeT1tm+vKYSA6BHZ0lxGB89WP8gLPWf5sf8CVXI+MhI98QliRvho1QMUm5zZbmZGzH4TTkf1yZWcc73XXc815n986EoXP+09Te/4II8Yt1FpKkCSJPxqmPeCHfys611+p+EJUVRMWJYIIbltPUMx6+kFmU0EkS1uV14NxU1OLk220+0dQgN22xo5mL9ty4WQTJS/zvVrJIZ5egOjdE4N8KixmUr9/RolVtnII5YdvOC/xOmxm2x3VDEcmkKRZOptpdRaSsT+L8IMx65KEUBy1EoCyOy5H/OlKoSACCICUGTM4+nSg7B4KYtNS2wCllybrx9zXEdFkpLwsiRRKeXz674L3DF248RMjDhnlRtUOkr4jaqHROVTQchhqwkh8iIPFrMnpK4nhECag8g777zDn/3Zn3Hx4kUGBwf52c9+xic/+cl0XlIQViTdQzHJJLqoATw3VzfHYvbXrsdKrxtVY5jQJ+3dCMbCjAXd6OISH3XsxaW3o2kaQzE370608bfa23yh/qmky8IFQciu5ULIcgEEVtYL8ur5d1fcprQGEb/fT0tLC7/3e7/Hc889l85LCcKKZaMXZPY4eXTMi2NX5YpDQarG2Fdz3UKDg4sECKlRTPLcFTKjYTeTMR81xkIKddMb9UmSRJneyWPSDl7y3KDdN0CzPTXhSRCE9VtLL8hSy3CXCiEvnnl7VW1LaxB55plneOaZZ9J5CUFYk2yFkMT/JkIBLN1LkcqJfolzrOS6jz30MG8NXuVC6B7HzU1zeka6Q6OMSD4eMu3Ap4bwa2HMkoE8xYJLZ8cZMtLm7RdBJIeI4nVb22pDyFqHXRIBxGWpJiJFgZsr+rqcmiMSDocJh8Mz//Z4PFlsjSCsnKqqdAz3MOFzYzaaaC6ro2hfPZA8RCQ+tlgvRTpXGizXK2NrLsEG/PbYx/nRhZf59dhVmvSlmGQ9/dEJTsc7cOjM9EcnuBS4h6ZpSJJEkT6Pw+Z6jOiJqbGUt1tYGzEPamtb7VDMWiefzg4hq5VTQeQb3/gGf/Inf5LtZgjCopLN1bjV2cYPXvgJvV09xEIRFL1CfomLZyPP8PQyPYLze0fmH0uXlQwRnXjsBHaDhbfvXeJC6y1QwWa2YMeO2+fFpYY4KteRL1vwaEHuhIZ4MXqFuE5ju7ExbW0XViYb86CE3LGeoZjFQshSQy5rCSAJORVEvva1r/HVr3515t8ej4eqqqostkgQps0OCrMDQltnB3/5vf+ObTTOx0oPU2ItwBsJcHm4je/+5EdgM/DhE08see5sLW9cyVDN/uOH2OaqIrj/wwxc68SiGPmz2z9G8kR4SN+AXZleHZOHmQrZya8j12iXJtjtEEMB2SR6Qba2dAzFrKfHYzk5FUSMRiNGozHbzRA2qbWOky81TPKzl3+JYSTCxxoeQZGnV4k4jFYeqd6P0neVX7zwS04cPobFbFl7w9NspUM1Zr2RYd8E0asR9pqrGYp68MfCWGUTKiqeeJAy2cmkEsUd81NgzE7AGgt7uOPpJRgP49Bb2emoxqYzMRSaZCQ8XfOk1lqCTbc5lxiLELI1JMLGYlI5FJPOEAI5FkQEIV3WenNeKoSMToxx+/pNjrkaZ0LIbPtLmrnde5Irt69z7MDRNbQ6c1YyVGNrLqH1dDd6q5EWQx2BaJCxkBtffHoul81oZr+xnt6oF3fED9ZMfgcQ11ReGbzIlbG7yFENC0a8hHhZ9x46nQ4tGkeNqyCBQW+gxdXAkyUH0MlKZhuaJmIoZuvI1L4ws4di0hVCIM1BxOfz0d7ePvPvzs5Orly5QkFBAdXV6fumBGG2tYSQxYZiZvP6fcQjMQpsjqTHrXoTek3G4/OuorXZs5KhGldTJfI7MnGHQq2xiuJxJzFNRQYUWcEbDyLFJMy6zPdsvjl8hUtDdzisq6XRWooiyfjjIV6ZvMrteD8P23bwkLWZqBbjbmSYiwN3CMTCPFd5fMNXgxW9IFtHqvaFgez2gsyW1iBy4cIFHnvssZl/J+Z/fP7zn+db3/pWOi8tCKu+OXuDfi7eu8mwe5y8wRIOHT1KU+3im/457XkoRj0jgUkKzXkLjnvCfmKKRkHewuqkuWyp3pFqVxmVjTXc7B6kVHNiKbQTnPDNHL8R7sNqslBvzWyZXn8sxKXRu+xVKmk2ls98fCrsp14rwCTrGIhOAmCU9ew2VWKLGHl3vIO+wmaqLEUZbW8qiRCyNcweikn3vjCZDCGQ5iDy6KOPomlaOi8hCEmt9uZ8/u5VfvT2rwlN+nBKFqKXJV5+4zX2HtrPH/7u72O1LBxnKHDms+/APq68/j6Nzkr0yv0/J03TeG/wFgUVxbTs2J2abyqDEmFkPkmS+Njhx/jrkR9xKnyXFqWSvAIbY2Pj3Aj30SGN8XTpEfRyZkd9O3yDRCIRmi1lcz4+EfbgkMw4ZAtvxFoZj3sp0k33YNXoXVwMd3HL07OhgwiIELJRLTfPY77NMhQzn5gjImw6qw0ht/s7+O5rP6MmnMcDJfsxKnp0Tit9kQlOvv0+35Rlvvr7X0naff/cM5+gra2Nn3a8zcGiZsqshbgjfq4MtzFiC/Gl576E0bC5JmDvq93B7z79G/z8zKv8cuwauKPEZQ1biY0nDYc5lL8t422KqDEkwCDNDYMxLY5BMiNLMjD97wRJkrBLJgKxUMbbKwhrHWJZqaWGYtK1DHetRBARNo21dlG/fvUseX49J8p2z4QNSZKoySvlhLaXt9+/ROeHu6mvql3wtdXllfyL/+Wf8aNf/oR3r94g5r6BbNBRuauGL3/k4xxpObju7ysXHWncw77a7dzqa2cq4MVmslAbdGBaZG7I8NXutLbHZXSAIjEa91L8QY+HJEnoZR2hWBSPGkKWZBzK/dVLqqYxRZB6fe6uaBI2n7UOsazUcr0gmR52WQkRRIRNYa0hxB8KcLe7gyO2mpkQos+3zRyvyyvj3bEbXLt9I2kQAaitqOZf/qN/ysDIEOOT41jMFuoqa5CTrKTZTAw6Pftqdyz7eb7W4bS3pcZSTJE1nwueezxl3YNOml4JU2h00B0ZppVhqi0urPL9oHQ3MkhUp7Enry7t7duKUrVR42aSyV4QmBtCsjXsshIiiAgb3nom60XjcTRVw6Q3zAkgsml6ozdJkjBIOiLR6KLnSNxcSstqKaX2/scT5xpcvOt/tWPEy50vlfQu+4r2pckFkiTx0Yqj/DBykl/6LtNsKMUhmxnW3LwndePWguxWavDGQ0SZXjXTpg5zuGwHJSZntpu/6aRzi4KNYKm/62wOxeRaAEkQQUTYsGYHkHA0wtm2K1zsuIE/EKAov5CjTS3srGhYMLdj9pOaNR7H9VY5g4M+GrkfQBK8YT9eOUx5SfJVIMs94WihGGqZKWl4WMvT0VLnS4e17BacLZUWF7/b8CRnx25xfaoHVVUxGPQ8WnyQQCzEXc8Qt8KDSEjYTBY+VHSQBwu3Z7vZm8pKlr1vZukedklmIw7FzCeCiLAhzQ4hU34v33z5+3R3dVOqObDrzNy9d4sL169weO9+fvfEx9F9sKJlwU64wONPPsGPv/0DdsR9FHN/qW1cVTnVf5WCqhIO7z2woA0rCRKSSTcTHuB+b8Zau2gTnz//fOm0kcJIicnJJyuPESk/QjgexawYZgqWeaNBxsJuFEmm3Fy4aQqZ5QrRC5LeYZdkVjIUk8sBJEEEEWFDcEf9DAYnkCSJA0emQ0FiKOa77/yCoY4+nis6gtNwf3il0zfEW5cuUpZfxGd/+zdnPj7/RvnhR57gVtsdXjh7njpdEZX2IgLRMLfd3ajFJv7x735xzsqX1d5wEp83O5Cs92Y1O+BkKowAGyKMABhkHYZ5S4jtejN2/eYs655tIoQs/3ft8Xg4deoU7555F4/PS2V5JY+eeIQjR46gKKsPxYkQ8ubd78x8bCP1gswmgoiQ0/yxEK8MXqR1sgfJNP3H+tq52zy4+wCfjD3BiHucOx13OZHXPCeEANTZShkITnCu9yafikWxlBYkvYbRYOSrX/oKr+98m5On3uLcSBeKSeHgQw/x9CNPzJmkup4gkeonpfm9LfNlavhG2Lo261BMqut7DA4O8m/+7N/Q1tuKrdSM2Wri3N0uzlx8l8ePP8GX//DL6PX6Jc+RsFQAgY0XQkAEESEHJYZdwrEIPzj7EwZ9QxxzNFFrLkZxmGj19vH26XeZ8LppLq9DC8WocSafqLqjspEXRy8zGvdTQ/IgAtNh5KOPPcVHHn2SYCiIQW9Ap7v/55GNsd+VWKotmRy+EbaezdoLkuohFk3T+Kv/+lfcHb7DgWf2YDTf710dH5zg1Xdfobamlk9+8pPLnmt+CHnj/KUFn7ORAkhC7txRhQ1J1VR6A2P4YkGsOhPVlqIPiketzey5Hxdvvc+Ae5RPVT84p7djf34DroCD12/dxGz84KaR5Fz6fBty3Itk0KGxsgq/kiQt2Ck3G2O/qZDp4Rth6xAhZOXa2tq43nqNpiMNc0IIQGFZASNVY7z65qt89KMfXbRXJBFA3rj7HSTuB5CNGDqS2Vh3ViGntHr7eGPwMhMBN2pcRZZl8i0OHivbx07H6v5Aki3Bfa/1KhU4Fwy5AFRZinBM6ZnwupFMOnoCo9RYixd83t3JXvJLC6koLltwbL5sLLlLNxFGhK0s3SXUV6Kzs5OwGiK/xJn0eGlNMT3nBxkaGqKqqmrB8dm9IJsxhIAIIsIatXn7+WnnKYqiFp427aLAZGMqHuCqv4efd70LtQ+tOIwsVgdkyuuhKkkISchXrMjAttoGTt+6Q77BhmNWlcwe7zCtkQE+/chvLjn+upZhl+HhYbq6ulAUhW3btpGXt3DTu1yRjZU2wuaWmLCcyz0judKTKUnS9J5rGkm7blV1+kCyCauLDcVsphACIogIa6BpGieHruCKWnjcumumTkehzsZjyg5OBm5zcvAK2+2Vc4ZpEoEjmWTFyJx2B+Ojk4t+zWTczw5bA88eeoz/EvweP+4+R6XkxK4zMxLx4HaqPPjEI3zsQx9e9ByrvVlNTk7yrW9/i3MXz+IJeJAliXx7IU8++iSf+9znMBpzd18Z0TsipJrnZh+OXZVEx7w5FUZyJYQANDdvx6q3Mdo/RnHVws0VB+8NUlNeS2np/VpFm30oZr7s/5aEDac/OM6of5InTTsXFAuTJIm9xipeDtygOzBCnbV0zZVPjzS38KN7P2cq4lswPNMbGMWjj3K4cQ8Ftjy++onf40LHDS623yBkkthWso1j+w5z5PixRUutr/Zm5ff7+bd/9m+5eu8SNXsq2V5dTzyu0t8xyA9/9X0mJif4J//LP8np0u4ijGw+kXiUC/duMDQ5hl6nY1fVNioLMrcbby6FkVwKIAm1tTUc2XeUNy+8jtlmwp4//TPSNI32tptMDkzw8S88Rm/o/Jyv28xDMfPlzm9L2DD88RCqquKUk28Wlq9YUVWVQCy8rvLrR7ft5XzrFV64e4EDtjoabGXENJW73n6uBHto2beX7eXT+4RYDCY+9ulP8jE+CUx3FSduSupiF2B1N6xTp05x7e4VWp7ajcU2XY9C0SnU7azG7rTy9tmTPPnEk+zevXvV32smJcLIWm2Usu9bQYdvkNfffA1vJIBV1RPRYrxgfo2W5l389iMfx2JY/RYCa5EII5mgaRo96jjj4+PYbFbq6+rnhP9cCiEJf/ClP8Dr83L55EVkOxgtRibGRzCqBj76kcc58fjhOQ91icJkWyGEgAgiwhrYFBOyLDMR91MmOxccn4j7kBWZmt0N05+/hhACYNIb+cNnfpsfO1/hcut1zo12TK9qsVv50KETfPzQh2ZuQImboLJnuuszET5SeVN6+9TbWEvMMyFkNld5IR2GLs6dO5fzQWQ9Ek+8G6XS6kppmkZcU1EkeUEvX64aDE7w4653KNM7earyCHkGK6qm0ekf4t0rV4mrcf7BU5/bMN/PSnT0dPLdkz/l6p2rhONh9Do9DdWNfPY3PsuRI0ey3bxFOZ1Ovv6/f50LFy7w6pm/w+cLcGT3Lo4eb6G2oZI3ZtUEga0TQBJEEBFWrdxcSLG1gGueHkp0eTPlhWH6hn5bN0JlWSV7ju5b9zCFzWThC499io8f/hB940NIkkRdcSU20/3emPkhJF1PROOT41jzF98y3mQzMjk1lZZr55qNVPZ9KaF4hPcn2rgy3oE3GsAg69hVUMvRwu0UGHJnzkMy58ZvYwjBE8V7MRmswHSp7wZbGYok81bbbTr39VFfsnAlxkbUER7kX3/n/8dobJjag9XkFToI+oLcu9XKn/2Hf8cf/eE/5fjx49lu5qL0ej3lLfCFls/MKcnecXf6eK7vkJtOIogIqyZJEo+X7edvQ2/xmv86e43VFChWptQA10K9eAo1Pr/ziZTOlSiw5VFgW7gyJVMhBKDYVczt0etJj2maRsgbprBg8aJpi4nH43R0dBAIBCguLqa8vHzNbZyamuLUqVO8f/EC4UiI+pp6HnnkEZqbmxc8Ga93nshqwkhJSw3DV7vXfK10CMTCfL/rTUbc49TJLnboXHijIW70t3N7soffrHuMMvPqf5+ZEFPj3JnsZa9hOnTMV2MpxuBu5VpP26YJIj/+2U8YiQxx6Kl9KLrpFSZGs4GWE3u4cfoW3/3Bdzly5MiKK5RmWrLdcWFrB5AEEUSENWmwlfHZukd5Y/Ayb/hvo0am64gUOfJ5tnAfu0rq8bUOr3lYZiXmLB0cDK26ZsBqPfLwo1z6bxfwuf3Y8qxzjo30jmGImzh27Niqznnq1Lv85Oc/pqu/k1g8itlg4cDeQ/z2b/4W1dWruyHdu9fJn/37f0fX0D2sxWYMJj033rnKq2+/yvOf/Byf+cynZ8LIcuXhk0kWWhJhZCnzXwO5EkjeGrnKuHuSj5pbyFPu93Tt0ip51X+dF/rO8aXGZ3JyaCOmxdE0FatkJKbGCQR8AFhNZnSygiRJmCU9kVgkyy1NjdGJMS5cv0j1nsqZEJIgSRINLfXceK2Vq1evcujQoSy1MrlEAIG5IWSj7guTDiKICGvWYCujvrGUgeA4vlgIq85EhbkQSZIYvtpNSUtN2sLIYvULtFAsbb0iDz/8EKdOv8P7b56jfEcpJdXFqB+smhnrmORjH/o4zc3NKz7fa6+9zl/9j/+MXKDR8FA1JouJqdEp3r1+kq7ue3z9f/v/UFFRsaJzRSIR/uIv/z193m4OfbQFvXH6qVDTNHpa+/j+T79LTU01R48enfma1fycUrHSxtZcgq91eEHviKZp9AfHafP2EVFjFBod7HLUYNGlbyl0MB7mxkQnO3Rlc0IIgEHScdhUz2v+W3QHRqi1Zm4FykoZZT0WvYkbnl58/UHiqEiATq+npMBFSUERU1qQIkdu9uis1pTHTTgaxp6fvK6QxW5GleJMTk5ltmHLWGp3XBAhJEEEEWFdJEmiwuJKemx2GIG1T1qdb7EQIn/QK5KuMGIymfjn/+yf84Mf/IC3z7zNtVu3kSWJovwSfu/55/jUpz614qdnv9/PD/7uexjLdOw43DTz8ZLqYgrLCrjw8hV+/otf8OU//MMVne/ChQvc62tn95PbZ0IITP9+arZXMd4/wWuvvzYniKxGqoqizQ8joXiEn/edoX2yH1NcxoieCwQ5abzChysPs9dZt6brLGcy4iMSi1JpSP5GXaw4kEMwEprKySAS11T8apje0CA15FP3QRs9UT99gwOcm2jFWG3jUP3mmDjtsNkx6Az43YEFvZEAQX8IWZPJy3NkoXXJrWQoZqsHkAQRRIS0Sjz5LlXMbKVWUsUx3WHEbrfzB3/wB3zmM5+ht7cXWZapr6/HYll8EmsyFy9eYmhyiP0PLHyjCEnj5DcYee3ML3j0N5qx2eeeu8by4IKv6ei4h2SZfjJMprimiFttNwmHw+squpaKOiSJMALwi76zdI72c8K0jSpTAZIkEVKjXAx18ques9h0Jupty5fnX63peRUSES35MuY4KioaOnn127NnQqu3j2goQpWxkEtaL95IlHK9k7AcpT06yq3AIH+/+Texmxe+aee6ZMOFRWXV7NvRwtlbZyiudCHJcwP/vRtdlBdV0tLSkqlmLkoMxayeCCLChrCaUtKJN8h0FjfKz88nPz9/zV/vdk8h6yWMZsOcj/ti02/Q9nwLk21e/N4ADsfcN5PEjW5BIFlqXz8NQErJfIdUFUUbDE7QPtXHcWMD1frCmY+bZD3HzNtw+69ydux2WoJIkTGPfIudNt8QpTrnguMdkWEUvY56a+qvnQrXJu9RhoPHnDu5qQzRGhmkLToCSJQVFLJd1RMMb6yCdcv9vX76+c9y+9+0cunNq9TvrcXpysPvDdB1s5vYGDz/+9mvbCyGYtZGBBEh5611P4vZvSPJZLPwkd3uQI2qRMJRDEb9TABJxISugVY8oRAXhn+O2X8/rDzR9HlkSULVNLoDZ2fCyLZtjWi/BL8ngNWxsHdmuGeUI9uPYTAYFhxbi/lF0dayjPeurx99TKLaunBoT5IkmgylvOfpJhALp3y+iCzJPFi0kxf957gW6mGnsQKdpEzPqYmNczHazZ6SRpyG3OxRcEf8FCpWDJKOY87tHHfsxR8LocgKNp2Jd0dvMuGZynYzV2wlDw3Nzc38q3/+r/j2//w2bedaCUXa0St6Kkur+ew/eJ5HHjmRqeYmJYZi1k4EEWFZMTVOq7ePm+5u/NEgDoOVvc7pSqdykqWDqZKKDbUWe2JP5/DNShw8eICivGK6bnZTvnf6+0uEkJ6JO4x1+Ni9qxZn3v2egnDcO3ODe6Lp8zNhBMC1I0ZJmYNLp95n1yMNFNimf3aaptF1qwfZr+PpJ59K6fcgmXSoZSb0sOzKmWSiahwDujl1aGYzSQY0dXqFSDrsdzbgrQhyeug6t/yDODHjJ0xQidNUVM3T5bm1+mI2q96MO+6b+bdOVsibFZqmon5KrAv3Nck1q91wcufOnfyb//vfcPfuXcbHx7FarezYsSOrS3ZFL8j6iSAiLCkUj/C3Pe/QPTmIS7PikM0MqkPcHuuiqbCa5yqPr3gcfTUraNK9q6ecgeW+S7Hb7Xz2U8/zH7/17/CFJ6jaXsJ4rBvfWIiRO34ceisHHm2Y8zWJG1sikDzR9Pn7xwx6vvTlz/FX//F7XHvpLmZXN3qjjsiEghU7f++zn+fgwYNp+V7UMhOsorhZYn6Iy+jAK4Xxq2Gs8sIej4HYJFajCYuSnu52SZJ4pHgPe5y1XJ/qwh31Y1IM7HBUUWl25eSy3YTdzhp+PXmWqbgfM3NXkoyFPYwofj7auCdLrVuZtQ6dSpJEU1PT8p+YASKEpIYIIsKSXh68wMDEME+bdlOsuz8jvS86wVujd3jLaOeJkv3Lnmc1K2hyeWvxVOkOnGXXo/l8XvsNXvrVW5z91XnUuIrBYKS8qoCHP7YTV3nyFQBGxZ40jFRUl/Ivv/4PuXjuOtcu3yEciVC5s4znnvwijY2Nafk+EkM0Ky1ulvj9D1/tZru9ijdMFs4H23nUsnNOz8hE3Ed7fIRjhXvTPmG0wGDnkeLcftOeb1deLZfy2nll6gbHAnGaHbUAtPsGeN/bQUNzA/vrdmS3kUvIxc3pVksMxaTOxn0VCGnnjvq5PdHNAX3NnBACUKkvYFesnCtj7Tzk2oVJWX7uwewVNMl6R7ZCAIH7NzBFlnn48SP4Sm6wrXM/RI3YC8wUV+Yt+zQ+O4wsUAs7ayWeaPoDVE0DRoH0BJGE2UM0ycLI7ACSYFT0fKzqAX7adYoX/Jdo0pdilgwMxqboVMcozy/hwcLcfTPNJoOs43M1j/Ki/n3eU7s5O9QFEhgsJvYf2sdnj30EvZJ7t/fVDsXkItELknob85UgZERvYJRoNEq9tTjp8XpDMTfCgwwGJ6izla74vMmKnW3kEDJ7ud5KzX6KspmdNO50rvociRtfMvN7TBZdaZMCsyeuLtUzkqyiapO9gt9teIKzY3e44u5D01RsZgsPFe7jaEEzRiU3y3XnAqvOxGeqH0ZpzKNrahBLdSH1xZW4HGtfzZVOW6UXBEQIWa2N+4oQ0i6xGnSxZ3MZGdDQllw3mlwijMy2kUPIYhMuFzP/KSrV5g/fJFtpky6LlX1fbL+ZCouLT1c/RFSNEVXjmBR9WidBbzbxdjeHWnZAHGxZCiGJBwlIXgckIV0hZGRkhDt3WlFVlZqaGmpra1I+xyfxt/7mrJ1y19ML4psM0n9njPE+D6qqUVBqp2K7i7yS3FyplU4iiAiLqjAXotPr6I6O0WBYOKejKzqKUW+g1JSbT2DplqshJCFx/mQrbdIdRuZbyX4zelmHXs7sLSkcjwLTQx25PDl1OeneUmEl9C57xns9AoEA3/mf3+Gtd0/iDkyBBBaDjQO7D/Cl3/8SxcXJe3NXY34Amd/7kbCaEDLSOcX1tzqJajGsJUYkGXq7Rui/O8b2B6qo2r3+dm8kIogIiyow2Gl0VnJxpBuXYp+zJ8dYzMuNWD8tRU1YdNlbfZINi1VOXKl0B5Bk18vkUM1SFttvJpM0TeOWp4f3x9sY8I0CUGIt4HBhM3vyajdsIJn/88xWIMlUCFFVlb/8T/+Jt95/g6o95TTX1SHLMqMD45y+8g7j/26M//Prf4LDsfay7/NDyBvnL80cW+vwS8gX4cbbnShOqNhTNFMl1tWkMX7Xy+1zvdhdFpylyffV2YxEEBGW9JHyw3w/7OMF7xUqcJInW5hQfQzioaagjMdL9qXsWtExb8aGZ9a6dHe5iWq5KhtDNYutoJld4j0b3h69zrsD1yhRbRzR1yAh0Tk1yi89pxksneCp0gMbNoxA5ntHEsMymV4Of/36dc5cfJfmYw0UlN7vlS2udJFXaOfSS9d5++23efbZZ9d0/u7AWd64+x0k4PVzF5AkOSVzPwZax4nEotTsLppTql6SJAq32fGPjNF/Z2xLBRExEJtmqqbSHxjjnm+Qicjqiz5lm01n5vP1T/Lh2gcgz8CAyYch38rH64/zWzWPpWwyoedmH56bfUTHvGsqjrUaa+0+3qghJMGo2DEqdl5v+zavt3175vtYy2Tb5SQC5ey5A7mgLzDG6cHr7JeqeNK6h0ZDKQ2GEp6w7eaIUsv7w7fp9A9lu5nrlugdyVTgS/y+MzkR9b333iNujM4JIQlGsxF7mZW33104hLKc7sBZugNnefODEPLG+UspCyEAUyN+jAV6ZGXh268kSVhLjEwMbrz3ivUQPSJpdNPdzTvD1xkPTKFpGrKsUJdXxhOl+yk2ObPdvBUzKnoOFWzjUMG2tF/Lc7MPx67KtPWOrCWELLeJ1UaTqaGaldYWyaTLkx2YYzp2WisWHNtmKOWOf5DLkx1p2d8m09I9VDN7pVs2igN6PG4MlsUfhKwOC1NjU6s652JDMalcBSNJLLkvlKZqSPLW6iPYWt9tBl2ebOfnXe9i8mk8qd/Jc6aDPCjXMTI2ynfvvcFY2J3tJuasxJtWKntG1DITapkJyaRbUwiRJWlThJCE+RNZ09U7onfZ0bvsOHZV5kTvyGhokjI5eZ0WSZIoV5yMBKcy37A0SkfvSLLl9plelltUVELIE0bTkr+re8Y9lJWUr/h8iaGYN+9+h9fPXeCN85dwWapTvhS3oMxOaDJKPKouOKZpGv7hMIWLFDPcrEQQSYNwPMqbg1eoVQt41LKDEl0eVtlIvaGYj9haIBDj7ZHr2W5mTkvlE/R6Z/LPXxWz0UNIwvzvY7Wrf1Yq3UNtq6GX9YS06KLHQ1oUQ5oruWZDKicG50rNn2PHHsSMlYF7gwuOeSa8hMaiPHri0WXPk+6hmPlKtxVgNhoZvDpJPHY/jKiqxvDNKRRVoXLnwo0gNzMxNJMGrd4+gqEg+8w7Fzx5GSQduwzlXJrqxV8WwrrFVpxk2mYoohT0R7h7ZYCeu2PEY3FKKvNpPlhOflHuT2ZLhJBcGZppclTy2sR7BNUIZnluNeCwGqVHneDhvH3ZaVwOWar3KtsBJKGhoYGPPfksP3np73CPe6loKEPRKQz3jDByd5xjLQ/x0EPHlzxHJoZi5jNa9LQ8Xs/VN+7R/fYopkI9kiwRGo+ikxR2n6jFXrhwB+3NbOPenXOYNxbAqOmSbuQFUKjYiUfj+GJBEUTSZDMEEICRPjcvffci4xNejAV6FJ1ER8cQl0938Ogn9rDjUPaHOxaTayEEYE9eLeett3nVd4NHLM04leniUe54gHeDbZgtFvY5G5Y5S+qpmkpUjaOXlawXc8uVHo/lSJLE5z//eYqLi/n1K7/m3ru9qJpKvqOA3/7E7/Lcc89hNC6+YWK6VsWsRH65nQd/YyeDbeOM93vQNKjcY6O8uQBL3tZ7T9jYd+kcZVGMhKUYITWKSV44mcqtBpBlOW27im4ma5m0ullCSDgU5aXvXcQTCbDtiTL0xukhA1XV6L8+zps/u4bTZaWsNvcKyuViCAGw6Ix8rvZR/q7nFC/4ruLQTEiAWwrhtDp4vuYh7HpzxtrjjQY4P9HK1fF7hGNhjDoDewrqOVrYTJ4+8xU2N0oISZBlmY9+9KM89dRT9PT0oqpxysvLsVoX/9nN7gXJxFDMYowWPbX7Sqndt/LtMTarjX2nzlHN9kpeNRi4Fe7ngLl2zrG4pnIz0k+dqwy7fmt1vyWzVK2D9ayg2eghBODe9SHGx7w0Pl46E0IAZFmicm8hrScHuHm+J6tBJLHHjDwYWnAs10JIQrHJyT9o/Ah3ff30BEbRNKiyuGi2V6Z9p9/ZJiM+vtf5Bn6fnwalmALFylQkwOX+O9yZ6uG36z5EoTHzkxY3SggBiMVihMNhTCYTDQ31y35+NoZihOVt/Lt1DrLoTBwr2cVbfVeIB+PsNFZikQyMxr1cDnURNKo8XLSxth1Ph5UsL0z3ct5cNtA5ic6hYDAv/DOVJAlnuYXutpEstGzaUiEk1+lkhR2OanY4svcG9MrgBcLeIB+37p8zX2WnWsFLvqu8NPA+v1P3eNbal8tGRkZ4+eWXOXnqJMFQELvNzhOPPsHTTz+N0+lM+jXZHIoRliaCSJo85NqFTlI4M3KTO8GL03VEFBmXw8nz5ceotGytWdFLWa4SZOLJeqN1G6+XpmksNV1AkiVUdeESwEzYyCEkF0xEvNxzD3DEWLtg0qxJ1rPfWMNpTwcjoakNVXMoE/r6+vjTf/undI10UFzvosBhwzPh4Vs//R+cf/8c/+qP/zdcrvv311wZihEWJ4JImkiSxIOuHRzIb6TTP0QoHsFpsFFjKd7Q5aPTZSVlqTPdOzK/psZq95RZr+LKPK5d7CIWjqMzLhwycA8G2NawsDDXWqmL1GOYTwvFsh5ARsNuhkKTyEjUWks23KTv0bCbeCxOpbkg6fFKfQHxQBujYXfGgsha67yku5jZ7L9DTdP4j//tW9wdv8nep7ahM0y/hdkq7RQ2Grny5jn+y3e+wef/4afnnEMMxeQ2EUTSzKjo2e6oynYzNoREGFnK7DAC6esdyYVy7tv2lfP+yXa6L45Sd7R4piS0pmmM3HWjBVSaDhYSjq+/TkcihGR6E7zVmoz4eGngPTrdQ8RjMZDAqDeyz9XA4yX7MzrHYz30kgKSRFiLYmLhhPawFkNCytj3s9bexnRODJ9f0Rigt2eI1tZ2aveXoTfMvabJYqBiezGXLt7gExNPUVCYN/N3K4ZicpsIIsKGM3uoJh29I7NDyOxekEwXMjNbDTz1/D5e/v4l7rw2gL3UhKyT8Y4EkSMaR59o4Asf+6frvs5GCSG+WJDvd75JyBfguKGeKmshUS3O3cgQFwbu4IuFeK7y+Ibocay0FGExmmmLDHLYvHC5cGt4ELPRRI0l/dvBryWEpHtl2vwHgYThgTEC4SAFZXlJvy5kG6VvcpQXzv8NFY3Tk7jFUEzuE0FE2LBSPVSTC70g81Vtc/HZLx/n9oV+Om8PEQ+qVO5w0HyonN99+p+s69yzh2JyPYQAXJi4i8fn5ROW/Vg+qNGjSDK7jZUE1QhvD15FL+s4VLCNMlNBTgcSg6zjaNF2TvZewhY20WQoQ5FkVE3lbmSYW+oADxW1YFIMy59sjXKxFwQW/zsE6BoaxRMepWv0DnrTwt6iWFhFkXWYjfaZYRgQQzG5TgQRIWcsNyyTTCKMJKx3vDoXy7nnuaw88OEm9j85vRFbYqO6lc7pWEo2A0ji973S8uPXJ+5RL7tmQgjAVNzPG76bTES9EIvxbs9Vro92UJ1Xyicrj2W0JshqHXPtwB8LcXG0lWv+PuyY8BEiqoMDpds5UbQ77W3IpRCyks0la7eZcNjamewKUrZj4bL1yc4pfBEvF3uvUmxf/f1EyA4RRISsS7whrXd30M1SyCyZxDyQ+SFkI/RkJJP4XftahylpqVk2jGiahi8aYptSOPOxoBrh154rKDH4kNJMRI5i0Jsw6AycG+/gh/G3+EL9k+jl3Hw9yJLM02UHOVjQyE13D75YEIvOyC5HTc6tlMlWL8j8BwGjWU/Lg7Wcfv02OqNCYa0dWZZQ4yoj7R5674xQd6RAhJANJjf/QoVNaakej1RtUb7ZQ0guDqdEo1Gu3rnBwMgQBr2elu27cckrqwpqay6ZCSPJJAKKJEk4jBbG/b6ZY7fDA4RjET6m24tJ0tEpjWJX9FTqC7HLJl7wXOW2p5e9zrr1f5Np5DLm8Uhx7tYVypUQknDo8UbCoRjXzncy1uZBMSmMDk8gI7HzcAP1B8rS0k4hfTbfXVvISanq9ZjPsasSvcue9iWE2bARekFutt3mr7//bYY7+zDGFaJanB/mmTi67yCfqD+GUb/8HIfFXhPze0ta8ht4x3uZvfEgdsXMvcgwVeRjlvS41QBxWSPfML0RoFOxUqzZuO3uWTSI+GMhLk22c3Oyi2A8Qr7RTkt+PXvyajfM6pt0y/ZQTDKyIvPwx3ey+8Fq7l0f4vzV69SUONm2qwmzXWybsRGJICKkVboCSKrNvilmul5IMhshhHT2dfMfvvmfsI3E+Y2K4+Sb7MTVOK0Tvbz7+tv4dozxex/69PInWkSityThYEEjt6a6ecl9nRZDJX41TLFkZTTmYYoAhWbnnP2brLKRcDyS9NzjYQ/f7zyJ1++lRi6kXM5nJODhV1NnuFXQzWeqT2DI0SGdtVisx2klE73TGULWMzE8v8jGsKmf2qMFYjLqBrd5/tKEnJPuEJLoDYHpCp9r6RXJxZUyuT4Uk/DyW6/BoJ+PND6G8kEPgiIr7HTVIsdU3rl1nadaHqKyMDWbepkVI79V9xivDV7i0lQPveokkVgEp9FCmclFqSl/ZqWMpmmMql4ajQvfgDVN45d9Z4n7w3zKcnBOZdORmIfXx29yynyDx0v2paTd2TQ7gMz/O8xWxeLVLo9/8czbi55LBJDNQQQRIS3SGUIWqwCZCCMrfYJLRwgJBSL0tI4SCcWwOc1UbXOh6Fa2rXsu9IJoodiKfn7hSJgL719gj7N2JoTM1phXwen+a1ztvpOyIAJg05n5VNVxvKX7OTN+i7f7rpJvzKPMMLdCaXtkGL8So8W5cCO03uAY/d5RPmTcvqC8erHOQbNSypXxdh4u2r1hekXWM/8qUxWL1zIUkwghInBsbhvjr0zYUEpaatLaCwKLP72tNIwkeypbTwDRNI1Lb93j5mvdxEfj6DWZqC6OucrEA89tp3bH0oWpshlCbty4wZsn3+T69WsoisyhvYf40GOPUb992+LtjUSIR2PYDcmXx8qSjEUyEIomHxpZL7vewhMlB3BHArwz1kpjrJhaQxGqptIRHaGTcQ6WbKfKUrTgaweDE8hxKFtkZUqN3sXtyBDjYQ9li5RgzyWpCP2pDCPzt0aYbTWhX4SQrUMEEWHDWc+NMl1DMZfeuse1H91jp76UpqoSjDo9nlCQa919vPXX13jiH+6nsrFwyXMkQkhCJkLIL3/5S779w28R1gUpLHeiBWL87PW/443Tb/Llv/+HPPTYiZnPnb3RndVswZGfx8DQOPXOhfvdhGIR3IQotDvT1nZFknmu8jhnzAVcGrvL3fBtJMBptfN04REOFzQlLWomSxIaoKEhsfB4HBWQFtSUyTVLDbusxfyaPGuxWEXUhNUMxYgAsnWIICJsGekKIUF/hJuvdrNTX8qesvs3cofJzPGaRt68d4fLb3RQ0ZBb1T5v3brFd370bRz1Fup27YC4ihSI07hL4+aFNv7qb77JtsZtFBfd71VIbHanKAqPPHyCX3z3x+wO1eE03f8ZaprG+eFbmJxWDtWntyiXTlY4UbSbY4U7mIh4kSWJAoMdeYlti2utJaCT6YqOUW9Y2FPVHhkmz2yj0OBIZ9PXJdcmgS8XQED0ggiLy0gQ+c//+T/zZ3/2ZwwNDdHS0sJf/uVfcuTIkUxcWhCA1A/FzNbTOkp8LE5T1cK5EJIk0VxYyuk7HXgmguQVWlJyzVQ4+dZbhJQAe3Y2z/m4JEnsONDI+ZeucvpXb/KpLz4PsGDH3Q+feIKrN67zs0un2WmtospRQjAa5uZEJ2OGAJ954MPYTJn5fnWysuIiYEXGPBqdFbw32oldNlGkmw4cmqZxNzLMPW2MJ4sO5cQS3kzU3lmvpUqyzydCiJBM2oPIj370I7761a/yzW9+k6NHj/IXf/EXPP3007S2tlJcnP4NnYTNZyXj2LMnXa7kaW09wsEoek3GqEv+52QzGiEw/XlLeb3t23OGZ7oDZ9M6PHO77Rb5Zc6kvTSKomApNHG3u2NBAEmwWqz8i3/0R/zyjZc4deoUt9xXkRWZxsNN/NahE9THnClp50oqr67WsxVH+dv4KV6eukFByIJNMjKm+QkpMQ6WbudIQfPyJ0mzdM61SmYtwzKp2iDyxTNviwCyhaU9iPz5n/85X/rSl/jiF78IwDe/+U1+/etf8z/+x//gj//4j9N9eWGTmT2pDpLPF0lMWE2EkRrLg3QHzqJqGrIk8UTT53m97duE496U9IrYnWaiShxvKITdtHAJ8bjfh2SSsOUtvrzYqNgJx70zYUSWJFRNS2sY0SkK8Vh80eNqXEXJNy+5LNo2CL/18c/w3NPPMuGewqDXU+gsIDbum1keuh7zK6+mKpBYdCZ+p/ZD3PX1c9vTSzAWZruhmL3OOirNrpwaQsuE1S7hzcVl78LGldYgEolEuHjxIl/72tdmPibLMk888QRnzy6cWR0OhwmHwzP/9ng86WyesEHNrn+wWO9I4ik+8SaarjAyOeJjqGeS8YiPUzdaebixCVuemcT7WCQW487UEJVPFmFZpupjoh2Jm3qijkjipp/qQHJo/2G+/+v/iaqqyPLcORWRcISwP87e3XsWXYGkhWKoZSbkwRAmo4ny4tQt051ttfvSrJROVtjhqGaHY2s8iS/X4yFCiJAtKytwsEZjY2PE43FKSuZ2L5aUlDA0NLTg87/xjW+Ql5c3819VVVU6m5dR/liIc+O3+WX/OV4cfJ82bz+qpma7WRtaIpAkekeSSQQSLRSjxvIgNZYHUTUNVdNmhkHCce/M8tmV0jSNC2+08/3/8A7n3mklXqhxNdTLLy9e5uLVe0z4/HSMj/Ba5y2idXDoycYVn3t2IJGl+6s3lloWuRaPPvooBaYirr97i1g0NvPxcCjClQut1BTX8eCJ44t+vWTSIZl0qGWmjJTYTwSStezSvNXN7vFY7L+VmD8UI0KIkAo5tWrma1/7Gl/96ldn/u3xeDZFGLnu7uLF3vPEwlEKsRImxkW5lTJ7IZ+teQSHPncmMK5Xpt8kVjJUM9/s3pFEGFlt70jbpQFOv3abvHoLdduKkWWJqYN+us6O8FrbbRx3uiiqz6PySReHntqG07WyTeASlhqqWex7Wq3Kykr+6Vf+Kf/pm3/JhReuYshTUFWNmDtObXk9/+yP/jl2+/I/D8mkm1nam27zy75vVqn8O1pr5dTZ4TKdvSBLVU7NFk3T8I4FiQSjGMw67C7Llhuuy6S0BhGXy4WiKAwPz71xDA8PU1q6sBvXaDRiNG6uTYt6/CO80H2W6ngehy31GGU9AGMxL29N3ebvpHf4Yv1TSy43TIWYGiesRjHK+rSsBsjmcsKlhmoW27RrdhgBVjVUo2kaV969h6FAR2mzc+bjznIrLc/VMtw6xfgdH0/+o/1UNCxdO2QpyYZqklnP8M3Bgwf583/37zl9+jTtHe24Y70cb/kIDz74AFbr6sJTptiaS1I+eTWXrOVvKVXDLrDwbyZVIWSjlGqf6Pdy970+3GN+4pqKLMnkFVppPFyBqyp3l3RvZGkNIgaDgYMHD/LGG2/wyU9+EgBVVXnjjTf4yle+ks5L54zz463YojqOW+cWV3Lp7Dxi3s4rnpvc8w3RaC9Py/W90SBnx29zfeIe4VgEWZbZmV/LMdcOXMa8lFwjV2oaLFYdcrE5Dok37dm9I4kwAovfaN3jAUaHPRTvW3hTkiSJkiYnE/f8jA951xVEEmb3jiQzuxrrWia3eox3aHzAylhU5c7pYf7rjX/Pj37t4IHjB/js0/9gRb0im4mqqXiiQTQ08vSWtD8kJKz17yiVe8UsFULWuipmIy3Lnej3cPnVDjSziqvFjtGhJ+KLMdHh5cqr7ex7sgFXdWrum8J9aR+a+epXv8rnP/95Dh06xJEjR/iLv/gL/H7/zCqazSyuqbS7+2nRlyft1ivSObCFDLT7BtISRNxRP9+99wZer48mXQkunR1PPEjrYBd33X38Zt1jlJvX90aZKyEkYXZ1yJXOW1jtUI0a19A0DXmRPWQkWUJWJFRVS3p8LRa78a9npU3iTcbn8fPNv/gep6+dwlJiwJxnYNgTpeMHXbx39gr/6J/+DvsqP5yy7yUV0rGkV9M0Lk7e5f2xNiaCHkDDabZzqLCZwwXb0hpIci2EpLoXZCOEEE3TaDvfDxaVykOFM/dsXYGCOd/AwKUJ2s73UVjpQJLFME0qpT2IPP/884yOjvL1r3+doaEh9u3bx8svv7xgAutmpGoqmqZikBb/MRtQiKd40qo/FiIQD/P60GWCXj8ft+7DIn8w5KWHZmMZr/iv86u+83yp8Zl1j33mSghZj9UM1TgKzNhsJtwDfmyFC8OOfyKEpEq4ytLfk5DoLUlIhJHlzH6j+Xf/+f/ixs0+6k8UYbFPz1eKa1EigRjtF+/x0++/RP5Xpp8Clwo4iRU0CY5dlSlZwruYVIYRTdN4afACF4dbqdHy2WOY3menyz/Ka773GA5N8mz50bTME1jvUMxahl2Smd9zOL/uzlrng2yEEALgHQvgHvdTvM+x4PcsSRIFDXaGL04xNewnv8yWpVZuThmZrPqVr3xlywzFzKaTFFzmPPq9EzQaFt5kQmqUCQIcXmFFyOUMhyZ5e+Q6He5+QtEI3YERHtE3IanMWR+llxQOGmt5w3+b3uAY1Uk2BtuoHLsqZ27M8+uJLGelQzU6vcKuIzW8+/otnBUhrAX3b+7xqEr/tQlKy5yU169/WCbV5j/p/uL9/0b79WGKm/JnQgiAIukxWMBQ4+Py5VuMDU/gKilYtLcl8fNNvNHpmV7NlHjDTHUgmV1fJBVhpMs/zKWRVh7U1dFouD9/rVJfQGVklHdH29nuqKLJvnBfnbXKdC/IYvOlhGnhQAxVVTE69EmPGx164qpGJLB0YUJh9cQrMo0kSeJA4TZe9p6nPzpJhT5/5piqaZwPtmM0mdidt/4Z8v2BMX7QeRIlpHJQX0VYieHRvFgiCne9/TTaK7Do7k8ELtXloYU1xsPuTRFEFrs5J8LIaqxkqGb/iTqGeyZpPzeEyaXHWmgk4o/hGQiSb7fx+GdakHOs+zZZd/vEsI9IRMNZvnDlliLpcZZbaL12j5+f/h/8wW/882WHfhIraNQyE4nbeSKQpCOMLGelIeXq1D3scSMNpoXnrDUUcdPXz5XJjpQFkUyGkNmvfxFCFqc3KciyTMQXxZy/cNFExBdFliT0836GmqoxOehlrNeDFtewFpgpqc9Hb8z+FgEbhXhVptk+ZwOdrmFOjt2mIuKkQldAWIvSERshZFD5RNUxzMr6VgppmsYrgxcwBSU+bNuPTlIYjrmxyAZcsoNgLExfYJQmx/3u3LAWQ5M0dPLaXwK5Vs9hsZtzIoys5ia8XAE0vVHHM3/vIK0X+7l1oZfJHh8ms55jj+xg59EqHPnmVH1bK5KsPHwy8ycdmvR2JAniMY2kz4FxHbKkQ1bkOddYqqZJjeXBOcXO9C572sIILP5mvpoek/GQm2LZvujQS7HiYCyUmgKL6xmKEb0g6ZNXbMWRb2G8w0fFQcOc14KmaUx0+LDlmecMy4QDUa69fo+JYQ8YJGS9ROxmnPb3jew6UUNRrTML38nGI16daaaTFZ6rOs4VWymXJtq5EOxBkWWaC6s4XNBEhcW17msMhiYY8I7zmKkZnTSdwosUOzadmXvRUXYr5QxG3QRjYcwf9Iq0RgYwGYw0WNdWDTPXJqkudoNeT6GtRBhJSISRBJ1eYdcD1ex6IDtj4JFQjPZrg3TdHiYQDHC6pI0v/MYfUlO3+FP7/EmHxZUx7HYL411eKnYXLPj88W4vNquJ6voKIDxnYmwy83tMMjVUk8xqhm8MioGA5l/0eEANY1KSd9mv1EYZipn9mt9KBcskSaLxcAVXXm9n4PIEhQ12jHY9YV+MiXteopMqOz9UMTNRVVM1rr1+j/FxN6UHnJic0+ElFo4zctvNtTfvcfjZZhxFubkMPpeIIJIBiiRzsGAbBwu2EVPjKJKc0klvkxEfqhqnRHd/OaksybSYazgdu4MprseATFiNYdD0tEeGuB7v54GS3Vh0q3ujnt0LkishZDGb+WnQPebn1//zIkMDkxgLdOiMCj0Xxvlf3/tXHHqsnn/xD7++4DWW7E3FYNLR8kAtp169idmhJ7/KhiRJaJqGezDARLuPBx5pxmw1AIY5y4iT1TWZv3JnqaGaZNI9fLNYINmRV8XLk+fxxkPYlbl/E0E1Qq82yRPOQ2tux0pCyFK1QDIxFCNKt0NRTR77Hm+g7b1+Bt+fmukRtTnM7HysgpL6+8Pr4/1exoc8lB7Kx+w0zHxcZ1Qoa8mn+/QovTdG2fWYCCLL2Xx36ByXjmJiRkWPJEn41TB5yv2x/h2GckLWKOf9d/HEgvSEvMQjGqoeDpRu57GSllVdJ9d6QZaymUOIqmq8+oMrjExM0fChEoyW6bd4TdMYaffw3hsd/Lei/4eGvQt3t072prL/0Xq87iA3LnQz3OpBb1WIBeLIMZk9+2s48vS2BV+/kroms4uszR+qSSbdwzezN8+b7/FYKTekQd4ausvD1u2UGpwAjETdnPK0UVZTweMPPYLNsHDIbbneluX+btJZB2SlRAi5r6jWias6j8khH5HAdGVVZ5l9wZyv8R43slmaE0ISJEnCUWFmuGuSnWqNWO67jM13l96Cai0l2ExWboX6edBy/01DkiQOmGuZjPtoV8bZXdyIVW9mp6Mal3FtFQJzMYTMfpJMx8S8xFNRQqp27V2rvvYxBvomqHqgcCaEwAfF1Lbl4RsNcfvcCDv21a+o503RyTz63G52Hq6i/dogfk8Is81I495SSmvyk55jtXVNYDqQJBsqSyz5zdZcEgAb8E+qfp+/eeMnvNl7F31IQgLCeo3q3dV88YnfoCRv4TDqUkM/q+kFybUQshUDyGySLFFQvvTPIB5XkfWL/30pehlVm645NP1qEhYjgsgmoJMVjhfv4tWe99EHdew2VmKS9QTVCDfCfQwqXj5Tc4ID+SvfeG22geA4V6fuEQ1fJm/Axb7aHeytbkKn5ObLJ5W9IOnatXc9hromwaDNWTY8W36VleE7k4QC0Q+GVJYnSRIl1U5Kqp3rattiZenn75OTmEOS6ClJSMwlyQaXI5//9ZN/n/ahbtqHe0HTqCuupLm8btFAt9jQT7pCyHJzntb62l9szo+wOKvTRLQ1TjyqougXFrvzj4WxOc3ISmYq825kuflOIqza4YImolqc00PXaQ0OYkRPiCgGg5Enyg6y39mw6nNqmsbrw5d5b/g2pqhCmcfF+NAo71++RH1dHf/gw5/DYc6dwj6rXRmzUuvZlyYdNA0We8DqHR7EPxlmciIAqSvsumrJNu1LWGxvnNkb56W7GNpiJEliW1kt28pqV/V1yYZ+Uj0Us5mHGzei0sYCOi4NMNrqpmSXc05YDYyHCY1F2fbQ0nsACdPEK3qTkCSJ466d7HfWc8fbhy8Wwq4zsd1RteblwZcm2zk3eItDSg3bbWVYCuzonWbGwh5evnuZbxt/xlee+Z2s7kq52nLua5Ws2BlkZyy9uDIPLQRBdwRz3v0ej97hQQDCoxKWPD1vXj2DJEl85NgjGWvbbCvZI2d2L0m1fHhmUmu2ekXWIxFG0jEUI0JI7jFa9Ow4XsONdzrpPTeGo8KCrJfwj4YJjUQory2kvDn3ihrmIvGq3mQsOtOah2BmUzWV98amy103G8qYivrpH59C9cqY9Qb2m2p4v6Od3vFBql3p2bBvpfQuOyqZuUkvt6Q3E6qbiyguzaPn0hgNx0oYnBqZORYZkQmPxdhzooEiq4uxQA8vnnk7q2EkmUS12kRPiappc1bYyEUGFpvFlI2ekpVK51CMCCG5p2xbASarnp6bI4zec6NpYHWYaDhWTsUOlxiWWSHxyhaSmor6mQi62aVr5K63H38kgFlnwqDT49XcxBSNCf0YdwY6VxxEltuqfLaVvNlkqjck1yg6mac+t59ff+cC5392B3OxAbPZQmAigurXqNlRMvMk5rJUZz2MrMbMm20ohrJnbsXfxKTWlb6OshFYUrUEF0QvyEaRX24nv9xOPKaixjV0htSWZ9gKxCtcSErVVNCmi6UZozJVSiE2owXZqKBp07VLvF4v17vbeGrv8WXPt5qnwZWsnJh9vkz1huQSV7mDvEMa1U4noQEdUXec4iInFQ+5KKyau2nX7DAC5HwgSVa1NTFsA6B88L+zN9hLJpPF02ZfL5srYITsUXQyOTp/P+eJH5uQlFNvQ9EpdHpHOKHbhkmevUwU4oqGKkH3cB9xNY6ySH2UtdycE5+b7I1k/vm2Wm9Iwotn3sZg0dHywJ4VfX5iB9Rc6h1Zqiz9m3e/M/P/P7Tt79Gjvj/z79l1SWDxQJLu5cCziRAiCGsnBrCEpHSyQpEln051HD+RmY+r4ThhNcr74XuU2QuJBSIMTY0tea613pznB5LFbvbZuGGrmjazigbuz3nIpLVsr574mkTvSLbMX+YrSxKyJPHm3e/MhJDE5ySOzV55I5l0K/q9z38NpZpjV+XMjs+pCCEJIoQIW4l4tQuL2uGo4rzuFm/F2yiLOyiK2Qnp4nSHJjAYDTxa0sK5WCealr51orOfahP/zrZcWkGzFvOHajIhWQ/M/CW+6fr5pTuM5MJrUhA2MhFEhEVVWoqotLho1FyMxb20xUcxoGOHqYIDpU3cmurFVm6nyLFws7RUytUbfS4WO1uptfSmrNVSw0Hze0bS+XPL1dfRRjI26KGndZRYVMXpslC3swS9cWO/jcSi00XJ9EZFrHLJko39ChLSqsrsosJRxPCUhw/b9mCW79esGB4f545uiA8VPIhRv3T1zuiYd9O+CczuHdloYSRTVrJyZz0/q8QeNptBrs55ioZjnPzpDdqu9xPVYsh6mXhIJd9p40PP7aFm+8J9jXKdZ9RP17URRron0VQNg1lPZbOL6j3FGz5cbTTipy0sSpIkPlF5jB9ET/Iz/0Vq5ELssomRuJdB3DRYK3mi8fCS5/Dc7MOxqzLlYSSXJ/Rlo7ZIrkuEkVSbXXskmVwIKMtNqp3/eZl6Tc9fnbRYr5SmaZz8yXVuXO2hbK8TZ7kVSZaIBGL0XRvnpe9f4lO//8C6twfIpPFeD1df7yCmi+OoM6M3KwQnIty90sdYr5sDz2xDn+F7SzQcZ+TeJBMDXjRNw+GyULatAOMKt2nYyHLvLi7kFJfRwRcbn+LyZAc3J7sYiU9SYLTzbP4udufVYlD0y54jsWIhVfM8cjmEpFosFiceUzEYdaI2wSIWex3M3vE3G2a/TpdqSzZez6vZbXdswEPrjQHK9jrJr7y/pYPBoqPuSDFtbw1y9d1Onvqt/Rlo+frFYyo3T3Wj2TSq97tmdsa1FZvJq7LS9944nZeHaHowc+XZPWMBrr7Wgc8bxJCnIMkS/Z1j3LsyyO5H6iiuc2asLdmw+e/kwrrZdGYeLtrNw0W713WeVPSObJUQMtg1yfUzXdy7PYyqaRS4bOw6Us3OI1UoOjGOvRKJ18hKeyRSaf7rdLG25HoIAei+M0qMOM5y64JjkixRUGuj4/YQ0XBs0SGNcCBKLBLHaNWj0ydf6p8pYz1uAr4gFQ8UzISQBINVh6PSTP/dMRoOlaGkoa2apqHGNWRFQpIkouE4V1/rIKRFqHrIhd40fc14TGXk5hTX3+rkiGM79kJzytuSKzb33VzIOesJI+na1C7V1jss035tkNf+9goRJUp+nQ2dQWFq2M/rv7hK371x4jUeZGVj9o6stoaJUbEnrTcye7O85SzXI5FqS4WLZENJ2Q4hy83PiUbiKAZpwZt2gt6koKoa0Wh8QRBxD4bou92OryuAFAPJKlG4M5/a/SUYLcv3pqZDwB1GMkgYbMmvb3UZ8fd6CPmjWJ2pCyLRcIy+W2P03RklHIii6GXKGwrRGRV83iDVD7nQme5fT9HJlO7Np/vUKH23R9nxUOYmmGeaeLQSMs5zsw/PzT6iY94NubnZSqx18mXQH+Hkz64j5Us0PVZOcUMeBVU2ag8VodTFOfPuDcI9loyuekmVtdYwSYSR19u+PfMG2h04m7QC62Lm90ikg1pmmgnLS4WL2b0k2QjW8iqH+PIKLcQDKtFQPOlx72gQm92EyTz3jb3z5jDdv57EekPmqFTLCfM2dvnLCLzj5eovOwgHomv+HtZD0cloMQ1VTV52IBZWkZBS2vMYCcW4+Ou7tF7sQbOpOJrMGEoUOluHuPr6PRSrNCeEJEiShLXUxFivO2VtyUW5/3gpbFqze0eS2YgrbWb3hqylTsfQbS/dQxNUHnfSNzI055i5QI+9xEbv7VEqd7pSPmckHlOnu63dYRSdjKvagSUvtW/ca937Zn7NEZguKrea3pF0DtWsdohlI/TsJTTsKcX+ioX+GxPUHJz7ugu6I3j7Q5x4qmHO0tdoJM6ZH9+mPuDicHnjzNcUWmxURvN5p7ONrsvDNB/P3DyMhMIqB8p5Be9AgLzKucNNmqbh7g3gLLFhtKaux6bj/QGmJr1UHC3EYL3/u8+vs3HzJz0EfRE0INlftKxIRNXkIXCz2Dh/DcKmtFjp7XSstMkUo2LnxTNvr6nXYizYg8URwmpJvvesxRXA0xZEjakpHb8e7/Nw61Q3fm8QSS+hxTWU8wrl21xsP1aZ0mvN7xlZaSCZH0ZkSVp1GIHUDtVomsZtbzdXT18nqsUpLy/ngQeOYrUunE+xURnNeh79+G5e/bsr3H1niMJaG3qTgmc4iKc/SF19CXuO18z5mq5bw0QGIuwsKFkQmM16A/XmIm7eGiR2pCzjc0asThNljYX0to4gKRL2UjOSJBGPqIzd9RD3atQ9WJqyoB8NxRhsHyev1jonhMB070xBg42Ru25C3ghm+8IVMv7RMMVF+SlpS64SQURYk5KWmuU/aR0SvSUbQWKIIBVLdmVFRo2qaJqW9EaoRlUkWUJKYeElz6ifq691gE2j4oECDDY9qqrhHQjQ2zaMpmrsfqw2ZddLWMuS3vlDXokwslrLLftdCY/Hw3/5q7/i9vvXMPrBKOuYkoL8uPKHfPEPf58jR46s+dy5prGlDJPVwLXTnXS1jaJqKjabmYef2Mneh2oxmub2HngmAljiBsym5L0KhRYrWkAj7I+iS+E8jJXacbwKTdUYvD3OeKsPxSARC6oYDXp2P1yLqzovZdfyu0NEojFcRckfqop25DF0fYrhW1PUHCma83c/2e1D82tUPOxKWXtykQgiwqolQoituSTLLcmu2XMUEuPu6+kNgelu43vXBwlNRTDnG+cc0zQNT3+QsppC5EUmDq5F19VhYrr4zFJG7YNr2cstSLLEwJ0xaltKsBVsrln76xke0TSNv/rv/43Wk5d4svIglTXFSJJEIBLi3a7L/Nf/5z+R/6f/B9u2bUthi7OrsrGQysZCgv4I8Wgcs8246DwKvVFHmBhxVU16PBiNoimgM2RnBY2iV9jzoTpqW0oY7XITi8axOIwU1+djSPGwmazISJKEGk3+s9AbFSxOE5GRON3vjmIrMyHLEv6RMHG/RkNLGYWVG69neDVEEBFWRYSQaWtZfbASBeV2CksdDF2bomSPE3O+AUmSiIXjjN5xI0dlqnelroplLBpnpGeKvHoLSBK+iSC+qRCxyPSYtMGsIxKNMto1temCyHq0trZy68xlnqw8SJXz/t+CxWDiiW1H+fGtN3n5pZc3VRBJMC9TYEtVNfIKLAQNUQbcbrYVzR1m1DSNLu8Ytt2WrK2cSbAXWrAXWtJ7jQIzNocJd19gwcMFgLs/gN1ppuXxeka73Yz2utE0FVexk8qHXBRWOTZ9DSERRIQVK2mp2XIBZKmVGbIkpbyCqiRL7H2inmtv3GPkshsMErJeIuaLYzIa2PtYHXklqZt/EI+qaKqGYlSYGPAQ8IRRzDLGfB2aqhEJxAj4wwx3TlF3oCxl112v9S7pXa+rV69i8GtU1iwMhbIks72ghitnLhD5hxEMhtRWxlzNaqFM0jSN1ov9XD51j7ERD+NeL8N9E0S80FRVhl6vIxiNcGdskBG7nx37a7Pd5IyQZImavaXcONXJuNVLfo0NWZHQNA3fcIipDj81zaUU1TopqnVmu7lZIYKIsCFkeg+OZMMu86VrozajRc+hjzUxOeBjrNeNFtew5psoachP+R4YeqOCwaTHPeBDM2mYC/XoZnVNK3oZLa4x0j1F0BPG7Fj4RJcOYwMe7lzsY6TfjU6nUN1cRPP+Csy2+2/q6520uh6RSBSTpF/0SdWsN6LGVWKxWEqDyPyeuLVKxxYEl0528O4rtzEU6Sg96KTscD6XX2nn1L12btwZoCDfRkCJorkkGh+tpKBicw83zFaxvZBIIErHlQE83QF0VoV4SEWKSpTXFWW0imsuEkFEyBmjngnuDfeioVFbVImD6T/ObO3BsdTNPt27xUqSREGFPe03a1mRqWhycfmtu+TtNM8JIZqm4e4KYrToUYwSg3cnqD+Y/l6Ra6e7ePfFW4SJYik0Eo+ptL8wyJXTnXzkdw5SXJk3ZwUNTO/vk8kwUl5ezpQcJBAJYTEsDMndU0MU7yjFbE7NcFaqAgik57XrHvNz/s028urNlG6/v8Kj9vFCovsVek6NYq63Uru3guLavLRULM1lkiRRf7CM0sYChtonCPkj6I06iuucOIosm37oZTkiiAhZ5w8F+OHpF7nSepOoP4QGWEryaOlu4Yv/8g9xkrmKqrNv+Ms9NW6W3XVr9hZz6aU23G0BiEmY8vXEIyq+wRCxqThlewoIjIXxT6W/Kmlf+xjv/PomlkoDdTuKZ6p5xsJx7p0b4eXvXeI3/+hh9EbdzM9/9pLeRBgB0hpIHnjgKD+u/CHvdl3myW0PzHkjGfSM0R0f47ef/lRK3mAWK8m+Hql+7d69Okg4HqV228KhKnuxmcJmO7FgnLJtBSm97kZjyTNmJMxvNCKICFkVjcf45qs/pPvOPY7aG2koLUOSJHpkN+fPXubP//zP+d/+v1/HlIGXarKnzs0SNpaiN+lw1TgJRIIEByL4ekJISJjzDJQdKsBeasY7GErrHjeapjHUPcUr37uMJxSgtNI5p6S4zqhQe7iIjpNDdFwfYvuh+13ZqSh2tlpWq5Vnfu8BfvAffsr/vP4zmvIrMOuN9LlH6YpP8MAzT/H4448v+vWrnecxPxjn2uvSNxVCZ1XmbD3QOzw48//NTgOesRBqXJ1T+EwQQAQRYRWGr3bP/P9UTVq90nWb9vYOnnUdoMh4f+1+k7OKIpOTn54+z9m3T/PY04vf1FOlxvIg3YGzqJqGLEk80fT5NXdjJ+pjbJRS7OXbCum+O0Tdw4XEIyqyIqEzK0iSRMgTJe6Lp7S2QoLLUs3PXn2D9lNjGKIWetpGsdeb6WodxmI1UdFQMFOjwmDRodhkhrqn5gQRIKNDNYkQsf/wTpz/p513XjvPtXOtaDGNgu35PPvEMxx79BB6/cIVIWsdYkn3UOB6Gc064qH79W8SIcSkm96tNxqMo9Mri+5XI2xtIogIqzJ8tZuSlhp8rcMpCSMX229QrFrnhBCA6KSP/Hw7FVIeZ06f4dFHHsnI8MxiYSQc9674TSBRKfTFM28zFujZEGGkalcRg+3jDF2fomRnHnqLDk3TCE6GGbrmJr/Ijqs6ebXX9YhF4/S8E8LniVCwXYfdbcZWbMRaZMI3HqKnbYz6HSUo+g+eopd4A082VAOkdKhmfpCoa6yirrGK6O/HiEVjmMzGmeGY+dfdjCEkUR3XGwkzMTZF680Y1qLpybmJEBKPqXj7Q9TtSF21UmFzEUFEWLVUhhFvwI9DWXwdv9Nox9M/DoAWimUsjMD9N47ZYQRW/obwkWOPbJgwYnWaaHmygRsnO+k7M45imV4to0WgsMTBng/VpaVLfbhjkqkJH9UPlqEaQ0xaggRGIuRVW3GUmvH0B5ka91NYaicaihHzxCmuWrpnJlWl4Odbzfyh+ddNWOuS71wLIYkAknhdF9ZoeOplBm+Po8SMOMotaJpGaCrCaKsXs8GQ0vo3wuYigoiwJqkKIwUOJx2xwUWPj4XcVBTvRB4MoZaZMhZG4H7vCDDzdL3aN5GNFEYKyu0c/+wuRjqn8I4HkZXplTv55fa0PcmOdk1hyNd9sAeHjeIGha73hhhq0yjZlo/OLOOZCOB0Wel+f5T8fBsNe0uXPe9SQzVrNX+y6GLhINl1V/q1G8ns17MkSex6rBbdGR0D7WNMtPmQZJBUibxCGztP1GRs6bew8YggIqxaKqurHtm2l4vXr9DjH6HaOveJadA/zoji47OHHwCYE0Zg4+xgmggjG4GiVyhrKiRT8/ojkTg64/2eFluJidKmAobuThAYGsZkM+KNhgh2RXDabXz4t/Yv2NdkMYsN1azHSoLEYtfdTCEkGZ1eYdcjNdTvL2W834sWV7Hmm8kvt4khGWFJG+NOLuSMVJd431XZyP7de3njylV2hibZZi9HRqLdN8hteYT9Txzj8J4DM5+f2C11diCZb6MEFAFseSbGO6aYHPQSDceRJAlTkYHa/FLGeyYZv+ulvLiQEx/bTfPBCuzO1dflmN87sh6rCRHJrrtZQ8hsZoeRyjT2fqjxDzZ+FOFm0xB3bGHF0rHPjCzLfOGx5yhxunj3+vvccl8EwGK38eGnP8pnP/NZdLqFL9PFtm/P9PCNsE4STHb7iRni2CtMaKpGcCSMTqeQV+JAc+soP2FmxNzPIWfjmi+TrQCQy8Ej6IvQ0zZKNBzDUWChsrEwZ5fWxmMqA63j9N0exe8JISsypbX5VO0uxl4o9kDa6MTdWlhWuje60ys6Pn7oQzzVcpze8SEAdhw/gMVkRm9Y3ZPV7B4TSE3vyOwxfmBVK2jmT+oT7pvo99LbOoK93ER0PEZAiWApNqI3SUzeCzA85GbHAzVsa6pjPNTLi2fenlmRJKydqmq891obV8904g+EkRSQNJmiYgePfGI3lY2F2W7iHPGYyrXX7zHcO4HJpcfRaCIWUentGmGoc4J9TzZQUJH6FV1C5uRm/BVyRiZ32zXpjWwrreHg48enQ4hr7U+TiUCy2PDNStVYHqTG8iCqpqFq2sx4fzjunVlFsxgRQpbWd2sU2SLR+HgZZbsL0QIwedPH5E0/SkzGYNRRWG5HkqWZn+FGmWuTy86/3MrZN+5gLNfR9FQZO56ppPpYIZMhHy9+9wLDvVPZbuIcvTdGGeqdoPSAk7KWAvIqrRTW26k+XgRWjRtvdRGPxrPdTGEdRBARFpXJEALg2FWJY9d0oar1hJCE1YQRTdPo7++no+MeHo9nwfHEss9EGJkdSOZ78czbIoQsQ9M0xgbc2ErNyLJMQZ2NhkdLaXysnMZHy2h6shxHtQX3iH/ma1yWalyW6jk/X2F1vFNBrpztpGCbjdLt+egM03u+WJxG6o+VENTCXHm7M8utvE9TNfrujGAtNWLOn9s7KssSxTvyCPhDjHS5s9RCIRXE0IywQKYDCJDSADLbSoZqLly4wM9+8XNa790mFo9hM9t4+IETfPrTn6aw8H439WqKnYkAsgLa3H9KkvTBMt5Zn6LN+ySmf7ZjgR4xVLMGXbdGCEYiVNe7FhyTZYnCOjsdd4YI+iJzdjrOlkgoRtAXoaDWmvS43qJDNsv4JoIZbpmQSqJHRJgjGyEkIdUhZLbFekfefvsd/u2//zfcHLpC2f4itp2oxVit8POTP+H/+r//NRMTE3M+f35BrMWWhCZKvAvJSZJEQZkd/3DyScexcJyoJ05eiS3p8dlDNaJ3ZOXCwSiyXlp03yCjTY+qqkRC0aTHEz/vTAVtWZFAkohHFwZSmA6qWkybs8eNsPGIHhFhRjZDSCbML4oWCAT49ve+hVyosv+BvTPLAe35Nkprirn0ynVeeOEFPv/51dWfmF3iHUTvyGIqdxYz8vIU4/e8FNTdrzWhxlSGrk9hsRgpbcxf9OsTP1fRO5JcsoA22udjbHSKzh7m1G9JmOoMEPBGeOfme/fL6s+Tydez3qijoNTOZL8HR7l5wZLdwHgYYhKFlWKy6kYmgoiw6QPIbLOHat4/fZ6hyUH2P7NrwQ3OaDZS0uDi5KmTPP/885hMplVfayNVVc0GV5WDbYcquXuxD99AEIvLSDymEhiNYNIb2PtEPXrj8rcoMVQz1+wAMv91l7c9ztDV6/g645TsmlsxNxaOExzwU9tURUle7rxea/aWMP6Km9E7Hlzb7Mg6eaZ8/MgNN0Xl+eSVJB+6ETYGEUS2uK0UQmaTB0OMTYwjGySM5uRLhPOK8ujvHsbtdi8IIitd0ivCyNLq9peSX2ajv3Uc94gfnSJR2VJMebMLs33lcxRmhxFABBKS91zojQrNR6u4caqTgfAEzmorOrNCYDzMVFcAm9lC3f7lS+hnkqvKwa7jtdw510v34Ch6u0I8rKGGNFxlTvZ8qFYUN9vgRBDZwrZqCEmwWiyoUZV4LI6iUxYcD3qD6BUDFsvcTflWu0PvRirxng3OUhvO0uRzQVZDDNVMWy78ljcXojMqdF4eZOy6F03TUBSFqroi6g+VY8qBSarzVexw4ap2MHh3koA7hKKTcdXkUfDB8m5hYxNBZAva6gEk4cD+/eT9OJ/eu/3U7ph7w1ZVlf67gzx56MPY7QvDxewwAiwbRoTMmd87shKbLbQsF0aKa50U1eQRcIeJReKY7QYM5pXt4ZMtRquB2n1b+561WYkgssWIEHJfkauIZ59+lu/97LuoMZWqpgr0Rj2eCS/tl+9RqC/m2Y99fNGvT6ygSQSS2WEEcru892a3mmGwzTqks9ykaUmSsDpXP/dJEFJNBJEtRISQhZ5//nkURccLL/+SC23XkBTQaXoaq7fx97/4+zQ01C97jkTvCLBgp1Uh9232IR0xNJge8WickS437mE/SOAssVJU61x0abSwOBFEtgARQBanKArPP/9ZPvzhp7l27TqhUJDi4mJ2796NoiycNyJsXmL1jbBS7hE/1964h98bRLFOB4/Omyp2h4WWJ+uxF1qWOYMwmwgim5wIISuTl5fHww8/lO1mbHqesQADd8aYGvWjKDKuqjzKmwowWnNjgqRYfSMsJ+yPcOXVdqJKjMpjhegt02+jEX+MoWuTXH6lgwee24FB7AC+YqIPaZMqaakRIUTIKT03Rjj/89t0tw8T0UXwq0HuXOzh7E9vMznoy3bzZiT2tAGxyZ6w0EDbBIFQmPIDBTMhBMBg1VF+oAC/P8jQ3YklziDMJ4LIJjQ7gGyEEJLYZ2ajS+zQm7Dc7rxbyUS/lzvnerBUGah5uIiSXU7K9uZTc6KIuCHGtTc6iIbXt1Nyqom6L0IyI12TWIoMSSvP6owKpkI9o91TmW/YBib6jjaZjdYLkq7N7jJtqRU0YvUM9N0eRTJBYePcap6KTqZ0bz49744x1D5J1a6iLLYyc5bqaRHDQbktHtNm5oUko+hl4nE1gy3a+ESPyCax0YZiHLsqceyqRO+yb/gQMlsikCTCCNzvGdnKG+GND3iwlZqSVsDUGRUMDoWp4dwZnkmn2ctp5/83+7iQmxwuC4HxSNKdoTVNIzgRwV4gJquuRtqCyJ/+6Z9y7NgxLBYLTqczXZcR2LhDMbkQQObvxpsKycLIln/K1YDlCmAm32B105i9c+1iwz7zw0gkFOPWe728+J2L/Pz/f553X7jFaL971dcVUqe8uRDCMNXjX3BsstOHFJWnP0dYsbQNzUQiET7zmc/w4IMP8td//dfpusyWtxF6QTRNwxcKoKFhN01vTpULIWT+brypNLu2SK7QVI2Jfi++ySCyLFFQ6chYQavCcgfDQxPk19oW9IrEwnEinjjO3esv855qLkt1SlbQrGYn5sTn/OSl12l9cxQTFgwFOnQGma6uYa6e6+SBx5s58FjDsnusiB2gUy+/zEbd3jLuXR3APxrGXmpC08A3FCTm0Wg6VElesdiEbzXSFkT+5E/+BIBvfetb6brElpYIIJC7IUTTNM63X+Wta+fpHx4CoLy4hA9HPsrjTz6ZExtVpTOM5BLPaICbb3XhnvQj6UCNayiSQlldAdsfqkZvTG/NlMqdLoa6Jxjv8FLYcH+eiBpTGbo+hdlkpLQxP61tWKv11hdZSxhQVY2+02HC0Tj5B0Bn0oA4lkoJd3eAX/ztGW4N3aWwdvkhABFCUkuSJBoPl+NwWei9OcpU+/SQYn6Jg6qjRRTXOrPbwA0op+684XCYcDg882+Px5PF1uSujdIL8tP3XuONs+9QEXfwkG26QmlH9xB/851vM+Af53c/+bmcCSMAatl078BmCyQBd5jLr9wlKscoPeTE7DSgqhq+oSD9d0aJRePse3r5p+v1KKhw0Hykitb3+vANjmJxGVFjKsHRCCajkZbH69EbU/Nz900E6b89xsTQ9NycglI7FTtc2ArMaz7nWsLIenojJvo8uCf8VB4pXrAJnbnRTmxqHE+7RNOOqpz4G9pqJEmipD6fkvp84rHpiamioura5dQd9xvf+MZMT4qQ3EYIIQDtQ928+d67HDXUszPv/o243lZGhzbO6y++wsFd+9jVtCOLrZxrs/aO9N4cIRiJUP2Qa+ZmKcsSjnILikFm5OoUk4M+CsrTO1xWs7cEZ6mNgdZx3CM+JEWman8J5c2FKdvxdfDuBDdPdRGTYliLjAB0tg3S2zrKrodrKdtWsOZzz5+/sVQgWe+QyOSgD9kkYXIk/7nYy8xMtfmJRdS092YJSxMBZP1W9RP84z/+YyRJWvK/O3furLkxX/va13C73TP/9fb2rvlcm81GWxVztu0K1qDCDkfVgmPN+dVY/TJvn383Cy1bWqJ3JNWTWLO1ckbTNIbuTWAvNyW9YVoKjUhGjdHOqYy0J6/Yyo6Hq3ngN3Zy9JPbqT9YlrIQ4psMcvNUF3qXTO2JYop3Oine6aT2RDF6l8zNU134JoPrvs5yq1tSMS9D0zSW6uiQZJie3bvJZ/gKW8KqHvv+2T/7Z3zhC19Y8nPq65ffJGwxRqMRo9G45q/frDZSAEkYGBum1OBM2m0sSRLl5kL6+vqz0LLlpXqoJlFTZLmt2dNCg2gkjmmRLd4lSUIxysSiG7/uwUDrODHiVO4smPO6kySJkp1Out4ZZeDOOE0Prr+A3vxS8POPJYT9EQbaJhjtmSIeU3EUWihvdpFftvTE3LwiK/FrKhFfFINt4e/ONxTCnm9BZ9gavSGxaBzf+HSItBWa0em3xve9VazqDltUVERR0dYoOJQrNmIIATAZjPjjiy8zDETDWMyuDLZo9VI9VBOOezMeRiRZwmI3EpqKQNXCmfyqqhH1xTE35sZeL+sxOejDUmRAkpOEX1nCUmSYmTeSCsv9/twjfq682k4gFMZSZEA2yfT1jNLfPkbj/grqDpQuOr/DVZOHzWFh6OYUFQcK51Tx9AwECE/EaHq4aNPPD4nHVDovDdLbOkY4GAHAaDZQ1eyi7kCZGBbZJNI2EN7T08PExAQ9PT3E43GuXLkCQGNjIzZb7i3TyzUbYVXMUvbV7+RvW9vwxULYdPeXiOrzbQRiIXrj4/z2/mez2MKVmR1GYO29I4leEbg/tyBRUyLdKppd3DrfTcgTxeSY+3Q92elDQaG0ce1zJ3JJsiJTs2XqbTsejXPt9XtElRg1DxfNBAlN05js8nP3Uj+2QvOiKywUnczex+u4/EoHPadGsZQYUQwywfEIcb9GzY6STV+rQlM1brzZyUD3OI5qM4Vl06uqvINB7l7txzcZYu+T9chJgqewsaQtiHz961/n29/+9sy/9+/fD8DJkyd59NFH03XZTWGj9oLMdqRxDycrzvFi7wUeK9xDkSkPfb6N0eAUb41do7ipiocOPZjtZq7I7KGajTiRtXKHi9HuKQYuTOCoMmMtMqHGVNx9ASLjMZoOVWHJ2/hDooUVdtqvewm6I3gHgkQDMWS9jKPMjKnAQGAkQtnuzPTCDXdO4fMFqTo+tzdDkiQK6mwExkL03hxdcqmno8jK0U9uZ6B1nOGuSeIBlSKXk4qHXBRWOTZ9b8hot5vBrglK9zuxFN5/fRq36bEUGBm6PEF5dyHFdc7sNVJIibTdUb/1rW+JGiJrkO0Q0j8xzKXOW/jDQfIsdg7X78blWH19B4vRzD965rf469f/jl/1XcYetoIbQhao2lPHl7/4D7BbN1bP2EZdVaPoFfY93Ujn5SH628YY7nEjSWB3Wmh+pHpdK0lySVlTATff6eb2r3sx5evR2xTiEY2Jbi9aVMPhtFKxvZBYNI57yI+qatjyTZgdqQ9h7mE/epuC3pz8dWIrMTN5z4uqaks+0ZtsBuoPllF/sCzlbcx1g3fH0TnkOSEkwVJoROeQGbw7LoLIJrBx7qabXLYDSCwe40dnXuLs1QvoghpWyYhHC/KS7U2eOvIIHz3wyKqfwEqdLr7xf/xrbnTcoXNqEE3TaKypp2XHHmR5Y47tbtQwojMobDs6PS8h5I1Mz5nIM26qp2r3cADZIGFzmTC5dOgsOjRNIzQWwdMRwuowMdQ+Sc+tEULB6b1CdIpCcY2T5gerUrZ6B0CSxHqW9Qr6whjtySdZAxjtegLe8KLHhY1j49xJN7FshxCAFy6e5PR75zhm2ca2sgpkSSKmxrnu7uLX77yOzWzh0Z1HVnXOxJ4yBx88ysF0NDpLEmFkMfNLuyfmhiTbhTejK2gAnV5ZV2GvXKWpGl3Xh7FXmSjakUfAHSYUiIAEtloL+cVxBt+fZHzEQ36jjYrKAhSdjG80xFDHBL4XQxx+tgnDIquLViuv2ErXrSGigRh6y8LbrHc4SEGpQ8xvWILBpCfgDy16PBqIYbVuvtfyVrQxH0s3kVwIId6gn3euvkeLsYpmRyXyB0/JOllhf34D9RTyxuXTxOIrr62RSxvbZVIihMiShCxJS4aQxKTVsUDPlt6ZNxUCnjC+qQCOiuklrY4iC8U1ToprnOQVWbAWmQhHIphdeoqaHBgsOhSDTF6FhYojhXg9fvpujaWsPcV1Tqx2C0PXpohH7i+N1jSNiXte4h6Nql3FKbveZlTaWEB4MkbYF11wLOyLEp6MbZpJ1lud6BHJklwIIAmtg50E3T52Fu9PenyXo5pfj12hZ2yQ+pKFBcpm26oBBOaGEFi6JyRh9gqaTPeObCZqXEPTmDMxdLagNwwymPMXzjfQmxSsZSb6W8dSNhdD0Su0PFHPlVfb6T41itmlR9bJBCciSFGZpkOVFNXkpeRaa6HGVcZ6PEwNTe+T4iiyUFTrzKnlsCV1TgpvORi4MEFhkx1b6XTvh28oyHibj4IiByVifsimIIJIFuRSCIHp+SGaBkY5ebe0UdGjqirRZXpERAiZG0KWCiDzZaXY2SZidhgwmvT4RkKY8hbO9QhORdHiJD0GYLTr8AyHlp08uhqOIgsPPLeDwbYJRnvcxGMqRXVOyre7sro7q28yyLXX7+GZ9KOYZTQJ4tdUbA4LLU/U4SjKjZ1jpydZN3D73R5G7kwxetODJEnoZIWymgJ2PFSNIgqbbQoiiGRYroUQgFJnETqTnr7gGFWWhQXregOjGMxGSvKWX/q4FUNIgrzOiZ+JMCKsnk6vUNHkov16P7YS85x6KfGYircngKRKWFzJg0jYF8Ng0qd8zobBrKempYSaltz4e4+GY1x5pYNANET50YKZyaARf4zhG1NcfqWDBz61HaM1NwrcGcx6Wp5swD8Vwj3iB6bn31idi8/REjYeEUQyJBcDSEKNq5y6qhrO322j2OjEqNy/ifuiQa74umg5tA+ndeuGDCH31e0vxT3iY+D9CcxFBsxOA9FQHN9AELPOhFwo4x0MkVdhmfN1sXAc32CIppb1l37PdUPtk3i9AaqOu9Cb7vcmGKw6yg8U0H1qlIHWceoO5NZyYavTJMLHJiaCSAbkcgiB6SJLv3niY/xnz3f58dAZms3l5OmtjIXd3I0MU1xbxnNHn8p2MwVhSTqDwv4PN9J/Z5y+1jG890LoDTrqd5ZTucNF19Vhum8PEw3EyKu0ouglfKMhJu76cNgsVO7c/NtXjPa4Mebr5oSQBEUvYyk2MNw1lXNBRNjcRBDJkFwNIQkVBSV89ZO/x5s3z/He7atEwiNY8608ufNDPLbrKHbz0uPGifkhW5mqaXOGZ8Jx76rmiSSIeSJrp+gVqvcUU72n+IMdbO//PrYfr8Jg0tF7e5S+7rHpya2KQnFlPtuPV2G0LL90V1O16XkkirQha7DEonEUw+ITUhWDQiwYz2CLBEEEEWEWlyOfzz74DJ8++jShWASTzrCiwmNbeZJqQo3lQboDZ2fCSGJvmdWGETFp9f9t795io7rvPIB/z5n7eC72XHwZezzYmFtM6hACLLBJoEsTlCorthLPUEUoqkikKHmhfeGpykORWolGafJC+1K1T2mkKNttQhPobsJmGwIBggFjjO3xbXyZ+3hu5+yDGcfG9/GMz8w5349kCXvG9g8Oc853fv/LKZ3Hg4KoE9GxtxmBrkaER+KQ8hJsLsuqWv7RUBIDN8cw2jcFSZJhdZrh3+6Bb7unolaarMTusmCqJ7ogpBWkJtJoaOCSWNpY1fMKog0jiiKsRjNDyBoFrPsRsO6HJMuQZBlHtp4AMNMZWYu5+4tQ6RlMOngDTjS0160qhIz3R/B/H91BcGAcllYjHFstyOgzuPVlH25c7EU+J634MypF8zY3hJyIqb74gscigwlIyZmbJBJtJHZEqChzh2IYQuab2x0phJHV7Cky19zOCLDyLeepPHKZPG5e6oPoAJqf8sx2EZzNViQn0xj5ZhJ139kR+EFlD70WOLw12PK0D3e/DiI5kYG9yQJBAGIj08hM5tDW2QhXC1/PtLHYESmjhq4AGroCFT8/ZK3mdkG0GEKW2969IGCdubOw9Oi29MV0R1468Pxsd4SUMdo7hVQqDe8O54KhDKvLBEu9EYO3Q5Dl6rmzzKZdjdh1pANOiw3RuymE76Rg01vQdagdWw+0VOXcF6pu7IiUSaWvlCmW1odiCiFkNTe8K4SRwmZnxc4bIeUkpqahr9EtusoEAGq8ZkzdTiCXzsNQJTdBFAQB9W21qG+rRS6bBx7tSMsAQkqpjldOlVFjCNH6UMxaAsjjSjFUQ8oQdQKkrLTk5M58VoIAAYKuOi/ieu5MShWAQzMlNHcoRo0hROtDMcWEkIJSDNXQxnO3OICsgNRkZsFjsiwjGkzB0+LgBZ1oHRhESkSNXRCAQzGlCCEFhTBSUAgjVLlqm2zwNDkweiOC1FR6di5IPith9FYYSAKtO9X1mifaaByaKQE1hhAOxZQugFD1EgQBT/5bG779tBcjX0cgmgWIRgHZWB4mgwE7n9sEV7P2Xh9EpcSz7DqoMYAA7IIwhNBcRosBu3+8FZNDMYz3RyHlJFhrTWjscK1qN9bVkCUZ+bwEnZ6TRkl7eKYtEkOIOjGE0GIEUYC7xTEzZ6SEUtE0+m+MYahnAvmcBKNZj+ZtHvg7vTBaShNyKlk+m8dYXwSJqRREnQi33wGH18owpjE82xZBrSGkQIshhAGENlp8MoWr/3kPyXQa9mYzjDUmTEezuHdtEGMPwnj6x1tK1nGpRBMDUdy83IdUYhqiRYSUkyFeFeD112LnoU1Vsxya1o9Heg3UHkC0iiGENposy/juHw8xLWXQetADnWFm3YDDB2QDNRj8agI9/xtE5+FNyhZaJtHxJK5/eh+wAy1dbhisesiyjEQojdFbU5Auynj6pQ52RjSCZ95VYghRJ4aQheKTKQx8F0LoYRiSJMPprUHzdg+8gYW7i1JxoqEkwmNxeLrssyGkwGDRo67NhuHeSXTsa1ZlV2TgxhiyuhwCT3khiDP/pwRBgK3eDEEEQtcjCA/HUefTXndWi7h8dw3UHkLmrpRRO6nJDKnJDMGsZwiZY7w/gq8+7Eb/vVHo3AJMTTpMhCP45pN7uPvFYFVtZV7J4pMp5GUJVrdp0cdrPCbkcnkkw9MbXFn5SZKMkb4pOJqtsyFkLqvbBBhlhPojClRHSuAZmABoa5IquyCLy0zncOOzBxAcQKDr+3eqrnY7IsEkHtwaQW2jDQ2b6xSutPrp9CIgA1JOhs6wxI6tQvXu2LocOS9BlmToTYu/DxYEATqjCKmK7mpM68MzMTGEEABgtGcS05kMAp3eBe9Unc1WxIZTGOweXzaI5HMShu9NInhnHMnoNIxmA5o2u9C8w6PKIYZiuZrtMBoNiAwm4Gpb+LoLDyRQYzfB4bEqUF15iXoRFrsJyYk0HL6Ff798VkI2nofFsXi3iNSHQzOrUJgfojaOzhY4Ols0sXU7h2JWFh1PweDQQ2dc/LRQ4zUhPBZfcngml83j2l97cOMfvUjmUzA3G5C35HD3mwF89WE3EiocZiiW0WKAf7sX4d4kIsHk7L+plJcx+SCG1EgWgScbIerUd4oWBAEt2z1IjmWQCs/fOl+WZYzfjcKoN6Cxw6VQhbTReEZegVonqbILQo8TRECWlm6Hy5KM5eaqPrg6gtBIGL49dTA7jbNfz3XkEfznJG5d6sOef9/GCa+PdOz1IZvJI3gnhMl7ceitIrKJPPTQYcvTzWh5wqN0iWXT8oQX4wNRjHw9BWuTCTUeM/JZCdFgElIc6PzXgOY6aLIsIzKaQDSUBASgttEGu9uiidcLz8zLYAipfgwhq1fXZEd/9ygyiRyMNfP/vWRZRmx4Gk2t7kVPjLlsHoN3x2H3W+aFEADQm3TwbLMjdD2GyGgCtY22sv49qoWoE9H5fACtO70Y7Q0jO52DucaAhs0uWJ3qHpbQ6UU89UI7+m+GMNgdwsRIHIIAuJscCBxsgNtf2o3jKl0yksatz/swORaDLEiQAeggwuNzovPQJtWHMp6dFzF3KEZNIYQBhJZT31YL+zdWDF+bgm9XHQzWmX87KS8j1B2BkBbgf8K76Pcmw2lkprNwNTgXfdzqNkEWIohNpBhEHmN3W2F3q28uyEp0Bh3adjUi0NWAbCoLUSdqchOzzHQO3/z1HuLpFOqfcsLimgnyidA0xm5PIftfeTzz8taZCc4qpb2jvgJ2QaqfmkLIx19c2rDfpdOL6PrRZlz/230MfDEBg1MHUScgE85BL+rR+eymJUOE8OgcKecXnz8iyzMfiy3XJG0TRQGmGuPKT1Sp4bsTiEaT8B/0wGDWzX7dVm+BwarH0JVJjD0Io2mLeufMVP+ZuoTUGkIK1B5CCgEEUFcI8VhbN+x32uos2PeTHRh7EMbEQBRSXoa9zYKmrS5Y7EsPF9TUWVBjNyESTMJSt/B58ZEU9IIOdU3shhDNNdI7BYvXOC+EFJhsBhhq9RjtnWIQUTu1DsVoiZq6IIAyIaRAb9DBt9UN31b3qr9HFAUEdjbg1hcPEXYk4PR/f+Oy1FQa490xNG/yoKbWvMJPIrWQZRnZdB6yJMNo0Wti0mUxsukcDLULQ0iB3iwim8ltYEUbTx1n7XVQexdEC9QUQpQMIOvV0ulFMprGw+9GEe5LwGjXIzedRz4ho765Djuerb6/Uylk03lExhKALMPmssBsU/cwhCzLGL0/hf5bY4iMJwAZsNVa4H/Ci+btHg7PPabGacZkePFdZGVZRjqSg7dV3QG++s/c68AQUt3UNhRTUI0hBJjZH2Lr/hY0bXFh+N4UUrFpGNx6NLTXwd3i0NwFSMpLuP/PYQx2h5BOZyADMOj0aGirw7b9LTBa1LkS4sHVEdy7GoShVkTt9plt3OMjKdz87z5EQ0nseK6V3ZE5fFvcGL04hcT4NGo88wNHbDgFeRqqHpYBNBpEtDQUo9ZJqmrqgqiJIAhweGvg8NYoXYqiZFnGrUsPMXg/BEfAAq/PDUEnID42jeD9EBLhaez+8VYYTEu35KtRNJRAzzdDcLRb4Gr7fj6QvcGC2EgK/TfH4Ak4Ub+pVrkiK4y3rRa+NjeC18dh86Vhb7RAlmVEh5JIjWQQ2NGIWpXPrdLcWVxLXRCGECJlhIfjGLo/AW+nA/ZGy+zXa/01sLpMGLwygeG7E2h9sl7BKktv6O4kZL2Euk0Lg6i90YLwwwSG7owziMwhigJ2/nAT7N9aMXB7DGNDM8M0VrsZT+z3wd/pVX0HSVNncoaQ6qbWoRhSn5H7UxBMgK1h4di+sUYPi9eIIRUGkUQ4BXOdYckLp8VlRGwytcFVVT5RJ6JtVyNan6xHKpoGAFhrzRA1MpypubO52kOIGgMIoI4uyMPkl/M+//TuHxSqhMotnczAYNMteUE22Q2YHsos+lg10+l1yCWWvk1APiPBYFDn3JhS0OlF2FyWlZ+oMtV7VqcFGEIqVyGEiIIwL4CYdOo6VtUgFUsjeHsCYw+nkMtKcLitaN7ugafVUbIWuNFiQHYsD1mWF/2ZmXgWJov6Vs94A04MX55AJpmD0Tr/9ZrPSkiOprF1l7q6QLR+1Xtmp3nUGELUMBQzN4AA33dBGECUER6J49on9zGdyaCmwQidU8T4RBijf5tC4IkGbDvQUpIw0rjZhYE7ISRCadjq5w/PZJI5JMcy2LSvad2/p9xSsQyG704gNBCBLMlw1tegebsHDs/iW9I3bK6D80YNhr6eRMOTtbDUzoStdDyLsZsRWCxm+Latfn8a0obqPLsXYe5KGTVRYwAB1NcFARhClJbP5vHtxV7kjTkE9nkgFu7d0QFEgkn0fTcCp9eKpjVs5LaUOp8NTW0uBG+MI9OWhaPZOrNqZnQakz0x1LpsFX9BngzGcP3T+0hnM7DUGyHqBfT3xDHYHcL2f/HDv3NhZ0Nv0GHXix24/mkvRv4ZhmCaWUklTUuwO6148oftqt9Hhdaues/ya6DWSapqDSEF1RxCCsTH3l0zhChn7EEYicQ0/Afd34eQR5zNVsRHpzFwO4TGLa51d0UEQZi5a2qNAcE74wjfHwcA6PU6+Fo92HbQD4Opcv9/Z1JZfPv3XsgWCYH93tl/L1mWMX4vhttXBmBzWxfdst/iMGHfse2YDMYwNRIHZBkObw08rQ6IOvXeuI2KV7mvhBJhCCEiAIiGktDXiDBYFj/t2RrMiN5NIp+ToDesf38PnV7Etv1+tO1qQngkDlmS4fBYYXEsfc+eSjHSM4XUdBqBPd55oU0QBHi22NEfGsfg7dCS9w4SRAFuvwNuv2OjSqYqptogwgBCRPMIAuTFbw4MAJAlGRBQ8j0bjGZ91e2bER6Jw+jUQ2dc2MEQBAG2RjMmh6IKVEZqpMo+GUMIET2urskGKSkhHcsu+nhsOAVXox06vSpPi2ujje0rqEKo7hWn1hBSoPYQIjWZ562W0aLxZL/SJaiSp9UBR50NI9+GkU3lZ78+M+8hCikmo3WRCZhaVNtgQyaSQz6zcE8QWZYRH5mGy8dhFyoN1QzNqD2AaIEaVsqs10sHngdQ3XfhrVSiTkTXj9px7b96MPA/4zDWzgw9TE9moZNFbNvrh6fVqXSZFaFxiwu914Yx/O0UfE/VzZ+sejcKpAW07PAqXCWphSrO+Awh1Y8hZL6XDjyPj7+4hPFkP8NICdXUmrHvP3ZgtHcKoYcR5HN5+HZY4dvm1uSOlksxmvX4wQ/bcf3ifTy8HILFa4QgCkiNZyBKInbsb11yoirRWlX9WV8rIaQwP0RtGECWxjBSHnqjDs3bPWje7lG6lIrmarZj/0+ewNCdCYwPRiDlZNRvqYNvmQ3NiIpRtWd/rQQQQL2TVBlCVlYII0RKMNuMaN/dhPbdlb8LLFWvqpysyhBS/RhCiIgIqMKOiFZCyNyhGDWFEAYQIiKaq2quBloJIIB6uyAFWgohkizP2+Y9nY+tept3DskQkRZUxdBM/U4/AIYQqi4B634ErPshyTIkWcaRrScAzISRlcxdvsuJqkSkZlXz1lTtIUStQzE0E0geJr+cF0aWuxMv9xAhIi2pio5IzRZ173Y4twvCEKJOAet+ADNDNQCW7I58/MUldkGISFPKFkT6+vrwyiuvoK2tDRaLBZs3b8bZs2eRyWTK9SurmhYCiNa3bi+EkYJCGCEi0rKyDc10d3dDkiS899576OjowM2bN3Hq1CkkEgmcO3euXL+WKhBXyhAR0VLKdmU4evQojh49Ovt5e3s77ty5g3fffZdBREMYQoiIaDkbenWIRCJwuVxLPp5Op5FOp2c/j0ajG1EWlQlDCBERrWTDJqv29PTg/PnzePXVV5d8zttvvw2n0zn74ff7N6o8RTg6W1R7D5kChhAiIlrOmoPImTNnIAjCsh/d3d3zvicYDOLo0aM4fvw4Tp06teTP/vnPf45IJDL7MTAwsPa/UZXgShkiIqIihmbeeustnDx5ctnntLe3z/55aGgIhw8fxoEDB/D+++8v+30mkwkmk2mtJVUdblpGREQ0Y81BxOv1wuv1ruq5wWAQhw8fxu7du3HhwgWIYlVsW1I2Wtq0TOtLdYmIaHXKNoAfDAZx6NAhBAIBnDt3DqFQaPaxxsbGcv3aiqWlLggnqRIR0WqV7UrxySefoKenBz09PWhpmT8hU360u6RWMIQQ0Wpkp3MYuT+F2EQSoijC1WyHp9UBUaftbjKpW9muFidPnlxxLonaMYAQ0WqFHkZw8/MHmM5kYLDpIOdl9H03DKfLhqde2AyLQ/3z50ibeNUoEy2FkAKGEKLixCaS+PbvvRAdQGunB3qjDgCQjmUxfG0K1/52H3uPbYdOz84IqQ//V5eBFkMIERVv4FYIOTGHpq662RACACa7AU276hCZjGP8YUTBConKh29hS4gBhIiKMfYwDHuTGYIoLHjMZDNAZxcxMRhFw+Y6BaojKi92REqEIYTW6+MvLildAilEyksQDUufjkWdiHxO2sCKiDYOg0gJaTWEcM+Q4nx69w+zfy6EEI+1ValySEEOdw2SofSij0k5CZloDjaXZYOrItoYDCJUNKnJDKnJDMGs50TVIpl0doYQQssODzKRPGIjqXlfl2UZoTtRGHUGNG1Z+oahRNWMVw8qCpfrrk+hG8IQQgDQ0F6H1mA9+m+NITqUgq3eBCknIzqUgpAWsPPZTTDbjEqXSVQWvIrQmswdhmEIWR+TbmYojyGEBFHAjmdbUdtkw+DtEKI9SQiCgEa/C/7OetQ12ZQukahseCVZJy1NUmUXhKh8BFGAb6sbvq1uSHlp5m7mi6yiIVIbXlHWgSGEiMqBW7qTlvCqUiSthBAOxRARUTnxyrJGWgkgczGAlMbD5JcA5i/bJSLSOvb/1kCLIYRKoxBCRGFmzH/usl0iIi3jW91VYgihYjweQB7vhnDFDBFpHYPIChhAqFhLhZDCsl0iIuLQzLK0HkK4dfv6FUJIAUMIEdF87IgsQcshhCtliIhoo/Aq8xgtBxCA+4UQEdHG4tDMHAwhDCFERLSxGEQe0XoIKWAIISKijaT5qw4DCBERkXI03RFhCCEiIlKWJjsihQACMIQUcKluaRX2ECngtu5ERIvTXBBhF2QhTlItLW5kRkS0epq68jCELMQQUlpzQ8jcLghDCBHR4jRx9eFQzEIMIKXFLggRUXFUfxViF2RpDCGlxe3ciYjWTtWrZhhCiIiIKpsq3xJzKIaIiKg6qC6IsAtCRERUPVQVRBhCVod7hpTW3D1DOEmViGhtVBFEOBSzOlwpU1pcKUNEtH5Vf0ViF2R1GEJKiyGEiKg0qvqqxBCyOgwhpbVYCGEAISIqTlVemTgUs3YMIaX1+J4hRERUnKq7OrELQkREpB4VHURkWQYAxKcTAAD7Dh+iiRgMbjtS8ZiSpVUVKZqBkKnoQ11V4skEhDkdkVQ8A0mXWfPPyabyyAjZUpZGRFQRMqkcgO+v48sR5NU8SyGDg4Pw+/1Kl0FERERFGBgYQEtLy7LPqeggIkkShoaGYLfb570DVYtoNAq/34+BgQE4HA6ly9E8Ho/KwuNRWXg8Kk8lHxNZlhGLxeDz+SCKy99NpqL79aIorpik1MDhcFTcfyIt4/GoLDwelYXHo/JU6jFxOp2rep6qb3pHRERElY1BhIiIiBTDIKIgk8mEs2fPwmQyKV0Kgcej0vB4VBYej8qjlmNS0ZNViYiISN3YESEiIiLFMIgQERGRYhhEiIiISDEMIkRERKQYBpEK0NfXh1deeQVtbW2wWCzYvHkzzp49i0xm7fcvodL45S9/iQMHDsBqtaK2tlbpcjTpnXfewaZNm2A2m7Fv3z589dVXSpekSZcvX8bLL78Mn88HQRDwl7/8RemSNO3tt9/Gnj17YLfbUV9fj2PHjuHOnTtKl7UuDCIVoLu7G5Ik4b333sOtW7fw61//Gr/73e/wi1/8QunSNCuTyeD48eP42c9+pnQpmvTnP/8Zb775Js6ePYurV6+iq6sLL774IsbGxpQuTXMSiQS6urrwzjvvKF0KAbh06RJOnz6NK1eu4JNPPkE2m8ULL7yARCKhdGlF4/LdCvWrX/0K7777Lnp7e5UuRdN+//vf44033kA4HFa6FE3Zt28f9uzZg9/+9rcAZu475ff78frrr+PMmTMKV6ddgiDggw8+wLFjx5QuhR4JhUKor6/HpUuX8NxzzyldTlHYEalQkUgELpdL6TKINlwmk8HXX3+NI0eOzH5NFEUcOXIEX375pYKVEVWeSCQCAFV9vWAQqUA9PT04f/48Xn31VaVLIdpw4+PjyOfzaGhomPf1hoYGjIyMKFQVUeWRJAlvvPEGDh48iJ07dypdTtEYRMrozJkzEARh2Y/u7u553xMMBnH06FEcP34cp06dUqhydSrmeBARVarTp0/j5s2b+NOf/qR0KeuiV7oANXvrrbdw8uTJZZ/T3t4+++ehoSEcPnwYBw4cwPvvv1/m6rRnrceDlOHxeKDT6TA6Ojrv66Ojo2hsbFSoKqLK8tprr+Gjjz7C5cuX0dLSonQ568IgUkZerxder3dVzw0Ggzh8+DB2796NCxcuQBTZrCq1tRwPUo7RaMTu3btx8eLF2UmRkiTh4sWLeO2115Qtjkhhsizj9ddfxwcffIDPP/8cbW1tSpe0bgwiFSAYDOLQoUMIBAI4d+4cQqHQ7GN8B6iM/v5+TE5Oor+/H/l8HteuXQMAdHR0wGazKVucBrz55ps4ceIEnnnmGezduxe/+c1vkEgk8NOf/lTp0jQnHo+jp6dn9vMHDx7g2rVrcLlcaG1tVbAybTp9+jT++Mc/4sMPP4Tdbp+dN+V0OmGxWBSurkgyKe7ChQsygEU/SBknTpxY9Hh89tlnSpemGefPn5dbW1tlo9Eo7927V75y5YrSJWnSZ599tuhr4cSJE0qXpklLXSsuXLigdGlF4z4iREREpBhORCAiIiLFMIgQERGRYhhEiIiISDEMIkRERKQYBhEiIiJSDIMIERERKYZBhIiIiBTDIEJERESKYRAhIiIixTCIEBERkWIYRIiIiEgxDCJERESkmP8HQLBLnyhqkFoAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -286,64 +262,58 @@ } ], "source": [ - "\n", - "# define ML\n", - "K = 5\n", - "clf= KNeighborsClassifier(K)\n", - "\n", - "# normalize data.\n", - "# X = StandardScaler().fit_transform(X)\n", - "\n", - "# split data between train and test set.\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)\n", - "\n", - "# Fit the model.\n", - "clf.fit(X_train, y_train)\n", - "\n", - "# calculate the mean accuracy on the given test data and labels.\n", - "score = clf.score(X_test, y_test)\n", - "print(\"The mean accuracy on the given test and labels is %f\" %score)\n", - "\n", "# plot the decision boundary as a background\n", "ax = plt.subplot()\n", - "# DecisionBoundaryDisplay.from_estimator(clf, X, cmap='PiYG', alpha=0.8, ax=ax, eps=0.5)\n", - "ax.scatter(X[:, 0], X[:, 1], c=y, cmap='PiYG', alpha=0.6, edgecolors=\"k\")\n" + "DecisionBoundaryDisplay.from_estimator(clf, X, cmap='PiYG', alpha=0.8, ax=ax, eps=0.5)\n", + "ax.scatter(X[:, 0], X[:, 1], c=y, cmap='PiYG', alpha=0.6, edgecolors=\"k\")" ] }, { "cell_type": "markdown", - "id": "e33a9bd5", + "id": "c44c8f0d", "metadata": {}, "source": [ - "This drastically reduces the performance." + "Now we will test to see what happens when you do not **normalize** your data before the classification. We will stretch the first axis of the data to see the effects." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "77348ef0", + "metadata": {}, + "outputs": [], + "source": [ + "# make a data set\n", + "X, y = make_moons(noise=0.3, random_state=0)\n", + "X[:,0] = 10*X[:,0] " ] }, { "cell_type": "code", - "execution_count": 12, - "id": "3677e2dc", + "execution_count": 11, + "id": "1152fc32", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The mean accuracy on the given test and labels is 0.975000\n" + "The mean accuracy on the given test and labels is 0.775000\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACT7ElEQVR4nOzddXyd9f3//8d1PCdy4p7Gk7ZpKqlLatSgQvHBxmAwYANmbIwxNj6w4VqYMTbYcHdK3V3TNtW4u/vR6/dHf5TlmxQqSU7kdb/d+kfPOznX87TJuV7nrYqqqipCCCGEEG6gcXcAIYQQQgxdUogIIYQQwm2kEBFCCCGE20ghIoQQQgi3kUJECCGEEG4jhYgQQggh3EYKESGEEEK4jRQiQgghhHAbnbsDfBuXy0VZWRne3t4oiuLuOEIIIYQ4B6qq0tzcTHh4OBrNt/d59OtCpKysjKioKHfHEEIIIcQFKC4uJjIy8lu/pl8XIt7e3sDpF+Lj4+PmNEIIIYQ4F01NTURFRZ25j3+bfl2IfD0c4+PjI4WIEEIIMcCcy7QKmawqhBBCCLeRQkQIIYQQbiOFiBBCCCHcRgoRIYQQQriNFCJCCCGEcBspRIQQQgjhNlKICCGEEMJtpBARQgghhNv06w3NhBCiN5SVlVFUVIROp2PEiBF4enq6O5IQQ5YUIkKIIaOqqor/vvIqh3cewNbYhqLV4BXix/zLL+Waa65Bp5O3RCH6mvzWCSGGhIaGBp7406PUHixgRlgKMUnh2Jx2jlXk8ulLb9PY2Mgdd9whJ30L0cdkjogQYkhYt24dFYfyuDJ5NomBw9BrdXgaPJg0bBQz/VPY+vk68vPz3R1TiCFHChEhxJCwdd0mEj3C8DR4dGlLCopG1+hg165dbkgmxNAmhYgQYtBzuVw01tbjb7Z0264oCj6Kiaampj5OJoSQQkQIMehpNBp8A/2paW3ott2lumhU2/H19e3TXEIIKUSEEEPE7IWXkNNRTrO1tUvbicp8XH4Gpk2b5oZkQgxtUogIIYaE+fPnEzkhmU+yt3CsIpc2Wwf17U3sKDjEjsaTXHLFpURHR7s7phBDjqKqquruEGfT1NSExWKhsbERHx8fd8cRQgxw9fX1vP7aa+zbvOv0PiIaBd/IYC69YgnLli1Do5HPZkL0hPO5f0shIoQYcmpqaiguLkav15OYmIjRaHR3JCEGlfO5f8uGZkKIIScwMJDAwEB3xxBCIHNEhBBCCOFGUogIIYQQwm2kEBFCCCGE20ghIoQQQgi3kUJECCGEEG4jhYgQQggh3EYKESGEEEK4jRQiQgghhHAbKUSEEEII4TZSiAghhBDCbXq1EHn88ceZOHEi3t7eBAcHs3z5ck6dOtWblxRCCCHEANKrhciWLVu466672L17N+vWrcNut7NgwQJaW1t787JCCCGEGCD69PTd6upqgoOD2bJlCzNnzvzOr5fTd4UQg1VJSQm1tbWYzWbi4+PRaGSkXAwe/fb03cbGRgD8/f378rJCCNFv5Ofn89brb3J832EcrVa0Bh0RybFcdf01TJ061d3xhOhzfVaIuFwufvnLXzJ9+nRGjRrV7ddYrVasVuuZvzc1NfVVPCGE6HWFhYU8/uCfUXMbmR0+gtCgQJqsrRw8fJK/5D6L/b6fn1NvsRCDSZ/1Bd51110cPXqUd99996xf8/jjj2OxWM78iYqK6qt4QgjR6z54/wOcufVclTKXuIBIzAYTod4BXJo8jWHt3rz96uudPowJMRT0SSFy99138+WXX7Jp0yYiIyPP+nX3338/jY2NZ/4UFxf3RTwhhOh1tbW1HNq+j7EhSeg02k5tiqIwKWoUdYWVZGRkuCmhEO7Rq0Mzqqrys5/9jE8++YTNmzcTGxv7rV9vNBoxGo29GUkIIdyisbERR4eNoCC/btt9TJ7oHAr19fV9nEwI9+rVQuSuu+7i7bff5rPPPsPb25uKigoALBYLHh4evXlpIYToV3x8fNAZ9dS1NRLo6dulvdXWjkPjkhWCYsjp1aGZf/zjHzQ2NjJ79mzCwsLO/Hnvvfd687JCCNHvBAYGMmryWDIqsnC6XF3a95ccxxIVxLhx49yQTgj36fWhGSHEwFFXV0drayu+vr54e3u7O86gc9W11/DYkRN8dmIzU6JSCfUOoLGjhYzSU+Tp6vjRjT/BbDa7O6YQfapPNzQ7X7KhmRB9Iysri08+/IjMPRk4rQ70nkYmz5nOVVdfTWhoqLvjDSonTpzgtX+/SuHRHOxtVjR6HYGxYVx5/TVccsklKIri7ohCXLTzuX9LISLEEHf06FGeefhx9GUdjA1OxNfDm4rmWo7U5uI1Mow//Pn/CAsLc3fMQUVVVbKysqipqcHT05OUlBT0er27YwnRY6QQEUKcE5fLxb2/+DW2QxUsHZGORvlm2liHw8aHJzYy5uqZ/Oqee9yYUggx0JzP/VsONxBiCDt27BilJ/OZOiy1UxECYNIZSAtO4sDWPdTW1ropoRBisJNCRIghrKqqCrXdTrBX9+c/hfsEYW/poLq6uo+TCSGGCilEhBjCzGYzLq1Cq6292/Ymaytag05Wcggheo0UIkIMYaNHj8YSEcjhsqwubaqqcqjsFDEpiXLukxCi10ghIsQQ5unpydLrruCYo5Q9RZl0OGwANFtbWZ+zl1qLgyuuvUqWlAohek2vbmgmhOj/li1bhtPp5PN3PuJI9loMqg6rxoFfTCg/+fHPmThxorsjCiEGMVm+K0QPa2pqori4GK1WS2xs7IA5yLGpqYkDBw7Q0tKCv78/48ePx2QyuTuWEGIAOp/7t/SICNFDWltbefutt9ixbgvtdc0oGg2+EYEsvHwxy5YtQ6vVfveTuJGPjw9z5sxxdwwhxBAjhYgQPaCjo4OnHnuC7M2HGOsXT0LkOOwuJ8fL8nhnxStUV1Vx2+23D/i5FqqqcuLECXbv3k1TYyP+AQFMnz6duLi4Af/ahBDuIYWIED1gy5YtnNyWwRWxMzod8Z4eO47gKj82f7aW2XPmkJSU5L6QF8lqtfL3v/2NvWu24dEC3hoPMlxtrH73M+ZesYhbbr0VjUbmvwshzo8UIkL0gK0bNhGl8e9UhHwtKSiafUdPsmPHjgFdiLz91lvs+WQjl4SOIyY6HEVRUFWVk9UFrH3rcwKDgli+fLm7YwohBhj5+CJED6guryLY06/bNkVR8Nd5UVtd08epek5DQwObv9rAeEsCsf4RZ4ZhFEVhRHAsIwzhrPlsJVar1c1JhRADjRQiQvQAi78f9e3N3bapqkqjsw0fX0sfp+o5J0+epK2qgREhcd22jwyJo76kmry8vD5OJnpaU1MTJSUlNDY2ujuKGCJkaEaIHpB+ySzePvgyzdZWvI2endqKGipo9XQxdepUN6W7eA6HA9Wlotd0/5ah1+hwOV04nc4+TiZ6SnFxMR9/9BEHtu7B0W5FazIwfuZkrrjySqKjo90dTwxi0iMiRA+YM2cOkWlJfJK1lZyaYpwuFzaHncNlWawrO8D4edNJSUlxd8wLFhMTg9HXTH5dabfteXUlePh7ExkZ2cfJRE8oKCjgkQce4tD7m0lzRnCZ33gmuKI48sFW/vz7/yM3N9fdEcUgJoWIED3A29ub3/3x96QsmcI2axb/OvElr2av5rC+nHk3L+fnv/j5gF5REhkZSerUNHaVH6XF2taprb6tiYy6XKbPn4mvr697AoqL8sZ/X8eZ08A1Iy9hVGgCod4BpITGc23KPDQFLbz26n/px3tfigFOhmaE6CGBgYHc9/v7KSkpIT8/H61Wy4gRI/Dz634S60Bz6+238URFNe9mbCTOGIK/2Yfq1gYKHNUkpo/m+htucHdEcQGKi4s5se8Is8NHYNDqO7XpNFomR6SwIeMo+fn5xMV1P0dIiIshhYgQPSwyMnJQDlEEBQXxf48+zMaNG9m6fjMnausISAjipvnXMHv2bMxms7sjigtQVVWFo7WD8NDgbtsjLMHYKzqorq6WQkT0CilEhBDnzMfHh+XLl8t+IYOI2WxGo9fR3NGKycvQpb25oxWNQYeHh4cb0omhYOAOWgshhLhoiYmJBMdFcKgsq9v2jLJTBMWEMWLEiD5OJoYKKUSEEGII0+l0XPG9qykyNLAt7yBttg4A2u0d7Cg4RJ62lsuvuwq9Xv8dzyTEhZGhGSGEGOJmz56NzWbjg9fe4UTeBkwuLR2KA69wf2688TbmzZvn7ohiEFPUfrwmq6mpCYvFQmNjIz4+Pu6OIwYgq9VKe3s7np6e8olOiO/Q2trK/v37aWhowGKxMGHCBLy8vNwdSwxA53P/lh4RMSiVlJTw5RdfsHvTDhwdNswWL2YunMvixYsHzXLa/qawsJADBw5gtVoJDg5mypQpeHp6fvc3in7D09OTWbNmuTuGGGKkEBGDTm5uLk8+9Ci23DpG+sfg5+FNZXUdq/7xPgd37+OBhx8kICDA3TEHjY6ODl7+5z/ZvXYbSqMND42BZsXKO5EB/OjO25g+fbq7Iwoh+jEpRMSgoqoq//7Hyyj5zVw3ch567ekf8Vj/CFJtCXx4cBPvvv0Od/3sbjcnHTz+/a9/sfODdcwMTiVhZBQaRUObrYMdhYf5x5Mv4POoD6mpqe6OKYTop2TVjBhUTp48SX5mFtOjRp8pQr7mafAgLTCRPZt20NDQ4J6Ag0xJSQm71m4lPWgUSUHRaJTTbylmg4l5CZPwroMvPv3czSmFEP2ZFCJiUCkvL8fVaiPMO7Db9ijfUKxNbVRUVPRxssEpIyMDtb6DhMBhXdoURWFUUBzHDxyRI+WFEGclhYgYVIxGI6oGrE57t+1t9g40Oi0mk6mPkw1OVqsVg6JDe5YD/cwGEy6HE6vV2sfJhBADhRQiYlBJTU3FK9SPzPKcbtuPlOcQkRTDsGFdP8GL8xcWFkab1kFTR0u37cUNlfgE+MpKJSHEWUkhIgYVHx8f5i+/jEOt+WSWZ+N0OQGwOmzsLDhMqbGJZVcvR3OWT/Di/EyYMIHAuDC2FWTgUl2d2urbmjjRWsLsS+fJHi5CiLOSVTOiz9ntdvbt28fBgwdpb2snMiqS9PT0Hjux9rrrrsNmtbL+k1XsO5GFWTHSghVTqA83/ug20tPTe+Q64vRQ2I/v/gkvPPYM7x9bT0pALF5GMyUNlWS1lxOfPpqlS5e6O6YQoh+TnVVFn6qtreWZx58i98Bx/G0mzDojVY4mCPTguh//oEdvWuXl5ezdu5eWlhYCAgKYMmUKvr6+Pfb84hvZ2dms/PJLDm7fi8vuxCfIjzmL5nHZZZfJpmZCDEHnc/+WQkT0GVVV+b8/PEjBpiMsjp9GgNkCgNPl4kDJcTLVMn758H1MnjzZzUnFhWpvb8dqteLl5YVOJx2uQgxV53P/loFy0WeOHz9O1r6jzIuecKYIAdBqNEwaNoqgNiOrV35FP66NxXfw8PDA19dXihAhxDmTQkT0mePHj2NsU8+6x0dyYAzZR07S0tL9CgwhhBCDjxQios84nU60igZFUbpt12m04FJxOp19nEwIIYS7SCEi+kxsbCwtOjv1bU3dtufWlhAaE4nFYum2XQghxOAjA7miz6SlpRGaHM3Go/tZOjwdg/abvSXy60opVGu5ZfH1Z+0x6W9qamrYsGEDuzZvp62llcjYYcyeN5dp06a5dY6Eqqrk5uaybds2qisq8fTxZtKkSYwbN07mbggh+h1ZNSP6VHZ2Ns/8+Qmac6tIMIdhNpgoba6mWt9G+vL5/OTOn6LVai/6Onl5eWzdupXykjI8vTyZNGUy48eP77GNtQoKCnjy4cdozConwRyGl8GDspYayjTNTLpsJr/45S96ZRMvVVW/tVBzuVy88cYbrHnvc/QNDoL0Fpqd7TQYrYycnsY99/4ab2/vHs8lhBD/S5bvin6tqqqKjRs3snvLDtrb2hkWH82ceZcwZcqUi97xVFVV3nnnHb58+2N09XaC9RZa7O3UGTpImjKa39x370XvJeJ0Ovntr35Dy8FiLk+ehUH3TcFR0lDJ6ooDXH/PrVx++eUXdZ2v2e12tmzZwsY16ynJL8LsZWbK7BksXLiQsLCwTl+7evVq/vPU35nmnczIkLgzRUtFcy1fFexm/JWz+fVvft0jufqSw+Hg0KFDVFVVYTQaGTduHP7+/u6OJYQ4CylExJC1adMmXnp0BZM84hkdlnjmRlzT2sDK/J2MWDSZ+//w+4sa/snIyOCJex9iecgUgry6nqGyKWcfzQkmnvvbCxc9FGKz2Vjx7HMcWLODKMWPCO8gWm0dnGouwRTrz70P3k9SUhJwukC65+5fYj7VyiWJk7o816nqQnbac3jyH8/32C62feHw4cO88o+XqcgqRm9XsOPEFOTN/OWXcv0NN8hwkxD9kOwjIoYkl8vFqs9XEuWwMCY8qVOxEejpy8zwMRzddZC8vLyLuk5BQQEmq6bbIgQgPjCKmtJK6urqLuo6AF999RUHVu1gcdgkFiVNIzUskSnRqXx/5AIMhW389bkXcTgcAJSWllJdUMqIkNhunyshIApHfTsnTpy46Fx9JSsri+f+/BQcr+fqiOn8aOSl3Jy0kFG2EL585QPeevNNd0cUQlwkKUTEoFFdXU1JdgEjgru/Ecf4hUOT7aJvxBqNBqfq7LTxmqqqlDRWsTZrF6tP7CCvuIDs7OyL2pzN4XCw4au1JBlCCfcJ6tSm02iZHTOeiqwiDh48CJwuxFQVtEr3v9YaRUGDgsvl6ra9P/rs088wlHWwZPgM/P//TfAMOj1pEcOZ5JPI+k9XU11d7eaUQoiLIYWIGDRcLhe41LPeiAG0ivai9ylJSUnB5a2jsL4cOL1F/aqTO3h75xdknThFe2EdnjUu/vLwMzz/7HNYrdYLuk5DQwN1ZdXE+Id32+5n9sFs11JUVARAWFgYPiH+5NaWdPv1xY2V4KUnNrb7Qq2/aWpq4sjOA6QGx6Pp5v80JTQeR20r+/fvd0M6IURPkUJEDBpBQUEERIac9UZc0VyL3QPi4uIu6jrx8fGMmjaeLWWHqGqpY1fhEY5mn2CKNpbphkRSfIZx8/ilzLOksvezTRc8fKDValE0Cjanvdt2VVVxqM4zcySMRiNzL5vP8bZiyps69xK02TrYXnKYxPEpJCYmXlCevtbe3o7T7sDH5NVtu06jxajoaWtr6+NkQoieJIWIGDR0Oh3zFi8ky1ZOUUNFp7Z2u5UtRQeJHZ1MSkrKRV1HURTu/NldxMwazUelO/jk0HoCrCYc7TbqNe3Ej0wiNCyMGP9wxlsS2LJqIw0NDed9HV9fXxJGD+dEdX637QX1Zbh89KSmpp55bPny5Yy7dDpfVuzjy5Pb2Fd8nA3Ze3k7ez3eoyP56d13Dph9WiwWCyYfc5ei6mst1jbaFBtBQUHdtgshBgYpRMSgsnjxYiYvm8OamoN8dnwL+4qPsTFnH29nrcMjJZS7fvmzi14iDKeLhP/700Ncd+dNeAdYSI6NZ1hKApNmTCE2Jpavb/UjQuJoq2rg5MmT530NRVFYfPlSajyt7Cw4jMP1zZBSeVM1m0sPMXr6hE49PEajkXvu/Q13PvRr/GclUhTcjnO0P9ffext/euKRLst9+zOTyUT6gjkcbSig1dbeqU1VVXYVZeIXHcLEiRPdlFAI0RNk3ZsYVHQ6Hb/41S/ZPXUKm9ZvpKSwBLO3hWtmLWbOnDn4+XW/0uVCrzVy5EgiwiMYHTkGH5Nnl6/Ra3SoF3F+zsSJE/nBz37MO/9+nZMnVuOPJ+2qjVazi5HzJ3DXz+/u0sOh1+uZNWsWs2bNuqBr9ifLly8n8+BhPjy4iVS/OCItwbRY2zhSmUO9r5Of3v4LPDw83B1TCHERZB8RIS5CY2MjP7/1TlKtwYwNT+7Snl1TxHZrNk++dHF7d1RVVbF9+3YqKiowmUyMHz+e1NTUHund6e/q6ur46MMP2bFuC9bmdjR6LYljRnD5VVcwbtw4d8cTQnRDNjQbxFwuF0VFRVitVkJCQi56l1Bx8V7+5z/Z/NqXXBGfjp/5m5/TFmsbn2RtYeSSKdz3+/vdmHBwaGlpoba2FpPJRHBw8ICZ6yLEUHQ+928ZmhkgVFVly5YtfPHRp5RlF6E6XRgtZibPncH111/fo0MO4vxcf8MNFBUU8eGObURrAwjy9KW+vZk8WxUR4xO49fbb3B1xUPDy8sLLq/sVNEKIgUt6RAaIL774grf+8ipRdh9SQxPw0Bspqq8gozabkAkJPPjnh7BYLO6OOWS1t7ezefNmtqzfRE1FFb4BfqRfMps5c+YM+Z9dIcTQI0Mzg0xdXR2/uu1uElp9mRo9ulNbi7WN97M3sfTuG7j++uvdlFAIIYT4hpw1M8js2rULW1Uz4yNHdGnzMpoZ7hXJljUbLnrHUCGEEKKvSSEyANTW1uKtmDBo9d22h3gH0FLfLDtMCiGEGHCkEBkAvLy8aHVZcZ7lsLL69iYMHgZMJlMfJxNCCCEujhQiA8CkSZPAz8jJqq5bfducdo7XFzB1bjp6ffc9JkKcL6fTSVZWFkeOHKGystLdcYQQg5gs3x0AIiMjmXv5Qta+8RntDiujQhMwavWUNVWzs+QIHglBLF6yxN0xxSDw9TLxT9//mIqcYlwOJwYvE2Omjef7P7yR8PDuTwIWQogLJYXIAHHTzTdjNBpZ//lqDmTnolEVNGY9MVOSuO3OO+QGIXrE6tWreX3Fy0TZfFgaNgEvo5mSxir2f76LR3PyefDRhwkJCXF3TCHEICLLdweYxsZGMjMzsdlshIeHk5ycLDtMih7R3NzMz398J8PqzaTHdt46vcNh4/0TG5hx02XcfscdbkoohBgoZGfVQcxisTBjxgx3xxCD0N69e2ktq2dC4oQubSadgVH+sezcsJURI0eyY+s2ck9kozfoGT99MvPnz2fYsGFuSC2EGOh6dbLq1q1bWbp0KeHh4SiKwqefftqblxNCXIT6+no8FQMeemO37UGefuSdyuHZPzxK0erDJNb7EF6mZ+urX/Dgr+/n4MGDfZxYCDEY9Goh0traypgxY/jb3/7Wm5cRQvQAb29v2lUbNoe92/a8sgKqyquY4TOCK0fOIS1yBFOiU7lh5AICqjX8/dkXaWpq6uPUQoiBrlcLkUsvvZRHHnmEK664ojcvI4ToAZMmTcIQ7M3h8qwubQ6Xk90FmYR4+zM2PLlTm1ajYXbcBJqLatixY0dfxRVCDBKyj4gQAgA/Pz+WXX8Vh6yFbMvPoNnaikt1UdxQwSfHN1GmaWJmbBoAdqeDZmsrNufp3hMPvZFAl5nCwkJ3vgQhxADUryarWq1WrFbrmb9LN69wN1VVqaqqwuVyERQUhE7Xr35letxVV12F0Wjkyw8+5Z3CzbjsTvReJuJmDGfkcRdqu8qqkzs4WZqLw+5Ap9cxPCKeKcNSceBCq9W6+yUIIQaYfvWu+vjjj/Pwww+7O4YQqKrK5s2bWfXFV5Rm5aOqEBARzCWXLWDx4sWDdhdbRVFYunQp8+fP59ixY3R0dBASEkJ8fDyPPfoY7/3lP0TjzwhjGH46LxpsrZw6lcWJ0lw0QR7clJLi7pcghBhg+lUhcv/993PPPfec+XtTUxNRUVFuTCSGqnfffZdPX3mXKIeFOUEj0Wm05OaV8O7zr5CXk8vPf/mLQd07YjKZGD9+fKfH6mvr8HEYGW+MZphnCFpFQyQBxNiDeL9yB64AmDhxopsSCyEGqn71Tmo0GjEau186KERfyc/P58u3PmKSRzxjwpPOPB7pG0JcQwWrv9rC7imTh9R+LqWlpZTnFLEodQYdxfVkN5TggR4XKh2Kg1HBcVR4Q0VFRb/78KCqKna7Hb1eL5v/CdEP9Woh0tLSQk5Ozpm/5+fnc+jQIfz9/WXzI9Fvbd26FW29ndEpiV3aonxDCSn3YvOGTUOqECkvL8fW3M7Y+BSIcVFRXkFzczMajQb/AH98A/x4PXc95eXl/aYQaW9vZ926dWxYtY66ympMZg+mzk3n0ksvpa2tjc2bNpGfnYfeYCBt0nhmzpyJxWJxd2whhpxeLUT279/PnDlzzvz962GXm266if/+97+9eWkhLlhFaRnBOstZPz2HeQVSXFDcx6ncy2g0otFpabd14Gf2ISYmplN7Q3szilbTb3o0W1tbefLRx8nafpg4fTAJPtE01bay+ZVP+fDN99Chwd9qJMIUQLPTzlub9/PVJ1/wmwfuIz4+3t3xhRhSerUQmT17Nv34KBshumX28qTV2XHW9hZrK54+Q+uTc3JyMgHDQjlSlM2s+PFd2jPLs/EfFszw4cPdkK6rjz/+mJyth7kidgYB5m/+r4ZVBfLq5o9QLXrumn8rWs3pVT4dDhtfntrO808+w7N/WdFvCiohhgLZR0QMSm1tbWzYsIEXVqzguWef5dNPP6W2tvacvnfipEnU6tupbqnv0tZut5JnrWLqrKEzLANgMBhYcvXlZKmV7Cs+fmb/ELvTwYGSE5x0VbDk6uX94gbe0dHBltUbSPGO7lSEAFSWVTBaH4nBoaGwvvzM4yadgYUJk6k6VcyePXv6OrIQQ1q/mqwqRE8oLCzk2cefpuJ4AcEuL3SKln3qJj57+0Nu/9VdTJ069Vu/f/z48SRNGc1XW3cxM3wMMX7hAFS21LG58CABIyM7DTkOFZdeeint7e189taHHD6Vj5dipFW1og/y5Moffp/Fixe7OyIAVVVVtNY2EePfeY6Pikp9TR3R5mByrLVUtzYQFxB5pt3b6Imf04NTp04xc+bMvo4txJAlhYgYVNrb23n28adpzyznhsS5eBnNANicdrbkHeQfT79I6LOhxMbGnvU59Ho9v7nvXv5u/hubdh1EqTiMBgW7h0L05ETu/tXP8fPz66uX1G8oisJVV13F7Nmz2bNnDw0NDVgsFiZPnkxgYKC7452h1+tRtBo6HLZu252qCwdOtJquHcIKsqpGiL4mhYgYVHbv3k3F8YJORQiAQavnkoSJvH1sLevWruX2O+741ufx9fXl/j/8nvz8fI4fP47T6SQuLo6UlBQ03dzAhpKAgAAuu+wyd8c4q9DQUIYNj+XY/lyi/cLOPK6g4Bfgx/HcLPDSEu8f2en7mq2t1OnaSUzsulpKCNF7hvY7qhh0jh49SrDLs1MR8jWNoiHRJ4KM3fvP6bkURSEuLo4lS5Zw+eWXk5qaOuSLkIFAURSWXHE55aZWdhdmYnc6gNP7iTh99GS4ijF7eeLr4X3me2wOO+ty9hCUEMGUKVPcFV2IIUl6RMSg4nI40SpnLxa0Gi0up6sPEwl3mD59OvV31/PBf97m2Mk1+OFBq2rD5q1h3LJ02qoaePvYWqLMQVgdNgrtNfgmhPLr+36NyWRyd3whhhQpRES/oqoqpaWlNDY24uvrS3h4+HnthhkbH8cudT02px2Dtut5MPmN5STMmtSTkUU/9PWZOVOmTGHHjh3U1NTg4eHBpEmTSEhIIDs7m82bNpF7Kgej0cj3Ji9n1qxZQ3LujxDuJoWI6DdOnDjBe2+9Q1bGcZwdNrQeBoaPT+W6G75HcnLyOT1Heno6n779AZty9zM/cTKa/+kdOVyWRZOXk3nz5/XWSxD9TFBQEMuXL+/yeFJSEklJSV2/QQjR5xS1H+841tTUhMViobGxER8fH3fHEb3o6NGjPP3Q43iU2xgfPpwAsy81rfUcKD+FLdLEfQ8/cM6bZe3du5e/PfUClLeS4B2OTqOjoKmcJi8nl998Ldddd52cOSKEGNScTif19fXodDoslrPvFN1bzuf+LYWI6HV2u52MjAwqKiowGo2MGzeO4ODgM+2qqnL/b35L855iLh85s1MvhtPl4pPjmwhMT+TPjz96zr9MhYWFrF+/noM79+GwO0hMHc68+fMYM2aMFCFCiEHLbrfz1VdfsXrdKsqrytFoNIwansrSxUv79HRsKUREv3H48GH+9deXqMopweTQYsOBLsCT2Uvmc9NNN6HX68nKyuL/fnYfl/qnEe4T1OU5CuvL2dCcyaN/f/Zb9/8QQoihzG638+xzz7Bh13p8IjwJjgrEYXdSllOOts3AT350Z58tvT+f+7fMERG9Jjs7m+cfeQqfSpVrotPxM/vgcDk5UZnHutc/xeVycfvtt1NXV4e93Uawl3+3zxPiHYCjykZdXZ0UIkIIcRZbtmxh0+4NJM+Iwz/km4nXYTEhnDqYw6tvvsKECRM69Uj3B7IpwhDU0dFBSUkJVVVVvXoo4Reff46urJ0lw2fgZz5dEes0WlLDEpnmN4KtX54+Nt7b2xudUU99W1O3z9PQ3ozGqMfb27vbdiGEELBuwzqMAfpORcjXEkbH0tBWx7Zt29yQ7NtJj8gQ0trayieffMKW1RtorW1E0WmJS01m2RWX9/jYYWtrKxk79jE+ML7TnI+vDQ+OYc+Jk+zfv59LL72UkIQoDpw4wcKkqZ3mcKiqyv6S40SOjSUhIaFHMwohxGChqiqFJQX4R3e/BF2r06L30VFRUdHHyb6b9IgMEa2trTz+50f56qX3iKk1c6nvOGYZk2ncnsvzDz3J+vXre/R67e3tuOxOvLvZ4RRObyxmUvS0t7ej0+m49gffo8yrjXXZu6lvP90zUtfWyJqsXVRbbFzz/etkV1MhhDgLRVEwm8x0tHWc9WucNme/3LBPekSGiNWrV5OzI5OrYtPPDJMAxPpHsDX/IG++/F8mTJiAr69vj1zPYrHg5edDWVV1p/M+vtZqa6dFsREUdHpy6vTp03Hd5+K9197ig7ztYHOiGLWEJEdx100/YfLkyT2SqzsOh4OdO3eyfsM68ovy8TR7MnP6LObNm9fvxlKFEOJsZs2YzRuf/5f4VCdanbZTW31VAzqbgQkTJrgp3dlJITIEuFwuNq1aR6IptFMRAqer6MnDUsnOWsuuXbu49NJLe+Saer2emQvnsvLv75LSEYePyetMm6qq7CrMxDIsqFOBkZ6ezpQpU8jMzDwz4zo1NRWdrvd+TB0OByteWMG6bWvQ+2vxC7VQ21rJqx+8zLqNa3ngd3+QISEhxICwYMECNmzdwIGNhxk5ORkviyeqqlJdWkPOvnymj55Famqqu2N2IYXIENDW1kZDTT2jfLq/oZp0BnzwoLq6ukevu3TpUo4cOMSHu7cwyhJNlG8IrbYOMitzaPBz8ZM7fo7Z3HnoRq/Xk5aW1qM5vs3q1atZu201CdNiCAz7ZtWOY6yDjI1HeOEvK3j+2RW9WgwJ0VdaWlrYvHkz2zdtpamugaCIUGbNnc2MGTMwGAzujicuUlhYGH+47w+s+MvzHF+fjWpw4nS4MGs9mTNhHj+7++f9cohb3l2HAKPRiN6gp6mttdt2l+qizWXFw8OjR6/r4+PDAw/9kY8//phtazdxtL4MRaclae5IfnzFcsaNG9ej1ztfLpeLr9Z8hWeYqVMRAqDT6xg+OYkTG7LIyMjo042AhOgNNTU1PPHnxyg5mE20LpAoD2+q8vJ4adtBdszZzq9/+5suHwyGgpaWFvbs2UNdXR1eXl5MnDiRwMBAd8e6YElJSbz4/F84ePAghYWF6PV6UlNTiYuL67ebOUohMgTo9Xomzp7G3jfXMiYsEa2m89hhbm0JLou+V262Pj4+3HzzzVx33XXU1tZiMpkICAjoF78Q9fX1lFWVEjq2+3kg3r5eqAYnBQUFUogMQVarlZaWFjw9PfvlBL/z9a+XXqZqXy7XJc3G2+h55vGqljq+WL+L92Pe5+abb3ZfQDdYv349/3nzP1Q1lKM1anBYnfi+4c8Vi6/k+uuv75e9B+dCp9MxadIkJk0aGAd8SiEyRCxevJj923bzxcltzIgeS6CnL06Xk5NVBeyqPcG0a+YTHR3da9f38PAgMjKy157/Qmi1WjSKBqfD2W27qqq4nC60Wm237WJwqqmp4fPPP2f7us1YW9rRexiZPGc6y5YtIyIiwt3xLkhRURGZuw8yKzy1UxECEOzlz2ifWLau3sg111yDp6fnWZ5lcNm5cycv/nMFhlAt42eMxmA04HQ4KTpVwmsf/Ae9Xs+1117r7phDghQiQ0R0dDT3Png/L734dz7J2onBpsGOA52fmVk3LOaWW2/pF70UfclisTAycSQZufsJiwnp0l5TVodJMTNq1KiLuk5HRweVlZVotVrCw8N75FOWw+Hg4MGDbN++nZr6GoL8g5gxYwZpaWlSOF2EyspKHvnjw9QfLSHFN4Zgr1jq25vY88YaDu3az30PPUBcXJy7Y563/Px87A3txI4M77Y9ITCSQ2WFFBcXn/PhkgOZy+Xio08+RPV2MHLSyDOPa3VaYlOicTicfLbyEy677DK8vLy+5ZlET5BCZAgZMWIEz/7leQ4fPkxZWRkGg4ExY8YQGhrq7mhuoSgKSxYv5dAzh8g+nEf8qBg02tNFQmNtE9l780gfN5vExMQLev62tjY++eQT1mxYTV1THRpFQ3x0AssWL2P27NkXXPh1dHTw3PPPsnXPFhQvFQ+LiYz8dtZsXcWsybP51S/vGRRDCe7wxutv0JRZynUjLsFDbwQg2i+MkSFxfHpiC//51yv86bFHBlzRrtFoQAGXqqIoKk6HE61We+Z1OF0uFI0yYIcizldxcTFZ+VkMmxzVbXv08EgOZGdy5MgRpk2b1sfphh4pRIYYnU7H+PHjGT9+vLuj9AuTJ0/mjpt+wn/f+g+7c/dj9DXgsDpR2rRMHjWVX/zsFxd00+no6OCJp55g5+FtBMX5E58ahcPuIC/7FE//5Unq6uq46qqrLijzm2++ycY96xk+I6HTVs51lfVs2L6OkLdDueWWWy7oud2ptraWkpISdDodCQkJGI3GPr1+VVUVh7btZUroiDNFyNcMWj1TIkex7tARcnNzB9yS7hEjRqD1MbL+4DbMLQoOmx2dXkdoRDjDhg3jRFU+/pHBxMTEuDtqn+jo6MDpcmAyd/8zpjfoUXHR3t7ex8mGJilExJCmKApLly5l/PjxbNu2jdKyUsweZsaPH8+4ceMueNnupk2b2H1oB6PmDMfH/5szcgLC/Mk7WsBbH7zJ1KlTCQ/vvqv8bBoaGli3eS3hI0K6nCfhH+JHaHIQ6zat5eqrrx4wJ1Y3NDTw1htvsmfTdjoa2lA0Cn6RQSxavoRly5b12af0yspKbC0dRA7rfvJylCUEe2kH5eXlA64QcblcVDXVkZ1dzCWeKUR6BNLRYaP4eC6H8o9TGebiR8vuHDJLeIODgzGbPKmrqMPTp+tKocaaJow605DtLe5rUogIAYSHh3Pdddf12POt27gOc7CpUxHytZgRw9idfYDt27ef92S4nJwc6pvrGBfb/byV8LgwDp86Tm5urtuXR5+LlpYWHv/To5TtOcX4wCRioyOwOewcLcvl7RWvUF9Xx4/6qHfHaDSi0Wlos3fg1c3RBG32DjQ6zYAc9nr9tdcJs3kSmTCcjMpSCtvr8FZM1NBCbmMl8amjWbp0qbtj9hk/Pz/Sp8zki62fEBwVjNHjmwLM5XSRlZFLStxoRowY4caUQ4cUIkL0MFVVKS0vwTfG0m27RqtB76WjpqbmQq9AN+cIAqd7eFTUXj1VuSetX7+ewn0nuTZh1pnddz0NHqTHjsO/wof1H3/FnLlz+2TIIC4ujpD4KA6fzGZ+UtcjBQ6XZWGJCCIlJaXXs/Skr4ecpoankhQ0jLzaUo5X5tFmbSfOI5RxprGcdFVTVlZGVFT3cyYGoxuuv4Gs7FMcWH2YkPhALEEW2praKDlVTqhnOLf/+I4hM2fG3eRfWYgepigK3l4+tLV0P76sqipOq/OCNo+Ki4vD4ulHeX5lt+3lBRX4evkPmJUdm9duJM4Q3OkIgK+NCIlFU29n165dfZJFp9Nx+TVXUKivZ2fBYawOGwB2p4ODJSc4aivhsquXDbhNv0pLS7E1txPtF4pG0ZAQGMWylFl8L20Rl42YweToVOzNHZSWlro7ap8KCgri4f/7EzcsuRGqDZTtr6It387S9OU88tCjJCcnuzvikCE9IkL0grkz5/LKBy9jT7WjN+g7tdWU1WFwmC5okzR/f3/mpM/lo7Xv4xfs22nop7G2idLjFVx76fU9dnhhb1JVlbqqGmK8up8no1E0WBQP6uvr+yzTnDlzaGtr48PX3uF41jo8MdCKDUOgJ1f84AYuv/zyPsvSUwwGA4pWQ7vdioe+67BSu70DjVYzZOaH/K/AwEBuueUWbrjhBpqbmzGbzUNmH5X+RAqRQUZVVTIyMtiwfgM5x06h0+sYP20S8+fPH1Ldru42f/58Nm7dyMF1h0mamIBvkAXVpVJeUEHBoVLmT13AyJEjv/uJunHTD2+iorKCXRt3YPDT4elrpq2hDVuDk/Rxs7nxxht79sX0EkVR8A3wozavsdt2VVVpVjv6dNKtoigsWbKEGTNmsGfPHurr6/Hx8WHSpEkDdtvvxMREAoaFklmcw6y4rqvljlbkYokIHNLzIUwm04Cc+zNYKGo/Hkz++gTWxsbGAbMCwJ1UVeWtt95i5RsfYWnTE+MTis1hJ6elFE24Nz+//9d9eqDcUFdYWMhf//5Xjuccw+bqQFVVfEy+zJk+l1tvvfWiuvhtNhu7d+9m89bN1NRWExQYzKz0WUyZMmVAfbL94IMP+PiF1/le4lw8DZ3POsqqLmR7RxZ/evHJAbdKpb/58ssveeO5lxlvjmN0WCI6jRany8mxyjx2N2Vx7d03cfXVV7s7phhEzuf+LYXIILJv3z6efeAxpngkMCo0/szjTpeLtdm7aIzQ8tw/XpR/yz6kqirHjx+nqKgInU7HqFGjCAsLc3esfqOhoYGHH3iQ+owipoSlEOsfjtVh51hlHhnNecy67lLuvOvOAbeBWH+jqirvvvsuK9/9FFdtGz6KB81qB4q/iflXLebGG2+UiZmiR0khMkQ9/shjlKw5whUjZ3dp63DYeCNrLTfdfyeXXXZZ34cT4iyqqqp49V//JnNXBtbGVhStBu9QP+YuWch1112HXq//7icR56SyspJdu3ZRX1+PxWJhypQp572XjRDn4nzu3zJHZJBQVZWszBOk+Hb/adukMxCkepGfn9/HyYT4dsHBwfzugd9TUlJCUVERer2e4cOH4+3ddQ8WcXFCQkJYvny5u2MI0YkUIoOIVqfF7uz+JFkAh+qUA9FEvxUZGdnvTmgWYrAoKSnh+PHjuFwu4uLiSExM7DdDnlKIDBKKojBuygQOvLuRCZEjuvyANXa0UKfvGHCbMQkhRF9yOBzs2LGD9RvWUVBcgKfZk/RpM5k/fz7Bwd1v/9+fNTc388+X/8n2vdtosTYBYNKZGTN8DHff9bN+MWdNZicNIgsWLcQeZGBT7n7sTseZx5utrazK2UVESiyTJk1yY0Ih+i+Hw8HBgwdZt24dO3fupK2tzd2RRB9zOByseGEFjz3/CBkl+yHUTq22klc//Bf3/f635OTkuDvieXE4HDz73LOs2v4lQaN8mXLFeKZeOYHoSWHszdrFI4/9mcbG7pfP9yXpERlEEhMTuf3Xd/HKX/7J6yfXEKrxwe5yUqVtIWx0LPf87t4+P9FUiIFg//79vP6v/1CRXYzWruLUqPhEBrL8+qtZvHhxv+nCFr1r9erVrN22ioRpsQSG+Z953DHWQcbGI7zwlxU8/+yKCz4Ms69lZGSw+9BOUtKT8Q365siJgDB/0uZ5ceCrw2zatMnt84YGxr+mOGfp6emMGDGCrVu3kp+Xh16v5+oxY5gyZYps2CNENw4fPswLjzxDYL2Oq4ZNJ8BsodXWzsHSk7yx4l8ALFmyxM0pRW9zuVx8teYrPMM8OhUhADq9juGTkzixIYuMjIwL2hXZHfbu3Yvq4exUhHzN6GHAO8yTrdu3SCHiDmVlZZSVlWEwGEhOTh50vQSBgYFceeWV7o4hRL+nqiofvf8hPjUql42cfqbn4+uD98jP4LN3P2Lu3LkD7owZcX7q6+spqyoldGz380C8fb1QDU4KCgoGTCHS1NyE0Xz2DQ7NXh40NDb0XaCzGFKFSEVFBa+9+h+O7DqIrbkdjVaDX1Qwi6+6nCVLlkj3qxBDTHl5OTmHTjA3bGS3v/9pEcM5kb+Bw4cPM3XqVDckFH1Fq9WiUTQ4Hd2vPFRVFZdTHVArD0NDQmk/cHpX5+5+vhtrm0kb5v6t/YfMZNWamhoe/b8/cfLLPcwwJHJz/AKujphBSKmGN5//F++88467Iwoh+lhLSwsumwOLR9fTf+F0z4jGefrrxOBmsVgYmTiSstzybttryuowKR6MGjWqj5NduPT0dMyKFyXZXU9Wrq9qwFbnYO7suW5I1tmQKURWrlxJ/dESrhw+h8TAYRh1Bvw8fEiPS2O8OY6v3v+Mysruj1YXQgxOAQEB6MxGKppru22vbWtENWgG7IF34twpisKSxUtRWvRkH87D5XSdaWusbSJ7bx4TxkwiMTHRjSnPT3x8PFcuvpqyzGoydx6nrrKehppGTh3I5sS2HOZMmcv06dPdHXNoDM04HA62r9vMCJ8oPPRd54OMDkvk0Ilcdu/ePSCP+RYDn6qq5ObmUlBQgE6nIyUlhaCgIHfHGvQCAgIYO2MiBz/ZTnxAJAbtN9vJq6rK7qJMQkZEkZqa6saUoq9MmTKFO276Cf996z/szt2P0deAvcOBpl3H5FFT+cXPfjGghvAVReGHP/whoaGhfLHyc4r2FOJSVYL8grnqhuu5/PLL+8URCkOiEGlvb6e9uY0Ac/dnKug0WrwVEw0NDX0bTAhOz1P4+0t/5/DxDFptraCCr9mPuTMv4ZYf3YKHh8d3P4m4YN+7/ns8cuwkHxzfQFpIMqFeATR0NHOoPIvmIIWf//hHA2a5prh4S5cuZfz48Wzbto3SslLMHmbGjx/PuHHjBuTPgaIoLFy4kHnz5lFWVobL5SI0NLRfLdIYeP+qF8DDwwOTlwe1dY0kENWl3eFy0qx24Ovr2/fhxJBWX1/Pnx77EzlVJ0kYH0dguD8up4uy/Ao+Wfchzc1N/Pbe++Rk1F4UGRnJHx55iPfeeZc92/fhqDyFxqAjafZI7rj2akaPHu3uiLhcLo4fP05BQQEajYaUlBSio6PdHWvQCg8P57rrrnN3jB6l1WqJiup6/+sPhkQhotPpSF8wh3X//IjR9sQuwzOZ5dloAsxMmTLFTQnFULVhwwayS04y4bIxGEynl9lpdVqiEiPw8DSxbe9WlhxfOqAmyA1EkZGR/Pre31B7Sy11dXV4enoSFhbWL7rhi4uL+fsLfyX/yCl07SpO1YViMTIufSJ33PlTOZlcDHhDohABWLx4Mft37OHjo5uYFDaSaN8w2h1WjpRnc8JezvLbvkdISIi7Y4ohZtPWjVgivM8UIf8rIMyfbF0+e/bskUKkjwQEBBAQEODuGGfU19fz5J8eo+N4JYuHjSfUOxAVlfy6MrZ+vp3n29p44ME/Dsghg/6osrKSyspKTCYT8fHxA2qp7kA2ZH56AwMD+f3Df+S1V//D9l0ZbMw5gqLV4B8VzA+u+rHsnCjcoqGxAc+I7jfKUhQFg1lHc0tzH6cS/cWGDRuoO1HC9cnzzvTkKijEB0TiZfDg8x17OHToEBMmTHBz0oGtrKyM1994jT0H99BubUOn1RETEcs1V13LzJkz+0XP2GA2ZAoRgLCwMH73wO8pLS09s7Pq8OHD+9WkHTG0hIdFkFV9DLrZU0h1qdia7AQFyuqZoWrn5u3EmUK6Xe0X4h2Ab6GBvXv2SCFyESorK/m/Pz1IQV0u0SlR+IdG09HWQeGJfJ7+y1O0t7ezaNEid8cc1IbkDLiIiAgmTpzImDFjpAgRbjVvzjzaqq001XXt9SjOLsVT690v1vn3V21tbRw9epSjR4/S3Dz4eo5am5rxNnqetd1TZ6K1VU4JvhiffPIJ+dU5TFgwlvC4UExmI76BFsakj8IjXMcb774uG9r1siHVIyJEfzNr1ix27NrBzk3bCE4MJGRYEE67k5KcMlrLOvjBVT8kJibG3TH7HZvNxgcffMDGlWtpqaxHVcEz0MLMS+dy/fXXD5oDHsOjIykv7P7oeZfqosbRzLiw0D5ONXi0tbWxeccmwpNC0Ru77qcRPzqWA18eYe/evcyd6/4dSAcrKUSEcCOTycTvfvs7PvggnnWb1nIqNx+NRkNUaBTL7rhcuoS74XK5+OuLf2HvZ5tI9YpheGQqCpBdU8yaf39EWXEpv73/vn6xUdPFmnXJHP6xPYOypmrCfToP0WWW5+D0N5Cenu6mdANfc3Mz7dY2Avy7L+YMRgMag4b6+vo+Tja0SCEihJuZzWZuuukmrrnmGkpLS9HpdERFRclKiLM4dOgQe1ZvZUHYeKL9ws48Pj5yBBGWYD7buIuNkzcye/bsAT/0OmPGDPYt2stXK7eRXBNGfGAUdqeDE1UFFOsaWH7r96TH7CJ4enpi1JtobWwlINSvS7vD5sBpc+Ht7e2GdEOHvNMJ0U+YzeYBdY6Fu2zftg3fDn2nIgSgw2Eju7qQvJPZPPiL3zF81AjGz5jM4qVLiI+Pd1Pai6PT6fjlPb/i84R4Nny1luzyQ6AoRIyN5o5lNzFnzhx3RxzQvLy8mD55Bl9u/5SI+DC0us7LdQtOFBHgFcikSZPclHBokEJECDGg1FbWEGC0dHqs3W7l/Yw11FRUMcIejMVhIc4ayuH3N3Nwx15+9YffMmbMGDclvjh6vZ6rrrqKZcuWUVVVhUajISQkRHbb7SFXLL+CAxn72L/uEAljY/EP9aOjzUrB8SJaitv58Q9ul123e5n8JAshBhSLvy8Nts6rGHYVHqGmvIpF3mNIMoYR7RvGmPAkrk2Zj28VvPyXf2C3292UuGfo9XoiIiIICwuTIqQHDRs2jAcfeIhxMRMo3FvOzg/2cXj1cTzbLNx5y91ceeWV7o446EmPiBDigjQ0NLB9+3ZOHDsOQPKI4aSnp+Pn13WsvSdNmzGd3V9toaK5llDvAOxOB0eLs0jWh2JCTzk2YsJOD9toNRpmRI/l/dytHDhw4JyOcVBVlZaWFpxOJz4+PnLTHwISEhJ4/NEnyMnJObOz6qhRowbN6qv+TgoRIcR5O3r0KC8++RxNBVWEYkFR4MAXW/n8vY+5+95fMnbs2F679oQJExg9ayJfrdvNRP8kgr38aW9vx6wGUdBUgSUsgJDQb45r8PXwxuzUU1pa+p3PvX//flZ9+RWnDh0Dl0rwsDDmXbaQBQsWyOThQU5RFBITE2WelhvIb5YQ4rzU1tay4vFnMBdbuTxpAUbd6XNybA4763J28+KTz/H4iqd77ewmnU7HPff+mteCXmPX+i005GdS1FZNpMHC6LjhJA9PRqv5ZtKh0+XC6rJ/5wqaVatW8cZf/o1/s56pgbHoDTryjpfy+tGXyDp5irt//jMpRoToBdLnKIQ4L1u2bKG1sJZFSdPOFCEABp2ehUnT6CiqZ/Pmzb2awWw289M7f8rz//ob9z/3MLOXL0Q3zIdRo0Zh0Hc+QDC7pgiNn4lx48ad9fkqKyt5++XXGO4MZvnI2SQHxxAXEMm8xMksCElj15eb2LFjR6++JiGGKilEhDgHdrudvLw8cnJyaG9vd3cctzpy8BBRen8M2q4bhuk0WmJMwRzen9EnWQICApg6dSp3/vwu2oJ1bMrdR7vdCpzeeTS7pojt1UeZumAmERERZ32erVu34qxqZfKwrqccD/MNJczpzcZ1G3rtdQgxlEk/oxDfwuVysXLlStZ8tpLa4kpUVcU72I/Zl87jqquuGpCT2To6Oti9ezfZ2dkAJCcnM3ny5HPe/Et1udBpzn48ulajweZ09kjWczVmzBjuuPdnvPbSK7yZsw4LHrS7bDgteqZePY8f33bbt35/eXk5gYpXpyGd/xXlE8KxnPzeiC7EkCeFiBBnoaoqr77yCmvf+pxkXShTgyeg1WjJrS3mi3+8Q1F+Ab+577cDaivx7Oxsnn7uKfLL8tB6nT7a3PmlSnxUIr+957fExcV953MkjEhm7ZYjuFQXGqVzp6qqqhS2VTF71NReyf9tZs6cybhx49i9ezeVlZV4eHgwfvz4c9p51Gg00qGefXlvq60dU5C5B9MKIb4mhYgQZ5GVlcXGj1cx0y+F4cExZx4P9PQlujmcLzbsZseMHcyePdttGc9HXV0djz/1GGUdxYy7NAWT5+nenPaWdjK3Hefxpx7jmSefxWKxfOvzzJkzh3WffMW2vAxmxqWhKKcLGlVV2VFwGFegyW07fnp7ezN//vzz/r60tDQ2vLeSqpY6gr38O7U5XE6yW0qZP/vqnoophPgffTJH5G9/+xsxMTGYTCYmT57M3r17++KyQlyU7du3Y2xSSQ6K7tIW6h1AmMuHLRs2uSHZhdm8eTNF1QWkzR59pggB8PDyYOzcVPLLc9m2bdt3Pk9kZCS3/PwO8r2aeOvYGnYWHGZX4RHePraWHFMdN939Y2JjY3vzpfS4cePGkTQ5lVX5uylpOD0EB1Df3sQXJ7dhig24oAJHCPHder1H5L333uOee+7hpZdeYvLkyaxYsYKFCxdy6tQpgoODe/vyQlywqvJKAvTeZz7x/79CPP0pLinv41QXbt+BvXiFmtEZuv7aG4wGzEEm9h3cx5IlS77zuWbPnk1UVBQb1q8nc/9hACanLeCSefMG5D4MOp2OX//2N/zF8AJr9hxGX+pCr2hp1tkIGRnFr3/1c8LCwr77iYQQ563XC5HnnnuO2267jR/96EcAvPTSS6xcuZJXX32V3/3ud719eSEumI+vDwX2trO2N7S34OMfdNb2/sZqs6HTn/1XXmfQYbVaz/n54uPjTx8md0dPpHM/Pz8//vjQ/3Hq1CkyMzNxOp1ER0czYcKEATUPSIiBplcLEZvNxoEDB7j//vvPPKbRaJg3bx67du3qzUsLcdEmT5nC1k/WntlK/H+1WNsodFTz/dkD5xyKxLhEMjdloKpql14eVVVpqmwhaUKSm9L1D4qiMHz4cIYPH+7uKEIMGb06R6Smpgan09llh8WQkBAqKiq6fL3VaqWpqanTHyH6Wl1dHZ999hnbtm2j3UPl3cy1HKvIxelyoqoq+XWlfJq1lfCxCQNmoirA3Llz8cSb/GOFXdpyj+TjrbMMqNcjhBgc+tWqmccff5yHH364z67X3NzM3r17qaurw9vbm4kTJxIQEPDd3ygGrZ07d/KXl16kuqkSvUWLzdNBGRUUH11JXGAkBr0erY+JEQvSuOPOn+Dt7e3uyOcsOTmZH37vZv7z9ivsK80gODoQVVWpLqpBbzVx2w/vOKflu0II0ZN6tRAJDAxEq9VSWVnZ6fHKykpCQ0O7fP3999/PPffcc+bvTU1NREVF9XguVVVZs2YN7//3LdrKGvBQ9bRj4+0gby679nKuvfZaOXFzCMrJyeG5vz6L08fKpNnjzsynaJ3Zxr41B1GMXvzo1ttJTk4mJibmrJNY+7MrrriCmJgY1qxdzeFjpyeZzh49n4ULFvbqQXVCiM7sdjuKosj5RfRyIWIwGBg/fjwbNmxg+fLlwOmdKjds2MDdd9/d5euNRuM57+54MbZt28ZrK14myRXEhIQJeOiN2Jx2Mstz+Pifb2Mymc7kFUPH6jWraXTUMWXahE5FhqePmYkLx5G57hQ+Pj4Dbmnq/1IUhbS0NNLS0nC5XABSdAvRR1RVZe/evaxes5pjJzMBGJ0yhkULL2XChAluTuc+vV6K3XPPPdx0001MmDCBSZMmsWLFClpbW8+soulrLpeLT9//iIgOL9KTvzkEy6DVMz5yBNYCG19+8CkLFizAbO67nRTLysrYsWMH1dXVeHp6MmnSJIYPHz4gP3UPRKqqsmffLoJjArv9N/f08UQxqxw9epRp06a5IWHPczqdHDhwgJKSEvR6PWPGjDmnXUiFEOdPVVXee+893vjgdVQvByEJQaCq7Di5lT0Zu7n1B7cN2Q/AvV6IXHfddVRXV/Pggw9SUVHB2LFjWb16da8dEf5d8vPzKc8uYnF499XnmPAkjuZvIDMzk8mTJ/d6HlVV+eijj/j0jfdRazvww0yramX125+Sdsk0fvbznw3I80wGIrvTgfFblrdqtAoOh6MPE/We48eP8+LfXiS/NBcMLlwOFbPOkxmTZnLnT+/E09PT3RH7lcLCQvbu3UtzczP+/v5MmzZN9kES5+XEiRO8/dFbBA63ED38mykHUUmR5Gbm8993/kNqaurpJfFDTJ8MTt19993dDsW4Q0dHBy6HE09D9zd3s96Ey+E6r/0ULsbmzZv58J9vMs4QzdgRSWg12tPnddSXs+HzLbzqaebOu+7qkyxDmaIojEgayZ6cHZ3eJL5mt9qxNzkHRY9BcXExjz71KPVqFaPmJ+Hp44nqUqksrmL19pXYbDZ+f//vpTcOcDgcvPLKK2z5Yh2aehteGhNNajsfBb7L8huv4corr5R/J3FONm7aSIemlWHJXZeGx42KYVfefjZt2iSFyFAQEhKC3stESWMVI4K7jvWXNlWj9zL1Wo+Nqqrk5ORQUlKCRqPhw3feJ8phYXzciDNfoygKMf7hTLG1s3PtVq66+mq39SANJQvmLWBPxi5Kc8uJiP9mF03VpXJs90nC/MKZMWOGGxP2jK+++oqqljImLxmPRnt6foiiUQiNDkGr07Fr/w5OnjzJiBEjvuOZBr9333mHjW99wXT/kQxPiUGjaHC4nGSUnuL9f7yOxWJh3rx57o4pBoCcvBwsIT7dFq6KouAT7EV+YZ4bkrnfkCtEAgMDSUufzP6PthLjF46H/pvJsQ6Xk90lR4mdmkRSUs9v7FRSUsLL//gn2QeP4Wy20mprp6CokKuHzcDpcqH9fyYNJgfHsPPkCY4ePSqFSB+YMmUKVy+5lg+/fJ+y3AoCI/1x2J3UFNTibwriF7/8FT4+Pu6OeVFcLhdbd20lODbwTBHyvwLD/clR8jlw4MCQL0SamppY//lqxnnHMTLkm2XNOo2WiVEjacxu5ouPPmP27Nmy8kF8J5PRhL317Cc82612DIbeX6zRHw3J357v3/gD8k7l8MHxDaT4xhLs5Ud9ezOZNbloY3350e239nh3a01NDU88/CjtxyuZHzmaqKgQihsq+Vf++1QXVHBCf4yUUan871W1igYNmkEzL6G/UxSFH/3oR6SkpLBu/VpOZp/EpDdzzYIFLFiwYFAMyzidTmw2Kz6e3Q9NKoqCzqilo6Ojj5P1P0ePHqWlsoFRid3PFUsNTeCLvP0UFBSQkJDQx+nEQDNl0hT2/3cPdpsdvaHzkQHWdhvtNTYmXT2p2+91Op0cOnSIgwcP0tHRQXh4OOnp6YNmntKQLERCQkJ48NGH+fyzz9i5fiuHW0vRmwxM/N4lLFt+OcOGDevxa65du5b646VcP3weJp0BgGBvfwIsfrhaVCqLy4kaNgyLzzdHsJc316Catb2SR3RPURQmT57cJxOV3UGn0xEWEk5xRR4R8eFd2h02B/YWh/TAcfqICsWlYtR2f86MSW9Edbqw28/+KVeIr82aNYsvvvqcjI2ZjJo+ArO3BwCtTa0c3X6S+IiEbod+GxoaePrZpzlwdB+q0YHWqMXW6OC9j97hlh/+mEWLFvX1S+lxQ7IQAQgODubHt93GD268kaamJjw9PXttpYCqqmxdu5Fkr4gzRQiASWcgJSqRIyeOYmjXUFVVdaYQsTpsbCs6TOzUJDn3Yohrbm5mx44dFBUVodPpSE1NZdy4cRc0HKAoCovmL2LFy8/SWNOEJfCboSZVVck6lEugd/CgmAtzsSIjI9F5myhurGSYb9cNGAvryzH6mOVUXnFO/Pz8+P19D/D0809zZO0JNObTv3Nqu0LSsOHc++vfdtmpWVVVXnjxBfYc28nImUn4Bp6+PzgdTnIO5/H3V/5GUFAQ48ePd8dL6jFDthD5mslk6vXlsS6Xi7bmViymyC5t6XFplDfWsCP3JPUlLqxeGpo6WshqKcVneBg/+dmdMit/CNu/fz8v/G0F5XVl6Hw0qA6V9z/XkpKYyn333ndBXbOXXHIJ+w/sY9uWLViivAmODMRutVOaU46+w4Of3H4bfn5+vfBqBpb4+HgSxo1k55ZMQrz8Mf7Ph4hmaysZtdlM/f4ifH193RdSDCjx8fG88OwL7N27l5ycHOD00QsTJ07s9oTnU6dOse/IXpImx50pQgC0Oi1JaQkcqDvElyu/lEJEfDetVot/SBCVp+pIofPSLJPOwDVj5lHUXk1zrImD+lI8/b24bP73mD9/PkFBA+eYedGz8vPzeWrFU3SYmpmwdDQG4+kbYXN9C0e2HeTJp5/giceePO8j6o1GI7+99z5SVo5i1bpVlB2oQqPRMmnEdJYuWTrg39R6iqIo3P7TO3is4s+8e3I9w32G4evhTVVzLdnt5URMTOL66693d0wxwBiNRtLT00lPT//Orz169ChW2gkI8+/SpigK4fGhHDlxmObm5gF17tX/SwqRPjJn4SW8k/kvxrU34efReeXFieoCIhOjeeqlFYSFhUkPiABgzZo11FurmTJ/Aormm58Jbz8vRs0cwdENmRw8ePCC5rOYTCauuuoqLr/8curr69Hr9VgsFvnZ+39ERUXx0ON/ZtWqVexYv4WO1hq8h1lYvvBGFi1aNOBXUYn+zeFwoNEqZ/291Oq0uFyuAb+gQQqRPjJv3jz27NjFpzu2M8Yvjlj/cKwOO8cqcslTarjithsID+86efBCOJ1OampqUBSFwMBAOUtkgNq5dwdB0QGdipCveft6gdnFkSNHLmpirU6nk1637xASEsLNN9/MD3/4Q6xWK0ajUX6nRJ+Ijo5GtSq0NrXh6dP1yJGqkhoiw2KxWCzdfPfAIYVIH/H09OT+Pz7Au++8w451WzhYXoCiUQhOjuTWK04Pw1wsp9PJmjVrWPvlaqoKy0CB8LhhLFp2GZdccol82h1AVFXFZrdhNJ592EWjVWTFRh/SaDR4eHi4O4YYQiZMmEBcRDzH95wibc5otDrtmbba8jpayztYdNuiAV8YSyHSh7y9vbnt9tv53vXXU1ZWhl6vZ9iwYT2yGZLL5eKfL/2TzR+sIl4TxLygUaiqyqnMQv517EVKSkq46aabpBgZIBRFITlhOPvzd3W75bzD5sDe7CQqqmubEGJw0Ov1/PJnv+KxJx9hzxcHCYzxw+hhpLa8Hnu9kwXpi1i4cKG7Y140KUTcwNvbm+Tk5B59zoMHD7L107VcEjiG+IBvVudE+4VxvDKPte99zuTJk4f8bpkDyYJ5C9j77G7KCyoJi/lmXw9VVTmxL4sgnxBZZivEIDd8+HCefOxp1q5dy9adW2iraWP0sDTm3zif9PT0QbGr78B/BQKAzZs249thIC4uksbGRsrKy2hpakGn0xIQFIi+3sHWLVukEBlApk6dyvKFV/Lp6o8pz6sgKDIAu81BVUENPlo/fnb3z2WZrRBDQFhYGDfddBM33XSTu6P0CilEBomygmLCzAHk5eVSkJWH1qpi1hnpcDnJKqmiVVtH1vFT7o4pzoNGo+G2225j5MiRrF23hlO5p9BpdSxNv4JFCxeRmJjo7ohCCHHRpBAZJDy9vSirPkZ7tUKQ1ocAf8uZc2vsLieHygo4cOAATqcTrVb7rc8l+g+NRnNmzwGn04lGo5F5PkKIQWVgT7UVZ0yeMZUj1blo7BBotnQ6PK/dZaPDQ0Vpd3Do0CF3RRQXSavVShEihBh0pBAZJCZMmECzzk6GvZAqW+PpMwxUlTJrHeubMgkNCSXSFMipUzI8I4QQov+QoZlB4vRKnCTa8mpY13YMY6sWFRWbTiUsPIRlqbNZmbsTVVXdHVUIIYQ4QwqRQcJsNjNi7Cha2goYFZJAWVM1AMN8Q4mwBFPX3kSLwSETHIUQQvQrUogMEoqisOCyRfxt/7PE2tqZGj36zHyCdruV9Xl7iUyLIy0tzc1JhRBDjd1uZ9euXWzYvIGKinL8fP2YOWMWs2bNwtPT093xekVZWRn5+fkoisKIESNkqf23kEJkEElPT6fghwWsevtTjh7PI9wcSLu9gyJHLYEjo/jFb341KDa/EUIMHB0dHTzz3DNs3bsZva8Wn0BvKmtK2f/PvazfuI7f/+4BAgMD3R2zx9TX1/Ovf7/Mrv27aGprRFEU/L38mTd7AT/84Q8xmUzujtjvKGo/njTQ1NSExWKhsbFRTrk8R6qqcuzYMTZt3EhRTgEmsweTpk9h5syZA/5gJCHEwPPGG2/w2kevMnJmEr5B37wHtbd2kLE+k9nj5vKHB/7oxoQ9p7W1lQcf+iOH8zKIGR1FaHQwLqeL0rxySo6WM3/aIn5772/dfjaMy+Xi0KFDbNy0keLSIry9fJg+dTrp6el4eXn1yDXO5/4tH48HGUVRGDVqFKNGjXJ3FHGOXC6X29+YhOgNbW1trN24hqCEgE5FCICHp4m4cdHsP7yPwsJCoqOj3ZSy52zZsoXDWYcYu3AUZu/TByRqtBqih0fhZfFk6+7NLDqyiLFjx7oto9Pp5KV/vsTK9V/i8rDjE+RNflkHu1/ayao1X/HA/X8gJCTku5+oB0khIoQbNDc3s27dOtZvWkdNXQ2+Pr7MmzOfBQsW4Ovr6+54QvSIkpISahtrSE6L67Y9JDKIvD2F5OXlnVMhoqpqv95LZ9PWTXiFeJwpQv5XQJg/OcZ8du7c6dZCZM2aNXy29hNiJkYSOiz4zOMdrR1kbMhkxYsreOyRx/r031kKESH6WH19PX9+9E8cyTmEJdIbn3hv6huqePntf7Bl22b+748PERwc/J3PI0R/d3onYA0up6vbdpfLhQrfetNraGhg/fr1bF23iYbaevyDA5m9YC6XXHIJ3t7evZT8wtTX1+FpMZ+13ehloL6hrtdz1NTUsGXLFvYe2IvdbiM5YThz584lLi6Olau+xDPM1KkIATB5mkienEDm7sOcPHmyT88lk0JEiD72+uuvczgvg7SFqXh4ffPJyTrKyoG1h/nXv//FA79/wI0JhegZw4YNIywonLK8ciwBXecJlBdU4mv2PetNr7q6msce+jOVh/NJ8AgjzhxB9ak63j3yb3Zu3cH9f/x9v1qNEhIcwpGy0m7bVFWlvamDoMDe/ZBx4sQJnnjmcUpri/EO80Sr05K5/hCrNn7FlYuvoqSyhIjx3Q+9+AX7csqVS3Z2dp8WIjIwLUQfqq2tZduerQxLCe9UhAAYPYzEjolm36G9lJSU9Fkmm82G1Wrts+uJocNgMLBk0RIaClsoz6/otKFiQ3UjRUdKmTVtzlnnJPzn369Qn1HEdYlzmRmXxqjQeOYkTOTa+NmU7T7Fm2+80Vcv5ZzMmTWXjlo7TXXNXdoqCqswOj1IT0/vteu3trbyzPNPU+0oZ9KycaROG8nISclMWToBc5Setz54k+amJr5riUpfD39Jj4gQfaikpITmtibio0Z22x4SFUT+vmKKioqIjIzs1SwHDhxg1eqvOHzsMADDE0ewcP5Cpk+f3q/H4Qcah8OBzWbDw8NjSP67Ll26lPLyclZu+JLCYyV4WExYW23QqiE9bTa33nprt99XWlrK4Z0HmBE2Ek9D56Ldx+TFhKBk9m3aSe33v09AQEBfvJTvlJ6eztbtW9mxaSvhw0MIjQ7G6XRRmltOXX4Dl8+/kuHDh/fa9Xfs2EFhZQHjF49Gp//m9q4oCglj4qgtPYC93EF5fgVBEV3/zWrL6zBpPEhOTu61jN2RQkSIPqTT6dBoNNhtDowexi7tdpsDjaJBr9f3ao7PP/+cf7/xMnaTldCEYBRFIaNoLwee28f38m7gxhtvHJI3zZ5UXFzMVytXsnvTDhxWO34hAcy99PSEZLP57PMIBhutVstPfvITZs+ezdatW6msqsRisTBt6jTGjRt31r2NiouLsTa2EZsc0W17rH84OwtOUlxc3G8KEaPRyH333sc77wxj/ZZ1ZJ46hUbREOwfwu3fv54rrriiV3+vsrKy0PtoMHoYum0PGhZAeU0N7ZU2SnPLCI8LO5OnrbmN7H15TB2V3uc7cEshIkQfSkhIICwgnOKsUkZMTOrSXpxdSpBvcK+OzxYWFvLft1/FK9pEwphvemYiE8Ipzi7l/c/fY8yYMYwZM6bXMgx2J0+e5Jk/PYG9oJ6RfjF4Gc2U51bz7rP/5sDe/fzugfsH7Y6i3fl6d9Hz+bnWarVoNAo2hx2dQdul3eawo2g1/W6TRk9PT3784x9z7bXXUlRUhFarJTY2tk82MlMU5TvPEwuPCGN2+lw+XfUxxSfK8Ar0xNpqxVbvZHTSOH5+989laEaIwcxoNLJs8eX8/b9/pdhSQmRCBIrm9JtHeX4lVVm13HLdj3tsU6HubN68mWZ7IympE04/oKq0trbhcDoIGRZIWXYFGzdulELkAjkcDl568W8Yi9u5OmUBOs3pm2hyUDSpbY18unU7n6Z8yve//303J+3fRowYgVeoH8cq85jYzVDmsco8/CKC+u35WT4+Pn2+n9Pw4cP5dK2Ktd3apcdVVVWqi2pZNGkJt9xyC1OmTGHLli0UlxXjFeHFtKnTmDp1qlt2fpVCRIg+tmzZMhoaGvj0q48pPr4fvVmLo92Fh+LJVYuu4dprr+3V6+cV5GEO9EDRKFRXV5Ofn0d9Yz0u1YVeq0e1acg8fqRXMwxmhw8fpvxUIVdETztThHwtwGxhpFcUW9ds5Oqrr8Zo7Do8J04vca+oqCB1chq7Pt6AT7UnSYHDUBQFl+riRGU+x22l3HDFrfJv+D+mTp1K9AdxHN52jHGzU9EbTg/xqi6VrEO5eDg9WbBgAYqikJKSQkpKipsTnyaFiBB9TKPRcPPNNzNnzhx27dpFfX09Pj4+TJ06ldjY2F7vFvUwmXBYnVSUl3Pk2BGcWgfeQZ5odTqs7VaKcytoL3RQVVUl+5lcgNLSUgw2DYGevt22x/iFcaLmEDU1NUREdD//Yaiqra3l7XfeZuvOLbR0NKOg0K7r4PPSXYRWnsBbMdGotuP007PoxuUsW7bM3ZH7FbPZzG/v+S1PPPM4ez8/hGewCZ1eR1NlCz56X35yy539pvj4X1KICOEm0dHRbtnWesL4iazbvoajmcfAQyUo5JuJfhqNBq1Dh1Pn4OOPP+YnP/lJn+f7WltbG7t37+bkyZOoqkpCQgLTp0/v1WGrnqDX67HjxOlyotV0ndvQbreiaHt/QvJA09DQwMN/fpjjxUeIHBFOdHgi1g4bhSeKaSpqIyAljoSEBPz8/Jg6dSoxMTHujtwvJSUl8dxTz7Nt2zb2Z+zHZrORPCmZOXPm9Ntt9KUQET3C4XBQX1+PTqfD19dXVlz0Y9OmTcPyT39OHjlB4sxhZx63tdkpy6zG2+xDYmo8m3ds4sYbb3TLpMrc3FyeevZJ8kpz0PpoUAD7WhfvfhjNb375m375qe5rY8eO5S0/D7JqihgRHNupTVVVjlblEjcjmaCgIDcl7J9WrlzJ8cJM0haOxuR5ep6C2duMX5AvWRm5lFQW84c//AF/f383J+3/fH19Wbp0KUuXLnV3lHMihYi4KHa7nZUrV7Lhq7XUlVWhaDTEjkpi8bIlTJkyxd3xRDfMZjOLFy3mYOZ+yvbVojUDioKj1YXF28LkRRPRaBQKS8uor6/v80KkqamJJ55+nOLmAsZdOurMTcnWYSNzx3GeeOZxnn3yuX47bBQWFsbUBTPZ9u5qDFo9cf4RKMrp1R97io9S42XjB8uXSbH+PxwOB+s2rSUw1u/M//f/ihsVzd68DHbt2sXixYvdkFD0JilExAWz2+08/8yzHFi1gyRDKGP9U7A7HRzfnscLB5+i5u5bWLJkibtjim5ER0cTlxTHsNRw6msaQD29vXN4XCg6vY7S3HL0WkOfD4OoqsrGjRvJL89lwtIxGIzf7IdgMBkYOyuVPZ8fZPPmzb0+qfdi3PrjH2O32dmyfjs7KjLxUIw00oYp1MLNt93BpEmT3B2xX2lra6OppYnAWEu37Tq9Dp2Hlrq63j+nRfQ9KUTEBdu6dSv71+xgScQkwn2+6WZOCIxid2Em7/37TSZMmEBoaKgbU4rujB8/nkCfYOx2O2NmdF5iqLpUik+Wcknawj47CdhqtbJhwwZWr1vNxk0b6PBqwTfXk2HDhnUqhrQ6LT7hXuzdv6dfFyImk4lf/OqX5F2+jH379tHe3k5wcDDTpk3rV2ej9BceHh6YjCbamtq6bXc5XTg6nP3ukDvRM6QQERds09oNROHbqQj52sSokRw/vprt27dz9dVXuyGd+DZ+fn5cueRK/vPeK7hceUQPj8RgNNBU10x2Ri7++kCuWH5Fn2SxWq08+dQTbD+wFXOoCb2fFpsW8ktzqagsZ9yYNPz8v7l56/Q6rDZbn2S7GIqiEB8fT3x8vLuj9Ht6vZ7Z0+fw/pq3GZYc2Wl7coCSnDK8DRbpSRqkpBARF0RVVUryixjt0/1hVVqNlkCNF+Xl5X2cTJyra6+9Fq1Wy6dffsyB7ExUxYVeMRA/LInbb72dpKSuO7/2hpUrV7LtwBZGzErEN9ACKhw/3kxQVCB15XUcPZ7J9Gkz0Gg0qKpKfVkDs2fP75Nsou8sWbKEXXt3sn/dIRLHxeEf6ofdZqfoVCnV2XV8b+kNhIeHuzum6AVSiIgLoigKHp5mWhq770oFaHOdPuhL9E8ajYZrrrmGRYsWcejQIdrb2wkJCWHUqFFotV2XnfYGh8PB6nWrsER5ny5CgJiRw8g+lkNVVi0BcRbqSxuprq4mJCSE/GOFmPFm7ty5fZJP9J3w8HD+7w8P8dLL/+Do3qOctOWioBDsF8It1/24Xw/FiYsjhYi4YFPnzGDdPz9kgnMkBm3nPRHKm2po9nAwfvx4N6UT58rb27tXjyb/Ng0NDVTVVhGWFnjmMR9/b8ZNH8PB7Ycorq3EpXGQm5lP4cFSDHYTt3z/x716gqlwn5iYGB5/9Amys7MpKyvDYDCQmpoqc0MGOSlExAVbsGABO9Zv4cuT25gVO54AswVVVSmoL2NL2WFGXjJOzisR30qv16PVaLBb7Z0ejxsVg7efN7mZ+RzbfRwHCgsXLWTB/AXyMzXIKYpCUlJSnw0NCveTQkRcsNDQUH7zx9/xt+df5KOTO/CwaXDiwuWjJ/XSKdz187vRaDTujin6MYvFQurIMWw6vI5meyNOpxMPkwehoaEERQTgdDox2Tx58em/yE6aQgxSUoiIi5KYmMgzLz5PRkbGmSOvU1NTiYuLkw2bxHdqb2+nrraOnEN5lNQU4hvtDS7Izs0ixBJKS7GVRTMu67dbUw9Fdrud2tpadDodAQEBA/L33Ol0kpGRwc5dO6mrryMoIIgZM2aQmpoqH57cQFFVVXV3iLNpamrCYrHQ2NiIj4+Pu+MIIXrYX//6Vz5Z/yEeASYKswrpcHag99TQ2tCBvc7B4kuWseL5FW7ZZl50ZrVa+eKLL1i9fjXVdZVoFC3DE0awbMkypk6d6u5456y9vZ3nVzzH1r1bwOzC5G2kvbEDrdXA/PQF3H333XIOUA84n/u39IgIIdyivLycjdvXEz0mksiEcEZMTKI4q5TWxla08Voaa5rw9vGSlVf9gM1m4+lnnmLLvk34DvMmckIIDruDzJyDZD57hJ/c/NMBs4vyG2+8wYY96xkxIwH/kG/2p6kqqWHl5i8ICQnhhhtucGPCoUcKESGEWxw9epSmjkZGxiYA4OFpImncN5t/1ZTVkrM/h4qKCtk/ws02bdrE1n1bGDEzEd+gb7ZhDxkWTFZGLv996z9MmjSp357/87X6+nrWb15LZEpopyIEIDgykMaERlat+4rly5djNpvdlHLokcEwMejU19ezZs0a3n//fdasWUNDQ4O7I4luOBwOFEVBo+3+bUhn0OFSXdjt9m7bRd9Zt2EtHkGGTkXI1+JTY2hor2P79u1uSHZ+Tp06RV1LHRFxYd22h8eFUd1QRV5eXh8nG9qkR0QMGqqq8sknn/Dex+9S11qL1qDgsLoIfDOQ66/+PsuWyYmn/UlUVBR6xUhDdWO3N7jqkhr8ffwJCel+917RN1wuF8WlxfjF+nbbrtVp0fvoqKys7NtgF8DlcgGgaLp/H9BoNaB+83Wib0iPiBg0Vq9ezb/e+CeaUBcTl4xh0pI0Ji4dA0FO/vnaP1i3bp27I4r/MXLkSEbEj+DU/hwcNkentub6Fqpy61gwdyEmU9dj4UXfURQFs4eZjraObttVVcVpdQ6I/6f4+Hh8zBYqCrsvmioKKvHz9pel4n1MChExKFitVj789APMEUYSx8ShM5zu7NMb9CSNi8cUqufDTz6Qbv5+RKPR8LO7fk6E1zD2rjxIVkYOxdmlZO44ztGNJ5k2ZgZXXnmlu2MOeYqiMDt9DjUF9Tjsji7tdZUN6OxGJkyY4IZ05yckJIQZk9MpPFJCa1Nrp7bG2ibKTlZyyax5skqzj8nQjBgUTp06RWlVCSnzErttjx4RxalNeZw6dYpRo0Z1+zWi78XExPD4n59g7dq1bNyygdbKVqJD4pl/2wIuueSSAfEpeyhYsGABm7ZtJGPjEYZPSsLbzwvVpVJZXEXegSJmjZ9DSkqKu2Oek1tvuZXKqgoOrjuAKUCPp8WTloZWbHUO0sfNlhUzbiCFiBgUOjo6cDgdmMzd37hMHkYcTgcdHd13Lwv3CQkJ4cYbb+QHP/gBLperzw7cE+cuLCyMB+77A3/524uc2HQKl86Jy+HCU+/NwumX8tOf3DlgNgKzWCw89ODDbN++nS3btlBTV0NyzCjm/HAO06ZNw2AwuDvikCOFiBgUQkJC8DR5UltRR3BkUJf22oo6zEYzoaGhbkgnzoWiKFKE9GOJiYk8/+wKDh8+TFFRETqdjtTU1AG5662Hhwfz589n/vz57o4ikEJEDBLDhg1jbEoauw5vwz/Y78wcEQCHzUH+kSJmjZlLZGSkG1MKMbBptVrS0tJIS0tzdxQxiEghIgYFRVG49Ue3UvxIEXtXHSQsMQRvXy+a61soz64kJjCem2/6kbtjCiGE+H/IWTNiUCkrK+Ozzz5jy87NdFjbMRk9mDNjLsuWLSMsrPtNjIQQQvSs87l/SyEiBqX29nZaWlrw8pKzSoQQA4/T6WTbtm1s2LienIIcPIwepE+byYIFC4iIiHB3vO8khYgQQggxQDkcDv7617+yavNK9P5aAsL8sLZbqSmsJ8wngt/95v5+v1xaTt8VQvQ7drudbdu2sX7jOgqLC/Hy9GJ2+hzmzZtHUFDXlU5CDFXr16/nq81fEj8lmqCIgDOPx6c6ydh8hBf+uoK/rPgrRqPRjSl7zsBY+C2EGNBsNhvPPvcMT7z4GJnlGWjDXdTpqnjl/X9y3wO/JT8/390RhegXVFVl9dpVmIONnYoQOH2uz8jJwykoz2fv3r1uStjzpEdECNHrvvzySzbsWkfyjPhOx687xjg4uOEwL/71BZ59+rkBsymWEL2lpaWF4rIiglICu203e3ugmFSKior6OFnvkd96IUSvstvtrF63CkuUd6ciBEBn0JE8KZFT+Sc5cuSImxIK0X9otVoUjQanw9ltu6qqqA51UG3+J4WIEKJX1dTUUFlbQUhU9/NALAE+ODQ2CgoK+jaYEP2Q2WxmbMpYynIr6G4tSX1VAwbVRGpqqhvS9Y5eK0QeffRRpk2bhtlsxtfXt7cuI4To53Q6HYqiwek8yyc8l4rLqaLTyUjxxVBVlcLCQvbt28eRI0fkpOkBbMnipZhsZk7uz+7UM9JY28TJXTmkpU5g5MiRbkzYs3rtN99ms3HNNdcwdepUXnnlld66jBCinwsMDCQpNpkTOUe6PQeoqqQaT72XnIp8EQoLC3n1v69y6NhB2jpa0Wp1RIYM45orrmHBggUoiuLuiOI8jB07lrtu+xn/+u/L7P7sIEaLDofVicaqY9LIKfzqF78aVP+nvVaIPPzwwwD897//7a1LiF7U2trKwYMHaWlpwc/Pj3Hjxg2apWJDQVFRERs3buTAof24XC5Gp4xh3rx5xMfH93kWRVFYungpx1ZkkpuZT2xK9JlJqQ3VjeTsL2De5IUD8vC0/qC0tJSH/vx/lLUUETsuGv+QRDrarBScKOKFfz5PR0cHl19+ubtjivM0f/58xo4dy7Zt2ygtLcVkMjFu3DjGjh076HoPB9erERdNVVVWrVrFx2++T1NpDXqXBrtOxT86hO/fehPp6enujii+w86dO1nxt+ep66jBL8KColH4cP0J1mxazU9vvdMtJ47OmDGDW6tv483332B3zn6MFgOOdgcaq54ZY2Zx91139+onPKvVitVqxdPTc1BN8gP47LPPKG4oYNJlaej0p9/SvSw6Rk0ZQVZGDu98+DZz5syRTSEHoKCgIK688kp3x+h1/aoQ+frN4mtNTU1uTDM0rVmzhtdXvEwyISyLm4fZYKKpo5U9hUd56ckXMBgMTJ482d0xxVlUVlby4j9ewO7dztQFE1A0p2/uaprKqYM5/OOVvxMfH09cXFyf5lIUhSuvvJLJkyezbds2Kior8DR7MmHCBEaPHt1rxUFeXh5frvySHXu2Y3fY8fcNYOElC7nsssvw9PTslWv2pba2Njbv2ER4UuiZIuR/xY6MZt+Xh9m7dy/z5s1zQ0Ihvtt5TVb93e9+h6Io3/rn5MmTFxzm8ccfx2KxnPkTFRV1wc8lzp/VauXTdz8k0RVEeuw4zAYTAD4mT+YlTiKoychH736Ay+Vyc1JxNps3b6ampYqUKcPPFCFwuhBITkug2dHA+vXr3ZYvIiKC733ve/zyF7/ktttuY9y4cb1WhBw5coQHHvo9X2z/FFO0lqBUC42Gav751t955LFHaG1t7ZXr9qXm5mas9g68/by7bdcb9WgNCg0NDX0bTIjzcF49Ir/+9a+5+eabv/VrLuaT1v33388999xz5u9NTU1SjPShzMxM6gorWTBsVpc2RVFIixjOqhMZFBQU9PknanFujp88jmeQBxpt188YiqLgG27h2MmjbkjWt+x2O3976a80aeqZfFnamTkpIcOCaUlqZd+G3Xz22WfccMMNbk56cby9vfEwetBc30xAqF+XdrvVjsumyspF0a+dVyESFBTUq2dCGI1GmRDpRm1tbbjsTryN3XdZ+xg9cdocg+KT5GCl1WhRXWc/x1JVVRRl8G8fdPDgQQrK8hk1P6nLbq1eFk8CY/1Yu3ENV111lVvfc1wuF5mZmezZs4empiaCg4OZPn06cXFx5zRnxmw2M3PqbD7e+D6R8eHoDJ3f0vOPFxLgHcSkSZN66yUMSA6Hg46ODkwm06Cb+DkQ9dr/QFFREXV1dRQVFeF0Ojl06BAACQkJeHl59dZlxUUICgpCZzZQ0VxLmE/X7YXLm2vQexoJDOx+62HhfqNTR7P1wCYcNkeXm5LL5aKhtJHLrxjvpnR9p6ysDFXvwtOn+6I6ICyA4uIK6uvrCQ0N7eN0p7W3t/PCiyvYumcLToMNvVmPdbeNj778gOWXXslNN910TlveL1++nP2H9rF/3SFiU4fhH+pHR5uVwhPFdFTY+cnNd8pE1f9fdXU1K1euZOOW9bS2t+Ll6c282fO57LLLCAgI+O4nEL2i1wqRBx98kNdee+3M38eNGwfApk2bmD17dm9dVlyE5ORkokbGs3v/UZaNmIn2f94EbU47+8tPkrp4AmFhYW5MKb7NzJkz+fjzjzi87Shj0kedKUacDidHd54g0DOYuXPnujll7zMajbjsLlxOV7fDVLYOGzqtDoPB4IZ0p7366qus27WW4dPiCQjzB073WJXmlPHOZ28RHBzM4sWLv/N5wsPDeegPD/Of1/5DxuED5O8tRqvVERUyjKt/co1bVkn1R2VlZTz8yEPkVmQTFBdAgK8PTXUtvPbJK+zcu5OH/vAQISEh7o45JClqd3vI9hNNTU1YLBYaGxulou8jx44d4+mHH8dQ2sHYkET8PHyobq0noyoLQ2Igv//TH2W/h37u6NGjPPXcU5TWFmMONKJoFFqrOwj2DuFXP7tnSHTTl5WVcdev7sRvuBdhMSG0NLaiKArevl6gwP51GUxJTOfBPz7olo2hqqqq+OnPf4JPkgdRiRFd2o/tPkkQYfz1hb+d19BBcXExlZWVmEwmkpOT0ev1PRl7QHvk0T+z5fBGJiwYi974zb+LrcPG/jWHmD/pUu777X1uTDi4nM/9WwbHBrivV7D01KmlKSkp/P6RB/n4gw/ZuecQzho7Wg8D46+eydXXXCOThweAUaNG8cKzL7Bt2zYyjx7BpaqMXDSSmTNn9uocr/4kPDyc2dPm8O83X8ausYFGRVEUPL08MRlNBHgEs2zpMrftTnn8+HEa2uoZHhvbbXtEQhh5O4opKio6r4nhUVFR8jvajeLiYvYf3kfsmOhORQiAwWQgJjWK3Qd2UVFR4bahuqFMCpEBSFVVMjIyWLd6DccOZgKQkpbK/EULGTdu3EW/uSYlJfG7B35PTU0NTU1N+Pn54efXdUa+6L/8/PxYtmwZy5Ytc3cUt3A4HDS3NONUnDg9bBj99Cio1FRW4SpUmHX1JYwdOxZVVcnLy2PXrl1nPsFNmzaNmJiYXi1SznyA6GbYCECr0+JyqWc9n0ecn7KyMlo6WkgJT+y2PTAigKKD5ZSVlUkh4gZSiAxAn332Ge/983V8m3WM9T/96Sdn1SGe3rqPa++4kSuuuKJHrhMYGCgTU8WAtGPHDrbu28zca9PRm3XUVNfgcDrwmOSBrcHBsexMsrKy2LhxI6s2fkW72oLOrMPR5uT9z95lyfxl3HLLLb22x0lMTAyeRi+qS2sJjuz6O1ZZVI2/jz/h4eG9cv2hxmAwoNVosbbbMHt7dGm3ddjRarRunTM0lEkhMsBkZ2fzwb/fZIwmkgkp35y+ODoskf0lx/nwlbcYNWoUiYndV/5CDAUbNm3A4K/DP+R0T5639zcbfqkRKrtz97NixQpyyrOIHhdOWOxwFEVBdamU5pXz/pfv4u/vz1VXXdUr+WJjY0lLHc+Og1uwBHhj9PhmCXFTXTOV2TX88IqbB8Xur/3BiBEjCAsMpyirhOHju743Fp0qISIkiqSkJDekE4N/Q4FBZvOmTejrHYyPGNGlbXzECPR1DjZt3OiGZEL0H8WlRVgCu99tVFEUDN56du/fRWCCH+FxYWeGYRSNQmRCOP6xPnyx6nM6Ojp6JZ+iKPz0jp+SFDaSA18d4eiuE+QfK+TQlkyOb8pmxtiZXHPNNb1y7aHIZDKxfMkVNBQ0U3C8CJfz9NCY0+Ek72gBLSXtLF+yXHpE3ER6RAaYguw8ojyCuh2/VhSFKHMQ+Vm5bkgmRP9h8fGlqKX2rO2NdU2029qJSuh+6CMqKYKj67LIyspi9OjRvZIxJCSEx/78GJs2bWLjlg00VNYzMmwMl1x3CTNnzuyXmzs2NTWxd+9e6uvr8fHxYdKkSQNm/tiyZctoaWnh4y8/YvfJA+jNWuxtTixGP26+7pZzWioteocUIgOM3mig1WE7a7vVacPD1P/ewIToS7NmzOJvrx3G1mHDYOr8KbehphFXC1gs3l02ffuazqDD5XLhcDh6NafFYmH58uUsX768V69zsb4+lfuNd1+nuqkKnVGD0+rC7/UArrvye1x55ZVuW4F0rjQaDT/4wQ+YN28eu3fvprGxEV9fX6ZOnUpwcLC74w1pUogMMGmTJvD25oN0OGyYdJ3fYDscNoocdVw/afAfGy3Et5kzZw5rN6zhwPojJE2Ixz/EF1SoKKoi/2AhU8ZOI7coh6riGsLjuq6SqCqqxtvDR5bC/v82bdrE3175K15RRibOHIPeqMdhc1Bwsph/v/kyBoOBpUuXujvmOQkNDe33hd9QI3NEBpiZM2filxTOl6e202z95syXZmsrK09txy8hjFmzuh5aJ8RQ4uvryx9//yDj4ydRuKeUXZ/sZ9cn+6nOrGfh9Mt4+KGHmT5pOgWZRXS0dp4H0t7aQdGxMmZMTh8y+658G4fDwYeffIA+SCF5fOKZfTh0Bh0Jo2PxijLx0Wcf9tp8GjH4SY/IAOPr68tvHriP5598hndObcLPeXopWr22neARUfzqd7+RkzaF4PSmZo8/+jgnT54kPz8frVbLyJEjz/Ry3PKjWyktK+XgmkwsEd54+3rRXN9CY2kzoxPGctNNN7n5FfQPOTk5FJQWkDiz+x2Vo4cPI3PtSY4fP05aWlofpxODgRQiA1B8fDzP/mUFe/bsISsrCzi9CdmkSZMwmUxuTidE/6EoCiNGjGDEiK6rzAIDA/nzw4+wbt06NmxeT21+LSH+kfzgpvnMmzev05LfocxqteJ0OTCZu39v8fA04XQ6pEdEXDApRAYoo9HIzJkzmTlzprujCDFg+fj4cNVVV3HVVVehquoFTbj8enfWhoYGLBYL8fHx/X7i5vkIDg7GbPSkrqKOsNiu82lqyuswmzzlwDhxwaQQEUIIuKDi4ciRI7zx1uucyD2BzW7FoDcyPG4437/+B2dOHB/owsLCmJw2mQ0H1hIYHtDprBaH3UHu4XwmJk85rzNxhPhfUogIIcQFOHLkCI888SeadY3ETY7Bx8+L5oYWjmdm8ujTj/DAvX8YNMXID2+8idz8XPatyiAsMQRvf29aGlooy6og0jeaW2/58aDqBRJ9S1FVVXV3iLM5n2OEhRCir6iqym9/dy9Hyw8zYd7YTjdhVVU5uPEwSYEpPPvUsz12Mra7VVZW8tlnn7Fp20barW0Y9EZmTpvF8suXExkZ6e54op85n/u39IgIIcR5ys3N5UTuCeImdz2lV1EU4kfHkrXjFNnZ2SQnJ7spZc8KCQnh9ttv58Ybb6S5uRkvLy/MZrO7Y4lBQAoRIYQ4Tw0NDdjsHfj4e3Xb7u3nhdXeQUNDQ98G6wMeHh54eHQ9wVaICzU4+gyFEKIPWSwWDHojzfUt3bY3N7Rg1BtlSFmIcyCFiBBCnKf4+HiSY4eTl1nI/zvNTlVV8o4UED8scdAMywjRm6QQEUKI86TRaPjBDTfiYfXi4MYjNFQ34nQ4aahpJGPTEQztZm684cZBM1FViN4kq2aEEOICHTx4kNfffI3swiysdisGnZGE6ERuvOFGJk6c6O54QriNrJoRQog+kJaWxtixY8nKyjqzs2pycrL0hAhxHqQQEUKIi6DRaBg+fHivX6ejo4Pq6mr0ej0hISGygZgYNKQQEUKIfqy1tZVPPvmEtRvXUN9Uj1ajITl+OJcvXc60adPcHa9f6OjoYO/evWcOAU1OTmbSpEkYjUY3JxPnQgoRIYTop9ra2njs8UfZc3QXQfH+xI6KwGa1cyz7CMefO8ZPG+7isssuc3dMt8rNzeXpZ58itzQHrefpx5xfQHxUIvf+6l7i4+PdG1B8JylEhBCin1q3bh17j+4m9ZIRePt+s3lacGQgpw5k89+3/sPkyZMJCAhwY0r3qa+v5/GnHqO0tZCxi0bi4XV6o7X2lnYyt5/g8acf55knnsHX19e9QcW3khlVQggqKyv54IMPeOrpp3jxxRfZtm0bVqvV3bGGNFVVWbN+Dd7hnp2KkK/Fj46lrrWGnTt3uiFd/7B161YKKvMYOzv1TBEC4OHlwbg5qRRU5LJt2zY3JhTnQnpEhBji1q9fz8uvvkRdey0mPwNOu5MvNnzGyPhR/O7e3xEWFubuiEOS1WqlurYK/2Tfbtt1eh16Lx3V1dV9G6wf2XdgL57BHuiN+i5teqMec5CJffv3snTpUjekE+dKChEhhrCjR4/y13/9BX0ITEkbj0Z7upO0rbmNw5uP8MxzT/Pk40+h08lbRV8zGAyYDEbaWzq6bVdVFUeHc0if+9Jh7ei2CPma3qjHapOevf5OhmaEGMJWrV5Fh7aF4ROSzhQhAGZvM6NmjOBY9lEyMjLO+fnsdjsZGRls27aNY8eO4XK5eiP2kKDRaJg1Yw6VeTU4Hc4u7ZXF1XgoZiZMmOCGdP1DYlwSjRVNXbbZh9OFWlNFM/GxCW5IJs6HfMwRYohyOBzsz9hHSGxwt3tSePt5oZqcHDt27Dt3CVVVlc2bN/PWe29RUlGEzWnDpDeREJ3ErTffypgxY3rrZQxql156KVt3beXA+sMkT0zAEuCDy+miLK+coiNlLEpfTELC0L3Rzpkzh1UbVpJ/rJC4UTGd2vKOFuCp8WHu3LnuCSfOmRQiQgxRqqriUl1otWfv2lY0nFOvxsaNG1nxj+fRBUHK/ETM3maaapvJOXySR5/8Mw/+/iFGjRrVk/GHhIiICP74uz/y17//haytp3AoDlSnCx+TL1fMv5pbb711SG9slpSUxA+/dzP/efsV9pdlEDQsEICqwhp0HUZu/cGPh3ShNlBIISLEEKXX60mOT+ZQyQEiEyO6tHe0WXG2qsTGxn7r81itVt567010QZA6beSZxy2BPqTNGcO+dQd57/13SUn585C+aV6oxMREnn92BUeOHKGkpAS9Xs+YMWMIDQ11d7R+4YorriAmJoZVq1dx5NhhAGamzmHhgkWkpaW5OV3/VVJSwq5du84cTTB16lSioqLckkUKESGGsIULFnHg+f2U5VUQHvfNjc3ldHFs1wmGhcQwZcqUb32OzMxMSqtKSF3QdZtzRaMQkxLNkYzDlJaWEhkZ2eOvYSjQaDSMHTuWsWPHujtKv6MoCmlpaaSlpZ3pvZOzfs7O5XLxxhtv8OlXn9Bib0TnqcPR5uDtD99i6cJl3HzzzWi12j7NJIWIEEPYjBkzuOrUNXz81YeU5ZTjF+aL3eagrriBEO9wfvXze75zVUZzczMOlwOzd/df52UxY7PbaG5u7o2XIMQZUoB8t88//5y3P3mDsFHBpCQmoNFoUF0qJbllvPv52/j4+HDNNdf0aSYpRIQYwhRF4dZbT08mXbd+Hdl5WXgbjCxdfiWXXHIJ4eHh3/kcvr6+6LV6mhtaut14q7G2GaPBhJ+fX2+8BCHEObJarXy28lMs0V4MS/6md1LRKEQlRtDe0s4Xqz5n8eLFmM3mPsslhYgQQ5yiKEycOPE7V8acTWpqKrERceQcymPsrNRO80BcTheFx4qZOXqOzGkQws2ysrIorykjZV5St+1RSZEcWX2CkydP9un8GunHEkJcFJ1Ox49+eAv6Vg8ObDhMbXkdHa0dVBZVsXfNQYJNYVz/vRvcHVOIIc9ut+NyudAbu++D0Bt0uFxO7HZ7n+aSHhEhxEWbNGkSf/jtH3nnvXc4ufcEdocNk8HE9NRZ/OCGH8gJqOK8tbW1sWfPHvLz89FoNIwcOZK0tDTZ5fciRERE4OXhTXVJLRHxXY9uqC6txdPDu89Xz8j/qBCiR6SlpTFu3DgKCgpobm4mICCAiIiuy4LFN6xWK3v37mXv3r00tzUTFR7FzJkzSUhIGNJLnY8dO8ZzLzxLUWUBWk8F1QXKp1pGJqRw769/K+cfXaCQkBCmTpjGmt0rCQz3x+hhPNNmbbeRf7iQeRMXntPcsJ6kqN3tjdtPNDU1YbFYaGxsxMfHx91xhBCix9TW1vLEU09w+ORBdBYNeg89bXXtmBUvrll2Hd///veHZDFSXl7Ob39/L3VqFSlTR2Ayn75ZNje0cHTbCUZGpPLUE09jNBq/45lEd2pqavjTIw9zvCATv2G++Ph70dzQSl1hA8mRI3jwD/9HSEjIRV/nfO7f0iMihBB9TFVVXvzri2Tk7Gf0/JF4WTzPPF6cVcpbH71BREQEc+bMcXPSvrdhwwbKG0uYvHQ8Wt03+1l4+3oxZnYKh9ccY8+ePcycOdONKQeuwMBA/vTQn1m7di1rN66lMasBHy8/rrzuOhYuXOiW1W1SiAghRB/Lzs7mYOZ+kibFnSlC4PQKpmHJkdRV1PPlV18we/bsIdcrsmPPdvyjfDsVIV8ze5vR+ShkHMqQQuQi+Pr6cu2113LNNddgt9vR6/Vu/TmTVTNCCNHHTpw4QYernYAw/27bw+NDyS3Mpaampo+TuV9HRwd6w9nPP9IZdFit1j5MNHgpioLBYHB7sSuFiBBC9DH1/2vv3oOiuvI8gH+7hW5ABCQgjxGQh2IiJiiKgdkNIERQN4HRmMRxM2bGYDQ6K5k8hmRrhnFqUiZKjTuxrNGpTGBTlVXjlsaKmcRBFA0R8YUTQGEFAUPzUhRo3mj/9g/X3iDPBrovj++nqqv03nO7fz8Ol/ur2+eeIwKVGn1eAO7PECqDWnBwvAkMCMTt6oZe9xnuGdB2uwMzfGZYNCYyL341Q0QTXnl5ObKzs6Gr0sF+sj1CQ0Mxb948sz0q6ufnByuDBg03G+Hk6thjf3V5LTzdvOHi4mKWzx/NohfH4HTuaVRdr4an3/8/HSMiKL5Ugqm2j/BrmXGGhQgRTVgiggMHDmD/4X1oudsEGyctutq68EXGESx4PBRvv/m2WZ7YCwoKwmMBQfhH7iWExDwOjY3GuK+u8hZaqtux7JVlFl98bCQZDAYUFBTg2rVrEBHMmjULQUFBA64Hs2DBAqxc/hz++8vPUFNWB1dvFxjuGVBbdhM2dydj8/oNnKV3nOHju0Q0YZ08eRI7dn0Al0An+Mz2gkp9/6uSxvomFJ4uwuKFS/BO8jtm+Q69srIS773/B1yrLIa9ux1sJ9ugoa4JaFZj6eLleG3ja2N28q7q6mr8x4c7kV+cjy71/fEc1gYN5syci9e3vD7gPBUiguzsbPw94xiKSoqgVqmxYN5CLI1biqCgIEukQMNkyvWbhQgRTUgigjfffgPX7lxFcMTcHvtrb9Sh+nI9/rT9Q/j6+polhsbGRmRlZSH7zDfQtzTDZ7oPFkctxsKFC8fsSrItLS1459+TcbWqAI8+Ocv41VPDzUZczf0fzJr2KD7Yth329j0XSOxNV1cXVCrVmC3KJirOI0JENIC6ujqUVpTAc17vs3ROm+6K0gsVKCwsNFsh4ujoiPj4eMTHx5vl/ZWQnZ2NK2WFmL90Lmwm2xi3O7k6Yt7ix3Hpq3x88803WLp06aDez9q67ydoaHwYmyU3EdEwGQwGGER6na8CAKC6vzz6RHxyZTjOnjsL20c03YqQB2zstLBz0eJsbo4CkdFoxUKEiCYkFxcXuLu4o/ZGXa/7G281wVq0mDFjhmUDG+NaWlugsdP0uV9rp0Fza4sFI6LRjoUIEU1I1tbWiHt6KRq/16O+5k63fV0dXSg+dw2P+j/GwZEm8p7uDf2tZvQ2/FBE0Finh4+XjwKR0WjFMSJENGE988wzKL1eiuPZf0fF1BtwmuaItpZ2NFbq4ecRgKR/Sxqzg0aVEhUZhWMnv4aupArTZ3ZffbnqejU0d20RGRGpTHA0KvGpGSKa0O7evYszZ84g82QmblRWwH7yFET+cySioqLg7Nz7FOzUNxHBJ598gv1H/gvWzmp4+N5fybW6rBad9few6l9ewC9+8QvFpxUn8+Lju0REpBgRQVZWFr786ihKK0oBAH7eflgWtxyLFy9mETIBsBAhIiLFiQgaGhogIpg6dSoLkAmE84gQEZHiVCoVpk6dqnQYNMpxFBYREREphoUIERERKYaFCBERESmGhQgREREphoUIERERKYaFCBERESmGhQgREREpxmyFSHl5OdatWwdfX1/Y2trC398fKSkp6OzsNNdHEhER0RhjtgnNioqKYDAYsHfvXgQEBKCgoACJiYloaWlBamqquT6WiIiIxhCLTvG+Y8cO/PnPf8b169cH1Z5TvBMREY09ply/LTpGpLGxkatZEhERkZHF1popKSnBrl27+v1apqOjAx0dHcb/NzU1WSI0IiIiUojJd0SSk5OhUqn6fRUVFXU7RqfTIS4uDqtWrUJiYmKf771t2zY4OjoaX15eXqZnRERERGOGyWNEbt68ifr6+n7b+Pn5QaPRAACqqqoQGRmJJ598Eunp6VCr+659ersj4uXlxTEiREREY4gpY0RM/mrG1dUVrq6ug2qr0+kQFRWFkJAQpKWl9VuEAIBWq4VWqzU1JCIiIhqjzDZGRKfTITIyEj4+PkhNTcXNmzeN+9zd3c31sURERDSGmK0QycjIQElJCUpKSjB9+vRu+yz4xDARERGNYhadR8RUnEeEiKgnEUF5eTlqa2uh1Wrx2GOP8WttGlXMOkaEiIiUU15ejr+m/RX/uJKH1o5WWKmt4OH6IzyX8ByWLVsGlUqldIhEJmEhQkQ0Ruh0Omz9w+9Q1XwDfiEz8Ii7M9pb21F+9Xvs+uhP6OjowIoVK5QOk8gkXH2XiGiMOHLkCL5vKEfIkmC4/sgF6klq2E2xw2OhgXD2d8CBQ/tx584dpcMkMgkLESKiMaC1tRWnzmTBc5Y7rKx73sye8ag36ptv4dy5cwpERzR0LESIiMaA5uZmdHS2w97Jvtf9VhorWGnVXBqDxhwWIkREY8CUKVNgo7WF/ra+1/1dHV2422GAk5OTZQMjGiYWIkREY4CtrS2i/mkxqq/Voquzq8f+64UVcJniitDQUAWiIxo6FiJERGNEfHw8fF0DcP7YZVSX16KzoxNNt/XIP3MF+oo2rHn+X+Ho6Kh0mEQm4YRmRERjiE6nQ/p/puP8P86htaMFVmoreHvOwHMJzyE6OprziNCoYMr1m4UIEdEYVFVVhdraWtjY2GDmzJmwsuK0UDR6cGZVIqJxztPTE56enkqHQTRsHCNCREREimEhQkRERIphIUJERESKYSFCREREimEhQkRERIphIUJERESKYSFCREREimEhQkRERIphIUJERESKGdUzqz6Yfb6pqUnhSIiIiGiwHly3B7OKzKguRPR6PQDAy8tL4UiIiIjIVHq9fsAVoUf1oncGgwFVVVWYMmWKxVaUbGpqgpeXF77//vtxu9AecxwfmOP4wBzHh4mQIzD4PEUEer0enp6eUKv7HwUyqu+IqNVqTJ8+XZHPdnBwGNe/TABzHC+Y4/jAHMeHiZAjMLg8B7oT8gAHqxIREZFiWIgQERGRYliIPESr1SIlJQVarVbpUMyGOY4PzHF8YI7jw0TIETBPnqN6sCoRERGNb7wjQkRERIphIUJERESKYSFCREREimEhQkRERIqZ0IVIeXk51q1bB19fX9ja2sLf3x8pKSno7Ozs97j29nZs2rQJjzzyCOzt7bFy5UrU1tZaKGrTvffeewgPD4ednR2cnJwGdczLL78MlUrV7RUXF2feQIdpKHmKCH7729/Cw8MDtra2iImJwbVr18wb6DDcvn0ba9asgYODA5ycnLBu3To0Nzf3e0xkZGSPvtywYYOFIh7Y7t27MWPGDNjY2GDRokU4d+5cv+0PHjyI2bNnw8bGBnPnzsXf/vY3C0U6dKbkmJ6e3qO/bGxsLBit6U6fPo1nnnkGnp6eUKlU+Pzzzwc8JisrC/Pnz4dWq0VAQADS09PNHudwmJpjVlZWj35UqVSoqamxTMBDsG3bNixcuBBTpkzBtGnTkJCQgOLi4gGPG+45OaELkaKiIhgMBuzduxeFhYXYuXMn9uzZg3fffbff415//XV88cUXOHjwIE6dOoWqqiqsWLHCQlGbrrOzE6tWrcLGjRtNOi4uLg7V1dXG1759+8wU4cgYSp7bt2/Hhx9+iD179iA3NxeTJ09GbGws2tvbzRjp0K1ZswaFhYXIyMjA0aNHcfr0aaxfv37A4xITE7v15fbt2y0Q7cAOHDiAX/3qV0hJScGlS5fwxBNPIDY2FnV1db22P3PmDFavXo1169YhLy8PCQkJSEhIQEFBgYUjHzxTcwTuz1r5w/6qqKiwYMSma2lpwRNPPIHdu3cPqn1ZWRmWL1+OqKgoXL58GUlJSXjllVdw7NgxM0c6dKbm+EBxcXG3vpw2bZqZIhy+U6dOYdOmTTh79iwyMjLQ1dWFJUuWoKWlpc9jRuScFOpm+/bt4uvr2+f+hoYGsba2loMHDxq3Xb16VQBITk6OJUIcsrS0NHF0dBxU27Vr10p8fLxZ4zGXweZpMBjE3d1dduzYYdzW0NAgWq1W9u3bZ8YIh+bKlSsCQM6fP2/c9tVXX4lKpRKdTtfncREREbJlyxYLRGi60NBQ2bRpk/H/9+7dE09PT9m2bVuv7Z9//nlZvnx5t22LFi2SV1991axxDoepOZpyno5GAOTw4cP9tnn77bdlzpw53ba98MILEhsba8bIRs5gcjx58qQAkDt37lgkJnOoq6sTAHLq1Kk+24zEOTmh74j0prGxEc7Ozn3uv3jxIrq6uhATE2PcNnv2bHh7eyMnJ8cSIVpMVlYWpk2bhsDAQGzcuBH19fVKhzSiysrKUFNT060vHR0dsWjRolHZlzk5OXBycsKCBQuM22JiYqBWq5Gbm9vvsZ9++ilcXFwQFBSEd955B62treYOd0CdnZ24ePFit5+/Wq1GTExMnz//nJycbu0BIDY2dlT2FzC0HAGgubkZPj4+8PLyQnx8PAoLCy0RrsWMtX4cjuDgYHh4eODpp5/Gt99+q3Q4JmlsbASAfq+JI9GXo3rRO0srKSnBrl27kJqa2mebmpoaaDSaHmMQ3NzcRvV3f6aKi4vDihUr4Ovri9LSUrz77rtYunQpcnJyMGnSJKXDGxEP+svNza3b9tHalzU1NT1u61pZWcHZ2bnfeH/605/Cx8cHnp6e+O677/DrX/8axcXFOHTokLlD7tetW7dw7969Xn/+RUVFvR5TU1MzZvoLGFqOgYGB+Pjjj/H444+jsbERqampCA8PR2FhoWKLgI60vvqxqakJbW1tsLW1VSiykePh4YE9e/ZgwYIF6OjowEcffYTIyEjk5uZi/vz5Soc3IIPBgKSkJPz4xz9GUFBQn+1G4pwcl3dEkpOTex0k9MPXw38EdDod4uLisGrVKiQmJioU+eANJUdTvPjii3j22Wcxd+5cJCQk4OjRozh//jyysrJGLolBMHeeo4G5c1y/fj1iY2Mxd+5crFmzBp988gkOHz6M0tLSEcyCRkpYWBh+9rOfITg4GBERETh06BBcXV2xd+9epUMjEwQGBuLVV19FSEgIwsPD8fHHHyM8PBw7d+5UOrRB2bRpEwoKCrB//36zf9a4vCPyxhtv4OWXX+63jZ+fn/HfVVVViIqKQnh4OP7yl7/0e5y7uzs6OzvR0NDQ7a5IbW0t3N3dhxO2SUzNcbj8/Pzg4uKCkpISREdHj9j7DsSceT7or9raWnh4eBi319bWIjg4eEjvORSDzdHd3b3HAMe7d+/i9u3bJv3uLVq0CMD9O4D+/v4mxztSXFxcMGnSpB5PnPV3Lrm7u5vUXmlDyfFh1tbWmDdvHkpKSswRoiL66kcHB4dxcTekL6GhocjOzlY6jAFt3rzZOBh+oLtwI3FOjstCxNXVFa6uroNqq9PpEBUVhZCQEKSlpUGt7v8mUUhICKytrZGZmYmVK1cCuD8q+saNGwgLCxt27INlSo4jobKyEvX19d0u2JZgzjx9fX3h7u6OzMxMY+HR1NSE3Nxck58wGo7B5hgWFoaGhgZcvHgRISEhAIATJ07AYDAYi4vBuHz5MgBYvC8fptFoEBISgszMTCQkJAC4fzs4MzMTmzdv7vWYsLAwZGZmIikpybgtIyPDoueeKYaS48Pu3buH/Px8LFu2zIyRWlZYWFiPRzxHcz+OlMuXLyt+3vVHRPDLX/4Shw8fRlZWFnx9fQc8ZkTOyaGOph0PKisrJSAgQKKjo6WyslKqq6uNrx+2CQwMlNzcXOO2DRs2iLe3t5w4cUIuXLggYWFhEhYWpkQKg1JRUSF5eXmydetWsbe3l7y8PMnLyxO9Xm9sExgYKIcOHRIREb1eL2+++abk5ORIWVmZHD9+XObPny8zZ86U9vZ2pdIYkKl5ioi8//774uTkJEeOHJHvvvtO4uPjxdfXV9ra2pRIYUBxcXEyb948yc3NlezsbJk5c6asXr3auP/h39eSkhL5/e9/LxcuXJCysjI5cuSI+Pn5yVNPPaVUCt3s379ftFqtpKeny5UrV2T9+vXi5OQkNTU1IiLy0ksvSXJysrH9t99+K1ZWVpKamipXr16VlJQUsba2lvz8fKVSGJCpOW7dulWOHTsmpaWlcvHiRXnxxRfFxsZGCgsLlUphQHq93ni+AZA//vGPkpeXJxUVFSIikpycLC+99JKx/fXr18XOzk7eeustuXr1quzevVsmTZokX3/9tVIpDMjUHHfu3Cmff/65XLt2TfLz82XLli2iVqvl+PHjSqUwoI0bN4qjo6NkZWV1ux62trYa25jjnJzQhUhaWpoA6PX1QFlZmQCQkydPGre1tbXJa6+9JlOnThU7Ozv5yU9+0q14GW3Wrl3ba44/zAmApKWliYhIa2urLFmyRFxdXcXa2lp8fHwkMTHR+IdztDI1T5H7j/D+5je/ETc3N9FqtRIdHS3FxcWWD36Q6uvrZfXq1WJvby8ODg7y85//vFuh9fDv640bN+Spp54SZ2dn0Wq1EhAQIG+99ZY0NjYqlEFPu3btEm9vb9FoNBIaGipnz5417ouIiJC1a9d2a//ZZ5/JrFmzRKPRyJw5c+TLL7+0cMSmMyXHpKQkY1s3NzdZtmyZXLp0SYGoB+/Bo6oPvx7ktXbtWomIiOhxTHBwsGg0GvHz8+t2Xo5Gpub4wQcfiL+/v9jY2Iizs7NERkbKiRMnlAl+kPq6Hv6wb8xxTqr+78OJiIiILG5cPjVDREREYwMLESIiIlIMCxEiIiJSDAsRIiIiUgwLESIiIlIMCxEiIiJSDAsRIiIiUgwLESIiIlIMCxEiIiJSDAsRIiIiUgwLESIiIlIMCxEiIiJSzP8CQfXKhfStt4MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWs0lEQVR4nOzddVxd9/3H8de5il3cHUKAhIQoEHdP29RSWbvKuq1dZV3bbW23dt6lumZ1+63e1S3uJCFESIgSJ2hw98uV8/sjKx2DNAZc5PN8PPgj53vvuW8I3PO53/MVRVVVFSGEEEKIPkLj6ABCCCGEEBdCihchhBBC9ClSvAghhBCiT5HiRQghhBB9ihQvQgghhOhTpHgRQgghRJ8ixYsQQggh+hQpXoQQQgjRp+gcHaCr2e12ioqKMJlMKIri6DhCCCGEOA+qqlJfX09wcDAazQ/3rfS74qWoqIiwsDBHxxBCCCHERSgoKCA0NPQHH9PviheTyQSc+ebd3d0dnEYIIYQQ56Ouro6wsLC26/gP6XfFy3e3itzd3aV4EUIIIfqY8xnyIQN2hRBCCNGnSPEihBBCiD5FihchhBBC9ClSvAghhBCiT5HiRQghhBB9ihQvQgghhOhTpHgRQgghRJ8ixYsQQggh+pR+t0idEEJ0h4qKCrKzs9FoNAwePBhPT09HRxJiwJLiRQghfkB9fT3vvvMOOzduo6WqARRw8XVn4pxp/PjHP8bZ2dnREYUYcKR4EUKIszCbzTy95ClOpe4nyS+e2JhwbKqd4+V5bHz3W6rKK/jNIw+j1WodHVWIAUXGvAghxFmkp6dzbNs+rhg0iWGBgzDo9DjrjYwIjmVBeAp7N+4gMzPT0TGFGHCkeBFCiLNIS91CCB74uHh0aAt298PL7MS2tDQHJBNiYJPiRQghzqK6vBJv546Fy3e8DG7UVFb3YCIhBEjxIoQQZ+Ud4EdFU+1Z26ta6/Dx8+3BREIIkOJFCCHOavK0KRQrtZQ1VHVoK6gpocbJwsTJkxyQTIiBTWYbCSHEWYwfP54t05NZti6d0V4xDPYNx66qHCvPY3/9KcZePpWRI0c6OqYQA46iqqrq6BBdqa6uDg8PD2pra3F3d3d0HCFEH9fU1MRHH37I1jWpNFfWgaLg5u/J9IWzuf766zEYDI6OKES/cCHXbylehBDiPNTW1pKbm4uiKERHR+Pm5uboSEL0Kxdy/e7WMS9btmzh8ssvJzg4GEVR+Prrr3/w8ampqSiK0uGrpKSkO2MKIcQ5eXh4MGLECBITE6VwEcLBurV4aWxsZMSIEbz88ssX9Lxjx45RXFzc9uXv799NCYUQQgjR13TrgN358+czf/78C36ev7+/bHomhBBCiE71yqnSI0eOJCgoiNmzZ7Nt27YffKzZbKaurq7dlxBCCCH6r15VvAQFBfHaa6/xxRdf8MUXXxAWFsa0adN+cO+QJUuW4OHh0fYVFhbWg4mFEEII0dN6bLaRoih89dVXXHnllRf0vKlTpxIeHs7777/fabvZbMZsNrf9u66ujrCwMJltJIQQQvQhFzLbqNcvUpecnEzaD2x8ZjQaMRqNPZhICCGEEI7Uq24bdWbfvn0EBQU5OoYQQggheolu7XlpaGjg5MmTbf/Oyclh3759eHt7Ex4ezqOPPsrp06d57733AFi6dClRUVEkJCTQ0tLCW2+9xcaNG1m7dm13xhRCCCFEH9Ktxcvu3buZPn16278ffPBBAG699VbeeecdiouLyc/Pb2tvbW3loYce4vTp07i4uJCYmMj69evbnUMIIYQQA5tsDyCEEEIIh+s12wMIIYQQQnQ1KV6EEEII0af0+qnSQgghzigrK6O4uBij0UhMTAw6nbyFi4FJfvOFEKKXKy0t5f333mff1l201jej0Wnxiwrm8muvZPbs2SiK4uiIQvQoKV6EEKIXq6ys5Ik//pXaA4WMC4gnLDKAZouZA9kn+L+nX6ahoYGrr77a0TGF6FEy5kUIIXqx5cuXU3Uwn2vjpxHvH4mrwRlfV09mxCQxQh/G1x98RmVlpaNjCtGjpHgRQoheymKxsHXtJoa4h+Osd+rQPjIkjtbyBnbs2OGAdEI4jhQvQgjRSzU1NdFS34Sfq2en7QatHhNGqqurezaYEA4mxYsQQvRSLi4uGFyMVDXXddputdtoUM2yIKcYcKR4EUKIXkqv1zNh1lSyqnNptVo6tB8qOYnWx4Vx48Y5IJ0QjiPFixDiktTV1VFQUEBNTY2jo/RLl112GW7xgXx5dBO5VUXYVTsN5ibSc/eT0XCSeYsvx9/f39ExhehRsreREOKiFBYW8sXnn7Nny04sTWa0TnpGTkzi6muuJjo62tHx+pX8/HzefvP/OLbnUNs6Lx4hvsy/+nKuvPJKNBr5HCr6vgu5fkvxIoS4YPn5+Tzx+F9oPVHBCL8Y/Fy9qGyqZX/ZSdQINx7582PExsY6Oma/oqoqubm5FBUVYTQaSUhIwNnZ2dGxhOgyF3L9lkXqhBAX7IN338d6oorFQ2di0OoBCDD5EOcXwddHNvPOm//iiaeXyMqvXUhRFKKiooiKinJ0FCEcTvoahRAXpKioiKyd+0gKGtJWuHxHq9GSEjqMnIPHOXHihIMSCiH6OylehBAXpLy8HEtjC8Hufp22B7v7Ymlsoby8vIeTCSEGCilehBAXxNnZGY1BR525sdP2enMTGr0OFxeXHk4mhBgopHgRQlyQmJgYggeHs+/0sU7b950+hk9EAEOHDu3hZEKIgUKKFyHEBdFoNFx9w2KKXBtJzd5NY2szAM2WFrbl7uOEUs6i66/BaDQ6OKkQor+S2UZCiAs2adIkzA+Z+fjtD/jw1AaMdh1mxYpbsDc33XQHc+fOdXREIUQ/JsWLEL1AU1MTeXl5qKpKREQErq6ujo50TjNnzmT8+PHs2bOHmpoaTCYTY8aMwWQyOTqaEKKfk+JFCAdqbW3l888/Z+OKtdSXntkZ2M3fk2nzZ3Hdddf1+lsvLi4uTJ482dExhBADjBQvQjiI3W7npRdeZNc3mxjuFkFs8JkBrifK81nx+icUFRTy0G9/g07Xt/9MVVUlJyeHbdu2UVlRgcndnZSUFBISEmQROyHERenb74pC9GGZmZnsXL2FucFjCfcMbDueHD6M0LoAlq/fTsb0DMaPH+/AlJfGbrfz7jvvsO6LlehqLHhpXKm3t7Duk+WMnT2R+355X6/vXRJC9D5SvAjhIGlbt+LZYmhXuHwn2N0Pv0IXtqZu7tPFy4oVK1j9/ldMcI9naEI0iqKgqip51cWs/yaV9zw9+NnPfubomEKIPkamSgvhIBUl5fg5eZy13dfZg/KSvrtKrcViYdXXy4nVBZIQOKjtFpGiKER6B5PkFcvWVRupqqpycFIhRF8jxYsQDuLh5UGNueGs7bXmBjx9PHsuUBfLzc2lqqCUof7RnbYPCYiiuaKOw4cP93Ay0dUaGxspLCyUQlT0GLltJISDTJg8iYw1aZQ1VOHv5t2urbKpliKljiun9N2ZPFarFdWuotd2/jaj02jBrmK1Wns4megqFRUVfPnFF6Rv2EprfRMag45hySNZdPVVDBkyxNHxRD8mPS9COEhycjIJk8ewPHc7WSXZWO02rHYbR8py+DY7jdjxiX16vEtoaCgu3iZOVRZ22p5bVYTew4XIyMieDSa6REVFBX99/M9sfXcFQ5t8me85mvHaQeSszGTJ7/9CZmamoyOKfkyKFyEcRK/X89Bvf83462eToeTz1tEVvHVkBTttOSRdO4PfPvpwn56JYzKZmDRnGvtqTlHZVNuurbG1mfSiQwxNHiHFSx/1+WefUbU/j8VxMxgdEk+Quy9xfhFckzADn0oNb7/2FhaLxdExRT8lt42EcCA3Nzfu++Uvuf6GGzhx4gSqqhITE0NgYMcZSH3RDTfeSO6pXL5KSyNM602AmzfVTXWcMpcROCqKn931c0dHFBehvr6e7RvSGOEzCBeDU7s2jaJhQvgIPjuZxr59+0hKSnJQStGfSfEiRC/g7++Pv7+/o2N0OVdXV37/h8dITU0ldd1GjhSV4h7uweKZtzNz5kw8PM4+20r0XpWVlbQ2NBPs49dpu5eLO3qLQnl5350tJ3o3KV6EEN3KycmJefPmMW/ePEdHEV3ExcUFjV5Lvbmpw2BzALO1Fatiw9nZ2QHpxEAgY16EEEJcED8/P2JHDuVAyZlbnf/rYMlJnPw9GDVqlAPSiYFAihchhBAXRFEUrrz2amq9VdYc30Fdy5n1ilqtFjILj5DZmMO8ay7D09PTsUFFv6WonZXNfVhdXR0eHh7U1tbi7u7u6DhCCNFv7dixg3de/z+qckpwsmkxY8XoZ2LetZdzww03oNHI52Nx/i7k+i1jXoT4HxaLhcbGRpydnfv0VGUhutu4ceMYNWoUe/bsoaKiAhcXF8aMGYOXl5ejo4l+TooXIf6jsrKSZcuWkbYulZb6JgwuRsbPmMxll19OUFCQo+P1SyUlJezatYuGhga8vb0ZN26c3GroY4xGIxMmTHB0DDHAyG0jIYDS0lKe+ONfqTqQz1CPcPzcvKhqqiOrOheXWD8e/fPjREREODpmv2Gz2fjg/fdZ9+VK7FXNuGiMNKhmnALdWXzbj1iwYEHbRo5CiIFBbhsJcYHef+99ag8Ucn38DJz1ZxbdivIOYXhgDF8eTeXtN/+PP/71z3JB7SKfffYZK97+nHEecSQMiUar0dJqtbC78DDvv/AWrq6uTJs2zdExhRC9lIymEgNeWVkZ+7buIikgvq1w+Y5Bp2d8yDCOZ2aRk5PjoIT9S319PWu/XsFIl0gSgwaj1WiBMz/rCZEjCDW7s+yLr7Hb7Q5OKoToraR4EQNecXExrQ3NhHkGdNoe5hlAa30zxcXFPZysfzp48CD1RVUMDxrcafuIoBiKTuSTm5vbs8GEEH2GFC9iwDMajWh0WppaWzptb2ptQaPTysyjLmI2m8Gu4qQzdNruYnDGbrWdeZwQQnRCihcx4MXExOAfFcLBkhOdth8oPoFHsC9Dhw7t4WT9U1BQEDpXI0V1ne97U1BTgtHdud9sTimE6HpSvIgBT6fTcdk1i8hWKtmZf4hWmwUAq93GvqJjZLUWMv+ay3FxcXFw0v4hLi6OqMQ40gsOYLFZ27U1tjaTWX6C5GkTZa0QIcRZyWwj0SfYbDb279/Pzh07aKhvwC/An8mTJxMdHd0lM4Bmz55NU1MTX77/CYeOrcUVI42qGa2vC1f89AauvPLKS/8mBHBmafk77voZT5U8wSeH1zPUOxIvZxNlDVUcrs3Hf1QUN/zoRkfHFEL0YrLOi+j1GhsbWfrc8xzYkoF7sw6TzplKaz0WDx1zrrucW265pcuWIa+qqmLHjh1UV1fj7u5OSkoK/v7+XXJu0V5hYSErli9n+8Y0rC2tOLu7MmXuDC677DLpdRFiALqQ67cUL6LXe2HpP9n+2Trmh6cQ7O4HgKqqHC49xba6Y9z2m7tYsGCBg1OKi2U2m2lqasLNzQ29Xu/oOEIIB7mQ67eMeRG9WnFxMbs2bmOCf0Jb4QJnbj0kBA4iRuPH6m9XYLVaf+AsojczGo14eXlJ4SKEOG9SvIhe7ciRI7RWNxLrG95p+xD/KMpziyksLOzhZEIIIRxFihfRq9ntdjQoaJTOf1V1Gi2qqmKz2Xo4mRBCCEeR4kX0apGRkWjcDOTXlHTanl1ZiMnPk5CQkB5OJoQQwlFkqrTo1QYNGkTsmGFs23QAX1dPXA3ObW2l9ZUcasjj8h/fiJOT0w+cpfeoq6tj06ZNpG3cTE1lNf7BgUydNZ0pU6Y4/HsoLCxky5YtFObl4+TszKgxo0lOTpaVhYUQvU63zjbasmULzzzzDHv27KG4uJivvvrqnOtlpKam8uCDD5KVlUVYWBiPPfYYt91223m/psw26n9KSkpY8ucnKD2YQ7QxAA8nN0obKilUakmcnsyvH/5Nl1z4i4qK2Lx5M3mncjE4GRg1ejTjx4/vsqKivLycJX95gqJ92UQb/PB0MlHWWE2BWs2QyaP4zaMP4+rq2iWv9d+++xP/ofVwli1bxidvfQAVzQTqPGm2mSnXNRIxKp7f/u5h/Pz8zvpcIYToChdy/e7WnpfGxkZGjBjBT37yE66++upzPj4nJ4eFCxdy11138eGHH7JhwwZ++tOfEhQUxNy5c7szqujFAgMD+cuTf2PTpk1s27SFU9W1BIyI5K5ZM5g0aRIGQ+d75FyINWvW8MGrb2MvayRI70WLrZUd325iWWIMv370twQHB1/ya7z52htU7snhhtjpuBm/X623orGGbzal8XHkv7njpz+95NeBM2OF0tPT2bh2PaeOnkCn1zN2Ugpz5s4lOjq63WMzMjL46JW3GUYwSQlD28YXVTfXsWJnOkuf/Qd/XfJEl62l01PsdjtZWVkUFBSg0+lITEyULQeE6Cd6bJ0XRVHO2fPy8MMPs2LFCg4dOtR27IYbbqCmpobVq1ef1+tIz4u4UAcOHODJ3/2FOIsv48IT0f7nIl3X0sDyk+n4JEWx5Nmn0OkuvtbPz8/nkbsfZKpTPIN8Qju0ZxYe4YhrFS/83yuYTKaLfh04c9F+88032fTZSvxbXYn0DMJstXC8tgB7oDP3PvIASUlJbY//65/+QumGw1w5dFqHc5XUV7K8PIPfPfcXEhMTLylXTzp16hSvvvAyBVnZaFvs2LCj83Jhwtyp/OSOOxx+i04I0VGfXedl+/btzJo1q92xuXPnsn379rM+x2w2U1dX1+5LiAuxZuUqTDUKEyJGtBUuAO5ObsyNTiHvwAkyMzMv6TVyc3NprWkiyrvzHpxon1Caquq6ZMr3tm3b2PTpSqZ5DOOKIVNIDBpMUthQbkyYjV+lnteef6nt76SxsZHj+w8T5xvR6bkCTT44NyscPnz4knP1lJKSEp7689+p253HZX5J3D50AbfHzydZE8nWf6/ipRdfop+tzSnEgNOripeSkhICAgLaHQsICKCuro7m5uZOn7NkyRI8PDzavsLCwnoiqugnrFYrBzP2Ee8d3umYEB8XDzxa9Rw5cuSSXker1aJoFKz29lO6yxqq2Hgyg28PbSb7dB5Hjhy55GnfG9asI8DqRoxv+78FjaJh2qAxNBRUsm3bNuBML41qV9FptGfPrmj61FT01atX03iijEXxUwk0+QCg1WgZGhDNjKBR7NmQzvHjxx2cUghxKXpV8XIxHn30UWpra9u+CgoKHB1J9CGqqqKqKtofuHhrFO0lX7zj4+Nx9jVxtCy37XW3nsrk3bSvOZh1kPqcMjyq4N8vvc3f/vyXi+5BtNvtnDp6kkiPzsd2OOkM+Kqu5OfnA+Dm5kbwoHCyKzvv8alurqNO19phnExvpaoq6Ru2EO8ehkHbccXeSK9gjPV2MjIyHJBOCNFVelXxEhgYSGlpabtjpaWluLu74+zs3OlzjEYj7u7u7b6EOF96vZ7oobGcrOr84l1vbqRa03TJF28fHx8mzZ3Brspj5NeUcLDkJNuPZJJIMDOchhLnHMyNo+axKHAcx9dn8trLr1zU6yiKglanpdV29u0SWlVb2/gdRVGYs2AuBZoaTla0L/xbbRY2ndpNYFwEY8eOvag8Pc1ms9HS1Iy7U+ezthRFwVVjpKmpqYeTCSG6Uq8qXsaPH8+GDRvaHVu3bh3jx493UCIxEMyeN4cyQxNHynLaHbfabWzIzsA3JoRx48Zd8uvccustjLliCmuq9vLB7hW4NIDRrFBmryd0cAQREREEmnyYEjyCfWm7yc3NveDXUBSFsRNTOFZT0Om4jsqmWmqNrQwfPrzt2IwZM5i2eD6bag/x1eFUMgoOs/nUHj44shZbtIn7Hrq/z+w7pNPp8A3yp7iuotN2q91GtdqEr69vDycTQnSlbi1eGhoa2LdvH/v27QPOTIXet29fW5f1o48+yi233NL2+LvuuotTp07x29/+lqNHj/LKK6/w6aef8sADD3RnTDHATZw4kXk3LWJb43E+P7yRXfmH2HIqk/cPr6El3In7fv2rLpmd4uTkxEO/+TW/+P0DuPq6Mzh8EMFDohg7MZm4+CEonBlzE+UdDLXmdrPuLsTc+fOw+htYf3IXrVZL2/HKplpWZW8ncmQco0ePbjuu0Wi48847efCJ3xE+fwQFAS00xDqz6Jc387fnnmTw4MGX9o33sOlzZ5FjLaeyqbZD257CI2j9XJk0aZIDkgkhukq3rvOye/dupk+f3vbvBx98EIBbb72Vd955h+Li4rZCBiAqKooVK1bwwAMP8M9//pPQ0FDeeustWeNFdCtFUbj1ttsYnpjIxg0byT12EoPRicsm38iMGTM6DCK/FBqNhri4OMJCw0hwTyDUw7/jYxTNJQ2SjYmJ4Re/vZ83//kK7x1fg6/qSqtqo8ZoJnJcPA89/OsO0741Gg0pKSmkpKRc1Gv2JrNnz2bPzgy+Tk1jmCmcSK9gWqytZJWeosipgRtvuw1//44/dyFE39Fj67z0FFnnRfR2FouFB35xH955dqZEj+7QXlpfybLyDB599s+MGDHiol+npqaGtLQ08vPz0ev1JCYmMmbMmEtar6avaGpq4ssvv2Tz6g00VNSiaDWExUdx2ZVXMGnSpB9cbVgI4RgXcv2W4mUAUFWVwsJCGhsb8fX1lfv9vcCXX37Jp0vfZkFIMsHu3y+9b7a28u2xLbiPjeCpfzzT51a17W1aWlooLS1Fr9cTFBQkRYsQvViv2R5AON6ePXv44pPPyD10AlurFb2rE6MmJXHjTT/qkiXvxcW57LLLOHnsOCvWbiO4yJ1gkx8N5iZONBXjERfEPb+6TwqXLuDk5EREROcL8Akh+i7peenH0tPTeXnJ8/jU6BgZHIe70ZXi+goyS4/hFO/P43/7kxQwDmSxWEhLSyN1/UZO5xbganJjwvTJzJw5U3rHhBADjtw2kuIFs9nMr+66D1NuK7MHp7TrLm+1Wvjk8HrG3DCDX95/vwNTCiGEEGf02b2NRNfZu3cvlbnFjAsf1uE+v0GnZ5T/YHZv3k5tbcfppEIIIURvJsVLP1VVVYXepsHdya3T9gA3HyyNZqqrq3s4mRBCCHFppHjpp9zc3LBgo9li7rS9pqUerVGPm1vnxY0QQgjRW0nx0k+NGjUKt2Bv9hUd69BmV+3sKznO0KQRMjBUdBlVVcnOzmb//v0UFHS+PYEQQnQFmSrdT5lMJhbdeA3/fvFf2HPtjAyOw9XgTHlDNdsLDtASZOTqxdc4OqboJ/bs2cOnH31MflY2tlYrOmcDcWMS+NGPb+5z2wsIIXo/mW3Uj6mqyvLly/nm4y+oPV2BxqqCk46Q+Ehu/dlPLmn1ViG+s3PnTl584jm8q7WMCRmCp7OJsoYqdhcdwRLuwu/++gdiYmIcHVMI0cvJVGkpXtppamriwIEDNDY24ufnR0JCAlqt1tGxRD9gtVp58J770R2tY37chHYz22x2G59nbSRy3ih+/4fHHJhSCNEXyAq7oh0XFxfGjRvn6BiiHzp06BClJwu4Onxihyn5Wo2WMUHxbM3Yz6ZNm9i/bx9H9h4CRSFx7EhmzZlNXFycg5ILIfoyKV6EEBeturoatdWGj4tHp+3+bl6U7Cvi2T8uIcTuTrRHMKqqkvnxRrav28Lt99/JzJkzezi1EKKvk+JFCHHRTCYT6DTUtjTg0cmaQvllRRSXFHO59xRmD/m+929s6FDScvbyzktvEhsbS1hYWE/GFkL0cTJVWghx0RITE/GJDGJ3weEObXbVzpYTu3HWG5kZk9yuTVEUJkaNRC1tYvPmzT0VVwjRT0jxIoS4aAaDgetuuZE8Yw3rju+kuqkOVVUpqa9k+dGt5KiVJIcPQ6PRYLPbqDc30mq1AKBRNIQ6+XDyyHEHfxdCiL5GbhsJ0cVUVaWyspLW1lZ8fHwwGo2OjtStpk+fjqIofP7Bx3yek4bNbEXnYiB0ZDSjIo245NnYeHIXhwpOYDab0Wg1xARFkBKRiNVmQ6eXtyEhxIWRdw0hulBGRgbLvv6W7ANHUW12TL6eTJs/i0WLFuHi4uLoeN1m2rRpTJw4kcOHD1NfX4+3tzfx8fG88847/OOxJYTbPBhsCMRf70G9rZnj2fl8UJyHxsvIL8YsdnR8IUQfI8WLEF1k3bp1vP38a/g2GJjiH4eTzkBeaTHfvvwRx7KO8PDvH8XZ2dnRMbuNXq/vsPBhbW0tbhYdw7UhxLqGodOcuVMd7RTAlyXplBgamTBhgiPiCiH6MClehOgC1dXVfPjmuwy2+DApflTbmichHv7ENkbw9eZtrE1ay6JFixyctOc0NjZyYEcms4aMR1PSzInaQpzRowItioWhvlHovRopKCjAx8fH0XHbUVUVq9WKVqtFo5GhgUL0NlK8CNEF0tPTaSmuISU2pcNibb6ungwy+LNx9XquuOKKDu39VXl5OS01DQwNS8Izxo3SklJqamtQUPD09CQgMJDS42spLi5m5MiRjo4LnFkxeOPGjaxfvY6S3EK0eh1JU8czb948jEYjqampHD14GI1Gw7BRiUybNg0/Pz9HxxZiwJHiRYguUFpaiicuGHT6TtuDPfzZUZKD2WzGycmph9M5hsFgQNFraWptwd/Nm7CwsHbrubTaLFiw95oBzVarlaXPLyVjxWbC8GasZxgtDWYyPljLyk+/QdWAl9lImNEXu6ry5ea9rPpyGff99gFGjRrl6PhCDChSvAjRBZydnWlWW1FVtdOelQZzEzo3PXp958VNfxQUFETk0BgO7jhJhFdQh5/LkdIcnPzces0GoevWrWP3ii3MD0wi1MO/7fggj2D+b+2nlOub+Pm8O3E1nCk+rXYba45v56VnlvL0i//odbe+hOjP5GauEP9hsVhIT0/npZde4rlnnuXjjz+mqKjovJ47duxYWk0acqpOd2iz2W0cqc5j/IxJA2pDTEVRWHTNVZS7mdmSk0mzxQyAzW7ncOkpdtWeYMblc3vFRV9VVdavXEuExqdd4QJQUlTCEE0gnjhzoiKv7bhOo2X24BSa8itloT0hepj0vAgBVFRU8OySpziVeRQfizPOGgOZti2s+PhrfnTnrcyfP/8Hnx8TE8OYGRPY9E0qFpuVGN9wtBoNlU21bM3dizbSg/kLFvTQd9N7pKSkcMdDd/Phm+/wwcl1mHCiWW0FTyMzb76cm26+2dERgTM7r5cWFDHRa1CHtuqKKvwMHnjZailvqG7XZtDqCdF6c+RQFlx9dU/FFWLAk+JFDHh2u52lz/6D4u3HWTxoMl4uZ7Zit9lt7CrI4v0X3yIgIIDRo0ef9RyKonDvfffyptFA+rqtpB3JQq9oadHbCRoWwa9/efeA3b9n5syZJCUlsWPHDioqKnB1dSUpKYng4GBHR2uj0+nQaDW0/Kd36L+pqKhAq2pDq+mk50wB1a52f0ghRBspXsSAd+jQIU7uOcxlkclthQuAVqNlXPhwSo5Usmr5yh8sXgCcnJy475e/5OprrmH//v1YLBZCQkIYOXIkOt3A/lNzd3dnzpw5jo5xVkajkcRxYzj6zQ6GBca0G5/j5evNoZIsmpwsDPIJbfc8i83KaWs144cn9HRkIQa0gf2OKgSQlZWFU7NCoKnj2AtFUYjziSBj7yGamprOa5XckJAQQkJCuiOq6EYLFi7g72m72JidwcTIkTjpDABo3Z3Yq+bjYjC1Gw9js9tYf3IXzqGeTJ061VGxhRiQpHgRA57dbkennH0grV6rQ7Wp2O32HkwletrQoUO56ze/5F8vvc4Hx9fipbpgVi00uaokXDaepqo6Pji8lkhnf2yqndyWMoyhntz7m1/h6+vr6PhCDChSvIh+obS0tG08RURExAUtBBcZGUmd1kxdSwPuTm4d2rMrCwkeHY6rq2tXRha90KRJkxg+fDjbtm2jqKgIg8HAyJEjGTZsGIWFhWzatImjB7LQaLVcPmoW06dPJzAw0NGxhRhwpHgRfVpeXh4ff/gRB3fsxdJkRmvQEZkwmGtvvO6cY1S+k5SUhP/gUDYczeCyuMnotd//WZyqLKRAU8PPFtwyYFbGHeg8PDxY0MnMsPDwcG699VYHJBJC/C9FVdV+NUy+rq4ODw8PamtrcXd3P/cTRJ9VUFDA337/J6wnqxkTGEegyYfalgb2Fh2jysvGvb97kHHjxp3XuY4dO8Zzf3uKplMVDHINwkXvREFdKeXGZqZeNZe7fnGX7HEjhOjX7HY71dXVKIqCl5dXj39gu5DrtxQvoley2+0cPHiQ/Px8tFotw4cP7zDV+NlnnuXIV9u4ZugMDNrvV65VVZU1x7fTEuPC86++eN6r2paWlrJ+/Xp2bd1OS1MLEYMjmT5rJikpKVK4CCH6LbvdzoYNG1i5ZiW5BTkADIoYxML5lzFt2rQeK2Iu5Pott41Er3Pq1Cle/edL5GdlozeDTbWj8TQyZvoE7rzrTlxdXamsrGRfWgYpAbHtChc4M0MoJXwYn53ayv79+xk7dux5vW5AQAA33XQTN910U3d8W0II0euoqspbb73FFys/w8lfT+CIAFBVjuccJuvFQxQWFnLzzTf3utvmUryIXqW0tJSn//J31JM1LIpIwd/NG5vdTnZlAVu/3EhrSwsP/+5RqqqqsDab8Q/w7vQ8Xs7uaC1QVVXVw9+BEEL0Hfv27eObNV8TPjqIoKjvB58HhPtTcLyQz779hKSkJOLj4x2YsiPpCxfnxWKxUFRURElJSbdOGV63bh0NJ8pYFD8Vf7czhYlWoyHWL4K5oUns27yLrKwsTCYTWoOemub6Ts/T2NqMTaPi5tZx9pAQQogzUlNTsRnN7QqX74QODqFZaSQ1NbXng52D9LyIH9Ta2sqyZcvYsHItNcUVoCiEDI5gwaLuuReatj6VWLeQDreCAEI8/HEp1JCRkcFtt91G/Njh7F13kCjvYDRK+zo8s/AIHmF+jBw5skvzCSFEf5JbkIO7f+fjSxRFweTrRn5hXqftjiQ9L+KsrFYr/3x+KZ/98x388lXmeYxkpmsC6r5yXntiKZ988kmXvp6qqjQ1NGEydr6KraIouCgGmpubURSFa667lqZAHcuPbqWs4cztoXpzI5tP7eGYUsbVN113XiviCiHEQOXm6oa5qeOeXt9pbW7F1aX3rXElPS/irNLS0ti9Oo2FIckEu/u1HY/wCmJf0TGWffgF48aNIzIyskteT1EUAsNDKNpbxvCgwR3abXYb1TTh739mifahQ4fy0B8e4d03/8W3x3Zhz7OAXoNXeAC3/+gX3bqXjqqq7N69m7Xr1nLsxBEMRiPjkyYwe/ZswsPDu+11hRCiK00YN5Gdb27H3NyK0dnQrq25oRlzlZVxKeMdlO7spHgRZ7Vp/UaC7KZ2hct3EoMGsz/rFGlpaV1WvADMnDuLf+15ibKGqrYxL9/ZU3gExdeZSZMmtR0bMWIEz77wPFlZWVRWVuLq6srw4cNxcnLqskz/S1VV3nnnHT5b9imqqxWfYC8aLM18vOoD1qWu4bcPPHLeC+QJIYQjTZkyheWrl5O5fj9Dxsfi6euBqqpUl9VwbOdJhg5KZPx4KV5EH1KSf5pBbp3v2aJRNPhpTZQUl3Tpa06bNo2MHbtYtn478S4hRHmHYLa2crgsh2KnRm68/bYOy7FrNBqGDx/epTl+yI4dO/hs2ScEJfoSMii47bh9RBQHtmax9KXnefmfr2AymXoskxDdxWw2s3XrVrZsTKWiuAwPHy8mz5jK1KlTZcuMfsBkMvHYI4/xj6X/4MjWLKxaC6qqYlCNjI0fx69++ateeftdihdxVi4mV+qLms7a3mBrwdWta9+8jEYjv374N3wT/w2bVq3jWNk+FI1CeNIg7ll0WbteF0dZu24tmOztChc4U0QNHRfH7uUH2LZtG/PmzXNQQiG6RmNjI88seYrDW/cSpngS5uJFdW4p7+58hdT1m3jksUfx9u58uYL+rKWlhYyMDEpKSnBycmLMmDEEBwef+4m9VEhICM889QwHDx7k5MmTAMTFxZGQkNDr1nf5jhQv4qwmTJvMV/vfI8XaipOu/b3Q0vpKap1aSUpK6vLXdXJy4vrrr+eqq66ivLwcnU6Hv79/r/gjUlWVIycO4xfu02m7wWhAZ9KQm5vbs8FEr2CxWKirq8PJyalf9Er8+6OPOLYpk6ujJuHr6tl2vK6lga93buH/3nyL3zz8W8cFdICMjAxeffMVCkrz0RgVbBYbbh+4M3vqHH56x08xGo2OjnhRNBoNI0aMYMSIEY6Ocl6keBFnNXPmTDav3cjXhzczNXwUgSYfVFRyqorYUrSfobNGd+tUZIPBQEhISLed/2JptTpsVstZ2+1WO1qttgcTCUerr69n+fLlpK7eQENVLRq9llETk7j8iisYPLjj4PO+oK6ujrS1qYz2imlXuAC4O7mREpBAeloGRT8u6tO9DhfiyJEjPP38U5hdGhk5PwFnVyfsdjvFOSV8tfZzAO65+x4HpxwYpHgRZ+Xt7c3Df/gdr/zzJVYc2I2u0I5NVVE8jIy6YhJ33v0LdLqB9SukKAopY1JYnvY1UQkRHXqDGusaoVnDsGHDLul1LBYLxcXFKIpCUFBQl/ycVVXl4MGDbN6ymZLSYtxN7kwYP5Hk5OQ++2mxN6irq2PJX54gb8dh4l1DCfEYSr25iUNfprN/eyYPPPabPrneUH5+Ps1V9QwK7XzweYxPKJuO7icnJ2fAFC/fLvuGOqpJnjK67W9fo9G03UJet3ktVy66sld+6OpvBtaVR1ywsLAwnnh6CYcPHyYnJwetVktCQgIRERGOjuYw8+bOY0t6Koe2H2Fochxa3Zlelqb6Jg5sOcLQ6OHnvZ/S/7JarSxbtowVa1ZQWlEMKIQGhrJw3mUsWLDgojeItNlsvPb6a6zasAKL3oyrtwst+S1sSF/P2IQkHv7tI3h4eFzUuQe6r776irzth7kmZioeTt+v6Dw0IIqVx7bx1suv8/wrL5z3BqG9hUajAUXBZrehomKz2tBoNW0LQtrsdhRFGTCbltbX15OxdxchsUGd3sIOigokb/9pMjMzpXjpAVK8iHPSaM70JFxqb0J/ERsby/13P8DLb7zEzm8zMXrqsVls2OthSNQwHv71wxd1obLb7bz00kusSP0Wz3ATURNCUVWVolNFvPDmUgoLC7nzzjsvauzP8uXL+Xrtl0SNDSUwIqDteH1NAzs3bee111/l4d8+csHndbS6ujpyc3NRFIXo6OgeH2fS0tLC1rWbGOYe0a5wgTMz8iZGjOCzk1vJzMwkJSWlR7NdqujoaFz9PEg9tAO/FmdaW1rRaDUEBAcSFh5Gdm0Rzr7uvW7Pm+5iNpux2qw4uXTeS6nRaNAZdTQ3N/dwsoFJihchLsLkyZMZOnQoW7duJTcvF71OT2Ji4iXdgtm9ezdrNq8iZlwUfiHfDwj28vekOLeU5eu/ZeLEiRc8LdxisbBi9XI8wtzaFS4AJk83okdFsH13OgUFBYSFhV1U9p7W3NzMvz/6iK1rUmmsqEVRwM3fi+kLZ3PddddhMBjOfZIuUFVVRVN1PaGegzpt93J2x8mmo7i4uEfydCWr1UpNUz27T+1jqjGOGNcgLBYbpcfzOZJ3ktM+LSy863q8vLwcHbVHeHh44OXhTWVJNb7BHQfstzS2YG9WOyzlILqHFC9CXCQfHx+uvPLKLjtf6uZN4GpvV7h8JzDCn7ysAjZv2XzBxcvp06cpKi8iekJop+2B4f7k7Mnn2LFjfaJ4sVgsPPf0s2St28Uoj2gGh49EVVWOluWy/PWPKS0u4YGHHuyR2xlGoxGNTktTa0un7Va7DYtq7dZFE7vLF198gaG8laTYERwrKaSouQ4vjQu1NHO8thiP4GBuuukmR8fsMXq9njkz5vJ/n75BY0wjru7f9/KpqsrR3ScI8QslOTnZgSkHDilehOglThefxuTb+S7YiqLg5u1KcUnRBZ9XVVVAPeftpjOP6/127NjBgdRdLAofR4Dp+0IvOXwYgTW+rFmzlX0zZ/TIKsfe3t7EjR7GwQ1ZDPIJ7fAzPlqWi9bbmVGjRnV7lq7U3NzM1rWbSPSIIiksgfyaErJKsqlrbiDY6McY9zFkmnM5fvx4n/veLsUVV1zBvgN72bM+A58IT3yCvDE3myk8XowJT+66/xd9slDtiwbGSCsh+gAPkwctDZ1/ggcwN5pxN3W+++sPCQ4Oxt8rgOLczldDLjtdgYverc9M6d2auoVAm1u7wuU74Z6BeLbo2bplS49kURSFK65aRK2XyoaTGTS2nhnvYLPbOVx6ih1VR5myYBYBAQHnOFPvUl5eTmNlHRFeZwanRngFsWDIJG4YPY/LE6YyNmwohlaF06dPOzpqj3J1deXx3/+BO677Oc4N7hTtKaf2WBPTR8ziL4/9tc+Na+rLpOdFiF5i4oRJpL+yjebGFpxd2396a6hpoLXGxvhxEy74vEajkQVzF/LaB69QEVzZ7n59U30z2XtymDJqRp+ZQVZZWo6vs+dZ232MHlSVVfRYnhEjRnDnb+7jvdf/xYfZGzBhpEW1gKeRqTcu4Lbbb+uxLF3FYDCg0WlotnS+27DVbsOKvcfGFvUmbm5u3HjjjVx77bXU1NTg5OQkW4E4gBQvAjiz+NKGdevJ2nsABYVhSSOZNWsWsbGxjo42YEyaNIk161azb/0+YsZGnSkyVCgrLOfknlzGDk2+6E92ixYtIjcvl/Vpa8l1y8fNx43m+mZaKltJjBnFPb+4p1esYHw+vHy9qThw7KztNeZ6YryH9mCiMwO4R48eza5duygrK8PZ2ZmxY8f22fVPAgICiEwYzKHt2UR6d/wejpXlovN26ZPr13QVvV6Pn1/HTWtFz1DUHrjR/fLLL/PMM89QUlLCiBEjePHFF886qOmdd97h9ttvb3fMaDTS0nL27vT/VldXh4eHB7W1tbi7X3gX+0C0atUqPnj5XzjX2Ik2BaEC2XWnafXRc/v9dzJz5kxHRxwwysvLefnVl8k8uJtmaxOqquJqcCN5ZAp3/+KeS5rZYbPZ2L17N6mbN3G6+DSe7p5MmjiZSZMm9cqN185m06ZNvPqn57gmfDI+Lu3Xpimuq2BZ6S4eWvJ76cK/RDt27OCFPz9NrM2f5LAEDDo9qqpysrKAzaUHmHbTZdz1i7scHVP0Ixdy/e72npdPPvmEBx98kNdee42UlBSWLl3K3LlzOXbsGP7+/p0+x93dnWPHvv9k1Vc+EfZFp06d4sNX3ybe6se4ocPbftbJagJpOXt558U3iY2N7ROzUPoDPz8//vj4Hzl16hQnTpxAURTi4uKIjIy85HNrtVpSUlL6/EV9woQJbJy4gW9T00j2i2ewXziocKw8l12Vx0ick8KYMWMcHbPPGzduHLW/upN/v/UeR4+vwRMXGu1mbB46xl87i9t/cvu5TyJEN+n2npeUlBSSkpJ46aWXgDMLcYWFhXHffffxyCMdF8V65513+NWvfkVNTc1FvZ70vFyYt958k61vL+fmYfM6FIl21c77WauZfee13HLLLQ5KKERH9fX1vPP22+zcuI2WqgYUwNnXxITZ07jl1lv6VE9Sb1ddXU16ejrl5eW4uLiQlJREZGSkfKgUXa7X9Ly0trayZ88eHn300bZjGo2GWbNmsX379rM+r6GhgYiICOx2O6NHj+bvf/87CQkJ3Rl1wDpx+Bjhrp3v2KxRNIQ5+ZJ99LgDkglxdiaTift++Uuuv+EGTp06BcDgwYPx8el8t29x8by8vFi4cKGjYwjRTrcWLxUVFdhstg7TBAMCAjh69Ginz4mLi+Nf//oXiYmJ1NbW8uyzzzJhwgSysrIIDe24yJbZbMZs/n5EfF1dXdd+E/2cVqfDZredtd1is2HUyrhu0Tv5+/uf9fazEOLSlJeXc+DAAVpbWwkJCWHYsGG9Zi+rXndVGj9+POPHj2/794QJExgyZAivv/46f/3rXzs8fsmSJfz5z3/uyYj9ysik0Xyd/j5Wuw2dRtuurdVqocBayQ1jrnJQOiGE6P1UVWXXrl2s37COYyeOYjAYGZ88gdmzZxMeHu7oeBfMbDbzzrvvsG7TGmqaalA0oFcMxEcP4Rd33t0r1oTq1hLK19cXrVZLaWlpu+OlpaXnvf+DXq9n1KhRnDx5stP2Rx99lNra2ravgoKCS849kEybNg3nCG9WHUunxdradrzZYmbl8W14RAcwZcoUByYUovey2+0cOnSI9evXs3XrVmprax0dSfQwVVV5++23+fNTfyLtyGbs/q00uNbw8aoP+O3vf01mZqajI14QVVV5/fXX+WzlJ7gNciLlylGMv3osMZMjOFx8kCee+htFRRe+0ndX69aeF4PBwJgxY9iwYUPbHjB2u50NGzZw7733ntc5bDYbBw8eZMGCBZ22G43Gi94IT5zpdr//kYd48enn+eD4WgJwR0WlVKnHMzqQXz3yEN7e3o6OKUSvc+zYMd569Q0KsrKhxYpdUXH292Tu1Qu5/vrr0Wq15z6J6PN27NjB58s/JSjRl5BB36+JYx8RxYGtWSx96Xle/ucrfWYhu5ycHNZvXUfUmDCCIr8f8uHp68GYWSPYuXwPK1eu5Kc//akDU/bAbaMHH3yQW2+9lbFjx5KcnMzSpUtpbGxsW8vllltuISQkhCVLlgDwl7/8hXHjxhETE0NNTQ3PPPMMeXl5Dv9B9WeJiYk898o/2bp1K8ePHkNRFOYPiWfSpEl95g9OiJ6Ul5fH03/6O8aCZi4LTyLQ5EOLtZVDJSf55vV/02o2c9vtMpV4IFi7bi2YbO0KFzgzOWXouDh2Lz/Atm3bmDdvnoMSXpiMjAya7A0ERsR3aNPqtARE+5Gatonbb7/doQV6txcv119/PeXl5fzhD3+gpKSEkSNHsnr16rZBvPn5+e0GAFVXV/Ozn/2MkpISvLy8GDNmDOnp6Qwd2rMrZv6viooK8vLy0Gg0xMbG4urqeu4n9SHu7u4sXLhQZhUIcR6WffMtal4dixJmof3PWDEnnYGxoUPRF+lY//Vq5i9Y0Of2NBIXRlVVjpw4jF+4b6ftBqMBnUlDbm5uzwa7BE1NTeidtGedCu/s5kxNYQNms9mhSxL0yIDde++996y3iVJTU9v9+/nnn+f555/vgVTnp6amhvfefZeMTdsx1zSAomAK9Gbm5XNZvHgxer3e0RGFED2oubmZjC3bGeEb3Va4/LeEwEHsPnqSjIwMLrvsMgckFD1Jq9Vhs1rO2q7a1D51C9HX1xdLow2rxYpO37FEqKmoxccrAGdnZwek+17vmPPUSzU1NfHU35aw65MNjFXD+HH0bG6MmMagGhPfvPYRr7/6Gj2wu4IQohdpamrCarbg4eTWabtOo8UFPQ0NDT2cTPQ0RVFIGZNCWW5Fp9eChtpG1CaFYcOGOSDdxZkwYQLerr5kH8zt0NZY10hNQR1zZs51+CKFUrz8gNTUVE7tzOLKmMkkBA7CWW/EZHQlOXwYM/xHsm3lprOuVyOE6J9MJhPO7q6U1Fd22t5sMdOgtOLr2/mtBNG/zJs7D3eNJ1nbj2C1WNuON9U3cXDrYYZGJzB27FgHJrwwPj4+3HbT7TQWmNm76QAVRZXUVtaRfSCH/esPM2ZIUq8Yv9Pr1nnpTbZsSCVS74enc8dBq9HeIewsziI9PZ0hQ4Y4IJ0QUFhYyPHjZ1ZAjo2N7XQhR9G1DAYDk+dMZ+3rnzOsdRCuhvbd5xkFWbgGe/X5PaTE+YmNjeVX9zzIy6+/xK5v92Lw1GG32LE3KgyNGs5vf/1wnxtesGDBAjw8PPjq2684secYNrsNDzdPbrriFq699tpeMeZTipcfUFlazuD/2bX2O4qi4Kl1pbqyqodTCXFmLNbrb7zG9t3p1LfUA2ByMjF+7ATu/PldeHp6OjZgP3fFFVewPyOTL/ZuYoR3DGGeATS1trC/+ASlbs3c9pM7ZabeADJp0iTi4+NJS0sjNy8XvU5PYmIiycnJfXYpj4kTJzJhwgSKi4tpbW3F39+/V+0ZJsXLD/AJ8KOyqLzTNlVVqbE1kuAja6CIntXS0sKSp/7OnmMZRI0KZ3h43Jm1efLLWbdjDVXVVfzlT3/ts2+afYGXlxe///Mf+OSTT9ixYSsZpafQ6LSEJUVz7zVXMWHCBEdHRFVVTp48yfHjx1FVlZiYGOLi4hw+VqG/8vX1bVvPrL9QFIXg4OBzP9ABpHj5AVNmTuO9Xa9S29LQYXDeqarTNJuUXvEmJQaW7du3k3l4D4mzh+Lmcab7VkEhKDIAk5cbe9dlsn37dqZNm+bYoP2cj48Pd999NzfddBNlZWUYjUbCwsJ6RXFQWVnJKy++zJGd+6DegqIo2F11DB6TwL333yf7QYk+T4qXHzB16lS2btzM19u3MNY3jkG+YVhtVo6U5bCvPodJ184hPr7jQj5CdKdt6WkYvHRthct/c/NwRe+lZVt6mhQvPcTDwwMPj85vLztCS0sLz/z9SYp2HGdmyEjCw85sxVJYW8rmTft4qm4Jf3nyb71i3EJ/UFVVxenTp9HpdMTExPS58S19lRQvP8DV1ZWHH3uUd995h4zU7aRlH0FRFNwCvLjiphu57rrresWnLDGwVNfW4OLudNZ2Z5MT1bU1PRdI9Crbt2/n1O4jLB40BS9n97bjYZ6BLHKezL/3bSItLY25c+c6MGXfV11dzfsfvM/W7Vuob6pDo9EQ7B/KlZddycKFC+Xa0M2keDkHT09P7v/Vryi/6Sby8vLQarX9coVd0XcEBwZzOHP/WdsbqxsJju6d96lF99u1fQeBdlO7wuU7JqMrYVpvtqelS/FyCerr6/nrE39h/6m9hA0NJio0Hkurlfzjhbz41j+pqanh5ptvdnTMfk2Kl/Pk5+eHn5+fo2MIwdQpU1mftpby05X4hfi0ays/XYHSpGPqlKkOStf7mc1msrOzsVqthIaG9ruNR+tr6zEZzj4rxGRwobG2vgcT9T9r167lQPY+Rs8ZjrPbmanyTq6QkBJPrns+Xyz7nOnTpxMSEuLgpP2XFC9C9DGjR49mzuR5rNy8jMrIKoKjzoxpKMopoTq3lgVTL2fUqFEOTtn72O12li1bxuqvl1NVUIZqV3HydCFl+iRu+vHN/WZ6eVBYCJlpR1FVtdNbFyXNVQwOH+yAZP2Dqqqs27gWz1D3tsLlv4XHhbLz6B7S09NZvHixAxIODFK8CNHHaDQa7r33XsLCwli5ZgUntuShAP7eAVx3801ceeWV7TY7FWe89957rHr3C+J1QUwLmoBRqyen6jTb/72Wgtw8HvvzH3Fz63zJ/75k6rSppC3fwPGKfOL8Itq1naospMaplanTpGfuYtlsNqqqK3Ef3Pk6PhqNBp2rlqoqWQOsO0nxIkQfpNfrufbaa7n88sspLCwEIDQ0VNZ2OYu8vDzWfb6c8e5xDAuMaTs+PGgwEV5BfLozleXLl7No0SKHbzh3qRISEphx9TzW/3s5BTUlxPtFgqJwojyPk7Yyplwzl9GjRzs6Zp+l1WoxublTX1vdabtqV7E223F37zjmSHQdKV6E6MOMRiODBg1ydIxeLz09HU11K0MTotsdt9ptHCnLIS83jycf/TMrPv2a4UkjmX/ZQoYPH+6gtJdGURTu+OlPCQ0LY82yVazNPQCA7+BAbl74cxYsWCA9c5dAURRmTZ/NW5++TmtCKwYnQ7v24twSXDSujB8/3kEJBwYpXoQQ/V51dTUeigsa5fuLttVu48sDG8gryCO61RNn1YlhtjCOrsjkyfQ9/Oyhe/rsWjkajYb58+czZ84cSktLAfD390enk7f8rjB37ly2bNvMnnX7iR4RgX+oH5ZWCwXHT1N2opKr5y4mIiLi3CcSF01+k4UQ/Z67uzv1aku7Qaz7io6RW5DHLJcE7BorZncNwwIHkRAQTWr2bt555S1GjhzZpwfyarXaXru8e1/m7e3NH37/R9546w0y9+/m5I5cNIoWfy9/blt8B9dff72s89LNpHgRQvSYpqYm0tPT2b9vHzaLlchB0UydOpWAgIBufd2UlBRWfvQVJyryif3PINb9BccIxwtvnYls22miQmKBM7cFJkaO5L3ja0hLS+Oyyy47r9doamrCbDZjMpmkh2MACAoK4o+P/5G8vDwKCwvR6XQMHTpUNuTsIfIXJoToEXl5eTz796coPZJPoGpCr9Gxz7qNFZ9+ze33/rxbb9HExMQwccEMNn+6mjpzI/F+EVTV1xCIPzk1RTj7mAgJDW17vEGnx1t1oaio6JznPnLkCMu/XcaBnZmoVjue/t5Mnz+bBQsW9PnBv+LcIiIi5BaRA0jxIoTodi0tLTy35BnMh8q4KXYmroYzF3Wb3cbWnL289fwrBAcHExsb2y2vrygKP7/z53h4erDh2zXsPpVNbkMJXoqeMZEJxA+Jx2hoP/CyRbWcc/bWzp07efnJ53EqszLWNwoXoxMFeaV8vvQdDu07wG9/94gUMEJ0AylehBDdbteuXZQcyeWGmOlthQuAVqNlavQYirPWsW7N2m4rXuDM9PKbb76ZRYsWcfjwYb74/AsKNh0kccQItP8z+6aorpwmV/UHF/tramri/156Hf9qI3MTpraNcYjyDmFoYw3fpG5j1ahVXH311d32PQkxUMl8OSG6id1uJzc3lxMnTlBfP7CXYz98+DA+VhfcnTruCaYoCoM9Q9m7Y3ePZDGZTKSkpHDPvffgFO3LquPbqDc3AmdWT82vKWFtXgZDxo1g2LBhZz3Pzp07qckvZ3LUyA6DM31dPYlxCmTjyrXYbLZu/X6EGIik50WILqaqKqmpqSz/8huKTuaj2uw4e5qYMGsy199wQ59cvMpisbBnzx4OHTqE3W4nMjKSiRMnnvcGpTabDa1y9s9KOo0Wm9V21iXtu0NERAS/+v2veXXpS/w7JxV3m5FW1YLFTUvC3CTu+9Uvf3A9lOLiYtzthnY9Sf8t3DOQnLJj1NfX9+kZS0L0RlK8CNHFvvnmGz5+5R3CLZ7MDxyFUWcgr7qY1HeWcep4Nr//0+N9ahn6oqIinn72KY6cOoziYgetgnWFndBPwnjglw8yYsSIc54jOjqaLcoqWqytOOkMHdqzq08zZMLoHp9eOmLECJa++iK7du2ioKAAvV5PYmIicXFx58xiNBoxq9azFlyNrS0oOo2seixEN5DiRYguVF5ezhfvfkyiNpTkqO9vOfi4eDDIJ5TPd2xmzZo1XHPNNQ5Mef5aWlp48uknOVJ0kOGzhuLmcaanxdzcStaOozz9jyd56olnCP2vmTqdmThxIl9GfMqGkzuZFzsBrUbb1nag+AQ1rhZmzpndrd/L2Tg5OTFlypQLft6oUaP4wv0jsisLifENa9dmV+1kVZxi1FUTZMCuEN1AxrwI0YXS09OxljcyOnRIhzYPJzdinAPZtHo9qqo6IN2F27VrF0dyshgxLaGtcAEwOhsYOWUYZQ0lrF+//pzncXd3555f309tkIYPDq9ha85eduYf4tOs9WRYcrjituv63H47UVFRjJkxgc2lBzhZUYBdtQPQYG5i7fEdmP31LLhsoYNTCtE/Sc+LEF2osrISD8UZ3X/1LPy3QDcfcityMZvNODk59XC6C7d//3507gouJpcObRqtBu8wT9J3pXPbbbed81wjR47kr889yYYNG8hMz8BiaWVIwgRmzJxJYmJin1uRVFEU7r7nbl5VFLZsTGfr4YM4awzUKS14RQZy3733ER8f7+iYQvRLUrwI0YVcXV1ptLdgV+3t9tH5Tk1LA04+zhgMHcd99Eatra1odD8w0Nago7XBfN7nCwkJ4ZZbbuGWW27pingO5+zszAMPPkDeNVeTmZmJ2WwmKCiIlJQUuV0kRDeS4kWILpScnMw3Hp9yoqKAOL/2q262Wi0crc1nxnVX9ZldfSMjIzFvtWCz2tDqOvYmVRXVMHV437rd09UURSEyMpLIyEhHRxFiwOgb76BC9HL19fWsWbOG5cuXY3XV8O2JrWQWHKHVZkFVVU7XlvH10c24xvozf/58R8c9b5MnT8bb1Zeju090GKdzOrsYpUnHzBmzHJROCDFQSc/LBWppaWHXrl2Ulpbi7OzMmDFjCAoKcnQs4UBZWVk8u/RZCsry0LtrsBnsnNZW8t6R1USVheDq7ILioidyfCx33vsLAgMDHR35vPn7+3P3z+7hhdeWsmtlJv6Rvmh1WsoLKlDrNSy+/HrGjh3r6JhCiAFGipcLsGPHDt5+9S2q80pxtelpUS187O3M5AUz+ckdP0Gv1zs6ouhhZWVlPPXsEirtZYy9LBGD05mxLOapZjLW7cPW4sQNd/yUuLg44uPj+9ygVIBp06YRGBjI6tWr2ZW5k1ablbGx45k7ey7jx4/vk9+TEH2R1XpmXSG51kjxct4OHTrEy08uJbDWyPzI6bgZXbDZbRwty2Xjh8vaNn4TA0tqaiqnqwsZt2hMuzEhRmcjKXNHk7F8H1qtliFDOk6d7kvi4+OJj49HVVVUVe0zY3aE6A8OHjzIqtWr2L0vA1VViY2OZe6ceUyePHnAfniQ4uU8ffvVN7iW25iTMK7tl0Wr0ZIQOAgV2LJiPYuuXERAQECPZaqsrCQtLY2ioiKMRiOjRo1ixIgRcmHpQRl7duERbOp0MKveqMfF14nMfZlcfvnlDkjX9VRVZf/+/Zw6dQqNRsOQIUPOazVaIcTFWb9+PS+98QItukYCovzR6rQcKMgkc+kejh9fzB133DEg//6keDkPNTU1HN59gPEBMZ3+ksT7R7Lj6FH27NnDggULeiTThg0beO/V/6O1pB4fXGhRLaxx/ob4lEQe+M1DspdKD7FYLZ0WLt/R6rW0trb2YKLuk5+fz9IXnufoqSNYNK2gglFxYvSwsdx/3/34+Pg4OmKvUlpaSnp6OtXV1ZhMJsaNG0dYWNi5nyjEf5SUlPDGv15DH6hh+Njvt88IjQmmOKeEL1d+TmJiIsnJyQ5O2vOkeDkPLS0t2C1W3M6yboNOo8Wo6GlpaemRPPv37+dfz79KtNmL8fHjMWjP3P8sqa9kTepOXtS/wGN/fHxAVuM9LX7wEA5vPNjp/jaqXaW+rJHYcbEOStd1qqureeLJv5FbnU38lMF4+LijqipVJdWk79xK89PN/O0vf5N9fDjTO/XZZ5/x7UdfYK9owl1xpsHewtdenzJ90Rxuu/12dDp56xXntmXLFqqaKxk3ekyH95egqEBOnyhm/Yb1UryIznl5eeHiZaKwqowQD/8O7XUtDTRrLd06i6SgoIDs7GwURWHtqjW412iYMrT9RnaBJh9mho5hzfa9HD16tM+Ps+gLZsyYweqNq8g+mEtMYlTbcVVVOZZ5Ag+DFzNmzHBgwq6xadMmsotOMPayERiMZwYlK4qCT5A3idON7F+/l4yMDCZNmuTgpI63du1avnj9A8Y4RZE4JBadRotdtXOkNId1H3yLq5sbN954o6Njij4gNy8XJy8DGm3nQwG8gjw5cep4D6fqHaR4OQ9Go5Epc2ew+vXPGNISibvT9zsC21U7abn78B0UxJgxY7r8tauqqnjztdc5kL4HS00zFpuNo7nHmeM7CqvNil7XftR5iIc/htMqBw8elOKlB8TGxnLHj3/Km++9wa7Te/AN80FVVcrzKnHBxD0//UW/uFWwbXsapiDXtsLlv7l5uKI1wc6dOwd88WKxWFj++dcMwq/d/lYaRUNC4CAaW5tZ981KLr/88j61s7hwDCejEzaL7aztFrMFk2Fg9nZK8XKerrzySg7vP8jnOzYz1BROiIcf9eYmDpWfoiVAzy/v/nmXd5k3NTXx1N+WULzzGJMDhxM9NIQGcxPP5RZSX1TFgX0HGDVmVLtl6BVFQa9osVgsXZpFnN3ll19OZGQka9au4cChfaAoLJhwBXPnzO03BWRDYwNOrmffi8ngbKCppakHE/VOp06dojyvmAmBKZ22Dw+KYW/2erKyskhJ6fwxQnxn1KhRLN/wDU31TR32F7NZbVQV1HDF1dd2+lxVVTl8+DC7du2ivr4ePz8/Jk2a1C8+TIEUL+fN3d2d3/3xcZYtW8aWNRs5UnUIjV5H4hXJXL7oim7ZgG3r1q3k7j7CdTHT8PhPb4+b0YVg7wDUSpXqknLKy8sJ8P9+hlNdSwN1WjPh4eFdnkec3fDhwxk+fLijY3SbyPAotmTldNqmqiqNlc2Ejg/t4VS9j8ViwW6146TvfO8qo86AarP3m0HconslJyczZNAw9m86wLDJQzB5nbkOtDS2kLXjKIHuIcycObPD81paWvjnC/9k687NmLXN6J11tDZY+fTrT1i86DpuvPHGPj8mUoqXC+Du7s5NN93E4sWLqampwdnZGZPJ1G2vl74ljTCNd1vhAme6n0eGD2FL9Q7cWvWUlZa2FS82u43UnEx8B4cMyAFc4nvNzc3s2LGDkydPoigKcXFxJCcnX3Tv4IzpM9iyM5WywnL8Q/3ateUdLcBNa2Lq1KldEb1PCwoKwsnDhbzqEoYFDurQnl9dgsHdmdBQKfTEuRmNRh797aM889zTZG06hN1oRavVYG1QCQ+I4IFfPtjpCu//evtfrEtfzeBx0fgGe6MoCqpdJe9YAe9/9i6+vr7MmTPHAd9R15Hi5SIYDAb8/TsO3O1qtVU1+Dh1vC8+NnQIBdUl7Dh2gKLTTSh+LjS2tnC8rhBtmDsPPnCfzPoYwI4fP86zzz9DTtEptG4KqCq2ZRATHstvHvgN0dHRF3zOpKQkFsy8jGXrv6Ekr4zAiABUu52iUyXYquGW6267qPP2Nz4+PiRPn8jOj9cR6RWEm/H7rv4Wayvbiw4RN2O4bOIozltgYCBPLXmaffv2kZWVhc1mIyoqinHjxnW6c3lZWRkbNq8nbHgQfiHfL1+gaBQih4RTX93At8u/YebMmWi1Z1/mobeT4qUX8w8OoCQrq8NxrUbLlcOmkV9fQnOIK5n6IowmI1OuvZw5c+b0m3ua4sJVVlay5Om/U2IuZNT8hLZxKk31zRxMO8ySp//Oc0//A3d39ws6r0aj4e5f3M2g6EGsWruKgr35KIrCkKhELrv1MiZPntwd306f9KObbyLn5Ck+zdzEYJdg/N28qW6q42hdAR5Dg7njzp/1+S570bN0Oh1jx449r33EsrKyqG2uIT56VKftoTHB5G7PpaCgoE8X0VK89GJTpk/jhY27KK4rJ8j9f7rqa0pwD/Xj98/+hWHDhgHIG6IgNTWV/Io8Ui4fhc7w/Z+3i8mZUTOGs3v5AdLS0i5qMUWtVsuCBQuYN28eVVVVKIqCt7e3/N79D29vb/7w1z+xevVqUldv4FRNDk6+zsy+8RoWLFiAn5/fuU8ixEWy2WygqGedXq3T67CrdqxWaw8n61pSvPRi48aNY9vs8axYuY3hpghifMOx2+0cLc/lqLmIKdfOZdiwYV1y8VBVlfLyclRVxcfHRxbR6qN27dmFKdClXeHyHYPRgLOPgYw9GZe0ErRGo8HX1/dSYvZ7Hh4eXH/99SxevBiz2YzRaJRtO0SPCA8Px1nnQmVJNb5B3h3aSwvK8TJ5dzpWpi+RK1QvptPp+NVDD/JFZASbVq7jYMl2UMArxI/rL7+dK6644pILF1VV2bx5M6uWraDwWA6qCr6hAcxcMIeFCxdKEdPHmM0t6A1n33FWZ9DJTJcepNFoOh2XIER3GTx4MInxI9i1Zwfus93arc1UX91A2YkKfnzVbbi6ujow5aWTK1MvZzQa+dGPfsSVV15JYWEhiqIQHh7eZQNyP/nkE75669+EWNyZ5j8EnUZLdnYhH/3jLbJPnOT+B37Vpwd1DTSxg+LISj1w1u0KGsobiUmOcVA6IUR3UxSFu39xD5V/r2T3iv14hbnjYnKhtryOxrIWxo+YxOLFix0d85JJ8dJHuLi4EBvbtXvk5OTksOyDL0hyjmbkoLi242GegUTXlLBm5WbSU5JlMGYfMmPGDNakriL3SD5RQyPatZ08mINJ58H06dMdlE4I0RNCQkL4+1+XsH79ejZu2UhNfg2DAuOYddVspk+fjpPT2Rec7CukeBnAtmzZgrbaTGLCYBoaGyg6XURdbS2KosHHzwefFiObN2yS4qUPiY+P55brb+Ptf/+LysK9+IX7oqoqZXkVGFqd+fmtd/bpGQZCiPPj7e3Nddddx3XXXefoKN1CipcBrLSoGH+dJ8VFxRzLOgrNFty0zthVOyeLyqnV1lB7oONUbdG7XX311URERJzZruDwfhRFYfqI2cybO48RI0Y4Op4QQlwyKV4GMBc3VyoaqjiW14S7zUigdyAKZ8ZJ2Ox2TpYUc+roURobG/v84K6BRFGUtjUh7HY7gMx0EUL0K/KONoCNTUriRN1pGhsbCTT5tBUuAFZs1ButOKNj27ZtDkwpLoVGo5HCRQjR78i72gA2ZswYzEY4YC2gyFyJqqoAVFjqWFdzABcvE0PcIzh69KiDkwohhBDfk9tGA5her2fYsARKWk+R2nIcfaOCRlEwa214+3tz1fBpbM87iPqfWw9CCCFEbyDFywA3MmUMhwqamBw2kvyaEuyqnSCTL5HewZitFsqUehbExZ37REIIIUQP6ZHbRi+//DKRkZE4OTmRkpLCrl27fvDxn332GfHx8Tg5OTF8+HBWrlzZEzEHpNlz5tDkpaGwtpRx4cOZGDmSaJ9Q7KrKupM78IgKYNKkSY6OKYQYYOx2Ozt37mTJk0u48+6f89BvHuTLL7+kurra0dG6TWVlJenp6Wzbto3S0lJHx+nVFPW7gQ7d5JNPPuGWW27htddeIyUlhaVLl/LZZ59x7Ngx/P39Ozw+PT2dKVOmsGTJEi677DI++ugjnnrqKTIzM9s2IPwhdXV1eHh4UFtbe8E75w5UK1eu5MNX30ZfZSHCxR+L3UpOSxmukb786tFfn9fPXQghuorNZuPV115lxYZl4GrHM8CDlsYW6oobGBQ0mN8/8hgRERHnPlEf0dTUxDvvvsPGrRuoaagGVcXd1ZNJKZO54yd34OHh4eiIPeJCrt/dXrykpKSQlJTESy+9BJyppsPCwrjvvvt45JFHOjz++uuvp7GxkeXLl7cdGzduHCNHjuS111475+tJ8XJxsrOz2bhhAycOH0en1zEyaTTTpk3rtMAUQojutGrVKp5//TmikkIJCP/+PchitpC5fj9Dgofz3DP/6Bdbl1itVv6+5Am27EkldFgQwdGBKIpCSV4peQcKGROXzJ//+BeHr4qrqipHjhxh46aNnDx1AqPRiXFJ45g2bRpeXl5d8hoXcv3u1jEvra2t7Nmzh0cffbTtmEajYdasWWzfvr3T52zfvp0HH3yw3bG5c+fy9ddfd/p4s9mM2Wxu+3ddXd2lBx+ABg0axKBBgxwdQ5wnu92OoihdsqO4EL2J3W5n1dpVuAY6tStcAPRGPUPGx3Es9Sj79+9n9OjRDkrZdfbs2UP6nm0MnRKLp9/3PSwhg4Lx8PUgc90etm3bxsyZMx2WUVVVPvnkEz764kNaNI14BLhjabSw591dLF+1jN89/Psev35065iXiooKbDYbAQEB7Y4HBARQUlLS6XNKSkou6PFLlizBw8Oj7SssLKxrwgvRy5jNZlatWsUDv36AG358PT/52e28++67cm9c9CvV1dXkF+UREOHXabu7twm73kp2dvZ5na+bby5csvT09DO3xvw63hpy83DFyVfP5i2pPR/sv+zatYsPPnsPz8GupCwcw5CkWBInJpB0+UiKmvJ55vln2nUi9IQ+P9vo0UcfbddTU1dXJwWM6Heam5t56umnSN+7FZcAJ7yiPWhurOP9b98hNS2Vxx55THrORL+g0WjQKAp2W+dLNKiqit2m/uDii01NTWzcuJFNa9ZTXlyGycPE5NnTmT17Nj4+Pt0V/aJU1VTi7H72W0Iu7i5UVld2e466ujq2bNnCjl3baWhsJDoimmnTpjF8+HBWr1mN3dVC5JDwds/RG/QkTBjCgbVH2LVrV4/ug9etxYuvry9arbbDJ8PS0lICAwM7fU5gYOAFPd5oNGI0GrsmsBC91Ndff03a3s0Mmx6Pu7ep7Xj0MCuZ6/fz0isv8twz/5DVdEWf5+npSWx0HIdO7ScwIqBDe1VpDUbFiaFDh3b6/IaGBp58Ygkntx0gSufHaFMINQX1fPvih6Rt2Mwjf/w9oaGh3f1tnDc/X3+aTzSftb2huoFhg4O6NUNBQQFPPPk3Tp4+gau/EwYnA0fSD7J2yxoWzb2SQ0cPEjCo854wF5MzGhc4efJkjxYv3fpOZzAYGDNmDBs2bGg7Zrfb2bBhA+PHj+/0OePHj2/3eIB169ad9fFC9Hdms5k1G1bjE+XVrnAB0Ol1xCUN5ljOUQ4ePNhjmSwWCy0tLb2+S170PYqisHD+ZdhrFHIO57X7HWusa+TYzhOMShhDfHx8p8//9NNPObXlANdETGbm4GSGBQ5iUtRIboybRfPhUl5/5bVe9Xs7edJkNC16ygorOrTVVNRiqbEzbcq0bnt9m83GP5Y+R07lCcYsSGTE5GEMSYolZeEYAoZ58fmKT6moqOCHfmSO+Hl2+22jBx98kFtvvZWxY8eSnJzM0qVLaWxs5PbbbwfglltuISQkhCVLlgBw//33M3XqVJ577jkWLlzIxx9/zO7du3njjTe6O6oQvVJ5eTlVtZVEDAnutN3D1x2LYiE/P7/bd40+evQoK1euZMee7djtdiJCI5g7ex4zZsxAp+vzd6F7DbvdTktLC05OTgOyN23SpEncVnw7H33+IduP78bVxxlLiwVrncrI2LHcf9/9nQ5Wb2hoIG3tJkZ4RuPl0n62irPeyMTQRNbtPcDJkycZPHhwT307P2jEiBHMnjyXFanfUjOolpBBgSiKhuLcEkqOlzN1zHTGjRvXba+/f/9+jpw6zJBpcRidDe3aQgYFU15YSdOJZkrzygmP69hj1VjXhNqsENfDi5l2+7vN9ddfT3l5OX/4wx8oKSlh5MiRrF69um1Qbn5+frs/zgkTJvDRRx/x2GOP8bvf/Y7Bgwfz9ddfy1ojYsDS6/VoFA2WVmun7Xa7HdVmR6/Xd2uOtLQ0lr78D+qpJTDaH71Bx8nCoxx85QCHDx/mvvvu6xdTVx2pvLyclStXkrYulZaGZlw93Zg6dybz58/H09PT0fF6jKIoXHfddYwdO5YtW7ZQcLoAFycXkpOTSU5OPutQgeLiYpqq6okK6Px6EeYRgP20mfz8/F5TvGg0Gu69916CgoJYuXYFh9efREXFx92HH195GzfccEO3/m0fP34cu97WoVf3OwER/tTnt0C9luwDOUQPj2wrHM3NrRxKO0JseDxJSUndlrEzPfJR6d577+Xee+/ttC01NbXDscWLF7N48eJuTiVE3+Dv78/gqFiOnjyEf6hvh/aS3FJMRg8SExO7LUNNTQ2vvPEyds9WksePbnvzCo4Oovx0Jas2r2D48OEOnc7Z150+fZolf/obNVmniXcPw9slkPLiapa99BEZ6Tv53R8fw9e34/9/fxYdHU10dPR5P16r1aJoNLTaOi/0LXYrdoVe10uo1+u54YYbuOKKK8jNzUVVVcLDwzGZOi8oupKiKHCOuz7e3p5cu+g6Pvn6Y3bk7Mbk74bFbKG5opVBITH85qHfdvuHp//Vu/4HhRAdKIrCFZct4sjSw5zYf4rohAi0Oi2qqlJRVEXu3kIWTruC4ODObyt1hW3btlFeV8rYqSPaCpfmpmZaLa2YfFwxeGtZu36tFC8XSVVV/vXGWzQfLuWGIbNw0p3pvo/1i2Bkaxxf7Enlg/ff51cPPODgpL1beHg4/lEhZB3LJtDUcVbR0bJcnP1MvbYn38XF5awDkbtLXFwcOpue2so6PHw6LgxXnFPK8EEjueGGG0hOTiY1NZVTudkYDEaSr01m0qRJPVJk/S8pXoToAyZNmkRV1Z28//G77MzORO+mxWa2Y7A5MXPcbO78+Z3d+vqFhYVoTRr0Bj01NTVkn8qmsqoCm92GVqND12og68hBbDab3Dq6CHl5eRzJOMD04IS2wuU7rgZnxvjFkrF5BxU/rhhwvS/nq76+nsLCQkYkjWL1sa/xKTrG8MDBaDUaVFUlt7qIXVXHmPHjK3rddGlHSkxMZMigBA5sz2TU9OE4uZ6Ztq2qKgXHT2Ovgfm3LUBRlF61mKkUL0L0AYqisGjRIsaNG0daWhrl5eU4OzuTlJTEkCFDun2lXYPBgN1ip7qqisx9mZjVFty8XdEb9FjMrZzOKqG4sILc3Nxe8+bWl5w+fZrW+mYiQjufEhvpHcy2vGMUFRVJ8fI/Ghsb+eSTT1iXupbahhoAWhQzq0v3sK8qG0/FhQa1BbNJQ/KV07n1tlsdG7iX0Wg0PPTAQ/z9qb+TueoQTj56DM4GGioacbK7ctM1P+7RKdDnS4oXIfqQgIAArrnmmh5/3ZEjR/Lptx+zd88+WnXmdmNvdHotmlYtOlc9H370AX94/I89nu87ra2t7N69m4MHD2KxWAgPD2fSpEl4e3s7LNP5MBgMaLQami1mXA3OHdqbLWY0Wk2Pjyvo7VpaWnjy6SdJ37+VoDh/hoQPwma1U3iyiPLjlbhGBjEkMRGTyURKSgqxsbGypUYngoODeervT7Ft2zZ2ZuyksamRqMQopk6dSlxcXK/8mUnxIhzGbrdTVVWFoih4e3v3yj8QccaIESMID4xk+dZ9RIz/vnfAYrZScrgCg92JhKlDyTy4h9OnTxMSEtLjGUtKSnj62ac4dOIgipuKVqehdb2Vf3/+Effd9UsmTJjQ45nO19ChQzEF+XCoJJuU8I7jMQ6VnMQ3MpCYmBgHpOu9Nm/ezI7920icMRSTl1vb8aHJcRR6nab4SBG/nfdb6Q08D66ursyZM4c5c+Y4Osp5keJF9Di73c769etZu3w1xTkFAITERDD3svnMmDFDipheSKPRsOjyRazdtJrKQ/VUnaxDo1WwNNpxc3Jj7JzReAd4sj/7CBUVFT1evFgsFp5+9ikO5u1j+OyhuHm4AmBttXIk4zj/eOk5/Pz8es302P/l6urKnCsX8OUrH+Ba4swQ/yi0Gg1Wu40DRcc5oZZz2zV3Sc/L/1i/aT0ufk7tCpfvhMQEk3+4iG3btknx0g9J8SJ6lKqq/N9bb7Hu38uJxJtpvmdWyTy2N583DrxAQUEBt956qxQwvVBQUBCxcbEEJPhQV1WP3WbHw8edkJggDEYDVaXV6HR63Nw6Xki6k6qq7Ny5k0MnDjJ81pC2wgVAZ9AxbMIQdq7Yw+o1q3tt8QJw7bXX0tjQwIavV5Nx5BhuihP1ajMaXxeuvuVHzJs3z9ERe52S0mLcAzuf6aIoCkaTnvLy8h5OJXqCFC+iR+3fv58NX6ximlcCsX4RbcejvEM4XHqKNZ98S3Jyco9PFxTnlpCQQFhQBFU1pSROTGjXpqoquVn5xEUlEBUV1SN57HY7qamprF67mo2bNlBhK8U1X0cY4e0WdFMUBf9IX3bs3sG96r29tjDWarX85I47mDN3Ljt37qSurg4vLy/Gjx/ftqinaM/Tw4vTdbmdtqmqSmujBQ+Pjrs1i75PihfRozanpuLRqCM2MqJD2xD/KPZnnWTz5s1SvPRCBoOBG669gaWv/YOsnUcZNCwSJ1cnGuuayN6fg67JiesX39Ajy9nb7XZefuVlVmxYht5bg8FXi7ZOoaAsn5LyEhITEgn4r81cdXodzRYLqqr22uLlO6Ghob1q48DebMbUGbz87guYm80YnduvultRVIXB5tStS+sLx5HiRfSowpwCAl06n/mhKApBzt6czi3o4VTifM2cORO73c5Hn37IvtWHsWNDi47wwAhu++XtJCcn90iOrVu3snz9t0SlhOIf6sfJ/aco31aGT5AXtVX1HDpyCC8vLwz/WUa+vLCCMYPHDch9gvqzmTNnsmnzRjLXHiB6VAT+oX7YbDZOZxdzOquE2RPmyQehfkqKF9GjXEyuNLZ23D31O42WZvzcXM/aLhxLURTmzJnDlClT2LdvX9utjREjRmAwGM59gi6ydt0a9N5a/EP9AAiLDSFr9xGKDlcQPMyPivxKSkpKCI+IoDinBHudwtzZc3ssn+gZ7u7uPPa7x3n19VfJ3L+bEzty0SgKXm4+LF5wA7fecqsUrP2UFC+iR6VMGMe7mzNpbG3usJ5FXUsjp9VaFo5PcVA6cb6cnBzXHW+32zmZcxLfqO978IzORpKmj2Hn+gxy04uw662csudRdrwKGrRcs2Bxr54qLS6ev78/f3z8j+Tl5ZGbm4tWq2XIkCGyim4/J8WL6FGTJ09mzbJVfHNgK9PDR7ftP1JcX8HGvD2EjR0sFxnxgxRFwaA/s7LvfwuODmT6VVPIPpTL/rSDtDarpMydxOyZsxk/fnyvH+siLk1ERAQRER3H0on+SYoX0aNMJhMPP/4oL/7jn6w4sBtDwZkNTS2uCjFThnLfA/fj4uLi6JiiF1MUhQkpk/ho1fvYna1YLBYMBgOBAQF4+nkweEQ0tmqVv/3+74wdO9bRcYUQ3UCKF9HjgoODeeLpJWRlZXHixAngzM6mQ4cOlU/H4pysVitVVVXkHs4nvzwHn0HuKIqGUzkn8XX3p6XYypj4ZEaOHOnoqOI/7HY75eXlKIqCr69vnxyHoqoqWVlZbN26ldLyUjzdPRk/fjxjxoxBp5NLaU9TVFVVHR2iK9XV1eHh4UFtbS3u7h239xZC9G2ffPIJ//fvN3D2N5B7PJ8mcxM6Nw0tDWaay8xMGDWJN157UzYw7AVsNhtr1qxh5eoVFJacmUUYFT6IhfMWMnPmzD7zYcVqtfL6G6+zauMKWrUtuHg5Y24wozZoGD96Ir9+6Ne4uspEg0t1IddvKReFEH1GU1MTy1Z9i88gTwaPHMSQ5DgKTxRRW1mHRqOhuaEZk7Opx1f5FR3Z7XZee/01vln7Fa5BTgSPCUBVVXJOHefZl7MoLCzsM6tpL1u2jG/WfkXEmBACI/zbMtdU1LJlyyY83/Lk/vvvd3DKgUWKFyFEn3H06FHKa8oYMW4IAAajgehhkW3tTfVNHFp3nOPHj5OYmOiglAIgMzOTFeuXEZkUSmC4f9txvxBfCk8W8eWKz0lJSWHIkCEOTHluZrOZ5auX4RHuRlBk+5WOPX09iEgMZfP2VG644QZZCbkH9b0bj0J0g8bGRjZu3Minn37KihUrKCsrc3Qk0Qmr1YrdbkNn6Pxzl86gw263Y7VaeziZ+F+bUjehuljbFS7fCRkURLPSyJYtWxyQ7MLk5+dTUlFMyKCgTtuDIgOobazm6NGjPZxsYJOeFzHgbdq0if979y1Ka0rQGBXsrXbc3/fk8nlX8OMf/xitVuvoiOI/wsLCcHN2p7ywgqCowA7tZQUVmJxNsrx+L5BfkIe779k3TXTzcaXgdO9fTVtV1TPbSmg6v72l0WhAUbDb7T2cbGCT4kUMaDt37mTpq/9A6wejJwzH6GzAZrVRcOI0H379PgaDgR/96EeOjin+IygoiHFjxrFu12q8A73a7WfT0thC/qFC5k+8HH//jp/2Rc8ymUzkl5nP2t7a3IpbHxjkGhoaio+HLyV5ZZg8O46lKi0ow+RkIiYmxgHpBi65bSQGLFVV+eKrL7C5tpKQEo/R+czy9lqdlsgh4fjHevPNyq+pra11cFLx335y+x0MDR3OnpUHOLzrGAUnTnN41zEy1xwkIWIEt916m6MjCmDi+Ek0ljVjbu5YwDTVN9FabWNcyngHJLswLi4uzJ05j/KTlVSX17Rra6pv5tTefJJGphAWFuaYgAOU9LyIAauoqIij2UcIGxPa6YyH8LhQMo7uZ9++fUydOtUBCUVn/Pz8+Muf/sq6detYv2kd1dnV+HkFcePNtzB79mxZIqGXmDJlCitXryBzwwHikwfj6ecBQFVJNcd3ZZMYO6rP7Pi8ePFi8gvySN2yCb2nBpO3ieb6ZprKWxgxeBR33XmXoyMOOFK8iAGrpaUFm92Kk6ux03a9QY+iPfM40bt4enqyePFiFi9ejM1mk3FJvZDJZOKx3z3O0hee51D6ISzKSVQ7GDXOjEuYxP333Y+Tk5OjY54Xo9HIb379WybvmMLG1I0UlxYTHeDFlGumMnnyZFnjxQGkeBEDlp+fH27OJiqLqzq9l11bWYdeMRAY2HFgqOg9pHDpvYKCgnjy709x+PBhTp48CUB8fDyxsbF9Yn2X/6bX65k8eTKTJ092dBSBFC9iAHN3d2fqhGl8seFTAiMCcHL5vgfGbrNzIjObmIghDB8+3IEphejbFEUhISGBhIQER0cR/YgUL2JAu/766zl6/AiZa/bjH+2Lp58HTfXNnD5ejL9zEHf97K4+uQ+LEEL0Z7K3kRjwqqur+eabb9iweT31jXUY9EYmJE3kiiuuIDo62tHxhBBiQLiQ67cUL0L8h9lspq6uDhcXFxmAJ4Toc1RVJSMjg7Xr1nD42GH0ej0pY8Yxd+5cBg0a5Oh45yTFixQvQgghBhBVVXn//ff5+Ot/o7pa8Qv1wWq1UZ5bgYfemwfvfYgJEyY4OuYPkl2lhRD9gt1uZ8eOHazbsI4T2ccxGo1MTJnE7NmzZVEwIf7L7t27+eSbfxM4zJvQwSFtxwcNj+RQ+hFefPUF4uLi8PHxcWDKriMjEYUQvZLdbufNN9/kr8/8mZ0nt6EEWWl0reXfK9/n4d//hv379zs6ohC9xrr167A7W9sVLnBmtteQ5FjK60vZunWrg9J1PSlehBC90tatW/l69ZeEjg5k7KyRRA2NIHbUIFIuG0OdroalLz5PU1OTo2MK0SscPX4YnxCvTtt0eh0GDx25ebk9G6obSfEihOiV1qxbg85LISgyoN1xjVZDwrg4Csvz2b59u4PSCdG76PUGrBbbWdvtNjs6bf8ZKSLFixCi17FYLJw4dRy/0M7vzxudjWjdNOTm5vZsMCF6qZSx46jMr0K1d5yD01TfjK0eEhMTHZCse0jxIoTodTQaDVqtFqv1HJ8kdf3nk6SjFBcXk5GRwd69e+U2XB82Z84cvJ382L/1EBazpe14U30T+zdnMSRqKCkpKQ5M2LXkL18I0etotVrGjkxi3e5VRMSHddgHp66qHo1ZJ0vOX4Ly8nL+9fa/2LFnOw3N9Wg1Wvy9A7hiwSKuuuoq2TOqj4mMjOTX9/+GF15eSsbyfehNWux2FbVRYUjkMB7+zcMYjZ1vQtsXSfEiuozZbGbv3r1UV1fj5ubG6NGjZbG3PqSsrIyNGzeyc/cOzGYzcTHxzJgxg2HDhjlkE70F8xeQnpHG4V3HiB8zGK3uzMW0obaRrLSjjBw8hpEjR/Z4rv6gpqaGvz7xF44UHiJieBhDQqOxtFooOHGa199/lZqaGn760586Oqa4QElJSbz0z1dIS0sjJycHnU7HsGHDSEpK6leFC8gidaKLbNu2jQ/eepfK3GL0VgWLxo4pxIerfrSYhQsX9rkdZAearKwsnnp2CUU1p/EIMaE36KguqsVoc+bGq2/ihhtucMj/YWpqKq++9QqVjeUYPHTYLHbURoVhMcN55LeP4u/v322vbbFYaG5uxsXFpd/dnvrss894/cNXGLMgEaNz+4tawYnTVB+t55/PvEhERISDEoqBSBapEz0qIyODV55cSmijG7PDp+Lu5EZTawt7i47y/tI30Wg0LFiwwNExxVk0NTXxj38+R4W9lJQrRrf1cDAK8o4W8OEX7xMTE0NSUlKPZ5s2bRrDhg1j69atFBQUoNfrGTFiBElJSej1+m55zeLiYpYtW0bqtk20mFswuZqYPX0OCxcuxMur86mofYmqqqzbuBavcPcOhQtA6KBgCrJ2s337dileRK8lxYu4JKqq8sXHn+Jbq2dWfHLbp3MXgxMTI0diO2Xnm4+/YMaMGTg5OTk4rehMeno6+aW5jF44/PvC5T8i4sMoy69gzdrVDileAHx9fbnqqqt65LVyc3P5y9//TH5lDoEx/vi5e1BbWc/bX7zFjowd/OnxP+Hr69sjWbqLzWajprYa02BTp+2KRkHvoqW2traHkwlx/mS2kbgkeXl55B/OZlRQXKe3FUaFxFGdX8rBgwcdkE6cj+zsbLQmTaefwgH8w305dPQQdru9h5P1LFVVefOtNzhdl0fywtFED4skINyf2FGDGDt/BEcLD/HBBx84OuYl02q1eHp4UV9d32m7alexNtnx8PDo4WRCnD8pXsQlaWxsxNZqxd3JrdN2N4MLqtVOY2NjDycT50uj0UAna0N850zRovT7cUvZ2dkcOHqAQaOi0Onbd0obnY2EJYSQtnMLlZWVDkp4hqqqHDt2jLfffptnn32Wt956i6ysLM53+KKiKMyeMYfqgjpamswd2guzi3DVuvX6Tfx6mt1up6GhAYvFcu4Hi24nt43EJfH19UXv6kRxfQXuTh1nFpU1VKF1NvT5rvb+LD4+HvsKhab6JlxMLu3aVFWlPK+CWWPm9/vipaioiCZzAz5BQzpt9w32ofjgUUpKShy2uZ3VauXNN99k5YYVtCiNGE0GWhstfL3qS2ZOms0999yDwWA453nmzJnD1m1byVy3n4hhYfiH+p6ZbXT8NNU59Vx/xY2Eh4f3wHfU+9XV1bF69WrWblhDdW01TkYnpkyYymWXXUZISMi5TyC6hRQv4pIEBASQOH40mct2EuUdjEH7/SBKu2pnR8EhQkZGMXToUAemFD8kOTmZweFxHNxymJEzhrfdPrLb7Rzfm42T1ZX58+Y7OGX3MxqNaDVaWlssGJ07FgDmZjM6je68ioPu8tVXX/Hlms+JHB1CYOQQFEU5U2CermDF5mV4eXlx2223nfM8Hh4e/OGxP/DOu++QnrGNgr1FaBQtgb5BXH/rj7nyyiu7/XvpC76bUr7/xF68IzzwDvWguaGZz9d9zPaMdB5/9A8MGjTI0TEHJJkqLS5ZQUEBTzz+Z8zHKxjpNxh/N29qWurZV3Icc7CRh/7wCMOHD3d0TPED8vLyWPL03zlZeAKjtw6dXkdjRTOeRi9+fvtdzJkzx9ERu11jYyM/v+dn2H3MDBoeRUNtI6qq4ubhilan5cC2LIL1Ebzw/AsOmTrd3NzMXffdidm9gdhRMR3aTx3KxVqk8MbLb17Qe19paWnbTK64uDgZWP9f3njjDT5d/REjZw3HxeTcdtxmtbFn/X4SghN55qlnz9x6FZdMpkqLH2S321FVtctW0AwLC+Oxv/2Jzz/7jN2bd2KtOInWqGfovFFcc921xMXFdcnriO4TERHBc0//g23btpG5dw8trWYGTx3M1KlTCQ0NdXS8HuHq6srl867gqaVPsi/tAKpGBQVcnF1wdXPFVXHnmvuucdiaL9nZ2ZRWlpAwKrbT9tCYYDKPHuTYsWMXNDMsICCAgICAcz9wgKmvr2fj1vUExQa0K1wAtDotg0dHczT9CEeOHJGVnh1AipcB5OjRo6xZvZq96bux22xEDxnMzLmzmTRp0iWPZwgNDeVXDzxA9W3VVFdXYzKZ8PPz66Lkoie4uroyZ86cAdHL0hlVVamtrcWODYuxFaOXDq1OoaasirJj5cydtIBp06YBcPr0adLS0qisrMTV1ZXk5GTi4+O7dVyQzWY786FD1/mHDq1Oi11VsdnOvh+UOH+lpaXUN9UTGxLVabunnwdm2wmKioqkeHEAKV4GiC1btvDGcy/hVGElwSscvVZPztZsXt6xn2PXH+WOn/60S954vby8+sVCXmLgycrKYtm6b0iaPwqvQHdKy8qwWCwYRxvRWnUU7Stk9+7d5Obm8slX/6autRa9qxZri43Pln3C1HHTue/e+7rttkt4eDgeLh6U5pcRER/Wob00vwx3F3dZWK6LGAyGM2OgmlvBs2O7zWIDOw4dAzWQSfEyAFRUVPCvl94gvMHE9ISxbUXKsMBBHC/PY90nyxk2fDjjxo1zcFIhHGfLli20alsIigpAURQiIyPbtRedKOWt/3uLwvJ8fOM8GTpkDBqNpm3A7Jq0lbi6unL3L+7ulnxeXl5MmzSDL9Z9im+wN67u38/ua25sIfdAAXPHLyQoKKhbXn+gCQ0NJSZiMCePH8UnyLtDe8HJ03i7+5GYmOiAdEJGGQ0AaWlpmItqmBw1qkPvSqxfBH5mZzasXe+gdEL0DqeLT+Pm43rWHkiTrxsZmbsw+GuJSohoG6SpKAr+oX6EDQ9iw+b1lJeXd1vGm2++maQh4ziw7ggHtmaRk5XHgW1Z7F19iMSoUdzxkzu67bUHGo1Gw1WLrsZeo3As8yTWVitwZhG/09lFlBwpZ/7M+dLT7CDS8zIA5Ofn44cJvbbz/+5wj0COHT3Rw6mE6F3cTSbM+R0XbftOTWUNTc1NhA3ufG2P4OggCg7s5dChQ0yfPr17Mrq784fH/sDmzZvZkLqBstISorwHM+OOmUyfPh03t84Xi3SkpqYmMjIyKCsrw8XFhbFjx/aZAcKTJk2iru4e3v3oHXYt34feRYOl2YabzsQ1867j5ptvdnTEAUuKlwFAp9PRqlrP2t5qtWAwyn1bMbCNHzeB9dvW0VDbiJtH+wUXmxtbaCoz4+nlid7Q+YaQGq0GFLXbV2B1cXFh/vz5zJ/f+9fe2bZtG2/863WKKk6jMSrYLXZM73uwYNZCbrvttl6/W7eiKCxcuJAJEyaQnp5ORUUFbm5uJCcnExbWcdyR6DndetuoqqqKm266CXd3dzw9PbnjjjtoaGj4wedMmzYNRVHafd11113dGbPfGzFiBFWGFqqb6zq02ex2jtcXMnaSjHcRA1tKSgqjh45h/6YsSgvKUe3qf8azVLJv/UFGxI4kKiKKsoLObwtVlVTjpHORlWn/Y//+/Tz34jPU6ioZvXAYKZePJmXRaNxjnPl42Ue89957jo543ry8vFi4cCG33nor11xzjRQuvUC3Fi833XQTWVlZrFu3juXLl7NlyxZ+/vOfn/N5P/vZzyguLm77evrpp7szZr+XlJRExIhYVp5Mp7Lp+51imy0trDmejjbExOzZsx2YUAjHMxqNPPLbR5k+eibFeyvY/tVutn+1m8LdpYwfNpk/Pv4n5s9eQOmJcupr2n8Is5gtnMzMYXjccFnXiP/sNv/VFzTrGxg+cWjbqs0arYbwuFCCE/xZuX4FFRUVDk4q+qpu67M7cuQIq1evJiMjg7FjxwLw4osvsmDBAp599lmCg4PP+lwXFxcCAwO7K9qAYzAYeOiR3/DcU8/yxf5teLYa0KKhUmnCI8KPXz70S/m0KARnPmH//nePkZuby9GjRwGIiYkhJiYGRVFYvHgxJ0+dZMeGdNwCnfH09aCpoZmqvGqiAwdz91339Ps9oM5HZWUlB48cIGx4SKc/j7DBIew8nElmZuaAXVdIXJpuK162b9+Op6dnW+ECMGvWLDQaDTt37uSqq64663M//PBDPvjgAwIDA7n88st5/PHHcXFx6fSxZrMZs/n7QXZ1dR1vjQgIDAxkyTNPkpmZyaFDh7DZbERERDBhwoReOchPCEdRFIWoqCiiojouTubq6spjv3uMDRs2sH7jOopyinA3+XDVddcxe/Zs2YD0P1paWrDarDi5dL7mjVanRaPTtHvvFuJCdFvxUlJSgr+/f/sX0+nw9vampKTkrM/70Y9+REREBMHBwRw4cICHH36YY8eO8eWXX3b6+CVLlvDnP/+5S7P3VzqdjuTkZJKTkx0dRYg+y8nJiYULF7Jw4UJUVb2onhZVVSkoKKC8vBwXFxdiY2O7bLuO3sDb2xt3N3cqS6rw9PPo0N5Q24hi1fSZWUei97ng4uWRRx7hqaee+sHHHDly5KID/feYmOHDhxMUFMTMmTPJzs7udPfORx99lAcffLDt33V1dTKYSgjRIy6mcDl16hTvvv8u+7IyaTY3o9PqiQ6N5rprr2fKlCndkLLnubi4MHPKLD5c9h7B0UE4u37fA6PaVY7vOUlkcBSjRo1yYErRl11w8fLQQw+dc8v16OhoAgMDKSsra3fcarVSVVV1QeNZUlJSADh58mSnxYvRaMRoNJ73+YQQwlHy8vL409/+SEnzaaJHReDl50lTQzO5h3N49sWnsVgszJw509Exu8TVV1/NocMHyVyzF/9Bvnj5e9LS0Mzp48V46nz5xf13o9d3Pu1ciHO54OLFz8/vvDbcGz9+PDU1NezZs4cxY8YAsHHjRux2e1tBcj727dsHIEteCyH6vE8/+5TihkKS549u22DRw6hnxORhHNpxhPf//R4TJ07stv2RepKnpyd/fPxPfPPNN6xPXUdRfhk6rZ5ZY+ez6IpFxMZ2vju2EOdDUVVV7a6Tz58/n9LSUl577TUsFgu33347Y8eO5aOPPgLO7Mw6c+ZM3nvvPZKTk8nOzuajjz5iwYIF+Pj4cODAAR544AFCQ0PZvHnzeb1mXV0dHh4e1NbW4u7u3l3fmhBCXJDq6mp++os78IhzITSm42zLlsYW9q7K4s8P/5UJEyY4IGH3MZvN1NbW4uzsjMlkcnQc0UtdyPW7W5c3/PDDD7n33nuZOXMmGo2Ga665hhdeeKGt3WKxcOzYMZqamoAzU3rXr1/P0qVLaWxsJCwsjGuuuYbHHnusO2MKIUS3q62txWxtwd2780GqTq5OoIWampqeDdYDjEZjhwkcQlyKbi1evL2923pZOhMZGcl/d/yEhYWddw+LEEL0JSaTCaPOSH11A+7eHXsfzM1mFJsiPcZCnAfZVVoIIXqAj48PyaPHUXD0NHabvUN79sFcAr0DGT16tAPSCdG3SPEihBA9ZPG1i/FzCiJj3V4qiquwWW001DRwMP0wLcUWbrrhx2ddkFMI8b1uHbDrCDJgVwjRmx0/fpy33/0Xh44dorm1Cb1WT1hgONdfewMzZsyQ7QXEgHUh128pXoQQooepqsqpU6eoqKjA2dmZIUOGyJonYsDrNbONhBBCdKQoCoMGDep04c2uZLFYKC0tRaPREBgYiEYjIwVE/yDFixBC9DMWi4Vly5axcu1KyipLAIXI0CguX3A5s2bNkltTnFnx/b83qo2MjGTChAm4uro6Opo4D1K8CCFEP2K1Wln6z6WsTVuFZ7iJ8JQgVLtKfnY2z73yDMXFxfz4xz8e0AVMSUkJTz/7FIdPZqE621A0CtYGO6Efh/Gr+x5g5MiRjo4ozkGKFyGE6Ed27NjB+rS1xE4chE+gV9txnyBvCo4X8sXyzxg/fjyDBw92YErHMZvNPPXMkxwq2M+wmUMwebqdOd7cStaOozz9jyd56olnZIPfXk5ugAohLkp1dTXffvstzz77LP94/h+sXbuWxsZGR8ca8DZs2oDOQ2lXuHwndHAITfYGtm7d6oBkvUNGRgZZ2YdInDq0rXABMDobGDllGGWNpaxbt86BCcX5kJ4XIcQF2717N0tfep6SmiKMXnpUu8qqzcv57MtoHv71I8TExDg64oBVeLoAD7/OZ2ooioKLtzNFJUU9nKr32L9/P4qrHVf3jmNbNFoNvhFepO/axk9+8hMHpBPnS4oXIcQFKSws5Nl/PkOTsY7ky0ehM5x5GzE3t7J/8yGeevZJ/vHM87IBn4O4mzyoaCg5a7u5sRWT28D9v2m1tLb9znZGb9DTWm3uwUTiYshtIyHEBdmwYQMVjWUkTk5odxEwOhsYOW0YOSWn2LZt23mfz2azcejQIbZu3cq+ffuwWCzdEXvAmDxxMvXFjZibWzu01VXVozYqpCSnOCBZ7xARHkFLtQWb1dZpe8XpSmJj4no4lbhQ0vMihLggGXt24RXq0emaIQYnA0YvHfsP7GfevHnnPNeePXt45723yS44SYulBYPOQHhgBD/+0S1Mnjy5O+L3e9OnT2fNhjXs3XCAwWMH4R3gCSqUFpZzak8uKcMnMmbMGEfHdJjJkyfzyZcfc2T3cRJS4tvNuio6VYLSqGP2rDkOTCjOhxQvQogLYrXb0Bq0Z23XarVYrefuPdm7dy9/f+YJzC5NxE6NwuTlRmNdE9kHc3j2xadRVZUpU6Z0ZfQBwcPDg8cffZwXX36BgzsPcNyejWpXcTW4MTN5Lvfcfc+AXs3Xz8+Pu392D/98dSm7VmbiH+WLTqelvKASWx1cs2AxycnJjo4pzkGKl/9v7+6joqoTPoB/Z3gZZngZQJgZJuRdBVPxpUBNN0vkZa20XI+1ZdrpVEfJHnzZnmxLskejdGv3sacn9+zTqvvs5rads/bC01rIKr4BCoGKKSJBYLyjw/AibzO/54+O0xKooMxc7vD9nDPnwL2Xme+9MzBf7tz7u0Q0JBMnTETmsU8gpop+Y4VYei3oaLqK8Uk33u0uhMCHf/0QHe6tuGveVNv9eGk9ETtnEk4dKcGHH/0Fs2fPhqsr/0wNldFoxBtbMnD+/Hl8++23UCqViImJQVhYmNTRRoR7770Xer0e+/fvR15hHrqsPZgWFYekBUm45557RvUYODfS2NiIY8eOobGxERqNBnFxcYiKipJke/GvAhENScL8BGQfycK3JZWInBxumy6EwDcnSjHGS4d77733hvdRWVmJ8+XnEBEXOuAfvsjJYfjmnxdx9uxZxMbGDvs6jAYKhQIxMTGIiYmROsqIFB0djejoaFitVlitVpbkGxBCIDMzE3/auwdXrjbDzdMVvZ29+Ou+vZg3+z6krk6Fh4eHQzPx2SKiIZk4cSKe+uXT+ONfPkB+dSHGBPvDarGiufoytG7+eCH136DT6W54H62trejp7YaX78BDsXtqPdHd2w2z2WyPVSCyUSqVvObTTRw9ehS/3/M+vELUiJ88HS6uLhBCoKG6Ef84nAm1Wo3Vq1Y7NBPLCxEN2eLFixEVFYUDBw7g9Den4KJ0wX0JiViwYAEiIiJu+vN+fn5QuavQ0myGLjiw33xzcys83Dzg7+9vj/hENEhCCHz6+SdQaK0YP+3HC4kqFAroQ3To7upBdk4WljyyBHq93mG5WF6I6JZMmjQJkyZNuqWfDQ4OxpSYqThx5jgCgsZA6fLjf75CCFw8VYGo0An8yINIYrW1tSirvICxM+4YcL4x3IDqU1/j9OnTWLBggcNycV8ZETmcQqHA8seXY4yrDie/KkLDpUZ0tneiqfYyCg4UQ93thZXLV3J3PpHEenp6YLFa4eY+8BlqLq4uULooHD4+E/e8EJEkxo8fj9de2Yw/f/hnnCoqRmX393B3c0fsuOl4bNkveaAuDVl3dzcKCgpQWloKIQSioqIQHx8PlUoldTTZ0ul08PP2Q+P3TdAG9L/shKmxBa5wR3BwsENzsbwQkWTGjx+PzembcenSJVy5cgU+Pj4IDR34DCT6QW9vL4qKinDs+DGYzCboA/SYO3cu7rzzzlG93b777jtsf3sbyqouAGorFArA8ikQeUcU1q/dMGqvon271Go1EuYtwP/u2wVDqA5e/3Ixy96eXlwoLMfEiMm3/BHyrVIIIYRDH9HOzGYztFotWlpa4OMz8MXJiIjkqKOjA2+/8xscKzwKaKxQebmjs6ULbj0qJM5LxupVq0flKb+tra3Y8O/rUXmlHJPmRNsuutjRehUlx87B6DkWv3nzbR4Afova29vxRsZWnCjJg7fRE346LTraOtFY0YxgvxC8unETIiMjb35HNzGU9+/R9yonIpKpXbt3IafgIGLmjoOfzhcAbKesfp79CYxBRvziF7+QNqQEjh49ivLvL2LGwilQqd1t0zXeaky/fwpOZBYhJycHDz/8sIQp5cvT0xO/fvkVZGVl4csDX6LxQgPUHmo8/sCTSE5ORlBQkMMzsbwQEclAU1MTDh79J8ZODrIVF+DHU1ZNjS34vy8z8cADDzh8wDCpnSw8CXWAe5/ico2ruyu89BrkncxjebkNGo0GixYtwkMPPYTe3l64urpK+jElD+UnIpKB0tJSmFovwxgx8H+5xsgg1DfXobKy0rHBRoCurq4+Vzj/KXeVG7q6Oh2YyHkpFAq4ublJfnwVywsRkQxYrVYIBa77pqFUKiGEgNVqdXAy6UWGR6KtsR0DHcIphICpzozI8CgJkpG98GMjIqJbUFtbiyNHjqCisgIeHh6YPm064uLi7HZabmRkJLzVPqivakBQuKHf/LrKevj7jEFISIhdHn8kmzdvHj7/8jOUn6lE1JTwPvOqSi/Bw6rB/PvnS5SO7IHlhYhoiLKysvD7XTthunoZHn7usPRYkJn9GSZGTsLGFzfCYOhfLm6X0WjErBmz8FX+fmgDfKDx1tjmtTSZUX+xCU8sWgEvL68b3MvIJoRAWVkZSkpKYLFYEBoaiunTp9/0DKqIiAis/OVT+ODPf8DJ2iLowwKhUAD13zVC0e6G5Uuf5GjNToblhYhoCE6fPo33/vAu3AxKzJw+w3Zpg47WDpw6eBrb396GtzK22eWU5WefeQ5Nzc0o+rIQmkAVPLUatF5uQ/cVC342Yx6WLVs27I/pKCaTCTv+awdOFuejU1yF0kUBRbcLIkPGIW1N2k3HaVm0aBHGjh2Lf+z/B06dLQaEQHzMHCQnJiMuLk7yYzRoeHGcFyKiIXhr21s4WPwV7k6e3u8N0Xy5FecPlWPLr9/AXXfdZZfH7+jowJEjR5Bz5BAum65Ar9Nj/rz5mDVrFtzcBh7CfaSzWCxI35yOvJKjGBcXiQCjPxQKBdpMbfgm/wIMHnfgra3bBn3hv97eXgAYlWPeyBnHeSEisoPe3l4UniqAPlw34H/yPv7esKp6cfbsWbuVF41Gg6SkJCQlJdnl/qVQVFSEgjMnMPFnE+AboLVN9/L1so3TkpWVhSeeeGJQ98fS4vx4thER0SBZrVYIIeDi6nLdZZRK5ag84+d2FBUVwarq7VNcrnF1c4V/iC9yjuVIkIxGKpYXIqJBcnNzw7iI8Wiobhpwfmd7JyztAmFhYY4NJnNXr16Fq8f1C6GHRoWOjnYHJqKRjuWFiGiQFAoFkhOTYTEJ1Hxb12eepdeCs7nnEWIIw8yZMyVKKE8GgwHdLb2wWgbeY3W5zoSwkPAB59HoxPJCRDQEc+fOxZKfL0XNqQYUfFWE8jMVOHfyAvI//xr+Sh3WvbAOarVa6piyMnfuXPh6+OHi6Yp+85prL6PnigUJ9ydIkIxGKp5tREQ0REIIFBQU4ED2AZR9ewEqlQpzZs7F/fffL8lF6pxBZmYmfr97J6xe3TBGBsHF1QUN1Y1oq+nAgjnJWJu2lgfiOrmhvH+zvBAR0YiQn5+PzC8ycba0BFZhhVF3B1ISU5CSksLiMgrwVGkiIpKd+Ph4xMXFoaWlBRaLBb6+vnBxuf6BvDR6sbwQEdGIoVAo4OvrK3UMGuF4wC4RERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyYrdysvWrVsxe/ZsaDSaQV/eXAiBTZs2ISgoCGq1GgkJCSgrK7NXRCIiIpIhu5WX7u5uLF26FKtWrRr0z2zbtg07duzAzp07kZ+fD09PTyQlJaGzs9NeMYmIiEhmFEIIYc8H2L17N9LS0mAymW64nBACRqMR69evx4YNGwAALS0t0Ov12L17Nx599NFBPZ7ZbIZWq0VLSwt8fHxuNz4RERE5wFDev0fMMS8VFRWoq6tDQkKCbZpWq0V8fDxyc3Ov+3NdXV0wm819bkRE1F9NTQ3y8vJQUFCA9vZ2qeMQ3TJXqQNcU1dXBwDQ6/V9puv1etu8gWRkZGDz5s12zUZEJGcNDQ34464PkPd1HtqutkKpVELnq8fCpAewdOlSuLqOmLcCokEZ0p6Xl156CQqF4oa38+fP2yvrgDZu3IiWlhbbrbq62qGPT0Q0kplMJvzH1tdx4OSXCJzki/iHp2Fqyp2wBHThjx/9Dz744APY+egBomE3pLq9fv16rFy58obLRERE3FIQg8EAAKivr0dQUJBten19PaZOnXrdn1OpVFCpVLf0mEREzi4rKwvnvjuLGT+PhUr9w99KF1cXjIuNgMarFl9kZyIxMRHh4eESJyUavCGVl8DAQAQGBtolSHh4OAwGA7Kzs21lxWw2Iz8/f0hnLBER0Y+y/vkV/EJ8bMXlXxnDDagq+R65ubksLyQrdjtgt6qqCsXFxaiqqoLFYkFxcTGKi4vR1tZmWyY6Ohr79u0DACgUCqSlpWHLli347LPPcObMGTz55JMwGo1YvHixvWISETktq9UKk9kEL1+vAecrlAq4qpU80YFkx25HaW3atAl79uyxfT9t2jQAwMGDBzFv3jwAQGlpKVpaWmzLvPjii2hvb8ezzz4Lk8mEOXPmYP/+/fDw8LBXTCIip6VUKjHGbwwaLtcMOF9YBXo6LIMeSJRopLD7OC+OxnFeiIh+9Pe//x3//ad3MS15MtSeff8RrL5wCVdK2/Cf299FaGioRAmJfiDLcV6IiGj4LViwAFOipqIo6wyqy75H19VutJvbcb7gAr4/04AHkxaxuJDscM8LEZGTu3LlCvbs2YMjeYfR2mmGUqFEUIARixYuxkMPPQSlkv/HkvSG8v7N8kJENEo0NTWhuroabm5uGDduHIeZoBFlKO/fHFaRiGiUCAgIQEBAgNQxiG4b9xUSERGRrLC8EBERkaywvBAREZGssLwQERGRrLC8EBERkaywvBAREZGssLwQERGRrLC8EBERkaywvBAREZGsON0Iu9eudmA2myVOQkRERIN17X17MFctcrry0traCgAYO3asxEmIiIhoqFpbW6HVam+4jNNdmNFqtaKmpgbe3t5QKBRSx3E4s9mMsWPHorq6elRemHK0rz/AbTDa1x/gNuD6y3P9hRBobW2F0Wi86ZXOnW7Pi1KpRHBwsNQxJOfj4yOrF+1wG+3rD3AbjPb1B7gNuP7yW/+b7XG5hgfsEhERkaywvBAREZGssLw4GZVKhfT0dKhUKqmjSGK0rz/AbTDa1x/gNuD6O//6O90Bu0REROTcuOeFiIiIZIXlhYiIiGSF5YWIiIhkheWFiIiIZIXlxYls3boVs2fPhkajga+v74DLVFVVYeHChdBoNNDpdPjVr36F3t5exwZ1oLCwMCgUij63N998U+pYdvPee+8hLCwMHh4eiI+Px4kTJ6SO5DCvvfZav+c6Ojpa6lh2c/jwYTz44IMwGo1QKBT45JNP+swXQmDTpk0ICgqCWq1GQkICysrKpAlrJzfbBitXruz3mkhOTpYmrB1kZGTg7rvvhre3N3Q6HRYvXozS0tI+y3R2diI1NRVjxoyBl5cXlixZgvr6eokSDx+WFyfS3d2NpUuXYtWqVQPOt1gsWLhwIbq7u3H8+HHs2bMHu3fvxqZNmxyc1LFef/111NbW2m5r1qyROpJdfPTRR1i3bh3S09Px9ddfIzY2FklJSWhoaJA6msPceeedfZ7ro0ePSh3Jbtrb2xEbG4v33ntvwPnbtm3Djh07sHPnTuTn58PT0xNJSUno7Ox0cFL7udk2AIDk5OQ+r4m9e/c6MKF95eTkIDU1FXl5ecjKykJPTw8SExPR3t5uW2bt2rX4/PPP8fHHHyMnJwc1NTV45JFHJEw9TAQ5nV27dgmtVttv+hdffCGUSqWoq6uzTXv//feFj4+P6OrqcmBCxwkNDRW//e1vpY7hEHFxcSI1NdX2vcViEUajUWRkZEiYynHS09NFbGys1DEkAUDs27fP9r3VahUGg0Fs377dNs1kMgmVSiX27t0rQUL7++k2EEKIFStWiEWLFkmSRwoNDQ0CgMjJyRFC/PCcu7m5iY8//ti2zLlz5wQAkZubK1XMYcE9L6NIbm4uJk+eDL1eb5uWlJQEs9mMs2fPSpjMvt58802MGTMG06ZNw/bt253yY7Lu7m4UFhYiISHBNk2pVCIhIQG5ubkSJnOssrIyGI1GRERE4PHHH0dVVZXUkSRRUVGBurq6Pq8HrVaL+Pj4UfV6AIBDhw5Bp9NhwoQJWLVqFZqbm6WOZDctLS0AAH9/fwBAYWEhenp6+rwOoqOjERISIvvXgdNdmJGur66urk9xAWD7vq6uTopIdvfCCy9g+vTp8Pf3x/Hjx7Fx40bU1tbinXfekTrasGpqaoLFYhnw+T1//rxEqRwrPj4eu3fvxoQJE1BbW4vNmzdj7ty5KCkpgbe3t9TxHOra7/NArwdn/V0fSHJyMh555BGEh4ejvLwcL7/8MlJSUpCbmwsXFxep4w0rq9WKtLQ03HPPPZg0aRKAH14H7u7u/Y6BdIbXAcvLCPfSSy/hrbfeuuEy586dc+oDE39qKNtk3bp1tmlTpkyBu7s7nnvuOWRkZDj10NmjUUpKiu3rKVOmID4+HqGhofjb3/6Gp59+WsJkJJVHH33U9vXkyZMxZcoUREZG4tChQ5g/f76EyYZfamoqSkpKnPo4r3/F8jLCrV+/HitXrrzhMhEREYO6L4PB0O/sk2tHnRsMhlvKJ4Xb2Sbx8fHo7e1FZWUlJkyYYId00ggICICLi0u/swjq6+tl9dwOJ19fX4wfPx4XL16UOorDXXvO6+vrERQUZJteX1+PqVOnSpRKehEREQgICMDFixedqrw8//zzyMzMxOHDhxEcHGybbjAY0N3dDZPJ1GfvizP8XWB5GeECAwMRGBg4LPc1a9YsbN26FQ0NDdDpdACArKws+Pj4YOLEicPyGI5wO9ukuLgYSqXStv7Owt3dHTNmzEB2djYWL14M4IfdyNnZ2Xj++eelDSeRtrY2lJeXY/ny5VJHcbjw8HAYDAZkZ2fbyorZbEZ+fv51z0YcDS5duoTm5uY+hU7OhBBYs2YN9u3bh0OHDiE8PLzP/BkzZsDNzQ3Z2dlYsmQJAKC0tBRVVVWYNWuWFJGHDcuLE6mqqsLly5dRVVUFi8WC4uJiAEBUVBS8vLyQmJiIiRMnYvny5di2bRvq6urwyiuvIDU11Sk/QsnNzUV+fj7uu+8+eHt7Izc3F2vXrsUTTzwBPz8/qeMNu3Xr1mHFihW46667EBcXh9/97ndob2/HU089JXU0h9iwYQMefPBBhIaGoqamBunp6XBxccFjjz0mdTS7aGtr67NXqaKiAsXFxfD390dISAjS0tKwZcsWjBs3DuHh4Xj11VdhNBpt5dYZ3Ggb+Pv7Y/PmzViyZAkMBgPKy8vx4osvIioqCklJSRKmHj6pqan48MMP8emnn8Lb29t2HItWq4VarYZWq8XTTz+NdevWwd/fHz4+PlizZg1mzZqFmTNnSpz+Nkl9uhMNnxUrVggA/W4HDx60LVNZWSlSUlKEWq0WAQEBYv369aKnp0e60HZUWFgo4uPjhVarFR4eHiImJka88cYborOzU+podvPuu++KkJAQ4e7uLuLi4kReXp7UkRxm2bJlIigoSLi7u4s77rhDLFu2TFy8eFHqWHZz8ODBAX/fV6xYIYT44XTpV199Vej1eqFSqcT8+fNFaWmptKGH2Y22QUdHh0hMTBSBgYHCzc1NhIaGimeeeabPUBFyN9C6AxC7du2yLXP16lWxevVq4efnJzQajXj44YdFbW2tdKGHiUIIIRzaloiIiIhuA8d5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWfl/lnY1PUvA8c8AAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -358,9 +328,6 @@ "K = 5\n", "clf= KNeighborsClassifier(K)\n", "\n", - "# normalize data.\n", - "X = StandardScaler().fit_transform(X)\n", - "\n", "# split data between train and test set.\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)\n", "\n", @@ -377,6 +344,14 @@ "ax.scatter(X[:, 0], X[:, 1], c=y, cmap='PiYG', alpha=0.6, edgecolors=\"k\")\n" ] }, + { + "cell_type": "markdown", + "id": "e33a9bd5", + "metadata": {}, + "source": [ + "This drastically reduces the performance." + ] + }, { "attachments": {}, "cell_type": "markdown", @@ -385,7 +360,7 @@ "source": [ "## 2. Classifier Performance Metrics\n", "\n", - "In a binary classifier, we label one of the two classes as *positive*, the other class is negative. Let's consider *N* data samples.\n", + "In a binary classifier, we label one of the two classes as *positive*, the other class as *negative*. Let's consider *N* data samples.\n", "\n", "| True Class \\ predicted Class | Positive | Negative | **Total** |\n", "| ------------- | ----------------- | --------------- | ----- |\n", @@ -412,10 +387,10 @@ "\n", "**Other model performance metrics**\n", "Model peformance can be assessed with the following:\n", - "* **error** : the fraction of the data that was misclassified \n", + "* **Error** : the fraction of the data that was misclassified \n", "\n", " $err = \\frac{FP+FN}{N}$ -> 0\n", - "* **accuracy**: the fraction of the data that was correctly classified: \n", + "* **Accuracy**: the fraction of the data that was correctly classified: \n", " \n", " $acc = \\frac{TP+TN}{N} = 1 - err $ --> 1\n", "\n", @@ -447,7 +422,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "6589a03a", "metadata": {}, "outputs": [ @@ -489,7 +464,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "05d701bf", "metadata": {}, "outputs": [ @@ -592,7 +567,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 16, "id": "21d83bb1", "metadata": {}, "outputs": [], @@ -640,7 +615,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 17, "id": "61e400ff", "metadata": {}, "outputs": [ @@ -695,7 +670,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.10.8" }, "vscode": { "interpreter": { diff --git a/_sources/Chapter3-MachineLearning/3.4_multiclass_classification.ipynb b/_sources/Chapter3-MachineLearning/3.4_multiclass_classification.ipynb index c8b0f6c..8beabf9 100644 --- a/_sources/Chapter3-MachineLearning/3.4_multiclass_classification.ipynb +++ b/_sources/Chapter3-MachineLearning/3.4_multiclass_classification.ipynb @@ -13,12 +13,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'images', 'DESCR'])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import numpy as np\n", "from sklearn.datasets import load_digits,fetch_openml\n", + "from sklearn.metrics import ConfusionMatrixDisplay\n", "digits = load_digits()\n", "digits.keys()" ] @@ -32,9 +44,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n" + ] + } + ], "source": [ "# explore data type\n", "data,y = digits[\"data\"].copy(),digits[\"target\"].copy()\n", @@ -52,9 +72,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 2 3 4 5 6 7 8 9]\n", + "10\n" + ] + } + ], "source": [ "Nclasses = len(np.unique(y))\n", "print(np.unique(y))\n", @@ -71,9 +100,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAADSCAYAAAAi0d0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAASFklEQVR4nO3db5CVZd0H8N8KsRsBsiLkkiUsOmPJIAHNJCbgsBCkBkmgLxhZxgYqGaM/M8sU5oJlkjZjhRnxBgNzlDLIJlMY2JymN7GyloYzSyw6GU6Kyx9F/no/L57HfaIld8Hr8rC7n88MM+x1zv29rwP82POd++w5ZUVRFAEAAJDYOaXeAAAA0D0pGwAAQBbKBgAAkIWyAQAAZKFsAAAAWSgbAABAFsoGAACQhbIBAABkoWwAAABZKBtnoLa2NoYNG3ZGx9bX10dZWVnaDcFZyJxAx8wJdMycdG3dqmyUlZV16ldDQ0Opt3rW+dOf/hSf+tSnom/fvnHBBRfErbfeGq+//nqpt0UG5uTMPPnkk3HzzTfHyJEjo1evXmf8jY+uwZycvkOHDsV9990XU6dOjaqqqujfv398/OMfj/vvvz9OnDhR6u2RgTk5M3feeWd88pOfjMGDB0dFRUVccsklsXjx4njllVdKvbUsyoqiKEq9iVTWrVt30tc///nPY9OmTbF27dqT1qdMmRIf/OAHz/g8x44di7feeivKy8tP+9jjx4/H8ePHo6Ki4ozPn1pTU1NcccUV8dGPfjQWLFgQ//jHP+Kee+6Jq6++Oh5//PFSb4/EzMmZqa2tjYcffjjGjBkTL774YvTq1St2795d6m2RiTk5fc8++2yMGjUqJk+eHFOnTo0BAwbEE088Eb/+9a/jpptuigceeKDUWyQxc3JmZs2aFYMHD45LL700+vfvHzt27IjVq1fHkCFDoqmpKT7wgQ+UeotpFd3YLbfcUnTmIb7xxhvvwW7OXtOnTy+qqqqK/fv3t62tXr26iIjiiSeeKOHOeC+Yk8556aWXiqNHjxZFURTXXHNNcdFFF5V2Q7ynzEnHXnnlleLZZ59ttz5//vwiIorm5uYS7Ir3kjk5c7/85S+LiCgeeuihUm8luW71MqrOmDRpUowcOTIaGxtjwoQJ0bdv3/jmN78ZEREbN26Ma665JoYOHRrl5eUxYsSIuOOOO9pd/v3P1w7u3r07ysrK4p577omf/exnMWLEiCgvL49PfOIT8ec///mkY0/12sGysrJYtGhRbNiwIUaOHBnl5eVx2WWXxe9///t2+29oaIhx48ZFRUVFjBgxIlatWnXKzFdffTWef/75OHTo0Dv+eRw4cCA2bdoUc+fOjQEDBrSt33TTTdGvX7945JFH3vF4uidz0t7QoUPjfe97X4f3o+cwJyc7//zz47LLLmu3/rnPfS4iInbs2PGOx9M9mZPOefvx7du374yOP5v1LvUGSmHv3r0xffr0uPHGG2Pu3Lltl/bWrFkT/fr1i6997WvRr1+/2LJlS3z729+OAwcOxN13391h7i9+8Ys4ePBgLFy4MMrKyuL73/9+XH/99bFr164On6T88Y9/jEcffTS+/OUvR//+/eNHP/pRzJo1K1588cUYNGhQRERs3749pk2bFlVVVbFs2bI4ceJELF++PAYPHtwub+XKlbFs2bLYunVrTJo06b+e969//WscP348xo0bd9J6nz59YvTo0bF9+/YOHzfdkzmBjpmTjr388ssR8b9lhJ7JnLRXFEXs3bs3jh8/Hs3NzbFkyZLo1atX9/xeVOpLKzmd6nLexIkTi4gofvrTn7a7/6FDh9qtLVy4sOjbt29x+PDhtrV58+ad9BKKlpaWIiKKQYMGFa+99lrb+saNG4uIKB577LG2tdtvv73dniKi6NOnT7Fz5862tWeeeaaIiOLHP/5x29p1111X9O3bt3jppZfa1pqbm4vevXu3y3z7PFu3bm33mP7d+vXri4gonnrqqXa3zZ49u7jgggve8Xi6PnPS8Zz8Jy+j6nnMyenPSVEUxZEjR4qPfexjxfDhw4tjx46d9vF0Leak83OyZ8+eIiLafl144YXFww8/3Klju5oe9zKqiIjy8vKYP39+u/X3v//9bb8/ePBgvPrqq3HVVVfFoUOH4vnnn+8w94YbbojKysq2r6+66qqIiNi1a1eHx9bU1MSIESPavh41alQMGDCg7dgTJ07E5s2bY+bMmTF06NC2+1188cUxffr0dnn19fVRFEWHDfnNN9+MiDjlD11VVFS03U7PY06gY+bknS1atCj+9re/xcqVK6N37x75YgrCnJzKeeedF5s2bYrHHnssli9fHueff363fRfQHjn5H/rQh6JPnz7t1p977rlYunRpbNmyJQ4cOHDSbfv37+8w9yMf+chJX789AK2trad97NvHv33sv/71r3jzzTfj4osvbne/U6111tuDfuTIkXa3HT58+KT/COhZzAl0zJz8d3fffXesXr067rjjjvjMZz6TLJeux5y016dPn6ipqYmIiGuvvTYmT54cV155ZQwZMiSuvfbad51/NumRZeNUT6D37dsXEydOjAEDBsTy5ctjxIgRUVFREU8//XTU1dXFW2+91WFur169TrledOLdhd/Nse9GVVVVRETs2bOn3W179uw5qc3Ts5gT6Jg5ObU1a9ZEXV1dfPGLX4ylS5e+Z+fl7GROOjZ+/PioqqqKBx98UNnorhoaGmLv3r3x6KOPxoQJE9rWW1paSrir/zdkyJCoqKiInTt3trvtVGudNXLkyOjdu3ds27Yt5syZ07Z+9OjRaGpqOmkNeuqcwOno6XOycePG+MIXvhDXX3993Hfffe86j+6pp8/JqRw+fLhTV3S6mh75Mxun8nbD/fdGe/To0fjJT35Sqi2dpFevXlFTUxMbNmyIf/7zn23rO3fuPOUH73X2LdjOPffcqKmpiXXr1sXBgwfb1teuXRuvv/56zJ49O92DoMvrqXMCp6Mnz8lTTz0VN954Y0yYMCEefPDBOOccTzM4tZ46J2+88cYp7/OrX/0qWltb2707aHfgysb/GT9+fFRWVsa8efPi1ltvjbKysli7du1Z9fKM+vr6ePLJJ+PKK6+ML33pS3HixIlYuXJljBw5Mpqamk667+m8Bdt3v/vdGD9+fEycOLHtE8R/8IMfxNSpU2PatGn5HhBdTk+ek7/85S/xm9/8JiL+95vN/v374zvf+U5ERFx++eVx3XXX5Xg4dEE9dU5eeOGF+OxnPxtlZWXx+c9/PtavX3/S7aNGjYpRo0ZleDR0RT11Tpqbm6OmpiZuuOGGuPTSS+Occ86Jbdu2xbp162LYsGHxla98Je+DKgFl4/8MGjQofvvb38bXv/71WLp0aVRWVsbcuXNj8uTJ8elPf7rU24uIiLFjx8bjjz8e3/jGN+K2226LD3/4w7F8+fLYsWNHp9614b8ZM2ZMbN68Oerq6uKrX/1q9O/fP26++eb43ve+l3D3dAc9eU6efvrpuO22205ae/vrefPmKRu06alz0tLS0vYSkFtuuaXd7bfffruyQZueOicXXnhhzJo1K7Zs2RIPPPBAHDt2LC666KJYtGhRfOtb32r7jI/upKw4myokZ2TmzJnx3HPPRXNzc6m3AmctcwIdMyfQMXNyeryYsov5z8+9aG5ujt/97nc+JwD+jTmBjpkT6Jg5efdc2ehiqqqqora2Nqqrq+OFF16I+++/P44cORLbt2+PSy65pNTbg7OCOYGOmRPomDl59/zMRhczbdq0eOihh+Lll1+O8vLyuOKKK+LOO+/0Dx7+jTmBjpkT6Jg5efdc2QAAALLwMxsAAEAWygYAAJCFsgEAAGTR7X5A/D8/sTSFurq65JlTpkxJnhkRcddddyXPrKysTJ5J95PjbQD37duXPDMiYtmyZckzZ8yYkTyT7qehoSF55syZM5NnRkSMHj06eWaOx0/prVixInnmkiVLkmcOHz48eWZERGNjY/LM7vTcy5UNAAAgC2UDAADIQtkAAACyUDYAAIAslA0AACALZQMAAMhC2QAAALJQNgAAgCyUDQAAIAtlAwAAyELZAAAAslA2AACALJQNAAAgC2UDAADIQtkAAACyUDYAAIAslA0AACALZQMAAMhC2QAAALLoXeoNpFZXV5c8s6WlJXlma2tr8syIiPPOOy955iOPPJI8c/bs2ckzKa2BAwcmz/zDH/6QPDMiYuvWrckzZ8yYkTyT0mpqakqeefXVVyfPPPfcc5NnRkTs3r07Sy6ltWTJkuSZOZ4nrFq1KnnmwoULk2dGRDQ2NibPrKmpSZ5ZKq5sAAAAWSgbAABAFsoGAACQhbIBAABkoWwAAABZKBsAAEAWygYAAJCFsgEAAGShbAAAAFkoGwAAQBbKBgAAkIWyAQAAZKFsAAAAWSgbAABAFsoGAACQhbIBAABkoWwAAABZKBsAAEAWygYAAJCFsgEAAGTRu5Qnb2xsTJ7Z0tKSPPPvf/978szq6urkmRERU6ZMSZ6Z4+9p9uzZyTPpvKampuSZDQ0NyTNzGT16dKm3QBewYcOG5JmXX3558syZM2cmz4yIWLZsWZZcSmvBggXJM+vq6pJnjh07Nnnm8OHDk2dGRNTU1GTJ7S5c2QAAALJQNgAAgCyUDQAAIAtlAwAAyELZAAAAslA2AACALJQNAAAgC2UDAADIQtkAAACyUDYAAIAslA0AACALZQMAAMhC2QAAALJQNgAAgCyUDQAAIAtlAwAAyELZAAAAslA2AACALJQNAAAgC2UDAADIoncpT97a2po8c8yYMckzq6urk2fmMnbs2FJvgcTuvffe5Jn19fXJM/fv3588M5dJkyaVegt0AYsXL06eOWzYsOSZOfYZETFjxowsuZRWjuc0u3btSp7Z0tKSPLOmpiZ5ZkSe57OVlZXJM0vFlQ0AACALZQMAAMhC2QAAALJQNgAAgCyUDQAAIAtlAwAAyELZAAAAslA2AACALJQNAAAgC2UDAADIQtkAAACyUDYAAIAslA0AACALZQMAAMhC2QAAALJQNgAAgCyUDQAAIAtlAwAAyELZAAAAslA2AACALHqX8uStra3JM6dMmZI8syvJ8WdaWVmZPJPOW7x4cfLM2tra5Jld6d/Jvn37Sr0FEsvxd3rvvfcmz9ywYUPyzFzWrFlT6i3QRVRXVyfPfO2115Jn1tTUJM/Mlbt58+bkmaX6Pu3KBgAAkIWyAQAAZKFsAAAAWSgbAABAFsoGAACQhbIBAABkoWwAAABZKBsAAEAWygYAAJCFsgEAAGShbAAAAFkoGwAAQBbKBgAAkIWyAQAAZKFsAAAAWSgbAABAFsoGAACQhbIBAABkoWwAAABZKBsAAEAWygYAAJBF71KevLKyMnlmY2Nj8swcWltbs+Ru27YteeacOXOSZ0IpNTU1Jc8cPXp08kw6r76+PnnmD3/4w+SZOWzYsCFL7sCBA7PkQmfkeI64efPm5JkREQsXLkyeuWLFiuSZd911V/LMznBlAwAAyELZAAAAslA2AACALJQNAAAgC2UDAADIQtkAAACyUDYAAIAslA0AACALZQMAAMhC2QAAALJQNgAAgCyUDQAAIAtlAwAAyELZAAAAslA2AACALJQNAAAgC2UDAADIQtkAAACyUDYAAIAslA0AACCL3qU8eXV1dfLMbdu2Jc9cv359l8jMpa6urtRbAHhHtbW1yTMbGhqSZz7zzDPJM2fOnJk8MyJixowZyTPnz5+fPDPHPjk9S5YsSZ5ZU1OTPLO1tTV5ZkTEpk2bkmfOmTMneWapuLIBAABkoWwAAABZKBsAAEAWygYAAJCFsgEAAGShbAAAAFkoGwAAQBbKBgAAkIWyAQAAZKFsAAAAWSgbAABAFsoGAACQhbIBAABkoWwAAABZKBsAAEAWygYAAJCFsgEAAGShbAAAAFkoGwAAQBbKBgAAkEXvUp68uro6eeaKFSuSZ9bV1SXPHDduXPLMiIjGxsYsuXQvAwcOTJ45Y8aM5JkbN25MnhkR0dDQkDyztrY2eSadN3r06OSZTU1NXSKzvr4+eWZEnvkbNmxY8swc//dweiorK5NnLliwIHlmLnPmzEmeuWrVquSZpeLKBgAAkIWyAQAAZKFsAAAAWSgbAABAFsoGAACQhbIBAABkoWwAAABZKBsAAEAWygYAAJCFsgEAAGShbAAAAFkoGwAAQBbKBgAAkIWyAQAAZKFsAAAAWSgbAABAFsoGAACQhbIBAABkoWwAAABZKBsAAEAWZUVRFKXeBAAA0P24sgEAAGShbAAAAFkoGwAAQBbKBgAAkIWyAQAAZKFsAAAAWSgbAABAFsoGAACQhbIBAABk8T8LB8QXOiCcUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# plot the data\n", "import matplotlib.pyplot as plt\n", @@ -100,9 +140,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.0 15.0\n", + "\n", + "[[0. 0. 0.3125 ... 0. 0. 0. ]\n", + " [0. 0. 0. ... 0.625 0. 0. ]\n", + " [0. 0. 0. ... 1. 0.5625 0. ]\n", + " ...\n", + " [0. 0. 0.0625 ... 0.375 0. 0. ]\n", + " [0. 0. 0.125 ... 0.75 0. 0. ]\n", + " [0. 0. 0.625 ... 0.75 0.0625 0. ]]\n" + ] + } + ], "source": [ "print(min(data[0]),max(data[0]))\n", "from sklearn.preprocessing import MinMaxScaler\n", @@ -122,9 +178,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 1797 data samples\n" + ] + } + ], "source": [ "# Split data into 50% train and 50% test subsets\n", "from sklearn.model_selection import train_test_split\n", @@ -135,9 +199,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SVC Accuracy: 0.9688542825361512\n", + "K-nearest Neighbors Accuracy: 0.9555061179087876\n", + "Random Forest Accuracy: 0.92880978865406\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=1)]: Done 49 tasks | elapsed: 0.1s\n", + "[Parallel(n_jobs=1)]: Done 49 tasks | elapsed: 0.0s\n" + ] + } + ], "source": [ "import sklearn\n", "from sklearn import metrics\n", @@ -166,9 +248,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAADSCAYAAAAi0d0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAVmUlEQVR4nO3de2xW9f0H8E+hiNByG1ZF1JY5IA6nBZ0uGUoZqBF1dMZN3SW0bhm7iDCzedkyYWp0Omfq6iXoslYXjc4ZIDp00wwacRcXbYmXuTjXgkanbBHcHCiF8/uDX6uVS1s83z4tvl5J/+D0Oe/z7UM/fZ53z9PzFGVZlgUAAEDOBhV6AQAAwL5J2QAAAJJQNgAAgCSUDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgCWUDAABIQtnopYqKiqipqen89+rVq6OoqChWr16d2zGKiopiyZIlueVBXzMn0DNmBbpnTga2AVU2Ghsbo6ioqPNj//33j0mTJsUFF1wQr732WqGX1ysrV64cUN/Uv/rVr+JTn/pUjB49OsaOHRszZsyI3/zmN4VeFrtgTgrj9ttvjxkzZsRBBx0UQ4cOjQkTJkRtbW20tbUVemnshlkpvK1bt8bHP/7xKCoqiuuvv77Qy2EXzEnh3HTTTXHkkUfG0KFDY/z48XHRRRfFW2+9Vehl9VpxoRewN6644oqYMGFCbNmyJdasWRO33nprrFy5Mp555pkYPnx4n67lpJNOis2bN8d+++3Xq/1WrlwZN9988y6/6Tdv3hzFxf3nv6a+vj4uvPDCOP300+PHP/5xbNmyJRobG+OMM86I+++/P84666xCL5FdMCd9q7m5OSZMmBCf/exnY8yYMdHa2hq33357PPjgg7F27do45JBDCr1EdsOsFE59fX2sX7++0MugB8xJ37rkkkviuuuui7PPPjsWLlwYzz33XNTX18ezzz4bv/3tbwu9vF7pP/dqL5x22mlx3HHHRUTE1772tRg7dmzccMMNsWLFijjvvPN2uc9bb70VJSUlua9l0KBBsf/+++eamXfeB1VfXx+f/OQn44EHHoiioqKIiDj//PNj/Pjxcccddygb/ZQ56Vu33HLLTtuqq6vjuOOOizvvvDMuvfTSAqyKnjArhfH666/HFVdcEZdccklcfvnlhV4O3TAnfefVV1+NG264Ib7yla/EnXfe2bl90qRJsWDBgnjggQfizDPPLOAKe2dAvYxqdz7zmc9ERERra2tERNTU1ERpaWm8+OKLMWfOnBgxYkR86UtfioiI7du3R11dXUyZMiX233//OOigg2L+/PnxxhtvdMnMsiyuuuqqOPTQQ2P48OExc+bMePbZZ3c69u5eN/jnP/855syZE2PGjImSkpI4+uij48Ybb+xc38033xwR0eXUZIddvW6wubk5TjvttBg5cmSUlpbGrFmz4k9/+lOX23Sc6nz88cfjoosuirKysigpKYnPfe5zsWHDhi633bRpUzz//POxadOmbu/fN998Mw488MAua+xYx7Bhw7rdn/7BnOyQak52paKiIiIiNm7cuFf7UxhmZYfUs3LppZfG5MmT48tf/nKP96H/MCc7pJiTP/7xj9He3h7nnntul+0d/77nnnv2uH9/MyDPbLzfiy++GBERY8eO7dzW3t4ep556akyfPj2uv/76zlN88+fPj8bGxqitrY0LL7wwWltb46abborm5uZ4/PHHY8iQIRERcfnll8dVV10Vc+bMiTlz5sRTTz0Vp5xySrzzzjvdrueRRx6JM844I8aNGxcLFy6Mgw8+OP7617/Ggw8+GAsXLoz58+fHK6+8Eo888kj88pe/7Dbv2WefjRNPPDFGjhwZF198cQwZMiSWLl0aVVVV0dTUFCeccEKX2y9YsCDGjBkTixcvjra2tqirq4sLLrgg7r333s7bLFu2LGpra6OhoaHLH13tSlVVVfz617+O+vr6OPPMM2PLli1RX18fmzZtioULF3a7fvoHc5J2Tjr8+9//jm3btsX69evjiiuuiIiIWbNm9Whf+gezkn5WnnjiibjjjjtizZo1XZ7wMXCYk3Rz8vbbb0dE7PQL3Y7788knn+x2/f1KNoA0NDRkEZE9+uij2YYNG7KXXnopu+eee7KxY8dmw4YNy15++eUsy7Js3rx5WURkl156aZf9H3vssSwisrvuuqvL9ocffrjL9tdffz3bb7/9stNPPz3bvn175+2+//3vZxGRzZs3r3PbqlWrsojIVq1alWVZlrW3t2cTJkzIysvLszfeeKPLcd6b9e1vfzvb3d0fEdnixYs7/11dXZ3tt99+2Ysvvti57ZVXXslGjBiRnXTSSTvdP7Nnz+5yrO985zvZ4MGDs40bN+5024aGhl2u4b1ee+21bNasWVlEdH4ccMAB2R/+8Idu96XvmZPCzEmHoUOHds7J2LFjs5/97Gc93pe+ZVYKMyvbt2/Pjj/++Oy8887LsizLWltbs4jIfvKTn3S7L33PnPT9nDz55JNZRGRXXnlll+0d91lpaeke9+9vBuTLqGbPnh1lZWVx2GGHxbnnnhulpaWxbNmyGD9+fJfbffOb3+zy7/vuuy9GjRoVJ598cvzrX//q/Dj22GOjtLQ0Vq1aFRERjz76aLzzzjuxYMGCLr9xWbRoUbdra25ujtbW1li0aFGMHj26y+f25rc327Zti9/97ndRXV0dH/3oRzu3jxs3Lr74xS/GmjVr4s033+yyz9e//vUuxzrxxBNj27ZtsW7dus5tNTU1kWVZj34DNXz48Jg8eXLMmzcv7rvvvvjFL34R48aNi7POOiv+/ve/9/prom+Yk76dkw4PPfRQrFy5Mn7605/G4YcfPiCvHPJhY1b6dlYaGxvj6aefjmuvvbbX66dwzEnfzcm0adPihBNOiGuvvTYaGhqira0tHnrooZg/f34MGTIkNm/e3OuvqZAG5Muobr755pg0aVIUFxfHQQcdFJMnT45Bg7r2puLi4jj00EO7bHvhhRdi06ZNceCBB+4y9/XXX4+I6PzGmDhxYpfPl5WVxZgxY/a4to7TikcddVTPv6A92LBhQ/zvf/+LyZMn7/S5I488MrZv3x4vvfRSTJkypXP74Ycf3uV2HWt+/2sje+rzn/98FBcXxwMPPNC5be7cuTFx4sT4wQ9+0OUUIf2HOdmhr+akw8yZMyNixx9Tzp07N4466qgoLS2NCy644APlko5Z2aEvZuXNN9+Myy67LL73ve/FYYcd1uv9KRxzskNfPabcf//9cc4558T5558fERGDBw+Oiy66KJqamuJvf/vbXmUWyoAsG8cff3znFRF2Z+jQoTsNwfbt2+PAAw+Mu+66a5f7lJWV5bbGQho8ePAut2dZ1uusf/zjH/Hwww/Hbbfd1mX7Rz7ykZg+fXo8/vjje7VG0jMne5bnnOzOEUccEVOnTo277rpL2ejHzMqe5Tkr119/fbzzzjtxzjnndL4HzcsvvxwRO56UtbW1xSGHHNLrS5qSnjnZs7wfU8aPHx9r1qyJF154If75z3/GxIkT4+CDD45DDjkkJk2a9EGW2ucGZNnYW0cccUQ8+uij8elPf3qPV1EqLy+PiB1t/L2nzzZs2NBtQz3iiCMiIuKZZ56J2bNn7/Z2PT2tV1ZWFsOHD99li33++edj0KBBSX871PGGPdu2bdvpc1u3bo329vZkx6YwzEm+Nm/e3PnHfuxbzErvrV+/Pt54440uvxHucPXVV8fVV18dzc3NUVlZmWwN9C1z8sFMnDix82zPc889F6+++mqvXtrbHwzIv9nYW1/4whdi27ZtceWVV+70ufb29s7LU86ePTuGDBkS9fX1XRppXV1dt8eYNm1aTJgwIerq6na63OV7szquO93dJTEHDx4cp5xySqxYsaLLOxG/9tprcffdd8f06dNj5MiR3a7r/Xp6+bWPfexjMWjQoLj33nu7rP/ll1+Oxx57LKZOndrrY9O/mZN39XRO2tvbd/lg+MQTT8TTTz/d7W8DGZjMyrt6OisXXnhhLFu2rMvH0qVLI2LH69mXLVsWEyZM6PXx6b/Mybs+yOXUt2/fHhdffHEMHz48vvGNb/R6/0L6UJ3ZmDFjRsyfPz+uueaaaGlpiVNOOSWGDBkSL7zwQtx3331x4403xtlnnx1lZWXx3e9+N6655po444wzYs6cOdHc3BwPPfRQHHDAAXs8xqBBg+LWW2+NM888MyorK6O2tjbGjRsXzz//fJd3fTz22GMjYscP3lNPPTUGDx680/WUO1x11VXxyCOPxPTp0+Nb3/pWFBcXx9KlS+Ptt9+O6667bq/ui55efq2srCzOP//8+PnPfx6zZs2Ks846K/7zn//ELbfcEps3b47LLrtsr45P/2VO3tXTOfnvf/8bhx12WJxzzjkxZcqUKCkpiaeffjoaGhpi1KhR8cMf/nCvjk//Zlbe1dNZmTZtWkybNq3Lto4nc1OmTInq6uq9Oj79lzl5V28uEb1w4cLYsmVLVFZWxtatW+Puu+/uvGT0+/8+pN/r8+tffQAdlwz7y1/+ssfbzZs3LyspKdnt52+77bbs2GOPzYYNG5aNGDEi+8QnPpFdfPHF2SuvvNJ5m23btmU/+tGPsnHjxmXDhg3LqqqqsmeeeSYrLy/f4+XXOqxZsyY7+eSTsxEjRmQlJSXZ0UcfndXX13d+vr29PVuwYEFWVlaWFRUVdbkUW7zv8mtZlmVPPfVUduqpp2alpaXZ8OHDs5kzZ+506dnd3T+7WmNvLlO4devWrL6+PqusrMxKS0uz0tLSbObMmdnvf//7bvel75mTvp+Tt99+O1u4cGF29NFHZyNHjsyGDBmSlZeXZ1/96lez1tbWPe5L4ZiVwjymvJ9L3/Zv5qQwc9LQ0JAdc8wxWUlJSTZixIhs1qxZA/Z5V1GW5fjXkAAAAP/vQ/U3GwAAQN9RNgAAgCSUDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgiX3uHcS7ewv6vdHduzzujZaWltwzI9J8/atXr849s7KyMvdMeq6xsTH3zCVLluSeuW7dutwzIyKWL1+ee+bcuXNzz2Tfk+Lnaap33a6rq8s9M8XjKYWX4rlHiseUFI99ERFVVVW5Z6b4+gv13MuZDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSUDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSKC7kwTdu3Jh7ZlVVVe6Za9euzT1zxowZuWdGRDQ1NeWeuXz58twzKysrc8/cV7W1teWeWVtbm3vmQNLa2lroJfAhtWjRotwzKyoqcs+MiKiurk6Sy74nxfdKiucJKR5PIyJqampyz2xpack9s1DPvZzZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSUDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEiiuJAHr6uryz1z7dq1uWeuWrUq98y2trbcMyMimpqacs+cOnVq7pkU1qhRo3LP3LRpU+6ZKdYZEVFdXZ0kl33LQHmMam1tzT0zImL06NFJctn3bNy4MffMioqK3DOXL1+ee2ZExIoVK3LPrKyszD2zUJzZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSUDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEiiuJAHnzp1au6Zo0aNyj2zrq4u98y2trbcMyMiysvLc8+cO3du7pn0XEVFRe6ZKb6na2trc89MZfny5blnLlq0KPdMem716tW5Zy5ZsiT3zMWLF+eemeJnRETEihUrcs/0eLJvSvGY0tjYmHtmqudeKZ57VlVV5Z5ZKM5sAAAASSgbAABAEsoGAACQhLIBAAAkoWwAAABJKBsAAEASygYAAJCEsgEAACShbAAAAEkoGwAAQBLKBgAAkISyAQAAJKFsAAAASSgbAABAEsoGAACQhLIBAAAkoWwAAABJKBsAAEASygYAAJCEsgEAACRRlGVZVuhF5KmtrS33zJqamtwzm5qacs+MiDjmmGNyz2xpack9k8KqqKjIPbOqqmpAZEZE1NbW5p7Z3Nyce2ZlZWXumfuq6urq3DNT/OxLkbl8+fLcMyPSzEmKtc6dOzf3TOiNFI9VKZ57psjsCWc2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSUDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSKC72AvFVUVOSeuXHjxtwzU1m7dm3umY2Njbln1tTU5J65r0rx/bdu3brcMxctWpR7ZmVlZe6ZERG1tbW5Z65evTr3zFRff6Gl+J5esWJF7pnl5eW5Z1ZXV+ee2dTUlHtmKinuU3pnyZIluWeOHj0698wUjymptLS05J45ZsyY3DMLxZkNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSUDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSKC72AgWDt2rWFXkJBbdy4sdBL+FAbPXp07pnz5s3LPXPJkiW5Z6YyatSo3DOrqqpyz9xXDZTv6ba2ttwzKyoqcs9samrKPTMizX1aWVmZeya9s2jRotwzq6urc89saWnJPbOmpib3zIiITZs25Z5ZXl6ee2ahOLMBAAAkoWwAAABJKBsAAEASygYAAJCEsgEAACShbAAAAEkoGwAAQBLKBgAAkISyAQAAJKFsAAAASSgbAABAEsoGAACQhLIBAAAkoWwAAABJKBsAAEASygYAAJCEsgEAACShbAAAAEkoGwAAQBLKBgAAkERRlmVZoRfR31VXV+ee2dbWlntmRMTo0aNzz1y+fHnumSnWSc+1tLTknpliTtatW5d7ZkREQ0ND7pk1NTW5Z7LvaWxszD2ztrY298yIiNbW1twzKyoqcs9k31RZWZl75tq1a3PPjIhYvHhx7plLlizJPbNQnNkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSUDQAAIAllAwAASELZAAAAklA2AACAJJQNAAAgCWUDAABIQtkAAACSUDYAAIAklA0AACAJZQMAAEhC2QAAAJJQNgAAgCSUDQAAIAllAwAASKIoy7Ks0IsAAAD2Pc5sAAAASSgbAABAEsoGAACQhLIBAAAkoWwAAABJKBsAAEASygYAAJCEsgEAACShbAAAAEn8H2TV5w+9VavSAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "_, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))\n", "for ax, image, prediction in zip(axes, X_test, rf_prediction):\n", @@ -180,52 +273,171 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Support Vector Machine\n", + "Classification report for classifier SVC(gamma=0.001):\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 0.99 0.99 88\n", + " 1 0.99 0.97 0.98 91\n", + " 2 0.99 0.99 0.99 86\n", + " 3 0.98 0.87 0.92 91\n", + " 4 0.99 0.96 0.97 92\n", + " 5 0.95 0.97 0.96 91\n", + " 6 0.99 0.99 0.99 91\n", + " 7 0.96 0.99 0.97 89\n", + " 8 0.94 1.00 0.97 88\n", + " 9 0.93 0.98 0.95 92\n", + "\n", + " accuracy 0.97 899\n", + " macro avg 0.97 0.97 0.97 899\n", + "weighted avg 0.97 0.97 0.97 899\n", + "\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAHgCAYAAABej+9AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1hklEQVR4nO3deVhUZf8G8HtYh3VYZFU2d3EXzXC3SF5fNbfUzAr3t8JyybXczVD75b5lGS5JZqWWLS5ZbomKKGaiiOKCIpsCwzrAzPn9QYyOaDIMzJlh7s91navmzHPOuTmDfOd5ziYRBEEAERERGSUzsQMQERFR1bGQExERGTEWciIiIiPGQk5ERGTEWMiJiIiMGAs5ERGREWMhJyIiMmIs5EREREaMhZyIiMiIsZATiSwxMRG9evWCTCaDRCLB3r17q3X9N2/ehEQiwZYtW6p1vcasR48e6NGjh9gxiKoFCzkRgOvXr+N///sf6tevD6lUCkdHR3Tu3BmrVq1CYWFhjW47LCwMFy9exOLFi7F9+3a0b9++RrenTyNHjoREIoGjo+MT92NiYiIkEgkkEgn+7//+T+v1p6SkYP78+YiLi6uGtETGyULsAERi+/nnnzFkyBBYW1vjzTffRIsWLVBcXIwTJ05g2rRpuHTpEjZt2lQj2y4sLER0dDQ+/PBDTJgwoUa24efnh8LCQlhaWtbI+p/FwsICBQUF2LdvH4YOHarx3o4dOyCVSlFUVFSldaekpGDBggXw9/dHmzZtKr3cwYMHq7Q9IkPEQk4m7caNG3j11Vfh5+eH33//HV5eXur3wsPDce3aNfz88881tv2MjAwAgJOTU41tQyKRQCqV1tj6n8Xa2hqdO3fG119/XaGQR0VFoU+fPvj+++/1kqWgoAC2trawsrLSy/aI9IFD62TSli1bhry8PGzevFmjiJdr2LAhJk6cqH5dWlqKRYsWoUGDBrC2toa/vz8++OADKBQKjeX8/f3Rt29fnDhxAs899xykUinq16+Pbdu2qdvMnz8ffn5+AIBp06ZBIpHA398fQNmQdPn/P2r+/PmQSCQa8w4dOoQuXbrAyckJ9vb2aNKkCT744AP1+087Rv7777+ja9eusLOzg5OTE/r374/Lly8/cXvXrl3DyJEj4eTkBJlMhlGjRqGgoODpO/Yxr732Gn799VdkZ2er58XExCAxMRGvvfZahfYPHjzA1KlT0bJlS9jb28PR0RG9e/fGhQsX1G2OHDmCDh06AABGjRqlHqIv/zl79OiBFi1aIDY2Ft26dYOtra16vzx+jDwsLAxSqbTCzx8aGgpnZ2ekpKRU+mcl0jcWcjJp+/btQ/369dGpU6dKtR87dizmzp2Ldu3aYcWKFejevTsiIiLw6quvVmh77do1vPLKK3jppZfw6aefwtnZGSNHjsSlS5cAAIMGDcKKFSsAAMOHD8f27duxcuVKrfJfunQJffv2hUKhwMKFC/Hpp5/i5Zdfxp9//vmvy/32228IDQ1Feno65s+fjylTpuDkyZPo3Lkzbt68WaH90KFDkZubi4iICAwdOhRbtmzBggULKp1z0KBBkEgk2L17t3peVFQUmjZtinbt2lVon5SUhL1796Jv375Yvnw5pk2bhosXL6J79+7qotqsWTMsXLgQADB+/Hhs374d27dvR7du3dTruX//Pnr37o02bdpg5cqV6Nmz5xPzrVq1Cm5ubggLC4NSqQQAfPbZZzh48CDWrFkDb2/vSv+sRHonEJmonJwcAYDQv3//SrWPi4sTAAhjx47VmD916lQBgPD777+r5/n5+QkAhGPHjqnnpaenC9bW1sL777+vnnfjxg0BgPDJJ59orDMsLEzw8/OrkGHevHnCo/9sV6xYIQAQMjIynpq7fBuRkZHqeW3atBHc3d2F+/fvq+dduHBBMDMzE958880K2xs9erTGOgcOHCi4uro+dZuP/hx2dnaCIAjCK6+8Irz44ouCIAiCUqkUPD09hQULFjxxHxQVFQlKpbLCz2FtbS0sXLhQPS8mJqbCz1aue/fuAgBh48aNT3yve/fuGvMOHDggABA++ugjISkpSbC3txcGDBjwzJ+RSGzskZPJksvlAAAHB4dKtf/ll18AAFOmTNGY//777wNAhWPpgYGB6Nq1q/q1m5sbmjRpgqSkpCpnflz5sfUffvgBKpWqUsvcu3cPcXFxGDlyJFxcXNTzW7VqhZdeekn9cz7qrbfe0njdtWtX3L9/X70PK+O1117DkSNHkJqait9//x2pqalPHFYHyo6rm5mV/XlSKpW4f/+++rDBuXPnKr1Na2trjBo1qlJte/Xqhf/9739YuHAhBg0aBKlUis8++6zS2yISCws5mSxHR0cAQG5ubqXa37p1C2ZmZmjYsKHGfE9PTzg5OeHWrVsa8319fSusw9nZGVlZWVVMXNGwYcPQuXNnjB07Fh4eHnj11Vexa9eufy3q5TmbNGlS4b1mzZohMzMT+fn5GvMf/1mcnZ0BQKuf5b///S8cHBzwzTffYMeOHejQoUOFfVlOpVJhxYoVaNSoEaytrVGnTh24ubnhr7/+Qk5OTqW3WbduXa1ObPu///s/uLi4IC4uDqtXr4a7u3ullyUSCws5mSxHR0d4e3vj77//1mq5x082expzc/MnzhcEocrbKD9+W87GxgbHjh3Db7/9hjfeeAN//fUXhg0bhpdeeqlCW13o8rOUs7a2xqBBg7B161bs2bPnqb1xAPj4448xZcoUdOvWDV999RUOHDiAQ4cOoXnz5pUeeQDK9o82zp8/j/T0dADAxYsXtVqWSCws5GTS+vbti+vXryM6OvqZbf38/KBSqZCYmKgxPy0tDdnZ2eoz0KuDs7Ozxhne5R7v9QOAmZkZXnzxRSxfvhzx8fFYvHgxfv/9d/zxxx9PXHd5zoSEhArvXblyBXXq1IGdnZ1uP8BTvPbaazh//jxyc3OfeIJgue+++w49e/bE5s2b8eqrr6JXr14ICQmpsE8q+6WqMvLz8zFq1CgEBgZi/PjxWLZsGWJiYqpt/UQ1hYWcTNr06dNhZ2eHsWPHIi0trcL7169fx6pVqwCUDQ0DqHBm+fLlywEAffr0qbZcDRo0QE5ODv766y/1vHv37mHPnj0a7R48eFBh2fIbozx+SVw5Ly8vtGnTBlu3btUojH///TcOHjyo/jlrQs+ePbFo0SKsXbsWnp6eT21nbm5eobf/7bff4u7duxrzyr9wPOlLj7ZmzJiB27dvY+vWrVi+fDn8/f0RFhb21P1IZCh4QxgyaQ0aNEBUVBSGDRuGZs2aadzZ7eTJk/j2228xcuRIAEDr1q0RFhaGTZs2ITs7G927d8eZM2ewdetWDBgw4KmXNlXFq6++ihkzZmDgwIF47733UFBQgA0bNqBx48YaJ3stXLgQx44dQ58+feDn54f09HSsX78e9erVQ5cuXZ66/k8++QS9e/dGcHAwxowZg8LCQqxZswYymQzz58+vtp/jcWZmZpg9e/Yz2/Xt2xcLFy7EqFGj0KlTJ1y8eBE7duxA/fr1Ndo1aNAATk5O2LhxIxwcHGBnZ4eOHTsiICBAq1y///471q9fj3nz5qkvh4uMjESPHj0wZ84cLFu2TKv1EemVyGfNExmEq1evCuPGjRP8/f0FKysrwcHBQejcubOwZs0aoaioSN2upKREWLBggRAQECBYWloKPj4+wqxZszTaCELZ5Wd9+vSpsJ3HL3t62uVngiAIBw8eFFq0aCFYWVkJTZo0Eb766qsKl58dPnxY6N+/v+Dt7S1YWVkJ3t7ewvDhw4WrV69W2Mbjl2j99ttvQufOnQUbGxvB0dFR6NevnxAfH6/Rpnx7j1/eFhkZKQAQbty48dR9Kgial589zdMuP3v//fcFLy8vwcbGRujcubMQHR39xMvGfvjhByEwMFCwsLDQ+Dm7d+8uNG/e/InbfHQ9crlc8PPzE9q1ayeUlJRotJs8ebJgZmYmREdH/+vPQCQmiSBocbYKERERGRQeIyciIjJiLORERERGjIWciIjIiLGQExERGTEWciIiIiPGQk5ERGTEWMiJiIiMGAs5ERGREWMhJyIiMmIs5EREREaMhZyIiMiIsZATEREZMRZyIiIiI8ZCTkREZMRYyImIiIwYCzkREZERYyEnIiIyYizkRERERoyFnIiIyIixkBMRERkxFnIiIiIjxkJORERkxFjIiYiIjBgLORERkRFjISciIjJiLORERERGjIWciIjIiLGQExERGTEWciIiIiPGQk5ERFRDcnNzMWnSJPj5+cHGxgadOnVCTEyM+n1BEDB37lx4eXnBxsYGISEhSExM1GobLOREREQ1ZOzYsTh06BC2b9+OixcvolevXggJCcHdu3cBAMuWLcPq1auxceNGnD59GnZ2dggNDUVRUVGltyERBEGoqR+gpqlUKqSkpMDBwQESiUTsOEREpCVBEJCbmwtvb2+YmdVc37KoqAjFxcU6r0cQhAr1xtraGtbW1hXaFhYWwsHBAT/88AP69Omjnh8UFITevXtj0aJF8Pb2xvvvv4+pU6cCAHJycuDh4YEtW7bg1VdfrVQmCx1+HtGlpKTAx8dH7BhERKSj5ORk1KtXr0bWXVRUhAA/e6SmK3Vel729PfLy8jTmzZs3D/Pnz6/QtrS0FEqlElKpVGO+jY0NTpw4gRs3biA1NRUhISHq92QyGTp27Ijo6GjTKOQODg4AgPMxbnCwN5yjBGObPS92BKoqM3OxE1Sk0v2PD5GhKkUJTuAX9d/zmlBcXIzUdCVuxfrD0aHqtUKeq4Jf0E0kJyfD0dFRPf9JvXGgrEYFBwdj0aJFaNasGTw8PPD1118jOjoaDRs2RGpqKgDAw8NDYzkPDw/1e5Vh1IW8fHjDwd4MDjp8ONXNQmIpdgSqKokBFnKJ4fxuE1W7fw7u6uPwqL2DBPYOVd+OCmXLOjo6ahTyf7N9+3aMHj0adevWhbm5Odq1a4fhw4cjNja2yjkex78QRERkEpSCSudJWw0aNMDRo0eRl5eH5ORknDlzBiUlJahfvz48PT0BAGlpaRrLpKWlqd+rDBZyIiIyCSoIOk9VZWdnBy8vL2RlZeHAgQPo378/AgIC4OnpicOHD6vbyeVynD59GsHBwZVet1EPrRMRERmyAwcOQBAENGnSBNeuXcO0adPQtGlTjBo1ChKJBJMmTcJHH32ERo0aISAgAHPmzIG3tzcGDBhQ6W2wkBMRkUlQQQXtB8c1l9dWTk4OZs2ahTt37sDFxQWDBw/G4sWLYWlZdi7V9OnTkZ+fj/HjxyM7OxtdunTB/v37K5zp/m+M+jpyuVwOmUyGa5c9DOpktxE+ncWOQFXFs9aJ9KpUKMER/ICcnJxKn0CmrfJakXylrs5nrfs0vVujWavCcKofERERaY1D60REZBJ0PWFNl2VrEgs5ERGZBBUEKGthIefQOhERkRFjj5yIiEwCh9ZrAZUS+H65L/7c44bsdEs4exSj25B0DJh4B+V3B3zaGefDP7yJvm/d1VvWfiMz8crb6XBxK0VSvA3Wz66LhDhbvW2fmaqmRcdcDHkrDY1aFsLVswTzx9RH9AEn0fKUM7T9xEzMJAalIECpw4Vauixbk0xqaH3f+nr4bbsnwhYl4ZM/zuPVD27hp431cCDSS91mXewZjWn8/yVCIhHwXO9MveXs/nIWxs9LwY7lnggPbYykeCkWRyVB5lqitwzMVDVSWxWS4m2xdrbhPJXPEPcTMzETVR+DKOTr1q2Dv78/pFIpOnbsiDNnztTIdq7GOiCo1wO0fTELbj4KdOxzHy27ZSEpzl7dxsm9RGOKPeiCwE45cPdT1EimJxk0PhP7o1xw8BsX3E6UYvWMelAUShA6/IHeMjBT1Zz9Q4atn3jj5H4n0TI8zhD3EzMxkxhU1TAZItEL+TfffIMpU6Zg3rx5OHfuHFq3bo3Q0FCkp6dX+7YaB+Xi0p8y3Esqu2POrXhbJMQ4onXP7Ce2z8mwRNzvzug+LO2J79cEC0sVGrUqwLnjDx/pJwgSnD/ugMCgAr3lYKbawRD3EzMxk1iU/5y1rstkiEQv5MuXL8e4ceMwatQoBAYGYuPGjbC1tcWXX35Z7dvqF34HwS9nYlqPdngzIBgf/qcN/jMmBZ0HZjyx/bHv3CG1U6JD7/vVnuVpHF2UMLcAsjM0T1/IyrSAs1up3nIwU+1giPuJmZhJLEpB98kQiXqyW3FxMWJjYzFr1iz1PDMzM4SEhCA6OrpCe4VCAYXi4RC3XC7Xanun99XBn3vcEL7mKuo2LsCteDt8NT/gn5PeKhbzo9+4o/PADFhJDfTTIyIikydqjzwzMxNKpRIeHh4a8z08PJCamlqhfUREBGQymXry8dHuhKKoxf7o984dBPfPhG+zAnQdnIH/jE3Bj+vqVWh75bQj7l23RY/h+htWBwD5A3MoSwGnx77dOtcpRVaGON+7mMl4GeJ+YiZmEguPkRuAWbNmIScnRz0lJydrtXxxoRnMHvuJzcwFCCpJhbZHdrojoGUe/AL1e9yntMQMiX/Zom2XXPU8iURAmy55iI8V5/IOZjJehrifmImZxKKCBEodJhUq1gpDIOpXqDp16sDc3BxpaZq93rS0NHh6elZob21tDWtr6ypvr23IA+xdUw+udRWo17gAN/+2w6+f161wMltBrjnO/FwHr825WeVt6WL3pjqYujIZVy/YIuG8LQaOy4DUVoWDO11EycNMlSe1VcLb/+HhH08fBeoHFiA32wIZKVaiZDLE/cRMzETVR9RCbmVlhaCgIBw+fFj9EHWVSoXDhw9jwoQJ1b69sEU38N3/+SLyw/qQZ5bdEOaFEakYNEmzZ3/qxzoQBKBT/yefBFfTjv7oDJmrEm9OS4WzWymSLtngwxEByM60FCUPM1Ve49YF+OTbRPXrt+aX3UTo4C4XfDrFX5RMhrifmImZxKASyiZdljdEoj+P/JtvvkFYWBg+++wzPPfcc1i5ciV27dqFK1euVDh2/jg+j5yqHZ9HTqRX+nwe+elLnrDXoVbk5arQsXmqwT2PXPSzE4YNG4aMjAzMnTsXqampaNOmDfbv3//MIk5EREQGUMgBYMKECTUylE5ERFSu/KQ1XZY3RAZRyImIiGqaSpBAJVS9GOuybE0ynAPLREREpDX2yImIyCRwaJ2IiMiIKWEGpQ4D0YZ6/QgLORERmQRBx2PkAo+RExERUXVjj5yIiEwCj5ETEREZMaVgBqWgwzFyA71FK4fWiYiIjBh75EREZBJUkEClQ/9VBcPskrOQExGRSeAxcgM2ttnzsJAYziP0vr9zSuwIFQz2NcAnshniU70MMRMZL0N8mp6hEVSASuwQxo3HyImIyCSUn+ymy6TV9pRKzJkzBwEBAbCxsUGDBg2waNEiPPr0cEEQMHfuXHh5ecHGxgYhISFITEzUajss5EREZBLKjpHrNmlj6dKl2LBhA9auXYvLly9j6dKlWLZsGdasWaNus2zZMqxevRobN27E6dOnYWdnh9DQUBQVFVV6O7ViaJ2IiEhf5HK5xmtra2tYW1tXaHfy5En0798fffr0AQD4+/vj66+/xpkzZwCU9cZXrlyJ2bNno3///gCAbdu2wcPDA3v37sWrr75aqTzskRMRkUlQ/XOv9apO5We8+/j4QCaTqaeIiIgnbq9Tp044fPgwrl69CgC4cOECTpw4gd69ewMAbty4gdTUVISEhKiXkclk6NixI6Kjoyv9c7FHTkREJkH3G8KUHdtOTk6Go6Ojev6TeuMAMHPmTMjlcjRt2hTm5uZQKpVYvHgxRowYAQBITU0FAHh4eGgs5+HhoX6vMljIiYjIJKge6VVXbfmyQu7o6KhRyJ9m165d2LFjB6KiotC8eXPExcVh0qRJ8Pb2RlhYWJVzPI6FnIiIqAZMmzYNM2fOVB/rbtmyJW7duoWIiAiEhYXB09MTAJCWlgYvLy/1cmlpaWjTpk2lt8Nj5EREZBKUgkTnSRsFBQUwM9Mss+bm5lCpyi6cDwgIgKenJw4fPqx+Xy6X4/Tp0wgODq70dtgjJyIik1B+0lrVl9fuFq39+vXD4sWL4evri+bNm+P8+fNYvnw5Ro8eDQCQSCSYNGkSPvroIzRq1AgBAQGYM2cOvL29MWDAgEpvh4WciIioBqxZswZz5szBO++8g/T0dHh7e+N///sf5s6dq24zffp05OfnY/z48cjOzkaXLl2wf/9+SKXSSm9HIjx6ixkjI5fLIZPJ0AP9eYvWZ+AtWolEwFu0PlOpUIIjqt3Iycmp1AlkVVFeK7481xa2DlX/TApylRjd7nyNZq0K9siJiMgk6HtoXV9YyAH0G5mJV95Oh4tbKZLibbB+dl0kxNnqZdtKJbBreT0c210H2elWcPYsRs8hGXhl4l1I/jmvojDfDF997IszB5yRl2UJd98i/Hd0KkLfSNdLRgBo0TEXQ95KQ6OWhXD1LMH8MfURfcBJb9t/GjE/O2ZipppkiP/mDDET8ax1dH85C+PnpWDHck+EhzZGUrwUi6OSIHMt0cv29673xoFtHhj70U2sOnIBb8y6jb0bvPHLl57qNlsW+CHuiBMmrr6OVUcuoM+YVHwxOwAxB531khEApLYqJMXbYu1sH71t81nE/uyYiZlqkiH+mzPETNpQQbcz1w31IW2iFvJjx46hX79+8Pb2hkQiwd69e/WeYdD4TOyPcsHBb1xwO1GK1TPqQVEoQejwB3rZfsJZB3TolYWgF7Ph7qNAcN8HaN0tG9fi7B62iXVAjyEZaNFJDncfBXq9ng7/wHwkPtKmpp39Q4atn3jj5H4nvW3zWcT+7JiJmWqSIf6bM8RM2ii/IYwukyESNVV+fj5at26NdevWibJ9C0sVGrUqwLnjDup5giDB+eMOCAwq0EuGJu1zcfFPGVKSys5QvBlviysxDmjbM/thm6BcxBxyxv17lhAE4OKfjkhJskHrbjl6yWiIDOGzYyZmIjIEoh4j7927t/rm8WJwdFHC3ALIztDcDVmZFvBpqNBLhoHhKSjINcd73VvDzFyASinBazOS0W3QfXWbsYtuYuOM+hjfIQjmFipIzIC3lyWh+fO5esloiAzhs2MmZiLjovu91g2zR25UJ7spFAooFA//UT3+KDljdHKfK47vqYNJa6/Bp3EBblyyQ+R8Pzh7FKPnkEwAwC+Rnrh6zh4zI6/ArW4x4k874PMPA+DsUYzWXY1/HxAR6UNVnin++PKGyKgKeUREBBYsWFBt65M/MIeyFHByK9WY71ynFFkZ+tk12z7yxcDwFHTpX9YD92tWiMy71ti9ti56DsmEolCCqKU+mP7FVQS9mA0A8A8swM1Ldvhxo7fJFnJD+OyYiZnIuNTWHrlhpnqKWbNmIScnRz0lJyfrtL7SEjMk/mWLtl0eDlFLJALadMlDfKx+LjlRFJpB8tinYGYuQPjn9EhlqRlKS8zUl6JptDHMSxr1whA+O2ZiJiJDYFRfNa2trZ/63Neq2r2pDqauTMbVC7ZIOG+LgeMyILVV4eBOl2rdztO0fykb36/2hltdBXwaF+LG37bYt8kLLwzLAADYOijR/Hk5ti32hZVUBbd6Clw65Yij37khbN4tvWQEAKmtEt7+Dw9rePooUD+wALnZFshIsdJbjkeJ/dkxEzPVJEP8N2eImbSh+w1hDLPva1SFvCYc/dEZMlcl3pyWCme3UiRdssGHIwKQnamfW76OXXQDX3/ig00fBECeaQlnz2K89Hoahky6q24zeX0idizxwap3GyIv2wJ16ikwfMZthL6RppeMANC4dQE++TZR/fqt+WX5Du5ywadT/PWW41Fif3bMxEw1yRD/zRliJm2oBAlUWj7B7PHlDZGo91rPy8vDtWvXAABt27bF8uXL0bNnT7i4uMDX1/eZy/Ne65XHe60TiYD3Wn8mfd5rfVlMV9jYV73/WphXiukdjvNe6486e/YsevbsqX49ZcoUAEBYWBi2bNkiUioiIqqNVDoOrRvqDWFELeQ9evSAET98jYiIjIhKMINKhzPPdVm2JhlmKiIiIqoUkz/ZjYiITIMSEih1uKmLLsvWJBZyIiIyCRxaJyIiIoPDHjkREZkEJXQbHjfUC2ZZyImIyCTU1qF1FnIiIjIJfGgKERERGRz2yImIyCQIOj6PXODlZ0REROLh0DoREREZHPbIa8Dges+LHaGC9beOih2hgncCuosdoSI+kY2qE3+fnk3Q3z6qrY8xZSEnIiKToNTx6We6LFuTDDMVERERVQp75EREZBI4tE5ERGTEVDCDSoeBaF2WrUmGmYqIiMjI+fv7QyKRVJjCw8MBAEVFRQgPD4erqyvs7e0xePBgpKWlab0dFnIiIjIJSkGi86SNmJgY3Lt3Tz0dOnQIADBkyBAAwOTJk7Fv3z58++23OHr0KFJSUjBo0CCtfy4OrRMRkUmormPkcrlcY761tTWsra0rtHdzc9N4vWTJEjRo0ADdu3dHTk4ONm/ejKioKLzwwgsAgMjISDRr1gynTp3C889X/jJm9siJiMgkCP88/ayqk/DPnd18fHwgk8nUU0RExDO3XVxcjK+++gqjR4+GRCJBbGwsSkpKEBISom7TtGlT+Pr6Ijo6Wqufiz1yIiIiLSQnJ8PR0VH9+km98cft3bsX2dnZGDlyJAAgNTUVVlZWcHJy0mjn4eGB1NRUrfKwkBMRkUlQQgKlDg8+KV/W0dFRo5BXxubNm9G7d294e3tXeftPw0JOREQmQSXodi24Sqjacrdu3cJvv/2G3bt3q+d5enqiuLgY2dnZGr3ytLQ0eHp6arV+HiMnIiKqQZGRkXB3d0efPn3U84KCgmBpaYnDhw+r5yUkJOD27dsIDg7Wav3skQPoNzITr7ydDhe3UiTF22D97LpIiLM12UwqJfDzCl+c2eMOeYYlZB7FeP6VdPR+LxmSf77Mbnu/EU5956GxXGD3LEzYdkkvGQGgRcdcDHkrDY1aFsLVswTzx9RH9AEnvW3/afj7xEzMZJjKT1rTZXmtl1GpEBkZibCwMFhYPCy5MpkMY8aMwZQpU+Di4gJHR0e8++67CA4O1uqMdYA9cnR/OQvj56Vgx3JPhIc2RlK8FIujkiBzLTHZTAc31MOxr7wwdOF1zD18DgNm3sShz+riyBYvjXaB3R8gIua0ehq95ope8pWT2qqQFG+LtbN99LrdfyP2Z8dMzGSKmSpLBYnOk7Z+++033L59G6NHj67w3ooVK9C3b18MHjwY3bp1g6enp8bwe2WJWsgjIiLQoUMHODg4wN3dHQMGDEBCQoJeMwwan4n9US44+I0LbidKsXpGPSgKJQgd/kCvOQwpU1KsI1q9dB8tX8yCq48C7frcR7Ou2bgZ56DRzsJagMy9RD3ZyvT7yMazf8iw9RNvnNzvpNft/huxPztmYiZTzGTIevXqBUEQ0Lhx4wrvSaVSrFu3Dg8ePEB+fj52796t9fFxQORCfvToUYSHh+PUqVM4dOgQSkpK0KtXL+Tn5+tl+xaWKjRqVYBzxx8WKEGQ4PxxBwQGFeglgyFmqh8kR8JJJ6QlSQEAd+LtcP2sI5r3yNJol3hKhuntnsP8nu3w9YcNkJdl2kdqDOGzYyZmMrVM2tD3nd30RdS/vPv379d4vWXLFri7uyM2NhbdunWr8e07uihhbgFkZ2juhqxMC/g0VNT49g01U6937qAozxwLXwiCxFyAoJSg37RbeG5ghrpNYPcstPnPfbj6FCHjlhQ/LvPHurDmmLbnAszM9RLT4BjCZ8dMzGRqmbQhxjFyfTCoLlROTg4AwMXF5YnvKxQKKBQPf1kev00eVY9zP9XBmb3uGLU6AV6NC3An3g7fLagPp39OegOA9i9nqtvXbVqAes3yMbdrB1yNlqFplxyxohMRmRyD+XqhUqkwadIkdO7cGS1atHhim4iICI3b4vn46HaSk/yBOZSlgJNbqcZ85zqlyMoQ5zuOIWTa/XEAQt++g/YvZ6Ju0wJ0HJSBF8ak4MD6ek9dpo6vAvYuJci4ZaOXjIbIED47ZmImU8ukDRUk6vutV2nS4WYyNclgCnl4eDj+/vtv7Ny586ltZs2ahZycHPWUnJys0zZLS8yQ+Jct2nbJVc+TSAS06ZKH+FhxLqUwhEwlhWaQmGne+UBiLkBQPf2XOOueFfKzLCBzL67peAbLED47ZmImU8ukDUHHM9YFAy3kBvEVasKECfjpp59w7Ngx1Kv39F7f054wo4vdm+pg6spkXL1gi4Tzthg4LgNSWxUO7nzy8L4+iJ2pZcgD7F/rA2dvBbwbFyD5kj1+/6IugoeWPSe3KN8Mv6z0Rdve9+HoVoyMW1LsiQiAm38RmnXLesbaq4/UVglv/4eHWjx9FKgfWIDcbAtkpFjpLcejxP7smImZTDFTZVXX088MjaiFXBAEvPvuu9izZw+OHDmCgIAAvWc4+qMzZK5KvDktFc5upUi6ZIMPRwQgO9NS71kMJdPQBUnY96kvvpnTALmZZTeE6fLaPfx3YtkIiJk5cPeKHU59745CuQVkHsVo1jUb/d6/BUvrKt7DsAoaty7AJ98mql+/Nf8uAODgLhd8OsVfbzkeJfZnx0zMZIqZTJ1EEAT9/eV9zDvvvIOoqCj88MMPaNKkiXq+TCaDjc2zj7XK5XLIZDL0QH9YSPhL9G/W3zohdoQK3gnoLnaEilT6vRaeyNSVCiU4gh+Qk5Oj9YNIKqu8Vgw8NAqWdlUfrSvJL8aelyJrNGtViNoj37BhAwCgR48eGvMjIyPVj3ojIiKqDhxarwEiDgYQERHVCgZxshsREVFNq+r90h9d3hCxkBMRkUmorUPrBnMdOREREWmPPXIiIjIJtbVHzkJOREQmobYWcg6tExERGTH2yImIyCTU1h45CzkREZkEAbpdQmaodz5hISciIpNQW3vkPEZORERkxNgjJyIik1Bbe+Qs5CbiHb8uYkeo4O3EBLEjVLChUUOxI1RgZmcndoQKVPn5YkeowNxJJnaEiiwM70+sMvO+2BFEU1sLOYfWiYiIjJjhfV0kIiKqAbW1R85CTkREJkEQJBB0KMa6LFuTOLRORERkxNgjJyIik8DnkRMRERmx2nqMnEPrRERERow9ciIiMgk82Y2IiMiIlQ+t6zJp6+7du3j99dfh6uoKGxsbtGzZEmfPnlW/LwgC5s6dCy8vL9jY2CAkJASJiYlabYOFnIiITEJ5j1yXSRtZWVno3LkzLC0t8euvvyI+Ph6ffvopnJ2d1W2WLVuG1atXY+PGjTh9+jTs7OwQGhqKoqKiSm+HQ+tERERakMvlGq+tra1hbW1dod3SpUvh4+ODyMhI9byAgAD1/wuCgJUrV2L27Nno378/AGDbtm3w8PDA3r178eqrr1YqD3vkRERkEgQdh9XLe+Q+Pj6QyWTqKSIi4onb+/HHH9G+fXsMGTIE7u7uaNu2LT7//HP1+zdu3EBqaipCQkLU82QyGTp27Ijo6OhK/1zskQPoNzITr7ydDhe3UiTF22D97LpIiLNlJgPK9FUPP+Tetawwv/mIbHSbn4mcWxaIXloH987aQFksgW+3fHSZmwnbOkq95HuUIX12fV5LRZ/hqfCopwAA3Eq0QdRaH5w95vyMJWueIe2nxw0ZexujptzE3m11sWlJA1EyjHg7CSPevqkxL/mGLf7X/3lR8jzKkD+7fyMAEATdlgeA5ORkODo6quc/qTcOAElJSdiwYQOmTJmCDz74ADExMXjvvfdgZWWFsLAwpKamAgA8PDw0lvPw8FC/Vxkm3yPv/nIWxs9LwY7lnggPbYykeCkWRyVB5lrCTAaUafD3yQg7eUM99dtyFwDQoHc+Sgok+GlUXQDAy9vvYuA3d6AskeDX/3lBUOklnprY++lxmalWiPw/P7w7oBXeG9gKF6JlmLvhCnwbFoiSp5yh7adHNWqRi95D7yHpivhPnbt5zQ4jenZWT9PC2okdyaA/O31xdHTUmJ5WyFUqFdq1a4ePP/4Ybdu2xfjx4zFu3Dhs3LixWvOIWsg3bNiAVq1aqXdGcHAwfv31V71mGDQ+E/ujXHDwGxfcTpRi9Yx6UBRKEDr8gV5zMNO/s3FVwdZNqZ5u/mEHR99ieD9XiNRYKXLvWuCFpWlwbVIM1ybFeGFZOtIvWuNutI1e8pUTez897vTvLog56oyUWza4e9MGW1f4oajAHE3b5IqSp5yh7adyUlslpi+7gtXzGiNPLv6ApbJUgqz71upJnm0ldiSD/ewqo/zObrpM2vDy8kJgYKDGvGbNmuH27dsAAE9PTwBAWlqaRpu0tDT1e5UhaiGvV68elixZgtjYWJw9exYvvPAC+vfvj0uXLull+xaWKjRqVYBzxx3U8wRBgvPHHRAYJE6PhZmeTVkMJP7ogKav5EIiAZTFEkACmFs9HDOzsFJBYgbci9VfITe0/fQ4MzMB3ftkQmqrxJU4h2cvUEMMeT+9MzsRZ466IC5a/EMPAFDXrwDbfzuBzb+cxLSIS3DzrPyZzDXBkD+7ytD3WeudO3dGQkKCxryrV6/Cz88PQNmJb56enjh8+LD6fblcjtOnTyM4OLjS2xH1K2e/fv00Xi9evBgbNmzAqVOn0Lx58wrtFQoFFAqF+vXjZw5qy9FFCXMLIDtDczdkZVrAp6HiKUvVLGZ6thu/2UMhN0PTQWWfv0ebIljaqBD9SR10fP8+IACn/s8VglKCgnRzveUytP1Uzr9xPpbvuggraxUKC8yx6J2muH1NvOOZhrqfuvVOR8PAPEwcKv7wNQAkXJRh+exA3LlpCxc3BV576wY+2RKLtwd1RGGBOH+6DfWzM1STJ09Gp06d8PHHH2Po0KE4c+YMNm3ahE2bNgEAJBIJJk2ahI8++giNGjVCQEAA5syZA29vbwwYMKDS2xF/7OgfSqUS3377LfLz85/6TSQiIgILFizQczIyNFe+dYRvtwLYeZSdyGbjqkKv1ak4Ns8dF7fJIDEDGvXNRZ3mRTwLBMCdGzYIf7k17ByU6PKf+3h/WSKmj2ghajE3NHU8i/C/Wdfx4diWKCk2jF+asydc1f9/M9EeCRcdsWX/SXQNTcfBPd4iJjNeKkECiR7vtd6hQwfs2bMHs2bNwsKFCxEQEICVK1dixIgR6jbTp09Hfn4+xo8fj+zsbHTp0gX79++HVCqt9HZEL+QXL15EcHAwioqKYG9vjz179lQ4plBu1qxZmDJlivq1XC6Hj49Plbctf2AOZSng5FaqMd+5TimyMsTZNcz073LvWuDOSRuErtM8o9OnayFG/H4LhQ/MYGYBWDuqsCXYH44+eXrLZkj76VGlJWa4d7vsEMO1S/Zo3DIP/cPuYc0ccc7GNsT91Kh5HpzrlGDNd+fU88wtgBbtc9Dvtbvo36YrVCpxb8+Zn2uJu7ds4e1TKFoGQ/zstCEIOp61XoVl+/bti759+z71fYlEgoULF2LhwoVVziX6V88mTZogLi4Op0+fxttvv42wsDDEx8c/sa21tXWFswV1UVpihsS/bNG2y8MTfyQSAW265CE+VpzeCjP9uyvfO8LGVQm/HvlPfN/GRQVrRxXuRNug8L45/F98cruaYEj76d9IzARYWun5dP5HGOJ+iot2wtsvB2HCoIfT1Yv2OPKTOyYMChK9iAOA1KYUXj6FeJAp3glvhvjZkQH0yK2srNCwYUMAQFBQEGJiYrBq1Sp89tlnetn+7k11MHVlMq5esEXCeVsMHJcBqa0KB3e66GX7zFR5ggq48r0DmgzMhdljv7lXvnOAU4Ni2LgokRYnxYmP3NB6VDac6+v3khhD2E+PGvn+LZw95oT0FGvY2inRo18mWnWUY/boJ4966Yuh7afCAgvcuqb5S1VUaA55tiVuXRPnMrQx7yfi9JE6SL8nhatbMV5/JwkqpQRHfvV49sI1yNA+O23U1oemiF7IH6dSqTROaKtpR390hsxViTenpcLZrRRJl2zw4YgAZGdWvPkIM4mb6c6fNshLsUTTVyqe5Jh9wwqnPnWFIsccDnVLEPR2FlqNytZbtnKGsJ8e5eRagqnLrsHFvRj5uea4ccUOs0cH4vyfTqLkKWdo+8kQ1XFXYMbSS3B0KkFOlhUunZNh8utBkGeJewmaMX92tbWQSwRBlyMGupk1axZ69+4NX19f5ObmIioqCkuXLsWBAwfw0ksvPXN5uVwOmUyGHugPC4nh/xKRprcTr4kdoYINjRqKHaECMzvxb0zyOFW+/g5ZVJa5k0zsCBVZGFxfCcrM+2JH0FAqlOAIfkBOTo7Oh0ufprxWNImaCXPbJ9+8pTKUBQokvLakRrNWhai/Zenp6XjzzTdx7949yGQytGrVqtJFnIiIiEQu5Js3bxZz80REZELEOGtdHwxv3IeIiKgGlBVyXY6RV2OYaiT65WdERERUdeyRExGRSaitZ62zkBMRkUkQ8PCZ4lVd3hBxaJ2IiMiIsUdOREQmgUPrRERExqyWjq2zkBMRkWnQsUcOA+2R8xg5ERGREWOPnIiITALv7EZERGTEeLIbUTUzxCeNfX/nlNgRKhhc73mxIxgFZXaO2BGMgqE9JU4QioFssVMYNxZyIiIyDYJEtxPW2CMnIiIST209Rs6z1omIiIwYe+RERGQaeEMYIiIi42XSZ63/+OOPlV7hyy+/XOUwREREpJ1KFfIBAwZUamUSiQRKpVKXPERERDXHQIfHdVGpQq5SqWo6BxERUY2qrUPrOp21XlRUVF05iIiIapZQDZMB0rqQK5VKLFq0CHXr1oW9vT2SkpIAAHPmzMHmzZurPSARERE9ndaFfPHixdiyZQuWLVsGKysr9fwWLVrgiy++qNZwRERE1UdSDZPh0bqQb9u2DZs2bcKIESNgbm6unt+6dWtcuXKlWsMRERFVGw6tl7l79y4aNqz4sAuVSoWSkpJqCaVv/UZmYuvpeOxL+gurfkpEkzYFYkdiJiPIpFQCX39SD28Ht8HwBs/hnc5t8O3Kuhq3cSzMN8PnH/pjXPu2GN7gOUzs2QoHtrvrLWM5fnbMVBOGjL2NX+KPYfzM62JHMUjz58+HRCLRmJo2bap+v6ioCOHh4XB1dYW9vT0GDx6MtLQ0rbejdSEPDAzE8ePHK8z/7rvv0LZtW60DiK37y1kYPy8FO5Z7Ijy0MZLipVgclQSZq3hfSpjJODLtXe+NA9s8MPajm1h15ALemHUbezd445cvPdVttizwQ9wRJ0xcfR2rjlxAnzGp+GJ2AGIOOuslIyD+fmKm2pWpXKMWueg99B6SrtiJHaXyROiRN2/eHPfu3VNPJ06cUL83efJk7Nu3D99++y2OHj2KlJQUDBo0SOttaF3I586diwkTJmDp0qVQqVTYvXs3xo0bh8WLF2Pu3LlaByi3ZMkSSCQSTJo0qcrrqIpB4zOxP8oFB79xwe1EKVbPqAdFoQShwx/oNQczGV+mhLMO6NArC0EvZsPdR4Hgvg/Quls2rsU9/MOWEOuAHkMy0KKTHO4+CvR6PR3+gflIjNPfHz+x9xMz1a5MACC1VWL6sitYPa8x8uRGdIPQ8qef6TIBkMvlGpNCoXjqJi0sLODp6ame6tSpAwDIycnB5s2bsXz5crzwwgsICgpCZGQkTp48iVOntHucstaFvH///ti3bx9+++032NnZYe7cubh8+TL27duHl156SdvVAQBiYmLw2WefoVWrVlVavqosLFVo1KoA5447qOcJggTnjzsgMEic4StmMp5MTdrn4uKfMqQkSQEAN+NtcSXGAW17Zj9sE5SLmEPOuH/PEoIAXPzTESlJNmjdTT/PzjaE/cRMtSdTuXdmJ+LMURfERetvZMmQ+Pj4QCaTqaeIiIintk1MTIS3tzfq16+PESNG4Pbt2wCA2NhYlJSUICQkRN22adOm8PX1RXR0tFZ5qvRVqmvXrjh06FBVFq0gLy8PI0aMwOeff46PPvroX9sqFAqNbz5yuVynbTu6KGFuAWRnaO6GrEwL+DR8+jesmsRMxpNpYHgKCnLN8V731jAzF6BSSvDajGR0G3Rf3WbsopvYOKM+xncIgrmFChIz4O1lSWj+fK5eMhrCfmKm2pMJALr1TkfDwDxMHNpOtAxVVV2PMU1OToajo6N6vrW19RPbd+zYEVu2bEGTJk1w7949LFiwAF27dsXff/+N1NRUWFlZwcnJSWMZDw8PpKamapWrymMiZ8+exeXLlwGUHTcPCgqq0nrCw8PRp08fhISEPLOQR0REYMGCBVXaDlF1O7nPFcf31MGktdfg07gANy7ZIXK+H5w9itFzSCYA4JdIT1w9Z4+ZkVfgVrcY8acd8PmHAXD2KEbrrrp9ESXStzqeRfjfrOv4cGxLlBQb4VOwq+npZ46OjhqF/Gl69+6t/v9WrVqhY8eO8PPzw65du2BjY6NDEE1aF/I7d+5g+PDh+PPPP9XfJLKzs9GpUyfs3LkT9erVq/S6du7ciXPnziEmJqZS7WfNmoUpU6aoX8vlcvj4+GiV/1HyB+ZQlgJObqUa853rlCIrQ5zjPsxkPJm2feSLgeEp6NK/rAfu16wQmXetsXttXfQckglFoQRRS30w/YurCHoxGwDgH1iAm5fs8ONGb70UckPYT8xUezI1ap4H5zolWPPdOfU8cwugRfsc9HvtLvq36QqVyjCvtTYETk5OaNy4Ma5du4aXXnoJxcXFyM7O1uiVp6WlwdPT8+kreQKtv1KNHTsWJSUluHz5Mh48eIAHDx7g8uXLUKlUGDt2bKXXk5ycjIkTJ2LHjh2QSqWVWsba2lr9Taiy34j+TWmJGRL/skXbLg+HOSUSAW265CE+1landTNT7c+kKDSD5LF/QWbmAoR/Hk2gLDVDaYkZJJIntNHT9aiGsJ+YqfZkiot2wtsvB2HCoIfT1Yv2OPKTOyYMCjL8Il5NJ7tVVV5eHq5fvw4vLy8EBQXB0tIShw8fVr+fkJCA27dvIzg4WKv1av217ujRozh58iSaNGmintekSROsWbMGXbt2rfR6YmNjkZ6ejnbtHh5nUSqVOHbsGNauXQuFQqFxw5masntTHUxdmYyrF2yRcN4WA8dlQGqrwsGdLjW+bWYy7kztX8rG96u94VZXAZ/Ghbjxty32bfLCC8MyAAC2Dko0f16ObYt9YSVVwa2eApdOOeLod24Im3dLLxkB8fcTM9WeTIUFFrh1TbNsFBWaQ55tiVvXDP8yNIlQNumyvDamTp2Kfv36wc/PDykpKZg3bx7Mzc0xfPhwyGQyjBkzBlOmTIGLiwscHR3x7rvvIjg4GM8//7xW29G6kPv4+Dzxxi9KpRLe3t6VXs+LL76IixcvaswbNWoUmjZtihkzZuiliAPA0R+dIXNV4s1pqXB2K0XSJRt8OCIA2ZmWetk+MxlvprGLbuDrT3yw6YMAyDMt4exZjJdeT8OQSXfVbSavT8SOJT5Y9W5D5GVboE49BYbPuI3QN7S/6UNVib2fmKl2ZTJq1XSMvLLKD0Xfv38fbm5u6NKlC06dOgU3NzcAwIoVK2BmZobBgwdDoVAgNDQU69ev1zqWRBC0G+T74Ycf8PHHH2PdunVo3749gLIT3959913MmDGj0s8uf5IePXqgTZs2WLlyZaXay+VyyGQy9EB/WEj4i026+/6Odtdv6sPgetp9Oyf6N+ZOMrEjaCgVinE4eztycnJ0Plz6NOW1wmflQpjZVO5Q7pOoCouQPGlujWatikr1yJ2dnSF55EBffn4+OnbsCAuLssVLS0thYWGB0aNH61TIiYiIaoyux7kN9HnklSrkle0h6+rIkSN62Q4REZkgPQ+t60ulCnlYWFhN5yAiIqIq0OlixKKiIhQXF2vMM6TjBkRERGq1tEeu9XXk+fn5mDBhAtzd3WFnZwdnZ2eNiYiIyCDxeeRlpk+fjt9//x0bNmyAtbU1vvjiCyxYsADe3t7Ytm1bTWQkIiKip9B6aH3fvn3Ytm0bevTogVGjRqFr165o2LAh/Pz8sGPHDowYMaImchIREemmlp61rnWP/MGDB6hfvz6AsuPhDx6UPRe3S5cuOHbsWPWmIyIiqibld3bTZTJEWhfy+vXr48aNGwDKnp26a9cuAGU99ccfx0ZEREQ1S+tCPmrUKFy4cAEAMHPmTKxbtw5SqRSTJ0/GtGnTqj0gERFRtailJ7tpfYx88uTJ6v8PCQnBlStXEBsbi4YNG6JVq1bVGo6IiIj+nc4PtfXz84Ofn191ZCEiIqoxEuj49LNqS1K9KlXIV69eXekVvvfee1UOQ0RERNqpVCFfsWJFpVYmkUhYyMmoGeKTxgzyiWy+ncWOUJFKKXYCo6AqLBI7ggaVUPGx2DWmll5+VqlCXn6WOhERkdHiLVqJiIjI0Oh8shsREZFRqKU9chZyIiIyCbrena3W3NmNiIiIDAd75EREZBpq6dB6lXrkx48fx+uvv47g4GDcvXsXALB9+3acOHGiWsMRERFVm1p6i1atC/n333+P0NBQ2NjY4Pz581AoFACAnJwcfPzxx9UekIiIiJ5O60L+0UcfYePGjfj8889haWmpnt+5c2ecO3euWsMRERFVl9r6GFOtj5EnJCSgW7duFebLZDJkZ2dXRyYiIqLqV0vv7KZ1j9zT0xPXrl2rMP/EiROoX79+tYQiIiKqdjxGXmbcuHGYOHEiTp8+DYlEgpSUFOzYsQNTp07F22+/XRMZiYiI6Cm0HlqfOXMmVCoVXnzxRRQUFKBbt26wtrbG1KlT8e6779ZExhrXb2QmXnk7HS5upUiKt8H62XWREGfLTMxkdJmUSmDX8no4trsOstOt4OxZjJ5DMvDKxLuQ/DMqWJhvhq8+9sWZA87Iy7KEu28R/js6FaFvpOslIwC06JiLIW+loVHLQrh6lmD+mPqIPuCkt+0/DX+f/t2wt1PQOTQL9RoUorjIDPHn7PHlUh/cSbIRJY+2eEOYf0gkEnz44Yd48OAB/v77b5w6dQoZGRlYtGhRTeSrcd1fzsL4eSnYsdwT4aGNkRQvxeKoJMhc9fhEHmZipmqyd703DmzzwNiPbmLVkQt4Y9Zt7N3gjV++9FS32bLAD3FHnDBx9XWsOnIBfcak4ovZAYg56KyXjAAgtVUhKd4Wa2f76G2bzyL2Z2cMmVp2zMW+7e6YPCgQs95sCgsLAYu3JcDaxkiePMehdU1WVlYIDAzEc889B3t7+yqtY/78+ZBIJBpT06ZNqxqpSgaNz8T+KBcc/MYFtxOlWD2jHhSFEoQOf6DXHMzETNUh4awDOvTKQtCL2XD3USC47wO07paNa3F2D9vEOqDHkAy06CSHu48CvV5Ph39gPhIfaVPTzv4hw9ZPvHFyv5PetvksYn92xpBp9sgmOPS9G24l2uLGZVt8Oq0+POoWo1HLfFHyUBmth9Z79uwJieTpZ+79/vvvWq2vefPm+O233x4GstDfzeYsLFVo1KoAO9e6q+cJggTnjzsgMKhAbzmYiZmqS5P2uTi0wwMpSVJ41y/CzXhbXIlxwMi5tx62CcpFzCFnvDAsHS6eJfj7pCNSkmwwct6tf1lz7WYIn50xZHqcrUNZTzw320huEqrrJWS1pUfepk0btG7dWj0FBgaiuLgY586dQ8uWLbUOYGFhAU9PT/VUp06dp7ZVKBSQy+Uaky4cXZQwtwCyMzR/CbMyLeDsVqrTupmJmcTINDA8BZ1fzsR73VtjqP9zmBraEn3HpqLboPvqNmMX3YRPo0KM7xCEYQHP4aM3mmLc4hto/nyuXjIaIkP47Iwh06MkEgFvzbmFSzH2uHVV3PMIKk3EofUlS5ZAIpFg0qRJ6nlFRUUIDw+Hq6sr7O3tMXjwYKSlpWm9bq2/Rq1YseKJ8+fPn4+8vDytAyQmJsLb2xtSqRTBwcGIiIiAr6/vE9tGRERgwYIFWm+DyFSc3OeK43vqYNLaa/BpXIAbl+wQOd8Pzh7F6DkkEwDwS6Qnrp6zx8zIK3CrW4z40w74/MMAOHsUo3VX3b4ck+kIX3gL/k0K8f6QQLGjGLyYmBh89tlnaNWqlcb8yZMn4+eff8a3334LmUyGCRMmYNCgQfjzzz+1Wn+1Pf3s9ddfx5dffqnVMh07dsSWLVuwf/9+bNiwATdu3EDXrl2Rm/vknsGsWbOQk5OjnpKTk3XKLH9gDmUp4PTYt1vnOqXIyhBnqIiZmEkX2z7yxcDwFHTpfx9+zQrR45VM9BuXit1r6wIAFIUSRC31wch5t9DhpWz4Bxbgv6PS0Lnfffy40VsvGQ2RIXx2xpCp3DsLbqLjC9mYPrwZMlOtRM2ilWrqkT8+Mlx+q/InycvLw4gRI/D555/D2fnhCaU5OTnYvHkzli9fjhdeeAFBQUGIjIzEyZMncerUKa1+rGor5NHR0ZBKpVot07t3bwwZMgStWrVCaGgofvnlF2RnZ2PXrl1PbG9tbQ1HR0eNSRelJWZI/MsWbbs8/OIgkQho0yUP8bHiDBUxEzPpQlFoBslj/6rNzAUIqrL/V5aaobTEDI+f5mJmLkAw0ON/+mAIn50xZAIEvLPgJjr1ysKMEU2RdsdapBxVU123aPXx8YFMJlNPERERT91meHg4+vTpg5CQEI35sbGxKCkp0ZjftGlT+Pr6Ijo6WqufS+uvdYMGDdJ4LQgC7t27h7Nnz2LOnDnark6Dk5MTGjdu/MQ7x9WU3ZvqYOrKZFy9YIuE87YYOC4DUlsVDu500VsGZmKm6tL+pWx8v9obbnUV8GlciBt/22LfJi+8MCwDQNnJSc2fl2PbYl9YSVVwq6fApVOOOPqdG8L0eLKb1FYJb/+HvRhPHwXqBxYgN9sCGSni9PDE/uyMIVP4wlvo2f8+FoxvhMI8MzjXKQYA5OdaoFhRbf1Cg5ecnKzRkbS2fvIXmp07d+LcuXOIiYmp8F5qaiqsrKzg5OSkMd/DwwOpqala5dG6kMtkMo3XZmZmaNKkCRYuXIhevXppuzoNeXl5uH79Ot544w2d1qONoz86Q+aqxJvTUuHsVoqkSzb4cEQAsjMtn70wMzGTgWUau+gGvv7EB5s+CIA80xLOnsV46fU0DJl0V91m8vpE7Fjig1XvNkRetgXq1FNg+IzbCH1D+5Nsqqpx6wJ88m2i+vVb88vyHdzlgk+n+Ostx6PE/uyMIVO/f24a9MnOKxrzP50agEPfu4kRSRSVGRFOTk7GxIkTcejQIa1Hq7UlEYTKD6gplUr8+eefaNmypcZYf1VNnToV/fr1g5+fH1JSUjBv3jzExcUhPj4ebm7P/qWQy+WQyWTogf6wkIj3j42oJn1/R7vjZfow2Lez2BEqUhnJTUlEJnlK71EspUIJ/lDsQk5Ojs6HS5+mvFY0mPUxzHUoqsqiIlyP+KBSWffu3YuBAwfC3Nz84fJKJSQSCczMzHDgwAGEhIQgKytLo1fu5+eHSZMmYfLkyZXOpVWP3NzcHL169cLly5erpZDfuXMHw4cPx/379+Hm5oYuXbrg1KlTlSriRERE2tDnLVpffPFFXLx4UWPeqFGj0LRpU8yYMQM+Pj6wtLTE4cOHMXjwYABlTxe9ffs2goODtcql9dB6ixYtkJSUhICAAG0XrWDnzp06r4OIiMjQODg4oEWLFhrz7Ozs4Orqqp4/ZswYTJkyBS4uLnB0dMS7776L4OBgPP/881ptS+tC/tFHH2Hq1KlYtGgRgoKCYGeneVvHmhoaISIi0pkBXZ2xYsUKmJmZYfDgwVAoFAgNDcX69eu1Xk+lC/nChQvx/vvv47///S8A4OWXX9a4VasgCJBIJFAqeZyKiIgMkK4PPtHxS8CRI0c0XkulUqxbtw7r1q3Tab2VLuQLFizAW2+9hT/++EOnDRIREVH1qXQhLz+5vXv37jUWhoiIqKbU1ueRa3WM/N+eekZERGTQRB5arylaFfLGjRs/s5g/eCDes3uJiIhMjVaFfMGCBRXu7EZERGQMOLQO4NVXX4W7u/uzGxIRERmaWjq0Xum73PP4OBERkeHR+qx1IiIio1RLe+SVLuQqlaomcxAREdUoHiOnyjMzf3YbfeOToYzW4Hra3XdZHw6kxIodoYJQ7zZiRzAKgkLx7EZ6JAgletwYamWP3HSeBE9ERFQLsUdORESmoZb2yFnIiYjIJNTWY+QcWiciIjJi7JETEZFp4NA6ERGR8eLQOhERERkc9siJiMg0cGidiIjIiNXSQs6hdSIiIiPGHjkREZkEyT+TLssbIhZyIiIyDRxar736jczE1tPx2Jf0F1b9lIgmbQpEzdOiYy4WRF5D1NmLOHDnHIJDs0XNU87Q9hMzGUemgjwzbJhbF290CES/+q0wqV8jJMTZqN8XBGDrMk8Mb9Mc/eq3woyhDXA3yUpv+R7Fz854M1VG+eVnukyGyOQLefeXszB+Xgp2LPdEeGhjJMVLsTgqCTJXPT6R5zFSWxWS4m2xdraPaBkeZ4j7iZmMI9OK931w7pg9pq+5hY2HryCoey5mDmuIzHuWAIBd69zxw5dueHdJMlb9dBVSWxU+eK0Biov0O5Ap9n5iJqoq0Qv53bt38frrr8PV1RU2NjZo2bIlzp49q7ftDxqfif1RLjj4jQtuJ0qxekY9KAolCB3+QG8ZHnf2Dxm2fuKNk/udRMvwOEPcT8xk+JkUhRKc+MUJY2ffQ8vn81E3oBhvTE2Ft78CP21zhSAAe79ww/CJqej0HznqBxZh+upbuJ9miZP7ZTWe71H87Iw3U6UJ1TAZIFELeVZWFjp37gxLS0v8+uuviI+Px6effgpnZ2e9bN/CUoVGrQpw7riDep4gSHD+uAMCg4xjqEgfDHE/MZNxZFIqJVApJbCyVmnMt5aqcOmMPVJvW+FBuiXadc1Tv2fnqELTtgW4HGtX4/nKib2fmEmPalkRB0Q+2W3p0qXw8fFBZGSkel5AQMBT2ysUCigUCvVruVyu0/YdXZQwtwCyMzR3Q1amBXwaKp6ylOkxxP3ETMaRydZehWZB+Yha6QnfRjfh5FaKI3udcTnWDt7+CjxIL8vl5KY5LOvkVqJ+Tx/E3k/MRLoQtUf+448/on379hgyZAjc3d3Rtm1bfP75509tHxERAZlMpp58fAznGDIRPdn0NbcgCMBr7Vqgr39r7N1cBz0GZEEi+oE9MjU82a0GJCUlYcOGDWjUqBEOHDiAt99+G++99x62bt36xPazZs1CTk6OekpOTtZp+/IH5lCWAk5upRrzneuUIiuDV+aVM8T9xEzGk8nbvxj/t/safrj2F746ewlrfklEaYkEXn4KuLiX5crOsNRYJjvDUv2ePhjCfmImPeAx8uqnUqnQrl07fPzxx2jbti3Gjx+PcePGYePGjU9sb21tDUdHR41JF6UlZkj8yxZtu+Sq50kkAtp0yUN8rK1O665NDHE/MZPxZZLaquDqUYrcbHPEHnVEcKgcnr7FcHEvwfkT9up2+blmuHLeFs2C8vWWzZD2EzORtkQt5F5eXggMDNSY16xZM9y+fVtvGXZvqoPerz1AyJAH8GlYhHeX3IHUVoWDO130luFxUlsl6gcWoH5g2ckjnj4K1A8sgJt3sWiZDHE/MZNxZDp7xAExfzgg9bYVYo/aY/orDeHTsAi9ht2HRAIMGJuBr1d5IPqAI25cluKT9/zg6lGCTv/J0Uu+cmLvJ2aqefoeWt+wYQNatWql7ngGBwfj119/Vb9fVFSE8PBwuLq6wt7eHoMHD0ZaWprWP5eoYyGdO3dGQkKCxryrV6/Cz89PbxmO/ugMmasSb05LhbNbKZIu2eDDEQHIzrR89sI1pHHrAnzybaL69Vvz7wIADu5ywadT/EXJZIj7iZmMI1O+3ByREV7IvGcJByclOv83G6Nm3oPFP5sfGp6OogIzrJrugzy5OZp3yMfiHUmwkup3HFPs/cRMeqDnO7vVq1cPS5YsQaNGjSAIArZu3Yr+/fvj/PnzaN68OSZPnoyff/4Z3377LWQyGSZMmIBBgwbhzz//1Go7EkEQRBv1j4mJQadOnbBgwQIMHToUZ86cwbhx47Bp0yaMGDHimcvL5XLIZDL0QH9YSAzol8jMXOwEFamUYiegWuRASpzYESoI9W4jdgSqglKhBEfwA3JycnQ+XPo05bWi5ZiPYW4lrfJ6lMVFuLj5A52yuri44JNPPsErr7wCNzc3REVF4ZVXXgEAXLlyBc2aNUN0dDSef/75Sq9T1KH1Dh06YM+ePfj666/RokULLFq0CCtXrqxUESciItJGdQ2ty+VyjenRy6KfRqlUYufOncjPz0dwcDBiY2NRUlKCkJAQdZumTZvC19cX0dHRWv1cop9m2LdvX/Tt21fsGEREVNtV09D645c+z5s3D/Pnz3/iIhcvXkRwcDCKiopgb2+PPXv2IDAwEHFxcbCysoKTk5NGew8PD6SmpmoVS/RCTkREpBfVVMiTk5M1htatra2fukiTJk0QFxeHnJwcfPfddwgLC8PRo0d1CFERCzkREZEWtLn82crKCg0bNgQABAUFISYmBqtWrcKwYcNQXFyM7OxsjV55WloaPD09tcrDeysREZFJMIQ7u6lUKigUCgQFBcHS0hKHDx9Wv5eQkIDbt28jODhYq3WyR05ERKZBz5efzZo1C71794avry9yc3MRFRWFI0eO4MCBA5DJZBgzZgymTJkCFxcXODo64t1330VwcLBWZ6wDLOREREQ1Ij09HW+++Sbu3bsHmUyGVq1a4cCBA3jppZcAACtWrICZmRkGDx4MhUKB0NBQrF+/XuvtsJATEZFJkAgCJDrcOkXbZTdv3vyv70ulUqxbtw7r1q2rciaAhZyIiEyFnofW9YUnuxERERkx9siJiMgk6HrmuaE+j5yFnIiITAOH1omIiMjQsEdeE/ikMapOBvg0PUN80tj3d06JHaGCwfW0ux6YahaH1omIiIxZLR1aZyEnIiKTUFt75DxGTkREZMTYIyciItPAoXUiIiLjZqjD47rg0DoREZERY4+ciIhMgyCUTbosb4BYyImIyCTwrHUiIiIyOOyRExGRaeBZ60RERMZLoiqbdFneEHFonYiIyIixRw6g38hMvPJ2OlzcSpEUb4P1s+siIc6WmZipVmRq0TEXQ95KQ6OWhXD1LMH8MfURfcBJtDzlxNpPSiWwa3k9HNtdB9npVnD2LEbPIRl4ZeJdSCRlbQrzzfDVx744c8AZeVmWcPctwn9HpyL0jfQaz/c4Q/t9MtRMlVJLh9ZNvkfe/eUsjJ+Xgh3LPREe2hhJ8VIsjkqCzLWEmZipVmSS2qqQFG+LtbN9RMvwODH309713jiwzQNjP7qJVUcu4I1Zt7F3gzd++dJT3WbLAj/EHXHCxNXXserIBfQZk4ovZgcg5qBzjed7lCH+PhlipsoqP2tdl8kQiVrI/f39IZFIKkzh4eF6yzBofCb2R7ng4DcuuJ0oxeoZ9aAolCB0+AO9ZWAmZqpJZ/+QYesn3ji530m0DI8Tcz8lnHVAh15ZCHoxG+4+CgT3fYDW3bJxLc7uYZtYB/QYkoEWneRw91Gg1+vp8A/MR+IjbfTBEH+fDDFTpZVfR67LZIBELeQxMTG4d++eejp06BAAYMiQIXrZvoWlCo1aFeDccQf1PEGQ4PxxBwQGFeglAzMxk6kRez81aZ+Li3/KkJIkBQDcjLfFlRgHtO2Z/bBNUC5iDjnj/j1LCAJw8U9HpCTZoHW3nBrPV07s/WQsmUjkY+Rubm4ar5csWYIGDRqge/fuT2yvUCigUCjUr+VyuU7bd3RRwtwCyM7Q3A1ZmRbwaah4ylI1i5mYqbYTez8NDE9BQa453uveGmbmAlRKCV6bkYxug+6r24xddBMbZ9TH+A5BMLdQQWIGvL0sCc2fz63xfOXE3k/GkkkbtfWGMAZzsltxcTG++uorTJkyBZLyM04eExERgQULFug5GRHVJif3ueL4njqYtPYafBoX4MYlO0TO94OzRzF6DskEAPwS6Ymr5+wxM/IK3OoWI/60Az7/MADOHsVo3VW3DgSJqJae7GYwhXzv3r3Izs7GyJEjn9pm1qxZmDJlivq1XC6Hj0/VT+CRPzCHshRwcivVmO9cpxRZGeLsGmZiptpO7P207SNfDAxPQZf+ZT1wv2aFyLxrjd1r66LnkEwoCiWIWuqD6V9cRdCL2QAA/8AC3Lxkhx83euutkIu9n4wlExnQWeubN29G79694e3t/dQ21tbWcHR01Jh0UVpihsS/bNG2y8PhMolEQJsueYiPFedSCmZiptpO7P2kKDSD5LG/fGbmAoR/bvahLDVDaYkZHh8YNDMX9Hquk9j7yVgyaaO2nrVuEF+hbt26hd9++w27d+/W+7Z3b6qDqSuTcfWCLRLO22LguAxIbVU4uNNF71mYiZlqgtRWCW//h8cvPX0UqB9YgNxsC2SkWImSScz91P6lbHy/2htudRXwaVyIG3/bYt8mL7wwLAMAYOugRPPn5di22BdWUhXc6ilw6ZQjjn7nhrB5t2o836MM8ffJEDNVGp9+VnMiIyPh7u6OPn366H3bR390hsxViTenpcLZrRRJl2zw4YgAZGda6j0LMzFTTWjcugCffJuofv3W/LsAgIO7XPDpFH9RMom5n8YuuoGvP/HBpg8CIM+0hLNnMV56PQ1DJt1Vt5m8PhE7lvhg1bsNkZdtgTr1FBg+4zZC30ir8XyPMsTfJ0PMZOokgiDuVwyVSoWAgAAMHz4cS5Ys0WpZuVwOmUyGHugPCwl/iaiWMjMXO0FFKqXYCSr4/s4psSNUMLje82JHMHilQgmO4Afk5OTofLj0acprRXDvhbCwlFZ5PaUlRYj+dW6NZq0K0Xvkv/32G27fvo3Ro0eLHYWIiGqzWnrWuugnu/Xq1QuCIKBx48ZiRyEiIqo2ERER6NChAxwcHODu7o4BAwYgISFBo01RURHCw8Ph6uoKe3t7DB48GGlp2h3CEb2QExER6YO+z1o/evQowsPDcerUKRw6dAglJSXo1asX8vPz1W0mT56Mffv24dtvv8XRo0eRkpKCQYMGabUd0YfWiYiI9EIllE26LK+F/fv3a7zesmUL3N3dERsbi27duiEnJwebN29GVFQUXnjhBQBlJ383a9YMp06dwvPPV+4cC/bIiYjINAjVMKHs5LlHp0dvHf5vcnLK7tXv4lJ2qV5sbCxKSkoQEhKibtO0aVP4+voiOjq60j8WCzkREZEWfHx8IJPJ1FNERMQzl1GpVJg0aRI6d+6MFi1aAABSU1NhZWUFJycnjbYeHh5ITU2tdB4OrRMRkUmQQMeHpvzz3+TkZI3Lz6ytrZ+5bHh4OP7++2+cOHGi6gGegoWciIhMQzXd2U3bW4RPmDABP/30E44dO4Z69eqp53t6eqK4uBjZ2dkavfK0tDR4enpWev0cWiciIqoBgiBgwoQJ2LNnD37//XcEBARovB8UFARLS0scPnxYPS8hIQG3b99GcHBwpbfDHjkREZkEfT+PPDw8HFFRUfjhhx/g4OCgPu4tk8lgY2MDmUyGMWPGYMqUKXBxcYGjoyPeffddBAcHV/qMdYCFnIiITIWe7+y2YcMGAECPHj005kdGRqof2b1ixQqYmZlh8ODBUCgUCA0Nxfr167XaDgs5ERFRDajMo0ykUinWrVuHdevWVXk7LORERGQSJIIAiQ4nu+mybE1iIScydAb4pDFDZIhPGuMT2QyM6p9Jl+UNEM9aJyIiMmLskRMRkUng0DoREZExq6XPI2chJyIi01BNd3YzNDxGTkREZMTYIyciIpOg7zu76QsLORERmQYOrRMREZGhYY+ciIhMgkRVNumyvCFiISciItPAoXUiIiIyNOyRExGRaeANYWqvfiMz8crb6XBxK0VSvA3Wz66LhDhbZmImZmImvWRSKoFdy+vh2O46yE63grNnMXoOycArE+9CIilrU5hvhq8+9sWZA87Iy7KEu28R/js6FaFvpNd4vscZ4mdXGbX1Fq0mP7Te/eUsjJ+Xgh3LPREe2hhJ8VIsjkqCzLWEmZiJmZhJL5n2rvfGgW0eGPvRTaw6cgFvzLqNvRu88cuXnuo2Wxb4Ie6IEyauvo5VRy6gz5hUfDE7ADEHnWs836MM8bMzdaIWcqVSiTlz5iAgIAA2NjZo0KABFi1aVKmHsVeXQeMzsT/KBQe/ccHtRClWz6gHRaEEocMf6C0DMzETM5l2poSzDujQKwtBL2bD3UeB4L4P0LpbNq7F2T1sE+uAHkMy0KKTHO4+CvR6PR3+gflIfKSNPhjiZ1dp5Se76TIZIFEL+dKlS7FhwwasXbsWly9fxtKlS7Fs2TKsWbNGL9u3sFShUasCnDvuoJ4nCBKcP+6AwKACvWRgJmZiJmZq0j4XF/+UISVJCgC4GW+LKzEOaNsz+2GboFzEHHLG/XuWEATg4p+OSEmyQetuOTWer5zY+0lnAh4+k7wqk2HWcXGPkZ88eRL9+/dHnz59AAD+/v74+uuvcebMmSe2VygUUCgU6tdyuVyn7Tu6KGFuAWRnaO6GrEwL+DRUPGWpmsVMzMRMppdpYHgKCnLN8V731jAzF6BSSvDajGR0G3Rf3WbsopvYOKM+xncIgrmFChIz4O1lSWj+fG6N5ysn9n7SVW09Ri5qIe/UqRM2bdqEq1evonHjxrhw4QJOnDiB5cuXP7F9REQEFixYoOeUREQ16+Q+VxzfUweT1l6DT+MC3Lhkh8j5fnD2KEbPIZkAgF8iPXH1nD1mRl6BW91ixJ92wOcfBsDZoxitu+rWqSHjJmohnzlzJuRyOZo2bQpzc3MolUosXrwYI0aMeGL7WbNmYcqUKerXcrkcPj4+Vd6+/IE5lKWAk1upxnznOqXIyhBn1zATMzGT6WXa9pEvBoanoEv/sh64X7NCZN61xu61ddFzSCYUhRJELfXB9C+uIujFbACAf2ABbl6yw48bvfVWyMXeTzoToOMNYaotSbUS9Rj5rl27sGPHDkRFReHcuXPYunUr/u///g9bt259Yntra2s4OjpqTLooLTFD4l+2aNvl4dCURCKgTZc8xMeKcykFMzETM5leJkWhGSSP/TU2Mxcg/HNLUGWpGUpLzNSXomm00WNxEXs/6ayWnuwm6leoadOmYebMmXj11VcBAC1btsStW7cQERGBsLAwvWTYvakOpq5MxtULtkg4b4uB4zIgtVXh4E4XvWyfmZiJmZip/UvZ+H61N9zqKuDTuBA3/rbFvk1eeGFYBgDA1kGJ5s/LsW2xL6ykKrjVU+DSKUcc/c4NYfNu1Xi+RxniZ2fqRC3kBQUFMDPT/Bpqbm4OlUp/d6Y/+qMzZK5KvDktFc5upUi6ZIMPRwQgO9NSbxmYiZmYybQzjV10A19/4oNNHwRAnmkJZ89ivPR6GoZMuqtuM3l9InYs8cGqdxsiL9sCdeopMHzGbYS+kVbj+R5liJ9dpakASJ7Z6t+XN0ASQZ8XbT9m5MiR+O233/DZZ5+hefPmOH/+PMaPH4/Ro0dj6dKlz1xeLpdDJpOhB/rDQmIEv0REZFK+v3NK7AgVDK73vNgRNJQKJTiCH5CTk6Pz4dKnKa8VL7aYDgtz6yqvp1SpwOG/l9Vo1qoQtUe+Zs0azJkzB++88w7S09Ph7e2N//3vf5g7d66YsYiIiIyGqIXcwcEBK1euxMqVK8WMQUREpqCWPsbUCK4XICIiqga1tJCb/ENTiIiIjBl75EREZBrYIyciIjJiujwwpXzSwrFjx9CvXz94e3tDIpFg7969Gu8LgoC5c+fCy8sLNjY2CAkJQWJiotY/Fgs5ERGZhPKHpugyaSM/Px+tW7fGunXrnvj+smXLsHr1amzcuBGnT5+GnZ0dQkNDUVRUpNV2OLRORERUA3r37o3evXs/8T1BELBy5UrMnj0b/fv3BwBs27YNHh4e2Lt3r/qOp5XBHjkREZmGarrXulwu15gefbx2Zd24cQOpqakICQlRz5PJZOjYsSOio6O1WhcLORERmQaVoPsEwMfHBzKZTD1FRERoHSU1NRUA4OHhoTHfw8ND/V5lcWidiIhIC8nJyRq3aLW2rvptX6sDe+RERGQaqmlo/fHHaVelkHt6egIA0tI0H3qTlpamfq+yWMiJiMhE6FrEq+868oCAAHh6euLw4cPqeXK5HKdPn0ZwcLBW6+LQOonHzFzsBBWplGInqIj7yWgZ2pPGAOBASpzYETTIc1Vwbix2ipqRl5eHa9euqV/fuHEDcXFxcHFxga+vLyZNmoSPPvoIjRo1QkBAAObMmQNvb28MGDBAq+2wkBMRkWnQ853dzp49i549e6pfT5kyBQAQFhaGLVu2YPr06cjPz8f48eORnZ2NLl26YP/+/ZBKpVpth4WciIhMg0rH4XGVdsv26NEDwr8Uf4lEgoULF2LhwoVVzwQeIyciIjJq7JETEZFpEFRlky7LGyAWciIiMg219OlnLORERGQa9HyMXF94jJyIiMiIsUdORESmgUPrRERERkyAjoW82pJUKw6tExERGTH2yImIyDRwaJ2IiMiIqVQAdLgWXGWY15FzaB1Av5GZ2Ho6HvuS/sKqnxLRpE2B2JGYqRJadMzFgshriDp7EQfunENwaLaoecpxP1WOoe0nZqqoIM8MG+bWxRsdAtGvfitM6tcICXE26vcFAdi6zBPD2zRHv/qtMGNoA9xNstJbPipj8oW8+8tZGD8vBTuWeyI8tDGS4qVYHJUEmWsJMxl4JqmtCknxtlg720e0DI/jfqocQ9xPzFTRivd9cO6YPaavuYWNh68gqHsuZg5riMx7lgCAXevc8cOXbnh3STJW/XQVUlsVPnitAYqLJHrJp7Vqeh65oRG1kOfm5mLSpEnw8/ODjY0NOnXqhJiYGL1mGDQ+E/ujXHDwGxfcTpRi9Yx6UBRKEDr8gV5zMJP2zv4hw9ZPvHFyv5NoGR7H/VQ5hrifmEmTolCCE784Yezse2j5fD7qBhTjjamp8PZX4KdtrhAEYO8Xbhg+MRWd/iNH/cAiTF99C/fTLHFyv6zG81UJC3n1Gzt2LA4dOoTt27fj4sWL6NWrF0JCQnD37l29bN/CUoVGrQpw7riDep4gSHD+uAMCg8QZUmMm48X9VDmGuJ+YqSKlUgKVUgIra83jwtZSFS6dsUfqbSs8SLdEu6556vfsHFVo2rYAl2PtajwfPSRaIS8sLMT333+PZcuWoVu3bmjYsCHmz5+Phg0bYsOGDU9cRqFQQC6Xa0y6cHRRwtwCyM7QPOcvK9MCzm6lOq2bmUwP91PlGOJ+YqaKbO1VaBaUj6iVnrifagGlEjj8vTMux9rhQZoFHqSX5XJy0xzmd3IrUb9ncFSC7pMBEq2Ql5aWQqlUVniAuo2NDU6cOPHEZSIiIiCTydSTj4/hHPMjIqptpq+5BUEAXmvXAn39W2Pv5jroMSALEiM9u0oQVDpPhki0j8PBwQHBwcFYtGgRUlJSoFQq8dVXXyE6Ohr37t174jKzZs1CTk6OekpOTtYpg/yBOZSlgNNj326d65QiK0Ocb5TMZLy4nyrHEPcTMz2Zt38x/m/3Nfxw7S98dfYS1vySiNISCbz8FHBxL8uVnWGpsUx2hqX6PYMj6Ngb5zHyirZv3w5BEFC3bl1YW1tj9erVGD58OMzMnhzL2toajo6OGpMuSkvMkPiXLdp2yVXPk0gEtOmSh/hYW53WzUymh/upcgxxPzHTv5PaquDqUYrcbHPEHnVEcKgcnr7FcHEvwfkT9up2+blmuHLeFs2C8vWaz9SJ2k1o0KABjh49ivz8fMjlcnh5eWHYsGGoX7++3jLs3lQHU1cm4+oFWySct8XAcRmQ2qpwcKeL3jIwU9VIbZXw9leoX3v6KFA/sAC52RbISBHnWlbup8oxxP3ETBWdPeIAQQB8Gihw94YVvlhUFz4Ni9Br2H1IJMCAsRn4epUH6gYo4OlbjK3LvODqUYJO/8nRSz6tCTo+xtRAe+QGMd5nZ2cHOzs7ZGVl4cCBA1i2bJnetn30R2fIXJV4c1oqnN1KkXTJBh+OCEB2puWzF2YmUTM1bl2AT75NVL9+a37Z1Q4Hd7ng0yn+omTifqocQ9xPzFRRvtwckRFeyLxnCQcnJTr/NxujZt6DxT+bHxqejqICM6ya7oM8uTmad8jH4h1JsJIaZsGDSgVIdDjObaDHyCWCIN5XjAMHDkAQBDRp0gTXrl3DtGnTIJVKcfz4cVhaPvsXVS6XQyaToQf6w0Ii3j82qiIzc7ETVKRSip2gIu4nqkYHUuLEjqBBnquCc+Mk5OTk6Hy49Knb+KdWvOgwAhaSqo9ClQrFOJy7o0azVoWoPfKcnBzMmjULd+7cgYuLCwYPHozFixdXqogTERFphUPr1W/o0KEYOnSomBGIiMhECCoVBB2G1nn5GREREVU7gzjZjYiIqMZxaJ2IiMiIqQRAUvsKOYfWiYiIjBh75EREZBoEAYAu15EbZo+chZyIiEyCoBIg6DC0LuJtV/4VCzkREZkGQQXdeuS8/IyIiMjkrFu3Dv7+/pBKpejYsSPOnDlTretnISciIpMgqASdJ2198803mDJlCubNm4dz586hdevWCA0NRXp6erX9XCzkRERkGgSV7pOWli9fjnHjxmHUqFEIDAzExo0bYWtriy+//LLafiyjPkZefuJBKUp0usafRGKIx5sEA3wYCPcTVSN5rmH9PsnzyvLo40QyXWtFKUoAlD2E5VHW1tawtrau0L64uBixsbGYNWuWep6ZmRlCQkIQHR1d9SCPMepCnpubCwA4gV9ETkJVYlh/TwwX9xNVI+fGYid4stzcXMhkshpZt5WVFTw9PXEiVfdaYW9vDx8fH4158+bNw/z58yu0zczMhFKphIeHh8Z8Dw8PXLlyRecs5Yy6kHt7eyM5ORkODg6QSCQ6rUsul8PHxwfJyckG83g6ZqocQ8tkaHkAZqosZqqc6swkCAJyc3Ph7e1dTekqkkqluHHjBoqLi3VelyAIFerNk3rj+mTUhdzMzAz16tWr1nU6OjoazD+WcsxUOYaWydDyAMxUWcxUOdWVqaZ64o+SSqWQSqU1vp1H1alTB+bm5khLS9OYn5aWBk9Pz2rbDk92IyIiqgFWVlYICgrC4cOH1fNUKhUOHz6M4ODgatuOUffIiYiIDNmUKVMQFhaG9u3b47nnnsPKlSuRn5+PUaNGVds2WMj/YW1tjXnz5ol+rONRzFQ5hpbJ0PIAzFRZzFQ5hpjJUA0bNgwZGRmYO3cuUlNT0aZNG+zfv7/CCXC6kAiGevNYIiIieiYeIyciIjJiLORERERGjIWciIjIiLGQExERGTEWctT8I+a0dezYMfTr1w/e3t6QSCTYu3evqHkiIiLQoUMHODg4wN3dHQMGDEBCQoKomTZs2IBWrVqpb0gRHByMX3/9VdRMj1uyZAkkEgkmTZokWob58+dDIpFoTE2bNhUtT7m7d+/i9ddfh6urK2xsbNCyZUucPXtWtDz+/v4V9pNEIkF4eLhomZRKJebMmYOAgADY2NigQYMGWLRokV7uSf5vcnNzMWnSJPj5+cHGxgadOnVCTEyMqJlMnckXcn08Yk5b+fn5aN26NdatWydahkcdPXoU4eHhOHXqFA4dOoSSkhL06tUL+fn5omWqV68elixZgtjYWJw9exYvvPAC+vfvj0uXLomW6VExMTH47LPP0KpVK7GjoHnz5rh37556OnHihKh5srKy0LlzZ1haWuLXX39FfHw8Pv30Uzg7O4uWKSYmRmMfHTp0CAAwZMgQ0TItXboUGzZswNq1a3H58mUsXboUy5Ytw5o1a0TLBABjx47FoUOHsH37dly8eBG9evVCSEgI7t69K2oukyaYuOeee04IDw9Xv1YqlYK3t7cQEREhYqqHAAh79uwRO4aG9PR0AYBw9OhRsaNocHZ2Fr744guxYwi5ublCo0aNhEOHDgndu3cXJk6cKFqWefPmCa1btxZt+08yY8YMoUuXLmLH+FcTJ04UGjRoIKhUKtEy9OnTRxg9erTGvEGDBgkjRowQKZEgFBQUCObm5sJPP/2kMb9du3bChx9+KFIqMukeefkj5kJCQtTzauIRc7VNTk4OAMDFxUXkJGWUSiV27tyJ/Pz8ar3tYVWFh4ejT58+Gr9XYkpMTIS3tzfq16+PESNG4Pbt26Lm+fHHH9G+fXsMGTIE7u7uaNu2LT7//HNRMz2quLgYX331FUaPHq3zw5h00alTJxw+fBhXr14FAFy4cAEnTpxA7969RctUWloKpVJZ4Z7lNjY2oo/0mDKTvrObvh4xV5uoVCpMmjQJnTt3RosWLUTNcvHiRQQHB6OoqAj29vbYs2cPAgMDRc20c+dOnDt3zmCOGXbs2BFbtmxBkyZNcO/ePSxYsABdu3bF33//DQcHB1EyJSUlYcOGDZgyZQo++OADxMTE4L333oOVlRXCwsJEyfSovXv3Ijs7GyNHjhQ1x8yZMyGXy9G0aVOYm5tDqVRi8eLFGDFihGiZHBwcEBwcjEWLFqFZs2bw8PDA119/jejoaDRs2FC0XKbOpAs5aS88PBx///23QXz7btKkCeLi4pCTk4PvvvsOYWFhOHr0qGjFPDk5GRMnTsShQ4f0/pSlp3m099aqVSt07NgRfn5+2LVrF8aMGSNKJpVKhfbt2+Pjjz8GALRt2xZ///03Nm7caBCFfPPmzejdu3eNPlazMnbt2oUdO3YgKioKzZs3R1xcHCZNmgRvb29R99P27dsxevRo1K1bF+bm5mjXrh2GDx+O2NhY0TKZOpMu5Pp6xFxtMWHCBPz00084duxYtT8+tiqsrKzUvYCgoCDExMRg1apV+Oyzz0TJExsbi/T0dLRr1049T6lU4tixY1i7di0UCgXMzc1FyVbOyckJjRs3xrVr10TL4OXlVeHLVrNmzfD999+LlOihW7du4bfffsPu3bvFjoJp06Zh5syZePXVVwEALVu2xK1btxARESFqIW/QoAGOHj2K/Px8yOVyeHl5YdiwYahfv75omUydSR8j19cj5oydIAiYMGEC9uzZg99//x0BAQFiR3oilUoFhUIh2vZffPFFXLx4EXFxceqpffv2GDFiBOLi4kQv4gCQl5eH69evw8vLS7QMnTt3rnD54tWrV+Hn5ydSoociIyPh7u6OPn36iB0FBQUFMDPT/BNtbm4OlUolUiJNdnZ28PLyQlZWFg4cOID+/fuLHclkmXSPHNDPI+a0lZeXp9FjunHjBuLi4uDi4gJfX1+95wkPD0dUVBR++OEHODg4IDU1FQAgk8lgY2Oj9zwAMGvWLPTu3Ru+vr7Izc1FVFQUjhw5ggMHDoiSByg7fvj4eQN2dnZwdXUV7XyCqVOnol+/fvDz80NKSgrmzZsHc3NzDB8+XJQ8ADB58mR06tQJH3/8MYYOHYozZ85g06ZN2LRpk2iZgLIvgpGRkQgLC4OFhfh/Gvv164fFixfD19cXzZs3x/nz57F8+XKMHj1a1FwHDhyAIAho0qQJrl27hmnTpqFp06ai/s00eWKfNm8I1qxZI/j6+gpWVlbCc889J5w6dUrUPH/88YcAoMIUFhYmSp4nZQEgREZGipJHEARh9OjRgp+fn2BlZSW4ubkJL774onDw4EHR8jyN2JefDRs2TPDy8hKsrKyEunXrCsOGDROuXbsmWp5y+/btE1q0aCFYW1sLTZs2FTZt2iR2JOHAgQMCACEhIUHsKIIgCIJcLhcmTpwo+Pr6ClKpVKhfv77w4YcfCgqFQtRc33zzjVC/fn3ByspK8PT0FMLDw4Xs7GxRM5k6PsaUiIjIiJn0MXIiIiJjx0JORERkxFjIiYiIjBgLORERkRFjISciIjJiLORERERGjIWciIjIiLGQExERGTEWciIdjRw5EgMGDFC/7tGjByZNmqT3HEeOHIFEIkF2dvZT20gkEuzdu7fS65w/fz7atGmjU66bN29CIpEgLi5Op/UQ0ZOxkFOtNHLkSEgkEkgkEvVT0hYuXIjS0tIa3/bu3buxaNGiSrWtTPElIvo34j8ZgKiG/Oc//0FkZCQUCgV++eUXhIeHw9LSErNmzarQtri4GFZWVtWyXRcXl2pZDxFRZbBHTrWWtbU1PD094efnh7fffhshISH48ccfATwcDl+8eDG8vb3RpEkTAEBycjKGDh0KJycnuLi4oH///rh586Z6nUqlElOmTIGTkxNcXV0xffp0PP64gseH1hUKBWbMmAEfHx9YW1ujYcOG2Lx5M27evImePXsCAJydnSGRSDBy5EgAZU/iioiIQEBAAGxsbNC6dWt89913Gtv55Zdf0LhxY9jY2KBnz54aOStrxowZaNy4MWxtbVG/fn3MmTMHJSUlFdp99tln8PHxga2tLYYOHYqcnByN97/44gs0a9YMUqkUTZs2xfr167XOQkRVw0JOJsPGxgbFxcXq14cPH0ZCQgIOHTqEn376CSUlJQgNDYWDgwOOHz+OP//8E/b29vjPf/6jXu7TTz/Fli1b8OWXX+LEiRN48OAB9uzZ86/bffPNN/H1119j9erVuHz5Mj777DPY29vDx8cH33//PQAgISEB9+7dw6pVqwAAERER2LZtGzZu3IhLly5h8uTJeP3113H06FEAZV84Bg0ahH79+iEuLg5jx47FzJkztd4nDg4O2LJlC+Lj47Fq1Sp8/vnnWLFihUaba9euYdeuXdi3bx/279+P8+fP45133lG/v2PHDsydOxeLFy/G5cuX8fHHH2POnDnYunWr1nmIqApEfvoaUY0ICwsT+vfvLwiCIKhUKuHQoUOCtbW1MHXqVPX7Hh4eGo+E3L59u9CkSRNBpVKp5ykUCsHGxkY4cOCAIAiC4OXlJSxbtkz9fklJiVCvXj31tgRB89GlCQkJAgDh0KFDT8xZ/sjarKws9byioiLB1tZWOHnypEbbMWPGCMOHDxcEQRBmzZolBAYGarw/Y8aMCut6HABhz549T33/k08+EYKCgtSv582bJ5ibmwt37txRz/v1118FMzMz4d69e4IgCEKDBg2EqKgojfUsWrRICA4OFgRBEG7cuCEAEM6fP//U7RJR1fEYOdVaP/30E+zt7VFSUgKVSoXXXnsN8+fPV7/fsmVLjePiFy5cwLVr1+Dg4KCxnqKiIly/fh05OTm4d+8eOnbsqH7PwsIC7du3rzC8Xi4uLg7m5ubo3r17pXNfu3YNBQUFeOmllzTmFxcXo23btgCAy5cva+QAgODg4Epvo9w333yD1atX4/r168jLy0NpaSkcHR012vj6+qJu3boa21GpVEhISICDgwOuX7+OMWPGYNy4ceo2paWlkMlkWuchIu2xkFOt1bNnT2zYsAFWVlbw9vaGhYXmr7udnZ3G67y8PAQFBWHHjh0V1uXm5lalDDY2Nlovk5eXBwD4+eefNQooUHbcv7pER0djxIgRWLBgAUJDQyGTybBz5058+umnWmf9/PPPK3yxMDc3r7asRPR0LORUa9nZ2aFhw4aVbt+uXTt88803cHd3r9ArLefl5YXTp0+jW7duAMp6nrGxsWjXrt0T27ds2RIqlQpHjx5FSEhIhffLRwSUSqV6XmBgIKytrXH79u2n9uSbNWumPnGv3KlTp579Qz7i5MmT8PPzw4cffqied+vWrQrtbt++jZSUFHh7e6u3Y2ZmhiZNmsDDwwPe3t5ISkrCiBEjtNo+EVUPnuxG9I8RI0agTp066N+/P44fP44bN27gyJEjeO+993Dnzh0AwMSJE7FkyRLs3bsXV65cwTvvvPOv14D7+/sjLCwMo0ePxt69e9Xr3LVrFwDAz88PEokEP/30EzIyMpCXlwcHBwdMnToVkydPxtatW3H9+nWcO3cOa9asUZ9A9tZbbyExMRHTpk1DQkICoqKisGXLFq1+3kaNGuH27dvYuXMnrl+/jtWrVz/xxD2pVIqwsDBcuHABx48fx3vvvYehQ4fC09MTALBgwQJERERg9erVuHr1Ki5evIjIyEgsX75cqzxEVDUs5ET/sLW1xbFjx+Dr64tBgwahWbNmGDNmDIqKitQ99Pfffx9vvPEGwsLCEBwcDAcHBwwcOPBf17thwwa88soreOedd9C0aVOMGzcO+fn5AIC6detiwYIFmDlzJjw8PDBhwgQAwKJFizBnzhxERESgWbNm+M9//oOff/4ZAQEBAMqOW3///ffYu3cvWrdujY0bN+Ljjz/W6ud9+eWXMXnyZEyYMAFt2rTByZMnMWfOnArtGjZsiEGDBuG///0vevXqhVatWmlcXjZ27Fh88cUXiIyMRMuWLdG9e3ds2bJFnZWIapZEeNpZOkRERGTw2CMnIiIyYizkRERERoyFnIiIyIixkBMRERkxFnIiIiIjxkJORERkxFjIiYiIjBgLORERkRFjISciIjJiLORERERGjIWciIjIiP0/Y3Jf+6zzVTEAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "print(\"Support Vector Machine\")\n", "print(f\"Classification report for classifier {clf}:\\n\"\n", " f\"{metrics.classification_report(y_test, svc_prediction)}\\n\")\n", - "disp = metrics.plot_confusion_matrix(clf, X_test, y_test)\n", + "\n", + "disp = ConfusionMatrixDisplay.from_estimator(clf, X_test, y_test)\n", "disp.figure_.suptitle(\"Confusion Matrix\")\n", - "print(f\"Confusion matrix:\\n{disp.confusion_matrix}\")\n", + "# print(f\"Confusion matrix:\\n{disp.confusion_matrix}\")\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "K-nearest neighbors\n", + "Classification report for classifier KNeighborsClassifier():\n", + " precision recall f1-score support\n", + "\n", + " 0 0.99 1.00 0.99 88\n", + " 1 0.95 0.98 0.96 91\n", + " 2 0.98 0.93 0.95 86\n", + " 3 0.89 0.90 0.90 91\n", + " 4 1.00 0.95 0.97 92\n", + " 5 0.96 0.98 0.97 91\n", + " 6 0.99 1.00 0.99 91\n", + " 7 0.95 1.00 0.97 89\n", + " 8 0.95 0.90 0.92 88\n", + " 9 0.91 0.92 0.92 92\n", + "\n", + " accuracy 0.96 899\n", + " macro avg 0.96 0.96 0.96 899\n", + "weighted avg 0.96 0.96 0.96 899\n", + "\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAHgCAYAAABej+9AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuEUlEQVR4nO3deVwU9f8H8NeywC4gLDcIIof3fWeoeaTp15+aZh6ZFZpHGlZmmvrN+8Ljq5maV5lXklkepZV3XqnlhakooqCiiIACy7nA7vz+INZWoICFnVn29Xw85lEMM/t5MYu89/OZz8zIBEEQQERERGbJSuwAREREVH4s5ERERGaMhZyIiMiMsZATERGZMRZyIiIiM8ZCTkREZMZYyImIiMwYCzkREZEZYyEnIiIyYyzkRCKLjo5G9+7doVKpIJPJsGfPngp9/Tt37kAmk2HTpk0V+rrmrHPnzujcubPYMYgqBAs5EYDbt2/jnXfeQVBQEJRKJZycnNC+fXt89tlnyM7OrtS2Q0JCcOXKFcyfPx9bt25F69atK7U9Uxo2bBhkMhmcnJyKPY7R0dGQyWSQyWT43//+V+bXj4+Px6xZsxAREVEBaYnMk7XYAYjE9tNPP2HgwIFQKBR466230LhxY+Tm5uLUqVOYNGkSrl27hvXr11dK29nZ2Thz5gw++eQTjBs3rlLa8Pf3R3Z2NmxsbCrl9f+NtbU1srKysHfvXgwaNMjge9u2bYNSqUROTk65Xjs+Ph6zZ89GQEAAmjdvXur9Dh48WK72iKSIhZwsWmxsLF577TX4+/vj6NGjqF69uv57oaGhuHXrFn766adKaz8pKQkA4OzsXGltyGQyKJXKSnv9f6NQKNC+fXt88803RQp5eHg4evXqhZ07d5okS1ZWFuzt7WFra2uS9ohMgUPrZNEWL16MjIwMbNiwwaCIF6pduzY++OAD/df5+fmYO3cuatWqBYVCgYCAAPz3v/+FRqMx2C8gIAC9e/fGqVOn8Nxzz0GpVCIoKAhbtmzRbzNr1iz4+/sDACZNmgSZTIaAgAAABUPShf//d7NmzYJMJjNYd+jQIXTo0AHOzs6oVq0a6tWrh//+97/675d0jvzo0aN44YUX4ODgAGdnZ/Tt2xfXr18vtr1bt25h2LBhcHZ2hkqlwvDhw5GVlVXygX3G66+/jl9++QWpqan6defOnUN0dDRef/31Its/efIEEydORJMmTVCtWjU4OTmhZ8+euHz5sn6bY8eOoU2bNgCA4cOH64foC3/Ozp07o3Hjxrhw4QI6duwIe3t7/XF59hx5SEgIlEplkZ+/R48ecHFxQXx8fKl/ViJTYyEni7Z3714EBQWhXbt2pdp+5MiRmDFjBlq2bIlPP/0UnTp1QlhYGF577bUi2966dQsDBgzASy+9hKVLl8LFxQXDhg3DtWvXAAD9+/fHp59+CgAYMmQItm7diuXLl5cp/7Vr19C7d29oNBrMmTMHS5cuxcsvv4zffvvtH/c7fPgwevTogcTERMyaNQsTJkzA6dOn0b59e9y5c6fI9oMGDUJ6ejrCwsIwaNAgbNq0CbNnzy51zv79+0Mmk2HXrl36deHh4ahfvz5atmxZZPuYmBjs2bMHvXv3xrJlyzBp0iRcuXIFnTp10hfVBg0aYM6cOQCA0aNHY+vWrdi6dSs6duyof53Hjx+jZ8+eaN68OZYvX44uXboUm++zzz6Dh4cHQkJCoNVqAQDr1q3DwYMHsXLlSvj4+JT6ZyUyOYHIQqWlpQkAhL59+5Zq+4iICAGAMHLkSIP1EydOFAAIR48e1a/z9/cXAAgnTpzQr0tMTBQUCoXw0Ucf6dfFxsYKAIQlS5YYvGZISIjg7+9fJMPMmTOFv/+z/fTTTwUAQlJSUom5C9vYuHGjfl3z5s0FT09P4fHjx/p1ly9fFqysrIS33nqrSHtvv/22wWu+8sorgpubW4lt/v3ncHBwEARBEAYMGCB07dpVEARB0Gq1gre3tzB79uxij0FOTo6g1WqL/BwKhUKYM2eOft25c+eK/GyFOnXqJAAQ1q5dW+z3OnXqZLDuwIEDAgBh3rx5QkxMjFCtWjWhX79+//ozEomNPXKyWGq1GgDg6OhYqu1//vlnAMCECRMM1n/00UcAUORcesOGDfHCCy/ov/bw8EC9evUQExNT7szPKjy3/sMPP0Cn05Vqn4cPHyIiIgLDhg2Dq6urfn3Tpk3x0ksv6X/OvxszZozB1y+88AIeP36sP4al8frrr+PYsWNISEjA0aNHkZCQUOywOlBwXt3KquDPk1arxePHj/WnDS5evFjqNhUKBYYPH16qbbt374533nkHc+bMQf/+/aFUKrFu3bpSt0UkFhZyslhOTk4AgPT09FJtf/fuXVhZWaF27doG6729veHs7Iy7d+8arK9Zs2aR13BxcUFKSko5Exc1ePBgtG/fHiNHjoSXlxdee+017Nix4x+LemHOevXqFflegwYNkJycjMzMTIP1z/4sLi4uAFCmn+X//u//4OjoiG+//Rbbtm1DmzZtihzLQjqdDp9++inq1KkDhUIBd3d3eHh44M8//0RaWlqp2/T19S3TxLb//e9/cHV1RUREBFasWAFPT89S70skFhZyslhOTk7w8fHB1atXy7Tfs5PNSiKXy4tdLwhCudsoPH9byM7ODidOnMDhw4fx5ptv4s8//8TgwYPx0ksvFdnWGMb8LIUUCgX69++PzZs3Y/fu3SX2xgFgwYIFmDBhAjp27Iivv/4aBw4cwKFDh9CoUaNSjzwABcenLC5duoTExEQAwJUrV8q0L5FYWMjJovXu3Ru3b9/GmTNn/nVbf39/6HQ6REdHG6x/9OgRUlNT9TPQK4KLi4vBDO9Cz/b6AcDKygpdu3bFsmXLEBkZifnz5+Po0aP49ddfi33twpxRUVFFvnfjxg24u7vDwcHBuB+gBK+//jouXbqE9PT0YicIFvr+++/RpUsXbNiwAa+99hq6d++Obt26FTkmpf1QVRqZmZkYPnw4GjZsiNGjR2Px4sU4d+5chb0+UWVhISeL9vHHH8PBwQEjR47Eo0ePinz/9u3b+OyzzwAUDA0DKDKzfNmyZQCAXr16VViuWrVqIS0tDX/++ad+3cOHD7F7926D7Z48eVJk38Ibozx7SVyh6tWro3nz5ti8ebNBYbx69SoOHjyo/zkrQ5cuXTB37lysWrUK3t7eJW4nl8uL9Pa/++47PHjwwGBd4QeO4j70lNXkyZNx7949bN68GcuWLUNAQABCQkJKPI5EUsEbwpBFq1WrFsLDwzF48GA0aNDA4M5up0+fxnfffYdhw4YBAJo1a4aQkBCsX78eqamp6NSpE/744w9s3rwZ/fr1K/HSpvJ47bXXMHnyZLzyyit4//33kZWVhTVr1qBu3boGk73mzJmDEydOoFevXvD390diYiJWr16NGjVqoEOHDiW+/pIlS9CzZ08EBwdjxIgRyM7OxsqVK6FSqTBr1qwK+zmeZWVlhWnTpv3rdr1798acOXMwfPhwtGvXDleuXMG2bdsQFBRksF2tWrXg7OyMtWvXwtHREQ4ODmjbti0CAwPLlOvo0aNYvXo1Zs6cqb8cbuPGjejcuTOmT5+OxYsXl+n1iExK5FnzRJJw8+ZNYdSoUUJAQIBga2srODo6Cu3btxdWrlwp5OTk6LfLy8sTZs+eLQQGBgo2NjaCn5+fMHXqVINtBKHg8rNevXoVaefZy55KuvxMEATh4MGDQuPGjQVbW1uhXr16wtdff13k8rMjR44Iffv2FXx8fARbW1vBx8dHGDJkiHDz5s0ibTx7idbhw4eF9u3bC3Z2doKTk5PQp08fITIy0mCbwvaevbxt48aNAgAhNja2xGMqCIaXn5WkpMvPPvroI6F69eqCnZ2d0L59e+HMmTPFXjb2ww8/CA0bNhSsra0Nfs5OnToJjRo1KrbNv7+OWq0W/P39hZYtWwp5eXkG23344YeClZWVcObMmX/8GYjEJBOEMsxWISIiIknhOXIiIiIzxkJORERkxljIiYiIzBgLORERkRljISciIjJjLORERERmjIWciIjIjLGQExERmTEWciIiIjPGQk5ERGTGWMiJiIjMGAs5ERGRGWMhJyIiMmMs5ERERGaMhZyIiMiMsZATERGZMRZyIiIiM8ZCTkREZMZYyImIiMwYCzkREZEZYyEnIiIyYyzkREREZoyFnIiIyIyxkBMREZkxFnIiIiIzxkJORERkxljIiYiIzBgLORERkRljISciIjJjLORERERmjIWciIjIjFmLHcAYOp0O8fHxcHR0hEwmEzsOERGVkSAISE9Ph4+PD6ysKq9vmZOTg9zcXKNfx9bWFkqlsgISVRyzLuTx8fHw8/MTOwYRERkpLi4ONWrUqJTXzsnJQaB/NSQkao1+LW9vb8TGxkqqmJt1IXd0dAQAXDrnAcdq0jlLMLLB82JHICIyC/nIwyn8rP97Xhlyc3ORkKjF3QsBcHIsf61Qp+vg3+oOcnNzWcgrSuFwumM1Kzga8eZUNGuZjdgRiIjMg1DwH1OcHq3mKEM1x/K3o4M0T+GadSEnIiIqLa2gg1Ywbn8pYiEnIiKLoIMAHcpfyY3ZtzJJZzyaiIiIyow9ciIisgg66GDM4Lhxe1ceFnIiIrIIWkGAVij/8Lgx+1YmDq0TERGZMfbIiYjIIlTVyW4s5EREZBF0EKCtgoWcQ+tERERmjD1yIiKyCBxarwJ0WmDnspr4bbcHUhNt4OKVi44DE9Hvg/sovDtgTqYVtocF4PwBV2SkWMOjpgY9hj9EtzcTTJq1z7BkDBibCFePfMRE2mH1NF9ERdibNAMzMRMzMZO5ZCoNzlqvAvauroHDW70RMjcGS369hNf+exf71tbAgY3V9dt8PScQfx5zxrsrbmLJr5fQc0Q8Nk8PwoWDribL2enlFIyeGY9ty7wR2qMuYiKVmB8eA5VbnskyMBMzMRMzmUsmSyeJQv75558jICAASqUSbdu2xR9//FEp7dy84IhW3Z+gRdcUePhp0LbXYzTpmIKYiGr6baLPO+KFAYloGKyGh58GLw59hJoNM3H7b9tUtv6jk7E/3BUHv3XFvWglVkyuAU22DD2GPDFZBmZiJmZiJnPJVFq6ClikSPRC/u2332LChAmYOXMmLl68iGbNmqFHjx5ITEys8LbqtkrHtd9UeBhT8Pi5u5H2iDrnhGZdUvXb1GmdjouHXPHkoS0EAbh2WoWEGDs06Zha/ItWMGsbHeo0zcLFk08f6ScIMlw66YiGrbJMkoGZmImZmMlcMpWF9q9Z68YsUiT6OfJly5Zh1KhRGD58OABg7dq1+Omnn/DVV19hypQpFdpWn9D7yM6QY1LnlrCSC9BpZRj48V20fyVJv03InBhsmFIb7z3XBnJrHWRWwMhFt9DgeXWFZimJk6sWcmsgNcnwrUlJtoZfbY1JMjATMzETM5lLprLQCjDy6WcVl6UiiVrIc3NzceHCBUydOlW/zsrKCt26dcOZM2eKbK/RaKDRPP1lUavLVlx/3+uO33Z7IHTlTfjWzcLdSAd8PSvwr0lvBcX84MbquHXRER99FQn3Ghrc+N0Jm6bVgotXLhq/kFbOn5SIiKhyiFrIk5OTodVq4eXlZbDey8sLN27cKLJ9WFgYZs+eXe72wucHoM+79xHcNxkAULNBFpLvK/Dj5zXQcWAScrOt8O1if3z4xQ206Jqi3+butWr4aZ2vSQq5+okc2nzA2SPfYL2Lez5SksR5u5iJmZiJmaSaqSyMPc/Nc+QVYOrUqUhLS9MvcXFxZdo/N9sKVs/8xFZyAYKu4Nqz/HwZtHlWkFkJRbbRmegdzM+zQvSf9mjRIV2/TiYT0LxDBiIviHN5BzMxEzMxk1QzlYUOMmiNWHSQif0jFEvUj1Du7u6Qy+V49OiRwfpHjx7B29u7yPYKhQIKhaLc7bXo9gR7VtaAm68GNepm4c5VB/zyhS86DS5o395RiwbPp+GbeQGwVcbA3VeD62dVOPm9B96Ycafc7ZbVrvXumLg8Djcv2yPqkj1eGZUEpb0OB7eb7hI4ZmImZmImc8lk6UQt5La2tmjVqhWOHDmCfv36AQB0Oh2OHDmCcePGVXh7IXNj8f3/amLjJ0FQJxfcEObFoQnoP/5pz37c51H4dqE/Vr9XFxmp1nCvocGgj++hqwlvCHP8Rxeo3LR4a1ICXDzyEXPNDp8MDURqso3JMjATMzETM5lLptLSCQWLMftLkUwQxL1VzbfffouQkBCsW7cOzz33HJYvX44dO3bgxo0bRc6dP0utVkOlUuHWdS84OkrnLMFQv/ZiRyAiMgv5Qh6O4QekpaXBycmpUtoorBW/X/NGNSNqRUa6Dm0bJVRq1vIQfXbC4MGDkZSUhBkzZiAhIQHNmzfH/v37/7WIExERkQQKOQCMGzeuUobSiYiIChVOWjNmfymSRCEnIiKqbDpBBp1Q/mJszL6VSTonlomIiKjM2CMnIiKLwKF1IiIiM6aFFbRGDERrKzBLRWIhJyIiiyAYeY5c4DlyIiIiqmjskRMRkUXgOXIiIiIzphWsoBWMOEcu0Vu0cmidiIjIjLFHTkREFkEHGXRG9F91kGaXnIWciIgsAs+RS9jIBs/DWiadR+jtvH9W7AhFvFrjebEjEFkeK7nYCaRP0AE6sUOYtypRyImIiP6N8ZPdOLROREQkmoJz5EY8NEWiQ+uctU5ERGTGWMiJiMgi6P6613p5l7LOeNdqtZg+fToCAwNhZ2eHWrVqYe7cuRD+NkQvCAJmzJiB6tWrw87ODt26dUN0dHSZ2mEhJyIii1B4jtyYpSwWLVqENWvWYNWqVbh+/ToWLVqExYsXY+XKlfptFi9ejBUrVmDt2rX4/fff4eDggB49eiAnJ6fU7fAcORERWQRdOXrVhvuXbbLb6dOn0bdvX/Tq1QsAEBAQgG+++QZ//PEHgILe+PLlyzFt2jT07dsXALBlyxZ4eXlhz549eO2110rVDnvkREREZaBWqw0WjUZT7Hbt2rXDkSNHcPPmTQDA5cuXcerUKfTs2RMAEBsbi4SEBHTr1k2/j0qlQtu2bXHmzJlS52GPnIiILIJWkEFrxKNIC/f18/MzWD9z5kzMmjWryPZTpkyBWq1G/fr1IZfLodVqMX/+fAwdOhQAkJCQAADw8vIy2M/Ly0v/vdJgISciIotQOGmt/PsXDK3HxcXByclJv16hUBS7/Y4dO7Bt2zaEh4ejUaNGiIiIwPjx4+Hj44OQkJBy53gWCzkREVEZODk5GRTykkyaNAlTpkzRn+tu0qQJ7t69i7CwMISEhMDb2xsA8OjRI1SvXl2/36NHj9C8efNS5+E5ciIisgg6wcropSyysrJgZWW4j1wuh05XcE/awMBAeHt748iRI/rvq9Vq/P777wgODi51O+yRExGRRaioofXS6tOnD+bPn4+aNWuiUaNGuHTpEpYtW4a3334bACCTyTB+/HjMmzcPderUQWBgIKZPnw4fHx/069ev1O2wkAPoMywZA8YmwtUjHzGRdlg9zRdREfYmaVurBXYsq4ETu9yRmmgLF+9cdBmYhAEfPIDsrzkZqUk22LqgJi6fUCEzTY6GbdMxYu4d+ASV/jrDiiDmcWImZrK0TI3bpmPgmEeo0yQbbt55mDUiCGcOOIuSRcqZpGzlypWYPn063n33XSQmJsLHxwfvvPMOZsyYod/m448/RmZmJkaPHo3U1FR06NAB+/fvh1KpLHU7Fj+03unlFIyeGY9ty7wR2qMuYiKVmB8eA5Vbnkna37PaBwe2eGHkvDv47NhlvDn1Hvas8cHPXxWcOxEEYNGIunh0T4EpG6LwvwNX4FFDg9lDGiAny3Rvn9jHiZmYydIyKe11iIm0x6ppfv++sYlIMVNZ6PB05np5lrI+pM3R0RHLly/H3bt3kZ2djdu3b2PevHmwtbXVbyOTyTBnzhwkJCQgJycHhw8fRt26dcvUjqiF/MSJE+jTpw98fHwgk8mwZ88ek2foPzoZ+8NdcfBbV9yLVmLF5BrQZMvQY8gTk7Qfdd4RbbqnoFXXVHj6aRDc+wmadUzFrQgHAMDDWCVuXnTE6AWxqN08E761cjA6LBa5OVY4tcfNJBkB8Y8TMzGTpWU6/6sKm5f44PR+Z1HaL44UM5VF4Q1hjFmkSNRUmZmZaNasGT7//HNR2re20aFO0yxcPOmoXycIMlw66YiGrbJMkqFe63Rc+U2F+JiCYZQ7kfa4cc4RLbqkAgDyNAXj67aKp58FrawAG1sdrp/791mTFUEKx4mZmMnSMhGVlqjnyHv27Km/w40YnFy1kFsDqUmGhyEl2Rp+tYu/U09FeyU0HlnpcrzfqRms5AJ0WhlenxyHjv0fAwB8a+fA3VeDrxfWxJiFMVDY67Dvi+p4/FCBlEQbk2SUwnFiJmaytExU8Yx/Hrk0e+RmNdlNo9EY3ApPrVaLmKZinN7rhpO73TF+1S341c1C7DUHbJzlDxevXHQZmAxrGwEff3ETqycGIaRxG1jJBTTtkIYWXVIAI+5QRERkaarq88jNqpCHhYVh9uzZFfZ66idyaPMBZ498g/Uu7vlISTLNodkyryZeCY1Hh74FPXD/BtlIfqDArlW+6DIwGQBQq2kmlh68gky1HPl5Mqjc8jGld2PUapZhkoxSOE7MxEyWlokqXlXtkUszVQmmTp2KtLQ0/RIXF2fU6+XnWSH6T3u06JCuXyeTCWjeIQORF0xzyYkm2wqyZ94FK7kAoZjpkQ5OWqjc8hEfo8TtPx3QpnuKSTJK4TgxEzNZWiai0jKrj5oKhaLEe9qW16717pi4PA43L9sj6pI9XhmVBKW9Dge3u1ZoOyVp/VIqdq7wgYevBn51sxF71R5711fHi4OT9Nuc3ucKJ9d8uPtqcO+GPb6aGYA2PZ6geac0k2QExD9OzMRMlpZJaa+FT8DTU4nefhoENcxCeqo1kuJt/2FPy8pUFsbfEEaafV+zKuSV4fiPLlC5afHWpAS4eOQj5podPhkaiNRk00wkGzk3Ft8s8cP6/wZCnWwDF+9cvPTGIwwc/0C/TcojW2ya7Y+0ZBs4e+ah84CCG8aYktjHiZmYydIy1W2WhSXfReu/HjOr4N/8wR2uWDohgJnKQSfIoDNibpEx+1YmmSAIZbvnXAXKyMjArVu3AAAtWrTAsmXL0KVLF7i6uqJmzZr/ur9arYZKpUJn9IW1TLw/AM/aef+s2BGKeLXG82JHILI8VnKxE0hevpCHY7pdSEtLK9WDSMqjsFYsPvcC7KqVv/+anZGPj9ucrNSs5SFqj/z8+fPo0qWL/usJEyYAAEJCQrBp0yaRUhERUVWkM3JoXao3hBG1kHfu3BkiDggQEZEFKc8TzJ7dX4qkmYqIiIhKxeInuxERkWXQQgatETd1MWbfysRCTkREFoFD60RERCQ57JETEZFF0MK44XFtxUWpUCzkRERkEarq0DoLORERWQQ+NIWIiIgkhz1yIiKyCIKRzyMXePkZERGReDi0TkRERJJTNXrkVnJAJp2nDEnxSWOh0TfFjlDE2uBgsSMUoU1+LHYEqkp0Ur1gSUIE0x2jqvoY06pRyImIiP6F1sinnxmzb2WSZioiIiIqFfbIiYjIInBonYiIyIzpYAWdEQPRxuxbmaSZioiIiEqFPXIiIrIIWkEGrRHD48bsW5lYyImIyCLwHDkREZEZE4x8+pnAO7sRERFRRWOPnIiILIIWMmiNePCJMftWJhZyIiKyCDrBuPPcOqECw1QgDq0TERGZMYvvkTdum46BYx6hTpNsuHnnYdaIIJw54Cx2LPQZlowBYxPh6pGPmEg7rJ7mi6gIe5O0rdMC51a4IepHJ2QlyeHgmY/6/dVoHfoEsr8+zAoC8MdnbojcoYJGbYXqrbLRaXYinAPyTJJx6NgYDB17x2BdXKw93ukr/gNrxHzvmImZLDVTaeiMnOxmzL6VSZqpTEhpr0NMpD1WTfMTO4pep5dTMHpmPLYt80Zoj7qIiVRifngMVG6mKZIX17vi6jfO6DgjEa/vv4PgScm49KUr/tzirN/m0noX/LnFGZ3mPMKA7+/B2k7A3uG+yNeY7hzSnVsOGNqlvX6ZFNLSZG2XROz3jpmYyRIzlZYOMqMXKRK1kIeFhaFNmzZwdHSEp6cn+vXrh6ioKJNmOP+rCpuX+OD0fmeTtvtP+o9Oxv5wVxz81hX3opVYMbkGNNky9BjyxCTtJ1xUIrBrBgK6ZMKpRj5q98yAX/tMJP6pBFDQG7+82QWt332CoG6ZcK+fi25LEpCZaI3YQ9VMkhEAtPkypDxW6Bd1qq3J2i6J2O8dMzGTJWaydKIW8uPHjyM0NBRnz57FoUOHkJeXh+7duyMzM1PMWKKyttGhTtMsXDzpqF8nCDJcOumIhq2yTJLBu2UO7p+xR2qsDQAg+botHl6wQ82OBe+LOs4GWUnWqNHuaR6Fow5ezXKQcElpkowA4Oufha2HT2HDz6cxKewaPLxzTNZ2caTw3jETM1laprIovLObMYsUiXqOfP/+/QZfb9q0CZ6enrhw4QI6duwoUipxOblqIbcGUpMM35qUZGv41daYJEOrd54gL8MK23oEwEpecM78+QnJqNc3HQCQlSwHANi75xvsZ+euRVayaX6loq6osGxaQ9y/Yw9XDw1eHxOLJZsuYGz/tsjOEufXWgrvHTMxk6VlKouqeo5cUpPd0tLSAACurq7Ffl+j0UCjefrLolarTZLL0tz62RE3f3RE92UJcK2jQfJ1BU7O94SDpxb1+0vjmJ8/5ab//zvR1RB1xQmb9p/GCz0ScXC3j4jJiIhMSzIfL3Q6HcaPH4/27dujcePGxW4TFhYGlUqlX/z8pDNBraKon8ihzQecPQx7uy7u+UhJMs3nrtOL3NHynSeo0zsdbvVyUa9fOpoPS8GFdQUfsOzdtQBQpPednSwv0ks3lcx0Gzy4aw8fv2xR2gek8d4xEzNZWqay0EGmv996uRZOdvtnoaGhuHr1KrZv317iNlOnTkVaWpp+iYuLM2FC08jPs0L0n/Zo0SFdv04mE9C8QwYiL5jm8o68HCv9ZWb6DHIBgq7g/5388mDvkY/7Z57myU23wqPLSni3EOc8tdIuH9X9svEkWbwJb1J475iJmSwtU1kIRs5YFyRayCXxEWrcuHHYt28fTpw4gRo1apS4nUKhgEKhqNC2lfZa+AQ8Ha739tMgqGEW0lOtkRQvTlHYtd4dE5fH4eZle0Rdsscro5KgtNfh4PbiTzlUtMAuGTi/xhXVfPILhtYjlYj4ygUNBhQMq8tkQLOQFFxY7QrngFw41cjD78vd4eCZj8CXMkySccRH0fj9mDsSHyrh5pGLN96NgU4rw7FfvEzSfknEfu+YiZksMVNp8elnlUAQBLz33nvYvXs3jh07hsDAQJNnqNssC0u+i9Z/PWbWAwDAwR2uWDohwOR5AOD4jy5QuWnx1qQEuHjkI+aaHT4ZGojUZBuTtP/CjET8vtwdx2d5IvtxwQ1hGr2WhjbjHuu3aTE6BXnZVvh1mhdy1Vao3jobfb56AGuFae5h6O6pweRF1+DknIe0FFtcu6jCh2+0gjpF3EvQxH7vmImZLDGTpZMJgiDa3WPfffddhIeH44cffkC9evX061UqFezs7P51f7VaDZVKhc5W/WEtk9AvkU4rdoIiQqNvih2hiLXBwWJHKEKb/PjfNyKiCpMv5OEYfkBaWhqcnJwqpY3CWvHKoeGwcSj/h/28zFzsfmljpWYtD1F75GvWrAEAdO7c2WD9xo0bMWzYMNMHIiKiKotD65VAxMEAIiKiKkESk92IiIgqm7H3S5fq5Wcs5EREZBGq6tC6ZK4jJyIiorJjj5yIiCxCVe2Rs5ATEZFFqKqFnEPrREREZow9ciIisghVtUfOQk5ERBZBgHGXkEn1zics5EREZBGqao+c58iJiIjMGHvkRERkEapqj7xqFHKdFpBxcOGffF6vgdgRipga/avYEYoIq9VU7AhFyBQKsSMUIWg0YkcowsrBQewIRQj5+WJHKELIk1gmQQfoTNNUVS3krH5ERERmrGr0yImIiP5FVe2Rs5ATEZFFEAQZBCOKsTH7ViYOrRMREZkx9siJiMgi8HnkREREZqyqniPn0DoREZEZY4+ciIgsQlWd7MZCTkREFqGqDq2zkBMRkUWoqj1yniMnIiKqJA8ePMAbb7wBNzc32NnZoUmTJjh//rz++4IgYMaMGahevTrs7OzQrVs3REdHl6kNFnIiIrIIwl9D6+VdytojT0lJQfv27WFjY4NffvkFkZGRWLp0KVxcXPTbLF68GCtWrMDatWvx+++/w8HBAT169EBOTk6p2+HQOoA+w5IxYGwiXD3yERNph9XTfBEVYc9Mf9O4bToGjnmEOk2y4eadh1kjgnDmgLPJ2tdpgZOfeeHaDy7ITLJGNa88NOmfgvbjEiGTAdo84MQyb9w+5ojUOAUUjloEtMtA548fwtHLtA+JkNJ7N3hsPNr3SEGNWtnIzbFC5MVq+GqRH+7H2ImS5++kdJx6vZ6AXkMS4FWj4GEwd6PtEL7KD+dPuPzLnpVHiu+d2H8HjCUAEATj9i+LRYsWwc/PDxs3btSvCwwMfPp6goDly5dj2rRp6Nu3LwBgy5Yt8PLywp49e/Daa6+Vqh2L75F3ejkFo2fGY9syb4T2qIuYSCXmh8dA5ZbHTH+jtNchJtIeq6b5idL+2XUeuBTuhu6zHmDUwSh0+TgBv3/hgfOb3QAAeTlWSLhmh/bjEjH8x2j0X30Xj2MV+H50gElzSu29a9I2HXu3euLD/g0x9a36sLYWMH9LFBR2WlHyFJLacUpOsMXG//njvX5N8f4rTXH5jAoz1txAzdpZouQBpPneif13QCrUarXBoinhaYA//vgjWrdujYEDB8LT0xMtWrTAF198of9+bGwsEhIS0K1bN/06lUqFtm3b4syZM6XOI2ohX7NmDZo2bQonJyc4OTkhODgYv/zyi0kz9B+djP3hrjj4rSvuRSuxYnINaLJl6DHkiUlzSD3T+V9V2LzEB6f3O4vS/v2LDqjTTY3aXdLhXCMP9XumIbBDBh7+WdCDUzrqMGRLLBr0SoNbkAa+LbLQfdYDJFy1R1q8jclySu29mzasHg7t9MDdaHvEXrfH0klB8PLNRZ0mmaLkKSS14/T7UVecO+6C+Lt2eHDHDps/9UdOlhz1m6eLkgeQ5nsn9t8BYxXe2c2YBQD8/PygUqn0S1hYWLHtxcTEYM2aNahTpw4OHDiAsWPH4v3338fmzZsBAAkJCQAALy8vg/28vLz03ysNUYfWa9SogYULF6JOnToQBAGbN29G3759cenSJTRq1KjS27e20aFO0yxsX+WpXycIMlw66YiGrcT5JC7FTFJQo2UmIra74XGsLdwCc/HouhJx5+3R9ZOHJe6jSZcDMgFKR9P0YMzhvbP/61ikp4r3T1/qx8nKSsALPR9Daa/FjQhHsePoSeG9M3cVNWs9Li4OTk5O+vUKhaLY7XU6HVq3bo0FCxYAAFq0aIGrV69i7dq1CAkJKXeOZ4n6G9GnTx+Dr+fPn481a9bg7NmzxRZyjUZjMIShVquNat/JVQu5NZCaZHgYUpKt4Ve7+KGSyibFTFIQPCYJmgw51r9UD1bygnPmnT5KQOO+qcVun6+R4dgibzTskwqFo84kGaX+3slkAsZMv4tr56rh7k3x5ltI9TgF1M3Esh1XYKvQITtLjrnv1se9W+LOlSkklfeOChSOIv+b6tWro2HDhgbrGjRogJ07dwIAvL29AQCPHj1C9erV9ds8evQIzZs3L3UeyZwj12q12L59OzIzMxEcHFzsNmFhYQbDGX5+ln2expJc/0mFaz84o++n9zD8x2j0XhKH37/0wJ87i05G0uYBu9/zhwAZ/jPngQhppSl0zl0E1MtG2Pu1xY4iSfdj7RD6cjOMH9AUP4V746PF0aKeI/87vncVw5gZ6+W5mUz79u0RFRVlsO7mzZvw9/cHUDDxzdvbG0eOHNF/X61W4/fffy+xDhZH9DGaK1euIDg4GDk5OahWrRp2795d5BNMoalTp2LChAn6r9VqtVHFXP1EDm0+4OxhOKvZxT0fKUniHBopZpKCowurI3hMEhr2SQMAeNbLgfqBLc6s9UDTV1P022nzgD3v+UP9wAZDvo4xWW8ckPZ79+7sO2j7YiomDm6A5ARbUbNI9Tjl51nh4b2CGeG3rlVD3SYZ6BvyECun1xItEyCt987cCYKRs9bLuO+HH36Idu3aYcGCBRg0aBD++OMPrF+/HuvXrwcAyGQyjB8/HvPmzUOdOnUQGBiI6dOnw8fHB/369St1O6L3yOvVq4eIiAj8/vvvGDt2LEJCQhAZGVnstgqFQj+kUdqhjX+Sn2eF6D/t0aLD0wktMpmA5h0yEHlBnOErKWaSgrwcK8isDP8VyeQCBN3TT8iFRfzJHQWGbImBvYtpZ/dK870T8O7sO2jXPQWTh9bHo/vFn8szJWkep6JkVgJsbE33QbAo6b13VDZt2rTB7t278c0336Bx48aYO3culi9fjqFDh+q3+fjjj/Hee+9h9OjRaNOmDTIyMrB//34olcpStyN6F8/W1ha1axcMF7Vq1Qrnzp3DZ599hnXr1pmk/V3r3TFxeRxuXrZH1CV7vDIqCUp7HQ5udzVJ++aSSWmvhU/A0/OX3n4aBDXMQnqqNZLiK7+XUOdFNU6v9oSTTx7c6+Tg0TU7/PGVB5oNKJjlrM0Ddo/zR8JVOwz88g50Ohky/urd2am0kNsa8TG8DKT23oXOuYsufR9j9ug6yM6wgot7LgAgM90auRrxPsdL7TgN++guzp9wRmK8AvYOWnTuk4ymbdWY9nbxo4OmIMX3Tuy/A8YS4xatvXv3Ru/evUv8vkwmw5w5czBnzpxy5xK9kD9Lp9OVeE1eZTj+owtUblq8NSkBLh75iLlmh0+GBiI12XSXLJlDprrNsrDku6e3DRwzq+Dc88Edrlg6IaDS239pZjxOfOqFAzN8kfW44IYwLV57jA7vJQIA0h/ZIPqwCgDwVe+6Bvu+vu02/J83zSU7Unvv+rxZcHyWbL9hsH7pxEAc2ukhRiQA0jtOzm55mLj4Flw9c5GZLkfsDQdMe7shLv3mLEoeQJrvndh/B4xVVe+1LhMEY84YGGfq1Kno2bMnatasifT0dISHh2PRokU4cOAAXnrppX/dX61WQ6VSoTP6wlomXpEzC1ZysRMUMTX6ktgRigir1VTsCEXISri0RUyCCT9sl5aVg4PYEYoQ8k17V8HSEPKklSlfyMMx3S6kpaUZfbq0JIW1ol74FMjty//vSZulQdTrCys1a3mI2iNPTEzEW2+9hYcPH0KlUqFp06alLuJEREQkciHfsGGDmM0TEZEFMfWsdVOR3DlyIiKiylBQyI05R16BYSqQ6JefERERUfmxR05ERBahqs5aZyEnIiKLIKDszxR/dn8p4tA6ERGRGWOPnIiILAKH1omIiMxZFR1bZyEnIiLLYGSPHBLtkfMcORERkRljj5yIiCwC7+xGRERkxjjZjcybTit2giKk+KSxDfdOiR2hiBE1O4gdwSzosnPEjlCUBP/dyZ1VYkcwIAi5QKrYKcwbCzkREVkGQWbchDX2yImIiMRTVc+Rc9Y6ERGRGWOPnIiILANvCENERGS+LHrW+o8//ljqF3z55ZfLHYaIiIjKplSFvF+/fqV6MZlMBq1WepdbEBERAZDs8LgxSlXIdTpdZecgIiKqVFV1aN2oWes5ORK8AQMREVFxhApYJKjMhVyr1WLu3Lnw9fVFtWrVEBMTAwCYPn06NmzYUOEBiYiIqGRlLuTz58/Hpk2bsHjxYtja2urXN27cGF9++WWFhiMiIqo4sgpYpKfMhXzLli1Yv349hg4dCrlcrl/frFkz3Lhxo0LDERERVZgqOrRe5uvIHzx4gNq1axdZr9PpkJeXVyGhTK3PsGQMGJsIV498xETaYfU0X0RF2DMTM/0jnRb44dOaOLvbE2mJNnD2ykX7gYno/X4cZH99cC/pgScD/xuL/4x5YJKcAN+7f9O4bToGjnmEOk2y4eadh1kjgnDmgLMoWZ4lpeP0rIEj72H4hDvYs8UX6xfWEjuOxSpzj7xhw4Y4efJkkfXff/89WrRoUSGhTKnTyykYPTMe25Z5I7RHXcREKjE/PAYqN/E+lDCTeWT6ZU0NHNtaHa/PuY15Ry9iwNQ7+GWtL45srK7fZtn53w2W4f+7CZlMQKueySbJCIh/nMwhk9Jeh5hIe6ya5idK+yWR2nH6uzqN09Fz0EPE3HAQO0rpVdEeeZkL+YwZMzBu3DgsWrQIOp0Ou3btwqhRozB//nzMmDGj3EEWLlwImUyG8ePHl/s1yqP/6GTsD3fFwW9dcS9aiRWTa0CTLUOPIU9MmoOZzC/TrfNOaN79MZp1TYG7nwatez1Go46piL3sqN9G5ZlnsFw66IZ6wWnw8NeYJCMg/nEyh0znf1Vh8xIfnN7vLEr7JZHacSqktNfi48U3sGJmXWSozegGoYVPPzNmkaAyF/K+ffti7969OHz4MBwcHDBjxgxcv34de/fuxUsvvVSuEOfOncO6devQtKlpn09tbaNDnaZZuHjy6R9eQZDh0klHNGyVZdIszGR+mWq3VuP6b85IiFECAOIiHXDrnBOadE4pdvu0JBtcOeqCF157ZJJ8gDSOkzlkkiIpH6d3p0Xjj+OuiDjjImoOKlCuj1IvvPACDh06VCEBMjIyMHToUHzxxReYN2/eP26r0Wig0TztyajVaqPadnLVQm4NpCYZHoaUZGv41TZdj4mZzDNTz3fvIztdjmldWsFKLkCnleGVSXfx/CtJxW5/+ntPKBy0aPUf0w2rS+E4mUMmKZLqcerYMxG1G2bgg0EtRctQXlX1MablHhM5f/48rl+/DqDgvHmrVq3K9TqhoaHo1asXunXr9q+FPCwsDLNnzy5XO0QV7dw+d5zd44lRK6PgWzcL9645YPvsIP2kt2ed2uGF519Jgo1Son8NiP6Fu3cO3pl6G5+MbIK8XDN8Cjafflbg/v37GDJkCH777Tc4OzsDAFJTU9GuXTts374dNWrUKPVrbd++HRcvXsS5c+dKtf3UqVMxYcIE/ddqtRp+fuWfnKJ+Ioc2H3D2yDdY7+Kej5Qkcc77MJP5ZPpufiD+7937aPtyQQ+7Rv0sPH6gxM+raxQp5Dd/d0LCbXuM+TzKJNkKSeE4mUMmKZLicarTKAMu7nlY+f1F/Tq5NdC4dRr6vP4AfZu/AJ1OmueRq7Iyf6QaOXIk8vLycP36dTx58gRPnjzB9evXodPpMHLkyFK/TlxcHD744ANs27YNSqWyVPsoFAo4OTkZLMbIz7NC9J/2aNEhXb9OJhPQvEMGIi+Ic3kHM5lPptxsK8isDD+iW1kJEIr5Q3byWy/4N0mHX8NMk2QrJIXjZA6ZpEiKxynijDPGvtwK4/o/XW5eqYZj+zwxrn8r6RfxKjrZrcwf644fP47Tp0+jXr16+nX16tXDypUr8cILL5T6dS5cuIDExES0bPn0PItWq8WJEyewatUqaDQagxvOVJZd690xcXkcbl62R9Qle7wyKglKex0Obnet9LaZybwzNev2BD+t9IOrj+avofVqOPilLzoMMpzMlp0ux/mf3DF4WqxJcj1L7ONkDpmU9lr4BDw97+ztp0FQwyykp1ojKd72H/asXFI7TtlZ1rh7y7Bs5GTLoU61wd1b0r8MTSYULMbsL0VlLuR+fn7F3vhFq9XCx8en1K/TtWtXXLlyxWDd8OHDUb9+fUyePNkkRRwAjv/oApWbFm9NSoCLRz5irtnhk6GBSE22MUn7zGS+mV6fE4M9/6uJr6fVQnpywQ1hOg19iJc/iDPY7o8f3QEBeK5v8ZPgKpvYx8kcMtVtloUl30Xrvx4zq+BmPQd3uGLphABRMgHSO05mr4qeI5cJQtnm4f3www9YsGABPv/8c7Ru3RpAwcS39957D5MnTy71s8uL07lzZzRv3hzLly8v1fZqtRoqlQqd0RfWMv5ik/E23DsldoQiSro7HD3DyjQf/stEpxU7QRFyZ5XYEQzkC7k4kroVaWlpRp8uLUlhrfBbPgdWdqU7lVscXXYO4sbPqNSs5VGqHrmLiwtksqfnBjIzM9G2bVtYWxfsnp+fD2tra7z99ttGFXIiIqJKY+x5bnM+R17aHrKxjh07ZpJ2iIjIAlXRofVSFfKQkJDKzkFERETlYNTFiDk5OcjNzTVYJ6XzBkRERHpVtEde5uvIMzMzMW7cOHh6esLBwQEuLi4GCxERkSTx6WcFPv74Yxw9ehRr1qyBQqHAl19+idmzZ8PHxwdbtmypjIxERERUgjIPre/duxdbtmxB586dMXz4cLzwwguoXbs2/P39sW3bNgwdOrQychIRERmnis5aL3OP/MmTJwgKCgJQcD78yZOC5+J26NABJ06cqNh0REREFaTwzm7GLFJU5kIeFBSE2NiCW03Wr18fO3bsAFDQUy98iAoRERGZRpkL+fDhw3H58mUAwJQpU/D5559DqVTiww8/xKRJkyo8IBERUYWoopPdynyO/MMPP9T/f7du3XDjxg1cuHABtWvXRtOmTSs0HBEREf0zox9q6+/vD39//4rIQkREVGlkMPLpZxWWpGKVqpCvWLGi1C/4/vvvlzsMERERlU2pCvmnn35aqheTyWQs5GTWpPiksZ33z4odoYhXa7YXO0JREnzSmBRp1RliRzCgFYo+FrvSVNHLz0pVyAtnqRMREZkt3qKViIiIpMboyW5ERERmoYr2yFnIiYjIIhh7d7Yqc2c3IiIikg72yImIyDJU0aH1cvXIT548iTfeeAPBwcF48OABAGDr1q04depUhYYjIiKqMFX0Fq1lLuQ7d+5Ejx49YGdnh0uXLkGj0QAA0tLSsGDBggoPSERERCUrcyGfN28e1q5diy+++AI2Njb69e3bt8fFixcrNBwREVFFqaqPMS3zOfKoqCh07NixyHqVSoXU1NSKyERERFTxquid3crcI/f29satW7eKrD916hSCgoIqJBQREVGF4znyAqNGjcIHH3yA33//HTKZDPHx8di2bRsmTpyIsWPHVkZGIiIiKkGZh9anTJkCnU6Hrl27IisrCx07doRCocDEiRPx3nvvVUbGStdnWDIGjE2Eq0c+YiLtsHqaL6Ii7JmJmcwuk1YL7FhWAyd2uSM10RYu3rnoMjAJAz54ANlfo4KpSTbYuqAmLp9QITNNjoZt0zFi7h34BOWYJCMANG6bjoFjHqFOk2y4eedh1oggnDngbLL2S8Lfp38m1fettHhDmL/IZDJ88sknePLkCa5evYqzZ88iKSkJc+fOrYx8la7TyykYPTMe25Z5I7RHXcREKjE/PAYqNxM+kYeZmKmC7FntgwNbvDBy3h18duwy3px6D3vW+ODnr7wBAIIALBpRF4/uKTBlQxT+d+AKPGpoMHtIA+Rkme7+UEp7HWIi7bFqmp/J2vw3Yr935pBJiu9bmXBo3ZCtrS0aNmyI5557DtWqVSvXa8yaNQsymcxgqV+/fnkjlUv/0cnYH+6Kg9+64l60Eism14AmW4YeQ56YNAczMVNFiDrviDbdU9Cqayo8/TQI7v0EzTqm4laEAwDgYawSNy86YvSCWNRungnfWjkYHRaL3BwrnNrjZpKMAHD+VxU2L/HB6f3OJmvz34j93plDJim+b1SOofUuXbpAJit55t7Ro0fL9HqNGjXC4cOHnwayNt3N5qxtdKjTNAvbV3nq1wmCDJdOOqJhqyyT5WAmZqoo9Vqn49A2L8THKOETlIM7kfa4cc4Rw2bcBQDkaQr+7doqdPp9rKwAG1sdrp9zQrfXk0ySU2qk8N6ZQyazZ+wlZBLtkZe5ajZv3tzg67y8PERERODq1asICQkpewBra3h7e5dqW41Go78BDQCo1eoyt/d3Tq5ayK2B1CTDw5CSbA2/2poS9qpczMRMxnglNB5Z6XK836kZrOQCdFoZXp8ch479HwMAfGvnwN1Xg68X1sSYhTFQ2Ouw74vqePxQgZREm3959apLCu+dOWQye1X0Fq1lLuSffvppsetnzZqFjIyMMgeIjo6Gj48PlEolgoODERYWhpo1axa7bVhYGGbPnl3mNogsxem9bji52x3jV92CX90sxF5zwMZZ/nDxykWXgcmwthHw8Rc3sXpiEEIat4GVXEDTDmlo0SVFstfIEtE/q7DZLW+88Qa++uqrMu3Ttm1bbNq0Cfv378eaNWsQGxuLF154Aenp6cVuP3XqVKSlpemXuLg4ozKrn8ihzQecPfIN1ru45yMlSZznyTATMxljy7yaeCU0Hh36PoZ/g2x0HpCMPqMSsGuVr36bWk0zsfTgFWyJPIcvL17A9G03kJFiAy9/081alxopvHfmkMnsiTjZbeHChZDJZBg/frx+XU5ODkJDQ+Hm5oZq1arh1VdfxaNHj8r82hVWyM+cOQOlUlmmfXr27ImBAweiadOm6NGjB37++WekpqZix44dxW6vUCjg5ORksBgjP88K0X/ao0WHpx8cZDIBzTtkIPKCOJd3MBMzGUOTbQXZM/+qreQCBF3RbR2ctFC55SM+RonbfzqgTfcUk2SUIim8d+aQydyJdYvWc+fOYd26dWjatKnB+g8//BB79+7Fd999h+PHjyM+Ph79+/cv8+uX+WPds40IgoCHDx/i/PnzmD59epkD/J2zszPq1q1b7J3jKsuu9e6YuDwONy/bI+qSPV4ZlQSlvQ4Ht7uaLAMzMVNFaf1SKnau8IGHrwZ+dbMRe9Uee9dXx4uDn05iO73PFU6u+XD31eDeDXt8NTMAbXo8QfNOaSbJCABKey18Ap6e5/X20yCoYRbSU62RFG9rshx/J/Z7Zw6ZpPi+ieHZ+VkKhQIKhaLYbTMyMjB06FB88cUXmDdvnn59WloaNmzYgPDwcLz44osAgI0bN6JBgwY4e/Ysnn/++VLnKXMhV6lUBl9bWVmhXr16mDNnDrp3717WlzOQkZGB27dv48033zTqdcri+I8uULlp8dakBLh45CPmmh0+GRqI1GTxJv4wEzOV18i5sfhmiR/W/zcQ6mQbuHjn4qU3HmHg+Af6bVIe2WLTbH+kJdvA2TMPnQcU3DDGlOo2y8KS76L1X4+ZVdD+wR2uWDohwKRZCon93plDJim+b2Lw8zO8jn7mzJmYNWtWsduGhoaiV69e6Natm0Ehv3DhAvLy8tCtWzf9uvr166NmzZo4c+ZMmQq5TBCEUg8WaLVa/Pbbb2jSpAlcXFxK3UhJJk6ciD59+sDf3x/x8fGYOXMmIiIiEBkZCQ8Pj3/dX61WQ6VSoTP6wlpmuTNuqWrbef+s2BGKeLVme7EjFKXTip3APFjJxU5gIF/IwzHdLqSlpRl9urQkhbWi1tQFkJfxFPDfaXNycDvsv4iLizPIWlKPfPv27Zg/fz7OnTsHpVKJzp07o3nz5li+fDnCw8MxfPhwgyuxAOC5555Dly5dsGjRolLnKlOPXC6Xo3v37rh+/XqFFPL79+9jyJAhePz4MTw8PNChQwecPXu2VEWciIioLCrqFq2lmaMVFxeHDz74AIcOHSrz/LGyKvPQeuPGjRETE4PAwECjG9++fbvRr0FERCQ1Fy5cQGJiIlq2bKlfp9VqceLECaxatQoHDhxAbm4uUlNT4ezsrN/m0aNHpb63SqEyz1qfN28eJk6ciH379uHhw4dQq9UGCxERkWSZ6NKzrl274sqVK4iIiNAvrVu3xtChQ/X/b2NjgyNHjuj3iYqKwr179xAcHFymtkrdI58zZw4++ugj/N///R8A4OWXXza4VasgCJDJZNBqeZ6KiIgkyIR3dnN0dETjxo0N1jk4OMDNzU2/fsSIEZgwYQJcXV3h5OSE9957D8HBwWWa6AaUoZDPnj0bY8aMwa+//lqmBoiIiKioTz/9FFZWVnj11Veh0WjQo0cPrF69usyvU+pCXji5vVOnTmVuhIiISGxiP4/82LFjBl8rlUp8/vnn+Pzzz4163TJNdvunp54RERFJGh+aAtStW/dfi/mTJ+I9u5eIiMjSlKmQz549u8id3YiIiMyB2EPrlaVMhfy1116Dp6fnv29IREQkNVV0aL3U15Hz/DgREZH0lHnWOhERkVmqoj3yUhdyna6YBxoTERGZCZ4jJyJRvFqjbHd5MoUD8RfEjlBED5/mYkcwD1J7SpxgwjxVtEde5nutExERkXSwR05ERJahivbIWciJiMgiVNVz5BxaJyIiMmPskRMRkWXg0DoREZH54tA6ERERSQ575EREZBk4tE5ERGTGqmgh59A6ERGRGWOPnIiILILsr8WY/aWIhZyIiCwDh9arrj7DkrH590jsjfkTn+2LRr3mWWJHYiZmqjKZsjKssGaGL95s0xB9gppifJ86iIqw03//1M8qTH0tCAMaNUYPn+a4fdXuH16tcvG9M99MpVF4+ZkxixRZfCHv9HIKRs+Mx7Zl3gjtURcxkUrMD4+Byi2PmZiJmSrApx/54eKJavh45V2sPXIDrTqlY8rg2kh+aAMAyMmyQqPnMjHiv/EmyVMSsY8TM1F5iV7IHzx4gDfeeANubm6ws7NDkyZNcP78eZO13390MvaHu+Lgt664F63Eisk1oMmWoceQJybLwEzMVFUzabJlOPWzM0ZOe4gmz2fCNzAXb05MgE+ABvu2uAEAug1IwRsTHqFFx4xKz/NP+N6Zb6ZSEypgkSBRC3lKSgrat28PGxsb/PLLL4iMjMTSpUvh4uJikvatbXSo0zQLF0866tcJggyXTjqiYStxhoqYiZmqUiatVgadVgZbhc5gvUKpw7U/qlV6+6Ul9nFiJhOqYkUcEHmy26JFi+Dn54eNGzfq1wUGBpa4vUajgUaj0X+tVquNat/JVQu5NZCaZHgYUpKt4VdbU8JelYuZmKkqZbKvpkODVpkIX+6NmnXuwNkjH8f2uOD6BQf4BIhzTIoj9nFiJjKGqD3yH3/8Ea1bt8bAgQPh6emJFi1a4Isvvihx+7CwMKhUKv3i5+dnwrREVB4fr7wLQQBeb9kYvQOaYc8Gd3TulwKZ6Cf2yNJwslsliImJwZo1a1CnTh0cOHAAY8eOxfvvv4/NmzcXu/3UqVORlpamX+Li4oxqX/1EDm0+4OyRb7DexT0fKUniDFYwEzNVtUw+Abn4365b+OHWn/j6/DWs/Dka+XkyVPeXTg9OCseJmUyA58grnk6nQ8uWLbFgwQK0aNECo0ePxqhRo7B27dpit1coFHBycjJYjJGfZ4XoP+3RokO6fp1MJqB5hwxEXrA36rWZiZmYyZDSXgc3r3ykp8px4bgTgnsYd2qsIknpODETlZWoH6GqV6+Ohg0bGqxr0KABdu7cabIMu9a7Y+LyONy8bI+oS/Z4ZVQSlPY6HNzuarIMzMRMVTnT+WOOEATAr5YGD2Jt8eVcX/jVzkH3wY8BAOoUOZIe2OLxo4I/R3G3FQAAF888uHrml/i6FU3s48RMla+qPsZU1ELevn17REVFGay7efMm/P39TZbh+I8uULlp8dakBLh45CPmmh0+GRqI1GQbk2VgJmaqypky1XJsDKuO5Ic2cHTWov3/pWL4lIew/qv5swdVWPphTf32YWMDAABvTEjAmxMTTJIREP84MZMJVNE7u8kEQRAt2rlz59CuXTvMnj0bgwYNwh9//IFRo0Zh/fr1GDp06L/ur1aroVKp0Bl9YS0zg18ioiriQHyE2BGK6OHTXOwIVA75Qh6O4QekpaUZfbq0JIW1osmIBZDbKsv9OtrcHFzZ8N9KzVoeop4jb9OmDXbv3o1vvvkGjRs3xty5c7F8+fJSFXEiIqKyqKqz1kWfZti7d2/07t1b7BhERFTVVdGhddELORERkUlU0ULOWzIQERGZMfbIiYjIIvDyMyIiInPGoXUiIiKSGvbIiYjIIsgEATIjbp1izL6ViYWciIgsA4fWiYiISGrYIyciIovAWetERETmjEPrREREJDXskRNRmUnxSWM7758VO0IRr9Z4XuwI9DccWiciIjJnVXRonYWciIgsQlXtkfMcORERkRljj5yIiCwDh9aJiIjMm1SHx43BoXUiIiIzxh45ERFZBkEoWIzZX4JYyImIyCJw1joRERFJDnvkRERkGThrnYiIyHzJdAWLMftLEYfWiYiIzBh75AD6DEvGgLGJcPXIR0ykHVZP80VUhD0zMRMzVcFMWi2wY1kNnNjljtREW7h456LLwCQM+OABZLKCbVKTbLB1QU1cPqFCZpocDdumY8TcO/AJyqn0fM/ie1eBqujQusX3yDu9nILRM+OxbZk3QnvURUykEvPDY6Byy2MmZmKmKphpz2ofHNjihZHz7uCzY5fx5tR72LPGBz9/5Q2g4AqjRSPq4tE9BaZsiML/DlyBRw0NZg9pgJws0/7J5HtXsQpnrRuzSJGohTwgIAAymazIEhoaarIM/UcnY3+4Kw5+64p70UqsmFwDmmwZegx5YrIMzMRMzGS6TFHnHdGmewpadU2Fp58Gwb2foFnHVNyKcAAAPIxV4uZFR4xeEIvazTPhWysHo8NikZtjhVN73Co939/xvatghdeRG7NIkKiF/Ny5c3j48KF+OXToEABg4MCBJmnf2kaHOk2zcPGko36dIMhw6aQjGrbKMkkGZmImZjJtpnqt03HlNxXiY5QAgDuR9rhxzhEtuqQCAPI0BePrtoqnM5usrAAbWx2un3Oq9HyFxD5O5pKJRD5H7uHhYfD1woULUatWLXTq1KnY7TUaDTQajf5rtVptVPtOrlrIrYHUJMPDkJJsDb/amhL2qlzMxEzMVLleCY1HVroc73dqBiu5AJ1Whtcnx6Fj/8cAAN/aOXD31eDrhTUxZmEMFPY67PuiOh4/VCAl0abS8xUS+ziZS6ayqKo3hJHMZLfc3Fx8/fXXmDBhAmSFM06eERYWhtmzZ5s4GRFVJaf3uuHkbneMX3ULfnWzEHvNARtn+cPFKxddBibD2kbAx1/cxOqJQQhp3AZWcgFNO6ShRZcUQCj+bxOZiSo62U0yhXzPnj1ITU3FsGHDStxm6tSpmDBhgv5rtVoNPz+/crepfiKHNh9w9sg3WO/ino+UJHEODTMxEzNVri3zauKV0Hh06FvQA/dvkI3kBwrsWuWLLgOTAQC1mmZi6cEryFTLkZ8ng8otH1N6N0atZhmVnq+Q2MfJXDKRhGatb9iwAT179oSPj0+J2ygUCjg5ORksxsjPs0L0n/Zo0SFdv04mE9C8QwYiL4hzKQUzMRMzVS5NthVkz/zls5ILEIq52YeDkxYqt3zExyhx+08HtOmeUun5Col9nMwlU1lU1VnrkvgIdffuXRw+fBi7du0yedu71rtj4vI43Lxsj6hL9nhlVBKU9joc3O5q8izMxEzMVPmZWr+Uip0rfODhq4Ff3WzEXrXH3vXV8eLgJP02p/e5wsk1H+6+Gty7YY+vZgagTY8naN4prdLz/R3fuwrGp59Vno0bN8LT0xO9evUyedvHf3SByk2LtyYlwMUjHzHX7PDJ0ECkJptuUgszMRMzmS7TyLmx+GaJH9b/NxDqZBu4eOfipTceYeD4B/ptUh7ZYtNsf6Ql28DZMw+dBxTcMMbU+N5RacgEQdyPGDqdDoGBgRgyZAgWLlxYpn3VajVUKhU6oy+sZfwlIrJkO++fFTtCEa/WeF7sCJKXL+ThGH5AWlqa0adLS1JYK4J7zoG1jbLcr5Ofl4Mzv8yo1KzlIXqP/PDhw7h37x7efvttsaMQEVFVxlnrlaN79+4QeVCAiIjIbElm1joREVFlMvWs9bCwMLRp0waOjo7w9PREv379EBUVZbBNTk4OQkND4ebmhmrVquHVV1/Fo0ePytQOCzkREVkGnWD8UgbHjx9HaGgozp49i0OHDiEvLw/du3dHZmamfpsPP/wQe/fuxXfffYfjx48jPj4e/fv3L1M7og+tExERmUQFnSN/9vbgCoUCCoWiyOb79+83+HrTpk3w9PTEhQsX0LFjR6SlpWHDhg0IDw/Hiy++CKDgKq4GDRrg7NmzeP750k2WZI+ciIioDPz8/KBSqfRLWFhYqfZLSyu4D4Gra8E19xcuXEBeXh66deum36Z+/fqoWbMmzpw5U+o87JETEZFFkMHIh6b89d+4uDiDy8+K640/S6fTYfz48Wjfvj0aN24MAEhISICtrS2cnZ0NtvXy8kJCQkKpc7GQExGRZaigO7uV5xbhoaGhuHr1Kk6dOlX+9kvAoXUiIqJKNG7cOOzbtw+//voratSooV/v7e2N3NxcpKamGmz/6NEjeHt7l/r1WciJiMgimPryM0EQMG7cOOzevRtHjx5FYGCgwfdbtWoFGxsbHDlyRL8uKioK9+7dQ3BwcKnb4dA6ERFZBhPf2S00NBTh4eH44Ycf4OjoqD/vrVKpYGdnB5VKhREjRmDChAlwdXWFk5MT3nvvPQQHB5d6xjrAQk5ERFQp1qxZAwDo3LmzwfqNGzdi2LBhAIBPP/0UVlZWePXVV6HRaNCjRw+sXr26TO2wkBMRkUWQCQJkRkx2K+u+pbn9uFKpxOeff47PP/+8vLFYyCuD3N1N7AhFaJ+kih3BPOi0Yiegcnq1ZnuxIxQx4uYtsSMUsaF+bbEjGBJ0gM5EbelgXFumyllGnOxGRERkxtgjJyIii2DqoXVTYSEnIiLLwOeRExERmbEKurOb1PAcORERkRljj5yIiCxCee7O9uz+UsRCTkREloFD60RERCQ17JETEZFFkOkKFmP2lyIWciIisgwcWiciIiKpYY+ciIgsA28IU3X1GZaMAWMT4eqRj5hIO6ye5ouoCHtRsgwdG4OhY+8YrIuLtcc7fUv/bNrK0LhtOgaOeYQ6TbLh5p2HWSOCcOaAMzMVQ0q/T8xUOlL4Xfq2Sw1kPLApsr7B62q0m/UY6nvW+GOhKx5dUEKbK0ONjlkInv4Ydu6mO3ErheNkjKp6i1aLH1rv9HIKRs+Mx7Zl3gjtURcxkUrMD4+Byi1PtEx3bjlgaJf2+mVSSEvRshRS2usQE2mPVdP8xI6iJ8VMUvx9YqZ/J4XfpZd3xmPIb/f0y382PgQABPbMRF6WDPuHewMyoOeWh+i9PR7aXBkOvuMNwYQTsKRwnKgoUQu5VqvF9OnTERgYCDs7O9SqVQtz584t1TNcK0r/0cnYH+6Kg9+64l60Eism14AmW4YeQ56YLMOztPkypDxW6Bd1qq1oWQqd/1WFzUt8cHq/s9hR9KSYSYq/T8z076Twu2TnqoO9h1a/xB2zh2PNPHg/l4NHF5XIeGCNjouS4FovD6718tBpcRKSr9oi/ozSZBmlcJyMUjjZzZhFgkQt5IsWLcKaNWuwatUqXL9+HYsWLcLixYuxcuVKk7RvbaNDnaZZuHjSUb9OEGS4dNIRDVtlmSRDcXz9s7D18Cls+Pk0JoVdg4d3jmhZqPSk+PvETOZJmwvc+qEa6r6aDpkM0OUCkAFy26eFRK4QILMCHl0wXSE3ewKePpO8PIs067i458hPnz6Nvn37olevXgCAgIAAfPPNN/jjjz+K3V6j0UCj0ei/VqvVRrXv5KqF3BpITTI8DCnJ1vCrrSlhr8oVdUWFZdMa4v4de7h6aPD6mFgs2XQBY/u3RXYWpzRImRR/n5jJPN097IDcdCvU6Z8BAPBoroG1nYBzS1zRekIKBAE4/z8XCFoZspLkIqc1HzxHXgnatWuHI0eO4ObNmwCAy5cv49SpU+jZs2ex24eFhUGlUukXP7+qd57m/Ck3nDrkiTvR1XDxtBtmhjaDg2M+XuiRKHY0IjKRm99XQ42O2XDw0gIoGHZ/cUUi7h21x+bm/tjayh8atRxujTSQWfxMJxK1izdlyhSo1WrUr18fcrkcWq0W8+fPx9ChQ4vdfurUqZgwYYL+a7VabVQxVz+RQ5sPOHvkG6x3cc9HSpI0er+Z6TZ4cNcePn7ZYkehfyHF3ydmMj/pD6wRf9oOXVcZfniv0SEbg47cR84TK8isAYWTDuHt/ODol1/CK1ERAoy8IUyFJalQon6W27FjB7Zt24bw8HBcvHgRmzdvxv/+9z9s3ry52O0VCgWcnJwMFmPk51kh+k97tOiQrl8nkwlo3iEDkRfEvTSnkNIuH9X9svEkWfwJb/TPpPj7xEzmJ3pnNSjdtPDrXPx8AaWrDgonHeLPKJH9WI6aL3JeQalV0cluon78nTRpEqZMmYLXXnsNANCkSRPcvXsXYWFhCAkJMUmGXevdMXF5HG5etkfUJXu8MioJSnsdDm53NUn7zxrxUTR+P+aOxIdKuHnk4o13Y6DTynDsFy9R8hRS2mvhE/D0/KW3nwZBDbOQnmqNpHhxPmRIMZPUfp+YqXSk8rsk6ICbuxxRp18GrJ7563xzZzU418qD0lWLxEsKnJ3vhsbD1HAOMt0le1I5TmRI1EKelZUFKyvDQQG5XA6dznQXRh7/0QUqNy3empQAF498xFyzwydDA5GaXPTGDKbg7qnB5EXX4OSch7QUW1y7qMKHb7SCOkXcfyR1m2VhyXfR+q/HzHoAADi4wxVLJwQw01+k9vvETKUjld+lB6ftkBlvjboD0ot8Ly3GBueXukCTJkc133w0G5OKxsONm/BbVlI5TuWmAyAzcn8JkgmmvGj7GcOGDcPhw4exbt06NGrUCJcuXcLo0aPx9ttvY9GiRf+6v1qthkqlQmf0hbVMvD9Kz5K7u4kdoQjtk1SxI5gHnVbsBFReVtKbvT3ixi2xIxSxoX5tsSMYyBfycEy3C2lpaUafLi1JYa3o2vhjWMsV5X6dfK0GR64urtSs5SFqj3zlypWYPn063n33XSQmJsLHxwfvvPMOZsyYIWYsIiIisyFqIXd0dMTy5cuxfPlyMWMQEZElqKKPMeW1HkREZBmqaCHnrQSIiIjMGHvkRERkGapoj5yFnIiILEMVvfyMhZyIiCwCH5pCREREksMeORERWQaeIyciIjJjOgGQGVGMddIs5BxaJyIiMmPskRMRkWXg0DoREZE5M/aZ4izkFkOb/FjsCGZB7qwSO0IR2tQ0sSMUIVOU/2lNlUXQaP59I1OT4JPrpPakMQBYHnNS7AgGMtJ1eL6x2CnMGws5ERFZBg6tExERmTGdAKOGxzlrnYiIiCoae+RERGQZBF3BYsz+EsRCTkREloHnyImIiMwYz5ETERGR1LBHTkREloFD60RERGZMgJGFvMKSVCgOrRMREZkx9siJiMgycGidiIjIjOl0AIy4FlzH68glq8+wZAwYmwhXj3zERNph9TRfREXYM5MZZCo0cOQ9DJ9wB3u2+GL9wlqiZpHScRo8Nh7te6SgRq1s5OZYIfJiNXy1yA/3Y+xEyfN3UjpOUszUuG06Bo55hDpNsuHmnYdZI4Jw5oCzydrXaYH9y/1wfrcH0pNs4OSVh+cGJKL7e/chkxVss+2j2ji309Ngv/odUzBmy3WT5SSeI0enl1MwemY8ti3zRmiPuoiJVGJ+eAxUbnnMJPFMheo0TkfPQQ8Rc8NB7CiSO05N2qZj71ZPfNi/Iaa+VR/W1gLmb4mCwk7cJ4VJ7ThJMZPSXoeYSHusmuYnSvtH1vrit6+98eqcWEw5HIE+U+7i6DpfnNjkbbBd/U4pmPPHOf3y1sqbouQtlcKhdWMWCRK1kKenp2P8+PHw9/eHnZ0d2rVrh3Pnzpk0Q//Rydgf7oqD37riXrQSKybXgCZbhh5Dnpg0BzOVj9Jei48X38CKmXWRoRZ/gElqx2nasHo4tNMDd6PtEXvdHksnBcHLNxd1mmSKkqeQ1I6TFDOd/1WFzUt8cHq/syjtx15wROOXnqDRiylw89Og+f89Rr0XUnHvsqPBdta2Ojh55ukXe5X0Hierx0Je8UaOHIlDhw5h69atuHLlCrp3745u3brhwYMHJmnf2kaHOk2zcPHk019MQZDh0klHNGyVZZIMzGScd6dF44/jrog44yJqDkDax6mQvWPBH9n0VPE+9EjxOEkxk9gCW6Xj5m8qJMYoAQAPIu0Rc94RDTqnGGx366wK01q1wfwXW2DHJ0HITBH/A7WlEe2IZ2dnY+fOnfjhhx/QsWNHAMCsWbOwd+9erFmzBvPmzSuyj0ajgUaj0X+tVquNyuDkqoXcGkhNMjwMKcnW8KutKWGvysVMpdexZyJqN8zAB4Naipbh76R6nArJZALGTL+La+eq4e5N8c5FS/E4STGT2LqOfYCcdDnCuraATC5A0MrwfxPvoXW/ZP02DTqloNl/HsPVT4Pku0r8tKQm1g1rgPG7rsBKLmL4klTRW7SKVsjz8/Oh1WqhVCoN1tvZ2eHUqVPF7hMWFobZs2ebIh5JnLt3Dt6ZehufjGyCvFyLn+pRKqFz7iKgXjY+GthQ7ChkBiL2ueHCDx5487Ob8K6bjQeRDtg9JwAqr1w8NyAJANDy5cf67X3qZ8GnQSbmdWyFW2dVqNs+TazoJRIEHQQjnmBmzL6VSbRC7ujoiODgYMydOxcNGjSAl5cXvvnmG5w5cwa1a9cudp+pU6diwoQJ+q/VajX8/Mo/EUT9RA5tPuDskW+w3sU9HylJ4hwaZiqdOo0y4OKeh5XfX9Svk1sDjVunoc/rD9C3+QvQ6WQmzSTF41To3dl30PbFVEwc3ADJCbaiZpHicZJiJrH9GBaArmMf6Iu1T/0spDxQ4PBqX30hf5Z7TQ0cXPOQdEcpyUIOQTCuV81z5EVt3boVgiDA19cXCoUCK1aswJAhQ2BlVXwshUIBJycng8UY+XlWiP7THi06pOvXyWQCmnfIQOQFcYYemal0Is44Y+zLrTCu/9Pl5pVqOLbPE+P6tzJ5EQekeZwAAe/OvoN23VMweWh9PLqvECnHU1I8TlLMJLbcbCvIZIaFS2YlQBBK/reV+tAWWSnWUHnmVnY8+htRP2rWqlULx48fR2ZmJtRqNapXr47BgwcjKCjIZBl2rXfHxOVxuHnZHlGX7PHKqCQo7XU4uN3VZBmYqeyys6xx95bhr29OthzqVBvcvSXeZWhSO06hc+6iS9/HmD26DrIzrODiXvAHNjPdGrka8T7HS+04STGT0l4Ln4Cn5+e9/TQIapiF9FRrJMVX/qhKo64pOPR5Dbj45sK7ThYeXHPAsQ0+aDswEQCgybTC/s/80Ow/j+HokYfH95T4Mcwf7gE5qN8xtdLzlYtg5DlyifbIJTFm5ODgAAcHB6SkpODAgQNYvHixydo+/qMLVG5avDUpAS4e+Yi5ZodPhgYiNdnGZBmYqeqQ2nHq82bBH90l228YrF86MRCHdnqIEQmA9I6TFDPVbZaFJd9F678eM6vgap6DO1yxdEJApbf/6uwY/Ly0Jr6fHoSMZGs4eeWh3esJ6PH+fQCATA7EX7fHuZ2eyFbL4eSZi/odU/F/E+JgrZBmwYNOB8iMOM8t0XPkMkEQ7yPGgQMHIAgC6tWrh1u3bmHSpElQKpU4efIkbGz+/R+PWq2GSqVCZ/SFtYwFxdzInVViRyhCmyq983oyhfjD4c8SNJY5k7vMJDh1e3nMSbEjGMhI1+H5xglIS0sz+nRpSQprRVfHobCWlX80I1/IxZH0bZWatTxE7ZGnpaVh6tSpuH//PlxdXfHqq69i/vz5pSriREREZcKh9Yo3aNAgDBo0SMwIRERkIQSdDoIRQ+tSvfyMF+ASERGZMUlMdiMiIqp0HFonIiIyYzoBkFW9Qs6hdSIiIjPGHjkREVkGQQBgzHXk0uyRs5ATEZFFEHQCBCOG1kW87co/YiEnIiLLIOhgXI+cl58RERFZnM8//xwBAQFQKpVo27Yt/vjjjwp9fRZyIiKyCIJOMHopq2+//RYTJkzAzJkzcfHiRTRr1gw9evRAYmJihf1cLORERGQZBJ3xSxktW7YMo0aNwvDhw9GwYUOsXbsW9vb2+OqrryrsxzLrc+SFEw/ykWfUNf4kDkGQ3jOLtUKe2BGKkAnS+7wtSPA4SZIEz6lmpEsrU2ZGQR5TTCQztlbko+D3Xq1WG6xXKBRQFPNwo9zcXFy4cAFTp07Vr7OyskK3bt1w5syZ8gd5hlkX8vT0dADAKfwschIql1SxA5gJPmjMfEmrZgIAnm8sdoLipaenQ6WqnCci2trawtvbG6cSjK8V1apVg5+fn8G6mTNnYtasWUW2TU5OhlarhZeXl8F6Ly8v3Lhxo8j25WXWhdzHxwdxcXFwdHSETCYz6rXUajX8/PwQFxcnmcfTMVPpSC2T1PIAzFRazFQ6FZlJEASkp6fDx8engtIVpVQqERsbi9xc40cBBUEoUm+K642bklkXcisrK9SoUaNCX9PJyUky/1gKMVPpSC2T1PIAzFRazFQ6FZWpsnrif6dUKqFUKiu9nb9zd3eHXC7Ho0ePDNY/evQI3t7eFdaO9E6+ERERVQG2trZo1aoVjhw5ol+n0+lw5MgRBAcHV1g7Zt0jJyIikrIJEyYgJCQErVu3xnPPPYfly5cjMzMTw4cPr7A2WMj/olAoMHPmTNHPdfwdM5WO1DJJLQ/ATKXFTKUjxUxSNXjwYCQlJWHGjBlISEhA8+bNsX///iIT4IwhE6R681giIiL6VzxHTkREZMZYyImIiMwYCzkREZEZYyEnIiIyYyzkqPxHzJXViRMn0KdPH/j4+EAmk2HPnj2i5gkLC0ObNm3g6OgIT09P9OvXD1FRUaJmWrNmDZo2baq/IUVwcDB++eUXUTM9a+HChZDJZBg/frxoGWbNmgWZTGaw1K9fX7Q8hR48eIA33ngDbm5usLOzQ5MmTXD+/HnR8gQEBBQ5TjKZDKGhoaJl0mq1mD59OgIDA2FnZ4datWph7ty5Jrkn+T9JT0/H+PHj4e/vDzs7O7Rr1w7nzp0TNZOls/hCbopHzJVVZmYmmjVrhs8//1y0DH93/PhxhIaG4uzZszh06BDy8vLQvXt3ZGZmipapRo0aWLhwIS5cuIDz58/jxRdfRN++fXHt2jXRMv3duXPnsG7dOjRt2lTsKGjUqBEePnyoX06dOiVqnpSUFLRv3x42Njb45ZdfEBkZiaVLl8LFxUW0TOfOnTM4RocOHQIADBw4ULRMixYtwpo1a7Bq1Spcv34dixYtwuLFi7Fy5UrRMgHAyJEjcejQIWzduhVXrlxB9+7d0a1bNzx48EDUXBZNsHDPPfecEBoaqv9aq9UKPj4+QlhYmIipngIg7N69W+wYBhITEwUAwvHjx8WOYsDFxUX48ssvxY4hpKenC3Xq1BEOHTokdOrUSfjggw9EyzJz5kyhWbNmorVfnMmTJwsdOnQQO8Y/+uCDD4RatWoJOp1OtAy9evUS3n77bYN1/fv3F4YOHSpSIkHIysoS5HK5sG/fPoP1LVu2FD755BORUpFF98gLHzHXrVs3/brKeMRcVZOWlgYAcHV1FTlJAa1Wi+3btyMzM7NCb3tYXqGhoejVq5fB75WYoqOj4ePjg6CgIAwdOhT37t0TNc+PP/6I1q1bY+DAgfD09ESLFi3wxRdfiJrp73Jzc/H111/j7bffNvphTMZo164djhw5gps3bwIALl++jFOnTqFnz56iZcrPz4dWqy1yz3I7OzvRR3osmUXf2c1Uj5irSnQ6HcaPH4/27dujcWNxn4d45coVBAcHIycnB9WqVcPu3bvRsGFDUTNt374dFy9elMw5w7Zt22LTpk2oV68eHj58iNmzZ+OFF17A1atX4ejoKEqmmJgYrFmzBhMmTMB///tfnDt3Du+//z5sbW0REhIiSqa/27NnD1JTUzFs2DBRc0yZMgVqtRr169eHXC6HVqvF/PnzMXToUNEyOTo6Ijg4GHPnzkWDBg3g5eWFb775BmfOnEHt2rVFy2XpLLqQU9mFhobi6tWrkvj0Xa9ePURERCAtLQ3ff/89QkJCcPz4cdGKeVxcHD744AMcOnTI5E9ZKsnfe29NmzZF27Zt4e/vjx07dmDEiBGiZNLpdGjdujUWLFgAAGjRogWuXr2KtWvXSqKQb9iwAT179qzUx2qWxo4dO7Bt2zaEh4ejUaNGiIiIwPjx4+Hj4yPqcdq6dSvefvtt+Pr6Qi6Xo2XLlhgyZAguXLggWiZLZ9GF3FSPmKsqxo0bh3379uHEiRMV/vjY8rC1tdX3Alq1aoVz587hs88+w7p160TJc+HCBSQmJqJly5b6dVqtFidOnMCqVaug0Wggl8tFyVbI2dkZdevWxa1bt0TLUL169SIftho0aICdO3eKlOipu3fv4vDhw9i1a5fYUTBp0iRMmTIFr732GgCgSZMmuHv3LsLCwkQt5LVq1cLx48eRmZkJtVqN6tWrY/DgwQgKChItk6Wz6HPkpnrEnLkTBAHjxo3D7t27cfToUQQGBoodqVg6nQ4ajUa09rt27YorV64gIiJCv7Ru3RpDhw5FRESE6EUcADIyMnD79m1Ur15dtAzt27cvcvnizZs34e/vL1KipzZu3AhPT0/06tVL7CjIysqClZXhn2i5XA6dTidSIkMODg6oXr06UlJScODAAfTt21fsSBbLonvkgGkeMVdWGRkZBj2m2NhYREREwNXVFTVr1jR5ntDQUISHh+OHH36Ao6MjEhISAAAqlQp2dnYmzwMAU6dORc+ePVGzZk2kp6cjPDwcx44dw4EDB0TJAxScP3x23oCDgwPc3NxEm08wceJE9OnTB/7+/oiPj8fMmTMhl8sxZMgQUfIAwIcffoh27dphwYIFGDRoEP744w+sX78e69evFy0TUPBBcOPGjQgJCYG1tfh/Gvv06YP58+ejZs2aaNSoES5duoRly5bh7bffFjXXgQMHIAgC6tWrh1u3bmHSpEmoX7++qH8zLZ7Y0+alYOXKlULNmjUFW1tb4bnnnhPOnj0rap5ff/1VAFBkCQkJESVPcVkACBs3bhQljyAIwttvvy34+/sLtra2goeHh9C1a1fh4MGDouUpidiXnw0ePFioXr26YGtrK/j6+gqDBw8Wbt26JVqeQnv37hUaN24sKBQKoX79+sL69evFjiQcOHBAACBERUWJHUUQBEFQq9XCBx98INSsWVNQKpVCUFCQ8MknnwgajUbUXN9++60QFBQk2NraCt7e3kJoaKiQmpoqaiZLx8eYEhERmTGLPkdORERk7ljIiYiIzBgLORERkRljISciIjJjLORERERmjIWciIjIjLGQExERmTEWciIiIjPGQk5kpGHDhqFfv376rzt37ozx48ebPMexY8cgk8mQmppa4jYymQx79uwp9WvOmjULzZs3NyrXnTt3IJPJEBERYdTrEFHxWMipSho2bBhkMhlkMpn+KWlz5sxBfn5+pbe9a9cuzJ07t1Tblqb4EhH9E/GfDEBUSf7zn/9g48aN0Gg0+PnnnxEaGgobGxtMnTq1yLa5ubmwtbWtkHZdXV0r5HWIiEqDPXKqshQKBby9veHv74+xY8eiW7du+PHHHwE8HQ6fP38+fHx8UK9ePQBAXFwcBg0aBGdnZ7i6uqJv3764c+eO/jW1Wi0mTJgAZ2dnuLm54eOPP8azjyt4dmhdo9Fg8uTJ8PPzg0KhQO3atbFhwwbcuXMHXbp0AQC4uLhAJpNh2LBhAAqexBUWFobAwEDY2dmhWbNm+P777w3a+fnnn1G3bl3Y2dmhS5cuBjlLa/Lkyahbty7s7e0RFBSE6dOnIy8vr8h269atg5+fH+zt7TFo0CCkpaUZfP/LL79EgwYNoFQqUb9+faxevbrMWYiofFjIyWLY2dkhNzdX//WRI0cQFRWFQ4cOYd++fcjLy0OPHj3g6OiIkydP4rfffkO1atXwn//8R7/f0qVLsWnTJnz11Vc4deoUnjx5gt27d/9ju2+99Ra++eYbrFixAtevX8e6detQrVo1+Pn5YefOnQCAqKgoPHz4EJ999hkAICwsDFu2bMHatWtx7do1fPjhh3jjjTdw/PhxAAUfOPr3748+ffogIiICI0eOxJQpU8p8TBwdHbFp0yZERkbis88+wxdffIFPP/3UYJtbt25hx44d2Lt3L/bv349Lly7h3Xff1X9/27ZtmDFjBubPn4/r169jwYIFmD59OjZv3lzmPERUDiI/fY2oUoSEhAh9+/YVBEEQdDqdcOjQIUGhUAgTJ07Uf9/Ly8vgkZBbt24V6tWrJ+h0Ov06jUYj2NnZCQcOHBAEQRCqV68uLF68WP/9vLw8oUaNGvq2BMHw0aVRUVECAOHQoUPF5ix8ZG1KSop+XU5OjmBvby+cPn3aYNsRI0YIQ4YMEQRBEKZOnSo0bNjQ4PuTJ08u8lrPAiDs3r27xO8vWbJEaNWqlf7rmTNnCnK5XLh//75+3S+//CJYWVkJDx8+FARBEGrVqiWEh4cbvM7cuXOF4OBgQRAEITY2VgAgXLp0qcR2iaj8eI6cqqx9+/ahWrVqyMvLg06nw+uvv45Zs2bpv9+kSROD8+KXL1/GrVu34OjoaPA6OTk5uH37NtLS0vDw4UO0bdtW/z1ra2u0bt26yPB6oYiICMjlcnTq1KnUuW/duoWsrCy89NJLButzc3PRokULAMD169cNcgBAcHBwqdso9O2332LFihW4ffs2MjIykJ+fDycnJ4NtatasCV9fX4N2dDodoqKi4OjoiNu3b2PEiBEYNWqUfpv8/HyoVKoy5yGismMhpyqrS5cuWLNmDWxtbeHj4wNra8NfdwcHB4OvMzIy0KpVK2zbtq3Ia3l4eJQrg52dXZn3ycjIAAD89NNPBgUUKDjvX1HOnDmDoUOHYvbs2ejRowdUKhW2b9+OpUuXljnrF198UeSDhVwur7CsRFQyFnKqshwcHFC7du1Sb9+yZUt8++238PT0LNIrLVS9enX8/vvv6NixI4CCnueFCxfQsmXLYrdv0qQJdDodjh8/jm7duhX5fuGIgFar1a9r2LAhFAoF7t27V2JPvkGDBvqJe4XOnj377z/k35w+fRr+/v745JNP9Ovu3r1bZLt79+4hPj4ePj4++nasrKxQr149eHl5wcfHBzExMRg6dGiZ2ieiisHJbkR/GTp0KNzd3dG3b1+cPHkSsbGxOHbsGN5//33cv38fAPDBBx9g4cKF2LNnD27cuIF33333H68BDwgIQEhICN5++23s2bNH/5o7duwAAPj7+0Mmk2Hfvn1ISkpCRkYGHB0dMXHiRHz44YfYvHkzbt++jYsXL2LlypX6CWRjxoxBdHQ0Jk2ahKioKISHh2PTpk1l+nnr1KmDe/fuYfv27bh9+zZWrFhR7MQ9pVKJkJAQXL58GSdPnsT777+PQYMGwdvbGwAwe/ZshIWFYcWKFbh58yauXLmCjRs3YtmyZWXKQ0Tlw0JO9Bd7e3ucOHECNWvWRP/+/dGgQQOMGDECOTk5+h76Rx99hDfffBMhISEIDg6Go6MjXnnllX983TVr1mDAgAF49913Ub9+fYwaNQqZmZkAAF9fX8yePRtTpkyBl5cXxo0bBwCYO3cupk+fjrCwMDRo0AD/+c9/8NNPPyEwMBBAwXnrnTt3Ys+ePWjWrBnWrl2LBQsWlOnnffnll/Hhhx9i3LhxaN68OU6fPo3p06cX2a527dro378//u///g/du3dH06ZNDS4vGzlyJL788kts3LgRTZo0QadOnbBp0yZ9ViKqXDKhpFk6REREJHnskRMREZkxFnIiIiIzxkJORERkxljIiYiIzBgLORERkRljISciIjJjLORERERmjIWciIjIjLGQExERmTEWciIiIjPGQk5ERGTG/h9ElGiXnEc03AAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "print(\"K-nearest neighbors\")\n", "print(f\"Classification report for classifier {knn_clf}:\\n\"\n", " f\"{metrics.classification_report(y_test, knn_prediction)}\\n\")\n", - "disp = metrics.plot_confusion_matrix(knn_clf, X_test, y_test)\n", + "disp = ConfusionMatrixDisplay.from_estimator(knn_clf, X_test, y_test)\n", "disp.figure_.suptitle(\"Confusion Matrix\")\n", - "print(f\"Confusion matrix:\\n{disp.confusion_matrix}\")\n", + "# print(f\"Confusion matrix:\\n{disp.confusion_matrix}\")\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Random Forest\n", + "Classification report for classifier RandomForestClassifier(random_state=42, verbose=True):\n", + " precision recall f1-score support\n", + "\n", + " 0 0.97 0.99 0.98 88\n", + " 1 0.95 0.89 0.92 91\n", + " 2 1.00 0.90 0.94 86\n", + " 3 0.87 0.84 0.85 91\n", + " 4 0.99 0.91 0.95 92\n", + " 5 0.91 0.96 0.93 91\n", + " 6 0.98 1.00 0.99 91\n", + " 7 0.93 0.98 0.95 89\n", + " 8 0.88 0.90 0.89 88\n", + " 9 0.84 0.93 0.89 92\n", + "\n", + " accuracy 0.93 899\n", + " macro avg 0.93 0.93 0.93 899\n", + "weighted avg 0.93 0.93 0.93 899\n", + "\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=1)]: Done 49 tasks | elapsed: 0.0s\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAHgCAYAAABej+9AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwWUlEQVR4nO3dd3wT9f8H8NelI+ledFC62WUPRYYMRRARGQqI+LXsL1JUQBD5yUasoAwBBVQERCrgF0FFZcuSIVugUAqFUiilLXSPtE3u90dtILRI0rS5S/N6Ph730F7vcq9+EvLO53Of3AmiKIogIiIii6SQOgARERFVHAs5ERGRBWMhJyIismAs5ERERBaMhZyIiMiCsZATERFZMBZyIiIiC8ZCTkREZMFYyImIiCwYCzmRxOLi4tCtWze4ublBEARs3bq1Uh//+vXrEAQBa9asqdTHtWSdO3dG586dpY5BVClYyIkAXL16Ff/9738RFhYGlUoFV1dXtG/fHp999hny8/Or9NgRERE4d+4c5s6di3Xr1qF169ZVejxzGjJkCARBgKura7ntGBcXB0EQIAgCPv30U6MfPykpCTNnzsSZM2cqIS2RZbKVOgCR1H799Vf0798fSqUSb7zxBho3bozCwkIcOnQIkyZNwoULF/Dll19WybHz8/Nx5MgRfPDBBxg7dmyVHCM4OBj5+fmws7Orksd/HFtbW+Tl5eGXX37BgAED9H63fv16qFQqFBQUVOixk5KSMGvWLISEhKB58+YG77dz584KHY9IjljIyapdu3YNr776KoKDg7F3717UrFlT97vIyEhcuXIFv/76a5UdPzU1FQDg7u5eZccQBAEqlarKHv9xlEol2rdvj++//75MIY+OjkbPnj2xefNms2TJy8uDo6Mj7O3tzXI8InPg0DpZtfnz5yMnJwerVq3SK+Kl6tSpg3feeUf3c3FxMebMmYPatWtDqVQiJCQE//d//we1Wq23X0hICF588UUcOnQITz75JFQqFcLCwvDtt9/qtpk5cyaCg4MBAJMmTYIgCAgJCQFQMiRd+v8PmjlzJgRB0Fu3a9cudOjQAe7u7nB2dkb9+vXxf//3f7rfP+oc+d69e/H000/DyckJ7u7u6N27Ny5evFju8a5cuYIhQ4bA3d0dbm5uGDp0KPLy8h7dsA957bXX8PvvvyMjI0O37vjx44iLi8Nrr71WZvt79+5h4sSJaNKkCZydneHq6ooePXrg7Nmzum327duHJ554AgAwdOhQ3RB96d/ZuXNnNG7cGCdPnkTHjh3h6Oioa5eHz5FHRERApVKV+fu7d+8ODw8PJCUlGfy3EpkbCzlZtV9++QVhYWFo166dQduPGDEC06dPR8uWLbFo0SJ06tQJUVFRePXVV8tse+XKFbzyyit47rnnsGDBAnh4eGDIkCG4cOECAKBfv35YtGgRAGDQoEFYt24dFi9ebFT+Cxcu4MUXX4Rarcbs2bOxYMECvPTSS/jzzz//db/du3eje/fuSElJwcyZMzFhwgQcPnwY7du3x/Xr18tsP2DAAGRnZyMqKgoDBgzAmjVrMGvWLINz9uvXD4Ig4Mcff9Sti46ORoMGDdCyZcsy28fHx2Pr1q148cUXsXDhQkyaNAnnzp1Dp06ddEW1YcOGmD17NgBg1KhRWLduHdatW4eOHTvqHufu3bvo0aMHmjdvjsWLF6NLly7l5vvss8/g7e2NiIgIaDQaAMDKlSuxc+dOLF26FP7+/gb/rURmJxJZqczMTBGA2Lt3b4O2P3PmjAhAHDFihN76iRMnigDEvXv36tYFBweLAMQDBw7o1qWkpIhKpVJ89913deuuXbsmAhA/+eQTvceMiIgQg4ODy2SYMWOG+OA/20WLFokAxNTU1EfmLj3G6tWrdeuaN28u+vj4iHfv3tWtO3v2rKhQKMQ33nijzPGGDRum95h9+/YVvby8HnnMB/8OJycnURRF8ZVXXhGfffZZURRFUaPRiH5+fuKsWbPKbYOCggJRo9GU+TuUSqU4e/Zs3brjx4+X+dtKderUSQQgrlixotzfderUSW/djh07RADihx9+KMbHx4vOzs5inz59Hvs3EkmNPXKyWllZWQAAFxcXg7b/7bffAAATJkzQW//uu+8CQJlz6eHh4Xj66ad1P3t7e6N+/fqIj4+vcOaHlZ5b/+mnn6DVag3a5/bt2zhz5gyGDBkCT09P3fqmTZviueee0/2dDxo9erTez08//TTu3r2ra0NDvPbaa9i3bx+Sk5Oxd+9eJCcnlzusDpScV1coSt6eNBoN7t69qzttcOrUKYOPqVQqMXToUIO27datG/773/9i9uzZ6NevH1QqFVauXGnwsYikwkJOVsvV1RUAkJ2dbdD2CQkJUCgUqFOnjt56Pz8/uLu7IyEhQW99UFBQmcfw8PBAenp6BROXNXDgQLRv3x4jRoyAr68vXn31VWzatOlfi3ppzvr165f5XcOGDZGWlobc3Fy99Q//LR4eHgBg1N/ywgsvwMXFBRs3bsT69evxxBNPlGnLUlqtFosWLULdunWhVCpRo0YNeHt74++//0ZmZqbBx6xVq5ZRE9s+/fRTeHp64syZM1iyZAl8fHwM3pdIKizkZLVcXV3h7++P8+fPG7Xfw5PNHsXGxqbc9aIoVvgYpedvSzk4OODAgQPYvXs3/vOf/+Dvv//GwIED8dxzz5XZ1hSm/C2llEol+vXrh7Vr12LLli2P7I0DwEcffYQJEyagY8eO+O6777Bjxw7s2rULjRo1MnjkAShpH2OcPn0aKSkpAIBz584ZtS+RVFjIyaq9+OKLuHr1Ko4cOfLYbYODg6HVahEXF6e3/s6dO8jIyNDNQK8MHh4eejO8Sz3c6wcAhUKBZ599FgsXLkRMTAzmzp2LvXv34o8//ij3sUtzxsbGlvndpUuXUKNGDTg5OZn2BzzCa6+9htOnTyM7O7vcCYKl/ve//6FLly5YtWoVXn31VXTr1g1du3Yt0yaGfqgyRG5uLoYOHYrw8HCMGjUK8+fPx/Hjxyvt8YmqCgs5WbX33nsPTk5OGDFiBO7cuVPm91evXsVnn30GoGRoGECZmeULFy4EAPTs2bPSctWuXRuZmZn4+++/detu376NLVu26G137969MvuWXhjl4a/ElapZsyaaN2+OtWvX6hXG8+fPY+fOnbq/syp06dIFc+bMwbJly+Dn5/fI7WxsbMr09n/44QfcunVLb13pB47yPvQYa/Lkybhx4wbWrl2LhQsXIiQkBBEREY9sRyK54AVhyKrVrl0b0dHRGDhwIBo2bKh3ZbfDhw/jhx9+wJAhQwAAzZo1Q0REBL788ktkZGSgU6dO+Ouvv7B27Vr06dPnkV9tqohXX30VkydPRt++ffH2228jLy8Py5cvR7169fQme82ePRsHDhxAz549ERwcjJSUFHzxxRcICAhAhw4dHvn4n3zyCXr06IG2bdti+PDhyM/Px9KlS+Hm5oaZM2dW2t/xMIVCgalTpz52uxdffBGzZ8/G0KFD0a5dO5w7dw7r169HWFiY3na1a9eGu7s7VqxYARcXFzg5OaFNmzYIDQ01KtfevXvxxRdfYMaMGbqvw61evRqdO3fGtGnTMH/+fKMej8isJJ41TyQLly9fFkeOHCmGhISI9vb2oouLi9i+fXtx6dKlYkFBgW67oqIicdasWWJoaKhoZ2cnBgYGilOmTNHbRhRLvn7Ws2fPMsd5+GtPj/r6mSiK4s6dO8XGjRuL9vb2Yv369cXvvvuuzNfP9uzZI/bu3Vv09/cX7e3tRX9/f3HQoEHi5cuXyxzj4a9o7d69W2zfvr3o4OAgurq6ir169RJjYmL0tik93sNfb1u9erUIQLx27doj21QU9b9+9iiP+vrZu+++K9asWVN0cHAQ27dvLx45cqTcr4399NNPYnh4uGhra6v3d3bq1Els1KhRucd88HGysrLE4OBgsWXLlmJRUZHeduPHjxcVCoV45MiRf/0biKQkiKIRs1WIiIhIVniOnIiIyIKxkBMREVkwFnIiIiILxkJORERkwVjIiYiILBgLORERkQVjISciIrJgLOREREQWjIWciIjIgrGQExERWTAWciIiIgvGQk5ERGTBWMiJiIgsGAs5ERGRBWMhJyIismAs5ERERBaMhZyIiMiCsZATERFZMBZyIiIiC8ZCTkREZMFYyImIiCwYCzkREZEFYyEnIiKyYCzkREREFoyFnIiIyIKxkBMREVkwFnIiIiILxkJORERkwVjIiYiILBgLORERkQVjISciIrJgtlIHMIVWq0VSUhJcXFwgCILUcYiIyEiiKCI7Oxv+/v5QKKqub1lQUIDCwkKTH8fe3h4qlaoSElUeiy7kSUlJCAwMlDoGERGZKDExEQEBAVXy2AUFBQgNdkZyisbkx/Lz88O1a9dkVcwtupC7uLgAAI7+VQPOzvI5SzA2vK3UEaiiFDZSJyhLa/qbD5FcFaMIh/Cb7v28KhQWFiI5RYOEkyFwdal4rcjK1iK41XUUFhaykFeW0uF0Z2cFXEx4ciqbrWAndQSqKEGGhVyQz2ubqNKJJf8xx+lRZxcBzi4VP44W8jyFa9GFnIiIyFAaUQuNaNr+csRCTkREVkELEVpUvJKbsm9V4pgdERGRBWOPnIiIrIIWWpgyOG7a3lWHhZyIiKyCRhShESs+PG7KvlWJQ+tEREQWjD1yIiKyCtV1shsLORERWQUtRGiqYSHn0DoREZEFY4+ciIisAofWqwGtBvhpURCObvFBZood3H0L0b5/Cl58OxGlVwccHtSh3H37/981PD/6ltmy9hqShlfeTIGndzHiYxzwxdRaiD3jaLbjM1PFNG6Tjf6j76Buk3x4+RVh5vAwHNnhLlmeUnJrJ2ZiJilw1no18PvyAOxbVxOvzb6KD/eewitTruP3FbWwZ3VN3TYLTxzTW4Z+ehmCIKJVjzSz5ez0UjpGzUjC+oV+iOxeD/ExKsyNjoebV5HZMjBTxagctYiPccSyqfK5K58c24mZmIkqjywK+eeff46QkBCoVCq0adMGf/31V5Uc58oJVzTvdhfNnk1HjUA1Wve8i0YdM3Dt7P277rj5FOktp3d6oX7bTHgHq6skU3n6jUrD9mhP7NzoiRtxKiyZHAB1voDug+6ZLQMzVcyJP9yw9hN/HN7uLlmGh8mxnZiJmaSgrYRFjiQv5Bs3bsSECRMwY8YMnDp1Cs2aNUP37t2RkpJS6ceq0zoLF/90R3J8ye3nEmOccOW4K5p0Ti93+8xUO5zb64GnX71T6VkexdZOi7pN83Dq4P0PF6Io4PRBF4S3yjNbDmaqHuTYTszETFLR/DNr3ZRFjiQv5AsXLsTIkSMxdOhQhIeHY8WKFXB0dMQ333xT6cfqMeYmnuyViqldWmFUWDvM6tEcXYcl4am+qeVuf/h/PlA6adDqefMNq7t6amBjC2Sk6k9fSE+zhYd3sdlyMFP1IMd2YiZmkopGNH2RI0knuxUWFuLkyZOYMmWKbp1CoUDXrl1x5MiRMtur1Wqo1feHuLOysow63vFtNXB0qw9GLo1FrXp5uHHBCRtmhekmvT3s0CZfPNU3FXYqmT57RERk9STtkaelpUGj0cDX11dvva+vL5KTk8tsHxUVBTc3N90SGGjchKIf5obihTE30ealNAQ0yEO7l1Px3Igk/PZFQJltLx9zRfJVR3Q047A6AGTds4GmGHB/6NOtR41ipKdK87mLmSyXHNuJmZhJKjxHLgNTpkxBZmambklMTDRq/8J8BQSFfu9aoRAhaoUy2x7c6IvgJtkIDM81KbOxiosUiPvbES06ZOvWCYKI5h1yEHNSmq93MJPlkmM7MRMzSUULARoTFi3K1go5kPQjVI0aNWBjY4M7d/R7vXfu3IGfn1+Z7ZVKJZRKZYWP16zrPfy6NBCe/up/htadsfPrWugwQP/4+dk2OPFrDQyceq3CxzLFj1/WwMTFibh81hGxpx3Rd2QqVI5a7NzgKUkeZjKcylED/5D7p3/8AtUIC89DdoYtUpPsJckkx3ZiJmaiyiNpIbe3t0erVq2wZ88e9OnTBwCg1WqxZ88ejB07ttKP99rseGz9NAjfTa2N7LSSC8J0GnwbL72j37P/6+cagAg82bv8SXBVbf/PHnDz0uCNScnw8C5G/AUHfDA4FBlpdpLkYSbD1WuWh09+iNP9PHpmyUWEdm7yxIIJIZJkkmM7MRMzSUErliym7C9HgihKe6majRs3IiIiAitXrsSTTz6JxYsXY9OmTbh06VKZc+cPy8rKgpubG87H+MDFRT5nCR51dTiyAAobqROUpdVInYCoyhSLRdiHn5CZmQlXV9cqOUZprTh2wQ/OJtSKnGwt2jRKrtKsFSH57ISBAwciNTUV06dPR3JyMpo3b47t27c/togTERGRDAo5AIwdO7ZKhtKJiIhKlU5aM2V/OZJFISciIqpqWlGAVqx4MTZl36oknxPLREREZDT2yImIyCpwaJ2IiMiCaaCAxoSBaLl+f4SFnIiIrIJo4jlykefIiYiIqLKxR05ERFaB58iJiIgsmEZUQCOacI5cppdo5dA6ERGRBWOPnIiIrIIWArQm9F+1kGeXnIWciIisAs+Ry9jY8LawFeRzC73xVy5KHaGMRXUaSh2hDMGEe8tXFVGtfvxG5sY7slElsq3lL3UEfVo1kCR1CMtWLQo5ERHR45g+2Y1D60RERJIpOUduwk1TZDq0zlnrREREFoyFnIiIrIL2n2utV3Qxdsa7RqPBtGnTEBoaCgcHB9SuXRtz5syB+MAQvSiKmD59OmrWrAkHBwd07doVcXFxRh2HhZyIiKxC6TlyUxZjzJs3D8uXL8eyZctw8eJFzJs3D/Pnz8fSpUt128yfPx9LlizBihUrcOzYMTg5OaF79+4oKCgw+Dg8R05ERFZBW4Fetf7+xk12O3z4MHr37o2ePXsCAEJCQvD999/jr7/+AlDSG1+8eDGmTp2K3r17AwC+/fZb+Pr6YuvWrXj11VcNOg575EREREbIysrSW9SP+Npqu3btsGfPHly+fBkAcPbsWRw6dAg9evQAAFy7dg3Jycno2rWrbh83Nze0adMGR44cMTgPe+RERGQVNKIAjQm3Ii3dNzAwUG/9jBkzMHPmzDLbv//++8jKykKDBg1gY2MDjUaDuXPnYvDgwQCA5ORkAICvr6/efr6+vrrfGYKFnIiIrELppLWK718ytJ6YmAhXV1fdeuUjLm61adMmrF+/HtHR0WjUqBHOnDmDcePGwd/fHxERERXO8TAWciIiIiO4urrqFfJHmTRpEt5//33due4mTZogISEBUVFRiIiIgJ+fHwDgzp07qFmzpm6/O3fuoHnz5gbn4TlyIiKyClpRYfJijLy8PCgU+vvY2NhAq9UCAEJDQ+Hn54c9e/bofp+VlYVjx46hbdu2Bh+HPXIiIrIKlTW0bqhevXph7ty5CAoKQqNGjXD69GksXLgQw4YNAwAIgoBx48bhww8/RN26dREaGopp06bB398fffr0Mfg4LOQAeg1JwytvpsDTuxjxMQ74YmotxJ5xNMuxtRrg6BJvXPzJFbmptnD2KUb4y5loE5kG4Z85GXE7XPB3tDtSLqhQkGGLwT/Hwyfc/Df3kLKdHjbwzSS0756OgNr5KCxQIOaUM76ZF4ib8Q6S5HmQnNoJABq3yUb/0XdQt0k+vPyKMHN4GI7scJcsTym5tRMzPd43P+2Dr39+mfXbfgjC8vmNJEgkb0uXLsW0adMwZswYpKSkwN/fH//9738xffp03TbvvfcecnNzMWrUKGRkZKBDhw7Yvn07VCqVwcex+qH1Ti+lY9SMJKxf6IfI7vUQH6PC3Oh4uHkVmeX4J1Z64Wy0O7rMuIOIHfHo8F4KTnzliTPfeui2KcoTUKt1PjpMSjVLpvJI3U4Pa9ImG7+s88H4fuGY8kYD2NqKmPttLJQO0t6VS27tBAAqRy3iYxyxbGrg4zc2Ezm2EzM93riItnj9+Wd0yweRTwAADu32kySPsbS4P3O9IovWyOO5uLhg8eLFSEhIQH5+Pq5evYoPP/wQ9vb2um0EQcDs2bORnJyMgoIC7N69G/Xq1TPqOJIW8gMHDqBXr17w9/eHIAjYunWr2TP0G5WG7dGe2LnREzfiVFgyOQDqfAHdB90zy/GTTjug9rM5COuSA7eAItTrkY3gDrlIPnu/ZxneNwtPvZWGoPa5ZslUHqnb6WFTh9THrs3eSIhzxLWLjlgwKQy+tQpRt4l0bQTIr50A4MQfblj7iT8Ob3eXLMPD5NhOzPR4WRlKpN+9vzzRIQVJiY44d8pTkjzGKr0gjCmLHEmaKjc3F82aNcPnn38uyfFt7bSo2zQPpw666NaJooDTB10Q3irPLBn8W+Qj8Ygj0q+VfEJLvahE0glHhHTKMcvxDSGHdnocR5eSnnh2hnRniyyhneRAju3ETMaztdWiS48k7Po5AJDpXcGshaTnyHv06KG7wo0UXD01sLEFMlL1myE9zRaBdcxzDvqJ0XehzlFgTbcwKGxKzpm3n5CKhr2zzHJ8Q8ihnf6NIIgYPS0BF447I+GydOcz5d5OciHHdmIm4z3V+Q6cnYuxe1stqaMYzPT7kcuzR25Rk93UarXepfCysuRT7Crq8m+uuPSzG15YlASvumqkxCixf64vnHyL0ahfptTxLELk7ASE1M/Hu/3DpY5CZDW6vXQTJ47UwL00wydlSY33I5eBqKgouLm56ZaHL5NnrKx7NtAUA+7exXrrPWoUIz3VPJ9xDnzsgyf+exf1X8xCjfpqhPfNQsuh93B8hZdZjm8IObTTo4yZdR1tnsnAe4MaIi3Z/vE7VCE5t5OcyLGdmMk43n75aP5kGnZulc8ESkOY++5n5iLPVI8wZcoUZGZm6pbExESTHq+4SIG4vx3RokO2bp0giGjeIQcxJ80zRFtcIEBQ6H83UVAAorHTI6uQHNqpLBFjZl1Hu27pmDy4Ae7cLP8SieYkz3aSHzm2EzMZ57leN5GZrsRff3pLmoNKWFQ3QalUPvKathX145c1MHFxIi6fdUTsaUf0HZkKlaMWOzeYZxZm2DM5+OuLGnDxL4ZXXTVSY1Q49Y0nGvXP0G1TkKFAVpIdclNKnq7SiXFO3sVw8jbP162kbqeHRc5OQJfedzFrVF3k5yjgUaMQAJCbbYtCtXSfT+XWTgCgctTAP+T+KSm/QDXCwvOQnWGL1CRpRjHk2E7MZBhBEPFcr5vY82staDUW1ReshAvCyPPvtahCXhX2/+wBNy8N3piUDA/vYsRfcMAHg0ORkWZnluN3mX4Hhxd7Y+8MP+TdtYGzTzGaDMrAU2Pvf2f86h4X7Jzsr/v5t3cCAABPvZWKtu+kmSWn1O30sF7/SQEAfLLhkt76BRNDsWuzdL0EubUTANRrlodPfojT/Tx65i0AwM5NnlgwIUSSTHJsJ2YyTPMn0+BTswA7fw6QLENFaUUBWhPufmbKvlVJEEXRuGvOVaKcnBxcuXIFANCiRQssXLgQXbp0gaenJ4KCgh67f1ZWFtzc3NAZvWErSPfCftj4KxeljlDGojoNpY5QhlDJoyuVQXzEfYUlpbCROkFZWmkvvEMVZ1vL//EbmVGxVo3dSSuRmZlp0I1IKqK0Vsw//jQcnCvef83PKcZ7Txys0qwVIWmP/MSJE+jSpYvu5wkTJgAAIiIisGbNGolSERFRdaQ1cWhdrheEkbSQd+7cGRIOCBARkRWpyB3MHt5fjuSZioiIiAxi9ZPdiIjIOmggQGPCRV1M2bcqsZATEZFV4NA6ERERyQ575EREZBU0MG14XK5fumQhJyIiq1Bdh9ZZyImIyCpU19uYyjMVERERGYQ9ciIisgqiifcjF/n1MyIiIulwaJ2IiIhkp3r0yBU2gCCfO0TJ8U5jL19MkTpCGVs7N5Y6QhmaO/JrJ95pjCqTJu2u1BH0aMQisx2rut7GtHoUciIiosfQmHj3M1P2rUryTEVEREQGYY+ciIisAofWiYiILJgWCmhNGIg2Zd+qJM9UREREZBD2yImIyCpoRAEaE4bHTdm3KrGQExGRVeA5ciIiIgsmmnj3M5FXdiMiIqLKxh45ERFZBQ0EaEy48Ykp+1YlFnIiIrIKWtG089xasRLDVCIOrRMREVkwq++RN26Tjf6j76Buk3x4+RVh5vAwHNnhLnUs9BqShlfeTIGndzHiYxzwxdRaiD3jaJZj//6sF/KSyt6EJmxQHuoNz8P2rjXK3a/NokwEPK+u6ng6Xt4FGPpOHFq3vwulSoPbiY5YNDMccTFuZstQHimfO2Zipqo08M0ktO+ejoDa+SgsUCDmlDO+mReIm/EOkuQxltbEyW6m7FuV5JnKjFSOWsTHOGLZ1ECpo+h0eikdo2YkYf1CP0R2r4f4GBXmRsfDzcs8dwl65od76HkgTbd0WJUOAAh4Xg1HP63e73oeSEP42BzYOmrh93ShWfIBgLNLET5dcxyaYgWmj22B0S+3w1cL6yE7y85sGcoj9XPHTMxUlZq0ycYv63wwvl84przRALa2IuZ+Gwulg2XcoU8LweRFjiQt5FFRUXjiiSfg4uICHx8f9OnTB7GxsWbNcOIPN6z9xB+Ht7ub9bj/pt+oNGyP9sTOjZ64EafCkskBUOcL6D7onlmOr/QUofLW6pbkfUo4BRWjxhNFEGyg9zuVtxa39igR8Lwatk7mO4H0ytDrSE1WYdHMRrh8wQ13khxw+qgXkm9K23uS+rljJmaqSlOH1Meuzd5IiHPEtYuOWDApDL61ClG3Sa4keaiEpIV8//79iIyMxNGjR7Fr1y4UFRWhW7duyM213heFrZ0WdZvm4dRBF906URRw+qALwlvlmT2PthC48YsKIf0KIJTzYTT9gi0yL9oh5JV8s+Z6qlMq4mJcMWX+WUTv2Yel3x9F9743zZrhYXJ77piJmaqao0tJTzw7wzLO0pZe2c2URY4kbf3t27fr/bxmzRr4+Pjg5MmT6Nixo0SppOXqqYGNLZCRqv/UpKfZIrCO+c4/l0rao0RRtoDgvgXl/v76/1RwqV0MrxbFZs3lVysfPfvfxJbvgrBxVSjqNcrC6PdiUVyswJ5f/M2apZTcnjtmYqaqJAgiRk9LwIXjzki4LO1ImKGq6zlyWX2MyszMBAB4enqW+3u1Wg21+v4LOCsryyy5rNm1zSr4Pl0IBx9tmd9pCoDEX1Vo8Kb5R1AEhYi4GFesXVYXABAf64rgOjl44ZWbkhVyImsSOTsBIfXz8W7/cKmjWD3ZfLzQarUYN24c2rdvj8aNG5e7TVRUFNzc3HRLYKB8JqhVlqx7NtAUA+7e+j1cjxrFSE817+eu3FsKpByxR+gjhs1v7lChuEBAcO/ye+tVKT1NicR4J711idec4O1n/iyl5PTcMRMzVaUxs66jzTMZeG9QQ6Ql20uaxRhaCLrrrVdo4WS3fxcZGYnz589jw4YNj9xmypQpyMzM1C2JiYlmTGgexUUKxP3tiBYdsnXrBEFE8w45iDlp3uGrhC0OUHlq4dep/Nno1zer4N9FDaWn+a+SEHPGHbWC9c8T1grKQ8ptldmzlJLTc8dMzFQ1RIyZdR3tuqVj8uAGuHNTKVGOihFNnLEuyrSQy2JofezYsdi2bRsOHDiAgICAR26nVCqhVFbuC0flqIF/yP3her9ANcLC85CdYYvUJGk+af74ZQ1MXJyIy2cdEXvaEX1HpkLlqMXODeWfcqgKohZI+FGFoD4FUJTzKslJsEHaCTu0X5lptkwP2vJdEBasOY4Bw67h4C5f1G+UiR4v38SSOdIO88nhuWMmZqoqkbMT0KX3XcwaVRf5OQp41Cj5kJ+bbYtCtWz6hY/Eu59VAVEU8dZbb2HLli3Yt28fQkNDzZ6hXrM8fPJDnO7n0TNvAQB2bvLEggkhZs8DAPt/9oCblwZvTEqGh3cx4i844IPBochIM993pFOO2CPvtg1C+j1iktuPKjj4aeHb3nzfHX9QXIwbPny3GYa8dQWvjYpH8i0HrPykPvb9XlOSPKXk8NwxEzNVlV7/SQEAfLLhkt76BRNDsWuztxSRCIAgiqJkV48dM2YMoqOj8dNPP6F+/fq69W5ubnBwePyVgrKysuDm5obOin6wFaS9EIgerfwujvDyxRSpI5SxtXP5cyGkpLkjv3YiqkxCJY9qmqpYLMIf6k3IzMyEq6trlRyjtFb03TUUdk4VH2ktyi3EludWV2nWipC0R758+XIAQOfOnfXWr169GkOGDDF/ICIiqrY4tF4FJBwMICIiqhZkMdmNiIioqpl6vXS5fv2MhZyIiKxCdR1al//3BYiIiOiR2CMnIiKrUF175CzkRERkFaprIefQOhERkQVjj5yIiKxCde2Rs5ATEZFVEGHaV8jkeuUTFnIiIrIK1bVHznPkREREFow9ciIisgrVtUdePQq5VgMIMhpcUNhInaCMzQ19pI5QxosXYqWOUMa2Rh5SRyhD4eQkdYQytLm5UkcoQ47tpHB3kzpCGcW370gdQY8oFpvtWNW1kMuo+hEREZGxqkePnIiI6DGqa4+chZyIiKyCKAoQTSjGpuxblTi0TkREZMHYIyciIqvA+5ETERFZsOp6jpxD60RERBaMPXIiIrIK1XWyGws5ERFZheo6tM5CTkREVqG69sh5jpyIiKiK3Lp1C6+//jq8vLzg4OCAJk2a4MSJE7rfi6KI6dOno2bNmnBwcEDXrl0RFxdn1DFYyImIyCqI/wytV3Qxtkeenp6O9u3bw87ODr///jtiYmKwYMECeHjcv6fD/PnzsWTJEqxYsQLHjh2Dk5MTunfvjoKCAoOPw6F1AL2GpOGVN1Pg6V2M+BgHfDG1FmLPOEqWp3GbbPQffQd1m+TDy68IM4eH4cgOd8nylJKynfY854r8pLI3owl+tQBNpuUDANLP2ODSZw7IOGcLQQG4NihGmy9zYKMyS0QdOb2eer6WjJ6DkuEboAYAJMQ5IHpZIE4ckP7mMGynf/fNT/vg659fZv22H4KwfH4jCRLJ973JUCIAUTRtf2PMmzcPgYGBWL16tW5daGjo/ccTRSxevBhTp05F7969AQDffvstfH19sXXrVrz66qsGHcfqe+SdXkrHqBlJWL/QD5Hd6yE+RoW50fFw8yqSLJPKUYv4GEcsmxooWYaHSd1OHTZmo+u+DN3S5utsAEDN7iXHTz9jg2P/dYF3uyJ02JCFDhuzEPKa2uyvcKnb6WFpyfZY/Wkw3urTFG/3bYqzR9wwffklBNXJkyRPKbbT442LaIvXn39Gt3wQ+QQA4NBuP8kyyfG9SQpZWVl6i1qtLne7n3/+Ga1bt0b//v3h4+ODFi1a4KuvvtL9/tq1a0hOTkbXrl1169zc3NCmTRscOXLE4DySFvLly5ejadOmcHV1haurK9q2bYvff//drBn6jUrD9mhP7NzoiRtxKiyZHAB1voDug+6ZNceDTvzhhrWf+OPwdnfJMjxM6nZSeopQed9fUvbZwTFQA68nSm6BeGGeI0IHF6DOSDVc6mjhHKqF//NFsLE3SzwdqdvpYcf2euL4fg8kJTjg1nUHrF0UjII8GzRoni1JnlJsp8fLylAi/e795YkOKUhKdMS5U56SZZLje5MxSq/sZsoCAIGBgXBzc9MtUVFR5R4vPj4ey5cvR926dbFjxw68+eabePvtt7F27VoAQHJyMgDA19dXbz9fX1/d7wwh6dB6QEAAPv74Y9StWxeiKGLt2rXo3bs3Tp8+jUaNqn7oyNZOi7pN87Bh2f17dYuigNMHXRDeStoei5zIrZ20hcDNbfYIi1BDEAD1XQEZf9ui1ouF+HOwC3ITFXAO1aDB2/nwbKUxWy65tdPDFAoRT/e4C5WjBpfOuEiWg+1kPFtbLbr0SMLW9aGATC8Tagkqa9Z6YmIiXF1ddeuVSmW522u1WrRu3RofffQRAKBFixY4f/48VqxYgYiIiArneJikhbxXr156P8+dOxfLly/H0aNHyy3karVabwgjKyvLpOO7empgYwtkpOo3Q3qaLQLrlD9UYo3k1k7Je+1QnC0gsE/JsfNulgwsXf5chfBJ+XBtoMHNn+xxdLgLOv6UBedgrVlyya2dSoXUy8XCTedgr9QiP88Gc8Y0wI0r0s0BYTsZ76nOd+DsXIzd22pJHYUA3Sjy49SsWRPh4eF66xo2bIjNmzcDAPz8Sk6T3LlzBzVr1tRtc+fOHTRv3tzgPLI5R67RaLBhwwbk5uaibdu25W4TFRWlN5wRGGjd52msVeJmJbw7FEHlUzL1RPynTgcPUCOwbyHcGmrQ6P18OIVqkPijmcfWZejmNQdEvtQM415pil+j/fDu/DjJz5HLkZzbqdtLN3HiSA3cSzPzzM1qxpQZ6xW5mEz79u0RGxurt+7y5csIDg4GUDLxzc/PD3v27NH9PisrC8eOHXtkHSyP5IX83LlzcHZ2hlKpxOjRo7Fly5Yyn2BKTZkyBZmZmbolMTHRpGNn3bOBphhw9y7WW+9RoxjpqZzQX0pO7ZSXpEDqUVsEvVKoW6fyLinozrX1e97OYVrk3zbfS1xO7fSg4iIFbt9wwJULzlizIBjxF53QO+K2ZHnYTsbx9stH8yfTsHMrOy6mEkXTF2OMHz8eR48exUcffYQrV64gOjoaX375JSIjIwEAgiBg3Lhx+PDDD/Hzzz/j3LlzeOONN+Dv748+ffoYfBzJC3n9+vVx5swZHDt2DG+++SYiIiIQExNT7rZKpVI3pGHo0Ma/KS5SIO5vR7TocH9CiyCIaN4hBzEn5TGkJgdyaqfELfZQeorw6Xh/drNDLS2UPlrkXtN/OedeV8DR3zzD6oC82unfCAoRdvbma5eHsZ2M81yvm8hMV+KvP72ljkJGeuKJJ7BlyxZ8//33aNy4MebMmYPFixdj8ODBum3ee+89vPXWWxg1ahSeeOIJ5OTkYPv27VCpDB99kbzbaW9vjzp16gAAWrVqhePHj+Ozzz7DypUrzXL8H7+sgYmLE3H5rCNiTzui78hUqBy12LlBupmhKkcN/EPunyv0C1QjLDwP2Rm2SE2SZqhYDu0kaoGbW+wR0LsQigdeuYIA1B5agMufO8ClvgZu/5wjz7lmg1aLcs2WD5BHOz1oyLsJOHHAHSlJSjg6adC5VxqatsnC1GHlj3qZC9vJMIIg4rleN7Hn11rQaiTvd8nyvckYUlyi9cUXX8SLL774yN8LgoDZs2dj9uzZFc4leSF/mFarfeR38qrC/p894OalwRuTkuHhXYz4Cw74YHAoMtLszJbhYfWa5eGTH+5fom/0zFsAgJ2bPLFgQogkmeTQTmlHbJF/2waB/XLK/C7sDTW0aiBmviOKMgW41tfgqa+y4RRk3h6VHNrpQe5eRZg4/wo8fQqRm22Da5ecMHVYOE7/6S5JnlJsJ8M0fzINPjULsPPnAElzlJLje5Mxquu11gVRNOU6N6aZMmUKevTogaCgIGRnZyM6Ohrz5s3Djh078Nxzzz12/6ysLLi5uaEzesNWkK7wlqEoewUyyWnN9zUsQ714IV3qCGVsayT9Fc8epnBykjpCGdpc8450GEKO7aRwd5M6QhnFt+9IHUFPsViEfdofkZmZafLp0kcprRX1o9+HjWP5XxUzhCZPjdjXPq7SrBUhaY88JSUFb7zxBm7fvg03Nzc0bdrU4CJOREREEhfyVatWSXl4IiKyIhWZef7w/nIku3PkREREVaGkkJtyjrwSw1Qi6adBEhERUYWxR05ERFahus5aZyEnIiKrIML4e4o/vL8ccWidiIjIgrFHTkREVoFD60RERJasmo6ts5ATEZF1MLFHDpn2yHmOnIiIyIKxR05ERFaBV3YjIiKyYJzsJmOCUglBRnc/E814G1ZLJsc7jc27dkzqCGVMDm0jdYSy5HiHPxkqvpUkdYQyBGXF7/5VFQRRBPiWaZJqUciJiIgeSxRMm7DGHjkREZF0qus5cs5aJyIismDskRMRkXXgBWGIiIgsl1XPWv/5558NfsCXXnqpwmGIiIjIOAYV8j59+hj0YIIgQKPRmJKHiIio6sh0eNwUBhVyrVZb1TmIiIiqVHUdWjdp1npBQUFl5SAiIqpaYiUsMmR0IddoNJgzZw5q1aoFZ2dnxMfHAwCmTZuGVatWVXpAIiIiejSjC/ncuXOxZs0azJ8/H/b29rr1jRs3xtdff12p4YiIiCqPUAmL/BhdyL/99lt8+eWXGDx4MGxs7l9vuVmzZrh06VKlhiMiIqo01XRo3ejvkd+6dQt16tQps16r1aKoqKhSQpnLwDeT0L57OgJq56OwQIGYU874Zl4gbsY7SB0NvYak4ZU3U+DpXYz4GAd8MbUWYs84MpOMMmk1wK7FATi91QvZqfZw9S1Eq5dT8exbSRDK+eD+4wchOBbtixenJeDpYclmyVhKbs9d4zbZ6D/6Duo2yYeXXxFmDg/DkR3ukuXp+Voyeg5Khm9Ayd07EuIcEL0sECcOSH9jHzk9d3J+z7RmRvfIw8PDcfDgwTLr//e//6FFixaVEspcmrTJxi/rfDC+XzimvNEAtrYi5n4bC6WDtF+h6/RSOkbNSML6hX6I7F4P8TEqzI2Oh5uXdB+UmKmsfSv8cXS9D3rPSsC7u8+ix+RE7P/SH4fX+JbZ9vwOD9w47QxX30KzZHuQ1O1UHpWjFvExjlg2NVCyDA9KS7bH6k+D8Vafpni7b1OcPeKG6csvIahOnqS55PbcyfU902DVtEdudCGfPn06xo4di3nz5kGr1eLHH3/EyJEjMXfuXEyfPr3CQT7++GMIgoBx48ZV+DGMNXVIfeza7I2EOEdcu+iIBZPC4FurEHWb5JotQ3n6jUrD9mhP7NzoiRtxKiyZHAB1voDug+4xk4wyJZxyRvhz6Wj4TAY8AwrR9IV7qPd0JhLPOuttl5lsh59mhuDVxVdhY2v+dwKp26k8J/5ww9pP/HF4u7tkGR50bK8nju/3QFKCA25dd8DaRcEoyLNBg+bZkuaS23Mn1/dMg5Xe/cyURYaMLuS9e/fGL7/8gt27d8PJyQnTp0/HxYsX8csvv+C5556rUIjjx49j5cqVaNq0aYX2ryyOLiWfKrMzpLtyra2dFnWb5uHUQRfdOlEUcPqgC8JbSdM7YKbyBbfMwdU/3ZAarwIAJMU44vpxF9TvnKHbRqsFNk6ojU6jkuBXL98suR4kh3ayNAqFiE4906By1ODSGZfH71BFLOG5k8N7JlXwWutPP/00du3aVSkBcnJyMHjwYHz11Vf48MMP/3VbtVoNtfr+HeizsrIqJQMACIKI0dMScOG4MxIuS3fu0NVTAxtbICNV/6lJT7NFYB31I/ZiJikydX4zCeocGyzo2hSCjQhRI6D7xJto0eeubpv9K/yhsAHaD7ljlkwPk0M7WYqQerlYuOkc7JVa5OfZYM6YBrhxhe8FjyKX90xjVNfbmFb4Y9SJEydw8eJFACXnzVu1alWhx4mMjETPnj3RtWvXxxbyqKgozJo1q0LHeWyO2QkIqZ+Pd/uHV8njU/Xz96+eOP2TF1797Ap86+bjdowTfpkT9M+ktzTcPOeIQ6t98c628+VOfiN5uXnNAZEvNYOTiwYdnr+Ld+fH4b3BjSUt5nJmke+ZvPtZiZs3b2LQoEH4888/4e7uDgDIyMhAu3btsGHDBgQEBBj8WBs2bMCpU6dw/Phxg7afMmUKJkyYoPs5KysLgYGmT5YZM+s62jyTgYkDGyIt2f7xO1ShrHs20BQD7t7Feus9ahQjPVWa4StmKt9vUUHoPPo2mvcqOV9Zs0E+0m/Z448v/NHq5TRcO+6K3Lt2iGp/fxKoViPg17lB+PMbP7x/6EyVZ5RDO1mK4iIFbt8omX195YIz6jXJQe+I21g6rbYkeeT83MnpPZMqcI58xIgRKCoqwsWLF3Hv3j3cu3cPFy9ehFarxYgRIwx+nMTERLzzzjtYv349VCqVQfsolUq4urrqLaYRMWbWdbTrlo7Jgxvgzk2liY9nuuIiBeL+dkSLDvcn2QiCiOYdchBzUpqeATOVryhfAUGh/xFdYQOI/9yaoGXfNIz7/Rze+fX+4upbiE6jbmP4WvNcc0EO7WSpBIUIO3vp7jMhz+dOfu+ZRqmmk92M/li3f/9+HD58GPXr19etq1+/PpYuXYqnn37a4Mc5efIkUlJS0LJlS906jUaDAwcOYNmyZVCr1XoXnKkKkbMT0KX3XcwaVRf5OQp41Cj5alButi0K1SZdht4kP35ZAxMXJ+LyWUfEnnZE35GpUDlqsXODJzPJKFPDZzOw9/NacPcvhG+9PCRdcMLBVX5o3T8VAODkUQwnD/3elI2tCGfvInjXNt99CqRup/KoHDXwD7l/ntcvUI2w8DxkZ9giNcn8Pbwh7ybgxAF3pCQp4eikQedeaWjaJgtTh0k7bCy3506u75mGEsSSxZT95cjoQh4YGFjuhV80Gg38/f0Nfpxnn30W586d01s3dOhQNGjQAJMnT67yIg4Avf6TAgD4ZIN+72jBxFDs2uxd5cd/lP0/e8DNS4M3JiXDw7sY8Rcc8MHgUGSk2TGTjDL1nnkdOxYGYOu0EOTctYOrbyHaDErBs2/fMsvxDSV1O5WnXrM8fPJDnO7n0TNL2mznJk8smBBi9jzuXkWYOP8KPH0KkZttg2uXnDB1WDhO/+lu9iwPkttzJ9f3TINV03PkgigaNw/vp59+wkcffYTPP/8crVu3BlAy8e2tt97C5MmTDb53eXk6d+6M5s2bY/HixQZtn5WVBTc3N3RRDoCtIN2b0sNEtfQzSqli5l07JnWEMiaHtpE6QlmKqv+gbSyFg2Gn6MxJmyu/71cLSnkNhxeLRfhDvQmZmZmVcLq0fKW1InDxbJNeJ9r8AiSOm16lWSvCoB65h4cHhAem3ebm5qJNmzawtS3Zvbi4GLa2thg2bJhJhZyIiKjKmHqe25LPkRvaQzbVvn37zHIcIiKyQtV0aN2gQh4REVHVOYiIiKgCTPoyYkFBAQoL9W8CIafzBkRERDrVtEdu9PcFcnNzMXbsWPj4+MDJyQkeHh56CxERkSzx7mcl3nvvPezduxfLly+HUqnE119/jVmzZsHf3x/ffvttVWQkIiKiRzB6aP2XX37Bt99+i86dO2Po0KF4+umnUadOHQQHB2P9+vUYPHhwVeQkIiIyTTWdtW50j/zevXsICwsDUHI+/N69kutMd+jQAQcOHKjcdERERJWk9MpupixyZHQhDwsLw7Vr1wAADRo0wKZNmwCU9NRLb6JCRERE5mF0IR86dCjOnj0LAHj//ffx+eefQ6VSYfz48Zg0aVKlByQiIqoU1XSym9HnyMePH6/7/65du+LSpUs4efIk6tSpg6ZNm1ZqOCIiIvp3Jt/UNjg4GMHBwZWRhYiIqMoIMPHuZ5WWpHIZVMiXLFli8AO+/fbbFQ5DRERExjGokC9atMigBxMEQZJCLqrVEAWt2Y9L1Y8c7zS26sYhqSOUMTykk9QRypDjncbkSLA1eSC2UgmiFjDXDSOr6dfPDHpGS2epExERWSxeopWIiIjkRl5jLERERFWlmvbIWciJiMgqmHp1tmpzZTciIiKSD/bIiYjIOlTTofUK9cgPHjyI119/HW3btsWtW7cAAOvWrcOhQ/L7mgwRERGAanuJVqML+ebNm9G9e3c4ODjg9OnTUKtLvgCYmZmJjz76qNIDEhER0aMZXcg//PBDrFixAl999RXs7Ox069u3b49Tp05VajgiIqLKUl1vY2r0OfLY2Fh07NixzHo3NzdkZGRURiYiIqLKV02v7GZ0j9zPzw9Xrlwps/7QoUMICwurlFBERESVjufIS4wcORLvvPMOjh07BkEQkJSUhPXr12PixIl48803qyIjERERPYLRQ+vvv/8+tFotnn32WeTl5aFjx45QKpWYOHEi3nrrrarIWOV6DUnDK2+mwNO7GPExDvhiai3EnnFkJmayuExaDfDToiAc3eKDzBQ7uPsWon3/FLz4diKEf0YFhwd1KHff/v93Dc+PvmWWnI3bZKP/6Duo2yQfXn5FmDk8DEd2uJvl2P+Gr6d/1/O1ZPQclAzfgJJJzglxDoheFogTBzwkyWMsXhDmH4Ig4IMPPsC9e/dw/vx5HD16FKmpqZgzZ05V5KtynV5Kx6gZSVi/0A+R3eshPkaFudHxcPMqYiZmsrhMvy8PwL51NfHa7Kv4cO8pvDLlOn5fUQt7VtfUbbPwxDG9ZeinlyEIIlr1SDNLRgBQOWoRH+OIZVMDzXbMx5H6ubOETGnJ9lj9aTDe6tMUb/dtirNH3DB9+SUE1cmTJI/ROLSuz97eHuHh4XjyySfh7OxcoceYOXMmBEHQWxo0aFDRSBXSb1Qatkd7YudGT9yIU2HJ5ACo8wV0H3TPrDmYiZkqw5UTrmje7S6aPZuOGoFqtO55F406ZuDaWRfdNm4+RXrL6Z1eqN82E97B5rqXJHDiDzes/cQfh7e7m+2YjyP1c2cJmY7t9cTx/R5ISnDAresOWLsoGAV5NmjQPFuSPFTC6KH1Ll26QBAePXNv7969Rj1eo0aNsHv37vuBzHivXFs7Leo2zcOGZT66daIo4PRBF4S3kuYTJjMxkynqtM7C/mg/JMer4BdWgMQYJ1w57oqB08q/FXFmqh3O7fXAsIVxZsknV3J47iwh04MUChFP97gLlaMGl864PH4HOTD1K2Qy7ZEbXTWbN2+u93NRURHOnDmD8+fPIyIiwvgAtrbw8/MzaFu1Wq27AA0AZGVlGX28B7l6amBjC2Sk6jdDepotAuuYr3fCTMxUWXqMuYn8bBtM7dIKChsRWo2AvpMS8FTf1HK3P/w/HyidNGj1vPmG1eVIDs+dJWQCgJB6uVi46RzslVrk59lgzpgGuHFF2nkEBquml2g1upAvWrSo3PUzZ85ETk6O0QHi4uLg7+8PlUqFtm3bIioqCkFBQeVuGxUVhVmzZhl9DCJrcXxbDRzd6oORS2NRq14eblxwwoZZYbpJbw87tMkXT/VNhZ1Kpu9QJDs3rzkg8qVmcHLRoMPzd/Hu/Di8N7ix5RTzaqjS7n72+uuv45tvvjFqnzZt2mDNmjXYvn07li9fjmvXruHpp59Gdnb551umTJmCzMxM3ZKYmGhS5qx7NtAUA+7exXrrPWoUIz1VmvvJMBMzmeKHuaF4YcxNtHkpDQEN8tDu5VQ8NyIJv30RUGbby8dckXzVER1fvWOWbHImh+fOEjIBQHGRArdvOODKBWesWRCM+ItO6B1xW7I8RpFwstvHH38MQRAwbtw43bqCggJERkbCy8sLzs7OePnll3HnjvH/HiutkB85cgQqlcqofXr06IH+/fujadOm6N69O3777TdkZGRg06ZN5W6vVCrh6uqqt5iiuEiBuL8d0aLD/Q8OgiCieYccxJyU5tMlMzGTKQrzFRAU+u82CoUIUVt2XsvBjb4IbpKNwPBcs2STMzk8d5aQqTyCQoSdvVbqGAaR6hKtx48fx8qVK9G0aVO99ePHj8cvv/yCH374Afv370dSUhL69etn9OMb/bHu4YOIoojbt2/jxIkTmDZtmtEBHuTu7o569eqVe+W4qvLjlzUwcXEiLp91ROxpR/QdmQqVoxY7N3iaLQMzMVNladb1Hn5dGghPf/U/Q+vO2Pl1LXQYoP8pPz/bBid+rYGBU8ufBFfVVI4a+IfcP8/rF6hGWHgesjNskZpkL0kmqZ87S8g05N0EnDjgjpQkJRydNOjcKw1N22Rh6rBwSfJI5eH5WUqlEkqlstxtc3JyMHjwYHz11Vf48MMPdeszMzOxatUqREdH45lnngEArF69Gg0bNsTRo0fx1FNPGZzH6ELu5uam97NCoUD9+vUxe/ZsdOvWzdiH05OTk4OrV6/iP//5j0mPY4z9P3vAzUuDNyYlw8O7GPEXHPDB4FBkpNk9fmdmYiaZZXptdjy2fhqE76bWRnZayQVhOg2+jZfe0T8N9dfPNQAReLJ3+ZPgqlq9Znn45If7M+VHzyy5EM3OTZ5YMCFEkkxSP3eWkMndqwgT51+Bp08hcrNtcO2SE6YOC8fpP90lySOVwED96x/MmDEDM2fOLHfbyMhI9OzZE127dtUr5CdPnkRRURG6du2qW9egQQMEBQXhyJEjRhVyQRRFgwcLNBoN/vzzTzRp0gQeHqZfyWfixIno1asXgoODkZSUhBkzZuDMmTOIiYmBt7f3Y/fPysqCm5sbOqM3bAXp/rERVaVVNw5JHaGM4SGdpI5QllYjdQKLoHBykjqCnmKxEHtzv0dmZqbJp0sfpbRW1J7yEWyMPAX8IE1BAa5G/R8SExP1sj6qR75hwwbMnTsXx48fh0qlQufOndG8eXMsXrwY0dHRGDp0qN43sQDgySefRJcuXTBv3jyDcxnVI7exsUG3bt1w8eLFSinkN2/exKBBg3D37l14e3ujQ4cOOHr0qEFFnIiIyBiVdYlWQ+ZoJSYm4p133sGuXbuMnj9mLKOH1hs3boz4+HiEhoaafPANGzaY/BhERERyc/LkSaSkpKBly5a6dRqNBgcOHMCyZcuwY8cOFBYWIiMjA+7u7rpt7ty5Y/C1VUoZPWv9ww8/xMSJE7Ft2zbcvn0bWVlZegsREZFsmemrZ88++yzOnTuHM2fO6JbWrVtj8ODBuv+3s7PDnj17dPvExsbixo0baNu2rVHHMrhHPnv2bLz77rt44YUXAAAvvfSS3qVaRVGEIAjQaHieioiIZMiMV3ZzcXFB48aN9dY5OTnBy8tLt3748OGYMGECPD094erqirfeegtt27Y1aqIbYEQhnzVrFkaPHo0//vjDqAMQERFRWYsWLYJCocDLL78MtVqN7t2744svvjD6cQwu5KWT2zt1kuFsVSIioseQ+n7k+/bt0/tZpVLh888/x+eff27S4xo12e3f7npGREQka7xpClCvXr3HFvN796S7dy8REZG1MaqQz5o1q8yV3YiIiCyB1EPrVcWoQv7qq6/Cx8fn8RsSERHJTTUdWjf4e+Q8P05ERCQ/Rs9aJyIiskjVtEducCHXai3jfrNERETl4TlyIpLE8KAOUkcoY0fSSakjlNHdv7nUESyCNjdX6gh6tGKR+Q5WTXvkRl9rnYiIiOSDPXIiIrIO1bRHzkJORERWobqeI+fQOhERkQVjj5yIiKwDh9aJiIgsF4fWiYiISHbYIyciIuvAoXUiIiILVk0LOYfWiYiILBh75EREZBWEfxZT9pcjFnIiIrIOHFqvvnoNScPaYzH4Jf5vfLYtDvWb50kdiZmYqdpkystRYPn0WvjPE+HoFdYU43rVRewZB93vD/3mhimvhuGVRo3R3b85rp53+JdHq1p87iw3kyFKv35myiJHVl/IO72UjlEzkrB+oR8iu9dDfIwKc6Pj4eZlxjvyMBMzVeNMi94NxKkDznhvaQJW7LmEVp2y8f7AOki7bQcAKMhToNGTuRj+f0lmyfMoUrcTM1FFSV7Ib926hddffx1eXl5wcHBAkyZNcOLECbMdv9+oNGyP9sTOjZ64EafCkskBUOcL6D7ontkyMBMzVddM6nwBh35zx4ipt9HkqVzUCi3EfyYmwz9EjW3fegEAur6Sjtcn3EGLjjlVnuff8Lmz3EwGEythkSFJC3l6ejrat28POzs7/P7774iJicGCBQvg4eFhluPb2mlRt2keTh100a0TRQGnD7ogvJU0Q0XMxEzVKZNGI0CrEWCv1OqtV6q0uPCXc5Uf31BStxMzmVE1K+KAxJPd5s2bh8DAQKxevVq3LjQ09JHbq9VqqNVq3c9ZWVkmHd/VUwMbWyAjVb8Z0tNsEVhH/Yi9qhYzMVN1yuTorEXDVrmIXuyHoLrX4e5djH1bPXDxpBP8Q6Rpk/JI3U7MRKaQtEf+888/o3Xr1ujfvz98fHzQokULfPXVV4/cPioqCm5ubrolMDDQjGmJqCLeW5oAUQRea9kYL4Y0w9ZVNdC5TzoEyU/skbXhZLcqEB8fj+XLl6Nu3brYsWMH3nzzTbz99ttYu3ZtudtPmTIFmZmZuiUxMdGk42fds4GmGHD3LtZb71GjGOmp0gxWMBMzVbdM/iGF+PTHK/jpyt/47sQFLP0tDsVFAmoGy6cHJ4d2YiYz4DnyyqfVatGyZUt89NFHaNGiBUaNGoWRI0dixYoV5W6vVCrh6uqqt5iiuEiBuL8d0aJDtm6dIIho3iEHMScdTXpsZmImZtKnctTCy7cY2Rk2OLnfFW27m3ZqrDLJqZ2YiYwl6UeomjVrIjw8XG9dw4YNsXnzZrNl+PHLGpi4OBGXzzoi9rQj+o5MhcpRi50bPM2WgZmYqTpnOrHPBaIIBNZW49Y1e3w9pxYC6xSg28C7AICsdBuk3rLH3Tslb0eJV5UAAA+fInj6FD/ycSub1O3ETFWvut7GVNJC3r59e8TGxuqtu3z5MoKDg82WYf/PHnDz0uCNScnw8C5G/AUHfDA4FBlpdmbLwEzMVJ0z5WbZYHVUTaTdtoOLuwbtX8jA0Pdvw/afwx/d6YYF44N020e9GQIAeH1CMv4zMdksGQHp24mZzKCaXtlNEEVRsmjHjx9Hu3btMGvWLAwYMAB//fUXRo4ciS+//BKDBw9+7P5ZWVlwc3NDZ/SGrWABLyKiamJH0hmpI5TR3b+51BGoAorFIuzDT8jMzDT5dOmjlNaKJsM/go29qsKPoykswLlV/1elWStC0nPkTzzxBLZs2YLvv/8ejRs3xpw5c7B48WKDijgREZExquusdcmnGb744ot48cUXpY5BRETVXTUdWpe8kBMREZlFNS3kvCQDERGRBWOPnIiIrAK/fkZERGTJOLROREREcsMeORERWQVBFCGYcOkUU/atSizkRERkHTi0TkRERHLDHjkREVkFzlonIiKyZBxaJyIiIrlhj5yIjCbHO42tunFI6ghljKj7rNQRyhDVaqkjSIZD60RERJasmg6ts5ATEZFVqK49cp4jJyIismDskRMRkXXg0DoREZFlk+vwuCk4tE5ERGTB2CMnIiLrIIoliyn7yxALORERWQXOWiciIiLZYY+ciIisA2etExERWS5BW7KYsr8ccWidiIjIgrFHDqDXkDS88mYKPL2LER/jgC+m1kLsGUdmYiZmqqaZtBrgp0VBOLrFB5kpdnD3LUT7/il48e1ECELJNsODOpS7b///u4bnR9+q8owD30xC++7pCKidj8ICBWJOOeObeYG4Ge9Q5cd+HDm+ngxSTYfWrb5H3umldIyakYT1C/0Q2b0e4mNUmBsdDzevImZiJmaqppl+Xx6Afetq4rXZV/Hh3lN4Zcp1/L6iFvasrqnbZuGJY3rL0E8vQxBEtOqRZpaMTdpk45d1PhjfLxxT3mgAW1sRc7+NhdJBY5bjP4rUz50pSmetm7LIkaSFPCQkBIIglFkiIyPNlqHfqDRsj/bEzo2euBGnwpLJAVDnC+g+6J7ZMjATMzGTeTNdOeGK5t3uotmz6agRqEbrnnfRqGMGrp110W3j5lOkt5ze6YX6bTPhHWye24BOHVIfuzZ7IyHOEdcuOmLBpDD41ipE3Sa5Zjn+o0j93Jmk9HvkpiwyJGkhP378OG7fvq1bdu3aBQDo37+/WY5va6dF3aZ5OHXw/j9eURRw+qALwlvlmSUDMzETM5k/U53WWbj4pzuS41UAgMQYJ1w57oomndPL3T4z1Q7n9nrg6VfvmCVfeRxdSnri2RnSnRGVw3NHZUl6jtzb21vv548//hi1a9dGp06dyt1erVZDrb7/aTgrK8uk47t6amBjC2Sk6jdDepotAuuY51M3MzETM5k/U48xN5GfbYOpXVpBYSNCqxHQd1ICnuqbWu72h//nA6WTBq2eN8+w+sMEQcToaQm4cNwZCZelOxcth+fOFNX1gjCymexWWFiI7777DhMmTIBQOtvkIVFRUZg1a5aZkxFRdXN8Ww0c3eqDkUtjUateHm5ccMKGWWG6SW8PO7TJF0/1TYWdSpp38sjZCQipn493+4dLcvxqg5PdqtbWrVuRkZGBIUOGPHKbKVOmIDMzU7ckJiaadMysezbQFAPu3sV66z1qFCM9VZrPOMzETMxU9X6YG4oXxtxEm5fSENAgD+1eTsVzI5Lw2xcBZba9fMwVyVcd0VGiYfUxs66jzTMZeG9QQ6Ql20uSoZQcnjsqSzaFfNWqVejRowf8/f0fuY1SqYSrq6veYoriIgXi/nZEiw7ZunWCIKJ5hxzEnJRm+IqZmImZql5hvgKCQr97pVCIELVlRwMPbvRFcJNsBIabe5KZiDGzrqNdt3RMHtwAd24qzXz8suTw3Jmius5al8VHqISEBOzevRs//vij2Y/945c1MHFxIi6fdUTsaUf0HZkKlaMWOzd4mj0LMzETM5knU7Ou9/Dr0kB4+qv/GVp3xs6va6HDAP1ed362DU78WgMDp14zS64HRc5OQJfedzFrVF3k5yjgUaMQAJCbbYtCtXR9MKmfO5Pw7mdVZ/Xq1fDx8UHPnj3Nfuz9P3vAzUuDNyYlw8O7GPEXHPDB4FBkpNmZPQszMRMzmSfTa7PjsfXTIHw3tTay00ouCNNp8G289I7+6bq/fq4BiMCTvcufBFeVev2n5Fz9Jxsu6a1fMDEUuzZ7l7eLWUj93FFZgihK+xFDq9UiNDQUgwYNwscff2zUvllZWXBzc0Nn9IatwBcRkTVbdeOQ1BHKGFH3WakjlCGq5TW7vFgswj78hMzMTJNPlz5Kaa1o22M2bO1UFX6c4qICHPl9epVmrQjJe+S7d+/GjRs3MGzYMKmjEBFRdVZNZ61LXsi7desGiQcFiIiILJZsZq0TERFVJXPPWo+KisITTzwBFxcX+Pj4oE+fPoiNjdXbpqCgAJGRkfDy8oKzszNefvll3Llj3FcdWciJiMg6aEXTFyPs378fkZGROHr0KHbt2oWioiJ069YNubn3v8o4fvx4/PLLL/jhhx+wf/9+JCUloV+/fkYdR/KhdSIiIrOopHPkD18eXKlUQqks+z3/7du36/28Zs0a+Pj44OTJk+jYsSMyMzOxatUqREdH45lnngFQ8i2uhg0b4ujRo3jqqacMisUeORERkRECAwPh5uamW6KiogzaLzMzEwDg6VnynfuTJ0+iqKgIXbt21W3ToEEDBAUF4ciRIwbnYY+ciIisggATb5ryz38TExP1vn5WXm/8YVqtFuPGjUP79u3RuHFjAEBycjLs7e3h7u6ut62vry+Sk5MNzsVCTkRE1qGSruxWkUuER0ZG4vz58zh0qPKvd8ChdSIioio0duxYbNu2DX/88QcCAu7fmMfPzw+FhYXIyMjQ2/7OnTvw8/Mz+PFZyImIyCqY++tnoihi7Nix2LJlC/bu3YvQ0FC937dq1Qp2dnbYs2ePbl1sbCxu3LiBtm3bGnwcDq0TEZF1MPOV3SIjIxEdHY2ffvoJLi4uuvPebm5ucHBwgJubG4YPH44JEybA09MTrq6ueOutt9C2bVuDZ6wDLORERERVYvny5QCAzp07661fvXo1hgwZAgBYtGgRFAoFXn75ZajVanTv3h1ffPGFUcdhISciIqsgiCIEEya7GbuvIZcfV6lU+Pzzz/H5559XNBYLeVVQODlJHaEM7QNXEpINhY3UCcrSaqROUAZfT4YZHtJJ6ghlDL906fEbmdmqBnWkjqBP1AJaMx1LC9OOZa6cRuJkNyIiIgvGHjkREVkFcw+tmwsLORERWQfej5yIiMiCVdKV3eSG58iJiIgsGHvkRERkFSpydbaH95cjFnIiIrIOHFonIiIiuWGPnIiIrIKgLVlM2V+OWMiJiMg6cGidiIiI5IY9ciIisg68IEz11WtIGl55MwWe3sWIj3HAF1NrIfaMoyRZer6WjJ6DkuEboAYAJMQ5IHpZIE4c8JAkz4Pk1E4A0LhNNvqPvoO6TfLh5VeEmcPDcGSHu2R5Ssmpnfh6MowcXksbuwQg55ZdmfUNX8tCu5l3kXXDFn997Ik7J1XQFAoI6JiHttPuwqGG+U7cyqGdTFFdL9Fq9UPrnV5Kx6gZSVi/0A+R3eshPkaFudHxcPMqkiRPWrI9Vn8ajLf6NMXbfZvi7BE3TF9+CUF18iTJU0pu7QQAKkct4mMcsWxqoGQZHia3duLryTByeC29tDkJg/68oVueX30bABDaIxdFeQK2D/UDBKDHt7fx4oYkaAoF7PyvH0QzTsCSQztRWZIWco1Gg2nTpiE0NBQODg6oXbs25syZY9A9XCtLv1Fp2B7tiZ0bPXEjToUlkwOgzhfQfdA9s2V40LG9nji+3wNJCQ64dd0BaxcFoyDPBg2aZ0uSp5Tc2gkATvzhhrWf+OPwdnfJMjxMbu3E15Nh5PBacvDUwtFbo1sS9znCJagIfk8W4M4pFXJu2aLjvFR41i+CZ/0idJqfirTz9kg6ojJbRjm0k0lKJ7uZssiQpIV83rx5WL58OZYtW4aLFy9i3rx5mD9/PpYuXWqW49vaaVG3aR5OHXTRrRNFAacPuiC8lbQ9FgBQKER06pkGlaMGl864PH6HKiL3dpILubcTX0+WQ1MIXPnJGfVezoYgANpCAAJgY3+/kNgoRQgK4M5J8xVyiyfi/j3JK7LIs45Le4788OHD6N27N3r27AkACAkJwffff4+//vqr3O3VajXUarXu56ysLJOO7+qpgY0tkJGq3wzpabYIrKN+xF5VL6ReLhZuOgd7pRb5eTaYM6YBblyR7ly0XNtJbuTaTnw9WZ6E3U4ozFagbr8cAIB3czVsHUQc/8QTrSekQxSBE596QNQIyEu1kTit5eA58irQrl077NmzB5cvXwYAnD17FocOHUKPHj3K3T4qKgpubm66JTCwep6nuXnNAZEvNcO4V5ri12g/vDs/TvJzmmS5+HqyPJf/54yAjvlw8tUAKBl2f2ZJCm7sdcTa5sFY1yoY6iwbeDVSQ7D6mU4kaY/8/fffR1ZWFho0aAAbGxtoNBrMnTsXgwcPLnf7KVOmYMKECbqfs7KyTCrmWfdsoCkG3L2L9dZ71ChGeqp0TVNcpMDtGw4AgCsXnFGvSQ56R9zG0mm1Jckj13aSG7m2E19PliX7li2SDjvg2WUpeusDOuRjwJ6bKLingGALKF21iG4XCJfA4kc8EpUhwsQLwlRakkol6We5TZs2Yf369YiOjsapU6ewdu1afPrpp1i7dm252yuVSri6uuotpiguUiDub0e06HB/4o8giGjeIQcxJ6UbenyYoBBhZy/dtQEtpZ2kZintxNeTvMVtdobKS4PAzuWPmqg8tVC6apF0RIX8uzYIeoajKwarppPdJP34O2nSJLz//vt49dVXAQBNmjRBQkICoqKiEBERYZYMP35ZAxMXJ+LyWUfEnnZE35GpUDlqsXODp1mO/7Ah7ybgxAF3pCQp4eikQedeaWjaJgtTh4VLkqeU3NoJAFSOGviH3D+n6heoRlh4HrIzbJGaZC9JJrm1E19PhpHLa0nUApd/dEHdPjlQPPTufHmzM9xrF0HlqUHKaSWOzvVC4yFZcA8z31f25NJOpE/SQp6XlweFQn9QwMbGBlqt+XoL+3/2gJuXBm9MSoaHdzHiLzjgg8GhyEgre2EGc3D3KsLE+Vfg6VOI3GwbXLvkhKnDwnH6T3dJ8pSSWzsBQL1mefjkhzjdz6Nn3gIA7NzkiQUTQiTJJLd24uvJMHJ5Ld067IDcJFvUe6Xs1wMz4+1wYoEH1Jk2cK5VjGajM9B4qGkTfo0ll3aqMC0AwcT9ZUgQzfml7YcMGTIEu3fvxsqVK9GoUSOcPn0ao0aNwrBhwzBv3rzH7p+VlQU3Nzd0Rm/YCtIVlIcpnJykjlCGNjdX6ghlKWQ421arkTpBGXw9GUiGr6fhl65IHaGMVQ3qSB1BT7FYhH3aH5GZmWny6dJHKa0VzzZ+D7Y2ygo/TrFGjT3n51dp1oqQtEe+dOlSTJs2DWPGjEFKSgr8/f3x3//+F9OnT5cyFhERkcWQtJC7uLhg8eLFWLx4sZQxiIjIGlTT25jyux5ERGQdqmkh56UEiIiILBh75EREZB2qaY+chZyIiKxDNf36GQs5ERFZBd40hYiIiGSHPXIiIrIOPEdORERkwbQiIJhQjLXyLOQcWiciIrJg7JETEZF14NA6ERGRJTP1nuIs5FZDlneGkiHBTn4vP1Etv7uficXFUkewDDK8c903TRpIHaGML67tkTqCnpxsLVo2kjqFZZPfOykREVFV4NA6ERGRBdOKMGl4nLPWiYiIqLKxR05ERNZB1JYspuwvQyzkRERkHXiOnIiIyILxHDkRERHJDXvkRERkHTi0TkREZMFEmFjIKy1JpeLQOhERkQVjj5yIiKwDh9aJiIgsmFYLwITvgmv5PXLZ6jUkDa+8mQJP72LExzjgi6m1EHvGkZlknGngm0lo3z0dAbXzUVigQMwpZ3wzLxA34x0kyfMgtpNh5NROcswk9XOn1QC/LgrCX1t8kJVqBzffQjz1Sgp6vJ0IQbi/3e04B2z9OARxx9ygLRbgVzcPo1ZcgmcttVlyEs+Ro9NL6Rg1IwnrF/ohsns9xMeoMDc6Hm5eRcwk40xN2mTjl3U+GN8vHFPeaABbWxFzv42F0kHaO2CxnQwjt3aSYyapn7udywNw4LuaGDD7KqbvOYU+71/HrpW1sG9NTd02qQkqLHylKXxr52P8hnP4YMdpvPB2IuyU8uy56obWTVlkSNJCnp2djXHjxiE4OBgODg5o164djh8/btYM/UalYXu0J3Zu9MSNOBWWTA6AOl9A90H3zJqDmYwzdUh97NrsjYQ4R1y76IgFk8LgW6sQdZtIewtZtpNh5NZOcswk9XMXf9IVTZ+7iybPpsMrUI2WPe+i4dMZuH7GRbfNz58Eo1GXdPT7v+sIbJwL7+ACNH3uHlxqSPeB7F+xkFe+ESNGYNeuXVi3bh3OnTuHbt26oWvXrrh165ZZjm9rp0Xdpnk4dfD+C1MUBZw+6ILwVnlmycBMlcPRpaSXkp0h3dkitpNh5NhOcsz0MHM/d2GtshB72B134lUAgJsxTrh6whWNOqcDKDldfH6vB3xC87H0P43wXssnMb93M5zZ4WmWfHSfZIU8Pz8fmzdvxvz589GxY0fUqVMHM2fORJ06dbB8+fJy91Gr1cjKytJbTOHqqYGNLZCRqv8PIz3NFh7exSY9NjOZjyCIGD0tAReOOyPhsnTnWNlOhpFjO8kx04OkeO66jbmJ1r1SMfuZVhhbux2iXmiOLsOS8GTfVABAdpod1Lm22Lk8AOGd0vHWugto1v0uvvpvQ1w+6mqWjEbTiqYvMiTZx/Li4mJoNBqoVCq99Q4ODjh06FC5+0RFRWHWrFnmiEcWJHJ2AkLq5+Pd/uFSR5E1tpPlkuK5O7WtBv7a6oOhS2JRs14ebsY44X+zwuD+z6Q3USyZ8db0ubt4dkQSACCwUS7iT7rg0PqaqPeUaR2tqiCKWogm3MHMlH2rkmQ9chcXF7Rt2xZz5sxBUlISNBoNvvvuOxw5cgS3b98ud58pU6YgMzNTtyQmJpqUIeueDTTFgPtDn7g9ahQjPVWazzjMZJwxs66jzTMZeG9QQ6Ql20uahe1kGDm2kxwzlZLqufvxo1B0f/MmWr+UhloN8tCmXyqeGZ6EHV8EAACcPYqgsNWiZt18vf386uTj3i2l2XIaRTSxN85z5GWtW7cOoiiiVq1aUCqVWLJkCQYNGgSFovxYSqUSrq6ueospiosUiPvbES06ZOvWCYKI5h1yEHNSmqFHZjKUiDGzrqNdt3RMHtwAd25K/8bBdjKMHNtJjpmkfu6K8hUQFPqFS7ARIWpLeuK29iKCm+bgzkNfh0u55gDPWgVmy0kSf4+8du3a2L9/P3Jzc5GVlYWaNWti4MCBCAsLM1uGH7+sgYmLE3H5rCNiTzui78hUqBy12LlBugkbzPR4kbMT0KX3XcwaVRf5OQp41CgEAORm26JQLd3nU7aTYeTWTnLMJPVz16TrPWxfFggPfzX86+Uh8YIz9n5dC20H3NFt89x/b2HV2Pqo0yYT9dpmImafB87t9sS4jeeqPF+FiCbexlSmPXJZXBDGyckJTk5OSE9Px44dOzB//nyzHXv/zx5w89LgjUnJ8PAuRvwFB3wwOBQZaXZmy8BMxuv1nxQAwCcbLumtXzAxFLs2e0sRCQDbyVByayc5ZpL6uRswKx6/LAjCxmm1kZ1WckGYDq/dxgvv3D+l2fz5uxg09yp2fBGAH2aEwbd2PkauuIg6T8jv/DiAkqn2ggnnuWV6jlwQRek+YuzYsQOiKKJ+/fq4cuUKJk2aBJVKhYMHD8LO7vH/eLKysuDm5obO6A1bQbo3AKoYQSn9MO/DRLX8rkbFdrJccnzuPr+8R+oIenKytWjZKAWZmZkmny59lNJa8azLYNgKFZ9nUCwWYk/2+irNWhGS9sgzMzMxZcoU3Lx5E56ennj55Zcxd+5cg4o4ERGRUTi0XvkGDBiAAQMGSBmBiIishKjVQjRhaJ1fPyMiIqJKJ4vJbkRERFWOQ+tEREQWTCsCQvUr5BxaJyIismDskRMRkXUQRQCmfI9cnj1yFnIiIrIKolaEaMLQuoSXXflXLORERGQdRC1M65Hz62dERERW5/PPP0dISAhUKhXatGmDv/76q1Ifn4WciIisgqgVTV6MtXHjRkyYMAEzZszAqVOn0KxZM3Tv3h0pKSmV9nexkBMRkXUQtaYvRlq4cCFGjhyJoUOHIjw8HCtWrICjoyO++eabSvuzLPoceenEg2IUmfQdf5KGIMrvc6QoFkkdoQy2k+WS43OXky2v87w5OSV5zDGRzNRaUYyS131Wlv7d3ZRKJZTl3CCnsLAQJ0+exJQpU3TrFAoFunbtiiNHjlQ8yEMsupBnZ2cDAA7hN4mTUIXwBlqGYTtZLhk+dy0bSZ2gfNnZ2XBzc6uSx7a3t4efnx8OJZteK5ydnREYGKi3bsaMGZg5c2aZbdPS0qDRaODr66u33tfXF5cuXSqzfUVZdCH39/dHYmIiXFxcIAiCSY+VlZWFwMBAJCYmyub2dMxkGLllklsegJkMxUyGqcxMoigiOzsb/v7+lZSuLJVKhWvXrqGwsNDkxxJFsUy9Ka83bk4WXcgVCgUCAgIq9TFdXV1l84+lFDMZRm6Z5JYHYCZDMZNhKitTVfXEH6RSqaBSqar8OA+qUaMGbGxscOfOHb31d+7cgZ+fX6UdR34ncIiIiKoBe3t7tGrVCnv27NGt02q12LNnD9q2bVtpx7HoHjkREZGcTZgwAREREWjdujWefPJJLF68GLm5uRg6dGilHYOF/B9KpRIzZsyQ/FzHg5jJMHLLJLc8ADMZipkMI8dMcjVw4ECkpqZi+vTpSE5ORvPmzbF9+/YyE+BMIYhyvXgsERERPRbPkRMREVkwFnIiIiILxkJORERkwVjIiYiILBgLOar+FnPGOnDgAHr16gV/f38IgoCtW7dKmicqKgpPPPEEXFxc4OPjgz59+iA2NlbSTMuXL0fTpk11F6Ro27Ytfv/9d0kzPezjjz+GIAgYN26cZBlmzpwJQRD0lgYNGkiWp9StW7fw+uuvw8vLCw4ODmjSpAlOnDghWZ6QkJAy7SQIAiIjIyXLpNFoMG3aNISGhsLBwQG1a9fGnDlzzHJN8n+TnZ2NcePGITg4GA4ODmjXrh2OHz8uaSZrZ/WF3By3mDNWbm4umjVrhs8//1yyDA/av38/IiMjcfToUezatQtFRUXo1q0bcnNzJcsUEBCAjz/+GCdPnsSJEyfwzDPPoHfv3rhw4YJkmR50/PhxrFy5Ek2bNpU6Cho1aoTbt2/rlkOHDkmaJz09He3bt4ednR1+//13xMTEYMGCBfDw8JAs0/Hjx/XaaNeuXQCA/v37S5Zp3rx5WL58OZYtW4aLFy9i3rx5mD9/PpYuXSpZJgAYMWIEdu3ahXXr1uHcuXPo1q0bunbtilu3bkmay6qJVu7JJ58UIyMjdT9rNBrR399fjIqKkjDVfQDELVu2SB1DT0pKighA3L9/v9RR9Hh4eIhff/211DHE7OxssW7duuKuXbvETp06ie+8845kWWbMmCE2a9ZMsuOXZ/LkyWKHDh2kjvGv3nnnHbF27dqiVquVLEPPnj3FYcOG6a3r16+fOHjwYIkSiWJeXp5oY2Mjbtu2TW99y5YtxQ8++ECiVGTVPfLSW8x17dpVt64qbjFX3WRmZgIAPD09JU5SQqPRYMOGDcjNza3Uyx5WVGRkJHr27Kn3upJSXFwc/P39ERYWhsGDB+PGjRuS5vn555/RunVr9O/fHz4+PmjRogW++uorSTM9qLCwEN999x2GDRtm8s2YTNGuXTvs2bMHly9fBgCcPXsWhw4dQo8ePSTLVFxcDI1GU+aa5Q4ODpKP9Fgzq76ym7luMVedaLVajBs3Du3bt0fjxo0lzXLu3Dm0bdsWBQUFcHZ2xpYtWxAeHi5ppg0bNuDUqVOyOWfYpk0brFmzBvXr18ft27cxa9YsPP300zh//jxcXFwkyRQfH4/ly5djwoQJ+L//+z8cP34cb7/9Nuzt7RERESFJpgdt3boVGRkZGDJkiKQ53n//fWRlZaFBgwawsbGBRqPB3LlzMXjwYMkyubi4oG3btpgzZw4aNmwIX19ffP/99zhy5Ajq1KkjWS5rZ9WFnIwXGRmJ8+fPy+LTd/369XHmzBlkZmbif//7HyIiIrB//37JinliYiLeeecd7Nq1y+x3WXqUB3tvTZs2RZs2bRAcHIxNmzZh+PDhkmTSarVo3bo1PvroIwBAixYtcP78eaxYsUIWhXzVqlXo0aNHld5W0xCbNm3C+vXrER0djUaNGuHMmTMYN24c/P39JW2ndevWYdiwYahVqxZsbGzQsmVLDBo0CCdPnpQsk7Wz6kJurlvMVRdjx47Ftm3bcODAgUq/fWxF2Nvb63oBrVq1wvHjx/HZZ59h5cqVkuQ5efIkUlJS0LJlS906jUaDAwcOYNmyZVCr1bCxsZEkWyl3d3fUq1cPV65ckSxDzZo1y3zYatiwITZv3ixRovsSEhKwe/du/Pjjj1JHwaRJk/D+++/j1VdfBQA0adIECQkJiIqKkrSQ165dG/v370dubi6ysrJQs2ZNDBw4EGFhYZJlsnZWfY7cXLeYs3SiKGLs2LHYsmUL9u7di9DQUKkjlUur1UKtVkt2/GeffRbnzp3DmTNndEvr1q0xePBgnDlzRvIiDgA5OTm4evUqatasKVmG9u3bl/n64uXLlxEcHCxRovtWr14NHx8f9OzZU+ooyMvLg0Kh/xZtY2MDrVYrUSJ9Tk5OqFmzJtLT07Fjxw707t1b6khWy6p75IB5bjFnrJycHL0e07Vr13DmzBl4enoiKCjI7HkiIyMRHR2Nn376CS4uLkhOTgYAuLm5wcHBwex5AGDKlCno0aMHgoKCkJ2djejoaOzbtw87duyQJA9Qcv7w4XkDTk5O8PLykmw+wcSJE9GrVy8EBwcjKSkJM2bMgI2NDQYNGiRJHgAYP3482rVrh48++ggDBgzAX3/9hS+//BJffvmlZJmAkg+Cq1evRkREBGxtpX9r7NWrF+bOnYugoCA0atQIp0+fxsKFCzFs2DBJc+3YsQOiKKJ+/fq4cuUKJk2ahAYNGkj6nmn1pJ42LwdLly4Vg4KCRHt7e/HJJ58Ujx49KmmeP/74QwRQZomIiJAkT3lZAIirV6+WJI8oiuKwYcPE4OBg0d7eXvT29hafffZZcefOnZLleRSpv342cOBAsWbNmqK9vb1Yq1YtceDAgeKVK1cky1Pql19+ERs3biwqlUqxQYMG4pdffil1JHHHjh0iADE2NlbqKKIoimJWVpb4zjvviEFBQaJKpRLDwsLEDz74QFSr1ZLm2rhxoxgWFiba29uLfn5+YmRkpJiRkSFpJmvH25gSERFZMKs+R05ERGTpWMiJiIgsGAs5ERGRBWMhJyIismAs5ERERBaMhZyIiMiCsZATERFZMBZyIiIiC8ZCTmSiIUOGoE+fPrqfO3fujHHjxpk9x759+yAIAjIyMh65jSAI2Lp1q8GPOXPmTDRv3tykXNevX4cgCDhz5oxJj0NE5WMhp2ppyJAhEAQBgiDo7pI2e/ZsFBcXV/mxf/zxR8yZM8egbQ0pvkRE/0b6OwMQVZHnn38eq1evhlqtxm+//YbIyEjY2dlhypQpZbYtLCyEvb19pRzX09OzUh6HiMgQ7JFTtaVUKuHn54fg4GC8+eab6Nq1K37++WcA94fD586dC39/f9SvXx8AkJiYiAEDBsDd3R2enp7o3bs3rl+/rntMjUaDCRMmwN3dHV5eXnjvvffw8O0KHh5aV6vVmDx5MgIDA6FUKlGnTh2sWrUK169fR5cuXQAAHh4eEAQBQ4YMAVByJ66oqCiEhobCwcEBzZo1w//+9z+94/z222+oV68eHBwc0KVLF72chpo8eTLq1asHR0dHhIWFYdq0aSgqKiqz3cqVKxEYGAhHR0cMGDAAmZmZer//+uuv0bBhQ6hUKjRo0ABffPGF0VmIqGJYyMlqODg4oLCwUPfznj17EBsbi127dmHbtm0oKipC9+7d4eLigoMHD+LPP/+Es7Mznn/+ed1+CxYswJo1a/DNN9/g0KFDuHfvHrZs2fKvx33jjTfw/fffY8mSJbh48SJWrlwJZ2dnBAYGYvPmzQCA2NhY3L59G5999hkAICoqCt9++y1WrFiBCxcuYPz48Xj99dexf/9+ACUfOPr164devXrhzJkzGDFiBN5//32j28TFxQVr1qxBTEwMPvvsM3z11VdYtGiR3jZXrlzBpk2b8Msvv2D79u04ffo0xowZo/v9+vXrMX36dMydOxcXL17ERx99hGnTpmHt2rVG5yGiCpD47mtEVSIiIkLs3bu3KIqiqNVqxV27dolKpVKcOHGi7ve+vr56t4Rct26dWL9+fVGr1erWqdVq0cHBQdyxY4coiqJYs2ZNcf78+brfFxUViQEBAbpjiaL+rUtjY2NFAOKuXbvKzVl6y9r09HTduoKCAtHR0VE8fPiw3rbDhw8XBw0aJIqiKE6ZMkUMDw/X+/3kyZPLPNbDAIhbtmx55O8/+eQTsVWrVrqfZ8yYIdrY2Ig3b97Urfv9999FhUIh3r59WxRFUaxdu7YYHR2t9zhz5swR27ZtK4qiKF67dk0EIJ4+ffqRxyWiiuM5cqq2tm3bBmdnZxQVFUGr1eK1117DzJkzdb9v0qSJ3nnxs2fP4sqVK3BxcdF7nIKCAly9ehWZmZm4ffs22rRpo/udra0tWrduXWZ4vdSZM2dgY2ODTp06GZz7ypUryMvLw3PPPae3vrCwEC1atAAAXLx4US8HALRt29bgY5TauHEjlixZgqtXryInJwfFxcVwdXXV2yYoKAi1atXSO45Wq0VsbCxcXFxw9epVDB8+HCNHjtRtU1xcDDc3N6PzEJHxWMip2urSpQuWL18Oe3t7+Pv7w9ZW/+Xu5OSk93NOTg5atWqF9evXl3ksb2/vCmVwcHAwep+cnBwAwK+//qpXQIGS8/6V5ciRIxg8eDBmzZqF7t27w83NDRs2bMCCBQuMzvrVV1+V+WBhY2NTaVmJ6NFYyKnacnJyQp06dQzevmXLlti4cSN8fHzK9EpL1axZE8eOHUPHjh0BlPQ8T548iZYtW5a7fZMmTaDVarF//3507dq1zO9LRwQ0Go1uXXh4OJRKJW7cuPHInnzDhg11E/dKHT169PF/5AMOHz6M4OBgfPDBB7p1CQkJZba7ceMGkpKS4O/vrzuOQqFA/fr14evrC39/f8THx2Pw4MFGHZ+IKgcnuxH9Y/DgwahRowZ69+6NgwcP4tq1a9i3bx/efvtt3Lx5EwDwzjvv4OOPP8bWrVtx6dIljBkz5l+/Ax4SEoKIiAgMGzYMW7du1T3mpk2bAADBwcEQBAHbtm1DamoqcnJy4OLigokTJ2L8+PFYu3Ytrl69ilOnTmHp0qW6CWSjR49GXFwcJk2ahNjYWERHR2PNmjVG/b1169bFjRs3sGHDBly9ehVLliwpd+KeSqVCREQEzp49i4MHD+Ltt9/GgAED4OfnBwCYNWsWoqKisGTJEly+fBnnzp3D6tWrsXDhQqPyEFHFsJAT/cPR0REHDhxAUFAQ+vXrh4YNG2L48OEoKCjQ9dDfffdd/Oc//0FERATatm0LFxcX9O3b918fd/ny5XjllVcwZswYNGjQACNHjkRubi4AoFatWpg1axbef/99+Pr6YuzYsQCAOXPmYNq0aYiKikLDhg3x/PPP49dff0VoaCiAkvPWmzdvxtatW9GsWTOsWLECH330kVF/70svvYTx48dj7NixaN68OQ4fPoxp06aV2a5OnTro168fXnjhBXTr1g1NmzbV+3rZiBEj8PXXX2P16tVo0qQJOnXqhDVr1uiyElHVEsRHzdIhIiIi2WOPnIiIyIKxkBMREVkwFnIiIiILxkJORERkwVjIiYiILBgLORERkQVjISciIrJgLOREREQWjIWciIjIgrGQExERWTAWciIiIgv2/93FlK2doBDbAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "print(\"Random Forest\")\n", "print(f\"Classification report for classifier {rf_clf}:\\n\"\n", " f\"{metrics.classification_report(y_test, rf_prediction)}\\n\")\n", - "disp = metrics.plot_confusion_matrix(rf_clf, X_test, y_test)\n", + "disp = ConfusionMatrixDisplay.from_estimator(rf_clf, X_test, y_test)\n", "disp.figure_.suptitle(\"Confusion Matrix\")\n", - "print(f\"Confusion matrix:\\n{disp.confusion_matrix}\")\n", + "# print(f\"Confusion matrix:\\n{disp.confusion_matrix}\")\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -234,9 +446,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3a0lEQVR4nOzdd1hT1xsH8G8CCSsMEZAhynArIIJSJ2pV1NZatXUruPdCtA7cFvsTB9aFC7dV0dY66q64R93iVlAQRUVlj6zz+4Nya0xAIoEAeT/Pw6O5Offe9+ZC8ube95zDY4wxEEIIIYToIL62AyCEEEII0RZKhAghhBCisygRIoQQQojOokSIEEIIITqLEiFCCCGE6CxKhAghhBCisygRIoQQQojOokSIEEIIITqLEiFCCCGE6CxKhEiZ5eTkhICAAG2HoRMCAgLg5OSk7TDy1bJlS9SrV0/bYZQ6UVFR4PF4iIqK0sj2Nm3aBB6Ph2fPnmlke+Vdaf+7IbkoESIq5b3h5f3o6+vDwcEBAQEBSEhI0HZ4pBi8fPkSs2fPxs2bN7Udik4JCQnBvn37tB2GgtIYEyHFRV/bAZDSbe7cuXB2dkZ2djYuXbqETZs24dy5c4iOjoahoaFWY3v48CH4fMrlNeXly5eYM2cOnJycUL9+fYXn1q1bB7lcrp3AyrmQkBD88MMP+P777zW+7RYtWiArKwtCoVAjMfXr1w89e/aEgYGBBqMkRLsoESIF6tChA7y9vQEAgwcPhpWVFf73v/9h//796N69u1Zj08abcXZ2NoRCYZlIwDQZq0Ag0EBEZZtUKoVcLlc7qdCGj8+9Jr+w6OnpQU9PT2PbI6Q0KP3v5qRUad68OQDg6dOnCssfPHiAH374AZaWljA0NIS3tzf279+vtH5ycjImTJgAJycnGBgYoHLlyujfvz+SkpK4Njk5OZg1axaqVasGAwMDODo6YvLkycjJyVHY1sc1QlevXgWPx8PmzZuV9nn06FHweDwcPHiQW5aQkICBAweiUqVKMDAwQN26dREREaGwXl59xc6dOxEcHAwHBwcYGxsjNTU139cnIyMDEydOhKOjIwwMDFCzZk0sWrQIjDGFdjweD6NHj8b27dtRs2ZNGBoawsvLC2fOnFHaZlFjff/+PYKCguDm5gaRSAQzMzN06NABt27dUli/YcOGAIABAwZwt0Q3bdoEQLnW4dmzZ+DxeFi0aBHWrl0LV1dXGBgYoGHDhvjnn3+UjiEyMhJ16tSBoaEh6tWrhz/++EOt+onDhw/D19cXpqamMDMzQ8OGDbFjxw6ldvfu3UOrVq1gbGwMBwcHLFy4UOF5sViMmTNnwsvLC+bm5jAxMUHz5s1x6tQphXYfH19YWBh3fPfu3Sv0NgBALpdj2bJlcHNzg6GhIaytrdG+fXtcvXoVQO7vQUZGBjZv3sy95h/XvRX13KuqEXr8+DG6desGW1tbGBoaonLlyujZsydSUlI+G1N+NUKFPT+f+tzxZWVloVatWqhVqxaysrK45e/fv4ednR2aNGkCmUwGALh9+zYCAgLg4uICQ0ND2NraYuDAgXj37p3CPmfPng0ej4dHjx6hb9++MDc3h7W1NWbMmAHGGOLj49G5c2eYmZnB1tYWixcvVvl679q1C9OmTYOtrS1MTEzw3XffIT4+/rPHLJfLERYWhrp168LQ0BCVKlXCsGHD8OHDh8+uS4oHXREiasl7A6xQoQK37O7du2jatCkcHBwwZcoUmJiYYPfu3fj++++xd+9edOnSBQCQnp6O5s2b4/79+xg4cCAaNGiApKQk7N+/Hy9evICVlRXkcjm+++47nDt3DkOHDkXt2rVx584dLF26FI8ePcq3bsHb2xsuLi7YvXs3/P39FZ7btWsXKlSoAD8/PwDA69ev8dVXX3HJiLW1NQ4fPoxBgwYhNTUV48ePV1h/3rx5EAqFCAoKQk5OTr5XBBhj+O6773Dq1CkMGjQI9evXx9GjRzFp0iQkJCRg6dKlCu1Pnz6NXbt2YezYsTAwMMCqVavQvn17XLlyhSv81USs9+7dw759+/Djjz/C2dkZr1+/xpo1a+Dr64t79+7B3t4etWvXxty5czFz5kwMHTqUS3ibNGmi+hfhXzt27EBaWhqGDRsGHo+HhQsXomvXroiJieGuIh06dAg9evSAm5sbFixYgA8fPmDQoEFwcHAocNt5Nm3ahIEDB6Ju3bqYOnUqLCwscOPGDRw5cgS9e/fm2n348AHt27dH165d0b17d+zZswc//fQT3Nzc0KFDBwBAamoq1q9fj169emHIkCFIS0vDhg0b4OfnhytXrijdEty4cSOys7MxdOhQGBgYwNLSUq1tDBo0CJs2bUKHDh0wePBgSKVSnD17FpcuXYK3tze2bt2KwYMHo1GjRhg6dCgAwNXVVWPn/lNisRh+fn7IycnBmDFjYGtri4SEBBw8eBDJyckwNzcvMKainJ9PFeb4jIyMsHnzZjRt2hTTp0/HkiVLAACjRo1CSkoKNm3axF2hOn78OGJiYjBgwADY2tri7t27WLt2Le7evYtLly6Bx+Mp7L9Hjx6oXbs2fvnlFxw6dAjz58+HpaUl1qxZg9atW+N///sftm/fjqCgIDRs2BAtWrRQWP/nn38Gj8fDTz/9hDdv3iAsLAxt2rTBzZs3YWRklO9xDxs2DJs2bcKAAQMwduxYxMbGYsWKFbhx4wbOnz9PV1+1gRGiwsaNGxkAduLECfb27VsWHx/P9uzZw6ytrZmBgQGLj4/n2n799dfMzc2NZWdnc8vkcjlr0qQJq169Ords5syZDAD7/ffflfYnl8sZY4xt3bqV8fl8dvbsWYXnw8PDGQB2/vx5blnVqlWZv78/93jq1KlMIBCw9+/fc8tycnKYhYUFGzhwILds0KBBzM7OjiUlJSnso2fPnszc3JxlZmYyxhg7deoUA8BcXFy4ZQXZt28fA8Dmz5+vsPyHH35gPB6PPXnyhFsGgAFgV69e5ZY9f/6cGRoasi5dumg01uzsbCaTyRSWxcbGMgMDAzZ37lxu2T///MMAsI0bNyodm7+/P6tatarC+gBYxYoVFV7vP//8kwFgBw4c4Ja5ubmxypUrs7S0NG5ZVFQUA6CwTVWSk5OZqakp8/HxYVlZWQrP5f3OMMaYr68vA8C2bNnCLcvJyWG2trasW7du3DKpVMpycnIUtvPhwwdWqVIlhd+RvOMzMzNjb968UWhf2G38/fffDAAbO3as0nF9HLuJiYnC73EeTZz7vOdOnTrFGGPsxo0bDACLjIxU2t/H8osp730hNjaWMVb486NKYY+Psdy/bT6fz86cOcMiIyMZABYWFqawnqq/0d9++40BYGfOnOGWzZo1iwFgQ4cO5ZZJpVJWuXJlxuPx2C+//MIt//DhAzMyMlJ4LfJeUwcHB5aamsot3717NwPAli1bxi379O/m7NmzDADbvn27QpxHjhxRuZyUDLo1RgrUpk0bWFtbw9HRET/88ANMTEywf/9+VK5cGUDuJeq///4b3bt3R1paGpKSkpCUlIR3797Bz88Pjx8/5nqZ7d27Fx4eHtwVoo/lfVuLjIxE7dq1UatWLW5bSUlJaN26NQCovP2Qp0ePHpBIJPj999+5ZceOHUNycjJ69OgBIPeqzd69e9GpUycwxhT24efnh5SUFFy/fl1hu/7+/gV+w8vz119/QU9PD2PHjlVYPnHiRDDGcPjwYYXljRs3hpeXF/e4SpUq6Ny5M44ePQqZTKaxWA0MDLg6IZlMhnfv3kEkEqFmzZpK66urR48eClcH864kxcTEAMgtwL5z5w769+8PkUjEtfP19YWbm9tnt3/8+HGkpaVhypQpSrUun37DF4lE6Nu3L/dYKBSiUaNGXCxAbo1L3pUSuVyO9+/fQyqVwtvbW+Vr0a1bN1hbWyssK+w29u7dCx6Ph1mzZilt99PYP1Vcv6fm5uYAcm8XZ2ZmFti2MNQ5Px9T9/hmz56NunXrwt/fHyNHjoSvr6/S39nHx56dnY2kpCR89dVXAKDy3A4ePJj7v56eHry9vcEYw6BBg7jlFhYWqFmzpsLvUJ7+/fvD1NSUe/zDDz/Azs4Of/31V77HHRkZCXNzc7Rt21bhmL28vCASiQp8fyPFh26NkQKtXLkSNWrUQEpKCiIiInDmzBmFIuUnT56AMYYZM2ZgxowZKrfx5s0bODg44OnTp+jWrVuB+3v8+DHu37+v9OHz8bby4+HhgVq1amHXrl3cm9muXbtgZWXFJVJv375FcnIy1q5di7Vr1xZqH87OzgXGnOf58+ewt7dXeHMEgNq1a3PPf6x69epK26hRowYyMzPx9u1b8Pl8jcSaV6eyatUqxMbGcjUVAFCxYsVCHVt+qlSpovA4LynKq3fIO+Zq1aoprVutWrXPJmJ5tWiFGSOocuXKSh++FSpUwO3btxWWbd68GYsXL8aDBw8gkUi45apeu/zOfWG28fTpU9jb28PS0vKzsX+quH5PnZ2dERgYiCVLlmD79u1o3rw5vvvuO65WRl3qnJ+PqXt8QqEQERERaNiwIQwNDbFx40alc/3+/XvMmTMHO3fuVHpt8uqfPvbp7665uTkMDQ1hZWWltPzTOiNA+e+Xx+OhWrVqBY6x9PjxY6SkpMDGxkbl8wW9v5HiQ4kQKVCjRo24XmPff/89mjVrht69e+Phw4cQiURcl+qgoCCuBudTqj4E8yOXy+Hm5sbVAnzK0dGxwPV79OiBn3/+GUlJSTA1NcX+/fvRq1cv6Ovrc9sHgL59+yrVEuVxd3dXeFyYq0HFQVOxhoSEYMaMGRg4cCDmzZsHS0tL8Pl8jB8/vshd4vPrQcQ+KQ4vCYWJZdu2bQgICMD333+PSZMmwcbGBnp6eliwYIFSBwBA9eup7ja+RHH+ni5evBgBAQH4888/cezYMYwdOxYLFizApUuXuCu9xe1Lju/o0aMAcq/2PH78WCnx6969Oy5cuIBJkyahfv363PtT+/btVf6eq/p9Ke7fZ7lcDhsbG2zfvl3l8/l9ASTFixIhUmh5b/atWrXCihUrMGXKFLi4uADI7V7dpk2bAtd3dXVFdHT0Z9vcunULX3/99WdvH6jSo0cPzJkzB3v37kWlSpWQmpqKnj17cs9bW1vD1NQUMpnss/Gqq2rVqjhx4gTS0tIUrgo9ePCAe/5jjx8/VtrGo0ePYGxszL0haiLWPXv2oFWrVtiwYYPC8uTkZIVvv1/yen9O3jE/efJE6TlVyz6VV6QbHR2tVkKdnz179sDFxQW///67wvGqun1V1G24urri6NGjeP/+fYFXhVS97sX5ewoAbm5ucHNzQ3BwMC5cuICmTZsiPDwc8+fPzzcmVb70/Kh7fLdv38bcuXMxYMAA3Lx5E4MHD8adO3e4q1gfPnzAyZMnMWfOHMycOZNbT9XfmKZ8um3GGJ48eaKUwH3M1dUVJ06cQNOmTbX2BYsooxohopaWLVuiUaNGCAsLQ3Z2NmxsbNCyZUusWbMGr169Umr/9u1b7v/dunXDrVu38Mcffyi1y/vG1b17dyQkJGDdunVKbbKyspCRkVFgfLVr14abmxt27dqFXbt2wc7OTqG3h56eHrp164a9e/eqTMo+jlddHTt2hEwmw4oVKxSWL126FDwej+u5lOfixYsKt4bi4+Px559/ol27dtx4LZqIVU9PT+kbbWRkpNII4SYmJgByEyRNsbe3R7169bBlyxakp6dzy0+fPo07d+58dv127drB1NQUCxYsQHZ2tsJzX/ItPe8b/8frXr58GRcvXtT4Nrp16wbGGObMmaO0jY/XNTExUXrNi+v3NDU1FVKpVGGZm5sb+Hy+wvAUqmJS5UvPjzrHJ5FIEBAQAHt7eyxbtgybNm3C69evMWHCBIXtqdpnWFjYZ4/hS23ZsgVpaWnc4z179uDVq1dKf+cf6969O2QyGebNm6f0nFQq1ejfHik8uiJE1DZp0iT8+OOP2LRpE4YPH46VK1eiWbNmcHNzw5AhQ+Di4oLXr1/j4sWLePHiBTdezaRJk7Bnzx78+OOPGDhwILy8vPD+/Xvs378f4eHh8PDwQL9+/bB7924MHz4cp06dQtOmTSGTyfDgwQPs3r0bR48e5W7V5adHjx6YOXMmDA0NMWjQIKUBBX/55RecOnUKPj4+GDJkCOrUqYP379/j+vXrOHHiBN6/f/9Fr0unTp3QqlUrTJ8+Hc+ePYOHhweOHTuGP//8E+PHj1fqglyvXj34+fkpdJ8HoPDBqYlYv/32W+7bdJMmTXDnzh1s376du5qXx9XVFRYWFggPD4epqSlMTEzg4+NT6Bqp/ISEhKBz585o2rQpBgwYgA8fPmDFihWoV6+eQnKkipmZGZYuXYrBgwejYcOG6N27NypUqIBbt24hMzNT5bhRBfn222/x+++/o0uXLvjmm28QGxuL8PBw1KlT57OxqLuNVq1aoV+/fvj111/x+PFj7hbN2bNn0apVK4wePRoA4OXlhRMnTmDJkiWwt7eHs7MzfHx8iuX39O+//8bo0aPx448/okaNGpBKpdi6dSuXmOTJL6ZPFeX8FPb45s+fj5s3b+LkyZMwNTWFu7s7Zs6cieDgYPzwww/o2LEjzMzM0KJFCyxcuBASiQQODg44duwYYmNj1X6NCsvS0hLNmjXDgAED8Pr1a4SFhaFatWoYMmRIvuv4+vpi2LBhWLBgAW7evIl27dpBIBDg8ePHiIyMxLJly/DDDz8UW8wkHyXXQY2UJXndZP/55x+l52QyGXN1dWWurq5MKpUyxhh7+vQp69+/P7O1tWUCgYA5ODiwb7/9lu3Zs0dh3Xfv3rHRo0czBwcHJhQKWeXKlZm/v79CF1qxWMz+97//sbp16zIDAwNWoUIF5uXlxebMmcNSUlK4dp92n8/z+PFjrnv6uXPnVB7f69ev2ahRo5ijoyMTCATM1taWff3112zt2rVcm7xusp/ravyxtLQ0NmHCBGZvb88EAgGrXr06Cw0NVepKDICNGjWKbdu2jVWvXp0ZGBgwT09PrpuzJmPNzs5mEydOZHZ2dszIyIg1bdqUXbx4kfn6+jJfX1+Ftn/++SerU6cO09fXV+hKn1/3+dDQUKX9AWCzZs1SWLZz505Wq1YtZmBgwOrVq8f279/PunXrxmrVqlXwC/qv/fv3syZNmjAjIyNmZmbGGjVqxH777TfueV9fX1a3bl2l9T6NWy6Xs5CQEFa1alXuNT948KBax1fYbTCW2y07NDSU1apViwmFQmZtbc06dOjArl27xrV58OABa9GiBTMyMmIAFH6ni3ruP+0+HxMTwwYOHMhcXV2ZoaEhs7S0ZK1atWInTpxQWC+/mD7tPp/nc+cnP587vmvXrjF9fX02ZswYpde1YcOGzN7enn348IExxtiLFy9Yly5dmIWFBTM3N2c//vgje/nypdLvY173+bdv3yps09/fn5mYmCjF+OnvVt5r+ttvv7GpU6cyGxsbZmRkxL755hv2/PlzpW2qGiJi7dq1zMvLixkZGTFTU1Pm5ubGJk+ezF6+fPnZ14xoHo8xLVQ1EqLjeDweRo0apXQbTZfUr18f1tbWOH78uLZDIaTQoqKi0KpVK0RGRtLVm3KCaoQIIcVKIpEo1aVERUXh1q1baNmypXaCIoSQf1GNECGkWCUkJKBNmzbo27cv7O3t8eDBA4SHh8PW1hbDhw/XdniEEB1HiRAhpFhVqFABXl5eWL9+Pd6+fQsTExN88803+OWXX4o8oCMhhBQV1QgRQgghRGdRjRAhhBBCdBYlQoQQQgjRWTpXIySXy/Hy5UuYmpoWy5QChBBCCNE8xhjS0tJgb2+vNFBuUehcIvTy5cvPTtxJCCGEkNIpPj5eoxME61wilDcZZmxsbIETIZLiJ5FIcOzYMW6YeaJddD5KDzoXpQedi9Lj/fv3cHZ2VpjUWhN0LhHKux1mamoKMzMzLUej2yQSCYyNjWFmZkZvMKUAnY/Sg85F6UHnovSQSCQAoPGyFiqWJoQQQojOokSIEEIIITqLEiFCCCGE6CxKhAghhBCisygRIoQQQojOokSIEEIIITqLEiFCCCGE6CxKhAghhBCisygRIoQQQojOokSIEEIIITpLq4nQmTNn0KlTJ9jb24PH42Hfvn2fXScqKgoNGjSAgYEBqlWrhk2bNhV7nIQQQggpn7SaCGVkZMDDwwMrV64sVPvY2Fh88803aNWqFW7evInx48dj8ODBOHr0aDFHSgghhJDySKuTrnbo0AEdOnQodPvw8HA4Oztj8eLFAIDatWvj3LlzWLp0Kfz8/IorTEIIIYSUU2Vq9vmLFy+iTZs2Csv8/Pwwfvz4L9oeYwxZ0iwwxpAtlWsgQu1hjEEqztHOfqXSL1pXKpEiOTMNL968gr6g8L+KjDFAwr5on8WGMUCapeYqDNlM8bFcng25RMOxFZJULsO7lLe4++A29Pl62gmCANCxcyEp+fctdUgkErx/m4Dom5dp9nkte/vuQ7Fst0wlQomJiahUqZLCskqVKiE1NRVZWVkwMjJSWicnJwc5Of/9oaWmpgIAxGIx+v3VD7eSbhVv0CWBAR0uVUKlD4YlvVtkVq0FubGoSNuJffhEMwGVIQzAvvrN8dq8orZD+Yge4OgNJGk7DqJb58JA2wF8hgHg2gRI13YcRJ5VtM+a/JT7XmMLFiyAubk59+Po6AgAOHbqWPlIggDoy3glngQBAHj8IidBukrK1ytlSRAhhOimMnVFyNbWFq9fv1ZY9vr1a5iZmam8GgQAU6dORWBgIPc4NTUVjo6O8G3hi0UnFwEA0h8Fg8mFOBXYDEbCsncZWpqTg13HhgAAui1aAX2DkvmGJZFIsHldBACgT0B/tW5v5a4vxcWLF9C4cRMICruuRA6EP8v9/6AqgKAU5PLiTIi25daopff8E9D/fFKaJWfY8Cr3HtghWwEMWA6eJ/YFAMQcnI0mfZ2hV8LHJpXJcPv2bbi7u0Nfr+z9HZQnunAuWHYW0idMAwCY/G82eEKhliNSTSpjiI6+g3r13KCvx9N2ODrl+bM4pKSlwt2tHgAgWZ6O1sWwnzKVCDVu3Bh//fWXwrLjx4+jcePG+a5jYGAAAxWJgQT/FWIwuRBgQlQyrwBjYf4vCWMMTKKZWiLGGGQ5mrk3LuEBerzce9f25tbQNzQEYwwSSfEWm3y8fUcrOwjVfCOTSiR4aGAKJ2t76H90750xhiy56hogJpYhUS8eAGBX2RE8YQkkC4xBmiMHJJmqn5cYAPzcN0hLexcwgTHk8oLrhQRyOfDqOQDAuXJlGCAHrxNzfx/0ckzhXrcBBAYl+wEokUiQ8PwVPOp66nQtBGMMLEu9ei9Nk0gkePn4Odyca5bbcyHPysLjpLcAgJqeX4FvbKzliFSTSCR4+fo96nt9VW7PRWkjl8uxaNEiBAcHQyQS4fbt26hcuTLevXtXLPvTaiKUnp6OJ0/+qw+JjY3FzZs3YWlpiSpVqmDq1KlISEjAli1bAADDhw/HihUrMHnyZAwcOBB///03du/ejUOHDqm9784HO0PPqPAfNIwxvA2/DfHzVLX3VRJ+cMq96vUm5DoYGA4Ir+ENP6XE9v9q/mUIoP4Htycs8ebKP9xjBmBQI2PcrlDAttqY5v576a7a+ys2vvtz/73xTO1VL/7TGIYo3QWjuoIxhue9+yDrxg1th4LqAGJmzNR2GISUqPj4ePj7++PUqVMAgJYtW+Z7x0dTtHpf4erVq/D09ISnpycAIDAwEJ6enpg5M/eP/9WrV4iLi+PaOzs749ChQzh+/Dg8PDywePFirF+/vkhd56WZVQEmgHfVCjAS5P/hyyTyUpsEfUoKeYkmQZXk5tDX0K9Sth4KToLKmRrsPgw+SoIy31aDrZM19EviShdRwrKySkUSpEuMGjQAr5g/6EjZEBkZCQ8PD5w6dQrGxsZYv3499u7di4oVi7eeUqtXhFq2bJnbFTofqkaNbtmyJW5o6I0q/VEwrkzpDBMDfRgJ9MDj8fK9/cXEMu7/dsE+4BWhlkianY1VQ3PrQYYs3wCBgUGBt4MKgzEG8ATg8XgQS8SQrD4LABg5ZCQE+h9fzmWARLOX/QX6+uDx1L93LpFIcebMWbRo0ZyrEeLLGXDvBQDgep3KMObns119/hftU/0Y5dg6+yYAoJ/VMAhGnwEE+bxpC4whk2fh4j+5t2obNfgbenoFv8Eb8V3A433LPebzjSAw0CuRYyvriuMWlvyj7VU/fw58LX1ASyQSHD12DH7t2pX72zE8IyP6fddxcrkcgwcPxsaNGwEADRs2xPbt21G9evUS2X+ZqhHSNCYXwsRAn6sLKuztL55QD/wiJEI8uR5kLLe+RmhqDH0DA3x3/Qn+Sc344m0qad4JALDhQbzmtlkcKlUDHr5S+dTun69CKNP+eEF5FWYiXgoEIn0g31ooKWQyCXeby9LUDHp6pbPuoawriVtYfCMjrdWt8CUSMKEQfGNj8Mt5IkQIn8+HkZER+Hw+pk6dilmzZpXoFwCdToQ+VZjbX8KqZuBpuDdPplyu2SSoHKjB7qPe98EoTd8Tz8MUuPiVtsMgKP5bWHS7hpDiJZVKkZqaCktLSwBAaGgo+vbtW2Dnp+Ki04lQLVvTfOuC8rv9xRMU7y2ZO03rwlhPvURLmiNHxKTcW2H95jcB48kQ9usSAMD4sYH/9eYSZwBh7rn/H3U5/1s8JUQikeDUqSi0atUSAoEAMlkWLt76GgBggJxSlQSpy9zcC3w+fZCWhOK4hUW3awgpPrGxsejbty8EAgFOnjwJPT09GBsbayUJAnQ8Edo22Id7s5PL5ZCkibnnZAzgqborI/6vfkidaS0+rgGSiLMh/rduJyVLAonkvzdcoRQQqnk3iCdlEP5bwmRuLADj8SGQy7jHQuG/lxj1BQD+LaI2NwOEJurtSMMkEgmEBkKYW1j8mwgJudtKzZtdLtO3lfh8+iD9EoWt+/m4lkebt7AIIYXHGMO2bdswatQopKWlwczMDPfv30e9evW0GpdOJ0J5n1NyuRwPZ16E6UfzjUVMOgeZinUYGMCTgzEGcdpeMJnq+hbFdYDfOg/GS9sq/y0cPAsAsOzmU4W2GyZHcUmNWv49FrFYDMb7kg2ULMYYZLJMADmQyTLB5wv+fZxLT8+4TCdCRH2lqes6IUSzkpOTMWLECOzcuRMA0LRpU2zbtg1OTk7aDQw6ngjlkWZIFZKgd1J5vklQsuUtSIX/1hHZ2gGw++z2JXw9xSQoH7Yp75Bidb5It4RCF58vwtolgzGGa9e7IyXlOkSmwPkLU7UdEikFvqTuh2p5CCn9Tp8+jX79+iE+Ph56enqYPXs2pkyZAn390pGClI4otECWbQtDPeWpECzGNYBNBQPUUXFbQywWI3Tx2SLt1//CX9CXqb5ioy+XabQuxtHRsVR2vZXLs5CScj3f56m+hhS27odqeQgp3eRyOcaOHYv4+Hi4urpi+/bt8PHx0XZYCnQ2EcqKG/jv7S0xxOn/TRUhFAkgNFT9sjDef8XTo4YNxeYJwwEAI9Zug8Dwv6Tq0zGBMmVybPjnEQBgamBg4YuhGct/WodCEAgE4H28vvjLt1VcMtLnoF27TgoJG9XXlC9U90OI7uLz+diyZQtWrlyJJUuWQCQqfRN162wiBMZD3Lx/YCb7qPgZDGKJGBCrXkUs/u+JzROGg8dy1xUKhRD82zOLMVbgmEACoQDCwkyiyBgQ4QfEXy7kAZU+jDGVc259XAvEmPDfeqDSd+WKFB3V/RCiWxhjWL9+PdLT0zFhwgQAgIeHB9auXavlyPKns4mQCFBKgvYZXMO7X/9Wazv2NesozPZe0JhAjcxNYMwv5NUgSWbxJUGOXwGC4v22/XEdENFdVPdDiO5ISkrCkCFDsG/fPujr66Ndu3aoW7eutsP6LJ1NhD5mMa4BYMAKnQTpZaYBTI4Ra7fByMw839s4n44JZMz/wjGIgp4AQg0mLgLj/7rMFZPP1QEBgJlZA6SnqTdjPSm7qO6HkPLr2LFjCAgIwKtXryAQCLBgwQLUrl1b22EVCiVCyK0LYh8N3jN+zJh8i4wl4hysHzUAPAACA0PuDZsxhky5HJkfXWUy1uPDpDC3wfJ8XBP0cT2P0FjrY/4URX5jAslk+niZcFgLEZEvpe78XlT3Q0j5lp2djalTpyIsLAwAULt2bezYsQP169fXalzq0NlEaCHMuf8zxrjJ3gDkJjpMeeLVPJ9+V/1cXVChlOGaIFW1QIUZE0gulygtI6UX1fsQQj4mk8nQokUL/PPPPwCAUaNGYeHChTAuY194dDYRcv330JOlDBaQITExEQDAz84ECkiC8nxcG6SqLkiteiAg/5qgEqjnKQqqBdIdRZnfi+p+CCl/9PT00KdPHzx79gwRERH49ttvtR3SF9HZRCjPuXQpnD+qRzB+9gA8/Nsl3kB5nKE8+gYGKusY8uqCvrgeCFCsCSqBep6ioDGBdJO683tR3Q8h5UNiYiKSkpK4aTHGjBmDPn36wMrKSsuRfTmdTYQYGCSQQc6TQSJRvkUjMDBUGBtI5TbUrQsqaFygclATpKoWiMYEKj0+V98jl0jAE4shz8yEXEWNHNX7EKLbDhw4gIEDB8LCwgI3btyASCQCn88v00kQoMOJ0GHhTaQZ5gCGQNiv6k9LoXZdUBmuAVIlry6I5gcrGwpb31MdQMyMmSUTFCGkTMjMzERQUBBWr14NALC3t0dSUlKpHBzxS+hsIpTET4UBDBSWVa5cGcn3rxZqfbXrggo7LlAprwkCqC6oLCpKfc+nqN6HEN1x/fp19OnTBw8ePAAATJw4ET///DMMDAw+s2bZobOJUJ6xw8dCZPlvViuTYfnxfWpvQ+26oILGBSrlNUGA6rogqgUqO/Kr75FIJDh67Bj82rUrcI46qvchpPyTy+VYtGgRgoODIZFIYGdnhy1btqBNmzbaDk3jdD4REgqFEP47PYY4u/Djo3xMoS4ovzqgclADpEpeXRDVApUO+dUBFaa+hy+RgAmF4Bsbg18KJ+slhJQcHo+HU6dOQSKRoEuXLli3bh0qVqyo7bCKhc4nQnkYY9g566eibqRM1wHlNzfYp6guqHSicX4IIUUllUqhr68PHo+HjRs34siRI/D39y/XX3R1PhHSE+TW9EhzcvD2WQwAwNrJRWH+sEIrTB1QKa0Borqfsq8wdUBU30MIUSUtLQ1jx44Fj8dDREQEAMDW1hYBAQHaDawE6HwipCrL7Tnnf/lmv6q6zKuUXx1QKa0BKszcYJ+iuqDSK786IKrvIYR86tKlS+jTpw9iYmLA5/MxceLEMjFZqqbofCKUh+G/ucZ4SpNo/Nsmvy7zjAHijHJTB5Tf3GCfKkt1QerOkVUW0Tg/hBB1SKVShISEYO7cuZDJZKhSpQq2bdumU0kQQIkQgMLXB6nsMm9mDOPNHUtVXVBha30+Vp7rfqh2hhBCFMXGxqJv3764cOECAKBXr15YtWoVLCwstBuYFlAihC+rD+K6zEuzwDvwSRKkxTogqvVRpskxdMoCqgMihBREJpPBz88Pjx8/hpmZGVatWoU+ffpoOyytoUToEz1m/4JMuer6H5VTacg+ujWUVxekxTqgL6n1+Vh5r/tRd46ssojqgAghBdHT00NYWBgWLFiArVu3wsnJSdshaRUlQh9hALrdjcfVtC+sJSlldUGFrfX5WFmq+/kSVDtDCNFFZ86cQUpKCjp16gQA6NixIzp06FCu3+8LixKhj0j0BYVKggqcSqMYFab2pzzX+hBCCFGPWCzG7Nmz8csvv8Dc3By3b9+Go6MjANW9pnURJUL5yKsBUqXQU2loENX+EEIIUcfDhw/Rp08fXLt2DQDQtWtXnSyG/hxKhP7FAEj0hdxjhWkzuEb/Tp8h+2iZWMV0GsVA3dqf8lbrU5Tu7/Jy3m2eEEI+xhjD+vXrMX78eGRmZqJChQpYt24dunXrpu3QSiVKhJD7S7Pj+yF4aVu1oEalZvqMwtT+lKdaH+r+TgghhSOTyfDjjz/ijz/+AAC0bt0amzdvRuXKlbUcWeml84kQT8BHllSmkASprAH63PQZGuwyr6oWSJdrfzTV/Z26lRNCyjs9PT04OjpCIBAgJCQEgYGB4GuhprUsoUTok6smN7yrwVZkUvDVFFXTZ2ioyzzVAhWsKN3fqVs5IaQ8ys7ORmpqKmxsbAAAv/zyCwYNGgR3d3ctR1Y26Hwi9ClVhdCMMbDMLED673IpD+B/8oEq1UwdikyWWWASZG7qCWQzyHklU5tUnOQSCXhiMeSZmZALBPm3o6kjCCFEpbt376J3796wsLDA33//DT09PRgZGVESpAZKhD5DsT7FLnfhnubFtj+5kAFhuf+vNFkAnljxeZ44Go/gXWz7L2nVAcTMmKntMAghpExhjGHFihWYNGkScnJyYG1tjadPn6JGjRraDq3MoRuHn1FS0zMwMMiFDOy/jmvgiQG+mKfwk9+EsLqAanwIIQRITExEx44dMXbsWOTk5KBDhw64c+cOJUFfiK4IqaH694ng6zPVNUJFwBjD9bv9kZp+U2F5jfPnynVRtEQiwdFjx+DXrh0EBdway0M1PoQQXXfgwAEMHDgQSUlJMDQ0RGhoKEaNGkXvjUVAiVA+8satUahP0We5iZCxkUYTIZksUykJMjf3gr6oYrn+5eZLJGBCIfjGxuAXIhEihBBdJpVKMX36dCQlJcHd3R07duxA3bp1tR1WmUeJkAraHLcmb4yg8jQOECGEkKLT19fH9u3bsXXrVsybNw8GBgbaDqlcoERIBVV1QUZWOeDpMcDWTWPjBamia2MEEUIIUU0ul2Px4sWQy+X46aefAABubm5YuHChliMrXygR+ozq58+Br8fAW+qaO0zQgCMaGS+IEEIIyc+LFy/g7+/PdYnv3LkzatWqpe2wyiWd7zUmz8yEPOu/MXnkWZnK49YYGf6X+1ASRAghpBhFRkbC3d0df//9N4yNjREeHo6aNWtqO6xyS+evCD1u2gxZAgGwdGPu4zZtYZqd/V8DxoCN7bUUHSGEEF2RlpaGcePGYePG3M8jb29vbN++nbrFFzOdT4QKYtSgAXj6DEi8k7ugGOqDGGMK84gRQgjRPVKpFE2aNEF0dDR4PB6mTZuGWbNmFWpoEVI0lAgBcD14EHj8FgBQ/cRxmP87hQPPyAg8yUdJiobrg2heMUIIIUBuj7ChQ4di0aJF2LZtG5o3L74ZDIgina8RAgDeR10Q+UbGuePaGBvnjuEs/igR0nB9kFyepZAEmZt7gc+nkZMJIUQXxMbG4ubNm9zj0aNH486dO5QElTCdT4QYgN8Xz1fxBAMi/IBF1UokjubNLsOrwS4aO4gQQso5xhi2bdsGDw8PdOvWDWlpaQAAHo8HMzMzLUene3Q+EdKvVRNv45//99jg38m+JJlA/OX/Gjp+VezjB1ESRAgh5VtycjJ69+6Nfv36IS0tDXZ2dlwiRLRDpxMhiw8f4LJ2DfDxRKaqkpGgJ8BAGj+IEELIlztz5gw8PDywc+dO6OnpYd68eYiKioK9vb22Q9NpOp0ItT75N8Dj4bfvBxfcUGhMSRAhhJAvIpVKMW3aNLRs2RJxcXFwdXXF+fPnERwcDH196rOkbTqdCPEYQ5ac4Y1VbjZe19gAxnydfkkIIYRomJ6eHm7dugXGGAYOHIgbN27Ax8dH22GRf1Eq+pG99apqtE6HMQa5PCvf52n8IEIIKZ8YYxCLxTAwMACPx8PGjRtx7tw5dO3aVduhkU9QIvQRTd78ojGCCCFEN7179w5DhgyBqakpNm/eDACwsbGhJKiUovtAxeTTMYIKQuMHEUJI+XD8+HG4ubnhjz/+wG+//YZHjx5pOyTyGXRFqAQ0b3YZenr5d73n842o6zwhhJRh2dnZmDZtGpYuXQoAqF27Ns0TVkZQIlQMPp0/TE/PuMBEiBBCSNl19+5d9O7dG7dv3wYAjBw5EqGhoTA2pvf9skDnEyHGNL09qg0ihBBdIZVK8e233+LZs2ewtrZGREQEvv32W22HRdSg0zVC+U6vUQQ0fxghhOgOfX19rF69Gh07dsSdO3coCSqDdPqKkIzPUz29hoY0b3YZAkFFqv8hhJBy5ODBgxCLxVwvsPbt28PPz4/e68sorV8RWrlyJZycnGBoaAgfHx9cuXKlwPZhYWGoWbMmjIyM4OjoiAkTJiA7O1szwRTxl1hVbRD9YRBCSPmQmZmJkSNHolOnThg4cCDi4uK45+i9vuzS6hWhXbt2ITAwEOHh4fDx8UFYWBj8/Pzw8OFD2NjYKLXfsWMHpkyZgoiICDRp0gSPHj1CQEAAeDwelixZopmgGMudcFWs3mCHVBtECCHl140bN+Dv748HDx4AAAYNGoRKlSppOSqiCVpNhJYsWYIhQ4ZgwIABAIDw8HAcOnQIERERmDJlilL7CxcuoGnTpujduzcAwMnJCb169cLly5eV2hbGFddPJrpjDIjwU5x1vpCoNogQQsofuVyOP/74Azt27IBEIoGdnR02b96Mtm3bajs0oiFaS4TEYjGuXbuGqVOncsv4fD7atGmDixcvqlynSZMm2LZtG65cuYJGjRohJiYGf/31F/r165fvfnJycpCTk8M9Tk1N5f6fZmig0FaamaqUBMkr+0AGASCRFHg8Mtl/z3/lcx4CgSWkUmmB6+g6yb+vqeQzry0pGXQ+Sg86F6WDRCLBN998g6ioKABA586dsXr1alhZWdG50YLies21lgglJSVBJpMpXVqsVKkSd+nxU71790ZSUhKaNWsGxhikUimGDx+OadOm5bufBQsWYM6cOYWK6cSJk+j27/8P11sBGd8AMr4QOHz4M2sy8HjpMBHlbecMAIMC1yD/OX78uLZDIB+h81F60LnQPlNTUxgYGGDw4MFo06bNZ+tYSfHJzCye+TnLVK+xqKgohISEYNWqVfDx8cGTJ08wbtw4zJs3DzNmzFC5ztSpUxEYGMg9Tk1NhaOjo8q2bXybALf//X+HToDQ5LMxMcZw63ZvpKbe4Jb5+fnRAIqFIJFIcPz4cbRt2xYCgUDb4eg8Oh+lB50L7UlLS0NaWhrs7XNLJ5o3b47du3ejf//+dC607N27d8WyXa0lQlZWVtDT08Pr168Vlr9+/Rq2trYq15kxYwb69euHwYMHAwDc3NyQkZGBoUOHYvr06eDzlTvBGRgYwMCgcFdn9Fc24P4vEAiAQvzSy2SZCkmQubkXDAzMqAeBGgQCAb3BlCJ0PkoPOhcl69KlS+jbty9sbW0RFRUFfX19mJqaws7Ojs5FKVBcr7/Wus8LhUJ4eXnh5MmT3DK5XI6TJ0+icePGKtfJzMxUSnb09PQA5F6Z+RLWVZ2VFzp+BQjUv6LTvNlleDXYRUkQIYSUIVKpFHPnzkWzZs3w9OlTxMfHIz4+XtthkRKi1VtjgYGB8Pf3h7e3Nxo1aoSwsDBkZGRwvcj69+8PBwcHLFiwAADQqVMnLFmyBJ6entytsRkzZqBTp05cQqSubtPnIfjK4/8WBD0BTKwKPabQxwkYjRtECCFlS2xsLPr27YsLFy4AAHr16oVVq1bBwsJCu4GREqPVRKhHjx54+/YtZs6cicTERNSvXx9HjhzhCqjj4uIUrgAFBweDx+MhODgYCQkJsLa2RqdOnfDzzz9/0f4ZgB+i4xQXCo3VSoKuXe/5RfsmhBCiPYwxbN++HSNHjkRaWhpMTU2xevVq9OnTR9uhkRKm9WLp0aNHY/To0Sqfy+uymEdfXx+zZs3CrFmzNLJvib4AdzNzu9bXS3sMY7l6I1TL5VlIT78HABCJ6tC4QYQQUkZIpVIsWrQIaWlpaNq0KbZu3QpnZxWlEqTc03oiVFr8eXMMeLZuX1QbBABeDXbSbTFCCCkjBAIBduzYgd9//x1TpkyBvj59HOoqOvMcBgw48sXzjVESRAghpZdEIsHs2bNhZGSE4OBgAECdOnVQp04dLUdGtI0SoY9RMkMIIeXOo0eP0KdPH1y9ehV6enro1asXXF1dtR0WKSW0Pvs8IYQQUhwYY1i3bh08PT1x9epVVKhQAbt27aIkiCigK0KEEELKnaSkJAwZMgT79u0DALRu3RqbN29G5cqVtRsYKXUoEVITYwxyeRaA3FGlCSGElC4SiQRfffUVnj59CoFAgAULFmDChAkqZx8ghBIhNeSOG9QdKSnXtR0KIYSQfAgEAgQGBmLFihXYvn07PD09tR0SKcUoPVaDXJ6lMgkyN/eiMYQIIUSLoqOj8c8//3CPR4wYgWvXrlESRD6Lrgh9oebNLnMzzPP5RtR9nhBCtIAxhhUrVmDSpEmws7PDrVu3YGaWO/G1kRF9QSWfp+OJ0JcnL3p6xlwiRAghpOQlJiZiwIABOHLkCACgdu3aEIvFWo6KlDU6e2uMAdjZeZC2wyCEEPIFDh48CHd3dxw5cgSGhoZYvnw5Dh06BCsrK22HRsoYnb0iJOXx8cbKDsCXzTNGCCGk5EkkEowbNw6rV68GALi7u2PHjh2oW7euliMjZZXOXhH62J83xxThJhkhhJCSoq+vj4SEBADAxIkTceXKFUqCSJHo7BUhRUzbARBCCMmHXC5HdnY2jI2NwePxsH79ety+fRtff/21tkMj5QBdESKEEFJqxcfHo02bNhg6dCi3zNrampIgojF0RYgQQkipFBkZiaFDhyI5ORnGxsaIjY2Fs7OztsMi5QxdEcpj6wYIqDs8IYRoW1paGgICAtC9e3ckJyejYcOGuHnzJiVBpFhQIpRnwBHgM4MiMka1RIQQUpwuXbqE+vXrY/PmzeDz+Zg+fTrOnz+P6tWrazs0Uk7RrbE8hUiCrl3vWULBEEKI7hGLxejevTvi4+NRpUoVbNu2Dc2bN9d2WKScoytChSSXZyE9/R4AQCSqQ3OLEUKIhgmFQmzYsAG9e/fGrVu3KAkiJYKuCH0BrwY7aW4xQggpIsYYtm3bBoFAgJ49c6+4t23bFm3bttVyZESXUCL0BSgJIoSQoklOTsaIESOwc+dOmJqaokmTJqhSpYq2wyI6iBIhQgghJer06dPo168f4uPjoaenh8mTJ8Pe3l7bYREdRYkQIYSQEiEWizF79mz88ssvYIzB1dUV27dvh4+Pj7ZDIzqMEiFCCCHFLicnB82bN8c///wDABg4cCCWLVsGkUik5ciIrqNeY4QQQoqdgYEBWrRogQoVKmDPnj3YsGEDJUGkVKBEiBBCSLFISkpCfHw89/jnn3/GnTt30K1bNy1GRYgiSoQIIYRo3LFjx+Dm5oYePXpAKpUCyL0q5ODgoOXICFFEiRAhhBCNyc7OxoQJE+Dn54fExEQkJycjMTFR22ERkq8iJULZ2dmaiqPEHXRvolZ7mmeMEEIKFh0djUaNGiEsLAwAMHLkSFy9ehWVK1fWbmCEFEDtREgul2PevHlwcHCASCRCTEwMAGDGjBnYsGGDxgMsLu9F5gCAummPYSwvOKGjecYIISR/jDEsX74c3t7euHPnDqytrXHgwAGsXLkSxsbG2g6PkAKpnQjNnz8fmzZtwsKFCyEUCrnl9erVw/r16zUaXEnYe2MsPjdONM0zRggh+ZNIJNi4cSNycnLQoUMH3LlzB99++622wyKkUNROhLZs2YK1a9eiT58+0NPT45Z7eHjgwYMHGg2uJPDUvONF84wRQkiuvJIBoVCIHTt2YPny5Th06BAqVaqk5cgIKTy1B1RMSEhAtWrVlJbL5XJIJBKNBFXafFwfREkQIUTXZWZmYuLEibCxscGcOXMAALVq1UKtWrW0HBkh6lM7EapTpw7Onj2LqlWrKizfs2cPPD09NRZYaUH1QYQQ8p/r16+jT58+ePDgAfT19TFw4EClzwNCyhK1E6GZM2fC398fCQkJkMvl+P333/Hw4UNs2bIFBw8eLI4Yi5U+Tw4UcHuM6oMIIST3qv+iRYsQHBwMiUQCOzs7bN68mZIgUuapXSPUuXNnHDhwACdOnICJiQlmzpyJ+/fv48CBA2jbtm1xxFi81LjTRfVBhBBdFB8fjzZt2uCnn36CRCJBly5dcOfOnbL5nk/IJ75o0tXmzZvj+PHjmo6lVKL6IEKILsvJyUGTJk3w4sULGBsb49dff8XAgQPp/ZCUG2pfEXJxccG7d++UlicnJ8PFxUUjQZWUOlkvChxDiOqDCCG6zsDAADNmzIC3tzdu3LiBQYMGURJEyhW1E6Fnz55BJpMpLc/JyUFCQoJGgiopO/8ZkXtnzNYNECgP+kX1QYQQXXTp0iVcvHiRezxkyBBcuHABNWrU0GJUhBSPQt8a279/P/f/o0ePwtzcnHssk8lw8uRJODk5aTS44saNITTgCPCZbzhUH0QIKe+kUilCQkIwd+5cODg44NatW7CwsACPx4NAINB2eIQUi0InQt9//z2A3DoZf39/hecEAgGcnJywePFijQZXYvJJcKg+iBCiK2JjY9G3b19cuHABANC0aVN63yM6odCJkFwuBwA4Ozvjn3/+gZWVVbEFVRpQfRAhRBcwxrBt2zaMGjUKaWlpMDMzw6pVq9CnTx9th0ZIiVC711hsbGxxxFHqUH0QIaS8y8nJQUBAAHbu3Akg9yrQtm3bylyZAyFF8UXd5zMyMnD69GnExcVBLBYrPDd27FiNBFaaUH0QIaQ8EgqFyM7Ohp6eHmbPno0pU6ZAX/+LPhYIKbPU/o2/ceMGOnbsiMzMTGRkZMDS0hJJSUkwNjaGjY1NuUiEGGOQyTK5x5QEEULKC7FYjJycHJiamoLH42HdunWIiYlBo0aNtB0aIVqhdvf5CRMmoFOnTvjw4QOMjIxw6dIlPH/+HF5eXli0aFFxxFiicmuDuuPsOR9th0IIIRr16NEjNG3aFEOGDOE6g1hZWVESRHSa2onQzZs3MXHiRPD5fOjp6SEnJweOjo5YuHAhpk2bVhwxlii5PAspKde5x+bmXlQfRAgp0xhjWLduHTw9PXH16lUcO3YML1680HZYhJQKaidCAoEAfH7uajY2NoiLiwMAmJubIz4+XrPRaVnzZpfh1WAX3RojhJRZSUlJ6Nq1K4YOHYrMzEy0bt0at2/fhqOjo7ZDI6RUULtGyNPTE//88w+qV68OX19fzJw5E0lJSdi6dSvq1atXHDFqjZ6eMSVBhJAy6/jx4/D398erV68gEAgQEhKCwMBA7sssIeQLrgiFhITAzs4OAPDzzz+jQoUKGDFiBN6+fYs1a9ZoPEBCCCHqy87OxsCBA/Hq1SvUrl0bly9fRlBQECVBhHxC7StC3t7e3P9tbGxw5MgRjQZECCGk6AwNDbF582bs3bsXoaGhMDZWnk+REPIFV4Tyc/36dXz77bea2hwhhBA1MMawfPlybNu2jVvWunVrrFy5kpIgQgqg1hWho0eP4vjx4xAKhRg8eDBcXFzw4MEDTJkyBQcOHICfn19xxUkIIcVKJpNBIpFoOwwAgEQigb6+PrKzsyGTyT7b/u3bt5g2bRrOnj0LExMTNGvWDLa2tiUQafmn7rkgRSMUCkv89m2hE6ENGzZgyJAhsLS0xIcPH7B+/XosWbIEY8aMQY8ePRAdHY3atWsXZ6yEEKJxjDEkJiYiOTlZ26FwGGOwtbVFfHz8ZztsZGZm4t27d+jTpw/69u2LChUqICsrS2emQypu6pwLUnR8Ph/Ozs4QCoUlts9CJ0LLli3D//73P0yaNAl79+7Fjz/+iFWrVuHOnTuoXLlyccZICCHFJi8JsrGxgbFx6egpKpfLkZ6eDpFIlO+3Y5lMhsTERG6EfwMDAzg6OsLQ0LCEoy3fCnMuiGbI5XK8fPkSr169QpUqVUrsb7HQidDTp0/x448/AgC6du0KfX19hIaGUhJECCmzZDIZlwRVrFhR2+Fw5HI5xGIxDA0NVX74yuVy3Lt3D9nZ2QCASpUqwcHBgT6oi8HnzgXRLGtra7x8+RJSqRQCgaBE9lnoRCgrK4sruOPxeDAwMOC60RNCSFmUVxNU1oqJ+Xw+LCws8O7dOzg7O8PMzEzbIRGiEXm3xGQyWelLhABg/fr1EIlEAACpVIpNmzbByspKoU15mHSVEKJbSsPtsM8Ri8VgjMHAwAAAYG9vD1tbW5otnpQr2vhbLPRfUJUqVbBu3Trusa2tLbZu3arQhsfjqZ0IrVy5EqGhoUhMTISHhweWL19e4ASAycnJmD59On7//Xe8f/8eVatWRVhYGDp27KjWfgkhpKx4//49nj9/DkNDQ9SsWRN8Pp/7IYQUTaH/ip49e4bY2NgCf2JiYtTa+a5duxAYGIhZs2bh+vXr8PDwgJ+fH968eaOyvVgsRtu2bfHs2TPs2bMHDx8+xLp16+Dg4KDWfgkhpCyQy+V49uwZYmJiIJPJwBgrVV24nz17Bh6Ph5s3bxZ6nYCAAHz//fdF2m9UVBR4PF6x9PR7+PAhbG1tkZaWpvFt6zKxWAwnJydcvXpV26Eo0erXiSVLlmDIkCEYMGAA6tSpg/DwcBgbGyMiIkJl+4iICLx//x779u1D06ZN4eTkBF9fX3h4eGgkntw3mUyNbIsQQooiOzsb9+/fR1JSEgDAzs4OtWrVgkAgQEBAAHg8Hng8HgQCAZydnTF58mSuePpjBw8ehK+vL0xNTWFsbIyGDRti06ZNKve5d+9etGzZEubm5hCJRHB3d8fcuXPx/v374jzUYpGdnY1Ro0ahYsWKEIlE6NatG16/fv3Z9aZOnYoxY8bA1NS0BKIseWfOnEGnTp1gb28PHo+Hffv2FWq9qKgoNGjQAAYGBqhWrZrK36GVK1fCyckJhoaG8PHxwZUrV7jnhEIhgoKC8NNPP2noSDRHa4mQWCzGtWvX0KZNm/+C4fPRpk0bXLx4UeU6+/fvR+PGjTFq1ChUqlQJ9erVQ0hIiEa+ITHGcO16d5w951PkbRFCyJfKG9foxYsXyMnJgVAoRM2aNZV6hbVv3x6vXr1CTEwMli5dijVr1mDWrFkK21q+fDk6d+6Mpk2b4vLly7h9+zZ69uyJ4cOHIygoSKHt9OnT0aNHDzRs2BCHDx9GdHQ0Fi9ejFu3bimVQZQFEyZMwIEDBxAZGYnTp0/j5cuX6Nq1a4HrxMXF4eDBgwgICCjSvsVicZHWL04ZGRnw8PDAypUrC71ObGwsvvnmG7Rq1Qo3b97E+PHjMXjwYBw9epRrU5g7PH369MG5c+dw9+5djR5TUWmtyi4pKQkymQyVKlVSWF6pUiU8ePBA5ToxMTH4+++/0adPH/z111948uQJRo4cCYlEovQGkCcnJwc5OTnc49TUVKU2EokEMnkqUlKuc8vMzBpAJtOHXF46Rpotj/J67JSW0Xx1nS6eD4lEAsYY5HI55HK5tsMBkJsI5d3yqVChAqpUqQI9PT2F+BhjEAqFsLGxAQA4ODjg66+/xvHjx7FgwQIAQHx8PCZOnIhx48Zh/vz53LoTJkyAQCDAuHHj0K1bN+6be0hICJYuXapQ51mlShV8/fXXSE5OVvn65C3Le/1kMhmGDRuGU6dOITExEVWqVMGIESMUtskYA2MMs2fPxsqVK5GTk4NevXph2bJlXI8huVyOhQsXYt26dUhMTESNGjUwffp0/PDDDyr3+6mUlBRs2LAB27ZtQ8uWLQHkDgpct25dXLhwAV999ZXK137Xrl3w8PCAnZ0dt92kpCSMGDECly5dwocPH+Dq6oopU6agV69e3HqtW7dG3bp1oa+vj+3bt8PNzQ0nT55EdHQ0Jk+ejHPnzsHExARt27bFkiVLuE5GR44cQUhICKKjo6Gnp4evvvoKYWFhcHV1VRmfJvj5+SnMAlGY3/3Vq1fD2dkZoaGhAICaNWvi7NmzWLJkCdq2bQsg9w7P4MGD4e/vDwBYtWoVDh06hA0bNnBXgczNzdG0aVP89ttvmDt3rsp9yeVyMMYgkUigp6en8FxxvTeVqe4GcrkcNjY2WLt2LfT09ODl5YWEhASEhobmmwgtWLAAc+bMKXC7R48eg0wPEP17JTQjfQ7S00R4mXBY04dAVDh+/Li2QyAf0aXzoa+vD1tbW6Snp3Pf4hljyJaUbFLEGIOh4L/iZysrK+Tk5MDU1BQZGRlK7SUSCaRSKffF7t69e7hw4QIcHR25Zdu3b4dEIsHQoUOVvgD27NkT06dPx5YtW1C7dm1s2rQJIpEIffr0Ufllkc/nq1yenp4OIPcqQ2pqKiQSCaytrREREQFLS0tcvnwZEyZMgLm5Obp06cLF/vfff0NPTw/79+9HXFwcRo8eDZFIhBkzZgAAFi1ahMjISCxatAiurq64cOEC+vfvDxMTEzRt2hSZmbklDGlpaSoLxs+ePQuJRAIfHx8ubnt7e1SuXBlRUVGoU6eOyvNw6tQpuLm5KRxrUlIS6tevj/Hjx8PU1BTHjh2Dv78/bG1t4eXlBSC3F/WWLVswYMAAHD6c+7kRHx+Pr7/+Gv369cPcuXORnZ2N2bNn44cffsD+/fu5bQ8bNgx169ZFRkYGQkJC8P333+Ps2bP5FsIvXrwYS5cuVflcnosXL8LR0bHANnmysrJUntuPnTt3Ds2bN1do16JFC0ydOhWpqancHZ6xY8cqtTl79ixGjBjBLXN3d0dUVFS++xSLxcjKysKZM2cglUoVnss775qmtUTIysoKenp6SvdsX79+ne8cOXZ2dhAIBApZYu3atZGYmAixWKxySO6pU6ciMDCQe5yamqr0C+Ln1w4yPR7OX5gKAGjXrhP09MrWuCJlkUQiwfHjx9G2bdsSGy+C5E8Xz0d2djbi4+MhEom4EZkzxVJ4/q/kk8Hjw+rBtWruexNjDGlpaTA1NVXZnVggEODo0aOoXLkypFIpcnJywOfzsXz5cm5Mobi4OJibm6NGjRoq9+fi4oJnz57BzMwMz58/h4uLi9qDSuYNp2JiYsLtN++KFAC4ubnh1q1bOHjwIHelQCAQQCgUYsuWLTA2NoaPjw/evXuHn376Cf/73/8gkUiwdOlSHDt2DI0bNwaQ++F57do1bNu2DR06dODGfTI1NVU5hlJqaiqEQqHSe72dnR2Sk5PzHXfp5cuX+OqrrxSeNzU15WqGeDwe3N3dcfr0afz1119o1aoVgNyEunr16ggLC+PW+/nnn+Hp6YlFixZxyzZt2oSqVatyV7n69u2rsP/NmzejUqVKePHiBerVq6cyxnHjxqFfv34qn8vj5ORU6GEVjIyMPjsOVVJSEhwdHRXaVa1aFWlpaRAIBEhPT4dMJoOTk5NCm8qVKyMmJkZhmbOzM/78889895mdnQ0jIyO0aNFCaZT0d+/eFeqY1PVFidDTp0+xceNGPH36FMuWLYONjQ0OHz6MKlWqoG7duoXahlAohJeXF06ePMn1IJDL5Th58iRGjx6tcp2mTZtix44dkMvlXLb86NEj2NnZ5TsviYGBATfuhkq2bhAYm4Mvz+IW5SZbuvFBUBoIBAKd+eAtC3TpfMhkMvB4PIWu6Nrqkv7mzRtUdch9L8u7VZEX26d4PB5atWqF1atXIyMjA0uXLoW+vj43+n9eG6Dg4/l0++oe+8evWd7/V65ciYiICMTFxSErKwtisRj169fnnufxePDw8OCSKCD3vT09PR0JCQlIT09HZmam0iTeYrEYnp6eSudKVcwFncv8XlMg9+qIkZGRwvMSiQShoaHYv38/EhISIBaLkZOTAxMTE4V2Xl5eCo9v376NqKgolR/4sbGxqFWrFh4/foyZM2fi8uXLSEpK4s77ixcv4O7urjJGKysrpfH7iqKwwzDk97tS0PlQ9TtobGyMzMzMfPfJ5/O5TgCfvg8V1/uS2onQ6dOn0aFDBzRt2hRnzpzBzz//DBsbG9y6dQsbNmzAnj17Cr2twMBA+Pv7w9vbG40aNUJYWBgyMjIwYMAAAED//v3h4ODAfcMYMWIEVqxYgXHjxmHMmDF4/PgxQkJCijaI44AjQBkYTI0QUjKMBHq4N9fv8w2LQC6X49WrV3j9OreQ1MBAiFrVXNSaaNLExATVqlUDkNuj1sPDAxs2bMCgQYMAADVq1EBKSgpevnwJe3t7hXXFYjGePn3KXdGoUaMGzp07B4lEUqQPm507dyIoKAiLFy9G48aNYWpqitDQUFy+fLnQ28i73Xbo0CGloVEK/FL7EVtbW4jFYiQnJ8PCwoJbXtAdByA3yfjw4YPCskWLFiE8PBxLly6Fh4cHTExMMH78eKWCaBMTE6Xj6NSpE/73v/8p7SdvVoZOnTqhatWqWLduHezt7SGXy1GvXr0Ci61DQkIQEhKS7/NA7q3SKlWqFNhGHba2tirv3piZmcHIyAh6enqFvsPz/v17WFtbayw2TVA7EZoyZQrmz5+PwMBAhe6FrVu3xooVK9TaVo8ePfD27VvMnDkTiYmJqF+/Po4cOcIVUMfFxSlkjY6Ojjh69CgmTJgAd3d3ODg4YNy4cUXrjkdJECHkIzweD8bC4qsayM7OxrOYGGRmZsJQnwcrKys4OjoqFYaqg8/nY9q0aQgMDETv3r1hZGSEbt264aeffsLixYuxePFihfbh4eHIyMjgCn579+6NX3/9FatWrcK4ceOUtv9pQpGf8+fPo0mTJhg5ciS37OnTp0rtbt26xV19AYBLly5BJBLB0dGRm0A2Li4Ovr6+6rwMHC8vLwgEApw8eRLdunUDkDs+UFxcHHe7TRVPT0/cu3dP6Zg6duyIvn37gs/nQy6X49GjR/nWGeVp0KAB9u7dm+9tqnfv3nFj4TVv3hxAbi3O5wwfPhzdu3cvsM2niW9RNW7cGH/99ZfCsuPHj3OvpTp3eKKjo+Hp6anR+IpK7b/2O3fuYMeOHUrLbWxsuPEu1DF69Oh8b4VFRUUpLWvcuDEuXbqk9n4IIUTb5HI5Hjx4AKlUCj09PVStWhWWlpYa2faPP/6ISZMmYeXKlQgKCkKVKlWwcOFCTJw4EYaGhujXrx8EAgH+/PNPTJs2DRMnToSPT+5wIT4+Ppg8eTImTpyIhIQEdOnSBfb29njy5AnCw8PRrFkzlQnSp6pXr44tW7bg6NGjcHZ2xtatW/HPP//A2dlZoZ1YLMagQYMQHByMZ8+eYdasWRg9ejT4fD5MTU0RFBSECRMmQC6Xo1mzZkhJScH58+dhZmbG1RoVxNzcHIMGDUJgYCAsLS1hZmaGMWPGoHHjxvn2GANye1QNHjwYMpmMS0yrV6+OyMhIXLhwARUrVsSSJUvw+vXrzyZCo0aNwrp169CrVy9MnjwZlpaWePLkCXbu3In169ejQoUKqFixItauXQs7OzvExcVhypQpnz02S0vLIv3OpKen48mTJ9zj2NhY3Lx5E5aWltxVpKlTpyIhIQFbtmwBkJt8rVixApMnT8bAgQPx999/Y/fu3Th06BC3nc/d4clz9uxZzJs374vjLxZMTQ4ODuz8+fOMMcZEIhF7+vQpY4yx33//nbm4uKi7uRKXkpLCADDrA2fZ+9n2jOWkM8YYk0oz2ImTLuzESRcmlWZoOUrdIBaL2b59+5hYLNZ2KITp5vnIyspi9+7dY1lZWSW2zzdv3rAHDx6wnJycfNvIZDL24cMHJpPJVD7v7+/POnfurLR8wYIFzNramqWnp3PL/vzzT9a8eXNmYmLCDA0NmZeXF4uIiFC53V27drEWLVowU1NTZmJiwtzd3dncuXPZhw8fVLaPjY1lANiNGzcYY4xlZ2ezgIAAZm5uziwsLNiIESPYlClTmIeHh1LsM2fOZBUrVmQikYgNGTKEZWdnc23kcjkLCwtjNWvWZAKBgFlbWzM/Pz92+vRpxhhjp06dYgDyjYux3HM7cuRIVqFCBWZsbMy6dOnCXr16lW97xhiTSCTM3t6eHTlyhFv29u1b1rFjRyYSiZiNjQ0LDg5m/fv3V3j9fX192bhx45S29+jRI9alSxdmYWHBjIyMWK1atdj48eOZXC5njDF2/PhxVrt2bWZgYMDc3d1ZVFQUA8D++OOPAuMsirzX7tMff39/ro2/vz/z9fVVWq9+/fpMKBQyFxcXtnHjRqVtL1++nFWpUoUJhULWqFEjdunSJYXnL1y4wCwsLFhmZma+8RX0N5mUlMQAsJSUFLWO+XN4jDGmTuIUFBSEy5cvIzIyEjVq1MD169fx+vVr9O/fH/3798+3G3tpkZqaCnNzc1gfOItH13vAYsojQGgCmSwTUafdAAAtfe9Qr7ESIJFI8Ndff6Fjx446U5xbmuni+cjOzkZsbCycnZ2VeqhoSmpqKng8HldKkPeWW9DkknK5HKmpqTAzM6P5xErYypUrsX//fm6wQDoXmtOjRw94eHhg2rRp+bYp6G/y3bt3sLKyQkpKymd7uqlD7VtjISEhGDVqFBwdHSGTyVCnTh3IZDL07t0bwcHBGguMEELKMrlcjoSEBLx+/RpCoRB16tSBvr5+mZjpXpcNGzYMycnJ3PAFRDPEYjHc3NwwYcIEbYeiRO1ESCgUYt26dZgxYwaio6ORnp4OT09PVK9evTjiI4SQMicrKwsxMTHIysodlsPc3JwSoDJCX18f06dP13YY5Y5QKCy1F0vUToTOnTuHZs2aoUqVKhrtnkcIIWUdYwxv3rzBixcvwBiDvr4+nJycCtXjihCiHWrf8GzdujWcnZ0xbdo0pW6GhBCiq2QyGR4/foz4+HgwxmBubo66detSEkRIKad2IvTy5UtMnDgRp0+fRr169VC/fn2EhobixYsXxREfIYSUCXw+H3p6euDxeKhSpQqqVaumM0XnhJRlaidCVlZWGD16NM6fP4+nT5/ixx9/xObNm+Hk5ITWrVsXR4wlQs3Oc4QQAplMxk0MyePxULVqVdSpUwc2NjZUE0RIGVGkvoDOzs6YMmUKfvnlF7i5ueH06dOaiqtEMcZw7XpPbYdBCClDMjMzcf/+fTx//pz7IqWvr8+NlkwIKRu+OBE6f/48Ro4cCTs7O/Tu3Rv16tVTGGWyLJHLs5CenlvvJBLVAZ9Pb2SEENUYY0hMTMT9+/eRnZ2N9PR0SCQSbYdFCPlCavcamzp1Knbu3ImXL1+ibdu2WLZsGTp37gxj4/IxAKFXg510SZsQopJYLEZsbCzS0tIAABYWFqhatSrVAhFShql9RejMmTOYNGkSEhIScPDgQfTq1avcJEFAwaO9EkJ01/v373H37l2kpaWBz+ejatWqcHV11ekk6NmzZ+DxeLh582ah1wkICOAm5vxSUVFR4PF4SE5OLtJ2VHn37h1sbGzw7NkzjW9b1/Xs2VNpAuDSQO1EKO+WmJWVVXHEQwghpY5MJsOLFy8gk8lgbGyMOnXqwNraWmtfnAICAsDj8cDj8SAQCODs7IzJkycjOztbqe3Bgwfh6+sLU1NTGBsbo2HDhti0aZPK7e7duxctW7aEubk5RCIR3N3dMXfuXLx//76Yj0jz1q5di5YtW8LMzEytpOnnn39G586d4eTkVKzxaVNkZCRq1aoFQ0NDuLm5Kc0sr8rKlStRu3ZtGBkZoWbNmtyErB8LCwtDzZo1YWRkBEdHR0yYMEHhdzI4OBg///wzUlJSNHo8RVWoRGj//v3cPfD9+/cX+EMIIeWNnp4enJycYGdnx32AaFv79u3x6tUrxMTEYOnSpVizZo3SXI/Lly9H586d0bRpU1y+fBm3b99Gz549MXz4cAQFBSm0nT59Onr06IGGDRvi8OHDiI6OxuLFi3Hr1i1s3bq1JA9NIzIzM9G+ffsC57VStc6GDRswaNCgIu1bLBYXaf3idOHCBfTq1QuDBg3CjRs38P333+P7779HdHR0vuusXr0aU6dOxezZs3H37l3MmTMHo0aNwoEDB7g2O3bswJQpUzBr1izcv38fGzZswK5duxRe/3r16sHV1RXbtm0r1mNUW6FmZuXx2OvXr7n/5/fD5/M1OiNscfh49vkPc3Jnn6eZ57VDF2c7L8108XzkN9O1XC5nCQkJ7O3bt1qJ60tmn+/atSvz9PTkHsfFxTGBQMACAwOV1v/1118ZAG528MuXLzMALCwsTOX+Cjv7vFQqZQMHDmROTk7M0NCQ1ahRQ2mbebHPnj2bWVlZMVNTUzZs2DCWk5OjcPwhISHcdtzd3VlkZCT3fGFmn/+StpGRkcza2lphmVgsZn379i3UMc2fP5/Z2dkxJycnxljuOfjxxx+Zubk5q1ChAvvuu+9YbGwst96VK1dYmzZtWMWKFZmZmRlr0aIFu3bt2mfjLIru3buzb775RmGZj48PGzZsWL7rNG7cmAUFBSksCwwMZE2bNuUejxo1irVu3brANowxNmfOHNasWbN896WN2ecLdUVILpfDxsaG+39+PzKZrHiyNUIIKSE52dl4dPcmEuOe4kXMQ4jTPwDijOL/KcJYZtHR0bhw4QKEQiG3bM+ePZBIJEpXfoDciUVFIhF+++03AMD27dshEokwcuRIldsv7OjYcrkclStXRmRkJO7du4eZM2di2rRp2L17t0K7kydP4v79+4iKisJvv/2G33//HXPmzOGeX7BgAbZs2YLw8HDcvXsXEyZMQN++fYt9iJazZ8/Cy8tL6Zjs7e2xa9euzx7Tw4cPcfz4cRw8eBASiQR+fn4wNTXF2bNncf78eYhEIrRv3567YpSWlgZ/f3+cO3cOly5dQvXq1dGxY0euGF+VvHNV0M/Zs2fzXf/ixYto06aNwjI/Pz9cvHgx33VycnKUroIaGRnhypUr3N2iJk2a4Nq1a7hy5QoAICYmBn/99Rc6duyosF6jRo1w5coV5OTk5Lu/kqZ2r7EtW7agR48eMDAwUFguFouxc+dO9O/fX2PBEUJISWGM4f3794h/+gD1//rozfvz5ROaMe0lIDQpdPODBw9CJBJBKpUiJycHfD4fK1as4J5/9OgRzM3NYWdnp7SuUCiEi4sLHj16BAB4/PgxXFxcilz4LRAIFBIaZ2dnXLx4Ebt370b37t0V9h8REQFjY2PUrVsXc+fOxaRJkzBv3jxIJBKEhITgxIkTaNy4MQDAxcUF586dw5o1a+Dr61ukGAvy/Plz2NvbKx3T1KlTYWZmBj6fn+8xmZiYYP369Vwyum3bNsjlcqxfv56rJdu4cSMsLCwQFRWFdu3aKQ1CvHbtWlhYWOD06dP49ttvVcb43XffwcfHp8DjcHBwyPe5xMREVKpUSWFZpUqVkJiYmO86fn5+WL9+Pb7//ns0aNAA165dw/r16yGRSJCUlMQNo5OUlIRmzZqBMQapVIrhw4cr3Zq0t7eHWCxGYmIiqlatWuBxlBS1E6EBAwagffv23BWiPGlpaRgwYAAlQoSQMkcqleLly5d4//49+HK5tsMplFatWmH16tXIyMjA0qVLoa+vj27dun3RtpgGR9ZfuXIlIiIiEBcXh6ysLIjFYtSvX1+hjYeHh0Jv48aNGyM9PR3x8fFIT09HZmYm2rZtq7COWCyGp6enxuJUJSsrS2X917p167Bz584Cj8nNzU3hitytW7fw5MkTmJqaKrTLzs7G06dPAQCvX79GcHAwoqKi8ObNG8hkMmRmZiIuLi7fGE1NTZW2WdxmzJiBxMREfPXVV2CMoVKlSvD398fChQvB5+feWIqKikJISAhWrVoFHx8fPHnyBOPGjcO8efMwY8YMblt5A45mZmaW6DEURO1EiDGmsqfEixcvYG5urpGgCCGkpMjlcsTExHC3K2wdXcCmJpR8jzCBesOQmJiYoFq1agCAiIgIeHh4KBT61qhRAykpKXj58qXSVQ6xWIynT5+iVatWXNtz585BIpEU6arQzp07ERQUhMWLF6Nx48YwNTVFaGgoLl++XOhtpKenAwAOHTqkdGXj0zsRmmZlZYUPHz4oLNu5cydmzpyJRYsWoUmTJvkek4mJ4tW89PR0eHl5Yfv27Ur7sba2BgD4+/vj3bt3WLZsGapWrQoDAwM0bty4wGLr7du3Y9iwYQUex+HDh9G8eXOVz9na2uL169cKy16/fg1bW9t8t2dkZISIiAisWbMGr1+/hp2dHdauXQtTU1PuWGbMmIF+/fph8ODBAHITw4yMDAwdOhTTp0/nEqa8Hoh565UGhU6EPD09ue6aX3/9NfT1/1tVJpMhNjYW7du3L5Ygi4sAuXMEafLbECGkbOHz+TAxMUFaWhqcnZ0hEom0HZLa+Hw+pk2bhsDAQPTu3RtGRkbo1q0bfvrpJyxevFhp7Jbw8HBkZGSgV69eAIDevXvj119/xapVqzBu3Dil7ScnJxeqTuj8+fNo0qSJQq1R3tWPj926dQtZWVnc1YFLly5BJBLB0dERlpaWMDAwQFxcXLHeBlPF09NTqUfThQsX0KhRI4wYMYL7MFd1TJ9q0KABdu3aBRsbG5iZmalsc/78eaxatYqro4mPj0dSUlKB2y3qrbHGjRvj5MmTGD9+PLfs+PHj3G3IgggEAlSuXBlAboL47bffcq9JZmYm9/88enp6ABQ/Y6Ojo1G5cuVSNQRPoROhvAGwbt68CT8/P4U3C6FQCCcnpy++LKtNjDFcu95L22EQQkrQo0ePwOfzuTd1GxsbODo6cm/cZdGPP/6ISZMmYeXKlQgKCkKVKlWwcOFCTJw4EYaGhujXrx8EAgH+/PNPTJs2DRMnTuQ+UH18fDB58mRMnDgRCQkJ6NKlC+zt7fHkyROEh4ejWbNmKhOkT1WvXh1btmzB0aNH4ezsjK1bt+Kff/6Bs7OzQjuxWIxBgwYhODgYz549w6xZszB69Gjw+XyYmpoiKCgIEyZMgFwuR7NmzZCSkoLz58/DzMwM/v7+hXo9EhMTkZiYiCdPngAA7ty5A1NTU1SpUgWWlpYq1/Hz88PUqVPx4cMHVKhQQemYXF1d8z2mT/Xp0wehoaHo3Lkz5s6di8qVK+P58+f4/fffMXnyZFSuXBnVq1fH1q1b4e3tjdTUVEyaNOmzc9UV9dbYuHHj4Ovri8WLF+Obb77Bzp07cfXqVaxdu5ZrM3XqVCQkJHBjBT169AhXrlyBj48PPnz4gCVLliA6OhqbN2/m1unUqROWLFkCT09P7tbYjBkz0KlTJ4W/q7Nnz6Jdu3ZfHH+xULeb2aZNm1R2aysrPu4+nz7Hhkkz33Bd5y9d/pbJ5XJth6gzdLG7dmmmC+dDLpeztWvXMmNjY+bt7c1SU1Pz7aqrTV/SfZ4xxhYsWMCsra1Zeno6t+zPP/9kzZs3ZyYmJszQ0JB5eXmxiIgIldvdtWsXa9GiBTM1NWUmJibM3d2dzZ07t9Dd57Ozs1lAQAAzNzdnFhYWbMSIEWzKlCnMw8NDKfaZM2eyihUrMpFIxIYMGcKys7O5NnK5nIWFhbGaNWsygUDArK2tmZ+fHzt9+jRjrHBd4mfNmsUAKP1s3Lgx33UYY6xRo0YsPDyce5yZmcl69+5dqGP61KtXr1j//v2ZlZUVMzAwYC4uLmzIkCFc9+/r168zb29vZmhoyKpXr84iIyNZ1apV2dKlSwuMsah2797NatSowYRCIatbty47dOiQwvP+/v7M19eXe3zv3j1Wv359ZmRkxMzMzFjnzp3ZgwcPFNaRSCRs9uzZzNXVlRkaGjJHR0c2cuRIhXOUlZXFzM3N2cWLF/ONTRvd53mM6dZ9odTUVJibm8P6wFnEXu8Gw0nRiLr4FQDAt8Vt6OsXvtcGKRqJRMJ1r9TlaQpKi/J+PpKSkjBkyBDs27cPANC6dWts27YNycnJcHZ2LhWDJOaRy+VITU3leiqRknPo0CFMmjQJ0dHR4PP5dC40aPXq1fjjjz9w7NixfNtkZ2cjNjZW5d/ku3fvYGVlhZSUlHxvN36JQt0as7S0xKNHj2BlZYUKFSoUWERYFodiz0PzjBFSPh07dgwBAQF49eoVBAIBFixYgAkTJkAsFhfLfFWk7Prmm2/w+PFjJCQkwNHRUdvhlCsCgQDLly/XdhhKCpUILV26lLsnuXTpUkoYCCFlQk5ODqZOnYqlS5cCAGrXro0dO3YodX0m5GMfFxITzcnrUVbaFCoR+rg4LSAgoLhiIYQQjeLz+Th37hwAYNSoUVi4cKHC+DWEEKL2OELXr1+HQCCAm5sbAODPP//Exo0bUadOHcyePVthQClCCClpjDHIZDLo6+tDIBBg+/btePjwYb4j9RJCdJvalV/Dhg3jhmWPiYlBjx49YGxsjMjISEyePFnjARJCSGElJiaiY8eOCA4O5pZVr16dkiBCSL7UToQePXrE3V+PjIyEr68vduzYgU2bNmHv3r2ajo8QQgrlwIEDcHNzw5EjR7B8+XKl0XMJIUQVtRMhxhjk/87Fc+LECW5ETEdHx8+OiEkIIZqWmZmJESNG4LvvvkNSUhLc3d1x5coVpYklCSFEFbUTIW9vb8yfPx9bt27F6dOn8c033wAAYmNj6Y2HEFKirl+/jgYNGiA8PBwAMHHiRFy5cgV169bVcmSEkLJC7WLpsLAw9OnTB/v27cP06dO5Sf/27NmDJk2aaDxAQghRJT09HW3btsX79+9hb2+PzZs3o02bNtoOixBSxqh9Rcjd3R137txBSkoKZs2axS0PDQ1VmHeEEEKKk0gkwuLFi9GlSxfcvn2bkiAtePbsGXg8Hm7evFnodQICAri5K79UVFQUeDxesQyG+fDhQ9ja2iItLU3j29ZlYrEYTk5OuHr1qrZDUfLF44Vfu3YN27Ztw7Zt23D9+nUYGhqWy2H5CSGlR2RkJKKiorjH/v7+2Lt3LypWrKi9oLQgICAAPB4PPB4PAoEAzs7OmDx5MrKzs5XaHjx4EL6+vjA1NYWxsTEaNmyITZs2qdzu3r170bJlS5ibm0MkEsHd3R1z584tczMGvH//HmPGjEHNmjVhZGSEKlWqYOzYsUhJSfnsulOnTsWYMWOKNLFpaXbmzBl06tQJ9vb24PF43JQznxMVFYUGDRrAwMAA1apVU/k7tHLlSjg5OcHQ0BA+Pj64cuUK95xQKERQUBB++uknDR2J5qidCL158watWrVCw4YNMXbsWIwdOxbe3t74+uuv8fbt2+KIkRCi49LS0jBgwAB0794dffv25T6Y85IBXdS+fXu8evUKMTExWLp0KdasWaNwlR4Ali9fjs6dO6Np06a4fPkybt++jZ49e2L48OEICgpSaDt9+nT06NEDDRs2xOHDhxEdHY3Fixfj1q1b2Lp1a0keWpG9fPkSL1++xKJFixAdHY1NmzbhyJEjGDRoUIHrxcXF4eDBg0UeOFgsFhdp/eKUkZEBDw8PrFy5stDrxMbG4ptvvkGrVq1w8+ZNjB8/HoMHD8bRo0e5Nrt27UJgYCBmzZqF69evw8PDA35+fnjz5g3Xpk+fPjh37hzu3r2r0WMqMnVnae3evTvz9vZm9+7d45bdvXuXeXt7s549e2psNtjiUtDs81JphrbD0ym6MNt5WVJaz8fFixeZi4sLA8B4PB6bPn26xmIsaKZrbfqS2ee7du3KPD09ucdxcXFMIBCwwMBApfV//fVXBoBdunSJMcbY5cuXGQAWFhamcn+FnX1eKpWygQMHMicnJ2ZoaMhq1KihtM282GfPns2srKyYqakpGzZsGMvJyVE4/pCQEG477u7uLDIyknu+MLPPf2r37t1MKBQyiUSSb5vQ0FDm7e2tsOzNmzesa9euzN7enhkZGbF69eqxHTt2KLTx9fVlo0aNYuPGjWMVK1ZkLVu2ZIwxdufOHda+fXtmYmLCbGxsWN++fdnbt2+59Q4fPsyaNm3KzM3NmaWlJfvmm2/YkydPCn1MRQWA/fHHH59tN3nyZFa3bl2FZT169GB+fn7c40aNGrFRo0Zxj2UyGbO3t2cLFixQWK9Vq1YsODg4331pY/Z5ta8IHTlyBKtWrULt2rW5ZXXq1MHKlStx+PBhjSRnJaFa2nMYy5UvIxNCSgepVIq5c+eiWbNmiImJQZUqVXD69GnMnz+/WG/DM8aQKcks8R/G2BfHHB0djQsXLiiM7L9nzx5IJBKlKz9A7sC4IpEIv/32GwBg+/btEIlEGDlypMrtW1hYFCoOuVyOypUrIzIyEvfu3cPMmTMxbdo07N69W6HdyZMncf/+fURFReG3337D77//jjlz5nDPL1iwAFu2bEF4eDju3r2LCRMmoG/fvjh9+nSh4lAlb8Zyff38+widPXsW3t7eCsuys7NRv359HDhwANHR0Rg6dCj69euncNsHADZv3gyhUIjz588jPDwcycnJaN26NTw9PXH16lUcOXIEr1+/Rvfu3bl1MjIyEBgYiKtXr+LkyZPg8/no0qULN0SNKiEhIRCJRAX+xMXFfeGrpNrFixeVavD8/Pxw8eJFALlXwK5du6bQhs/no02bNlybPI0aNcLZs2c1Gl9Rqd1rTC6Xq3wTEggEBZ680mbF9Z/BM9F2FIQQVdLT0+Hn54cLFy4AAHr37o2VK1cW+gO5KLKkWfDZ4VPs+/nU5d6XYSwo/DxoBw8ehEgkglQqRU5ODvh8PlasWME9/+jRI5ibm8POzk5pXaFQCBcXF26WgMePH8PFxaXICaZAIFBIaJydnXHx4kXs3r1bIQEQCoWIiIiAsbEx6tati7lz52LSpEmYN28eJBIJQkJCcOLECTRu3BgA4OLignPnzmHNmjXw9fVVO66kpCTMmzcPQ4cOLbDd8+fPlRIhBwcHjBkzBmZmZuDz+RgzZgyOHj2K3bt3o1GjRly76tWrY+HChdzj+fPnw9PTEyEhIdyyiIgIODo64tGjR6hRowa6deumsK+IiAhYW1vj3r17qFevnsoYhw8frvBaqmJvb1/g8+pKTExUGh6nUqVKSE1NRVZWFj58+ACZTKayzYMHD5Rie/78uUbjKyq1E6HWrVtj3Lhx+O2337gXOyEhARMmTMDXX3+t8QCLCw9f/u2LEFK8TExM4OjoCDMzM6xatQp9+vTRdkilTqtWrbB69WpkZGRg6dKl0NfXV/pgLayiXI361MqVKxEREYG4uDhkZWVBLBZzsxHk8fDwUJj8tnHjxkhPT0d8fDzS09ORmZmJtm3bKqwjFovh6empdjypqan45ptvuPkwC5KVlQVDQ0OFZTKZDKGhodi/fz8SEhIgFouRk5OjNHmvl5eXwuNbt27h1KlTEIlESvt5+vQpatSogcePH2PmzJm4fPkykpKSuIsJcXFx+SZClpaWsLS0/Nxhl1pGRkbIzMzUdhgK1E6EVqxYge+++w5OTk5wdHQEAMTHx6NevXrYtm2bxgMkhOiG5ORkyOVyWFpagsfjYfXq1UhOToazs3OJxmGkb4TLvS+X6D7z9qsOExMTbhy3iIgIeHh4YMOGDVxBcI0aNZCSkoKXL18qXSEQi8V4+vQpWrVqxbU9d+4cJBJJka4K7dy5E0FBQVi8eDEaN24MU1NThIaG4vLlwr+e6enpAIBDhw7BwcFB4TkDAwO14klLS0P79u1hamqKP/7447PHZmVlhQ8fPigsW7RoEcLDw7F06VJ4eHjAxMQE48ePVyqINjFRvMWQnp6OTp064X//+5/SfvKu0nXq1AlVq1bFunXrYG9vD7lcjnr16hVYbB0SEqJwlUmVe/fuoUqVKgW2UYetra3SlDWvX7+GmZkZjIyMoKenBz09PZVtbG1tFZa9f/8e1tbWGotNE9ROhBwdHXH9+nXuHi8A1K5dm8bwIIR8sdOnT6Nfv37w9vbG3r17wePxUKFCBVSoUKHEY+HxeGrdoioN+Hw+pk2bhsDAQPTu3RtGRkbo1q0bfvrpJyxevBiLFy9WaB8eHo6MjAz06tULQO6tx19//RWrVq3CuHHjlLafnJxcqNuS58+fR5MmTRRqjZ4+farU7tatW8jKyoKRUW7yd+nSJYhEIjg6OsLS0hIGBgaIi4v7ottgeVJTU+Hn5wcDAwPs379f6UqPKp6enrh3757SMXXs2BF9+/YFn8+HXC7Ho0ePUKdOnQK31aBBA+zduxdOTk4q65LevXuHhw8fYt26dWjevDkA4Ny5c5+NURu3xho3boy//vpLYdnx48e5W5dCoRBeXl44efIkN0aUXC7HyZMnMXr0aIX1oqOjv+jKXnFSKxHatWsX9u/fD7FYjK+//hpjxowprrgIITpALBZj9uzZ+OWXX8AYg1AoxNu3b2FjY6Pt0MqcH3/8EZMmTcLKlSsRFBSEKlWqYOHChZg4cSIMDQ3Rr18/CAQC/Pnnn5g2bRomTpwIH5/cWigfHx9MnjwZEydOREJCArp06QJ7e3s8efIE4eHhaNasmcoE6VPVq1fHli1bcPToUTg7O2Pr1q34559/lK7qicViDBo0CMHBwXj27BlmzZqF0aNHg8/nw9TUFEFBQZgwYQLkcjmaNWuGlJQUnD9/HmZmZvD39/9sHKmpqWjXrh0yMzOxbds2pKamIjU1FQBgbW0NPT09lev5+flh8ODBkMlkXJvq1asjMjISFy5cQMWKFbFkyRK8fv36s4nQqFGjsG7dOvTq1QuTJ0+GpaUlnjx5gp07d2L9+vWoUKECKlasiLVr18LOzg5xcXGYMmXKZ4+tqLfG0tPT8eTJE+5xbGwsbt68CUtLS+4q0tSpU5GQkIAtW7YAyE2+VqxYgcmTJ2PgwIH4+++/sXv3bhw6dIjbTmBgIPz9/eHt7Y1GjRohLCwMGRkZGDBggML+z549i3nz5n1x/MWisN3LVq1axXg8HqtRowbz8PBgfD6fBQUFabQLW0nI6z5/PagWY7PMqPu8FpXW7tq6qqTPx4MHD5iXlxcDwACwgQMHstTU1BLZd57y1H2eMcYWLFjArK2tWXp6Orfszz//ZM2bN2cmJibM0NCQeXl5sYiICJXb3bVrF2vRogUzNTVlJiYmzN3dnc2dO7fQ3eezs7NZQEAAMzc3ZxYWFmzEiBFsypQpzMPDQyn2mTNnsooVKzKRSMSGDBnCsrOzuTZyuZyFhYWxmjVrMoFAwKytrZmfnx87ffo0Y+zz3efznlf1Exsbq3IdxhiTSCTM3t6eHTlyhFv29u1b1rFjRyYSiZiNjQ0LDg5m/fv3V3j9fX192bhx45S29+jRI9alSxdmYWHBjIyMWK1atdj48eOZXC5njDF2/PhxVrt2bWZgYMDc3d1ZVFRUobu0f6n8Xht/f3+ujb+/P/P19VVar379+kwoFDIXFxe2ceNGpW0vX76cValShQmFQtaoUSNueIY8Fy5cYBYWFiwzMzPf+LTRfb7QiVCdOnXY7Nmzucdbt25lxsbGGg2mJFAiVHpQIlS6lNT5kMvlbO3atczY2JgBYBUqVGB79uwp1n3mp6wmQqT4rFixgrVr1457TOdCc7p3785+/vnnAtuU6nGEYmJiFC5J9u7dG1KpFK9evSrqRSlCiA7JyMjA/PnzkZmZidatW+P27dtf3NuJEE0bNmwYWrRoQXONaZhYLIabmxsmTJig7VCUFLpGKCcnR6Eqns/nQygUIisrq1gCI4SUTyKRCNu2bcPly5cRGBgIPv+LpzwkROP09fUxffp0bYdR7giFQgQHB2s7DJXUKpaeMWOGwtgJYrEYP//8M8zNzbllS5Ys0Vx0hJAyLzs7G9OmTUPt2rUxZMgQAEDz5s25njKEEKJNhU6EWrRogYcPHyosa9KkCWJiYrjHZW3yQwZAJqMrWoQUl+joaPTu3Rt37tyBiYkJvv/++1I3hgghRLcVOhGKiooqxjBKHgPDNQ9zpFxppe1QCCl3GGNYsWIFJk2ahJycHFhbW3PTBxBCSGmi9oCK5QXjASnm/40yam7uBT5fvZFdCSHKEhMTMWDAABw5cgQA0KFDB2zcuFFpHiJCCCkNdDYR+ljzZpchEFQsc7f2CClt0tLS4OnpicTERBgaGiI0NBSjRo2ivy1CSKlF3TUA6OkZ0xs1IRpgamqKwYMHw93dHVevXsXo0aPpb4sQUqpRIkQIKZIbN24odKSYOXMmrly5grp162oxKkIIKRxKhAghX0QulyM0NBQ+Pj7o3bs3N2O2QCBQe5ZwUjY9e/YMPB4PN2/eLPQ6AQEB3MScXyoqKgo8Hg/JyclF2o4qDx8+hK2tLQ2oqGFisRhOTk64evWqtkNR8kWJ0NmzZ9G3b180btwYCQkJAICtW7cWauZcQkjZ9+LFC7Rt2xaTJ0+GRCJB1apVaXDVEhQQEAAejwcejweBQABnZ2dMnjwZ2dnZSm0PHjwIX19fmJqawtjYGA0bNsSmTZtUbnfv3r1o2bIlzM3NIRKJ4O7ujrlz5+L9+/fFfESaN2zYMLi6usLIyAjW1tbo3LkzHjx48Nn1pk6dijFjxsDU1LQEotSOlStXwsnJCYaGhvDx8cGVK1cKbC+RSDB37ly4urrC0NAQHh4eXGeIPLNnz+Z+J/N+atWqxT0vFAoRFBSEn376qViOqSjUToT27t0LPz8/GBkZ4caNG8jJyQEApKSkICQkROMBEkJKl8jISLi7u+Pvv/+GsbEx1q1bh7179yoMrEqKX/v27fHq1SvExMRg6dKlWLNmDWbNmqXQZvny5ejcuTOaNm2Ky5cv4/bt2+jZsyeGDx+OoKAghbbTp09Hjx490LBhQxw+fBjR0dFYvHgxbt26ha1bt5bkoWmEl5cXNm7ciPv37+Po0aNgjKFdu3aQyWT5rhMXF4eDBw8iICCgSPvOuzpaGu3atQuBgYGYNWsWrl+/Dg8PD/j5+eHNmzf5rhMcHIw1a9Zg+fLluHfvHoYPH44uXbrgxo0bCu3q1q2LV69ecT+fXhzp06cPzp07h7t37xbLsX0xdScnq1+/Ptu8eTNjjDGRSMSePn3KGGPs+vXrrFKlSpqcB61Y5E26enVSTZpsVcto0tXS5XPnIyMjgw0YMICbrdrb25s9fPiwhKPUrLI66aqq2ee7du3KPD09ucdxcXFMIBCwwMBApfV//fVXBoCbHfzy5csMAAsLC1O5v8LOPi+VStnAgQOZk5MTMzQ0ZDVq1FDaZl7ss2fPZlZWVszU1JQNGzaM5eTkKBx/SEgItx13d3cWGRnJPf+52edVuXXrFgPAnjx5km+b0NBQ5u3trbDszZs3rGvXrsze3p4ZGRmxevXqsR07dii08fX1ZaNGjWLjxo1jFStWZC1btmSMMXbnzh3Wvn17ZmJiwmxsbFjfvn3Z27dvufUOHz7MmjZtyszNzZmlpSX75ptvCoxPExo1asRGjRrFPZbJZMze3p4tWLAg33Xs7OzYihUrFJZ17dqV9enTh3s8a9Ys5uHh8dn9t2rVigUHB+f7fKmedDXPw4cP0aJFC6Xl5ubmxXK/lhBSOgiFQty/fx88Hg/Tp0/HhQsXUKNGDW2HpXGMMcgzM0v8hzH2xTFHR0fjwoULEAqF3LI9e/ZAIpEoXfkBcm8biUQi/PbbbwCA7du3QyQSYeTIkSq3b2FhUag45HI5KleujMjISNy7dw8zZ87EtGnTsHv3boV2J0+exP379xEVFYXffvsNv//+O+bMmcM9v2DBAmzZsgXh4eG4e/cuJkyYgL59++L06dOFiuNTGRkZ2LhxI5ydneHo6Jhvu7Nnz8Lb21thWXZ2NurXr48DBw4gOjoaQ4cORb9+/ZRuJ23evBlCoRDnz59HeHg4kpOT0bp1a3h6euLq1as4cuQIXr9+je7duyvEFRgYiKtXr+LkyZPg8/no0qUL5HJ5vjGGhIRAJBIV+BMXF6dyXbFYjGvXrqFNmzbcMj6fjzZt2uDixYv57jMnJweGhoYKy4yMjJSu+Dx+/Bj29vZwcXFBnz59VMbRqFEjnD17Nt99aYPa4wjZ2triyZMncHJyUlh+7tw5uLi4aCouQkgpIJVKIZfLIRQKoa+vj23btiEhIUHll6HygmVl4WEDrxLfb83r18D7aC7Hzzl48CBEIhGkUilycnLA5/OxYsUK7vlHjx7B3NwcdnZ2SusKhUK4uLjg0aNHAHI/wFxcXCAQCJTaqkMgECgkNM7Ozrh48SJ2796tkAAIhUJERETA2NgYdevWxdy5czFp0iTMmzcPEokEISEhOHHiBBo3bgwAcHFxwblz57BmzRr4+voWOp5Vq1Zh8uTJyMjIQM2aNXH8+HGFZPFTz58/V0qEHBwcMGbMGJiZmYHP52PMmDE4evQodu/ejUaNGnHtqlevjoULF3KP58+fD09PT4WSkYiICDg6OuLRo0eoUaMGunXrprCvvNHX7927h3r16qmMcfjw4QqvpSr29vYqlyclJUEmkykNblqpUqUC66f8/PywZMkStGjRAq6urjh58iR+//13hduMPj4+2LRpE2rWrIlXr15hzpw5aN68OaKjoxXqrezt7fH8+fMC4y9paidCQ4YMwbhx4xAREQEej4eXL1/i4sWLCAoKwowZM4ojRkKIFsTGxqJv375o2rQp9wbv6uoKV1dXLUdGAKBVq1ZYvXo1MjIysHTpUujr6yt9sBZWUa5GfWrlypWIiIhAXFwcsrKyIBaLUb9+fYU2Hh4eChN4N27cGOnp6YiPj0d6ejoyMzPRtm1bhXXEYjE8PT3ViqVPnz5o27YtXr16hUWLFqF79+44f/680tWNPFlZWUrPyWQyhIaGYv/+/UhISIBYLEZOTo5C/EBuTdLHbt26hVOnTkEkEint5+nTp6hRowYeP36MmTNn4vLly0hKSuKuBMXFxeWbCFlaWsLS0rLQr4EmLFu2DEOGDEGtWrXA4/Hg6uqKAQMGICIigmvToUMH7v/u7u7w8fFB1apVsXv3bgwaNIh7zsjICJmZmSUa/+eonQhNmTIFcrkcX3/9NTIzM9GiRQsYGBggKCgIY8aM+aIgVq5cidDQUCQmJsLDwwPLly9XyLTzs3PnTvTq1QudO3fGvn37vmjfhBBFjDFs3boVo0aNQlpaGu7du4fJkyfDyspK26GVCJ6REWpev6aV/arDxMQE1apVA5B7JcHDwwMbNmzgPnRq1KiBlJQUvHz5UukKgVgsxtOnT9GqVSuu7blz5yCRSIp0VWjnzp0ICgrC4sWL0bhxY5iamiI0NBSXL18u9DbS09MBAIcOHYKDg4PCc+oOy2Bubg5zc3NUr14dX331FSpUqIA//vgDvXr1UtneysoKHz58UFi2aNEihIeHY+nSpfDw8ICJiQnGjx+vVBBtYmKidBydOnXC//73P6X95F2l69SpE6pWrYp169bB3t4ecrkc9erVK7DYOiQk5LMdk+7du4cqVaqoPD49PT28fv1aYfnr169ha2ub7/asra2xb98+ZGdn4927d7C3t8eUKVMKvAtkYWGBGjVq4MmTJwrL379/X+rmHFQ7EcqrD5g0aRKePHmC9PR01KlTR2XWWxh5Fezh4eHw8fFBWFgY/Pz88PDhQ9jY2OS73rNnzxAUFITmzZt/0X4JIcrS09PRr18/rqajadOm2LZtm84kQUDue5w6t6hKAz6fj2nTpiEwMBC9e/eGkZERunXrhp9++gmLFy/G4sWLFdqHh4cjIyODSwh69+6NX3/9FatWrcK4ceOUtp+cnFyoOqHz58+jSZMmCrVGT58+VWp369YtZGVlwejf5O/SpUsQiURwdHSEpaUlDAwMEBcXp9ZtsM9hjIExxvV0VsXT0xP37t1TWHb+/Hl07NgRffv2BZ/Ph1wux6NHj1CnTp0C99egQQPs3bsXTk5O0NdX/qh99+4dHj58iHXr1nGfY4UZgqYot8aEQiG8vLxw8uRJbiwnuVyOkydPYvTo0Z/dt6GhIRwcHCCRSLB3794C40hPT8fTp0/Rr18/heXR0dFqX9krdhotvf4CX1LBLpVKWZMmTdj69etV9p4oCPUaKz2o11jpcuLECWZlZcUAMD09PTZv3jwmkUi0HVaxKk+9xiQSCXNwcGChoaHcsqVLlzI+n8+mTZvG7t+/z548ecIWL17MDAwM2MSJExXWnzx5MtPT02OTJk1iFy5cYM+ePWMnTpxgP/zwQ769yT7tNbZs2TJmZmbGjhw5wh4+fMiCg4OZmZmZQm8if39/JhKJWK9evdjdu3fZoUOHWKVKldiUKVO4NtOnT2cVK1ZkmzZtYk+ePGHXrl1jv/76K9u0aRNj7PO9xp4+fcpCQkLY1atX2fPnz9n58+dZp06dmKWlJXv9+rXKdRhjbP/+/czGxoZJpVJu2fjx45mDgwM7e/Ysu3fvHhs8eDAzMzNTeP19fX3ZuHHjFLaVkJDArK2t2Q8//MCuXLnCnjx5wo4cOcICAgKYVCplMpmMVaxYkfXt25c9fvyYnTx5kjVs2JABYH/88Ue+MRbVzp07mYGBAdu0aRO7d+8eGzp0KLOwsGCJiYlcm379+imcj0uXLrG9e/eyp0+fsjNnzrDWrVszZ2dnhdd/4sSJLCoqisXGxrLz58+zNm3aMCsrK/bmzRuF/VetWpVt2bIl3/i00WtM7StCrVq1KnDuoL///rvQ28qrYJ86dSq3rDAV7HPnzoWNjQ0GDRr02erznJwchW8AqampSm0kEgnkckmh4yaaIZFIFP4l2pOSkoJu3bohJSUFLi4u2LJlCxo1agTGWLk+PxKJJLeXmFxeYE+dksb+rdnJi03V858+x+fzMWrUKCxcuBDDhg2DiYkJxo4dCycnJyxZsgTLli2DTCZD3bp1sXLlSgwYMEBh/QULFsDT0xOrV69GeHg45HI5XF1d0a1bN/Tr109lHHnL8l6/IUOG4Pr16+jRowd4PB569uyJESNG4MiRI1xbxhhat26NatWqoUWLFsjJyUHPnj0xc+ZMrs2cOXNgZWWFBQsWICYmBhYWFvD09MTUqVMVzlV+500oFOLMmTMICwvDhw8fUKlSJTRv3hznzp2DlZVVvufaz88P+vr6OHbsGPz8/AAA06ZNw6NHj9ChQwcYGxtjyJAh6Ny5M1JSUhS28+n5sLW1xdmzZzFlyhS0a9cOOTk5qFq1KrddANixYwfGjx+PevXqoWbNmggLC0Pr1q2L9ffxxx9/xJs3bzBz5kwkJiaifv36+Ouvv2Btba1Qo8Tj8bjHmZmZCA4ORkxMDEQiETp06IDNmzfDzMyMaxMfH49evXrh3bt3sLa2RtOmTXHhwgVUrFiRa3Px4kWkpKSga9eu+R6fXC7n3nf09PQUniuu9yIeY+pVyU2YMEHhsUQiwc2bNxEdHQ1/f38sW7as0Nt6+fIlHBwccOHCBa53AABMnjwZp0+fVnlf+dy5c+jZsydu3rwJKysrBAQEIDk5Od8aodmzZyv0YshzdVJNJLfPfVHT0xYAoCkBiG47deoUoqOjMXjwYO6WRXmnr68PW1tbODo6FtibiOiOdevW4ciRI9i7d6+2Qyl3Bg4ciLp162LixIn5thGLxYiPj0diYiKkUqnCc5mZmejduzdSUlJgZmamsbjUviK0dOlSlctnz57NFbkVl7S0NPTr1w/r1q0rdM3C1KlTERgYyD1OTU1VGkfCz88PenplqyagPJBIJDh+/Djatm1b5G67RD2MMURERMDJyQlff/01AKBt27Y6dz6ys7MRHx8PkUiUb08ibWCMIS0tDaampgVegSeaN27cOOTk5IDH48HU1JTOhYbk9foLDAws8ItWdnY2jIyM0KJFC6W/yXfv3hVLbGonQvnp27cvGjVqhEWLFhV6HXUr2J8+fYpnz56hU6dO3LK8y2v6+vp4+PChUtdeAwODz/Y0EAgE0NPTjTf+0kggEOjMB29pkJSUhCFDhmDfvn2ws7PD3bt3UaFCBe55XTofMpkMPB4PfD4ffH7pmYM6730tLzZScoRCIYKDg7nHdC40w9DQsFBD7PD5fG4OvU/fh4rrfUljZ/XixYtqf6P6uII9T14F+8e3yvLUqlULd+7cwc2bN7mf7777Dq1atcLNmzcLHDFUCSX2RAcdO3YM7u7u2LdvHwQCAQIDA2mOMEKITlP7ilDXrl0VHjPG8OrVK1y9evWLBlQMDAyEv78/vL290ahRI4SFhSEjIwMDBgwAAPTv3x8ODg5YsGABDA0NlQaZyuvSmd/gU/l54cHwZR3+CSl7srOzMXXqVISFhQEAateuje3bt5e+bqyEEFLC1E6EPv32yOfzUbNmTcydOxft2rVTO4AePXrg7du3ChXsR44c4YYAj4uLK5bLkeJ/R/wWieqAz9eNwlCim1JSUtC8eXPcuXMHADBy5EiEhoYqjYxLCCG6SK1ESCaTYcCAAXBzc1OoKSiq0aNH5zuYU1RUVIHrbtq0qUj79mqwkwrgSLlmZmaGevXqITExEREREfj222+1HRIhhJQaaiVCenp6aNeuHe7fv6/RREibKAki5VFiYiIEAgEqVqwIHo+HVatWIScnR2myRUII0XVq33OqV68eYmJiiiMWQogGHDhwAG5ubhg0aBA3MJ+FhQUlQYQQooLaidD8+fMRFBSEgwcP4tWrV0hNTVX4IYRoR2ZmJkaOHInvvvsOSUlJiI2NVZpAkhBCiKJCJ0Jz585FRkYGOnbsiFu3buG7775D5cqVUaFCBVSoUAEWFhbl5nYZIWXN9evX4eXlhdWrVwPI7Y155coVWFpaajkyUp49e/YMPB4PN2/eLPQ6AQEB3ISfXyoqKgo8Hg/JyclF2o4qDx8+hK2tLdLS0jS+bV331VdflcoRuwudCM2ZMwcZGRk4deoU9/P3339zP3mPCSElRy6XY+HChfjqq6/w4MED2NnZ4dixY1i8ePFnBxIlZVdAQAB4PB438JyzszMmT56M7OxspbYHDx6Er68vTE1NYWxsjIYNG+bbyWTv3r1o2bIlzM3NIRKJ4O7ujrlz5+L9+/fFfETFhzGGDh06gMfj5TsV08emTp2KMWPGwNTUtPiD05KVK1fCyckJhoaG8PHxwZUrVwpsL5FIMHfuXLi6usLQ0BAeHh44cuSIQpu0tDSMHz8eVatWhZGREZo0aYJ//vlHoU1wcDCmTJlSqub1A9RIhPJqDXx9fQv8IYSUnPT0dKxatQoSiQRdunTBnTt30LZtW22HRUpA+/bt8erVK8TExGDp0qVYs2YNZs2apdBm+fLl6Ny5M5o2bYrLly/j9u3b6NmzJ4YPH46goCCFttOnT0ePHj3QsGFDHD58GNHR0Vi8eDFu3bqFrVu3luShaVRYWFihO8XExcXh4MGDCAgIKNI+xWJxkdYvTrt27UJgYCBmzZqF69evw8PDA35+fnjz5k2+6wQHB2PNmjVYvnw57t27h+HDh6NLly64ceMG12bw4ME4fvw4tm7dijt37qBdu3Zo06YNEhISuDYdOnRAWloaDh8+XKzHqLbCTlPP4/HYmzdvNDfvvZakpKQwAGz3/hrsxEkXJpVmaDsknSUWi9m+ffuYWCzWdihljlwu5/5/7tw5tm7dOoVlX0IXz0dWVha7d+8ey8rK0nYoCmQyGfvw4QOTyWQqn/f392edO3dWWNa1a1fm6enJPY6Li2MCgYAFBgYqrf/rr78yAOzSpUuMMcYuX77MALCwsDCV+/vw4YPK5bGxsQwAu3HjBmOMMalUygYOHMicnJyYoaEhq1GjhtI282KfPXs2s7KyYqampmzYsGEsJydH4fhDQkK47bi7u7PIyEju+VOnTjEA+caV58aNG8zBwYG9evWKAWB//PFHge1DQ0OZt7e3wrI3b96wrl27Mnt7e2ZkZMTq1avHduzYodDG19eXjRo1io0bN45VrFiRtfx/e3ceV2P6/w/8dU7OaTmdSqtKqBQGpSJTljBGJmP/WLJlGfueJGlERs0ge2SZxtaIMBjrkIlUMnYJKUwYZWyl9Zw6798fvt2/OU6lTSd1PR+P83jMuc51Xff7OvdUl+u+lm7diIjo9u3b1Lt3bxKJRGRoaEijRo2if//9lyt38uRJ6tSpE2lra5Ouri716dOHUlJSyoyxqhwdHWn69Onc+6KiIjIxMaGgoKBSyxgbG9PGjRvl0gYNGkQjR44kIqLc3FxSUVGhY8eOyeWxt7enRYsWyaWNGzeORo0aVeq1yvqZfPnyJQGgzMzM0htYCRWaLG1tbQ1dXd0yXwzDfDrv3r3DuHHjsHXrVi6tU6dO+O6779hWENWEiCAtKKrxF/3fqHtlJCYmIi4uDkKhkEs7cOAApFKpwsgPAEyePBmamprYu3cvACA8PByampqYNm1aifUX7+D/MTKZDI0bN0ZkZCSSkpKwePFi+Pr6Yv/+/XL5oqKicPfuXURHR2Pv3r04dOgQli5dyn0eFBSEXbt2ITQ0FHfu3MHcuXMxatQonD9/vlxxAP//pPKQkJASz64sSUxMDNq3by+Xlp+fj3bt2uH3339HYmIiJk2ahNGjRys8Ttq5cyeEQiFiY2MRGhqKt2/fokePHrCzs8OVK1dw6tQpZGRkYOjQoVyZnJwceHp64sqVK4iKigKfz8fAgQPLfHQUGBgITU3NMl9paWkllpVIJLh69Sp69uzJpfH5fPTs2RPx8fGlXrOgoEDhCC11dXVcvHgRAFBYWIiioqIy8xRzdHRETExMqddShgrtI7R06VJ2LhHDKMmlS5cwcuRIPHz4EAcOHMCQIUPYPz4+gUKJDFtnl/8PbnWZtM4FAlWVcuc/duwYNDU1UVhYiIKCAvD5fGzcuJH7PDk5Gdra2jA2NlYoKxQKYWFhgeTkZADAgwcPYGFhUeVDLQUCgVyHxtzcHPHx8di/f79cB0AoFCIsLAwaGhpo3bo1AgICMH/+fCxbtgxSqRSBgYE4e/Ysd+akhYUFLl68iC1btpR7CsbcuXPh7OyM/v37lzv+v//+W6EjZGpqipkzZ0JLSwt8Ph8zZ87E6dOnsX//fjg6OnL5rKyssGLFCu79Dz/8ADs7OwQGBnJpYWFhMDMzQ3JyMqytrTF48GC5a4WFhcHAwABJSUmlHhs1ZcoUue+yJCYmJiWmv3z5EkVFRQpbaRgZGeHevXul1ufq6orVq1eja9eusLS0RFRUFA4dOoSioiIAgFgshpOTE5YtW4ZWrVrByMgIe/fuRXx8PJo3b64Q25MnTyCTyWrNIbYV6ggNHz4choaGnyoWhmFKUFhYiMDAQAQEBKCoqAhNmjTB7t27WSeonuvevTs2b96MnJwcrFmzBg0aNFD4w1peVRmN+lBISAjCwsKQlpaGvLw8SCQStGvXTi6Pra2t3BEvTk5OyM7OxpMnT5CdnY3c3FyFuW4SiaTcZ+MdPXoU586dk5vDUh55eXkKoxpFRUVYuXIljh49imfPnkEikaCgoEDhiBoHBwe59zdv3sSff/4JTU3FUy1TU1NhbW2NBw8eYPHixUhISMDLly+5kaC0tLRSO0LKePqybt06TJw4ES1btgSPx4OlpSXGjRuHsLAwLs/u3bsxfvx4mJqaQkVFBfb29nB3d8fVq1fl6lJXV4dMJkNBQQHU1WvH8Vbl7gixYXeGqXmPHj3CqFGjEBcXBwBwd3fHpk2byv2ogqm4BkI+Jq2r+YUfDYQV+9exSCTi/rUdFhYGW1tb/Pzzz5gwYQKA91MZMjMz8c8//yiMEEgkEqSmpqJ79+5c3osXL0IqlVZpVCgiIgJeXl4IDg6Gk5MTxGIxVq5ciYSEhHLXkZ2dDQA4fvw4TE1N5T4r70rIc+fOITU1VeHnZPDgwejSpUupRzfp6+sr7L21atUqhIaGYs2aNbC1tYVIJMKcOXMUJkSLRCKFdvTt2xc//fSTwnWKR+n69u2Lpk2bYtu2bTAxMYFMJkObNm3KnGwdGBgoN8pUkqSkJDRp0qTE9qmoqCAjI0MuPSMjo8zHhwYGBjh8+DDy8/Px6tUrmJiYwMfHBxYWFlweS0tLnD9/Hjk5OcjKyoKxsTGGDRsmlwcAXr9+DZFIVGs6QUAFOkLV+S8GhmE+7u3bt3BwcMCbN28gFouxefNmjBw5Utlh1Xk8Hq9Cj6hqAz6fD19fX3h6emLEiBFQV1fH4MGDsWDBAgQHByM4OFguf2hoKHJycuDu7g4AGDFiBNavX49NmzZh9uzZCvW/ffu2XJ3v2NhYODs7y801Sk1NVch38+ZN5OXlcX8ML126BE1NTZiZmUFXVxeqqqpIS0ur9EpkHx8ffPfdd3Jpbdu2xZo1a9C3b99Sy9nZ2SEpKUmhTW5ubhg1ahT4fD5kMhmSk5PxxRdflBmDvb09Dh48iGbNmqFBA8U/ta9evcL9+/exbds2dOnSBQAU5tOUpCqPxoRCIRwcHBAVFcXt5SSTyRAVFVXqeZ//paamBlNTU0ilUhw8eLDEOEQiEUQiEd68eYPTp0/LPS4E3s9nK+/IXk0pd0eotq37Z5i6TkdHB7NmzcLZs2exe/dumJubKzskphYbMmQI5s+fj5CQEHh5eaFJkyZYsWIF5s2bBzU1NYwePRoCgQBHjhyBr68v5s2bh44dOwIAOnbsCG9vb8ybNw/Pnj3DwIEDYWJigpSUFISGhqJz584ldpA+ZGVlhV27duH06dMwNzfH7t278ddffyn8vyuRSDBhwgT4+fnh8ePH8Pf3x4wZM8Dn8yEWi+Hl5YW5c+dCJpOhc+fOyMzMRGxsLLS0tODh4fHROBo1alTiCEeTJk3K/DlydXXFd999h6KiIqioqHBtioyMRFxcHPT09LB69WpkZGR8tCM0ffp0bNu2De7u7vD29oauri5SUlIQERGB7du3o2HDhtDT08PWrVthbGyMtLQ0+Pj4fLRtVX005unpCQ8PD7Rv3x6Ojo5Yu3YtcnJyMG7cOC7PmDFjYGpqiqCgIABAQkICnj17hnbt2uHZs2dYsmQJZDIZvL29uTKnT58GEaFFixZISUnB/Pnz0bJlS7l6gfcT0nv16lXp+D+Jal2D9hlgy+drj/q4XPtjzp8/T0lJSdx7qVRKUqm0Rq5dH+9HXVo+T0QUFBREBgYGlJ2dzaUdOXKEunTpQiKRiNTU1MjBwYHCwsJKrHffvn3UtWtXEovFJBKJyMbGhgICAsq9fD4/P5/Gjh1L2trapKOjQ1OnTiUfHx+ytbVViH3x4sWkp6dHmpqaNHHiRMrPz+fyyGQyWrt2LbVo0YIEAgEZGBiQq6srnT9/nojKv3z+v1CO5fNSqZRMTEzo1KlTXNq///5Lbm5upKmpSYaGhuTn50djxoyR+/5dXFxo9uzZCvUlJyfTwIEDSUdHh9TV1ally5Y0Z84cbquLM2fOUKtWrUhVVZVsbGwoOjq6XHFW1YYNG6hJkyYkFArJ0dGR20bhv+3x8PDg3kdHR3Nx6unp0ejRo+nZs2dyZfbt20cWFhYkFAqpUaNGNH36dHr79q1cnqdPn5JAIKAnT56UGpsyls/ziOrXM6+srCxoa2tj/1Fr6IoK0c3lNlRUND5ekKl2UqkUJ06cgJubW5VXq3zupFIplixZgqCgINja2uLSpUs1vjN0fbwf+fn5ePToEczNzRUmySqTTCZDVlYWt1KJqTkhISE4evQoTp8+DYDdi+q0YMECvHnzRm77jw+V9TP56tUr6OvrIzMzE1paWtUWV4VWjTEMU/2Sk5MxcuRIXLlyBcD7eQqFhYXsiAyGUYLJkyfj7du3ePfuXZ0+ZkMZDA0N4enpqewwFLCOEMMoCRFh+/btmDNnDnJzc9GwYUNs3boV//vf/5QdGsPUWw0aNMCiRYuUHUadNG/ePGWHUCLWEWIYJXj37h3GjBnDHQLZo0cP7Ny5E40bN1ZuYAzDMPVMvX7gqa1lBz6/9uxlwNQf6urqePHiBQQCAVauXIkzZ86wThDDMIwS1NsRoWZxPDgs2cE2imRqTEFBAYD3m8I1aNAAe/bswdu3b2vdnhoMwzD1Sb0dEeIXsd2ymZpz584dODo6wtfXl0szNzdnnSCGYRglq7cdIYapCUSEDRs2oH379rh16xb27NmjsIU/wzAMozz1tiMk0zEDBGz/IObTSU9PR58+fTBr1izk5+ejd+/euHnzJho2bKjs0BiGYZj/U287QvlOXgB7NMZ8IseOHYONjQ1OnjwJVVVVbNiwASdOnCjzYEOGYRim5tXbjhDDfCpv3rzBqFGj8O+//8LGxgZXr17FjBkz2Jw0ps55/PgxeDwebty4Ue4yY8eO5Q78rKzo6GjweDy8ffu2SvWU5P79+2jUqBHevXtX7XXXd19++SUOHjyo7DAUsI4Qw1Szhg0bYtOmTfD09MTly5fRunVrZYfE1DFjx44Fj8cDj8eDQCCAubk5vL29kZ+fr5D32LFjcHFxgVgshoaGBjp06IAdO3aUWO/BgwfRrVs3aGtrQ1NTEzY2NggICMDr168/cYuqX7du3bjvqPg1ZcqUj5ZbuHAhZs6cWad3lQ4JCUGzZs2gpqaGjh074vLly2Xml0qlCAgIgKWlJdTU1GBra4tTp07J5Xn37h3mzJmDpk2bQl1dHc7Ozvjrr7/k8vj5+cHHx6fWHeLOOkIMU0UymQwrV67kziYCgBEjRiA4OJgdk8F8Mr1798bz58/x8OFDrFmzBlu2bIG/v79cng0bNqB///7o1KkTEhIScOvWLQwfPhxTpkyBl5eXXN5FixZh2LBh6NChA06ePInExEQEBwfj5s2b2L17d002rdpMnDgRz58/514rVqwoM39aWhqOHTuGsWPHVum6EomkSuU/pX379sHT0xP+/v64du0abG1t4erqihcvXpRaxs/PD1u2bMGGDRuQlJSEKVOmYODAgbh+/TqX57vvvsOZM2ewe/du3L59G7169ULPnj3x7NkzLs8333yDd+/e4eTJk5+0jRVWrUe4fgaKT5+/cO7UxzMzn1RdOO38yZMn1KNHDwJAjRo1qtBp2LVNXbgfFVWXTp8fNGgQ2dnZce/T0tJIIBCQp6enQvn169cTAO7U8YSEBAJAa9euLfF65T19vrCwkMaPH0/NmjUjNTU1sra2VqizOPYlS5aQvr4+icVimjx5MhUUFMi1PzAwkKvHxsaGIiMjuc/Lc/p8aSfCl2XlypXUvn17ubQXL17QoEGDyMTEhNTV1alNmzb066+/Klxr+vTpNHv2bNLT06Nu3boREdHt27epd+/eJBKJyNDQkEaNGkX//vsvV+7kyZPUqVMn0tbWJl1dXerTpw+lpKRUKOaKcnR0pOnTp3Pvi4qKyMTEhIKCgkotY2xsTBs3bpRLGzRoEI0cOZKIiHJzc0lFRYWOHTsml8fe3p4WLVoklzZu3DgaNWpUqddSxunzbESIYSopMjISNjY2OHfuHEQiEZYvXw5tbW1lh8VUERFBmp9f4y8iqnTMiYmJiIuLg1Ao5NIOHDgAqVSqMPIDvD9YVFNTE3v37gUAhIeHQ1NTE9OmTSuxfh0dnXLFIZPJ0LhxY0RGRiIpKQmLFy+Gr68v9u/fL5cvKioKd+/eRXR0NPbu3YtDhw5h6dKl3OdBQUHYtWsXQkNDcefOHcydOxejRo3C+fPnyxVHsfDwcOjr66NNmzZYuHAhcnNzy8wfExOD9u3by6Xl5+ejXbt2+P3335GYmIhJkyZh9OjRCo+Tdu7cCaFQiNjYWISGhuLt27fo0aMH7OzscOXKFZw6dQoZGRkYOnQoVyYnJweenp64cuUKoqKiwOfzMXDgwDIfHQUGBkJTU7PMV1paWollJRIJrl69ip49e3JpfD4fPXv2RHx8fKnXLCgoUDgJXl1dHRcvXgQAFBYWoqioqMw8xRwdHRETE1PqtZSh3u4szTCV9e7dO8yaNYubZ9GhQweEh4fDyspKuYEx1aKwoADrPWr+4NtZOw9A8MEfkrIcO3YMmpqaKCwsREFBAfh8PjZu3Mh9npycDG1tbRgbGyuUFQqFsLCwQHJyMgDgwYMHsLCwgEAgqFIbBAKBXIfG3Nwc8fHx2L9/v1wHQCgUIiwsDBoaGmjdujUCAgIwf/58LFu2DFKpFIGBgTh79iycnJwAABYWFrh48SK2bNkCFxeXcsUyYsQING3aFCYmJrh16xYWLFiA+/fv49ChQ6WW+fvvvxU6Qqamppg5cya0tLTA5/Mxc+ZMnD59Gvv374ejoyOXz8rKSu7R2w8//AA7OzsEBgZyaWFhYTAzM0NycjKsra0xePBguWuFhYXBwMAASUlJaNOmTYkxTpkyRe67LImJiUmJ6S9fvkRRURGMjIzk0o2MjHDv3r1S63N1dcXq1avRtWtXWFpaIioqCocOHUJRUREAQCwWw8nJCcuWLUOrVq1gZGSEvXv3Ij4+Hs2bN1eI7cmTJ5DJZODza8dYDOsIMUwFvH79Gh06dMDDhw/B4/Hg6+sLf3//Kv8BYZiK6t69OzZv3oycnBysWbMGDRo0UPjDWl5VGY36UEhICMLCwpCWloa8vDxIJBK0a9dOLo+trS00NP7/Pm5OTk7Izs7GkydPkJ2djdzcXHz99ddyZSQSSYV2Yp80aRL3323btoWxsTG++uorpKamwtLSssQyeXl5CqMaRUVFWLlyJY4ePYpnz55BIpGgoKBALn4AcHBwkHt/8+ZN/Pnnn9DU1FS4TmpqKqytrfHgwQMsXrwYCQkJePnyJTcSlJaWVmpHSFdXF7q6uh//AqrRunXrMHHiRLRs2RI8Hg+WlpYYN24cwsLCuDy7d+/G+PHjYWpqChUVFdjb28Pd3R1Xr16Vq0tdXR0ymQwFBQVQV68dZ32yjhDDVICuri6cnZ1RWFiI3bt3o2vXrsoOialmDVRVMWvnAaVctyJEIhH3r+2wsDDY2tri559/xoQJEwAA1tbWyMzMxD///KMwQiCRSJCamoru3btzeS9evAipVFqlTn1ERAS8vLwQHBwMJycniMVirFy5EgkJCeWuIzs7GwBw/PhxmJqayn1WlcUHHTt2BACkpKSU2hHS19dX2Pl91apVCA0NxZo1a2BrawuRSIQ5c+YoTIgWiUQK7ejbty9++uknhesUj9L17dsXTZs2xbZt22BiYgKZTIY2bdqUOdk6MDBQbpSpJElJSWjSpEmJ7VNRUUFGRoZcekZGRpl7nBkYGODw4cPIz8/Hq1evYGJiAh8fH1hYWHB5LC0tcf78eeTk5CArKwvGxsYYNmyYXB7g/T8mRSJRrekEAawjxDAf9ejRI4hEIhgaGgJ4/y9emUxW7nkTzOeFx+NV6BFVbcDn8+Hr6wtPT0+MGDEC6urqGDx4MBYsWIDg4GAEBwfL5Q8NDUVOTg7c3d0BvH+MtH79emzatAmzZ89WqP/t27fl+v89NjYWzs7OcnONUlNTFfLdvHkTeXl53B/DS5cuQVNTE2ZmZtDV1YWqqirS0tLK/RisPIr3OirpUWExOzs7JCUlyaXFxsbCzc0No0aNAp/Ph0wmQ3JyMr744osyr2dvb4+DBw+iWbNmaNBA8U/tq1evcP/+fWzbtg1dunQBAIX5NCWpyqMxoVAIBwcHREVFcXs5yWQyREVFYcaMGR+9tpqaGkxNTSGVSnHw4MES4xCJRBCJRHjz5g1Onz6tsFIvMTGx1p2xyDpCDFMKIsKePXswffp0uLi44OjRo+DxeNDS0lJ2aAyjYMiQIZg/fz5CQkLg5eWFJk2aYMWKFZg3bx7U1NQwevRoCAQCHDlyBL6+vpg3bx43StKxY0d4e3tj3rx5ePbsGQYOHAgTExOkpKQgNDQUnTt3LrGD9CErKyvs2rULp0+fhrm5OXbv3o2//voL5ubmcvkkEgkmTJgAPz8/PH78GP7+/pgxYwb4fD7EYjG8vLwwd+5cyGQydO7cGZmZmYiNjYWWlhY8PDw+Gkdqaip+/fVXuLm5QU9PD7du3cLcuXPRtWtX2NjYlFrO1dUV3333HYqKiqCiosK1KTIyEnFxcdDT08Pq1auRkZHx0Y7Q9OnTsW3bNri7u8Pb2xu6urpISUlBREQEtm/fjoYNG0JPTw9bt26FsbEx0tLS4OPj89G2VfXRmKenJzw8PNC+fXs4Ojpi7dq1yMnJwbhx47g8Y8aMgampKYKCggAACQkJePbsGdq1a4dnz55hyZIlkMlk8Pb25sqcPn0aRIQWLVogJSUF8+fPR8uWLeXqBd5PSO/Vq1el4/8kqnUN2meALZ+vPWrzcu03b97Q8OHDCQABoM6dO9Pbt2+VHdYnVZvvx6dSl5bPExEFBQWRgYEBZWdnc2lHjhyhLl26kEgkIjU1NXJwcKCwsLAS6923bx917dqVxGIxiUQisrGxoYCAgHIvn8/Pz6exY8eStrY26ejo0NSpU8nHx4dsbW0VYl+8eDHp6emRpqYmTZw4kfLz87k8MpmM1q5dSy1atCCBQEAGBgbk6upK58+fJ6KPL59PS0ujrl27kq6uLqmqqlLz5s1p/vz5H112LZVKycTEhE6d+v9/H/79919yc3MjTU1NMjQ0JD8/PxozZozc91/aUv3k5GQaOHAg6ejokLq6OrVs2ZLmzJlDMpmMiIjOnDlDrVq1IlVVVbKxsaHo6GgCQL/99luZcVbVhg0bqEmTJiQUCsnR0ZHbRuG/7fHw8ODeR0dHc3Hq6enR6NGj6dmzZ3Jl9u3bRxYWFiQUCqlRo0Y0ffp0hd+ZT58+JYFAQE+ePCk1NmUsn+cRVeMsuc9AVlYWtLW1ceHcKXTp7qrscOo1qVSKEydOwM3NrVZNNr5w4QJGjx6NtLQ0qKioYOnSpfDx8eH+hVhX1db78Snl5+fj0aNHMDc3V5gkq0wymQxZWVncSiWm5oSEhODo0aPcBqnsXlSfBQsW4M2bN9i6dWupecr6mXz16hX09fWRmZlZrSPz7NEYw/wfqVSKJUuWICgoCEQES0tLhIeHc48PGIap+yZPnoy3b9/i3bt3dfqYDWUwNDSEp6enssNQwDpCDPN/8vLysHfvXhARJkyYgLVr15a49JVhmLqrQYMGWLRokbLDqJPmzZun7BBKxDpCTL1W/GS4eBL0r7/+imfPnlV6PxaGYRjm88IeeDL11suXLzFw4EBs3ryZS/vyyy9ZJ4hhGKYeYR0hpl76448/0LZtW24pcWZmprJDYhiGYZSAdYSYeiU/Px9z586Fq6sr0tPT0apVK0RHR7PDUhmGYeopNkeIqTcSExMxYsQI3L59GwAwbdo0rFy5UuHMIIZhGKb+YB0hpl549eoVd7CjgYEBwsLC8O233yo7LIZhGEbJWEeIqRf09PTg7e2N+Ph4/PLLLzAyMlJ2SAzDMEwtwOYIMXXW77//jsTERO69r68vjh8/zjpBDFNNHj9+DB6Pxx1oWh5jx47lDvysrOjoaPB4PLx9+7ZK9ZTk1atXMDQ0xOPHj6u97vruyy+/xMGDB5UdhgLWEWLqnNzcXEydOhX9+vXDyJEjkZ+fDwBQUVEBj8dTcnQMU3Vjx44Fj8cDj8eDQCCAubk5vL29uf/X/+vYsWNwcXGBWCyGhoYGOnTogB07dpRY78GDB9GtWzdoa2tDU1MTNjY2CAgIwOvXrz9xiz6N+Ph49OjRAyKRCFpaWujatSvy8vLKLLN8+XL0798fzZo1q5kga9idO3cwePBgNGvWDDweD2vXri1XuVu3bqFLly5QU1ODmZmZwqnyABAZGYmWLVtCTU0Nbdu2xYkTJ+Q+9/Pzg4+PD2QyWXU0pdqwjhBTp1y7dg329vYIDQ0FAPTs2ZN1fpg6qXfv3nj+/DkePnyINWvWYMuWLfD395fLs2HDBvTv3x+dOnVCQkICbt26heHDh2PKlCnw8vKSy7to0SIMGzYMHTp0wMmTJ5GYmIjg4GDcvHkTu3fvrsmmVYv4+Hj07t0bvXr1wuXLl/HXX39xJ9yXJjc3Fz///DMmTJhQpWtLJJIqlf+UcnNzYWFhgR9//BGNGjUqV5msrCz06tULTZs2xdWrV7Fy5UosWbJE7sywuLg4uLu7Y8KECbh+/ToGDBiAAQMGyI3Kf/PNN3j37h1OnjxZ7e2qkmo9wvUzwE6frz2q87TzoqIi+umnn0ggEBAAMjY2pjNnzlRDlPUHO32+9qjM6fODBg0iOzs77n1aWhoJBALy9PRUKL9+/XoCwJ06npCQQABo7dq1JV6vvKfPFxYW0vjx46lZs2akpqZG1tbWCnUWx75kyRLS19cnsVhMkydPpoKCArn2BwYGcvXY2NhQZGQk9/nHTp8nIurYsSP5+fmV+nlJIiMjycDAQC5NIpHQqFGjytWmH374gYyNjalZs2ZE9P4eDBkyhLS1talhw4bUr18/evToEVfu8uXL1LNnT9LT0yMtLS3q2rUrXb16tUIxV0XTpk1pzZo1H823adMmatiwodw9WrBgAbVo0YJ7P3ToUOrTp49cuY4dO9LkyZPl0saNG0ejRo0q9VrKOH2ejQgxn703b96gZ8+eWLBgAaRSKQYOHIjbt2+jZ8+eyg6N+QwREWSSohp/0f8d91IZiYmJiIuLg1Ao5NIOHDgAqVSqMPIDvD9YVFNTE3v37gUAhIeHQ1NTE9OmTSuxfh0dnXLFIZPJ0LhxY0RGRiIpKQmLFy+Gr68v9u/fL5cvKioKd+/eRXR0NPbu3YtDhw5h6dKl3OdBQUHYtWsXQkNDcefOHcydOxejRo3C+fPnyxXHixcvkJCQAENDQzg7O8PIyAguLi64ePFimeViYmLg4OCg0CYTExPs27fvo226f/8+zpw5g2PHjkEqlcLV1RVisRgxMTGIjY2FpqYmevfuzY0YvXv3Dh4eHrh48SIuXboEKysruLm54d27d6XGWHyvynrFxMSU63sqr/j4eHTt2lXu/y9XV1fcv38fb9684fJ8+DvX1dUV8fHxcmmOjo7VHl9VsVVjzGdPS0sLUqkUGhoaWL9+PcaPH88ehzGVRlIZ/lkcV+PXNQlwBk+oUu78x44dg6amJgoLC1FQUAA+n4+NGzdynycnJ0NbWxvGxsYKZYVCISwsLJCcnAwAePDgASwsLCAQCKrUBoFAINehMTc3R3x8PPbv34+hQ4fKXT8sLAwaGhpo3bo1AgICMH/+fCxbtgxSqRSBgYE4e/YsnJycAAAWFha4ePEitmzZAhcXl4/G8fDhQwDAkiVLsGrVKrRr1w67du3CV199hcTERFhZWZVY7u+//4aJiYlCmxYuXAgtLS3w+fxS2yQSibB9+3aus7Bnzx7IZDJs376d+330yy+/QEdHB9HR0ejVqxd69Oghd62tW7dCR0cH58+fL3V7j379+qFjx45ltt/U1LTMzysqPT0d5ubmcmnFi07S09PRsGFDpKenKyxEMTIyQnp6ulyaiYkJnjx5AplMVuZjyprEOkLMZ+ndu3cQCARQU1ODiooKwsPDUVBQUOovOIapa7p3747NmzcjJycHa9asQYMGDSp9Tl5VRqM+FBISgrCwMKSlpSEvLw8SiQTt2rWTy2Nrayu3kWnxHl9PnjxBdnY2cnNz8fXXX8uVkUgksLOzK1cMxZNxJ0+ejHHjxgEA7OzsEBUVhbCwMAQFBZVYLi8vD2pqagrp27ZtQ0RERJltatu2rdyIyc2bN5GSkgKxWCyXLz8/H6mpqQCAjIwM+Pn5ITo6Gi9evEBRURFyc3ORlpZWatvEYrFCnZ8TdXV1yGQyFBQUQF1dXdnhAGAdIeYzdOnSJYwcORJ9+/blVjw0adJEuUExdQZPwIdJgLNSrlsRIpEIzZs3BwCEhYXB1tZWbqKvtbU1MjMz8c8//yiMckgkEqSmpqJ79+5c3osXL0IqlVZpVCgiIgJeXl4IDg6Gk5MTxGIxVq5ciYSEhHLXkZ2dDQA4fvy4wsiGqqpqueooHgX74osv5NJbtWpVZidDX1+fe9RTLCIiAosXL8aqVavg7OxcaptEIpFCOxwcHBAeHq5wHQMDAwCAh4cHXr16hXXr1qFp06ZQVVWFk5NTmZOtw8PDMXny5FI/B4CTJ0+iS5cuZeapiEaNGiEjI0Murfh98YTr0vJ8OCH79evXEIlEtaYTBLBVY8xnpLCwEAEBAejcuTMePnyIw4cPIysrS9lhMXUMj8cDX6hS46+qPM7l8/nw9fWFn58ftzx88ODBEAgECA4OVsgfGhqKnJwcuLu7AwBGjBiB7OxsbNq0qcT6y7tfT2xsLJydnTFt2jTY2dmhefPm3OjHf928eVNuGfulS5egqakJMzMzfPHFF1BVVUVaWhqaN28u9zIzMytXHM2aNYOJiQnu378vl56cnIymTZuWWs7Ozg5JSUlyaXFxcXB0dMTUqVPLbNOH7O3t8eDBAxgaGiq0o/hsw9jYWMyaNQtubm5o3bo1VFVV8fLlyzLr7devH27cuFHmq3379h+NryKcnJxw4cIFSKVSLu3MmTNo0aIFGjZsyOWJioqSK3fmzBnu8WaxxMTEco/s1RTWEWI+C48ePYKLiwv8/f1RVFSEESNG4MaNG9DS0lJ2aAxTKwwZMgQqKioICQkB8H6UdMWKFVi7di0WLVqEe/fuITU1FatXr4a3tzfmzZvHzTXp2LEjl1a8A/vff/+NqKgoDBkyBDt37ixXDFZWVrhy5QpOnz6N5ORkfP/99/jrr78U8kkkEkyYMAFJSUk4ceIE/P39uaXtYrEYXl5emDt3Lnbu3InU1FRcu3YNGzZsKHccPB4P8+fPx/r163HgwAGkpKTg+++/x71798pcGu/q6oo7d+7IjQpZWVnh+vXrH23Th0aOHAl9fX30798fMTExePToEaKjozFr1iw8ffqUq3v37t24e/cuEhISMHLkyI+OlIjFYoWO1YevsuqQSCRch0kikeDZs2e4ceMGUlJSuDwbN27EV199xb0fMWIEhEIhJkyYgDt37mDfvn1Yt24dPD09uTyzZ8/GqVOnEBwcjHv37mHJkiW4cuUKZsyYIXf9mJgY9OrV66PfX42q1jVonwG2fL72KM9ybZlMRrt27SKxWEwASEtLi/bs2VODUdYfbPl87VGZ5fNEREFBQWRgYEDZ2dlc2pEjR6hLly4kEolITU2NHBwcKCwsrMR69+3bR127diWxWEwikYhsbGwoICCg3Mvn8/PzaezYsaStrU06Ojo0depU8vHxIVtbW4XYFy9eTHp6eqSpqUkTJ06k/Px8Lo9MJqO1a9dSixYtSCAQkIGBAbm6utL58+eJqHzL54u/j8aNG5OGhgY5OTlRTExMmfmJiBwdHSk0NJR7n5ubSyNGjChXmz70/PlzGjNmDOnr65OqqipZWFjQxIkTueXf165do/bt25OamhpZWVlRZGRkuZe0V1bxPfvw5eLiwuXx9/enpk2bypW7efMmde7cmVRVVcnU1JR+/PFHhbr3799P1tbWJBQKqXXr1nT8+HG5z58+fUoCgYCePHlSanzKWD7PI6rGWXKfgaysLGhra+PCuVPo0t1V2eHUa1KpFCdOnICbm1up8xJevnyJ5s2bIzMzE506dcKePXvq7I6vylae+1HX5Ofn49GjRzA3Ny9xkqyyyGQyZGVlcSuVmJpz/PhxzJ8/H4mJieDz+exeVKMFCxbgzZs3chsxfqisn8lXr15BX18fmZmZ1fo0gE2WZmo1fX19bNmyBQ8ePICPjw8aNGD/yzIM8+n06dMHDx48wLNnz8o9J4kpH0NDQ7nHabUF+6vC1CoSiQRLlixB586d4ebmBgAYNmyYkqNiGKY+mTNnjrJDqJPmzZun7BBKVCvG+UJCQtCsWTOoqamhY8eOuHz5cql5t23bhi5duqBhw4Zo2LAhevbsWWZ+5vNx//59ODs7IygoCOPGjStzd1WGYRiGqQ5K7wjt27cPnp6e8Pf3x7Vr12BrawtXV1e8ePGixPzR0dFwd3fHn3/+ifj4eJiZmaFXr1549uxZDUfOVBciwrZt22Bvb4+rV6+iYcOG2LRp02e9aRjDMAzzeVB6R2j16tWYOHEixo0bhy+++AKhoaHQ0NBAWFhYifnDw8Mxbdo0tGvXDi1btsT27dshk8kU9i9gPg9ZWVkYMmQIJk2ahNzcXPTo0QO3bt2q9A65DMMwDFMRSp0jJJFIcPXqVSxcuJBL4/P56Nmzp8JBbaXJzc2FVCqFrq5uiZ8XFBSgoKCAe1+8AV+hjOQ2h2Jq3j///IPZs2fjzZs3EAgE+OGHHzB79mzw+Xx2b5Sg+DuvT9+9VCp9f8iqTMYdy1AbFC/mLY6NUR52L2qWTCYD0fu/zyoq8mfvfarfTUrtCL18+RJFRUUlHtR27969ctWxYMECmJiYlHrSeFBQkNwhgMXuJt1BVnZBCSWYmtSuXTs8ePAAnp6esLCwwKlTp5QdUr135swZZYdQYxo0aIBGjRohOzu7zGMNlIXNk6s92L2oGRKJBHl5ebhw4QIKCwvlPsvNzf0k1/ysV439+OOPiIiIQHR0dKl7gCxcuFBuuV5WVhbMzMzQ6ovW6Nz1qxLLMJ/OnTt3oK+vDyMjI0ilUuTl5aFnz57clvOM8kilUpw5cwZff/11vdpH6MmTJ9DU1KxV+wgREd69ewexWFylozeYqmP3ombl5+dDXV0dXbt2LXEfoU9BqR0hfX19qKiolOugtg+tWrUKP/74I86ePQsbG5tS86mqqpZ4UF8DPq/e/LKvDYgIGzduxPz58/HVV1/h2LFjAN6fRKytrc3uRS0iEAjqzf0oKip6f7YYn1+rNssrfgRTHBujPOxe1Cw+nw8ej1fi76FP9XtJqXdVKBTCwcFBbqJz8cTnDw9q+68VK1Zg2bJlOHXqVLUfLsdUv/T0dLi5uWHWrFncfK2cnBwlR8UwTFU9fvwYPB4PN27cKHeZsWPHYsCAAVW6bnR0NHg8XrkPg62I+/fvo1GjRuxR2Cfw5Zdf4uDBg8oOQ4HSu7eenp7Ytm0bdu7cibt372Lq1KnIycnBuHHjAABjxoyRm0z9008/4fvvv0dYWBiaNWuG9PR0pKenIzs7W1lNYMrw+++/o23btjh16hTU1NSwceNGHDt2DJqamsoOjWE+W2PHjgWPx+P+5Wxubg5vb2/k5+cr5D127BhcXFwgFouhoaGBDh06YMeOHSXWe/DgQXTr1g3a2trQ1NSEjY0NAgIC8Pr160/coupV3EEr6RUZGVlm2YULF2LmzJl1evuOiuzdB7x/bB4QEABLS0uoqanB1tZWYT7nu3fvMGfOHDRt2hTq6upwdnZWOJzWz88PPj4+tW/SebWeXFZJGzZsoCZNmpBQKCRHR0e6dOkS95mLiwt5eHhw75s2bVrigXH+/v7luhY7dLVm5OTk0JQpU7j7Y2NjQ4mJiXJ56uMhn7VZfbwfn/Ohq71796bnz59TWloa/fbbb6SlpUXe3t5y+davX098Pp8WLlxId+7coQcPHtCqVatIVVWV5s2bJ5fX19eXVFRUyMvLi2JjY+nRo0f0xx9/0KBBg2jt2rUlxvHhoavlUdoBpRXxsUNXCwsL6fnz53KvpUuXkqamJr17967Uev/++28SCAT09OlTLu1j96IkBQUF5c5b0yIiIkgoFFJYWBjduXOHJk6cSDo6OpSRkVFqGW9vbzIxMaHjx49Tamoqbdq0idTU1OjatWtcnqFDh9IXX3xB58+fpwcPHpC/vz9paWnJfZeFhYVkZGREx44dK/Vayjh0tVZ0hGoS6wjVjKysLLK0tCQANG/ePLmTpYvVxz+8tVl9vB8l/dKVyWRUUFBQ4y+ZTMbFUJnT5wcNGkR2dnbc+7S0NBIIBOTp6alQfv369QSA+0dnQkICASi1w1Pe0+cLCwtp/Pjx1KxZM1JTUyNra2uFOotjX7JkCenr65NYLKbJkyfLdR6KioooMDCQq8fGxoYiIyO5z8t7+vx/tWvXjsaPH19mnpUrV1L79u3l0l68eEGDBg0iExMTUldXpzZt2tCvv/4ql8fFxYWmT59Os2fPJj09PerWrRsREd2+fZt69+5NIpGIDA0NadSoUfTvv/9y5U6ePEmdOnUibW1t0tXVpT59+lBKSkq521QZjo6ONH36dO59UVERmZiYUFBQUKlljI2NaePGjXJpgwYNopEjRxIRUW5uLqmoqCh0cOzt7WnRokVyaePGjaNRo0aVei1ldIQ+61VjTO1SPNzJ5/MhFouxd+9eZGZmlrq1AcPURlKpFIGBgTV+XV9fXwiFwkqVTUxMRFxcHJo2bcqlHThwAFKpFF5eXgr5J0+eDF9fX+zduxcdO3ZEeHg4NDU1MW3atBLr19HRKVccMpkMjRs3RmRkJPT09BAXF4dJkybB2NgYQ4cO5fJFRUVBTU0N0dHRePz4McaNGwc9PT0sX74cwPttT/bs2YPQ0FBYWVnhwoULGDVqFAwMDODi4lKBb+a9q1ev4saNGwgJCSkzX0xMjMK80/z8fLRr1w6LFi2Cjo4Ojh8/jtGjR8PS0hKOjo5cvp07d2Lq1KmIjY0FALx9+xY9evTAd999hzVr1iAvLw8LFizA0KFDce7cOQDv50p6enrCxsYG2dnZWLx4MQYOHIgbN26UOjE7MDDwo/9/JiUloUmTJgrpld27r6CgQGEFl7q6Oi5evAgAKCwsRFFRUZl5ijk6OuLHH38sM/6axjpCTLV4+vQpPDw80L9/f8yaNQsA0KFDByVHxTB1V/Fcu8LCQhQUFIDP52Pjxo3c58nJydDW1oaxsbFCWaFQCAsLCyQnJwMAHjx4AAsLiyqvyhEIBHL7tpmbmyM+Ph779++X6wgJhUKEhYVBQ0MDrVu3RkBAAObPn49ly5ZxHdGzZ89yi2YsLCxw8eJFbNmypVIdoZ9//hmtWrWCs7Nzmfn+/vtvhY6QqakpZs6cCS0tLfD5fMycOROnT5/G/v375TpCVlZWWLFiBff+hx9+gJ2dnVynJSwsDGZmZkhOToa1tbXCDvphYWEwMDBAUlIS2rRpU2KMU6ZMkfsuS2JiYlJiemX37nN1dcXq1avRtWtXWFpaIioqCocOHUJRUREAQCwWw8nJCcuWLUOrVq1gZGSEvXv3Ij4+Hs2bN1eI7cmTJ5DJZLVmFR7rCDFVFhkZicmTJ+PNmze4efMmxo8fzyZDM58tgUAAX19fpVy3Irp3747NmzcjJycHa9asQYMGDSp9NA393+7J1SEkJARhYWFIS0tDXl4eJBIJ2rVrJ5fH1tYWGhoa3HsnJydkZ2fjyZMnyM7ORm5uLr7++mu5MhKJBHZ2dhWOJy8vD7/++iu+//77cuX9cFSjqKgIK1euxNGjR/Hs2TNIJBIUFBTIxQ8ADg4Ocu9v3ryJP//8s8TfhampqbC2tsaDBw+wePFiJCQk4OXLl9yoelpaWqkdIV1d3VJPUvhU1q1bh4kTJ6Jly5bg8XiwtLTEuHHj5I7C2r17N8aPHw9TU1OoqKjA3t4e7u7uuHr1qlxd6urqkMlkKCgogLq6eo22ozSsI8RU2rt37zBr1ixuBUqHDh24IXaG+VzxeLxKP6KqSSKRiPvXdlhYGGxtbfHzzz9jwoQJAABra2tkZmbin3/+URghkEgkSE1NRffu3bm8Fy9ehFQqrdKoUEREBLy8vBAcHAwnJyeIxWKsXLkSCQkJ5a6jeAXw8ePHYWpqKvdZSXvCfcyBAweQm5uLMWPGfDSvvr4+3rx5I5e2atUqhIaGYs2aNbC1tYVIJMKcOXMUdiIXiUQK7ejbty9++uknhesUj9L17dsXTZs2xbZt22BiYgKZTIY2bdqUuct5VR6NVXbvPgMDAxw+fBj5+fl49eoVTExM4OPjAwsLCy6PpaUlzp8/j5ycHGRlZcHY2BjDhg2TywMAr1+/hkgkqjWdIKAWLJ9nPk+XLl1Cu3btsGPHDvB4PCxatAixsbGwsrJSdmgMU+/w+Xz4+vrCz88PeXl5AIDBgwdDIBAgODhYIX9oaChycnLg7u4OABgxYgSys7OxadOmEusv7349sbGxcHZ2xrRp02BnZ4fmzZsjNTVVId/Nmze5OIH3v080NTVhZmaGL774AqqqqkhLS0Pz5s3lXmZmZuWK479+/vln9OvXDwYGBh/Na2dnh6SkJIU2ubm5YdSoUbC1tZV7pFgWe3t73LlzB82aNVNoh0gkwqtXr3D//n34+fnhq6++QqtWrRQ6YSWZMmUKbty4UeartEdjld27r5iamhpMTU1RWFiIgwcPon///gp5RCIRjI2N8ebNG5w+fVohT2JiYqVG9j4lNiLEVFhGRga6d++O/Px8NGnSBHv27EGXLl2UHRbD1GtDhgzB/PnzERISAi8vLzRp0gQrVqzAvHnzoKamhtGjR0MgEODIkSPw9fXFvHnz0LFjRwBAx44d4e3tjXnz5uHZs2cYOHAgTExMkJKSgtDQUHTu3BmzZ8/+aAxWVlbYtWsXTp8+DXNzc+zevRt//fUXzM3N5fJJJBJMmDABfn5+ePz4Mfz9/TFjxgxuoYWXlxfmzp0LmUyGzp07IzMzE7GxsdDS0oKHh0e5v5OUlBRcuHABJ06cKFd+V1dXfPfddygqKuIO/LSyskJkZCTi4uKgp6eH1atXIyMjA1988UWZdU2fPh3btm2Du7s7vL29oauri5SUFERERGD79u1o2LAh9PT0sHXrVhgbGyMtLQ0+Pj4fjbGqj8Y8PT3h4eGB9u3bw9HREWvXrpXbuw94v3+fqakpgoKCAAAJCQl49uwZ2rVrh2fPnmHJkiWQyWTw9vbmypw+fRpEhBYtWiAlJQXz589Hy5Yt5eoF3k9I79WrV6Xj/ySqdQ3aZ4Atn68ey5cvJ3d39wotX/1QfVyuXZvVx/vxOe8jVNJePEFBQWRgYEDZ2dlc2pEjR6hLly4kEolITU2NHBwcKCwsrMR69+3bR127diWxWEwikYhsbGwoICCg3Mvn8/PzaezYsaStrU06Ojo0depU8vHxIVtbW4XYFy9eTHp6eqSpqUkTJ06U22JDJpPR2rVrqUWLFiQQCMjAwIBcXV3p/PnzRFT+5fMLFy4kMzOzcu8BJJVKycTEhE6d+v9/H/79919yc3MjTU1NMjQ0JD8/PxozZozc9+/i4kKzZ89WqC85OZkGDhxIOjo6pK6uTi1btqQ5c+ZwWyWcOXOGWrVqRaqqqmRjY0PR0dEEgH777bdyxVtZZe3dV9ye/+7fFx0dzcWpp6dHo0ePpmfPnsmV2bdvH1lYWJBQKKRGjRrR9OnT6e3bt3J5nj59SgKBgJ48eVJqbMpYPs8jqsZZcp+BrKwsaGtr48K5U+jS3VXZ4XwWiAh79uyBra0td64bEVX5AEKpVIoTJ07Azc2t3pxtVZvVx/uRn5+PR48ewdzcvFYduiqTyZCVlcWtVGJqTkhICI4ePYrTp08DYPeiOi1YsABv3rzB1q1bS81T1s/kq1evoK+vj8zMTGhpaVVbXOzRGFOmt2/fYurUqYiIiEDr1q3x119/QV1dnZ3CzDBMnTR58mS8ffuWO3GeqT6Ghobw9PRUdhgKWEeIKdX58+cxevRoPHnyBCoqKhg+fHi9GSlgGKZ+atCgARYtWqTsMOqkefPmKTuEErGOEKNAIpFgyZIl+PHHH0FEsLS0RHh4ODexkmEYhmHqCtYRYuT8+++/cHNzw5UrVwAA48ePx9q1a9kQMcMwDFMnsY4QI0dXVxcikQgNGzbE1q1b8b///U/ZITEMwzDMJ8M6QgxevnzJ7fSpoqKCPXv2AAAaN26s5MgYhmEY5tNiawHruT/++AM2NjZyG2M1btyYdYIYhmGYeoF1hOqp/Px8eHp6wtXVFc+fP0dUVBRycnKUHRbDMAzD1CjWEaqH7ty5g44dO2LNmjUAgGnTpuHKlSsKhwYyDMMwTF3HOkL1CBFhw4YNcHBwwK1bt2BgYIDff/8dISEh0NDQUHZ4DMN8Zh4/fgwej4cbN26Uu8zYsWMxYMCAKl03OjoaPB6v3IfBVsSrV69gaGiIx48fV3vd9d3w4cNLPARY2VhHqB558eIF/P39UVBQgG+++Qa3b9/Gt99+q+ywGIapoLFjx4LH44HH40EgEMDc3Bze3t7Iz89XyHvs2DG4uLhALBZDQ0MDHTp0wI4dO0qs9+DBg+jWrRu0tbWhqakJGxsbBAQE4PXr15+4RdUvPT0do0ePRqNGjSASiWBvb4+DBw9+tNzy5cvRv39/NGvW7NMHqSSRkZFo2bIl1NTU0LZt23IdShsSEoJWrVpBXV0dLVq0wK5duxTyvH37FtOnT4exsTFUVVVhbW0tV7efnx+WL1+OzMzMam1PVbGOUD1iZGSEbdu2YcOGDTh+/DiMjIyUHRLDMJXUu3dvPH/+HA8fPsSaNWuwZcsW+Pv7y+XZsGED+vfvj06dOiEhIQG3bt3C8OHDMWXKFHh5ecnlXbRoEYYNG4YOHTrg5MmTSExMRHBwMG7evIndu3fXZNOqxZgxY3D//n0cPXoUt2/fxqBBgzB06FBcv3691DK5ubn4+eefMWHChCpdWyKRVKn8pxQXFwd3d3dMmDAB169fx4ABAzBgwAAkJiaWWmbz5s1YuHAhlixZgjt37mDp0qWYPn06fv/9dy6PRCLB119/jcePH+PAgQO4f/8+tm3bBlNTUy5PmzZtYGlpya1MrjWq9QjXz0B9On0+JyeHpk6dSr///ruyQylRfTztvDarj/ejpJOuZTIZFRbm1Pir+ERyosqdPj9o0CCys7Pj3qelpZFAICBPT0+F8uvXrycA3KnjCQkJBIDWrl1b4vXKe/p8YWEhjR8/npo1a0ZqampkbW2tUGdx7EuWLCF9fX0Si8U0efJkKigokGt/YGAgV4+NjQ1FRkZyn5fn9HmRSES7du2SS9PV1aVt27aVWiYyMpIMDAzk0iQSCY0aNapcbfrhhx/I2NiYmjVrRkTv78GQIUNIW1ubGjZsSP369aNHjx5x5S5fvkw9e/YkPT090tLSoq5du9LVq1dLja86DB06lPr06SOX1rFjR5o8eXKpZZycnMjLy0suzdPTkzp16sS937x5M1lYWHz098fSpUupc+fOpX6ujNPn2T5CddS1a9cwcuRI3Lt3DwcPHsTDhw/ZZGiGKQeZLA/R59vW+HW7udyGikrl5uolJiYiLi4OTZs25dIOHDgAqVSqMPIDvD9Y1NfXF3v37kXHjh0RHh4OTU1NTJs2rcT6dXR0yhWHTCZD48aNERkZCT09PcTFxWHSpEkwNjbG0KFDuXxRUVFQU1NDdHQ0Hj9+jHHjxkFPTw/Lly8HAAQFBWHPnj0IDQ2FlZUVLly4gFGjRsHAwAAuLi7lisXZ2Rn79u1Dnz59oKOjg/379yM/Px/dunUrtUxMTAwcHBwU2mRiYoJ9+/bBwMCgzDZpaWnhzJkzAACpVApXV1c4OTkhJiYGDRo0wA8//IDevXvj1q1bEAqFePfuHTw8PLBhwwYQEYKDg+Hm5oYHDx6Uupt/eHg4Jk+eXGbbT548iS5dupT4WXx8vMLBp66urjh8+HCp9RUUFCicBK+uro7Lly9DKpVCIBDg6NGjcHJywvTp03HkyBEYGBhgxIgRWLBgAVRUVLhyjo6OWL58OQoKCqCqqlpmO2oK6wjVMTKZDMHBwVi0aBGkUimMjY2xc+dO1glimDrm2LFj0NTURGFhIQoKCsDn87Fx40bu8+TkZGhra8PY2FihrFAohIWFBZKTkwEADx48gIWFRZUPVRYIBFi6dCn33tzcHPHx8di/f79cp0EoFCIsLAwaGhpo3bo1AgICMH/+fCxbtgxSqRSBgYE4e/YsnJycAAAWFha4ePEitmzZUu6O0P79+zFs2DDo6emhQYMG0NDQwG+//YbmzZuXWubvv/+GiYmJQpsWLlwILS0t8Pn8UtskEomwfft2CIVCAMCePXsgk8mwfft28Hg8AMAvv/wCHR0dREdHo1evXujRo4fctbZu3QodHR2cP3++1Pmb/fr1++i5j/99HPWh9PR0hWkRRkZGSE9PL7WMq6srtm/fjgEDBsDe3h5Xr17F9u3bIZVK8fLlSxgbG+Phw4c4d+4cRo4ciRMnTiAlJQXTpk2DVCqVe2RrYmICiUSC9PR0uY67MrGOUB3y9OlTeHh44Ny5cwCAgQMHYtu2bdDT01NyZAzz+eDz1dHN5bZSrlsR3bt3x+bNm5GTk4M1a9agQYMGGDx4cKWuTUSVKleSkJAQhIWFIS0tDXl5eZBIJGjXrp1cHltbW7mVqk5OTsjOzsaTJ0+QnZ2N3NxcfP3113JlJBIJ7Ozsyh3H999/j7dv3+Ls2bPQ19fH4cOHMXToUMTExKBt25JH/PLy8hRGPgBg27ZtiIiIKLNNbdu25TpBAHDz5k2kpKQojOzk5+cjNTUVAJCRkQE/Pz9ER0fjxYsXKCoqQm5uLtLS0kptl1gsrvGzH7///nukp6fjyy+/BBHByMgIHh4eWLFiBfj891ONZTIZDA0NsXXrVqioqMDBwQHPnj3DypUr5TpC6urv/z/Pzc2t0TaUhXWE6ojnz5/DxsYGb968gYaGBtatW4cJEyZw/xJhGKZ8eDxepR9R1SSRSMSNboSFhcHW1lZuoq+1tTUyMzPxzz//KIxySCQSpKamonv37lzeixcvco85KisiIgJeXl4IDg6Gk5MTxGIxVq5ciYSEhHLXkZ2dDQA4fvy4wshGeR+lpKamYuPGjUhMTETr1q0BvO98xcTEICQkBKGhoSWW09fXx5s3bxTatHjxYqxatQrOzs6ltunDUffs7Gw4ODggPDxc4ToGBgYAAA8PD7x69Qrr1q1D06ZNoaqqCicnpzInW1f10VijRo2QkZEhl5aRkYFGjRqVWp+6ujrCwsKwZcsWZGRkwNjYGFu3boVYLObaYmxsDIFAIPcYrFWrVkhPT4dEIuE6icUrEIvL1QasI1RHGBsbY+DAgbh16xbCw8NhbW2t7JAYhqkhfD4fvr6+8PT0xIgRI6Curo7BgwdjwYIFCA4OVti7JTQ0FDk5OXB3dwcAjBgxAuvXr8emTZswe/Zshfrfvn1brnlCsbGxcHZ2lptrVDz68V83b95EXl4eNzpw6dIlaGpqwszMDLq6ulBVVUVaWlq5H4N9qHi0oXi0opiKigpkMlmp5ezs7BRWNMXFxcHR0RFTp07l6iupTR+yt7fHvn37YGhoCC0trRLzxMbGYtOmTXBzcwMAPHnyBC9fviyz3qo+GnNyckJUVBTmzJnDpZ05c4Z7DFkWgUDAHb8UERGBb7/9lvtOOnXqhF9//RUymYxLS05OhrGxsdxIWWJiIho3bgx9ff2PXq/GVOvU689AXVo1dunSJfrnn3+49zk5OZ/Vip/6uEqpNquP96OsFSrKVJlVY1KplExNTWnlypVc2po1a4jP55Ovry/dvXuXUlJSKDg4mFRVVWnevHly5b29vUlFRYXmz59PcXFx9PjxYzp79iz973//K3U12YerxtatW0daWlp06tQpun//Pvn5+ZGWlhbZ2trKxa6pqUnu7u50584dOn78OBkZGZGPjw+XZ9GiRaSnp0c7duyglJQUunr1Kq1fv5527NhBRB9fNSaRSKh58+bUpUsXSkhIoJSUFFq1ahXxeDw6fvx4iWWIiG7dukUNGjSg169fc2lr164lsVhMJ06cKLNNH96PnJwcsrKyom7dutGFCxfo4cOH9Oeff9LMmTPpyZMnRERkZ2dHX3/9NSUlJdGlS5eoS5cupK6uTmvWrCk1xqqKjY2lBg0a0KpVq+ju3bvk7+9PAoGAbt++zeXx8fGh0aNHc+/v379Pu3fvpuTkZEpISKBhw4aRrq6u3Aq4tLQ0EovFNGPGDLp//z4dO3aMDA0N6YcffpC7voeHB40fP77U+JSxaox1hD5DUqmUli5dSioqKuTq6lrqL8varj7+4a3N6uP9qEsdISKioKAgMjAwoOzsbC7tyJEj1KVLFxKJRKSmpkYODg4UFhZWYr379u2jrl27klgsJpFIRDY2NhQQEFDu5fP5+fk0duxY0tbWJh0dHZo6dSr5+PiU2GlYvHgx6enpkaamJk2cOJHy8/O5PDKZjNauXUstWrQggUBABgYG5OrqSufPnyei8i2fT05OpkGDBpGhoSFpaGiQjY2NwnL6kjg6OlJoaCj3Pjc3l0aMGFGuNn3o+fPnNGbMGNLX1ydVVVWysLCgiRMncn/Ir127Ru3btyc1NTWysrKiyMhIatq06SftCBER7d+/n6ytrUkoFFLr1q0VOoceHh7k4uLCvU9KSqJ27dqRuro6aWlpUf/+/enevXsK9cbFxVHHjh25ti5fvpwKCwu5z/Py8khbW5vi4+NLjU0ZHSEeUTXOkvsMZGVlQVtbGxfOnUKX7q7KDqfCHj16hFGjRiEuLg4A4O7ujp9//pkbYv6cSKVSnDhxAm5ublVercJUXX28H/n5+Xj06BHMzc1LnCSrLDKZDFlZWdxKJabmHD9+HPPnz0diYiL4fD67F9Vo8+bN+O233/DHH3+Umqesn8lXr15BX18fmZmZpT5urAw2R+gzQUQIDw/HtGnT8O7dO2hpaWHTpk0YOXKkskNjGIapM/r06YMHDx7g2bNnMDMzU3Y4dYpAIMCGDRuUHYYC1hH6DGRlZWHKlCnYu3cvgPeT0nbv3g1zc3MlR8YwDFP3/HciMVN9vvvuO2WHUCI2zvcZUFFRwZUrV6CiooKAgABER0ezThDDMAzDVAM2IlRLSaVSqKiogM/nQyQSISIiAlKp9KPLJhmGYRiGKT82IlQLJScnw9nZGevXr+fS7O3tWSeIYRiGYaoZ6wjVIkSEbdu2wc7ODleuXMGKFStq1TbkDMMwDFPXsI5QLfHy5UsMGjQIkyZNQm5uLnr06IHLly/LncfDMAzDMEz1Yh2hWuCPP/6AjY0NDh8+DIFAgJUrV+LMmTPcVuYMwzAMw3wabLK0kv3zzz/o27cvJBIJWrVqhfDw8AqdsMwwDMMwTOWxESElMzExQUBAAKZNm4YrV66wThDDMJ+Nx48fg8fj4caNG+UuM3bsWAwYMKBK142OjgaPx8Pbt2+rVE9JXr16BUNDQzx+/Lja667vhg8frnAAcG3AOkI1jIiwceNGuV8c3t7eCAkJYfOBGIYpl7Fjx4LH44HH40EgEMDc3Bze3t7Iz89XyHvs2DG4uLhALBZDQ0MDHTp0wI4dO0qs9+DBg+jWrRu0tbWhqakJGxsbBAQE4PXr15+4RdUvNTUVAwcOhIGBAbS0tDB06FBkZGR8tNzy5cvRv39/NGvW7NMHqSSRkZFo2bIl1NTU0LZtW5w4ceKjZUJCQtCqVSuoq6ujRYsW2LVrl9znUqkUAQEBsLS0hJqaGmxtbXHq1Cm5PH5+fli+fDkyMzOrtT1VxTpCNSg9PR19+vTBzJkzMWLECO6XFo/HU3JkDMN8bnr37o3nz5/j4cOHWLNmDbZs2QJ/f3+5PBs2bED//v3RqVMnJCQk4NatWxg+fDimTJkCLy8vubyLFi3CsGHD0KFDB5w8eRKJiYkIDg7GzZs3sXv37ppsWpXl5OSgV69e4PF4OHfuHGJjYyGRSNC3b1/IZLJSy+Xm5uLnn3/GhAkTqnR9iURSpfKfUlxcHNzd3TFhwgRcv34dAwYMwIABA5CYmFhqmc2bN2PhwoVYsmQJ7ty5g6VLl2L69On4/fffuTx+fn7YsmULNmzYgKSkJEyZMgUDBw7E9evXuTxt2rSBpaUl9uzZ80nbWGHVeoTrZ0BZp8///vvvZGBgQABIVVWVNmzYQDKZrEZjqG3q42nntVl9vB8lnXQtk8kou7Cwxl///X1QmdPnBw0aRHZ2dtz7tLQ0EggE5OnpqVB+/fr1BIAuXbpEREQJCQkEgNauXVvi9cp7+nxhYSGNHz+emjVrRmpqamRtba1QZ3HsS5YsIX19fRKLxTR58mQqKCiQa39gYCBXj42NDUVGRnKff+z0+dOnTxOfz5c7pfzt27fE4/HozJkzJZYhIoqMjCQDAwO5NIlEQqNGjSpXm3744QcyNjamZs2aEdH7ezBkyBDS1tamhg0bUr9+/ejRo0dcucuXL1PPnj1JT0+PtLS0qGvXrnT16tVS46sOQ4cOpT59+sildezYkSZPnlxqGScnJ/Ly8pJL8/T0pE6dOnHvjY2NaePGjXJ5Bg0aRCNHjpRLW7p0KXXu3LnUaynj9Hk2WfoTy83NhZeXFzZv3gwAsLGxwa+//orWrVsrOTKGYUqSK5PB8sLtGr9uate2EKmoVKpsYmIi4uLi0LRpUy7twIEDkEqlCiM/ADB58mT4+vpi79696NixI8LDw6GpqYlp06aVWL+Ojk654pDJZGjcuDEiIyOhp6eHuLg4TJo0CcbGxhg6dCiXLyoqCmpqaoiOjsbjx48xbtw46OnpYfny5QCAoKAg7NmzB6GhobCyssKFCxcwatQoGBgYwMXF5aNxFBQUgMfjQVVVlUtTU1MDn8/HxYsX0bNnzxLLxcTEwMHBQaFNJiYm2LdvHwwMDMpsk5aWFs6cOQPg/aMiV1dXODk5ISYmBg0aNMAPP/yA3r1749atWxAKhXj37h08PDywYcMGEBGCg4Ph5uaGBw8eQCwWlxhjeHg4Jk+eXGb7T548iS5dupT4WXx8PDw9PeXSXF1dcfjw4VLrKygoUDgJXl1dHZcvX4ZUKoVAICg1z8WLF+XSHB0dsXz5chQUFMjdH2ViHaFP6Pnz5+jRowfu3bsHAPD09ERgYGCtufkMw3y+jh07Bk1NTRQWFqKgoAB8Ph8bN27kPk9OToa2tjaMjY0VygqFQlhYWCA5ORkA8ODBA1hYWEAgEFQpJoFAgKVLl3Lvzc3NER8fj/3798t1GoRCIcLCwqChoYHWrVsjICAA8+fPx7JlyyCVShEYGIizZ8/CyckJAGBhYYGLFy9iy5Yt5eoIffnllxCJRFiwYAECAwNBRPDx8UFRURGeP39earm///4bJiYmCm1auHAhtLS0wOfzS22TSCTC9u3bIRQKAQB79uyBTCbD9u3buekPv/zyC3R0dBAdHY1evXqhR48ectfaunUrdHR0cP78eXz77bclxtivX7+PnjJgampa6mfp6ekwMjKSSzMyMkJ6enqpZVxdXbF9+3YMGDAA9vb2uHr1KrZv3w6pVIqXL1/C2NgYrq6uWL16Nbp27QpLS0tERUXh0KFDKCoqkqvLxMQEEokE6enpch13ZWIdoU/IyMgIxsbGyMzMxM6dO/H1118rOySGYT5Cg89Hate2SrluRXTv3h2bN29GTk4O1qxZgwYNGmDw4MGVujYRVapcSUJCQhAWFoa0tDTk5eVBIpGgXbt2cnlsbW3lFoc4OTkhOzsbT548QXZ2NnJzcxV+X0okknKvqjUwMEBkZCSmTp2K9evXg8/nw93dHfb29uCX8T3n5eUpjGoAwLZt2xAREVFmm9q2bct1ggDg5s2bSElJURjZyc/PR2pqKgAgIyMDfn5+iI6OxosXL1BUVITc3FykpaWVGqNYLC51tOhT+f7775Geno4vv/wSRAQjIyN4eHhgxYoV3Pe5bt06TJw4ES1btgSPx4OlpSXGjRuHsLAwubrU1dUBoFadmsA6QtXs6dOn0NXVhYaGBvh8PsLDwyEQCKCvr6/s0BiGKQcej1fpR1Q1SSQSoXnz5gCAsLAw2Nrayk30tba2RmZmJv755x+FUQ6JRILU1FR0796dy3vx4kXuMUdlRUREwMvLC8HBwXBycoJYLMbKlSuRkJBQ7jqys7MBAMePH1cY2ajIaHqvXr2QmpqKly9fokGDBtDR0UGjRo1gYWFRahl9fX28efNGoU2LFy/GqlWr4OzsXGqbRCKRQjscHBwQHh6ucB0DAwMAgIeHB169eoV169ahadOmUFVVhZOTU5mTrav6aKxRo0YKq+cyMjLQqFGjUutTV1dHWFgYtmzZgoyMDBgbG2Pr1q0Qi8VcWwwMDHD48GHk5+fj1atXMDExgY+Pj8L3XbwCsbhcbcBWjVWjyMhI2NjYyD2TNzY2Zp0ghmE+KT6fD19fX/j5+SEvLw8AMHjwYAgEghL3bQkNDUVOTg7c3d0BACNGjEB2djY2bdpUYv3l3a8nNjYWzs7OmDZtGuzs7NC8eXNu9OO/bt68ycUJAJcuXYKmpibMzMzwxRdfQFVVFWlpaWjevLncy8zMrFxx/Je+vj50dHRw7tw5vHjxAv369Ss1r52dHZKSkuTS4uLi4OjoiKlTp5bZpg/Z29vjwYMHMDQ0VGiHtrY2gPff16xZs+Dm5obWrVtDVVUVL1++LLPefv364caNG2W+2rdvX2p5JycnREVFyaWdOXOGewxZFoFAgMaNG0NFRQURERH49ttvFUbY1NTUYGpqisLCQhw8eBD9+/eX+zwxMRGNGzeuVX8XWUeoGrx79w7jx4/H0KFD8ebNG1y9elXuh5xhGOZTGzJkCFRUVBASEgIAaNKkCVasWIG1a9di0aJFuHfvHlJTU7F69Wp4e3tj3rx53FyTjh07cmne3t6Ij4/H33//jaioKAwZMgQ7d+4sVwxWVla4cuUKTp8+jeTkZHz//ff466+/FPJJJBJMmDABSUlJOHHiBPz9/TFjxgzw+XyIxWJ4eXlh7ty52LlzJ1JTU3Ht2jVs2LCh3HEA7+fjXLp0CampqdizZw+GDBmCuXPnokWLFqWWcXV1xZ07d+RGhaysrHD9+vWPtulDI0eOhL6+Pvr374+YmBg8evQI0dHRmDVrFp4+fcrVvXv3bty9excJCQkYOXIk9+ioNGKxWKFj9eGrrDpmz56NU6dOITg4GPfu3cOSJUtw5coVzJgxg8uzcOFCjBkzhnufnJyMPXv24MGDB7h8+TKGDx+OxMREBAYGcnkSEhJw6NAhPHz4EDExMejduzdkMhm8vb3lrh8TE4NevXp99PurUdW6Bu0zUN3L5+Pj48nS0pIAEI/Ho0WLFtWr5cdVUR+Xa9dm9fF+lLVUV5kqs3yeiCgoKIgMDAwoOzubSzty5Ah16dKFRCIRqampkYODA4WFhZVY7759+6hr164kFotJJBKRjY0NBQQElHv5fH5+Po0dO5a0tbVJR0eHpk6dSj4+PmRra6sQ++LFi0lPT480NTVp4sSJlJ+fz+WRyWS0du1aatGiBQkEAjIwMCBXV1c6f/48EX18+TwR0YIFC8jIyIgEAgFZWVlRcHBwubYscXR0pNDQUO59bm4ujRgxolxt+tDz589pzJgxpK+vT6qqqmRhYUETJ07kln9fu3aN2rdvT2pqamRlZUWRkZHUtGlTWrNmzUfjrIr9+/eTtbU1CYVCat26NR0/flzucw8PD3JxceHeJyUlUbt27UhdXZ20tLSof//+dO/ePbky0dHR1KpVK1JVVSU9PT0aPXo0PXv2TC5PXl4eaWtrU3x8fKmxKWP5PI+oGmfJfQaysrKgra2NC+dOoUt310rXU1hYiMDAQAQEBKCoqAhNmjTB7t270bVr12qMtm6TSqU4ceIE3Nzcqrxaham6+ng/8vPz8ejRI5ibm5c4SVZZZDIZsrKyuJVKTM05fvw45s+fj8TERPD5fHYvqtHmzZvx22+/4Y8//ig1T1k/k69evYK+vj4yMzOhpaVVbXGxydKV9O+//2LdunUoKiqCu7s7Nm3aVO69NhiGYZjaqU+fPnjw4AGePXtWqTlJTOkEAgE2bNig7DAUsI5QJRkbGyMsLAzv3r3DqFGjlB0OwzAMU03mzJmj7BDqpO+++07ZIZSIjfOV09u3b+Hu7o4jR45waf3792edIIZhGIb5jLGOUDmcP38eNjY2iIiIwJQpU0o84ZlhGIZhmM8P6wiVQSKRYOHChejevTuePHkCS0tLHD58uFZNqmQYpurq2ZoRhqm1lPGzyOYIleL+/fsYOXIkrl69CgAYP3481q1bB01NTSVHxjBMdSleHZebm/vR/VsYhvn0infVVqnB3d1ZR6gET548gb29PXJzc9GwYUNs27at0mf4MAxTe6moqEBHRwcvXrwAAGhoaHAHZCqTTCaDRCJBfn4+W7KtZOxe1ByZTIZ///0XGhoaaNCg5ronrCNUAjMzM4waNQopKSnYuXMnGjdurOyQGIb5RIrPWCruDNUGRIS8vDyoq6vXio5ZfcbuRc3i8/lo0qRJjX7XrCP0f86cOYPWrVtzhxOuX78eAoGA/QuAYeo4Ho8HY2NjGBoaQiqVKjscAO83t7xw4QK6du1abza3rK3YvahZQqGwxv/u1oqOUEhICFauXIn09HTY2tpiw4YNcHR0LDV/ZGQkvv/+ezx+/BhWVlb46aef4ObmVqlr5+fnY+HChVi7di169uyJ06dPg8/nV+iUY4ZhPn8qKio1Oi+hLCoqKigsLISamhr746tk7F7UfUof7ti3bx88PT3h7++Pa9euwdbWFq6urqUOU8fFxcHd3R0TJkzA9evXMWDAAAwYMACJiYkVvnZiYiIcHR2xdu1aAIC1tXWt+RchwzAMwzCfntI7QqtXr8bEiRMxbtw4fPHFFwgNDYWGhgbCwsJKzL9u3Tr07t0b8+fPR6tWrbBs2TLY29tj48aNFbrun+f+RPv27XH79m0YGBjg999/R0hICBsJYhiGYZh6RKkdIYlEgqtXr6Jnz55cGp/PR8+ePREfH19imfj4eLn8AODq6lpq/tLs2x+JgoICfPPNN7h9+za+/fbbijeAYRiGYZjPmlLnCL18+RJFRUUwMjKSSzcyMsK9e/dKLJOenl5i/vT09BLzFxQUoKCggHufmZkJAFDh8/Hjjz9iwoQJ4PF4ePXqVVWawlSCVCpFbm4uXr16xZ691wLsftQe7F7UHuxe1B6vX78GUP2bLtaKydKfUlBQEJYuXaqQfvteCnx8fODj46OEqBiGYRiGqYxXr15BW1u72upTakdIX18fKioqyMjIkEvPyMjg9vb4UKNGjSqUf+HChfD09OTev337Fk2bNkVaWlq1fpFMxWVlZcHMzAxPnjyBlpaWssOp99j9qD3Yvag92L2oPTIzM9GkSRPo6upWa71K7QgJhUI4ODggKioKAwYMAPB+Z8moqCjMmDGjxDJOTk6IiorCnDlzuLQzZ87AycmpxPyqqqolToDW1tZm/1PXElpaWuxe1CLsftQe7F7UHuxe1B7Vvc+Q0h+NeXp6wsPDA+3bt+eWsufk5GDcuHEAgDFjxsDU1BRBQUEAgNmzZ8PFxQXBwcHo06cPIiIicOXKFWzdulWZzWAYhmEY5jOk9I7QsGHD8O+//2Lx4sVIT09Hu3btcOrUKW5CdFpamlzvz9nZGb/++iv8/Pzg6+sLKysrHD58GG3atFFWExiGYRiG+UwpvSMEADNmzCj1UVh0dLRC2pAhQzBkyJBKXUtVVRX+/v5sv6BagN2L2oXdj9qD3Yvag92L2uNT3QseVfc6NIZhGIZhmM+E0neWZhiGYRiGURbWEWIYhmEYpt5iHSGGYRiGYeot1hFiGIZhGKbeqpMdoZCQEDRr1gxqamro2LEjLl++XGb+yMhItGzZEmpqamjbti1OnDhRQ5HWfRW5F9u2bUOXLl3QsGFDNGzYED179vzovWMqpqI/G8UiIiLA4/G4jU+ZqqvovXj79i2mT58OY2NjqKqqwtramv2uqiYVvRdr165FixYtoK6uDjMzM8ydOxf5+fk1FG3ddeHCBfTt2xcmJibg8Xg4fPjwR8tER0fD3t4eqqqqaN68OXbs2FHxC1MdExERQUKhkMLCwujOnTs0ceJE0tHRoYyMjBLzx8bGkoqKCq1YsYKSkpLIz8+PBAIB3b59u4Yjr3sqei9GjBhBISEhdP36dbp79y6NHTuWtLW16enTpzUced1U0ftR7NGjR2RqakpdunSh/v3710ywdVxF70VBQQG1b9+e3Nzc6OLFi/To0SOKjo6mGzdu1HDkdU9F70V4eDipqqpSeHg4PXr0iE6fPk3GxsY0d+7cGo687jlx4gQtWrSIDh06RADot99+KzP/w4cPSUNDgzw9PSkpKYk2bNhAKioqdOrUqQpdt851hBwdHWn69Onc+6KiIjIxMaGgoKAS8w8dOpT69Okjl9axY0eaPHnyJ42zPqjovfhQYWEhicVi2rlz56cKsV6pzP0oLCwkZ2dn2r59O3l4eLCOUDWp6L3YvHkzWVhYkEQiqakQ642K3ovp06dTjx495NI8PT2pU6dOnzTO+qY8HSFvb29q3bq1XNqwYcPI1dW1QteqU4/GJBIJrl69ip49e3JpfD4fPXv2RHx8fIll4uPj5fIDgKura6n5mfKpzL34UG5uLqRSabUfsFcfVfZ+BAQEwNDQEBMmTKiJMOuFytyLo0ePwsnJCdOnT4eRkRHatGmDwMBAFBUV1VTYdVJl7oWzszOuXr3KPT57+PAhTpw4ATc3txqJmfn/quvvd63YWbq6vHz5EkVFRdzxHMWMjIxw7969Esukp6eXmD89Pf2TxVkfVOZefGjBggUwMTFR+B+dqbjK3I+LFy/i559/xo0bN2ogwvqjMvfi4cOHOHfuHEaOHIkTJ04gJSUF06ZNg1Qqhb+/f02EXSdV5l6MGDECL1++ROfOnUFEKCwsxJQpU+Dr61sTITP/Udrf76ysLOTl5UFdXb1c9dSpESGm7vjxxx8RERGB3377DWpqasoOp9559+4dRo8ejW3btkFfX1/Z4dR7MpkMhoaG2Lp1KxwcHDBs2DAsWrQIoaGhyg6t3omOjkZgYCA2bdqEa9eu4dChQzh+/DiWLVum7NCYSqpTI0L6+vpQUVFBRkaGXHpGRgYaNWpUYplGjRpVKD9TPpW5F8VWrVqFH3/8EWfPnoWNjc2nDLPeqOj9SE1NxePHj9G3b18uTSaTAQAaNGiA+/fvw9LS8tMGXUdV5mfD2NgYAoEAKioqXFqrVq2Qnp4OiUQCoVD4SWOuqypzL77//nuMHj0a3333HQCgbdu2yMnJwaRJk7Bo0SK5Q8KZT6u0v99aWlrlHg0C6tiIkFAohIODA6Kiorg0mUyGqKgoODk5lVjGyclJLj8AnDlzptT8TPlU5l4AwIoVK7Bs2TKcOnUK7du3r4lQ64WK3o+WLVvi9u3buHHjBvfq168funfvjhs3bsDMzKwmw69TKvOz0alTJ6SkpHCdUQBITk6GsbEx6wRVQWXuRW5urkJnp7iDSuzozhpVbX+/KzaPu/aLiIggVVVV2rFjByUlJdGkSZNIR0eH0tPTiYho9OjR5OPjw+WPjY2lBg0a0KpVq+ju3bvk7+/Pls9Xk4reix9//JGEQiEdOHCAnj9/zr3evXunrCbUKRW9Hx9iq8aqT0XvRVpaGonFYpoxYwbdv3+fjh07RoaGhvTDDz8oqwl1RkXvhb+/P4nFYtq7dy89fPiQ/vjjD7K0tKShQ4cqqwl1xrt37+j69et0/fp1AkCrV6+m69ev099//01ERD4+PjR69Gguf/Hy+fnz59Pdu3cpJCSELZ8vtmHDBmrSpAkJhUJydHSkS5cucZ+5uLiQh4eHXP79+/eTtbU1CYVCat26NR0/fryGI667KnIvmjZtSgAUXv7+/jUfeB1V0Z+N/2IdoepV0XsRFxdHHTt2JFVVVbKwsKDly5dTYWFhDUddN1XkXkilUlqyZAlZWlqSmpoamZmZ0bRp0+jNmzc1H3gd8+eff5b4N6D4+/fw8CAXFxeFMu3atSOhUEgWFhb0yy+/VPi6PCI2lscwDMMwTP1Up+YIMQzDMAzDVATrCDEMwzAMU2+xjhDDMAzDMPUW6wgxDMMwDFNvsY4QwzAMwzD1FusIMQzDMAxTb7GOEMMwDMMw9RbrCDEMI2fHjh3Q0dFRdhiVxuPxcPjw4TLzjB07FgMGDKiReBiGqd1YR4hh6qCxY8eCx+MpvFJSUpQdGnbs2MHFw+fz0bhxY4wbNw4vXryolvqfP3+Ob775BgDw+PFj8Hg83LhxQy7PunXrsGPHjmq5XmmWLFnCtVNFRQVmZmaYNGkSXr9+XaF6WKeNYT6tOnX6PMMw/1/v3r3xyy+/yKUZGBgoKRp5WlpauH//PmQyGW7evIlx48bhn3/+wenTp6tcd2mnhv+XtrZ2la9THq1bt8bZs2dRVFSEu3fvYvz48cjMzMS+fftq5PoMw3wcGxFimDpKVVUVjRo1knupqKhg9erVaNu2LUQiEczMzDBt2jRkZ2eXWs/NmzfRvXt3iMViaGlpwcHBAVeuXOE+v3jxIrp06QJ1dXWYmZlh1qxZyMnJKTM2Ho+HRo0awcTEBN988w1mzZqFs2fPIi8vDzKZDAEBAWjcuDFUVVXRrl07nDp1iisrkUgwY8YMGBsbQ01NDU2bNkVQUJBc3cWPxszNzQEAdnZ24PF46NatGwD5UZatW7fCxMRE7mR3AOjfvz/Gjx/PvT9y5Ajs7e2hpqYGCwsLLF26FIWFhWW2s0GDBmjUqBFMTU3Rs2dPDBkyBGfOnOE+LyoqwoQJE2Bubg51dXW0aNEC69at4z5fsmQJdu7ciSNHjnCjS9HR0QCAJ0+eYOjQodDR0YGuri769++Px48flxkPwzCKWEeIYeoZPp+P9evX486dO9i5cyfOnTsHb2/vUvOPHDkSjRs3xl9//YWrV6/Cx8cHAoEAAJCamorevXtj8ODBuHXrFvbt24eLFy9ixowZFYpJXV0dMpkMhYWFWLduHYKDg7Fq1SrcunULrq6u6NevHx48eAAAWL9+PY4ePYr9+/fj/v37CA8PR7NmzUqs9/LlywCAs2fP4vnz5zh06JBCniFDhuDVq1f4888/ubTXr1/j1KlTGDlyJAAgJiYGY8aMwezZs5GUlIQtW7Zgx44dWL58ebnb+PjxY5w+fRpCoZBLk8lkaNy4MSIjI5GUlITFixfD19cX+/fvBwB4eXlh6NCh6N27N54/f47nz5/D2dkZUqkUrq6uEIvFiImJQWxsLDQ1NdG7d29IJJJyx8QwDFAnT59nmPrOw8ODVFRUSCQSca///e9/JeaNjIwkPT097v0vv/xC2tra3HuxWEw7duwoseyECRNo0qRJcmkxMTHE5/MpLy+vxDIf1p+cnEzW1tbUvn17IiIyMTGh5cuXy5Xp0KEDTZs2jYiIZs6cST169CCZTFZi/QDot99+IyKiR48eEQC6fv26XB4PDw/q378/975///40fvx47v2WLVvIxMSEioqKiIjoq6++osDAQLk6du/eTcbGxiXGQETk7+9PfD6fRCIRqampcSdpr169utQyRETTp0+nwYMHlxpr8bVbtGgh9x0UFBSQuro6nT59usz6GYaRx+YIMUwd1b17d2zevJl7LxKJALwfHQkKCsK9e/eQlZWFwsJC5OfnIzc3FxoaGgr1eHp64rvvvsPu3bu5xzuWlpYA3j82u3XrFsLDw7n8RASZTIZHjx6hVatWJcaWmZkJTU1NyGQy5Ofno3Pnzti+fTuysrLwzz//oFOnTnL5O3XqhJs3bwJ4/1jr66+/RosWLdC7d298++236NWrV5W+q5EjR2LixInYtGkTVFVVER4ejuHDh4PP53PtjI2NlRsBKioqKvN7A4AWLVrg6NGjyM/Px549e3Djxg3MnDlTLk9ISAjCwsKQlpaGvLw8SCQStGvXrsx4b968iZSUFIjFYrn0/Px8pKamVuIbYJj6i3WEGKaOEolEaN68uVza48eP8e2332Lq1KlYvnw5dHV1cfHiRUyYMAESiaTEP+hLlizBiBEjcPz4cZw8eRL+/v6IiIjAwIEDkZ2djcmTJ2PWrFkK5Zo0aVJqbGKxGNeuXQOfz4exsTHU1dUBAFlZWR9tl729PR49eoSTJ0/i7NmzGDp0KHr27IkDBw58tGxp+vbtCyLC8ePH0aFDB8TExGDNmjXc59nZ2Vi6dCkGDRqkUFZNTa3UeoVCIXcPfvzxR/Tp0wdLly7FsmXLAAARERHw8vJCcHAwnJycIBaLsXLlSiQkJJQZb3Z2NhwcHOQ6oMVqy4R4hvlcsI4Qw9QjV69ehUwmQ3BwMDfaUTwfpSzW1tawtrbG3Llz4e7ujl9++QUDBw6Evb09kpKSFDpcH8Pn80sso6WlBRMTE8TGxsLFxYVLj42NhaOjo1y+YcOGYdiwYfjf//6H3r174/Xr19DV1ZWrr3g+TlFRUZnxqKmpYdCgQQgPD0dKSgpatGgBe3t77nN7e3vcv3+/wu38kJ+fH3r06IGpU6dy7XR2dsa0adO4PB+O6AiFQoX47e3tsW/fPhgaGkJLS6tKMTFMfccmSzNMPdK8eXNIpVJs2LABDx8+xO7duxEaGlpq/ry8PMyYMQPR0dH4+++/ERsbi7/++ot75LVgwQLExcVhxowZuHHjBh48eIAjR45UeLL0f82fPx8//fQT9u3bh/v378PHxwc3btzA7NmzAQCrV6/G3r17ce/ePSQnJyMyMhKNGjUqcRNIQ0NDqKur49SpU8jIyEBmZmap1x05ciSOHz+OsLAwbpJ0scWLF2PXrl1YunQp7ty5g7t37yIiIgJ+fn4VapuTkxNsbGwQGBgIALCyssKVK1dw+vRpJCcn4/vvv8dff/0lV6ZZs2a4desW7t+/j5cvX0IqlWLkyJHQ19dH//79ERMTg0ePHiE6OhqzZs3C06dPKxQTw9R7yp6kxDBM9Stpgm2x1atXk7GxMamrq5Orqyvt2rWLANCbN2+ISH4yc0FBAQ0fPpzMzMxIKBSSiYkJzZgxQ24i9OXLl+nrr78mTU1NEolEZGNjozDZ+b8+nCz9oaKiIlqyZAmZmpqSQCAgW1tbOnnyJPf51q1bqV27diQSiUhLS4u++uorunbtGvc5/jNZmoho27ZtZGZmRnw+n1xcXEr9foqKisjY2JgAUGpqqkJcp06dImdnZ1JXVyctLS1ydHSkrVu3ltoOf39/srW1VUjfu3cvqaqqUlpaGuXn59PYsWNJW1ubdHR0aOrUqeTj4yNX7sWLF9z3C4D+/PNPIiJ6/vw5jRkzhvT19UlVVZUsLCxo4sSJlJmZWWpMDMMo4hERKbcrxjAMwzAMoxzs0RjDMAzDMPUW6wgxDMMwDFNvsY4QwzAMwzD1FusIMQzDMAxTb7GOEMMwDMMw9RbrCDEMwzAMU2+xjhDDMAzDMPUW6wgxDMMwDFNvsY4QwzAMwzD1FusIMQzDMAxTb7GOEMMwDMMw9RbrCDEMwzAMU2/9P1v6/9hWDh7sAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "\n", "from sklearn.multiclass import OneVsRestClassifier\n", @@ -282,12 +515,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ValueError", + "evalue": "y should be a 1d array, got an array of shape (598, 10) instead.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/workspaces/mlgeo-instructor/book/Chapter3-MachineLearning/3.4_multiclass_classification.ipynb Cell 20\u001b[0m line \u001b[0;36m2\n\u001b[1;32m 1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39msklearn\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mmodel_selection\u001b[39;00m \u001b[39mimport\u001b[39;00m cross_val_predict\n\u001b[0;32m----> 2\u001b[0m y_train_pred \u001b[39m=\u001b[39m cross_val_predict(clf,X_train,y_train,cv\u001b[39m=\u001b[39;49m\u001b[39m3\u001b[39;49m) \u001b[39m# predict using K-fold cross validation\u001b[39;00m\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:1033\u001b[0m, in \u001b[0;36mcross_val_predict\u001b[0;34m(estimator, X, y, groups, cv, n_jobs, verbose, fit_params, pre_dispatch, method)\u001b[0m\n\u001b[1;32m 1030\u001b[0m \u001b[39m# We clone the estimator to make sure that all the folds are\u001b[39;00m\n\u001b[1;32m 1031\u001b[0m \u001b[39m# independent, and that it is pickle-able.\u001b[39;00m\n\u001b[1;32m 1032\u001b[0m parallel \u001b[39m=\u001b[39m Parallel(n_jobs\u001b[39m=\u001b[39mn_jobs, verbose\u001b[39m=\u001b[39mverbose, pre_dispatch\u001b[39m=\u001b[39mpre_dispatch)\n\u001b[0;32m-> 1033\u001b[0m predictions \u001b[39m=\u001b[39m parallel(\n\u001b[1;32m 1034\u001b[0m delayed(_fit_and_predict)(\n\u001b[1;32m 1035\u001b[0m clone(estimator), X, y, train, test, verbose, fit_params, method\n\u001b[1;32m 1036\u001b[0m )\n\u001b[1;32m 1037\u001b[0m \u001b[39mfor\u001b[39;49;00m train, test \u001b[39min\u001b[39;49;00m splits\n\u001b[1;32m 1038\u001b[0m )\n\u001b[1;32m 1040\u001b[0m inv_test_indices \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mempty(\u001b[39mlen\u001b[39m(test_indices), dtype\u001b[39m=\u001b[39m\u001b[39mint\u001b[39m)\n\u001b[1;32m 1041\u001b[0m inv_test_indices[test_indices] \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marange(\u001b[39mlen\u001b[39m(test_indices))\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/utils/parallel.py:65\u001b[0m, in \u001b[0;36mParallel.__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 60\u001b[0m config \u001b[39m=\u001b[39m get_config()\n\u001b[1;32m 61\u001b[0m iterable_with_config \u001b[39m=\u001b[39m (\n\u001b[1;32m 62\u001b[0m (_with_config(delayed_func, config), args, kwargs)\n\u001b[1;32m 63\u001b[0m \u001b[39mfor\u001b[39;00m delayed_func, args, kwargs \u001b[39min\u001b[39;00m iterable\n\u001b[1;32m 64\u001b[0m )\n\u001b[0;32m---> 65\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__call__\u001b[39;49m(iterable_with_config)\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/joblib/parallel.py:1863\u001b[0m, in \u001b[0;36mParallel.__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1861\u001b[0m output \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_get_sequential_output(iterable)\n\u001b[1;32m 1862\u001b[0m \u001b[39mnext\u001b[39m(output)\n\u001b[0;32m-> 1863\u001b[0m \u001b[39mreturn\u001b[39;00m output \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mreturn_generator \u001b[39melse\u001b[39;00m \u001b[39mlist\u001b[39;49m(output)\n\u001b[1;32m 1865\u001b[0m \u001b[39m# Let's create an ID that uniquely identifies the current call. If the\u001b[39;00m\n\u001b[1;32m 1866\u001b[0m \u001b[39m# call is interrupted early and that the same instance is immediately\u001b[39;00m\n\u001b[1;32m 1867\u001b[0m \u001b[39m# re-used, this id will be used to prevent workers that were\u001b[39;00m\n\u001b[1;32m 1868\u001b[0m \u001b[39m# concurrently finalizing a task from the previous call to run the\u001b[39;00m\n\u001b[1;32m 1869\u001b[0m \u001b[39m# callback.\u001b[39;00m\n\u001b[1;32m 1870\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_lock:\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/joblib/parallel.py:1792\u001b[0m, in \u001b[0;36mParallel._get_sequential_output\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1790\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_dispatched_batches \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n\u001b[1;32m 1791\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_dispatched_tasks \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n\u001b[0;32m-> 1792\u001b[0m res \u001b[39m=\u001b[39m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1793\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_completed_tasks \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n\u001b[1;32m 1794\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mprint_progress()\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/utils/parallel.py:127\u001b[0m, in \u001b[0;36m_FuncWrapper.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 125\u001b[0m config \u001b[39m=\u001b[39m {}\n\u001b[1;32m 126\u001b[0m \u001b[39mwith\u001b[39;00m config_context(\u001b[39m*\u001b[39m\u001b[39m*\u001b[39mconfig):\n\u001b[0;32m--> 127\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mfunction(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:1115\u001b[0m, in \u001b[0;36m_fit_and_predict\u001b[0;34m(estimator, X, y, train, test, verbose, fit_params, method)\u001b[0m\n\u001b[1;32m 1113\u001b[0m estimator\u001b[39m.\u001b[39mfit(X_train, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mfit_params)\n\u001b[1;32m 1114\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 1115\u001b[0m estimator\u001b[39m.\u001b[39;49mfit(X_train, y_train, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mfit_params)\n\u001b[1;32m 1116\u001b[0m func \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(estimator, method)\n\u001b[1;32m 1117\u001b[0m predictions \u001b[39m=\u001b[39m func(X_test)\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/base.py:1152\u001b[0m, in \u001b[0;36m_fit_context..decorator..wrapper\u001b[0;34m(estimator, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1145\u001b[0m estimator\u001b[39m.\u001b[39m_validate_params()\n\u001b[1;32m 1147\u001b[0m \u001b[39mwith\u001b[39;00m config_context(\n\u001b[1;32m 1148\u001b[0m skip_parameter_validation\u001b[39m=\u001b[39m(\n\u001b[1;32m 1149\u001b[0m prefer_skip_nested_validation \u001b[39mor\u001b[39;00m global_skip_validation\n\u001b[1;32m 1150\u001b[0m )\n\u001b[1;32m 1151\u001b[0m ):\n\u001b[0;32m-> 1152\u001b[0m \u001b[39mreturn\u001b[39;00m fit_method(estimator, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/svm/_base.py:190\u001b[0m, in \u001b[0;36mBaseLibSVM.fit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 188\u001b[0m check_consistent_length(X, y)\n\u001b[1;32m 189\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 190\u001b[0m X, y \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_validate_data(\n\u001b[1;32m 191\u001b[0m X,\n\u001b[1;32m 192\u001b[0m y,\n\u001b[1;32m 193\u001b[0m dtype\u001b[39m=\u001b[39;49mnp\u001b[39m.\u001b[39;49mfloat64,\n\u001b[1;32m 194\u001b[0m order\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mC\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m 195\u001b[0m accept_sparse\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mcsr\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m 196\u001b[0m accept_large_sparse\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m 197\u001b[0m )\n\u001b[1;32m 199\u001b[0m y \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_validate_targets(y)\n\u001b[1;32m 201\u001b[0m sample_weight \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39masarray(\n\u001b[1;32m 202\u001b[0m [] \u001b[39mif\u001b[39;00m sample_weight \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39melse\u001b[39;00m sample_weight, dtype\u001b[39m=\u001b[39mnp\u001b[39m.\u001b[39mfloat64\n\u001b[1;32m 203\u001b[0m )\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/base.py:622\u001b[0m, in \u001b[0;36mBaseEstimator._validate_data\u001b[0;34m(self, X, y, reset, validate_separately, cast_to_ndarray, **check_params)\u001b[0m\n\u001b[1;32m 620\u001b[0m y \u001b[39m=\u001b[39m check_array(y, input_name\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39my\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mcheck_y_params)\n\u001b[1;32m 621\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 622\u001b[0m X, y \u001b[39m=\u001b[39m check_X_y(X, y, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mcheck_params)\n\u001b[1;32m 623\u001b[0m out \u001b[39m=\u001b[39m X, y\n\u001b[1;32m 625\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m no_val_X \u001b[39mand\u001b[39;00m check_params\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mensure_2d\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mTrue\u001b[39;00m):\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/utils/validation.py:1162\u001b[0m, in \u001b[0;36mcheck_X_y\u001b[0;34m(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 1143\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mestimator_name\u001b[39m}\u001b[39;00m\u001b[39m requires y to be passed, but the target y is None\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 1144\u001b[0m )\n\u001b[1;32m 1146\u001b[0m X \u001b[39m=\u001b[39m check_array(\n\u001b[1;32m 1147\u001b[0m X,\n\u001b[1;32m 1148\u001b[0m accept_sparse\u001b[39m=\u001b[39maccept_sparse,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1159\u001b[0m input_name\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mX\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m 1160\u001b[0m )\n\u001b[0;32m-> 1162\u001b[0m y \u001b[39m=\u001b[39m _check_y(y, multi_output\u001b[39m=\u001b[39;49mmulti_output, y_numeric\u001b[39m=\u001b[39;49my_numeric, estimator\u001b[39m=\u001b[39;49mestimator)\n\u001b[1;32m 1164\u001b[0m check_consistent_length(X, y)\n\u001b[1;32m 1166\u001b[0m \u001b[39mreturn\u001b[39;00m X, y\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/utils/validation.py:1183\u001b[0m, in \u001b[0;36m_check_y\u001b[0;34m(y, multi_output, y_numeric, estimator)\u001b[0m\n\u001b[1;32m 1181\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 1182\u001b[0m estimator_name \u001b[39m=\u001b[39m _check_estimator_name(estimator)\n\u001b[0;32m-> 1183\u001b[0m y \u001b[39m=\u001b[39m column_or_1d(y, warn\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m)\n\u001b[1;32m 1184\u001b[0m _assert_all_finite(y, input_name\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39my\u001b[39m\u001b[39m\"\u001b[39m, estimator_name\u001b[39m=\u001b[39mestimator_name)\n\u001b[1;32m 1185\u001b[0m _ensure_no_complex_data(y)\n", + "File \u001b[0;32m~/.local/lib/python3.10/site-packages/sklearn/utils/validation.py:1244\u001b[0m, in \u001b[0;36mcolumn_or_1d\u001b[0;34m(y, dtype, warn)\u001b[0m\n\u001b[1;32m 1233\u001b[0m warnings\u001b[39m.\u001b[39mwarn(\n\u001b[1;32m 1234\u001b[0m (\n\u001b[1;32m 1235\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mA column-vector y was passed when a 1d array was\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1240\u001b[0m stacklevel\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m,\n\u001b[1;32m 1241\u001b[0m )\n\u001b[1;32m 1242\u001b[0m \u001b[39mreturn\u001b[39;00m _asarray_with_order(xp\u001b[39m.\u001b[39mreshape(y, (\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m,)), order\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mC\u001b[39m\u001b[39m\"\u001b[39m, xp\u001b[39m=\u001b[39mxp)\n\u001b[0;32m-> 1244\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 1245\u001b[0m \u001b[39m\"\u001b[39m\u001b[39my should be a 1d array, got an array of shape \u001b[39m\u001b[39m{}\u001b[39;00m\u001b[39m instead.\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39mformat(shape)\n\u001b[1;32m 1246\u001b[0m )\n", + "\u001b[0;31mValueError\u001b[0m: y should be a 1d array, got an array of shape (598, 10) instead." + ] + } + ], "source": [ "from sklearn.model_selection import cross_val_predict\n", - "y_train_pred = cross_val_predict(clf,X_train,y_train,cv=3) # predict using K-fold cross validation" + "y_train_pred = cross_val_predict(clf, X_train, y_train, cv=3) # predict using K-fold cross validation" ] } ], @@ -298,8 +555,16 @@ "name": "python3" }, "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", "name": "python", - "version": "3.9.6" + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" }, "orig_nbformat": 4, "vscode": { diff --git a/reports/3.4_multiclass_classification.log b/reports/3.4_multiclass_classification.log index 99ff672..97a1874 100644 --- a/reports/3.4_multiclass_classification.log +++ b/reports/3.4_multiclass_classification.log @@ -19,6 +19,7 @@ nbclient.exceptions.CellExecutionError: An error occurred while executing the fo ------------------ import numpy as np from sklearn.datasets import load_digits,fetch_openml +from sklearn.metrics import ConfusionMatrixDisplay digits = load_digits() digits.keys() ------------------ @@ -28,7 +29,7 @@ digits.keys() Input In [1], in () ----> 1 import numpy as np  2 from sklearn.datasets import load_digits,fetch_openml - 3 digits = load_digits() + 3 from sklearn.metrics import ConfusionMatrixDisplay ModuleNotFoundError: No module named 'numpy' ModuleNotFoundError: No module named 'numpy' diff --git a/searchindex.js b/searchindex.js index f7a9063..b9f8561 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["Chapter1-GettingStarted/1.1_open_reproducible_science","Chapter1-GettingStarted/1.2_jupyter_environment","Chapter1-GettingStarted/1.3_python_environment","Chapter1-GettingStarted/1.4_computational_environments","Chapter1-GettingStarted/1.5_version_control_git","Chapter1-GettingStarted/readme","Chapter2-DataManipulation/2.10_dimensionality_reduction","Chapter2-DataManipulation/2.11_MLready_data","Chapter2-DataManipulation/2.1_Data_Definitions","Chapter2-DataManipulation/2.2_data_formats_rendered","Chapter2-DataManipulation/2.3_pandas_rendered","Chapter2-DataManipulation/2.4_Arrays","Chapter2-DataManipulation/2.6_resampling","Chapter2-DataManipulation/2.7_data_spectral_transforms","Chapter2-DataManipulation/2.8_statistical_considerations","Chapter2-DataManipulation/2.9_feature_engineering","Chapter3-MachineLearning/3.1_clustering","Chapter3-MachineLearning/3.2_classification_regression","Chapter3-MachineLearning/3.3_binary_classification","Chapter3-MachineLearning/3.4_multiclass_classification","Chapter3-MachineLearning/3.5_logistic_regression","Chapter3-MachineLearning/3.6_randomForest_regression","Chapter3-MachineLearning/3.7_hyperparameter_tuning","Chapter3-MachineLearning/3.8_ensemble_learning","Chapter3-MachineLearning/3.9_autoML","Chapter4-DeepLearning/mlgeo_4.1_neural_networks","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron","Chapter4-DeepLearning/mlgeo_4.3_CNN","Chapter4-DeepLearning/mlgeo_4.4_RNN","Chapter4-DeepLearning/mlgeo_4.5_AutoEncoder","Chapter4-DeepLearning/mlgeo_4.6_NAS","Chapter6-ModelWorkflows/readme","about_this_book/0_mlgeo_project","about_this_book/about_this_book","about_this_book/acknowledgements","reference/bibliography","reference/glossary"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["Chapter1-GettingStarted/1.1_open_reproducible_science.md","Chapter1-GettingStarted/1.2_jupyter_environment.md","Chapter1-GettingStarted/1.3_python_environment.md","Chapter1-GettingStarted/1.4_computational_environments.md","Chapter1-GettingStarted/1.5_version_control_git.md","Chapter1-GettingStarted/readme.md","Chapter2-DataManipulation/2.10_dimensionality_reduction.ipynb","Chapter2-DataManipulation/2.11_MLready_data.ipynb","Chapter2-DataManipulation/2.1_Data_Definitions.md","Chapter2-DataManipulation/2.2_data_formats_rendered.ipynb","Chapter2-DataManipulation/2.3_pandas_rendered.ipynb","Chapter2-DataManipulation/2.4_Arrays.ipynb","Chapter2-DataManipulation/2.6_resampling.ipynb","Chapter2-DataManipulation/2.7_data_spectral_transforms.ipynb","Chapter2-DataManipulation/2.8_statistical_considerations.ipynb","Chapter2-DataManipulation/2.9_feature_engineering.ipynb","Chapter3-MachineLearning/3.1_clustering.ipynb","Chapter3-MachineLearning/3.2_classification_regression.ipynb","Chapter3-MachineLearning/3.3_binary_classification.ipynb","Chapter3-MachineLearning/3.4_multiclass_classification.ipynb","Chapter3-MachineLearning/3.5_logistic_regression.ipynb","Chapter3-MachineLearning/3.6_randomForest_regression.ipynb","Chapter3-MachineLearning/3.7_hyperparameter_tuning.ipynb","Chapter3-MachineLearning/3.8_ensemble_learning.ipynb","Chapter3-MachineLearning/3.9_autoML.ipynb","Chapter4-DeepLearning/mlgeo_4.1_neural_networks.ipynb","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron.ipynb","Chapter4-DeepLearning/mlgeo_4.3_CNN.ipynb","Chapter4-DeepLearning/mlgeo_4.4_RNN.ipynb","Chapter4-DeepLearning/mlgeo_4.5_AutoEncoder.ipynb","Chapter4-DeepLearning/mlgeo_4.6_NAS.ipynb","Chapter6-ModelWorkflows/readme.md","about_this_book/0_mlgeo_project.md","about_this_book/about_this_book.md","about_this_book/acknowledgements.md","reference/bibliography.md","reference/glossary.md"],objects:{},objnames:{},objtypes:{},terms:{"0":[2,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,32],"00":[10,13,14,18,23,29],"000":[3,6,10,26],"000000":[10,12,14,18,21],"0000004":12,"000000z":[13,14],"0000794":12,"0000ff":26,"0001":22,"00010279":22,"00015444":22,"00017369":22,"00017777":14,"00019417":22,"00019767":22,"00022147":22,"00022739":22,"00024025":22,"00025221":22,"00026867":22,"00028058":22,"00028074":22,"0003":16,"00030313":22,"00030671":22,"0003116":22,"00032911":22,"00033131":22,"00033565":22,"00036127":22,"00036523":22,"000368":22,"00037982":22,"00038028":22,"00038497":22,"00040847":22,"00046558":22,"0004974":22,"00051429":22,"0005219":22,"00055709":22,"00056481":22,"00056848":22,"00057124":22,"00057149":22,"00057284":22,"00060262":22,"00063497":22,"00075296":22,"0007645780792982153":22,"00078219":22,"00078404":22,"00081537":22,"00082129":22,"00084407":22,"00096243":22,"00097039":22,"00098027":22,"001":[19,20,22,25,26,27],"00114053":22,"00117745":20,"00138058":22,"001417":16,"00160452":22,"00202393":22,"00235309":22,"00235718":6,"00266993":22,"00275743":22,"003069":16,"003468":16,"003938":16,"004932182490752158":20,"005":[26,27],"005311":16,"00537195":22,"00540662":22,"00541439":22,"00548282":22,"00550599":22,"00570369":22,"00579743":22,"00597839":22,"0060364":12,"00676385":22,"0068304":12,"00781032":22,"00790743":22,"00800":10,"00814581":22,"00819788":22,"00828981":22,"00843649":22,"00847631":22,"00849648":22,"00891695":22,"008924":16,"008967":16,"00936933":22,"009565":16,"00970379":22,"009791921664626684":20,"01":[10,13,21,22,23,29],"010":10,"010000":[12,13,14],"0109":20,"01105633":22,"011097410604192354":20,"01134934":22,"01182476":14,"01184845":22,"01185122":22,"01186934":22,"011982":16,"012538":22,"01266155":22,"01291194":22,"01380216":16,"01396018":6,"0147789":22,"015568":16,"01588404":14,"01693117":20,"01706581":22,"01723228":22,"01726675":22,"01746058":22,"01750962":16,"01769457":22,"01823897":22,"0187614":22,"01880449":14,"01923843":20,"02":[10,21,26,29],"02001436":6,"02107299":22,"02163751":6,"02175317":22,"02184954":22,"021897810218978103":20,"022358":16,"02297249":22,"02310362":22,"02326522":22,"02352686":22,"02355824":22,"02380347":22,"02449503":22,"025":18,"025000":21,"02502255":22,"02507":22,"0253":24,"02575654":22,"02612495":22,"02696":10,"02756419":22,"02938002":14,"029486":16,"02956544":20,"02993002":6,"03":[10,21],"030637":16,"03100":10,"03103009":20,"0313548":14,"03244272":6,"033255":12,"03424752":16,"03440":10,"034483":21,"0347":24,"0348":24,"036229":16,"036617":10,"0370":24,"0382":24,"04":[10,12],"0400":24,"04008636":6,"04101425":20,"04128178":22,"0419":24,"0430":24,"04314":10,"0446":24,"0450":24,"04521918":22,"0454577":20,"04572756":20,"0475276":6,"047994":16,"04809985":22,"049902":16,"05":[10,11,12,13,14,16,19,21,27],"0510":24,"05154009":22,"05242661":6,"0529":24,"05366359":22,"053684":10,"0540":24,"05442019":22,"05511222":22,"05535727":22,"0560":24,"05716662":22,"0580":24,"0594":24,"0595":24,"06":[10,14,21],"060":10,"0601":24,"060298649528828":14,"0604":24,"0605":24,"06084275":22,"0612":24,"0622":24,"0629":24,"0631":24,"0635":10,"0638":24,"0641":24,"0646":24,"064938":10,"0650":24,"0651":24,"0661":24,"067100":12,"07":[10,11,13,14],"0711":24,"0721":24,"0737":24,"0740":24,"07508417348193797":14,"0754":24,"0758":24,"0761":24,"0763":24,"0768":24,"076831":12,"0776":24,"0777":24,"0777344413103096":13,"077800":10,"0779":24,"0780":24,"0783":24,"07841108":6,"0785":24,"0795":24,"08":[10,14,29],"0800":24,"0803":10,"0804":24,"0808":24,"0815":24,"0823":10,"08484803":20,"0891":24,"0897":24,"09":[10,29],"09048239":6,"09091835":16,"0914":24,"09259738":16,"0935":16,"0950":24,"0977":24,"0992":24,"0_wavelet":15,"0f":19,"0ffh4r23mitn2dz":15,"0s":[22,29],"0x103f1b520":16,"0x1060f17f0":20,"0x126f0e7f0":20,"0x14cde05b0":22,"0x14cde2460":22,"0x14cde2cd0":22,"0x151aa9100":18,"0x151ada520":18,"0x151ada670":18,"0x15225a3a0":18,"0x1bfa3c4f0":25,"0x1c135a7f0":25,"0x1c899e9a0":16,"0x1ca300220":12,"0x1cd5cc070":16,"0x1cd6c1a60":16,"0x1cd824850":16,"0x287e5fa30":14,"0x29996e5b0":14,"0x7f1890190820":6,"0x7f5a372da3e0":6,"0x7f7118752b50":26,"1":[15,20,24,28,29,33,35],"10":[2,3,9,10,11,12,13,14,16,18,19,21,22,23,24,25,26,27,28,29,32,33],"100":[1,9,10,11,12,13,14,15,16,21,22,23,24,25,26,27,29,33,36],"1000":[6,8,10,11,12,13,21,22,23,25,27],"10000":[6,10,11,12,13,28],"100000":[10,14,21],"10021":9,"101":10,"1029":27,"103932":14,"105":10,"105000":10,"106":24,"1078":10,"109":10,"109400":10,"10959":10,"10hz":13,"10k":28,"11":[6,10,12,13,14,21,22,24,25,29,33],"110":10,"1101":24,"1108":10,"111":[6,13,16,29],"1110":10,"1111":10,"1112":10,"113":10,"113026":14,"11341706":6,"1137":24,"114":12,"114x80":27,"117":21,"117697":29,"118":10,"1193":24,"1198":20,"12":[10,11,12,13,14,16,21,24,29],"120":[26,27],"12000":10,"120542":21,"121":[9,10],"1225":20,"123":[10,24],"1234":9,"123783465":16,"125":[6,10,11,14],"125816":10,"1261":10,"126600":12,"127":9,"128":[11,27,28],"129":27,"1299":24,"13":[10,13,14,24,29],"1301":26,"13245936":16,"1362":6,"136778":16,"1369":24,"1370":24,"1382":24,"1388":10,"13m":29,"14":[10,11,12,13,14,16,22,24,29],"140":22,"14158634":14,"14159005":14,"14194643":6,"142":10,"145":10,"1457":24,"1459":20,"146":10,"146988":10,"147744826538707":12,"148":10,"14m":29,"15":[2,10,11,13,14,20,21,22,23,24,26,29,33],"150":13,"15166937":16,"154":10,"1545":10,"1546":24,"15688101":13,"157000":12,"158":16,"1590":10,"1591":24,"15924":14,"15m":29,"16":[10,12,14,24,25,26,27,29],"161700":10,"163":29,"164":10,"165398":21,"166":[10,13],"16601227":16,"1664":10,"1666":10,"167":29,"16813116":14,"16900":10,"1691094658":13,"16m":29,"16x16":27,"17":[10,12,14,21,24,26,29],"170000":14,"1719":29,"173":16,"1736":10,"1740":24,"1767563":13,"177475":10,"178":10,"1780":10,"17803249":22,"1781":10,"1782":10,"1783":10,"1784":10,"1785":10,"17860823":22,"179":10,"1797":[22,23,24],"18":[2,10,14,16,18,24,29],"18146037":6,"1841126":22,"18470":16,"1852":24,"1864":10,"18685474":22,"187":9,"18730514":6,"187675":10,"18767507003":10,"18843017":22,"1892":24,"19":[10,18,24,27,29],"19251866":22,"193":29,"1983":10,"1984":10,"1985":10,"1986":10,"1987":10,"1988":10,"1990":9,"19918694":22,"1993":10,"1994":10,"1995":[10,32],"1997":10,"1998":27,"1999":10,"1d":[8,13,26,27],"1e":[11,13,22],"1e4":13,"1hz":[13,14],"1j":14,"1pko9ormcllaxipzoa3aoztgzfpad2iwj":[21,24],"1pvu8vbytx0g4w41tb537irm5v845e4upsirwqrfoqb0":8,"1s":[13,22],"1st":[6,16],"2":[1,2,3,4,20,24,29,33,35],"20":[10,14,21,22,24,28,29],"200":[1,13,16,20,22,33],"2000":[6,10,11,23,26],"200000":21,"2001":[10,26],"2002":10,"2006":[10,12],"2007":3,"2010":[10,12],"2011":10,"2013":11,"2014":12,"2015":10,"2016":[10,21,24],"2017":[10,14],"2018":[27,29],"2019":[10,12,16,29],"2019gl085870":27,"2020":[2,10,27,29],"2021":[10,13,14],"2022":[4,10,13,29,34],"2023":[4,12,14,33],"2025":10,"204":26,"20454172":6,"2048":10,"207":33,"207073":16,"20726748":16,"208":33,"208269":16,"209":24,"21":[9,10,14,18,22,24],"2136":24,"21594585":16,"2171b5":6,"21966":10,"21m":29,"22":[10,14,22,24,29],"2201005948153714":13,"224":26,"2256":24,"228":[9,10],"23":[10,14,16,21,23,24,29],"2300000":13,"2301":26,"2310":24,"23233":29,"23296":29,"234":11,"236217054087575":13,"2370":24,"238506":21,"239":26,"24":[10,12,24],"240":[11,16,26],"24052539":6,"241":6,"24400":10,"245000":12,"2482":24,"25":[10,12,13,14,16,21,24,26,29,32],"250":3,"2519":29,"2520":29,"2521":29,"2522":29,"2523":29,"2524":29,"2525":29,"2526":29,"2527":29,"2531":29,"2533":29,"2539":29,"2540":29,"2541":29,"2543":29,"2548":29,"2549":29,"255":29,"2550":29,"2551":29,"2552":29,"2553":29,"2554":29,"2555":29,"2556":29,"2557":29,"2558":29,"256":25,"2564":29,"2565":29,"257":25,"25700":10,"25hrequir":23,"26":[10,11,13,14,24,29],"2600":24,"2600000":13,"261":21,"2626":24,"26268435":16,"2632":29,"2639":29,"2651":29,"2657":29,"2673":29,"2680":29,"2698":29,"27":[9,10,24,29],"27101466":16,"273":11,"2730":29,"2733":29,"2742":29,"27594":10,"277725":16,"2778":24,"2780":24,"2789":10,"27m":29,"28":[10,12,16,21,22,24,25,26,27,29],"2823":24,"2827":29,"2830":24,"2836":[24,29],"2845":24,"2856":29,"286":9,"2861":29,"2862":29,"2865":29,"2870":29,"2879":29,"2884356107":13,"289":26,"2890":29,"28913069":6,"2899":29,"28x28":27,"29":[10,12,13,14,21,24,26,29],"29046581":6,"2906":29,"2925":29,"2935":29,"294":9,"295":[9,24],"2952":29,"296":24,"297":[9,24],"2970118992746436":14,"298":24,"2986":29,"299":[9,24],"2992":29,"29t04":[13,14],"29t06":[13,14],"2bcurli":13,"2d":[6,8,26,27],"2dt":13,"2f":[6,12,14,19,26],"2fa":4,"2m":29,"2nd":[9,16],"2p":14,"2s":22,"2x":26,"2x2":[18,27],"3":[3,4,15,25,28,29,33],"30":[6,10,12,14,16,24,29],"300":[9,16,24,26],"3000":10,"300000":10,"301":26,"30100":10,"3019":24,"302":9,"302031":10,"3023":29,"3056":29,"305700":10,"307":33,"3073":29,"30761722":16,"308":33,"31":[10,14,21,24],"3100":9,"3133":9,"314000":12,"31435567":16,"3159":10,"31840023":6,"31m":29,"32":[10,12,24,26,27,29],"3200000":13,"3201":[9,13],"321":10,"32403592":6,"3246":9,"3249":24,"32x32":27,"33":[10,24,32],"333":26,"336":26,"3383":29,"34":[10,24],"34043406":6,"34069778":16,"3407":10,"3408":10,"3409":10,"3410":10,"3411":10,"34354394":16,"34400":10,"34415049":16,"3457":10,"34570272":6,"3458":10,"3459":10,"3460":10,"3461":10,"3462":10,"3463":10,"3475":24,"348":[21,24],"3480":10,"3481":10,"3482":10,"3483":10,"3484":10,"35":[10,21,24],"351":33,"35118033":16,"352":33,"35440":10,"35800":14,"35856":14,"35866":14,"35963":14,"35986":14,"36":[6,10,24,29],"360":[6,11],"3600":13,"36050":14,"36063":14,"36065":14,"36125048":16,"36174":14,"36177":14,"36608":27,"3666":10,"3667":10,"3668":10,"3669":10,"3670":10,"367623":16,"368":26,"3680":10,"37":[10,23,24,26],"370":10,"3733":24,"373563":21,"37841317":6,"38":[10,24],"38116775":16,"382403":10,"38561943":6,"3890":24,"39":[10,11,12,14,24],"390000":14,"391800":10,"3931145617":16,"39322864":20,"3950175":16,"39591267":16,"39822533":14,"39912885":16,"3d":[10,13,15,16,27],"3f":[25,26,27],"3rbzxjb16kv66g_p4wkzq16h0000gn":16,"3s":22,"3x3":27,"4":[2,6,9,16,18,22,24,33],"40":[9,10,11,13,14,16,18,21,23,24],"400":[10,15],"400000":21,"400x300":16,"409300":12,"41":[10,21,24],"416857":16,"42":[18,19,21,24,26,27],"42108578":6,"42469643":6,"42476644":14,"42510872":16,"4284":10,"4285":10,"4286":10,"4287":10,"4288":10,"4289":10,"429012":10,"42922743":16,"42m":29,"43":[10,12,14,21,24],"43014":10,"434":10,"438107857588658":12,"438107857588663":12,"4381084":12,"43814041":16,"4382164":12,"43901058":6,"44":[10,12,21,24],"442660214306567":12,"44586065":6,"446":10,"45":[10,12,21,24],"4513":10,"45919889":16,"45956413":16,"46":[21,24,29],"462018":16,"4649":10,"46779875":16,"469":33,"47":[9,13,21,24,26,27,29],"47128343":6,"47232592":6,"47256154":6,"477011":21,"478654":16,"478900":10,"48":[21,24],"48120537":16,"482000":12,"4841":24,"48489432":16,"487000":12,"4880":24,"49":[12,14,21,24],"4901":[9,13],"49118717":16,"495126":6,"4954325":6,"498380":21,"4_pandas_rend":10,"4ducqnd7mfihnh7d":3,"4p":14,"4s":29,"5":[2,3,6,8,9,10,13,14,16,18,19,22,23,24,25,28,33],"50":[10,11,12,14,16,19,21,22,23,24,25,26,27,28],"500":[3,6,10,22],"5000":[28,29],"500000":21,"5007397612756534":13,"501":13,"5034":24,"50748428":16,"50777458":6,"508000":12,"50m":29,"51":[10,13,24,28],"51078471":16,"51251051":16,"514368":21,"516241":12,"517":26,"51873336":16,"52":[10,12,24],"520022":12,"5268":20,"527306":21,"529":29,"53":[21,24],"53044455":16,"531903386":10,"5325":24,"532844":16,"5333":24,"534263":12,"53469999":16,"5364":20,"53814789":16,"53847563":16,"54":[21,24,29],"540813":16,"54114405":16,"543103":21,"54392202":16,"544":10,"54400":10,"5452":20,"54534953":6,"548094":16,"549381":21,"54988292":16,"55":[10,24,29],"550":10,"55000":29,"5550078":6,"5565551":16,"558363":10,"5599":24,"56":[10,21,24],"560":10,"5613":24,"5655":24,"5664":24,"569":33,"56922127":16,"56931501":16,"57":[14,21,24],"570":10,"577122":16,"5792":10,"579308":10,"58":21,"58000":10,"580796":16,"58242":10,"59":[10,13,14,21,24,33],"590":1,"59186646":16,"59194299":16,"5958515":16,"5991453":16,"5x5":[26,27],"6":[6,10,13,14,16,18,19,24,26,27,29,33],"60":[10,14,21],"600":10,"60000":26,"600000":10,"6001989060169071":20,"6005":24,"601":10,"60435859":16,"605746":21,"60613125":16,"60763889":22,"608":[10,22],"608510":10,"608674":10,"6098":10,"61":[21,24],"61062942":16,"61318842":16,"61326113":16,"613687":14,"6173489951795071":13,"618141":12,"62":21,"62015573":16,"6206749":16,"62082943":16,"62095626":16,"62107074":16,"6216":24,"6228":10,"62288846":16,"62343935":16,"62438435":16,"626179":21,"628":22,"62831579":14,"62831949":14,"6284":24,"62847222":22,"62883364":16,"62906711":16,"62923072":16,"63":[10,23,24],"63147309":16,"6341":[6,12],"63453326":16,"636efa":10,"63723971":16,"63727695":16,"63771876":16,"6394":24,"64":[24,26,27,29],"64019598":6,"64059":10,"64240716":16,"643588":16,"64383652":16,"6448":24,"64495474":16,"64524934":16,"64642601":16,"64671513":16,"646886":6,"64734418":16,"6480666066247558":13,"65":[6,12,24],"652299":21,"653386":16,"6541":10,"65486061":14,"65663369":16,"65885774":16,"65990":10,"66":[10,21,32],"66048458":16,"6611":10,"66184574":16,"6624":24,"663000":12,"66389788":16,"665":10,"66522149":16,"66568594":16,"66571243":16,"6660137226595724":16,"66647019":16,"6666666666666666":20,"667":26,"668":6,"66987819":16,"66994118":16,"67":14,"670":10,"6701":24,"6704":24,"6708":24,"67139297":16,"67241576":16,"67367877":16,"67370015":16,"6738216":16,"6755599":16,"67605116":16,"6765":24,"67676623":16,"67690662":16,"68":[10,14],"6805":24,"68054136":16,"68069155":16,"68133003":16,"6814":24,"68146157":16,"68184766":16,"68286217":16,"68309587":16,"68371465":16,"6847":24,"685500":10,"68573384":16,"68593435":16,"686":22,"68631":10,"68638609":16,"68641115":22,"6881":10,"68881933":16,"68885895":16,"69":[6,10,21],"6902":24,"69020771":16,"69057845":16,"69236319":16,"692383":10,"6924458":22,"69255292":16,"69322019":16,"6933":24,"69390867":16,"69452008":16,"69473128":16,"6958":24,"6966":24,"6968454":16,"69686411":22,"697":22,"69717451":16,"69871087":16,"69908115":16,"69922373":16,"7":[2,3,6,9,10,11,12,14,16,18,19,23,24,26,29,33],"70":[10,14],"700":13,"7000":28,"70025565":16,"70038786":16,"701149":21,"70223754":16,"70263944":16,"70370182":16,"70406565":16,"70426829":22,"705256":21,"70585277":16,"7062434298834965":12,"70830125":16,"70868214":16,"70993839":16,"71":[14,21,24,26,29],"710000":14,"7102":24,"71080139":22,"711":22,"7117385":16,"7136":10,"7143":24,"71446902":16,"71493118":16,"7150":10,"7151":10,"7152":10,"7153":10,"7154":10,"7155":10,"7156":10,"71595929":16,"71613791":16,"71624672":6,"71647227":16,"7175909":16,"71777003":22,"718":22,"718311":16,"71868257":16,"71870468":16,"7190":24,"719359":29,"72":[10,12,14,21],"7200":[13,14],"720000":[12,13,14],"72011236":16,"7215":24,"72189751":16,"72209849":16,"72237984":16,"72351704":16,"72452975":16,"72473868":22,"72486287":16,"725":[10,22],"726200":12,"72656201":16,"72693285":16,"72900597":16,"72967489":16,"73":10,"73011104":16,"7307":20,"73126145":16,"73170732":22,"732":22,"7321":20,"73263889":22,"733":22,"73321253":16,"73392689":16,"73392859":16,"73399564":16,"73406938":16,"73432084":16,"73497355":16,"73523528":16,"73527765":16,"73553435":16,"735987":10,"73622929":16,"73629291":16,"7371437":16,"73721913":16,"73884634":16,"73942066":16,"74":[10,14,26],"74047807":16,"74070909":16,"740872":16,"74152142":16,"74152169":16,"74176784":6,"74271586":16,"74273719":16,"74471303":16,"74516531":16,"74652778":22,"74695266":16,"74698581":16,"747":[6,22],"747179":6,"74782772":16,"7490650993380316":12,"74923268":16,"74988807":16,"75":[10,11,12,14,21,26],"750":10,"750000":[14,21],"75050886":16,"75066744":16,"75202614":16,"75215033":16,"75337184":16,"754":13,"75402734":16,"75439721":16,"75515268":16,"75546079":16,"75559453":16,"756":13,"75617037":16,"75665801":16,"75700651":16,"75760721":16,"758688":10,"7592036":16,"75922639":16,"75926756":16,"76":[14,21],"76035029":16,"760632":21,"76096889":16,"76123913":16,"76139725":16,"76146594":16,"76309549":16,"76383818":16,"76427688":16,"76451254":16,"7647wqr96rhr49q":13,"765200":12,"76686261":16,"76717763":16,"767943601369907":13,"7682":10,"76836771":16,"77":21,"77016488":16,"77125499":16,"772434":12,"772982":21,"772989":21,"77305065":16,"775000":18,"7763568394002505e":14,"77811399":16,"77844951":16,"77998847":16,"78":[10,12],"780000":14,"782500":10,"7831169485096":6,"784":[25,26],"78479013":16,"78485929":16,"78570":10,"78593105":16,"78740418":16,"78769807":16,"7889":20,"78912008":16,"79":21,"7921602":16,"79219349":16,"79253012":16,"794146":21,"79434712":16,"7944444444444444":23,"79515639":16,"79625474":16,"79678104":16,"79739309":16,"79815047":16,"7_data_spectral_transform":13,"8":[2,3,6,9,10,11,12,13,16,18,19,21,22,24,25,26,27,28,29,33],"80":[6,12],"80008821":16,"80047482":6,"80058568":16,"80152883":16,"802":20,"80209433":16,"80258282":16,"80274267":16,"80413431":16,"804426":16,"80775088":16,"80786877":16,"80877866":16,"81":14,"81072996":16,"81105258":16,"81211786":16,"813000":12,"81382108":6,"814":29,"8151241":16,"81530":29,"81558153":16,"81562877":16,"81571315":16,"81576455":16,"816":26,"81719692":16,"8181818181818182":20,"8184":24,"81884902":16,"8190425043357745":12,"81983109":16,"81m":29,"82":21,"82043467":16,"82113359":16,"82269232":16,"82284":29,"8238563":16,"8238774989356271":12,"82403372":16,"82484302":16,"82486446":16,"82561676":16,"8263632119514472":23,"82768761":16,"82773":10,"82784456":16,"82811465":16,"828840":10,"8309308755379773":13,"832200":10,"84":[14,26,27],"8406":10,"840700":10,"841000":12,"8439":24,"8453316591120342":13,"8457":24,"8490":24,"85":[11,12,16],"850":10,"85328813":6,"855000":12,"857143":18,"86":29,"8610":24,"86349029869899":13,"8679961043240163":13,"87":[10,12,21],"8707":24,"8738":24,"874184":10,"875000":18,"878049":18,"88":12,"88070032":6,"88107038":6,"88246352":6,"8833333333333333":23,"884191":6,"88495106":14,"88495477":14,"8866":24,"887200925547722":12,"8888":24,"890000":14,"8978":24,"898166":16,"899511":12,"9":[2,10,14,16,18,19,20,21,22,23,25,26,29,33],"90":[6,10],"9000":[24,28],"900000":18,"901":13,"90265774":6,"904":26,"904762":18,"905":10,"905100":10,"90832086":6,"90972222":22,"91":24,"910":22,"911":10,"9114":24,"91149589":14,"913043":18,"918000":12,"91986063":22,"92":21,"920":22,"925":[10,23],"925120":16,"926829":18,"927000":12,"93":[14,21],"9339":20,"9362":24,"94":9,"940000":12,"942135":14,"9434":24,"944":22,"94425087":22,"9447":24,"9450421":22,"94657351":6,"94791667":22,"948":22,"94915864":6,"95":[6,18,21,27],"950000":18,"9500949":6,"951":22,"95138889":22,"952381":18,"954545":18,"9545454545454546":18,"95486111":22,"95497644":6,"955":22,"95547329":22,"957200":10,"958":22,"95818815":22,"95833333":22,"9583333333333334":22,"96":3,"9609":10,"9610569483132156":23,"9621008403361344":23,"9632119514472456":23,"965":22,"96515679":22,"96521245":22,"96527778":22,"96660859":22,"96864111":22,"96869193":22,"96875":22,"969":22,"97":[6,18],"972":22,"9720":20,"97212544":22,"97356514":22,"975000":[18,21],"97560976":22,"976":22,"97600531":6,"976744":18,"9767441860465117":18,"97703494":22,"979":22,"97909408":22,"97916667":22,"9793790849673202":23,"98":[16,18,26],"9825784":22,"9826966":6,"983":22,"98533885":6,"986":22,"98606272":22,"98611111":22,"987665408758737":22,"99":[10,11,12],"990000z":[13,14],"9964524":12,"99746591":6,"9976":24,"998100":10,"99866939":6,"9s":22,"\u00b5s":13,"\u00e5":12,"boolean":[9,17],"break":[1,29],"case":[6,9,10,12,14,21,24,29,31,32],"class":[5,6,10,11,12,13,14,15,16,17,18,19,20,22,23,25,26,27],"default":[2,3,4,6,10,11,23,24,28],"do":[4,6,9,10,12,13,14,16,19,20,22,23,25,26,27,28,29,32,33],"export":[21,24],"final":[16,23,28,31,32,33],"float":[6,8,11,12,16,19,20,25,26,27],"function":[2,5,6,11,12,13,14,15,16,17,18,19,20,22,23,24,27,28,29,32],"ga\u00ebl":18,"import":[2,4,6,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29],"int":[6,11,12,13,14,15,16,21,25,26,27],"long":[12,13,25,26,27,28],"m\u00fcller":18,"new":[6,7,9,10,11,12,14,16,18,20,21,23,24,30,32,36],"null":[9,12],"public":[1,4,36],"return":[6,10,14,15,16,20,24,25,26,27,28],"short":[4,28,29,33],"super":[25,26,29],"switch":6,"transient":29,"true":[6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28],"try":[10,11,12,16,18,20,22,23,24,27,28,32],"var":[12,13,14,16,20],"while":[16,20],A:[1,2,4,6,7,8,10,12,14,16,17,18,20,22,23,25,26,27,28,29,30,36],AND:10,And:[12,15,29],As:[6,10,12,24],At:[3,4,11,12,32],Be:4,But:[12,14,16],By:[6,12,33],For:[1,3,6,8,10,11,12,14,16,20,23,24,25,26,27,30],If:[3,4,6,10,11,12,13,16,20,21,24,25,26,27,36],In:[3,4,9,10,11,12,13,14,15,16,18,20,21,23,24,25,26,27,28,29,30,31],Is:[1,11,16,32],It:[1,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,31,32,36],NEAR:10,No:[13,32],Not:[4,13],OF:10,OR:10,On:4,One:[1,3,6,8,13,14,20,22,23,24,26,27,29],Or:[1,28],TO:[17,21],That:[20,23],The:[1,3,4,5,6,9,10,11,12,13,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,36],Their:[3,8],Then:[4,16,25,27],There:[3,4,6,9,10,11,12,13,16,17,19,20,22,23,24,25,26,27,32],These:[2,3,6,14,16,24,26,29,32],To:[0,2,3,4,6,10,12,13,15,16,20,23,24,26,28,29,33],WITH:12,Will:[21,32],With:[14,23],_1:6,_2:[11,14],_:[6,12,19,25,26,27],_________________________________________________________________:29,__class__:[23,27],__getitem__:25,__init__:[18,25,26,29],__len__:25,__main__:25,__name__:[23,27],_c:26,_distn_infrastructur:22,_i:20,_lib:10,_n:6,a_:6,a_nparrai:11,aa:[10,11],aar:10,ab:[13,14,16,20,21,27],abil:[5,12,36],abj:10,abl:[4,16,20,24,32,33],about:[2,4,9,10,11,12,13,14,16,20,24,27,28,33],abov:[4,6,10,13,16,25,26,27],abr:10,absolut:[14,21],ac:10,academ:4,academia:24,acc:18,accept:[4,12],access:[3,4,9,10,11,21,25,32,33],accord:[6,26],account:[3,6,12],accur:[13,32],accuraci:[12,18,19,20,21,22,23,25,26,27],accuracy_scor:[19,22,23],accuracy_tim:[25,26,27],accurraci:20,achiev:24,acknowledg:4,acoust:3,across:[8,32,36],act:23,activ:[2,25,27,28,29],actual:[16,20,21,24,31],ad:[3,5,11,26,28,29],ada:24,ada_clf:23,adaboost:[18,24],adaboostclassifi:[18,23],adam:[26,27,28],adapt:34,add:[2,4,6,7,9,10,11,14,16,17,21,25,26,27,29],add_subplot:[6,16],add_to:9,addit:[4,9,10,14,16,19,26],address:[1,4,9,12,15,33],adityakadiw:20,adjac:12,adjust:12,admiralti:10,adopt:[11,33],advanc:[3,33],advantag:[3,6,12,22],adversari:27,adw:10,affect:[10,16],affin:26,afford:3,afo:10,after:[4,12,16,25,26,27],ag:9,again:[3,6,9,10,12],against:[12,16,18,26],agenc:36,agg:10,agglom:16,aggreg:[16,23],aggress:24,ago:21,ahead:[11,24],ai:[24,31],aid:34,aim:[1,10,28],air:[8,11],air_temperatur:[9,11],aka:[11,18],akmehra:33,akshai:33,al:[4,27,29],alana:4,alaska:13,algebra:11,algorithm:[6,16,20,22,23,26,27,28,29,31,32],alias:2,align:6,all:[1,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,21,22,23,24,25,26,27,29,32,33],allcorr:6,alldataload:26,allevi:12,alloc:[3,11,27],allow:[1,3,4,6,9,10,11,12,20,28,32,36],along:9,alow:13,alpha:[6,12,14,16,18,20,21,26,27],alreadi:[2,3,11,14,20,23,24,25,27,31],also:[3,4,6,8,9,10,11,12,13,14,15,16,18,23,24,26,27,28,29,31,36],alter:31,altern:10,although:20,alwai:[16,20],amath301:33,amath:33,amaz:24,amazon:3,ambient:15,among:[7,8,12,15,16,26],amount:[6,9,12],amplitud:[13,14,27,32],an:[1,3,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,32,33,36],anaconda:2,analog:17,analysi:[9,12,15,16,17,27,31,33],analyz:[4,13,14],anchor:6,andrea:18,android:4,angl:[13,24],ani:[4,5,9,12,13,14,23,24,26,28,31,36],annoi:24,annot:6,annotate_heatmap:6,anomal:21,anoth:[6,10,13,23,25,27,29,31],answer:[10,11,12,14,24,33],anthoni:33,anticorrel:12,anyon:11,api:4,app:36,appdata:10,appear:[6,10,11,13],append:[6,9,11,12,26],appli:[6,10,11,13,16,17,21,25,27,29,31,32,33],applic:[3,4,6,12,13,26,36],approach:[6,7,10,12,16,23,25,26,30],appropri:[4,24,29,32,33],approxim:[6,12,13,20,26],ar:[3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33],arang:[6,11,12,13,15,16,25,26,27,28],architectur:[3,5,26,27,29],archiv:[3,32],arcitectur:25,area:[3,11,12,18,19],arendt:33,argmax:6,argmin:16,argu:27,argument:[6,12,23,26,29],arian:34,aris:13,arithmet:11,around:[3,6,14,26],arr:11,arra:11,arrai:[5,6,7,8,10,12,13,14,15,16,18,19,20,21,22,23,25,27],arrang:[7,27],array_of_diff:12,arriv:3,artefact:13,articl:13,artifici:21,artist:14,asarrai:[6,12,13,16,25,27],ask:[4,20],aspect:13,assembl:16,assess:[12,18],assign:[10,11,12,16,17,21,24,26,27],associ:[3,9,15,25],assum:[12,13,15,16,20],assumpt:12,ast:6,astyp:[16,28],asynchron:10,atan2:6,atlow:13,atmospher:3,attach:11,attach_respons:[13,14],attain:16,attempt:[29,33],attent:23,attr:11,attribut:[7,9,10,11,15,16,19,25,32],attriobut:15,auc:[18,19],author:[4,27],autmn22:[1,4],autmn:33,auto:[13,24,27,30],autofmt_xd:21,autokera:24,autom:[24,30],automat:[2,4,6,7,10,11,15,22,24,32,33],autumn22:4,avail:[2,3,9,10,12,23,32],avalanch:15,averag:[12,16,20,21,23,24,25,27,32],averagepooling2d:27,avg:18,avgpool2d:27,avoid:[4,10,12,27,28,32],avx2:29,avx:29,awar:[4,13],awesom:24,ax11:11,ax12:11,ax13:11,ax14:11,ax1:[6,11,16,21,25,26,27],ax2:[6,11,16,21,25,26,27],ax3:[11,21],ax4:[11,21],ax:[6,11,12,13,14,16,18,19,26],axes3d:16,axesimag:6,axi:[5,6,10,12,13,15,16,18,21,25,26,27,29,32],axisgrid:16,axvlin:[12,16],azimuth:[6,10],b76e:24,b:[6,11,12,13,18,20,21,26,27,28],b_i:25,b_j:25,b_k:25,back:[6,24,26,29],backend:22,background:18,backprop:11,backpropag:[26,28],backward:[6,7,20,25,26,27],bad:[10,18,23,28,29],badg:4,bag:29,bag_clf:23,baggingclassif:23,baggingclassifi:23,balanc:[15,19],band:[13,14],bandpass:13,bar:[4,13,21],barcontain:14,base:[6,8,11,12,14,16,17,20,26,36],base_estim:23,baselin:32,baseline_error:21,baseline_pr:21,bash:3,basi:[13,16,17],basic:[3,4,14,18,22,26,30,32,33],batch:[10,25,26,27],batch_siz:[25,26,27,28],bay:[17,18],bayesian:24,bbox_to_anchor:12,beat:32,beauti:36,becaus:[10,11,12,16,20,25,26,27,28,29,31,32,33],becom:[3,4,13,20,28],been:[11,20,24,27,32],befor:[4,11,13,17,18,25,32,33],begin:[9,12,14,18],beginn:33,behav:[11,26],behavior:32,behind:[23,36],being:[17,25,27],belong:[16,18,20],below:[1,3,4,5,6,9,11,13,14,15,16,17,23,26,27,29,33],benefit:34,best:[4,16,18,20,26,27,30,32],best_params_:22,beta:29,better:[6,12,16,23,24,26,27,28],between:[3,4,5,11,12,13,14,15,16,18,19,20,23,26,32],beyond:34,bhe:10,bhn:10,bhz:10,bia:[12,23,25,26,27],bias:[25,26],bibtex:4,big:[3,9,20],bin:[10,11,14,24],binari:[2,8,9,14,17,20,23,25,26,29],binary_crossentropi:29,binder:[4,36],binderhub:36,biomed:29,bit:10,bitbucket:4,black:[6,11,12,14,16,26],blank:[1,16],blast:15,block:[27,28,29],blog:14,blue:[9,12,25,26,27],bn1:10,bn2:10,bn3:10,bne:10,bnn:10,bnz:10,bo:16,bokeh:10,bokehj:10,bold:[1,16],book:[3,10,11,13,32,33,34,36],boost:24,boot:29,bootstrap:[23,24],both:[12,14,16,17,18,20,24,27],bottleneck:29,bottom:[6,10],boulder:34,bound:[9,26,32],boundari:[9,18,26],bourn:3,box:[4,12,24],bp:13,br:[1,24],bracket:11,branch:[4,5,26,29,33],breadth:33,break_ti:22,brew:3,brief:10,briefli:4,bring:13,broader:27,broadli:12,browser:[1,4,36],brute:22,bsd:18,bti:10,bucket:15,bucketx:15,bug:4,build:[12,16,20,26,36],built:[9,11,22,26,29,32],bundl:26,burden:12,butter:13,butterworth:13,bv1:10,c1:13,c2:13,c:[6,10,11,12,14,16,18,22,26,27,29,32,36],c_:[6,26],cach:[13,24],cache_s:22,calcul:[6,8,10,11,12,13,14,15,16,18,19,20,21,24,25,26,27,32],california:[3,10],call:[3,6,9,10,11,13,14,16,18,20,23,24,25,26,28,29,32,36],callabl:26,can:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,36],cancel:25,candid:22,cannot:[10,13,18,26,29],canon:[13,29,33],canva:33,capabl:3,captur:[12,26],carbon:16,cardin:24,carefulli:[12,13],carpentri:[3,4,5,11,34],carri:[10,27],carto:10,cascadia:12,casino:12,catalog:[3,10,27],catboost:24,categor:[8,9,10,21,24,26],categori:[15,17],causal:13,caveat:16,cbar:6,cbar_kw:6,cbarlabel:6,cc:[16,18,29],cch1:10,ccp_alpha:24,cd:4,cdot:[6,20,25],cell:[1,10,13,18,24,26,28],celsiu:11,center:[3,4,6,11,12,16],central:[3,10,12,13,14],central_mo:14,centroid:16,certain:16,certifi:14,cfg:15,chain:26,challeng:[8,9],chang:[4,6,10,11,12,14,23,27,29,31],channel:[2,10,13,14,26,27,36],chapter2:[10,13],chapter:[3,8,24,33],charact:[8,9],characterist:[13,18,19],charset:14,chart:21,chatgpt:34,cheat:4,chebyshev:13,check:[2,4,9,10,12,13,14,26],checkout:4,checkpoint:[26,27],chile:10,chine:33,choic:[12,22,27],choos:[3,4,6,10,13,14,16,17,25,26,27],choosealicens:4,chronolog:12,cienc:33,circ:[11,20],circl:[12,16],citat:4,cite:4,citi:9,class_nam:29,class_weight:22,classic:[13,24,27],classif:[14,20,23,25,26,27],classifi:[8,15,17,19,20,22,25,26,27,29],classificaiton:[17,23],classification_report:[18,19],claus:18,clean:[4,10,12,14,29,32],cleanest:4,clear:[16,24,33],clear_output:13,clearli:[12,16],clf2:22,clf:[18,19,22,23,26],cli:4,click:4,client:[13,14],climat:9,clipboard:4,clone:[4,5,33],close:[12,18,20,29],closer:[12,16],closest:16,cloud:[1,4,5,6,9,11,32,33,36],cloudstor:3,cluster:[3,24,27,32,33],cluster_centers_:16,cluster_label:16,clusterid:16,clusters_new:16,clusters_old:16,cm:[6,13,16,19,26],cm_bright:26,cmap:[6,13,15,18,19,26,29],cnn:28,co:[6,11,16],coarsen:11,coast:10,coat:29,cobli:11,code:[1,3,4,6,10,16,18,20,24,32,33,36],codespac:13,coef0:22,coef:12,coef_:[12,20],coeff:6,coeffic:12,coeffici:[6,11,12,13,16],cohort:4,col:11,col_index:16,col_label:6,colab:4,collabor:36,colleagu:4,collect:[9,13,14,16,18,23,24,32],collinear:24,color:[6,9,10,11,12,14,16,18,25,26,27],color_threshold:16,colorbar:6,colorblind:11,colorinterp:9,colormap:6,column:[6,8,10,12,13,14,15,16,20,21,25],column_stack:16,com:[1,4,8,9,13,15,16,20,21,24,27,33,36],combin:[6,7,12,14,16,22,24,25,27,28],come:[2,11,24],comic:4,comma:8,command:[3,4,10,20,21,26,36],comment:16,commit:4,common:[9,13,15,16,17,18,29],commun:[4,9,34,36],compact:[10,13],compar:[5,10,11,13,14,18,23,25,26,27,32],compare_model:24,comparison:[6,24],compil:[26,28,29],complet:[10,13,14,16,18,32],completeness_scor:16,complex:[6,9,11,12,13,16,17,26,27,32],complex_:14,complic:[20,28],compon:[12,15,24,27,29,31,33],components_:6,compos:[1,3,10,25,26,27],composit:14,compress:[8,10,13,29],comput:[1,2,4,5,6,9,12,13,16,17,19,20,25,26,27,32,33,36],computation:[6,12],compute_cent:16,compute_clust:16,compute_dist:16,compute_elbow:16,compute_object:16,cona:2,concat:[12,15],concaten:[12,14,16,27],conceit:12,concept:[12,16,29,33],concurr:22,conda:[23,36],condit:[16,17,30,32],conduct:4,conern:3,confid:[12,18],config:[4,11],configur:[4,24],confirm:24,conflict:4,confus:[18,19],confusion_matrix:[18,19],congrat:4,conj:14,connect:[3,4,25,26,27,28,29],consid:[13,17,18,24],consist:[16,22,30],constant:24,constitut:23,constrain:[13,26],construct:14,consum:30,contact:4,contain:[1,2,4,6,9,11,12,16,21,25,29,33,36],contamin:14,content:[3,4,5,9,10,14],context:[11,14,25,26,27],continu:[4,6,9,12,13],contourf:[9,13,26],contourpi:14,contribut:[3,4,5,6,16,23,26,34],contributor:4,control:[33,36],conv1:26,conv1d:27,conv2:26,conv2d:[26,27,29],conv2dtranspos:29,conv_decod:29,conv_encod:29,converg:[12,16,29],convert:[6,10,11,12,13,19,20,21,22,23,25],convnet:27,convnetquak:27,convolut:26,cool:[3,24],coord:11,coordin:[9,11,12,13,17,26,32],copi:[2,4,11,16,19,22,23,32,33],core:[3,10,11,16,23,29,36],corner:[4,9,13],corr:[6,7,15],corr_coef_collector:12,corrcoef:[11,12],correct:[20,23,24,25,26,27],correctli:[18,20,24],correl:[6,7,11,12,15,32],correlated_data:12,correlation_matrix:12,correspond:[10,15,16,20,25,26,33],cosin:13,cost:[3,12,24,26],could:[3,4,8,10,19,27,29],count:[10,12,13,14,18,19,21],cours:[1,4,5,9,10,11,12,34],cov:11,covari:12,cover:[13,27,32,33],cox:24,cpu:[3,11,23,24,29],cpu_feature_guard:29,cr:9,crap:[6,12,14,15],creat:[2,5,6,9,11,12,13,14,16,17,20,21,24,25,26,28,32,33,36],creation:9,credit:4,cristea:[33,34],criterion:[24,25,26,27],critic:[4,12,13,14,29],cross:[11,19,20,25,26,32],cross_val_predict:[19,23],cross_val_scor:[18,23],crossentropi:27,crossentropyloss:[25,26,27],cruis:16,cryospher:33,cs160:33,cs163:33,cs230:27,csv:[1,7,8,9,14,15,16,20,21,24],cu:34,cubic:14,cuda:[3,11],cumsum:6,cumul:6,cumulativevarianceexplain:6,current:[2,6,16,20,21,28,32],curriculum:10,curv:[18,19,23,26,27],curvatur:13,cutoff:13,cv:[12,19,22,23],cv_results_:22,cwt:[7,13,32],cwtm:13,cwtmatr:13,cyan:6,cycler:[2,14],cyto:16,cytomet:16,d1:11,d2:11,d2dl:28,d:[6,8,10,11,13,14,16,21,25,26,27],da:3,dai:[6,10,12,13,21,24],daili:[6,21],dask:11,data:[1,3,4,10,13,15,17,20,22,23,26,28,30,31,33,36],data_elevation_mean:10,data_faith:16,data_group:10,data_shrink:16,dataarrai:11,databas:[8,9,11],datafram:[6,8,11,12,14,16,18,21,28],dataload:[25,26,27],datamanipul:[10,13],datapoint:26,dataset:[6,9,10,11,12,13,15,16,18,19,20,21,22,23,25,26,27,29,32],date:[4,6,12,16,21],date_year:[6,12],datetim:[10,21],datetime64:10,dateutil:[2,14],db:20,de:6,deactiv:2,deal:[6,12,21,27],debug:32,decai:14,decid:[16,18,20,26],decis:[17,18,23,24,26],decision_funct:[19,26],decision_function_shap:22,decisionboundarydisplai:18,decisiontre:23,decisiontreeclassifi:[18,23],declar:[11,12],decod:10,decoder_cnn:29,decompos:[6,13,29],decomposit:[6,13,16],decor:14,decreas:[6,7,16,18,20,27],dedic:26,deep:[3,11,27,29,31,33],deepdenois:29,def:[6,10,14,15,16,20,25,26,27,28,29],default_rng:12,defin:[2,8,10,11,12,14,16,18,20,22,36],definit:6,degc:11,degre:[6,13,21,22,24],delet:2,delta:[13,14,20],dem:13,demarc:16,demographisc:3,demonstr:[5,6,11,12,15,24,33],dendrogram:16,denoise_ae_cnn:29,denoise_decod:29,denoise_encod:29,denol:[33,34],denot:16,dens:[26,27,28,29],densiti:[10,16],depend:[2,6,7,10,13,26,27,36],deploi:[3,10,33,36],deploy:[4,33],deprec:[10,12,22,29],depth:[10,16,23,27],deriv:[20,26,36],descent:[11,17,19,25,26],descr:22,describ:[4,9,10,11,12,14,21,29,31,33],descript:[4,10,21,24],design:[8,9,11,12,16,19,22,23,27,33],detach:20,detail:[3,4,8,16,22,24,26,33],detect:[15,27,29],determin:[12,13,21,25],determini:12,detrend:[12,13,14],dev:[10,13],develop:[2,3,4,33,34,36],deviat:[11,12,13,14,32],devic:[3,11],devid:12,df:[6,10,12,14,15,16,18],df_test:25,df_train:25,diag:6,diagon:[6,18],diam:16,diam_lwr:16,diam_mid:16,diam_upr:16,diamet:16,dict:[6,19],dict_kei:22,dictionari:[6,10,11,19,22,23],did:[10,12,24],diff:[4,12],diff_mean:12,differ:[2,4,5,8,9,10,11,12,13,14,15,16,18,23,27,31,32,36],differenti:[11,26],difficult:[13,16,31],diffus:29,digit:[9,13,19,22,23,25,33],dim:11,dimens:[6,7,8,9,10,11,12,13,26,27,28,29,32],dimension:[7,8,9,10,11,16,17,27,33],dip:10,direct:[6,11,15],directli:[3,10,19,24],directori:[4,9],disabl:[25,26,27],disadvantag:12,disciplin:[8,33],discov:16,discret:13,discrimin:[6,14,17],discriminant_analysi:18,discriminatori:13,discuss:[3,4,10,12,16],disp:19,displac:[6,8,12],displai:[10,11,13,14,21],display_styl:11,dissimilar:11,dist:16,distanc:[13,16],distancemetr:16,distinct:16,distinguish:11,distort:16,distribut:[3,6,10,11,12,13,14,15,16,22,32,36],dive:[11,27],divers:8,divid:[12,13,14,32,33],divis:16,djf:11,dl:[9,13,15,16,20,27],dmatrix:23,dmc:[13,14],dn:16,doc:[8,10,11,12,16,21,24,26],docker:[24,33,36],docmument:4,document:[4,5,9,10,13,16,18,32,36],doe:[9,10,12,14,16,20,23,27,32,36],doi:[4,9,27,32],domain:[14,26,29],domin:[9,13],don:[24,28],done:[3,4,9,11,12,13,22,24,25,26,27],dot:[6,20,27],dowload:9,down:[1,4,9,25],download:[2,4,6,9,12,13,14,15,16,20,23,24,25,26,27,36],downsampl:[11,26,27],dozen:36,dp1:10,dp2:10,dp3:10,draft:18,dramat:3,drastic:18,draw:[12,16],dress:29,drive:33,driven:36,drlat:13,drlon:13,drop:[4,14,15,20,21,26,32],dropbox:[4,9,10,13,15,16,27],dropna:[10,14,20],dropout:[26,27,29],ds2:11,ds:[1,4,11,33,36],dt:[11,13,24],dtype:[10,11,14,16,22,24,27],du:11,ducelli:34,due:[12,13,16,33],dummi:24,duo:4,duplic:[4,12],durat:13,dure:[24,25,26,28,33],dw:20,dwa82x6xhjkhyw8:16,dz:14,e2019gl085870:27,e:[1,2,3,4,6,8,9,10,11,12,15,16,20,23,24,25,26,27,29,31,32],e_b:12,e_train:12,e_val:12,each:[2,3,4,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,33,36],earli:[9,28,33],earlier:[26,29],early_stop:26,earth:[4,11,15,33,34],earthdatasci:[4,9,11,34],earthquak:[6,10,13,14,15,17,27,29],earthrocgranit:14,eas:12,easi:[11,20,24],easier:[6,11,20,26],easili:[12,29,32],east:[6,9,10,12],eastward:12,ecosystem:33,edg:[10,13,27],edgecolor:[16,18,26],edit:[3,8,24],editor:4,edu:[4,6,12,33],educ:33,effect:[12,13,18,25],effici:[3,12,24,29],effort:[24,30],eh1:10,eh:10,ehn:10,ehz:10,eigen:6,eigenvalu:6,eigenvector:6,either:[1,3,6,11,12,16,20,26,27,29,33],el:10,elaps:22,elast:24,element:[9,10,11,12,18,27],elev:[9,10,13],ellips:16,eln:10,els:[4,6,11,12,15,16,25,26,27],elsewher:27,elz:10,email:[4,33],embed:[6,9,31],emerg:9,empir:16,emploi:12,empti:[12,16,28],en:24,enabl:[3,13,29],encod:[8,9,24,27],encoder_cnn:29,encount:13,end:[0,6,7,10,12,14,16,17,18,25,26,27,33],end_dim:[25,26],end_tim:10,enddat:10,endtim:[13,14],energi:13,enforc:13,engin:[12,33],enhanc:9,enivron:2,enough:[11,32],ensembl:[18,19,21,22],ensur:[12,21],enter:[10,13,14,24],entir:[4,10,12,23,25,27,31],entri:[6,9],entropi:[20,25,26],enumer:[6,16,18],env:[2,14,18,23,29],environ:[4,5,32,33,36],environment:12,ep1:10,ep2:10,ep3:10,ep:18,epoch:[23,25,26,27,28,29],epr:12,epred_train:12,epred_v:12,epsilon:20,eq1:27,eq2:27,equal:[6,12,13,14,27],equat:[26,36],equial:11,equival:[10,11,20,25,26],err:18,error:[6,7,10,12,16,18,20,21,25,26,27,32],error_scor:22,erupt:16,escienc:3,esourc:33,especi:[12,27,32],ess490:[1,10],ess:[1,4,33,36],essenti:12,est:16,estim:[6,12,16,21,22,23,25,32],estimator__break_ti:22,estimator__c:22,estimator__cache_s:22,estimator__class_weight:22,estimator__coef0:22,estimator__decision_function_shap:22,estimator__degre:22,estimator__gamma:22,estimator__kernel:22,estimator__max_it:22,estimator__prob:22,estimator__random_st:22,estimator__shrink:22,estimator__tol:22,estimator__verbos:22,et:[4,24,27,29],eta:[23,29],etc:[1,4,24,25,32],euclidean:16,euclidian:[11,16],evalu:[12,16,23,25,26,27,33],evaluate_model:24,even:[13,14,16,27,31],evenli:11,event:[10,13,15,27,36],eventu:36,everi:[11,13,27,31,33],everyth:[2,31],everytim:4,evolut:25,exact:[2,12,20,31],exactli:12,exampl:[3,4,6,8,9,10,11,13,15,16,17,18,19,20,21,23,25,26,28,30,33],exce:25,except:[1,26],exclud:24,exclus:26,execut:[1,2],execute_request:25,exercis:[9,12,15,18],exhibit:12,exist:[12,13,16,20,36],exist_ok:[9,26,27],exp:[10,11,13,14,20,25,26],exp_reg101:24,expand:1,expans:3,expect:[5,24,32],expens:[3,27],experi:[3,24,30,36],expert:33,expertis:32,expir:4,explain:[6,7,16,20,25,26,27],explained_variance_:6,explained_variance_ratio_:6,explan:4,explanatori:10,explicitli:12,explor:[7,12,14,16,19,22,23,25,30,32],explos:15,expon:14,express:[10,16],extend:[18,25,27],extens:[2,5,36],extent:13,extern:[2,10],extra:24,extract:[7,13,14,15,21,24,25,29,33],extractal:9,extrem:[12,24],f0e1ywupdbuv3l3:15,f1:[18,20,28],f1_score:18,f2:28,f4:12,f:[11,13,14,15,18,19,20,21,22,23,25,26,27],f_1:18,f_:13,f_a:13,f_c:13,f_path:[26,27],f_x:20,facecolor:16,facet:11,facil:32,facilit:[9,11],fact:[12,16,27],factor:[4,13,14,26,27],fail:26,fair:32,faith:16,fallen:27,faller:4,fals:[6,10,12,14,16,18,19,20,22,23,24,26],famili:13,familiar:[10,11],far:12,fashion:27,fashion_mnist:29,fast:[3,10],faster:9,fastica:[6,7],favor:27,fc1:26,fc2:26,fc3:26,fc4e2a:6,fc:16,fdsn:[13,14],fdsn_client:[13,14],feather:16,featur:[7,10,11,13,16,20,22,24,26,27,29,32,33,36],feature_import:21,feature_importances_:21,feature_list:21,feature_nam:[6,22],fee:4,feed:29,fetch:[4,33],fetch_openml:[19,22,23,25,26,27],few:[12,16,27],fewer:6,ff0000:26,fft2:13,fft:[7,13,14],fftfreq:[13,14],fftpack:[13,14],fftshift:13,fidel:29,field:[6,8,10,11,24,27,29,30],fig1:11,fig2:11,fig:[6,10,11,12,13,14,16,21,25,26,27],figsiz:[6,11,12,13,14,16,19,21,26,28],figur:[6,9,10,16,19,24,25,26,27],figure_:19,figure_format:11,fiji:10,file1:[9,13],file2:[9,13],file:[1,3,4,7,8,9,11,14,15,16,18,25,27,32,33],file_url:[6,12],filenam:16,fill:[13,14,27,32],fill_betweenx:16,fill_color:10,fill_valu:22,filter:[10,27],find:[3,4,6,7,11,12,13,15,16,17,18,20,23,25,26,27,29,30,32,33],finder:24,finish:22,finit:[13,15,27],first:[1,3,4,6,7,10,11,12,13,14,15,16,18,19,20,23,25,26,27,28,29,32,33],firstnam:9,fisher:14,fit:[6,12,16,18,19,20,21,22,23,26,27,28,29,30],fit_predict:16,fit_transform:[6,16,18,19,22,23,29],fivethirtyeight:21,fix:[4,10,12,22,26,27,32],flag:[16,29],flat:14,flatten:[23,25,26,27,28,29],flavor:36,flexibl:11,flip:11,float32:[11,27,28],float64:10,floor:13,flouresc:16,flow:16,fluor:16,fly:11,fma:29,fmi:16,fn:[16,18,20],fname:9,focu:[3,9,11,12,15,24,27],focus:33,fold:[19,22,24],fold_shuffl:24,folder:[9,13,16,27,32],folium:9,follow:[0,3,4,6,9,12,15,16,18,24,27,29,33],font:[11,16],fontsiz:[11,16],fonttool:14,fontweight:16,forc:[4,20,22,33],forecast:[21,24],forecast_acc:[21,24],forecast_noaa:[21,24],forecast_und:[21,24],forest:[17,18,19,23,24,26,33],forg:2,fork:4,form:[9,12,14,16,17],format:[1,6,7,8,10,15,16,18,21,25,26,27,32,33],formatt:6,former:34,formul:20,formula:[19,20],forth:24,fortran:36,forward:[6,7,11,25,27],found:[4,9,11,20,22,25,27,33],foundat:33,four:15,fourier:[7,14,15,29,33],fourth:[1,11,14],fowlk:16,fp:[16,18,20],fpr:[18,19],frac:[6,11,13,14,16,18,20,25,26],fraction:[16,18,27],frame:[10,12,14,15,22],framework:[9,13,33],free:[3,4,29,32,36],freq:[10,13],frequenc:[11,13,14],frequent:6,freqvec1:13,freqvec:[13,14],fri:21,friend:[2,21,24],friendli:4,from:[1,2,4,6,7,8,9,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,32,33,36],from_estim:18,from_numpi:20,fs:[13,14,15],ft:13,ftp:10,full:[24,27],full_matric:6,fulli:[25,26,27,28,29],fundament:[7,11,12,18],further:[4,7,26,29],futur:[4,10,25],futurewarn:10,g:[1,2,3,4,6,8,9,10,11,12,16,20,23,24,25,26,27,31,32],gain:36,game:3,gamma:[18,19,22],gan:10,gap:[13,32],gate:[16,28],gather:[3,17],gaussian:[11,18,27,32],gaussian_process:18,gaussiannb:[18,23],gaussiannois:29,gaussianprocessclassifi:18,gb:23,gbr:24,gca:[6,12,14],gcp:3,gdrive:4,ge:11,gel:10,gener:[4,6,9,10,11,12,14,16,24,26,27,28,30,31,32,33],generaliz:[12,32],generate_time_seri:28,genr:8,geo:33,geodesi:[6,12,33],geograph:9,geohackweek:[9,34],geolog:[9,13],geologi:[9,13,33],geometri:9,geophys:[8,27],georeferenc:9,geoscien:33,geoscienc:[3,13,31,32,34],geoscientif:[8,11,13],geosmart:[4,33],geospati:[8,12,13,26,31,32,33],geq:20,get:[3,4,6,9,10,11,12,14,16,20,21,23,25,26,27],get_arrai:6,get_dummi:[21,24],get_features_by_domain:15,get_param:22,get_waveform:[13,14],get_xticklabel:6,geyser:16,giant:31,git:[5,23,33,36],github:[1,3,5,24,27,29,32,34,36],gitignor:4,gitlab:4,give:[2,4,12,13,14,16,18,20,24],given:[1,6,10,12,16,18,27,32],gla:10,glass:1,glo:10,glob:[6,12],global:[3,4,10,27],global_quakes_iri:10,gn:10,go:[4,9,10,11,12,13,15,20,24,25],goal:16,goe:25,gone:24,good:[4,7,12,16,32],googl:[8,21,24,33],gouraud:13,gov:[9,21],gp:[6,8,12],gpd:9,gpl:10,gps_timeseri:[6,12],gpu:[3,11,24],grad:20,grad_a:11,grad_b:11,grad_c:11,grad_d:11,grad_fn:20,grad_y_pr:11,gradient:[11,17,19,24,25,26,27,28],gradient_desc:29,graduat:34,grai:27,granit:14,grant:4,grant_sudo:24,graph:[11,21,26],graphic:[3,27],gray_r:19,great:[3,4,24,26,27,29],greater:[13,21,27],green:[9,12,16],grei:25,grid:[6,9,10,11,12,13,14,16,18,19,26,27,28],gridsearchcv:22,grobler:18,ground:[13,14,15,16,32],group:[3,9,10,11,12,15,16,17,23,24,32],groupbi:[10,11],growth:3,gst:10,gudelin:4,gueron:23,guess:9,gui:4,guid:[4,10],guidelin:[4,32],gzip:[6,12],h2o:24,h5:[7,8,9,15,27],h5py:[9,15,22,27,29],h:[6,10,20,26],h_y:20,ha:[4,6,9,11,12,14,15,16,17,20,22,24,25,26,27,28,29,32],hackweek:36,had:[4,25],half:33,hand:[23,25,36],handl:[3,4,10,17,24,26],handwritten:19,happen:[6,10,11,12,13,16],happi:26,hard:[4,23,33],hardwar:[1,3,36],harmon:18,hasattr:26,hat:[12,13,20,25],have:[2,3,4,9,10,11,12,13,14,15,16,20,23,24,25,26,27,28,29,31,32,34],hdf5:15,hdf:9,hdo:10,head:[1,4,6,9,10,14,15,16,21,24],headach:4,header:[10,25],heatmap:6,heavi:3,height:[9,10,27],help:[4,5,11,12,32],henderson:[33,34],here:[3,4,6,9,10,11,12,13,14,15,16,17,19,20,22,24,25,26,27,28,29,33],heterogen:9,hh2:10,hh3:10,hhe:10,hhn:10,hhz:[10,13,14],hidden:[26,27,28],hidden_layer_s:26,hide:6,hierarch:27,hierarchi:[16,27],high:[3,8,12,13,14,16,18,24,29,33],higher:[10,18],highest:[6,13],highlight:27,highpass:13,hist:[10,11,12,13,14,15],histogram:[10,11,13,14,15],histor:[21,24,27],histori:[25,26,27,28,29],hj2:10,hj3:10,hjz:10,hle:10,hln:10,hlz:10,hn1:10,hn2:10,hn3:10,hne:10,hnn:10,hnz:10,hold:9,home:[3,4,9],homepag:4,homewgrown:32,homework:4,homgeneity_scor:16,homogen:16,homogeneity_completeness_v_measur:16,honshu:10,hood:24,hook:20,hopefulli:16,horizont:[3,6,12],horizontalalign:[6,26],host:[4,33,36],hot:24,hour:[3,10,13],hover_data:10,hover_nam:10,how:[3,4,6,8,9,10,11,12,14,15,16,18,19,20,25,26,31,32,33],howev:[3,6,9,12,20,26],hp:13,hpc:[5,11],href:[10,13,26],html:[1,6,10,11,16,26,29,32],htop:3,http:[1,3,4,6,8,9,10,11,12,13,15,16,18,20,21,24,26,27,29,30,32,33,36],hub:[3,5,9,33],huber:24,hue:16,hulbert:27,human:[9,32],hv1:10,hyak:3,hydrolog:6,hyp_50m_sr:9,hyper:[17,24,26],hyperbol:26,hyperparamet:[12,23,24,27,32],hyperplan:17,hypothesi:12,hz:[13,14],i2:13,i6tv3ug15oe6yh:13,i:[3,6,8,10,12,13,14,15,16,19,20,25,26,27,29,32],i_it:20,ic:27,ica:[6,7,32],iclass:18,icon:4,id:[15,21,24],idai:[6,12],idea:[16,23,24,29],ideal:[6,18],ident:[11,18],identifi:[6,21,32],idna:14,ifft2:13,ifft:[13,14],ifram:10,ignor:[4,13,16,24,27],ignore_index:15,igs14:[6,12],ii:[6,12,18],iid:22,iik:12,illustr:[4,12,13,16,29],iloc:[9,10,15,21,24,25],im:6,imag:[1,6,9,13,14,19,22,24,25,26,27,29,33],image_index:29,imageri:8,imagin:[12,29],imaginari:29,img:1,impact:31,implement:[3,10,16,23,26,27,29],impli:6,important_indic:21,importantli:14,importerror:18,importlib:14,improv:[29,32],imput:24,imputation_typ:24,imshow:[6,13,19,29],in_channel:27,in_circl:12,in_featur:[25,26],in_squar:12,inaccess:4,includ:[1,4,5,14,26,29,32,33],incomplet:4,incoropor:33,incorpor:36,increas:[11,12,16,18,20,27,28],increasingli:27,ind:13,inde:[12,18,29],independ:[4,9,12,20,23],index:[9,10,15,16,21,24,25],indic:[12,14,16,26],individu:[3,11,16,23,25],induc:[12,27],industri:24,inertia:16,inexact:20,infin:20,infinit:13,influenc:[12,24],info:[2,10],inform:[4,6,7,9,26,31,32,36],infrastructur:36,infti:[13,14],inherit:25,init:[4,12,16],init_cent:16,initi:[4,11,16,20,25,26,27,29,32],initiali:16,inlin:[6,11,12,21,26],inlinebackend:11,inplac:[10,20],input:[6,7,10,11,13,15,24,25,26,27,28,29,32],input_shap:[26,27,28,29],inquir:10,inquiri:9,inscrib:12,insert:[1,16],insid:[2,6,12],inspect:18,inspir:4,instal:[2,3,4,5,10,13,14,15,23,24],instanc:[1,3,6,10,14,18,22,23,26,27,32,33],instanti:21,instead:[10,13,14,16,18,20,23,29,32],institut:[3,32],instruct:[4,29],instructor:[4,10,13,33],instrument:[13,16],int32:[16,22],int64:[10,22,23],int_:[13,14],integ:[8,11,19,27],integr:[7,11,24],intend:[33,36],intens:[6,12],interact:[1,3,7,10,24,26,36],intercept:12,intercept_:20,interest:[13,15,29,34],interfac:[1,2,4,36],intermedi:[4,13,25,26,27,32,33],intern:[10,28],internet:36,interpol:19,interpret:[2,9,17,26,33],interpret_model:24,interv:[12,26],intro:[10,11,33],introduc:[11,12,24,26,28,29,31,33],introduct:[3,10],introductori:9,intuit:26,invari:27,invers:6,inverse_transform:6,investig:13,involv:[10,12],io:[4,6,9,10,12,27,29,30],ipykernel_2672:10,ipykernel_47043:13,ipykernel_7989:16,ipynb:[10,13],ipython:13,iq1:27,iq2:27,iq:27,iri:[6,13,14],irisdf:6,isal:9,isel:11,isfinit:27,isin:10,isinst:6,island:10,isol:[2,6,31,36],isomap:6,issu:[4,5,24,28,32],ital:1,item:[1,4,10,11,25,26,27],iter:[12,15,16,20,21,22,24,25,26,27],ith:25,ith_cluster_silhouette_valu:16,its:[2,7,10,11,12,14,15,16,23,24,26,27,28,32],itself:[9,16],j4:16,j5lxhd8uxrtsxko:9,j:[6,16,20,25],jaqu:18,java:36,javascript:[9,36],jja:11,job:[3,24],john:9,johnson:27,journal:35,js:[9,13],jsgb:10,json:[1,8,9],juli:13,julia:[32,36],jump:25,jupyt:[2,3,5,21,24,26,32,33,36],jupyterhub:[3,4,36],jupyterlab:[2,4,10,36],jupyternotebook:36,just:[4,10,12,14,15,16,20,25,26,27,28,31],k:[6,14,17,18,19,20,21,23,24,25,27],k_means_cyto_3:16,k_means_cyto_8:16,k_means_cyto_bad_init:16,kaggl:20,kcpb:10,keep:[4,11,12,13,20,26],kei:[4,9,10,11,15,19,21,22],kelvin:11,kept:12,kera:[23,25,26,27,28,29,30,33],keras_tun:30,kerasclassif:26,kerasregressor:26,kernel:[1,17,18,19,22,24,26,27],kernel_s:[27,29],kf:12,kfold:[12,24],khbb:10,khmb:10,kilomet:10,kind:9,kit:[16,23],kiwisolv:[2,14],klat:13,klon:13,km:[10,13],kmean:16,kmeans_model:16,kmeans_pp:16,kmpb:10,kneighborsclassifi:[18,19,22,23],knn:[17,18,23,24],knn_clf:19,knn_predict:19,know:[1,3,10,17,20],knowledg:[27,29,33],known:[12,19,24,27],ko:16,koehrsen:21,kurtosi:13,kurtosis_valu:14,kw:6,kwarg:[6,29],kxk:18,l2:[11,27],l:[20,25,26,27],l_1:11,l_2:11,l_old:20,lab:[4,20,34],label:[5,6,10,11,15,16,17,18,19,23,24,25,26,27,28,32],label_binar:19,labelbottom:6,labelcolor:[25,26,27],labels:11,labels_:16,labeltop:6,lamb:10,lambda:[10,21],lambda_meters2kilomet:10,land:[3,9],landsat:[3,8],landslid:15,languag:[1,3,4,9,32,36],laplac:14,laptop:[2,4],lar:24,larg:[3,4,11,13,14,20,23,26,27,32],larger:[3,6,9,16],largest:[6,13],lasso:24,last:[4,9,10,11,13,18,20,21,23,24,26,27,28],lastnam:9,lat:[10,11,13,16],later:[2,12,20,21,26,28],latex:1,latitud:[10,13,26],launch:1,law:11,layer1:25,layer:[4,9,25,28,29],layout:21,lba:10,lbfg:26,lce:10,lcl:10,lcq:10,lda:[17,18],ldata:15,ldo:10,lead:[6,12,13,30],leader:3,learn:[2,3,6,7,8,9,10,11,12,17,18,19,20,21,22,25,27,28,29,32,34,36],learn_rat:23,learner:23,learning_r:[11,23,25,26,27,29],learnt:24,leas:32,least:[13,24,33],least_frequ:24,leav:[1,10],leaveoneout:12,lectur:[8,11,12,13,15,27,33],lecun:27,leduc:27,left:[4,6,10,11,12,26,27],legend:[6,11,12,13,14,19,21,26,28],legend_el:6,len:[6,9,12,13,14,15,16,18,19,20,21,23,25,26,27,29],lenet_checkpoint:[26,27],length:[6,10,11,12,14,20,25,27],length_a:12,length_sub:12,leq:[16,20],less:[6,10,12,13,24,32],lesson:[3,5,34],let:[6,9,10,11,12,13,14,15,16,18,20,25,26,27,28],letter:27,level:[1,10,15,18,24,33],lh2:10,lh3:10,lh:[10,11],lhe:10,lhn:10,lhz:10,lib:[9,14,18,23,29],librari:[2,24,29,32],licens:[4,18],lie:[16,26],light:[16,24],lightgbm:24,like:[3,4,8,9,10,11,12,14,16,20,27],lil:29,lilianweng:29,limit:[9,12,13,17,22,23,26,29,32],linalg:[6,11],line2d:[14,16,18],line:[1,2,4,6,10,11,12,13,14,16,17,18,21,24,26,36],line_color:10,linear:[6,11,13,14,17,18,19,20,22,24,25,26,27,29],linear_model:[12,20],lineardiscriminantanalysi:18,linearli:[11,13],linearly_separ:26,linearregress:12,linestyl:[6,11,16],linewidth:[6,11,12,18],link:[1,4,10,15,33],linkag:16,linregress:12,linspac:[6,11,12,13,14,26,28],linux:[3,5,32],list:[1,2,3,4,5,6,9,10,11,12,15,16,21,24,26,27,32],listedcolormap:[18,26],literatur:[27,32],littl:[17,18],live:36,llar:24,ln:6,lne:10,lnn:10,lnz:10,load:[6,10,14,27],load_data:29,load_dataset:11,load_digit:[19,22,23,25,26,27],load_iri:6,loaded_test:[25,27],loaded_train:[25,26,27],loaded_v:26,loc:[10,12,16,19,22],local:[4,5,10,13,16,27,33],locat:[1,9,10,13,14,15,16,21,26,27],log10:[13,15,16],log:[10,11,13,14,16,20,24,25,26,29],log_:14,log_i:16,log_x:16,logarithm:32,logic:25,logist:[17,25,33],logistic_regress:20,logisticregress:20,logit:25,logspac:[11,13,26],loguniform:22,lon:[10,11,16],longer:[13,16,20,28,29],longitud:[10,11,13,26],loo:12,loocv:12,look:[4,6,9,10,11,14,15,16,18,23,24,25,27],loop:[5,6,10,12,13,16,25,26,27],loos:[3,36],lose:27,loss:[6,7,11,20,22,26,27,28,29],loss_funct:[26,27],loss_tim:[25,26,27],lot:[3,24,28,32],low:[3,12,13,14,16,18,23,24],lower:[6,12,13,19,23,29],lower_critical_valu:12,lowest:[16,29],lowpass:13,lp:13,lr:[24,25,26,27,29],ls:[10,11],lstrip:26,lt:[25,26,27],ltn:10,lua:36,lucki:3,lunch:32,lw:16,lwd:10,lwh:10,lxml:14,lzmy975n0l5bjbmr9db291m00000gn:13,m1:24,m2km2:10,m2km:10,m8:13,m:[4,6,9,10,11,13,21,23],m_3:14,m_4:14,ma:33,mach:25,machin:[3,7,8,9,12,17,19,22,23,24,32,34],maco:3,macosx:[3,4],macosx_10_15_x86_64:23,macosx_11_0_x86_64:23,macosx_12_0_x86_64:23,macro:18,made:[4,6,10,25],mae:[21,24],mag:10,magic:21,magnesium:14,magnitud:[10,13,23],mai:[1,2,3,4,6,8,9,10,12,13,14,15,16,20,23,24,26,28,29,32],mail:4,main:[4,9,16,33],maintain:12,major:[6,23,24],make:[2,4,5,9,10,11,12,13,14,15,18,20,21,24,26,27,28,31,32,33],make_circl:[18,26],make_classif:[18,26],make_moon:[18,26],make_pipelin:26,makedir:[9,26,27],mallow:16,mam:11,manag:[2,25,26,27,36],mani:[2,3,6,9,10,12,13,15,16,17,19,20,24,25,27,31,32,34,36],manifold:29,manipul:[5,7,9,10,11,15,21,24,25,33],manual:[10,32],manual_se:[26,27],map:[6,9,26,27],mapbox_styl:10,mape:[21,24],margin:17,mariana:10,marin:[33,34],marinedenol:[10,14,18,23,29],mark:33,markdown:[4,36],markedli:36,marker:[9,10,11,12,16],marker_clust:9,marker_s:10,markerclust:9,markers:10,market:24,mask:[9,22,29],masked_arrai:22,mass:16,match:[12,24,29],materi:[9,11,27,33,34,36],math:[6,11,16,20,33],mathbf:[6,26],mathcal:[20,25],mathemat:20,matlab:[32,33],matmul:6,matplolib:33,matplotlib:[2,5,6,9,10,12,13,14,15,16,18,19,21,22,25,26,27,28,29],matrix:[7,12,13,18,19,20,26],matshow:15,max:[6,9,10,11,12,13,14,16,19,21,22,23,25,26,27,32],max_depth:[18,23,24],max_featur:[18,24],max_it:[20,22,26],max_leaf_nod:24,max_percentag:[13,14],max_pool2d:26,max_sampl:[23,24],maxim:[17,25],maximum:[16,20,21,24,25,26,27,32],maxlat:13,maxlon:13,maxpool2d:[27,29],maxpool:27,maxpooling2d:27,mayb:26,mb:23,mcbrearti:27,mch:10,mcn:10,mcw:10,md:[1,4,32],mdenol:33,mean:[3,4,9,10,11,12,13,18,20,21,23,24,25,26,27,32],mean_a:12,mean_b:12,mean_fit_tim:22,mean_score_tim:22,mean_squared_error:12,mean_test_scor:22,meant:36,measur:[6,8,12,14,16,18,21,24,26,32],median:[10,12,32],meet:[24,32],mehra:33,member:[12,16,36],memori:[3,9,10,11,20,26,27,28],mention:4,menu:[1,4],mere:26,merg:[1,4,13,14,16,33],mesh:26,meshgrid:26,messag:25,messi:4,meta:23,metadat:11,metadata:[7,9,10,11,32],meter:10,meters2kilomet:10,meters2kilometers2:10,method:[6,11,13,14,17,20,21,22,23,24,25,26,27,30,33],methodolog:33,metric:[12,13,16,19,20,21,22,23,26,27,28,30],mgo:14,mhe:10,mhn:10,mhz:10,microsoft:[3,24],microstoft:3,middl:[6,14,16,26],might:[6,9,12,13,14,24],mimic:9,min:[9,10,11,12,13,14,16,19,21,22,26,32],min_impurity_decreas:24,min_impurity_split:24,min_samples_leaf:24,min_samples_split:24,min_weight_fraction_leaf:24,mini:[25,26],miniconda3:[14,18,29],miniconda:2,minim:[16,20,25,32],minima:16,minimum:[6,16,25,32],minipnw_metadata:15,minipnw_waveform:15,minlat:13,minlon:13,minmax:32,minmaxscal:[19,22,23,32],minor:6,minu:[21,24],minut:[16,33],misclassifi:[18,23],misenterpret:13,misinterpret:13,miss:[24,32,35],mistak:20,mitig:[13,26],mix:6,mixing_:6,ml:[3,18,24,28,30,32,33],mlgeo2022:4,mlgeo2022_uwnetid:4,mlgeo2023:4,mlgeo2023_uwnetid:[4,33],mlgeo:[4,5,13,14,29,33],mlgeo_sk:[18,23],mlhub:3,mllab:2,mlp:[27,28],mlpclassifi:26,mm:[6,12],mmw:10,mne:10,mnist:[19,25,26,27],mnn:10,mnz:10,mobil:4,mode:[11,17,23],model:[6,8,9,13,17,19,20,22,23,28,30,33],model_lenet:27,model_select:[12,18,19,21,22,23,25,26,27,29],moder:26,modif:4,modifi:[4,10,11,18,19,21,22,23,25,26,27,33],modul:[2,6,7,10,11,12,13,14,15,16,25,26,27,32,33],modulenotfounderror:13,moistur:8,moment:14,mon:21,monaco:12,mondai:[17,33],monitor:3,month:[3,13,21,24],monthli:11,more:[2,4,6,8,9,10,12,13,14,16,17,18,20,22,23,26,29,30,32,36],morlet2:13,morlet:13,morn:33,most:[2,3,4,5,6,7,8,10,13,14,15,16,17,18,21,23,24,26,27,28,32],mostli:[3,12,15,16],mother:13,motion:[6,13,14,15,32],motiv:32,mousavi:29,move:[3,9,11,25],mpl_toolkit:16,mplot3d:16,ms:[10,13],mse:[12,24,28,29],mse_train:12,mse_val:12,mu:14,much:[3,6,8,16,20,24,26,27],mulbackward0:20,multi:[10,11,13,17,18,23,25],multiclass:[17,26],multiclassif:27,multicollinear:24,multidimension:[6,9,28],multilabel:29,multipl:[3,4,6,11,12,13,25,26,27,28,32,36],multipli:[6,14],multivariate_norm:12,must:27,my:[1,4,11],my_kmean:16,my_metadata:10,my_mlp:26,my_pd:10,mybind:36,mycod:4,myenv:2,myst:36,n1:16,n2:16,n:[6,9,11,12,13,14,15,16,18,19,20,24],n_cluster:16,n_clusters_per_class:26,n_compon:[6,16],n_epoch:[25,26,27],n_estim:[18,21,23,24],n_featur:26,n_imag:29,n_inform:26,n_init:16,n_iter:22,n_j:16,n_job:[22,23,24],n_redund:26,n_sampl:[6,12],n_select:24,n_split:12,n_step:28,naiv:[17,18,28],naive_bay:[18,23],name:[2,4,6,8,9,10,11,12,13,15,16,18,21,24,26,29,32,36],nameerror:[10,26],nan:[10,14,22],narr:36,narrai:15,nat:14,nation:[3,9],nativ:17,natur:[12,15],nb:[17,23],nb_clf:23,nbin:10,nbsp:24,nc:[9,10,11,13],ncedc:10,nclass:[19,23],ncluster:16,ncm_geologicframeworkgrid:[9,13],ncm_spatialgrid:[9,13],ncol:[19,21],ndarrai:[6,11,22,23],ndata:15,nearest:[11,16,17,18,19],necessari:[4,12,14,20],need:[4,6,10,12,13,15,16,17,20,23,24,25,26,27,28,29,32,33],neg:[14,16,18,20],negbackward:20,neighbor:[6,17,18,19,22,23,24],neither:24,nenad:4,neonscienc:9,neq1:27,nest:[9,26],net:[24,26],netcdf4:13,netcdf:11,network:[3,9,10,13,14,20,29,31],neural:[13,20,29,31],neural_network:26,neuron:[25,26,27,28],nevada:12,never:23,new_a:12,new_b:12,new_nois:14,new_pair:12,newaxi:28,newcrap:14,newdata:[19,22,23],newfil:4,newli:12,newnoisef:14,next:[10,12,16,24,25,26,27,28,36],next_fast_len:[13,14],nf:13,nfft1:13,nfft:[13,14],nhat:[13,14],nice:[4,9,20],nicoleta:[33,34],nipy_spectr:16,nlabel:27,nn1:25,nn:[14,25,26,27],no12:27,no1:27,no2:27,no_grad:[25,26,27],noaa:[21,24],node:[3,9],nois:[6,13,15,16,17,18,26,27,28,29,32],noise2:27,noisi:[6,14,29],noisy_sign:14,nomal:20,nomin:8,non:[1,9,13,29],none:[6,10,13,22,23,24,25,26,27,28,29],nonlinear:26,nor:24,norm:[6,16,22,27],normal:[6,11,12,14,16,18,19,22,23,24,25,26,27,32],north:[6,9,12],northern:10,northwest:[12,15],notat:9,note:[9,12,13,14,19,20,22,23,24,29,33],notebook:[2,3,4,5,10,11,13,21,24,32,33,36],noth:[11,14,20],notic:[11,12,13],notifi:4,noverlap:13,now:[4,6,9,10,11,12,13,14,15,16,18,20,25,26],np:[2,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29],nperseg:13,npmap:9,npoint:6,npt:[13,14],npts1:13,nrow:[19,21],ns:10,nsubset:12,nt:15,num_class:[23,25,26],number:[2,6,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32],number_run:12,numel:11,numer:[8,9,11,17,21,24],numeric_onli:10,numpi:[2,6,7,9,10,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29,33],numsv:6,nvidia:3,ny:9,nyq:13,o:[3,10,11,12,16,32],obj:16,object:[8,9,10,11,14,16,20,21,22,23,24,25,26],objective_new:16,objective_old:16,observ:[6,10,12,16,20,21],obspi:[13,14],obtain:[20,21],ocean:3,oceanographi:[3,33],ocf:10,off1:28,off2:28,off:[6,16,18,29],offer:[3,4,10,33],offic:11,offici:4,ofr20191081:9,often:[2,3,11,12,13,14,27],ok027:27,ok029:27,ok:14,okai:12,old:16,omega:20,omp:24,onc:[4,10,12,20,24,25],one:[1,3,4,7,9,10,11,12,13,14,15,16,17,18,20,21,23,24,25,26,27,29,30,31],oneapi:29,onednn:29,ones:[6,15,16,17,23,27],onevsrestclassifi:19,onli:[3,4,6,9,10,12,13,16,21,23,26,29,33],onlin:4,onto:[6,13],oob_scor:[23,24],open:[1,3,4,5,9,32,33,36],openeew:3,oper:[3,9,10,11,18,19,26,27,29],opt:[14,18,29],optim:[3,9,16,17,20,22,23,24,27,28,29,30,32],optimist:12,optimizer_v2:29,optimizi:17,option:[4,6,10,20],oracl:11,orang:[6,16],ord:11,order:[1,11,13,25,26,27,29,36],ordin:24,oregon:6,org:[6,9,10,11,16,18,20,26,27,32,36],organ:[4,6,7,8,9],orient:[6,21],origin:[4,6,7,9,10,12,13,14,15,16,18,24,27,29,33],origin_dist:12,orthogon:[6,24],orthograph:10,orthonorm:13,os:[3,4,6,9,12,13,15,16,22,26,27],other:[1,2,4,9,11,12,13,15,16,17,18,24,25,26,28,29,31,32,34],otherwis:25,otodo:10,ouput:27,our:[0,6,12,16,18,19,20,21,26],out:[2,3,4,9,10,13,14,21,22,24,26,27,28],out_channel:27,out_featur:[25,26],outcom:10,outlier:[24,32],outofboundsdatetim:10,output:[1,6,7,8,9,10,11,12,13,17,23,25,26,27,28,29,32,33],output_notebook:10,outsid:10,outstand:32,over:[1,4,6,12,13,25,26,27],overal:[5,12,16],overestim:12,overfit:[23,24,26,27],overlai:[6,13,15],overlap:13,overli:12,overview:29,overwrit:[4,10],overwritten:6,ovr:22,own:[3,4,11,20,32,33,36],owner:4,p395:[6,12],p:[10,11,12,14,16,18,20,24,25,27,29],p_valu:12,pacif:[12,15],packag:[2,6,9,10,11,12,13,14,15,16,18,20,23,24,29,30,33,36],pad:[21,27,29],padding_mod:27,page:[4,9,10,24],pai:23,pair:[6,9,16,21,25,32],pairgrid:16,pairplot:16,panda:[2,6,7,9,11,12,13,14,15,16,18,20,21,22,24,25,27,28,29,33],paper:[4,27,31,33],par:24,paragraph:1,parallel:[3,22],param:[11,22,23,29],param_c:22,param_distribut:22,param_gamma:22,param_grid:22,param_kernel:22,paramet:[11,12,16,17,20,22,23,24,25,26,27],parameter:[13,16],parametr:12,park:9,parks_wa:9,parquet:[8,9],pars:[8,24],part:[4,25,26,27,28,29,33],partial:20,particip:36,particl:16,particular:[9,11,15,32],particularli:[3,8,12,26],partit:[12,16],pass:[3,11,13,25,26],passiv:24,password:4,past:[12,13,28],path:4,pathcollect:18,pathwai:33,pattern:[21,27],pby:10,pc:[6,16],pca:[7,17,24,29,32],pcolor:11,pcolormesh:13,pd:[6,9,10,12,13,14,15,16,18,20,21,22,24,25,27,28,29],pdf:[13,33],pdist:16,pdt:33,peak:[16,27],pearson:[11,12],peform:18,peopl:[4,24,31],per:[8,10,13,19,25,27],percentag:[20,21,25],perceptron:25,perfect:[12,16,24],perform:[3,4,10,11,12,13,16,22,23,25,26,27,29,30,32,33],period:13,permiss:[4,33],perol:27,person:4,perspect:16,pg1:10,pga:32,pgc:10,phase:[13,14],phd:4,phi:26,phone:4,physic:8,pi:[6,11,12,13,14,16],pi_est:12,pick:27,picoeuk:16,piec:4,pillow:14,pio:10,pip3:2,pip:[13,14,15,23,24],pipelin:[7,16,17,26],pitfal:13,pixel:[6,9,25,27,29],piyg:18,place:[10,12,19,27],plai:4,planetari:[3,33],plate:[6,14],plateau:16,platform:[3,4,29,32,36],pleas:[0,3,4,5,10,13,24],plenti:[3,11],plot:[5,6,7,9,10,11,12,13,14,15,16,18,19,21,24,25,26,27,28,32],plot_confusion_matrix:19,plot_height:10,plot_imag:29,plot_test:11,plot_width:10,plotli:[7,16,33],plt:[6,9,10,11,12,13,14,15,16,18,19,21,22,25,26,27,28,29],plu:[21,24,28],plugin:9,pm:33,png:[1,10,11],point:[4,6,8,9,11,12,13,14,16,17,24,26,28],poisson:11,polynomi:[13,17,24],pooch:11,pool:26,pool_siz:29,pop:16,popul:[3,12,16],popular:[15,17,23,24,26,27,29,36],popup:[9,24],porotomo:3,port:3,portion:23,posit:[6,11,12,14,16,18,19,20,25,26,27,32],positron:10,possibl:[5,10,14,20,23,29,32,36],post:4,postalcod:9,potabl:20,potenti:[13,32],pow:11,power:[11,16,26],pq:10,pr:18,practic:[3,4,5,8,10,11,12,13,17,19,29],practition:30,pre:[6,7,13,14,16,18],pre_dispatch:22,precipit:10,precis:[18,20],precision_recall_curv:19,precision_recall_fscore_support:20,precision_scor:18,precisionrecalldisplai:19,precison:18,precondit:32,precursor:13,pred:[12,23],predecessor:23,predict:[8,11,12,15,17,18,19,20,21,22,23,24,25,26,27,29],predict_proba:[18,23,26],predictions_data:21,predictor:23,prefer:[4,27],preinstal:2,preliminari:32,prepar:[7,25,33],preprocess:[6,16,18,19,20,22,23,25,26,27,32],prescrib:16,presenc:29,present:[0,8,13,14],preserv:13,previou:[12,23,26,28,31],previous:[10,16,27],primarili:12,princip:33,principl:33,print:[6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29],printer:11,prior:[14,21,24],privat:[4,33],pro:[4,16],proba:23,probabilist:12,probabl:[16,17,19,20,22,23,25,26,29],probe:27,problem:[13,14,16,17,20,22,24,25,26,27,32],proce:26,procedur:12,process:[1,3,6,7,12,13,14,15,16,18,27,31],prochloro:16,produc:[9,17,24,31],product:[10,13,17,24,27,31],profession:24,profit:1,program:[1,3,4,10,33,36],progress:[23,33],project:[1,4,6,7,9,11,13,16,33,36],projection_typ:10,promis:32,promot:0,propag:[12,25,26,27],proper:[2,13],properti:[11,13,14,20,23,29],proport:14,propos:[15,29,32],prove:10,proven:32,provid:[2,3,4,6,10,11,12,17,24,26,27,30,32,33,36],proxim:11,pseudo:13,pseuo:13,psi:13,pt:[26,27],pub:10,publish:[31,36],puget:13,pull:[4,5,24,33],pullov:29,puor:6,pure:14,purpos:[3,4],pursuit:24,push:[4,5],put:[20,26],px:[10,16],py3:[13,23,24],py:[2,4,10,13,16,18,29],pycr:9,pydata:16,pylab:11,pypars:[2,14],pyplot:[6,9,10,11,12,13,14,15,16,18,19,21,22,25,26,27,28,29],python3:[2,14,18,23,29],python:[3,4,5,7,9,11,13,14,15,16,20,26,32,33,36],pytorch:[2,25,27,30,33],pytz:2,qc:16,qc_lwr:16,qc_mid:16,qc_upr:16,qda:18,quad:10,quadraticdiscriminantanalysi:18,quak:[10,27],quakes2:27,quakes2plot:10,qualit:[8,17,20,33],qualiti:[16,24,36],quantifi:[16,18],quantil:12,quantit:[17,20],quarri:15,quarter:[12,33],queri:[13,14],question:[31,32,33],queue:3,quick:32,quota:16,r2:[12,24],r2_score:12,r:[6,11,12,15,21,23,26,27,28,32,33,36],r_valu:12,radial:17,radiant:3,radiu:[12,16],rain:33,ran:3,rand:[11,14,20,27,28],randn:[6,11,14,16],random:[6,15,16,17,18,19,20,23,24,26,27,28,31,32,33],random_project:6,random_split:[25,26,27],random_st:[12,16,18,19,20,21,22,24,26],randomforestclassifi:[18,19,22,23],randomforestregressor:[21,24],randomizedsearchcv:[22,26],randomli:[11,12,13,16,24,26],randomsampl:26,randomst:[19,26],rang:[6,9,10,11,12,14,15,16,19,21,25,26,27,28,29,32],range_color:10,rank_test_scor:22,ransac:24,rare:[12,13,24],raster:8,rate:[8,10,13,14,18,19,23,25,26,27],rather:[3,29],ratio:[6,12,14,18,24],ratt:[13,14],ravel:26,raw:[7,13,14,15,19,22,23],raw_moment:14,rbf:[18,22],rcparam:[11,16],rdbu:26,rdylbu:13,re:[4,11,12],reach:[3,16,20],read:[6,11,12,13,15,16,21,24,25,31,32],read_csv:[10,14,15,16,20,21,24,25],read_data:15,read_feath:16,read_fil:9,readabl:[7,9,25,32],readi:33,readm:[1,4,32],real:[3,13,14,26,29,32],realli:4,reason:[24,26],reassign:32,rebuild:29,rec:18,recal:[18,20],recalcul:12,recall_scor:18,receiv:[6,18,19,27,28,31],recent:[10,13,18,26,27],recogn:[4,5,10,24],recommend:[2,3,4,6,16,33,36],reconstruct:[6,29],record:[6,12,14,15,21],recov:[6,10,29],recreat:13,rectifi:26,recurs:16,red:[6,9,12,14,16,25,26,27],redefin:12,reduc:[4,6,7,11,12,13,16,18,27,29,32],reduct:[7,17,23,27,29,33],refer:[3,8,11,12,17,21,26],refit:22,refresh:33,reg:24,regard:26,region:[3,9,10],register_hook:20,regr:12,regress:[11,23,24,25,26,28,33],regressor:[22,24],regrid:11,regular:[23,26,27,28],regularli:[11,13],reinstal:24,reject:12,rel:[14,28],relat:[2,8,9,12,13],relationship:12,relev:32,reli:36,reliabl:[24,32],relu:[25,26,27],remain:[4,7,12,16,22],remean_elev:10,remedi:28,rememb:20,remot:[3,4,5,33,36],remov:[2,4,6,7,10,11,13,14,21,24,29,32],removablehandl:20,remove_anyth:10,render:10,reno:12,repeat:[12,13,24,27],repeat_kmean:16,repeatedli:12,replac:[4,9,10,12,14,15,16,23,27,36],repli:25,replic:16,repo:[1,4],report:[9,12,14,15,18,19,26,33],reposistori:33,repositori:[3,5,24,33],repres:[6,12,13,17,29],represent:[13,16,26,27,29],reproduc:[2,7,12,16,27,32,33,36],request:[3,4,5,6,9,10,12,14],requir:[2,3,4,13,14,17,23,25,26,29,32],requires_grad:20,resampl:[11,23],rescal:10,research:[3,4,27,29,32,34],reset:[4,10,28,33],reset_index:[9,10,20],reshap:[6,11,12,13,15,16,19,25,26,27,29],residu:[11,12,23,29],resnet:29,resolut:[10,29],resolv:[4,13],resour:3,resourc:[3,5,9,14,32,34],respect:[6,11,12,15,16,20,26,27],respons:[13,17,33],rest:26,restart:[1,24],result:[10,11,12,16,17,18,20,24,25,26,27,31,32],retain:6,retain_grad:20,retina:11,return_sequ:28,return_train_scor:22,reus:[4,32],revers:[11,20,21,26],revert:26,review:[0,5,26,32],rf:[17,21,23,24],rf_clf:[19,23],rf_most_import:21,rf_predict:19,rgb:27,rich:36,ricker:14,ridg:24,right:[2,4,6,10,11,19,26],risk:12,rlat:13,rlon:13,rmse:24,rmsle:24,rng:[12,26],ro:[16,21],robust:6,roc:[18,19],roc_auc:19,roc_auc_scor:19,roc_curv:[18,19],roccurvedisplai:19,role:27,roll:11,root:[9,14,25,26,27],rotat:[6,16,21],rotation_mod:6,rouet:27,round:[21,26],routin:11,row:[6,8,10,11,13,14,16,20,21,24,25],row_index:16,row_label:6,rs:12,rstudio:1,rubi:36,rule:[17,26],run:[1,3,4,10,11,12,13,16,20,31,32,33,36],runner:24,running_loss:[25,26,27],runtimewarn:13,rv_frozen:22,s1:6,s2:6,s3:[3,6],s6x10hzdyra:3,s:[6,9,10,11,12,13,14,15,16,18,21,23,24,25,26,27,28,29],s_:6,sa:14,safe:26,sagemak:3,sai:[15,27],sake:12,same:[2,4,6,8,10,11,12,14,16,23,24,27,29,31,32],samm:23,sampl:[6,8,11,12,13,14,16,17,18,19,22,23,25,26,27],sample_silhouette_valu:16,sampler:[25,26,27],sampling_r:13,sandal:29,sat:21,satisfi:[14,23,30],sattelit:8,save:[2,4,6,7,8,9,10,11,18,21,24,25,27,32],savefig:11,saw:6,sawtooth:6,sc:16,scala:36,scalar:[20,26,28],scale:[3,6,10,13,14,16,22,23,25,26,27,32],scaleogram:13,scaler:[16,19,20,22,23],scan:9,scatter:[6,12,14,16,18,26,29],scatter_3d:16,scatter_geo:10,scatter_mapbox:10,scatterplot:[7,11],schedul:3,schema:8,schemat:27,scheme:[16,22],scholarship:33,sci:[16,23],scienc:[1,9,11,33,36],scientif:[1,9,11,13,32,33],scikit:[2,6,7,12,18,22,32],scikitlearn:[18,20],scipi:[2,6,7,12,13,14,15,16,22,23],scitkit:7,score:[16,18,22,23,26,27],scott:[33,34],scratch:[1,3,10],screen:[25,26,27],script:[4,7,33],se:[6,12],seaborn:[2,7,16],search:[26,27],season:11,seasonal_mean:11,seattl:21,sec:24,second:[1,6,8,10,11,12,13,14,20,23,25,27,28,29,33],section:[11,13,33],see:[1,3,4,6,8,9,11,12,13,14,16,18,24,26,27,36],seed:[6,16,26,27,32],seek:16,seem:[12,24,27],segment:29,seismic:[3,10,13,14,15],seismogram:[8,27,29],seismolog:33,seismomet:[3,13],sel:11,select:[1,4,7,10,11,12,13,15,16,21,22,24,26,27,32],self:[9,10,25,26,27],selu:29,send:[3,26],sens:[3,8,10,16],sensit:[13,14,16,18,20,32],sensor:[8,10,13],sent:27,sep:[10,25],sepal:6,separ:[6,8,16,17,29,32,36],sequenc:[11,27,29],sequenti:[23,26,27,28,29],sequential_15:29,sequential_1:29,sequentialbackend:22,seri:[4,6,8,10,11,12,13,15,27,28,29,32,33],server:[3,4,13,14],servic:[3,36],session:4,session_id:24,set:[3,6,7,9,10,11,12,13,15,16,18,19,23,24,26,27,28,32,33],set_aspect:[6,12,14],set_axis_off:19,set_axisbelow:6,set_grad:20,set_opt:11,set_size_inch:16,set_them:16,set_titl:[6,11,13,14,16,19,21,26],set_vis:6,set_xlabel:[6,11,12,13,14,16,21,25,26,27],set_xlim:[13,14,16,26],set_xscal:[13,14],set_xtick:[6,16,26],set_ylabel:[6,11,12,13,14,16,21,25,26,27],set_ylim:[13,14,16,26],set_yscal:[11,13],set_ytick:[6,16,26],set_zlabel:6,setp:6,settingwithcopywarn:16,settl:24,setup:24,setuptool:14,sever:[4,9,10,11,12,13,14,16,17,19,23,27,29,30,32],sgd:[17,25,26,29],sh:11,shade:13,shap:24,shape:[6,9,11,13,14,15,16,19,21,22,23,25,26,27,28,29],share:[8,9,33,36],sharex:[12,13],she:10,sheet:4,shell:[3,33],shift:[13,14],shirt:29,shn:10,shorter:13,should:[0,4,6,11,12,24,26,27,32,33],show:[6,9,10,11,12,13,14,16,18,19,24,25,26,27],show_reconstruct:29,showcountri:10,shown:[27,29],shrink:22,shuffl:[12,19,22,23,24,26,28],shufflesplit:12,shz:10,si:3,side:[12,14],sidebar:4,sig:[6,14],sigm:26,sigma:[6,14,20,26],sigmoid:[25,26,27,29],sign:[6,16],signal:[6,13,27,29],signatur:13,significantli:31,silenc:10,silhouett:16,silhouette_avg:16,silhouette_sampl:16,silhouette_scor:16,silic:14,silica:14,sim:12,similar:[11,13,14,16,21,23],similarli:[11,13,20,25],simpl:[1,5,10,12,15,16,17,20,24,26,27,28,32,33],simpler:6,simplernn:28,simplest:[25,28],simpli:[11,14,26],simplifi:[11,16,27],simul:[8,11,12],sin:[6,11,16,28],sinc:[9,12,19,26,28],sine:[11,13],singl:[6,9,15,16,23,24,25,26,27,28],singular:6,sinusoid:6,sio2:14,sio:14,sit:[12,14],site:[2,14,18,23,29],six:[2,14],size:[6,9,10,11,12,13,14,16,20,23,25,26,27],size_cluster_i:16,size_img:[25,26],skew:13,skicit:21,skill:[5,10],skip:[27,29],skiprow:10,sklean:6,sklearn:[6,12,16,18,19,20,21,22,23,24,25,26,27,29,32,33],slack:36,sle:10,sleep:13,slice:[12,16],slick:4,slide:[8,14],slightli:[26,31],sln:10,slope:12,slow:27,slz:10,small:[6,16,20,23,27,28],smaller:[6,7,12,16,20,23,26,32],smallest:29,smi:3,smith:9,smooth:[11,13,14,26],sn:[6,12,16],sneaker:29,snr:14,so:[2,4,6,10,12,13,19,20,24,25,26,27,28,32],societ:32,soft:23,softmax:[23,25,26,27],softplu:26,softwar:[3,5,9,14,34,36],software_carpentries_intermedi:35,sofwar:11,soil:8,solid:24,solut:[24,25,32,33],solv:[9,16,20,28,32],solver:26,some:[2,3,4,6,9,10,11,12,13,14,16,17,20,24,26,27,33,34],somebodi:4,sometim:31,somewhat:28,somewher:4,son:11,sort:[10,13,15,16,21],sort_valu:10,sosfilt:13,sound:13,sourc:[1,4,5,6,9,14,15,18,32,33,36],source_typ:15,south:[9,10],southern:[3,10],sp1:10,sp2:10,sp3:10,space:[6,7,8,11,14,16,22,26,27,30,36],span:13,spars:26,spatial:[11,13,16,27],spatiotempor:16,speci:6,special:[9,11],specif:[1,2,3,4,8,9,10,11,13,14,15,18,19,20,22],specifi:[10,14,20,25,26,27],spectra:13,spectral:[7,14,15],spectrogram:[13,27],spectrum:[13,14],speed:[13,14],spend:33,spine:6,split0_test_scor:22,split1_test_scor:22,split2_test_scor:22,split3_test_scor:22,split4_test_scor:22,split:[6,12,15,16,18,22,23,25,26,27,28],splitlin:[6,12],spread:14,spreadsheet:8,spyder:2,sqlalchemi:14,sqrt:[1,6,11,13,14,16],squar:[6,11,12,14,16,26],src:1,sse4:29,ssh:4,st:[14,15],sta:[6,12],stabl:[6,11,13,16,26,32],stack:[27,28],stacked_a:29,stacked_ae_cnn:29,stacked_decod:29,stacked_encod:29,stage:[4,29],stai:29,stain:16,stamp:15,standalon:10,standard:[6,8,9,10,11,12,13,14,32,33,36],standardscal:[16,18,20,25,26,27,32],standardtransform:26,stanford:27,star:2,start:[3,4,6,7,10,11,12,16,18,20,24,26,29,32],start_dim:[25,26],start_tim:10,startdat:10,starttim:[13,14],stat:[12,13,14,15,22],state:[9,12,28,32],state_dict:[26,27],statement:5,station:[10,12,13,14,27],stationari:29,statist:[7,10,11,12,13,15,17,21,23],statu:4,std:[6,10,11,12,13,14,21,26],std_err:12,std_fit_tim:22,std_score_tim:22,std_test_scor:22,steelblu:6,stefan:[33,34],step:[4,7,11,14,16,20,24,25,26,27,29,32],step_ahead:28,stft:[13,32],still:[4,19,26,36],stochast:[6,17,19,25,32],stop:[11,16],stop_alg:16,storag:[3,4,11,15,32],store:[3,9,10,11,12,15,19,22,23,26,32],str:[6,9,10,12,16,21,24],strategi:[12,16,29,32,33],stratifi:24,street:9,streetaddress:9,stretch:18,strictli:[17,26,27],stride:[27,29],string:[6,9,10,11,15],stringio:10,strive:[0,36],strmethodformatt:6,strong:12,strongli:[12,23],strptime:21,structur:[7,8,9,10,11,12,14,16,29,32,36],student:[5,34],studi:32,studio:[3,4],style:[16,18,21],sub:4,subarrai:11,subclass:25,subdata:16,subduct:12,subgroup:16,submiss:[4,33],subplot:[5,6,11,12,13,14,16,18,19,21,25,26,27,29],subplots_adjust:26,subsequ:26,subset:[9,11,12,19,22,23,24,26,32],subsetrandomsampl:[25,26,27],success:[16,27],successfulli:[13,23,24],suffici:[3,17,27],suggest:[4,32],sum:[6,11,14,16,20,23,25,26,27,29],sum_:[12,16,20,25],sum_i:11,sumatra:10,summar:[16,17,33],summari:[10,16,27,28,29],sun:[21,33],sundai:21,superimpos:13,superseismo:4,supervis:[6,7,17,32],supplementari:27,suppli:6,support:[1,9,11,17,18,19,22,33],suppos:32,suptitl:[16,19],sure:[2,4,11,12,15,28,32],surfac:[3,6,8,9,13,15],sv:[6,12],svc:[18,19,22,23],svc_clf:23,svc_predict:[19,22],svg:18,svm:[17,18,19,22,23],symmetr:[6,29],synchron:4,synecho:16,syntax:[9,11,12,26],synthet:[11,16,28,32],synthetics_pca:16,synthetics_sc:16,system:[3,4,5,6,9,11,12,17,31,36],systemat:[18,26,30],t20:16,t:[6,11,12,13,14,16,20,24,26,27,28,33],t_b:12,t_train:12,t_val:12,tab10:29,tab:[25,26,27],tabl:[8,10,24],tabular:[8,9,10],tacc:3,tackl:16,tag:[6,9,33],tail:[13,14],take:[7,10,12,13,14,15,16,20,23,25,27,28,29],taken:[10,14,16],takewai:4,talk:20,tangent:26,tanh:[26,28],taper:[13,14],target:[6,12,19,22,23,24,32],target_nam:[6,22],task:[3,11,26,32],taught:33,team:[27,31,33,36],technic:36,techniqu:[24,33],technolog:32,tediou:24,tell:24,temp:[10,21,24],temp_1:[21,24],temp_2:[21,24],temperatur:[8,10,11,21,24],templat:[4,27,33],templates_027:27,templates_029:27,tempor:[7,8,13,15],temporari:3,tend:[13,20,23,25,32],tensor:[3,20,25],tensorflow:[23,25,26,27,28,29],tenv:[6,12],term:[6,12,14,18,27,28],termin:[1,3,4,24],terminolog:4,test1:16,test:[10,12,16,18,20,22,23,25,26,27,28,32],test_dat:21,test_data:25,test_df:24,test_featur:21,test_imag:25,test_import:21,test_index:12,test_label:[21,25],test_siz:[12,18,19,21,22,23,26,27],testload:[25,26,27],texa:3,text:[1,4,6,9,11,12,13,14,16,24,26,36],textcolor:6,textkw:6,tf:[13,28,29],th:[16,20],than:[6,12,13,14,16,17,23,27,28,32],the_turing_way_community_2022_6909298:35,thei:[3,6,7,9,10,12,13,14,16,17,20,26,27,28,29,32],them:[4,6,7,8,10,14,15,16,18,24,25,27,29,33],themselv:15,thenarrai:15,theorem:32,theori:33,therefor:[12,13,16,26,29],theta:[6,16],thi:[1,3,4,5,6,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,32,33,34,36],thing:[8,32,36],think:[12,24],third:[1,14,20,23],those:[6,11,24,27],though:[3,5,31],three:[3,9,11,16,20,27,33],thresh:[13,16],threshold:[6,18,24,25,26],through:[3,6,12,25,26,31,33],throughout:[27,33],thu:[6,18,20,27],tick:[6,16,21],tick_param:[6,11,25,26,27],ticker:6,tier:3,tif:9,tiff:9,tight:16,tight_layout:[6,14,21,25,26,27],tightli:3,tile:6,time:[3,6,8,9,10,11,12,15,16,24,25,26,27,28,29,30,32,33],time_series_features_extractor:15,timedelta:10,timedistribut:28,timeit:[10,11,13],timestamp:10,tip:11,titl:[6,10,11,12,13,14,16,19,21,26],tlu:25,tn:[15,18,20],tnr:18,to_csv:10,to_datetim:10,to_netcdf:11,to_numpi:[16,20],to_parquet:10,to_zarr:11,todai:[21,24],todoran:[33,34],togeth:[2,25],toi:[6,32],token:4,tol:22,too:[12,18,20,27,28,32],tool:[2,9,10,11,16,18,22,32,33],toolbox:[13,16],toolkit:[22,33],tooth:6,top3:24,top:[1,3,4,6,10,27],topic:33,topographi:9,torch:[11,20,25,26,27],torchvis:[25,26,27],total:[4,11,18,22,23,25,26,27,29],totensor:[25,26,27],touch:4,toward:7,towardsdatasci:21,towfish_001:16,towfish_002:16,towfish_003:16,towfish_004:16,towfish_005:16,towfish_006:16,towfish_007:16,towfish_008:16,towfish_009:16,towfish_010:16,towfish_011:16,towfish_012:16,towfish_013:16,towfish_014:16,towfish_015:16,towfish_016:16,towfish_017:16,towfish_018:16,towfish_019:16,towfish_020:16,tp:[16,18,20],tpr:[18,19],tpu:3,trace:15,trace_nam:15,traceback:[10,13,18,26],track:[4,11,12],trade:18,train:[12,16,17,18,20,22,23,28,29,31,33],train_data:25,train_df:24,train_featur:21,train_imag:25,train_import:21,train_index:12,train_label:[21,25,27],train_set:[25,26,27],train_test_split:[18,19,21,22,23,25,26,27,29],trainabl:[27,29],trainload:[25,26,27],transform:[6,7,9,10,11,15,16,19,20,22,23,24,25,26,27,29,32,33],transit:11,translat:[13,27],transmit:31,transpos:6,treat:27,tree:[9,17,18,23,24,26],tremend:34,trend:12,trial:26,trignometri:24,trim:13,triplic:16,trouser:29,true_data:21,true_label:16,truth:[16,28],tsfel:[7,15],tsfresh:[7,15],tshirt:29,tslib:10,tsne:29,tstart:[13,14],tt:[12,24],tue:21,tunabl:16,tune:[12,14,24,29,32],tuner:27,tupl:21,ture:[4,34],turn:[6,13,26,28],tutori:[3,4,9,10,11,12,16,19,21,24,26,29,34],twin:14,twinx:[25,26,27],two:[4,9,10,11,12,13,14,16,17,18,21,27,29,30],txt:[2,4],type:[1,4,5,8,9,10,11,13,14,15,16,17,19,22,23,24,26,29,32,33],typic:[3,10,11,12,13,15,16,23,29],u:[1,6,16],u_:12,u_n:12,uc:[21,24],ue:[6,12],ug3_fcm_distribut:16,un:[6,12],uncertain:12,uncertainti:[12,16,28],unclear:27,uncom:11,under:[4,15,18,24],underestim:12,underfit:[23,24],underli:[11,12,36],underlin:1,understand:[6,33],undertak:6,underwai:16,underway_002:16,underway_003:16,underway_004:16,underway_005:16,underway_006:16,underway_007:16,underway_008:16,underway_009:16,underway_010:16,underway_011:16,underway_012:16,underway_013:16,underway_014:16,underway_015:16,underway_017:16,underway_018:16,underway_019:16,underway_020:16,underway_021:16,underway_022:16,underway_023:16,underway_024:16,underway_025:16,underway_026:16,underway_027:16,underway_028:16,underway_029:16,underway_030:16,underway_031:16,underway_032:16,underway_033:16,underway_034:16,underway_035:16,underway_036:16,underway_037:16,underway_038:16,underway_039:16,underway_040:16,underway_041:16,underway_042:16,underway_043:16,underway_044:16,underway_045:16,underway_046:16,underway_047:16,underway_048:16,underway_049:16,underway_050:16,underway_051:16,underway_052:16,underway_053:16,underway_054:16,underway_055:16,underway_056:16,underway_057:16,underway_058:16,underway_059:16,underway_060:16,underway_061:16,underway_062:16,underway_063:16,underway_064:16,underway_065:16,underway_066:16,underway_067:16,underway_068:16,underway_069:16,underway_070:16,underway_071:16,underway_072:16,underway_073:16,underway_074:16,underway_075:16,underway_076:16,underway_077:16,underway_078:16,underway_079:16,underway_080:16,underway_081:16,underway_082:16,underway_083:16,underway_084:16,underway_085:16,underway_086:16,underway_087:16,underway_088:16,underway_g3:16,unecessari:6,unifi:3,uniform:[11,12,14,16,22,26,32],uniqu:[6,10,15,16,19,23,27,29],unit:[3,6,11,13,25,26],univers:[12,26,33],unix:5,unknown:24,unlik:[12,13],unord:1,unr:[6,12],unread:11,unrealist:13,unseen:[12,24],unstag:4,unstructur:9,unsupervis:[6,7,16,32,33],unsur:11,until:[13,14,16,20,23,27],unzip:9,up:[6,10,12,13,14,17,18,23,24],updat:[6,11,16,20,24,25,26,27,28,29,33],update_geo:10,update_layout:10,upload:[4,33],upper:[4,12],upper_critical_valu:12,upsampl:11,upstream:31,url:[1,9,10],urllib3:14,us:[1,2,3,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,36],usabl:26,usag:[3,4],usecol:10,user:[1,2,4,9,10,11,14,18,23,29,36],user_guid:16,usernam:4,userwarn:29,usg:9,usi:24,usp:8,usual:[3,12,15,16,17,24,26,27],utcdatetim:[13,14],utf:[9,10],util:[12,20,25,26,27,36],uv:[6,12],uw:[1,3,4,5,13,14,33,34,36],v:[6,16],v_e:12,v_measure_scor:16,v_n:12,v_size:12,va:6,vae:29,val_index:12,val_loss:29,val_set:[25,26,27],valfmt:6,valid:[10,19,26,27,28,29,32,33],validation_data:[28,29],valu:[6,8,9,10,11,12,13,14,16,17,18,20,21,23,24,25,26,27,28,32],valuabl:12,value_count:10,vanish:[26,28],vanuatu:10,varaibl:12,vari:[11,14,15],variabl:[5,6,7,9,10,11,12,13,16,19,20,21,24,26,29],varianc:[6,12,13,16,17,23,24],variance_1:15,variat:[11,16],varieti:9,variou:[3,4,12,13,15,16,18],varoquaux:18,vcl:10,vco:10,vdt:10,ve:12,vea:10,vec:10,vector:[6,11,12,13,17,19,20,22,26,27,33],vei:10,vel:12,veloc:[12,13],venv:2,vep:10,verbos:[19,22,24],veri:[2,10,11,13,14,16,17,20,23,24,26,28,32],verifi:12,version:[1,2,9,10,26,27,31,36],versu:16,vertic:[3,6,13,15,16,21],verticalalign:6,vfp:10,vi9gmjy8d4zd5jv:27,via:[2,16,26,33],vibrat:15,video:[3,36],view:[16,26,27,33],viewoutput:26,viridi:13,virtual:[3,4],visit:2,visual:[3,4,6,7,9,11,12,14,16,18,21,24,27,29,32,33,36],vki:10,vm1:10,vm2:10,vm3:10,vmax:[6,11,13,15],vmin:[6,11,13,15],volum:[16,27],voting_clf:23,votingclassifi:23,vpb:10,vrc:10,vs:[4,6,9,12,14,23],vscode:[3,10,13],vsp:10,vstack:[6,16],vt:6,vwb:10,w1sdnnjb2rllxjlbw90zq:13,w:[6,11,13,20,25,26,27],w_i:25,w_j:[20,25],w_k:25,wa:[9,10,12,14,17,18,19,21,22,23,27,29],wai:[2,4,6,9,10,11,12,16,20,22,24,27,29,32,34],wait:[13,16],want:[9,10,11,12,13,20,21,25,26,28],ward:16,warm_start:24,warn:[6,10,13,14,20],washington:[9,33],watch:[3,19,22,23],water:20,water_pot:20,wave:[28,29],wavedecompnet:29,wavefield:29,waveform:[13,14,15,29],wavelet:[7,14,15,33],wavenumb:13,wdb25puxh3u07dj:[9,13],we:[0,2,3,4,6,9,10,11,12,13,14,15,16,17,18,19,20,22,23,25,26,27,28,29,33,36],weak:23,web:[3,36],wednesdai:33,week:[21,24,33],week_fri:[21,24],week_mon:[21,24],week_sat:[21,24],week_sun:[21,24],week_thur:[21,24],week_tu:[21,24],week_w:[21,24],weight:[11,14,18,23,25,26,27,28],weka:24,welcom:[4,36],well:[11,12,16,18,19,20,26,27,32],went:31,were:[3,9,10,11,16,18,20,23,25,27,34],west:[9,11],westward:12,wget:[9,13,15,16,21,22,24,27],what:[3,4,6,10,11,12,13,14,15,16,20,22,23,24,27,32],when:[3,4,9,10,12,16,20,23,25,26,27,29,32,33],where:[1,3,6,9,10,12,13,14,15,16,20,24,25,26,27,31,32],whether:[12,18,26,27],which:[2,4,6,8,9,12,13,14,16,17,20,22,23,24,25,26,27,29,30,32,33,36],white:[6,11,14,16],whl:[13,23,24],who:[4,11],who_is_awesom:11,whole:[9,10,14,20],why:[3,12,24],wich:11,wide:[12,14,22,24,26,29,36],widget:24,width:[1,6,9,10,13,14,27],wiki:18,wikimedia:18,window:[3,4,11,13,14,26,27],winner:13,wise:[11,24],within:[3,8,9,11,12,13,16,21,24,26],without:[4,6,7,14,23,26,27,32],wmp:10,won:28,word:27,work:[0,2,3,6,9,10,12,16,20,23,24,27,28,32],worker:22,workflow:[3,4,7,12,13,15,24,33],workspac:13,world:[3,24,32],worlpert:32,would:[3,4,6,11,13,15,20,21,23,26,27,29,31,32],wrap:11,write:[4,7,9,10,11,20,27,32,33],written:1,wrong:24,wrote:3,wt:14,wwvb:10,www:[9,11,13,15,16,20,21,27],wx:[25,26],x1:[11,16,27],x1test:16,x2:[11,16],x2test:16,x3:[11,16],x4:11,x54szmlszq:10,x:[1,6,9,10,11,12,13,14,15,16,18,19,20,21,25,26,27,28,32],x_:[12,20],x_a:12,x_b:12,x_i:[11,12,16,20,25],x_int:11,x_label_list:13,x_lat:11,x_lon:11,x_max:26,x_min:26,x_new:[6,26],x_p:16,x_pca:6,x_scale:32,x_std:32,x_t:11,x_test:[18,19,22,23,26,27,28,29],x_tl:11,x_train:[18,19,22,23,26,27,28,29],x_train_ful:29,x_val:[28,29],x_val_2d:29,x_val_compress:29,x_valu:21,xarrai:[7,9],xarrrai:11,xavg:6,xc:6,xgb:23,xgboost:[23,24,26],xkcd:18,xlabel:[6,10,11,12,13,14,16,18,19,21,26,28],xlat:13,xlim:[6,13,14,16,19,26],xlon:13,xne:10,xnn:10,xnz:10,xr:11,xscale:14,xtick:[6,11,12,13,21],xx:[15,26],xxx:14,y2:16,y3:16,y:[6,9,10,11,12,13,15,16,18,19,20,21,22,23,25,26,27,28],y_i:[11,16,20],y_k:25,y_lower:16,y_max:26,y_min:26,y_pred:[11,19,22,23,28],y_proba:26,y_score:[18,19],y_test:[18,19,22,23,26,27,28,29],y_test_pr:18,y_train:[18,19,22,23,26,27,28,29],y_train_ful:29,y_train_pr:19,y_true:[19,22],y_upper:16,y_val:[28,29],yaxi:16,ye:[2,20,24],year:[4,6,10,12,13,21,24,26,32],yellowston:16,yesterdai:[21,24],yet:4,yhat:20,yield:[13,30],yin:29,ylabel:[6,11,12,13,16,18,19,21],ylim:[6,13,14,16,19],yml:[4,32,33],york:9,you:[1,3,4,6,8,9,10,11,12,13,14,15,16,20,23,24,26,27,29,31,32,36],your:[3,9,11,12,13,16,20,24,26,32,33,36],youtu:3,yscale:[13,14],ytick:[11,12,13],yy:26,z:[9,13,14,15,16,20,25,26],zarr:[7,11],zel:13,zenodo:4,zero:[6,10,12,13,14,15,16,18,20,25,26,27,32],zero_grad:[25,26,27],zf:13,zhat:[13,14],zhu:29,ziheng:33,zip:[6,9,19,21,25,26],zipdataset:25,zipfil:[6,9,12],zipp:14,zone:12,zoom_start:9,zorder:6,zp:14,zsort:13,zxx:13},titles:["1.1 Open Reproducible Science","1.3 Jupyter Environment","1.3 Python Ecosystem","1.4 Computing Environments","1.5 Version Control & GitHub","Getting Started","2.10 Dimensionality Reduction","2.10 ML-ready data","2.1 Data Definitions","2.2 Data Formats","2.4 Pandas","2.3 Data Arrays","2.6 Resampling Methods","2.7 Spectral Transforms","2.8 Statistical Considerations for geoscientific Data and Noise","2.9 Feature engineering","3.1 Clustering","3.2 Classification and Regression","3.3 Binary classification","3.4 Multiclass Classification","3.5 Logistic regression","3.6 Random Forests","3.7 Hyperparameter Tuning","3.8 Ensemble learning","3.9 AutoML","4.1 Neural Networks","4.2 Multi Layer Perceptrons","4.3 Convolutional Neural Networks","4.4 Recurrent Neural Networks: Processing sequences","4.5 Auto-encoders","4.6 NAS: Network Architecture Search","This chapter focuces on model workflow and ML reproducibility","The MLGeo Project","Machine Learning in the Geosciences","Acknowledgements from Contributors","Bibliography","Glossaries"],titleterms:{"1":[0,1,2,3,4,6,8,9,10,11,12,13,14,16,17,18,19,21,22,23,25,26,27,32],"10":[6,7],"1d":11,"2":[6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,26,27,28,32],"2d":[11,13],"3":[1,2,6,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,26,27,32],"3d":6,"4":[3,10,11,12,13,14,19,21,23,25,26,27,28,29,30,32],"5":[4,11,12,20,21,26,27,29,32],"6":[11,12,21,30,32],"7":[13,21,22,32],"8":[14,23],"9":[15,24],"do":2,"function":[10,25,26],"import":21,"new":4,"short":13,But:9,One:[12,21],The:[8,14,16,32],account:4,acknowledg:34,activ:26,adaboost:23,ahead:28,algorithm:17,an:[2,4],analysi:6,anatomi:27,app:4,appendix:20,ar:2,architectur:30,arrai:[9,11],assess:21,authent:4,auto:29,autoencod:29,automat:20,automl:24,aw:3,azur:3,b:25,bag:23,baselin:21,basic:[1,2,10,11,13],befor:16,best:24,bibliographi:35,binari:18,boost:23,bootstrap:12,build:33,c:25,can:28,carlo:12,chapt:32,chapter:[31,32],check:[21,24],choic:16,classif:[17,18,19],classifi:[18,23],cloud:3,cluster:16,cnn:27,code:2,colab:3,column:24,command:[1,2],compar:24,compon:6,comput:[3,11,21],conda:2,consider:14,contributor:34,control:4,conv:27,convolut:[27,29],cours:33,covari:6,creat:[4,10,27],cross:[12,22],csv:10,data:[6,7,8,9,11,12,14,16,18,19,21,24,25,27,29,32],datafram:10,deal:2,decis:21,decod:29,defin:[25,26,27],definit:[8,36],denois:29,descent:20,design:[25,32],desktop:4,determin:6,differenti:20,dimension:[6,29,32],displai:24,distanc:11,download:[21,32],ecosystem:2,elbow:16,encod:[21,29],engin:15,enhanc:4,ensembl:23,environ:[1,2,3],evalu:24,event:14,exampl:[2,12,27,29],exist:4,explor:[6,15,18,21],extract:[6,11],far:28,featur:[6,14,15,21],file:[2,10],filter:13,fine:26,first:[21,24],fo:11,focuc:31,fold:12,forecast:28,forest:21,format:9,forward:26,fourier:13,frame:[8,32],freez:2,from:[5,10,34],fundament:10,futur:28,gener:36,geodet:12,geojson:9,geolog:14,geopanda:9,geoscienc:33,geoscientif:14,geotiff:9,get:[5,24],git:4,github:[4,33],glossari:36,googl:3,gradient:[20,23],grid:22,handl:9,hassl:24,hdf5:9,hierarch:[9,16],high:11,homework:33,hot:21,how:[2,27,28],hpc:3,hub:1,hyperparamet:[22,26],i:9,implement:20,independ:6,index:11,infer:12,inform:14,initi:21,interpret:24,introduct:[11,20],jupyt:1,k:[12,16],kurtosi:14,lab:1,label:21,larg:9,latent:29,layer:[26,27],learn:[5,16,23,26,33],leav:12,lenet:27,level:[11,12,13,14],linear:12,load:25,local:3,logist:20,loss:25,low:29,lstm:28,machin:33,manupul:10,map:10,markdown:1,matplotlib:11,matrix:6,mean:[6,14,16],measur:11,metadata:15,method:[12,16],metric:[18,24],ml:[7,27,31],mlgeo:32,mlp:26,modal:8,model:[12,18,21,24,25,26,27,29,31,32],mont:12,more:24,motion:12,multi:[26,29],multiclass:19,na:30,need:2,net:29,netcdf4:9,netcdf:9,network:[25,26,27,28,30],neural:[25,26,27,28],nois:14,norm:11,note:[4,27],notebook:1,number:16,numpi:11,nyquist:13,o:9,object:[5,33],one:6,open:0,optim:[25,26],organ:32,other:[6,27],out:12,outcom:6,overview:33,panda:10,paramet:6,parquet:10,past:23,pca:[6,16],perceptron:26,perform:[18,21],physic:14,plate:12,plotli:10,pool:27,practic:[16,27],predict:28,prep:27,prepar:[19,21,27,32],prerequisit:33,princip:6,problem:28,process:28,project:32,publish:[4,27],pycaret:24,python:[2,10],pytorch:[11,20,26],qualiti:21,random:[11,12,14,21,22],randomli:21,raster:9,rasterio:9,re:19,read:[9,10,27,33],readi:[7,24],realist:14,recod:27,recurr:28,reduct:[6,32],regress:[12,17,20,21],repeat:16,repositori:4,reproduc:[0,31],resampl:12,respons:10,restor:26,rnn:28,robust:12,run:[2,24],save:26,scale:19,scienc:0,scikit:[16,26],search:[22,30],section:10,seismic:27,seismolog:29,select:6,separ:21,sequenc:28,seri:14,set:[4,14,21,25],sever:28,shape:24,signal:14,skew:14,skill:33,slice:11,slow:9,softwar:4,solut:28,space:[13,15,29],specif:33,spectral:13,split:[19,21,24],stack:23,start:5,statist:14,step:[6,28],strategi:25,structur:26,student:[10,33],subtract:6,svd:6,syllabu:33,synthet:[14,18],task:29,team:4,technic:33,techniqu:[6,12],technolog:36,tensor:11,test:[19,21,24],text:10,thi:[2,31],three:6,tier:33,time:[13,14],tip:16,tool:36,train:[19,21,24,25,26,27,32],transform:13,tree:21,troubleshoot:24,tune:[22,26,27],tutori:33,two:6,typic:26,u:29,uncertainti:13,up:[4,21],us:[4,10,12],valid:[12,22],varianc:14,version:[4,33],via:6,virtual:2,vote:23,vs:10,wavelet:13,we:[21,24],webinar:33,what:[1,2],work:4,workflow:31,xarrai:11,yml:2,you:[2,28],your:[2,4],zarr:9,zero:5}}) \ No newline at end of file +Search.setIndex({docnames:["Chapter1-GettingStarted/1.1_open_reproducible_science","Chapter1-GettingStarted/1.2_jupyter_environment","Chapter1-GettingStarted/1.3_python_environment","Chapter1-GettingStarted/1.4_computational_environments","Chapter1-GettingStarted/1.5_version_control_git","Chapter1-GettingStarted/readme","Chapter2-DataManipulation/2.10_dimensionality_reduction","Chapter2-DataManipulation/2.11_MLready_data","Chapter2-DataManipulation/2.1_Data_Definitions","Chapter2-DataManipulation/2.2_data_formats_rendered","Chapter2-DataManipulation/2.3_pandas_rendered","Chapter2-DataManipulation/2.4_Arrays","Chapter2-DataManipulation/2.6_resampling","Chapter2-DataManipulation/2.7_data_spectral_transforms","Chapter2-DataManipulation/2.8_statistical_considerations","Chapter2-DataManipulation/2.9_feature_engineering","Chapter3-MachineLearning/3.1_clustering","Chapter3-MachineLearning/3.2_classification_regression","Chapter3-MachineLearning/3.3_binary_classification","Chapter3-MachineLearning/3.4_multiclass_classification","Chapter3-MachineLearning/3.5_logistic_regression","Chapter3-MachineLearning/3.6_randomForest_regression","Chapter3-MachineLearning/3.7_hyperparameter_tuning","Chapter3-MachineLearning/3.8_ensemble_learning","Chapter3-MachineLearning/3.9_autoML","Chapter4-DeepLearning/mlgeo_4.1_neural_networks","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron","Chapter4-DeepLearning/mlgeo_4.3_CNN","Chapter4-DeepLearning/mlgeo_4.4_RNN","Chapter4-DeepLearning/mlgeo_4.5_AutoEncoder","Chapter4-DeepLearning/mlgeo_4.6_NAS","Chapter6-ModelWorkflows/readme","about_this_book/0_mlgeo_project","about_this_book/about_this_book","about_this_book/acknowledgements","reference/bibliography","reference/glossary"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["Chapter1-GettingStarted/1.1_open_reproducible_science.md","Chapter1-GettingStarted/1.2_jupyter_environment.md","Chapter1-GettingStarted/1.3_python_environment.md","Chapter1-GettingStarted/1.4_computational_environments.md","Chapter1-GettingStarted/1.5_version_control_git.md","Chapter1-GettingStarted/readme.md","Chapter2-DataManipulation/2.10_dimensionality_reduction.ipynb","Chapter2-DataManipulation/2.11_MLready_data.ipynb","Chapter2-DataManipulation/2.1_Data_Definitions.md","Chapter2-DataManipulation/2.2_data_formats_rendered.ipynb","Chapter2-DataManipulation/2.3_pandas_rendered.ipynb","Chapter2-DataManipulation/2.4_Arrays.ipynb","Chapter2-DataManipulation/2.6_resampling.ipynb","Chapter2-DataManipulation/2.7_data_spectral_transforms.ipynb","Chapter2-DataManipulation/2.8_statistical_considerations.ipynb","Chapter2-DataManipulation/2.9_feature_engineering.ipynb","Chapter3-MachineLearning/3.1_clustering.ipynb","Chapter3-MachineLearning/3.2_classification_regression.ipynb","Chapter3-MachineLearning/3.3_binary_classification.ipynb","Chapter3-MachineLearning/3.4_multiclass_classification.ipynb","Chapter3-MachineLearning/3.5_logistic_regression.ipynb","Chapter3-MachineLearning/3.6_randomForest_regression.ipynb","Chapter3-MachineLearning/3.7_hyperparameter_tuning.ipynb","Chapter3-MachineLearning/3.8_ensemble_learning.ipynb","Chapter3-MachineLearning/3.9_autoML.ipynb","Chapter4-DeepLearning/mlgeo_4.1_neural_networks.ipynb","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron.ipynb","Chapter4-DeepLearning/mlgeo_4.3_CNN.ipynb","Chapter4-DeepLearning/mlgeo_4.4_RNN.ipynb","Chapter4-DeepLearning/mlgeo_4.5_AutoEncoder.ipynb","Chapter4-DeepLearning/mlgeo_4.6_NAS.ipynb","Chapter6-ModelWorkflows/readme.md","about_this_book/0_mlgeo_project.md","about_this_book/about_this_book.md","about_this_book/acknowledgements.md","reference/bibliography.md","reference/glossary.md"],objects:{},objnames:{},objtypes:{},terms:{"0":[2,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,32],"00":[10,13,14,18,19,23,29],"000":[3,6,10,26],"000000":[10,12,14,18,21],"0000004":12,"000000z":[13,14],"0000794":12,"0000ff":26,"0001":22,"00010279":22,"00015444":22,"00017369":22,"00017777":14,"00019417":22,"00019767":22,"00022147":22,"00022739":22,"00024025":22,"00025221":22,"00026867":22,"00028058":22,"00028074":22,"0003":16,"00030313":22,"00030671":22,"0003116":22,"00032911":22,"00033131":22,"00033565":22,"00036127":22,"00036523":22,"000368":22,"00037982":22,"00038028":22,"00038497":22,"00040847":22,"00046558":22,"0004974":22,"00051429":22,"0005219":22,"00055709":22,"00056481":22,"00056848":22,"00057124":22,"00057149":22,"00057284":22,"00060262":22,"00063497":22,"00075296":22,"0007645780792982153":22,"00078219":22,"00078404":22,"00081537":22,"00082129":22,"00084407":22,"00096243":22,"00097039":22,"00098027":22,"001":[19,20,22,25,26,27],"00114053":22,"00117745":20,"00138058":22,"001417":16,"00160452":22,"00202393":22,"00235309":22,"00235718":6,"00266993":22,"00275743":22,"003069":16,"003468":16,"003938":16,"004932182490752158":20,"005":[26,27],"005311":16,"00537195":22,"00540662":22,"00541439":22,"00548282":22,"00550599":22,"00570369":22,"00579743":22,"00597839":22,"0060364":12,"00676385":22,"0068304":12,"00781032":22,"00790743":22,"00800":10,"00814581":22,"00819788":22,"00828981":22,"00843649":22,"00847631":22,"00849648":22,"00891695":22,"008924":16,"008967":16,"00936933":22,"009565":16,"00970379":22,"009791921664626684":20,"01":[10,13,21,22,23,29],"010":10,"010000":[12,13,14],"0109":20,"01105633":22,"011097410604192354":20,"01134934":22,"01182476":14,"01184845":22,"01185122":22,"01186934":22,"011982":16,"012538":22,"01266155":22,"01291194":22,"01380216":16,"01396018":6,"0147789":22,"015568":16,"01588404":14,"01693117":20,"01706581":22,"01723228":22,"01726675":22,"01746058":22,"01750962":16,"01769457":22,"01823897":22,"0187614":22,"01880449":14,"01923843":20,"02":[10,21,26,29],"02001436":6,"02107299":22,"02163751":6,"02175317":22,"02184954":22,"021897810218978103":20,"022358":16,"02297249":22,"02310362":22,"02326522":22,"02352686":22,"02355824":22,"02380347":22,"02449503":22,"025":18,"025000":21,"02502255":22,"02507":22,"0253":24,"02575654":22,"02612495":22,"02696":10,"02756419":22,"02938002":14,"029486":16,"02956544":20,"02993002":6,"03":[10,21],"030637":16,"03100":10,"03103009":20,"0313548":14,"03244272":6,"033255":12,"03424752":16,"03440":10,"034483":21,"0347":24,"0348":24,"036229":16,"036617":10,"0370":24,"0382":24,"04":[10,12],"0400":24,"04008636":6,"04101425":20,"04128178":22,"0419":24,"0430":24,"04314":10,"0446":24,"0450":24,"04521918":22,"0454577":20,"04572756":20,"0475276":6,"047994":16,"04809985":22,"049902":16,"05":[10,11,12,13,14,16,19,21,27],"0510":24,"05154009":22,"05242661":6,"0529":24,"05366359":22,"053684":10,"0540":24,"05442019":22,"05511222":22,"05535727":22,"0560":24,"05716662":22,"0580":24,"0594":24,"0595":24,"06":[10,14,21],"060":10,"0601":24,"060298649528828":14,"0604":24,"0605":24,"06084275":22,"0612":24,"0622":24,"0625":19,"0629":24,"0631":24,"0635":10,"0638":24,"0641":24,"0646":24,"064938":10,"0650":24,"0651":24,"0661":24,"067100":12,"07":[10,11,13,14],"0711":24,"0721":24,"0737":24,"0740":24,"07508417348193797":14,"0754":24,"0758":24,"0761":24,"0763":24,"0768":24,"076831":12,"0776":24,"0777":24,"0777344413103096":13,"077800":10,"0779":24,"0780":24,"0783":24,"07841108":6,"0785":24,"0795":24,"08":[10,14,29],"0800":24,"0803":10,"0804":24,"0808":24,"0815":24,"0823":10,"08484803":20,"0891":24,"0897":24,"09":[10,29],"09091835":16,"0914":24,"09259738":16,"0935":16,"0950":24,"0977":24,"0992":24,"0_wavelet":15,"0f":19,"0ffh4r23mitn2dz":15,"0s":[19,22,29],"0x103f1b520":16,"0x1060f17f0":20,"0x126f0e7f0":20,"0x14cde05b0":22,"0x14cde2460":22,"0x14cde2cd0":22,"0x15225a3a0":18,"0x1bfa3c4f0":25,"0x1c135a7f0":25,"0x1c899e9a0":16,"0x1ca300220":12,"0x1cd5cc070":16,"0x1cd6c1a60":16,"0x1cd824850":16,"0x287e5fa30":14,"0x29996e5b0":14,"0x7f60ec163730":6,"0x7f60ecda71c0":6,"0x7f60f04a8fa0":6,"0x7f7118752b50":26,"0x7f7c5ab6c760":18,"0x7f7c5ace6590":18,"0x7f7c5ad06230":18,"0x7f7c5ef8fdf0":18,"0x7fd65cb311b0":19,"1":[15,20,24,28,29,33,35],"10":[2,3,9,10,11,12,13,14,16,18,19,21,22,23,24,25,26,27,28,29,32,33],"100":[1,9,10,11,12,13,14,15,16,21,22,23,24,25,26,27,29,33,36],"1000":[6,8,10,11,12,13,21,22,23,25,27],"10000":[6,10,11,12,13,28],"100000":[10,14,21],"10021":9,"101":10,"1029":27,"1030":19,"1031":19,"1032":19,"1033":19,"1034":19,"1035":19,"1036":19,"1037":19,"1038":19,"103932":14,"1040":19,"1041":19,"105":10,"105000":10,"106":24,"1078":10,"109":10,"109400":10,"10959":10,"10hz":13,"10k":28,"11":[6,10,12,13,14,21,22,24,25,29,33],"110":10,"1101":24,"1108":10,"111":[6,13,16,29],"1110":10,"1111":10,"1112":10,"1113":19,"1114":19,"1115":19,"1116":19,"1117":19,"113":10,"113026":14,"1137":24,"114":12,"1142":19,"1143":19,"1144":19,"1145":19,"1146":19,"1147":19,"1148":19,"1149":19,"114x80":27,"1150":19,"1151":19,"1152":19,"1159":19,"1160":19,"1162":19,"1164":19,"1166":19,"117":21,"117697":29,"118":10,"1181":19,"1182":19,"1183":19,"1184":19,"1185":19,"1193":24,"1198":20,"12":[10,11,12,13,14,16,21,24,29],"120":[26,27],"12000":10,"120542":21,"121":[9,10],"1225":20,"123":[10,24],"1233":19,"1234":[9,19],"1235":19,"123783465":16,"1240":19,"1241":19,"1242":19,"1244":19,"1245":19,"1246":19,"125":[6,10,11,14,19],"125816":10,"126":19,"1261":10,"126600":12,"127":[9,19],"128":[11,27,28],"129":27,"1299":24,"13":[10,13,14,24,29],"1301":26,"13245936":16,"1362":6,"136778":16,"1369":24,"1370":24,"1382":24,"1388":10,"13m":29,"14":[10,11,12,13,14,16,22,24,29],"140":22,"14158634":14,"14159005":14,"142":10,"145":10,"1457":24,"1459":20,"146":10,"146988":10,"147744826538707":12,"148":10,"14m":29,"15":[2,10,11,13,14,19,20,21,22,23,24,26,29,33],"150":13,"15166937":16,"154":10,"1545":10,"1546":24,"15688101":13,"157000":12,"158":16,"1590":10,"1591":24,"15924":14,"15m":29,"16":[10,12,14,24,25,26,27,29],"161700":10,"163":29,"164":10,"165398":21,"166":[10,13],"16601227":16,"1664":10,"1666":10,"167":29,"16813116":14,"16900":10,"1691094658":13,"16m":29,"16x16":27,"17":[10,12,14,21,24,26,29],"170000":14,"1719":29,"173":16,"1736":10,"1740":24,"1767563":13,"177475":10,"178":10,"1780":10,"17803249":22,"1781":10,"1782":10,"1783":10,"1784":10,"1785":10,"17860823":22,"179":10,"1790":19,"1791":19,"1792":19,"1793":19,"1794":19,"1797":[19,22,23,24],"18":[2,10,14,16,18,24,29],"1841126":22,"18470":16,"1852":24,"1861":19,"1862":19,"1863":19,"1864":10,"1865":19,"1866":19,"1867":19,"1868":19,"18685474":22,"1869":19,"187":9,"1870":19,"187675":10,"18767507003":10,"188":19,"18843017":22,"189":19,"1892":24,"19":[10,18,24,27,29],"190":19,"191":19,"192":19,"19251866":22,"193":[19,29],"194":19,"195":19,"196":19,"197":19,"1983":10,"1984":10,"1985":10,"1986":10,"1987":10,"1988":10,"199":19,"1990":9,"19918694":22,"1993":10,"1994":10,"1995":[10,32],"1997":10,"1998":27,"1999":10,"1d":[8,13,19,26,27],"1e":[11,13,22],"1e4":13,"1hz":[13,14],"1j":14,"1pko9ormcllaxipzoa3aoztgzfpad2iwj":[21,24],"1pvu8vbytx0g4w41tb537irm5v845e4upsirwqrfoqb0":8,"1s":[13,19,22],"1st":[6,16],"2":[1,2,3,4,20,24,29,33,35],"20":[10,14,19,21,22,24,28,29],"200":[1,13,16,20,22,33],"2000":[6,10,11,23,26],"200000":21,"2001":[10,26],"2002":10,"2006":[10,12],"2007":3,"201":19,"2010":[10,12],"2011":10,"2013":11,"2014":12,"2015":10,"2016":[10,21,24],"2017":[10,14],"2018":[27,29],"2019":[10,12,16,29],"2019gl085870":27,"202":19,"2020":[2,10,27,29],"2021":[10,13,14],"2022":[4,10,13,29,34],"2023":[4,12,14,33],"2025":10,"203":19,"204":26,"20454172":6,"2048":10,"207":33,"207073":16,"20726748":16,"208":33,"208269":16,"209":24,"21":[9,10,14,18,22,24],"2136":24,"21594585":16,"2171b5":6,"21966":10,"21m":29,"22":[10,14,22,24,29],"2201005948153714":13,"224":26,"2256":24,"228":[9,10],"23":[10,14,16,21,23,24,29],"2300000":13,"2301":26,"2310":24,"23233":29,"23296":29,"234":11,"236217054087575":13,"2370":24,"238506":21,"239":26,"24":[10,12,24],"240":[11,16,26],"24052539":6,"241":6,"24400":10,"245000":12,"2482":24,"25":[10,12,13,14,16,21,24,26,29,32],"250":3,"2519":29,"2520":29,"2521":29,"2522":29,"2523":29,"2524":29,"2525":29,"2526":29,"2527":29,"2531":29,"2533":29,"2539":29,"2540":29,"2541":29,"2543":29,"2548":29,"2549":29,"255":29,"2550":29,"2551":29,"2552":29,"2553":29,"2554":29,"2555":29,"2556":29,"2557":29,"2558":29,"256":25,"2564":29,"2565":29,"257":25,"25700":10,"25hrequir":23,"26":[10,11,13,14,24,29],"2600":24,"2600000":13,"261":21,"2626":24,"26268435":16,"2632":29,"2639":29,"2651":29,"2657":29,"2673":29,"2680":29,"2698":29,"27":[9,10,24,29],"27101466":16,"273":11,"2730":29,"2733":29,"2742":29,"27594":10,"277725":16,"2778":24,"2780":24,"2789":10,"27m":29,"28":[10,12,16,21,22,24,25,26,27,29],"2823":24,"2827":29,"2830":24,"2836":[24,29],"2845":24,"2856":29,"286":9,"2861":29,"2862":29,"2865":29,"2870":29,"2879":29,"2884356107":13,"289":26,"2890":29,"28913069":6,"2899":29,"28x28":27,"29":[10,12,13,14,21,24,26,29],"29046581":6,"2906":29,"2925":29,"2935":29,"294":9,"295":[9,24],"2952":29,"296":24,"297":[9,24],"2970118992746436":14,"298":24,"2986":29,"299":[9,24],"2992":29,"29t04":[13,14],"29t06":[13,14],"2bcurli":[13,19],"2d":[6,8,26,27],"2dt":13,"2f":[6,12,14,19,26],"2fa":4,"2m":29,"2nd":[9,16],"2p":14,"2s":22,"2x":26,"2x2":[18,27],"3":[3,4,15,25,28,29,33],"30":[6,10,12,14,16,24,29],"300":[9,16,24,26],"3000":10,"300000":10,"301":26,"30100":10,"3019":24,"302":9,"302031":10,"3023":29,"3056":29,"305700":10,"307":33,"3073":29,"30761722":16,"308":33,"31":[10,14,21,24],"3100":9,"3125":19,"3133":9,"314000":12,"31435567":16,"3159":10,"31840023":6,"31m":29,"32":[10,12,24,26,27,29],"3200000":13,"3201":[9,13],"321":10,"3246":9,"3249":24,"32x32":27,"33":[10,24,32],"333":26,"336":26,"3383":29,"34":[10,24],"34043406":6,"34069778":16,"3407":10,"3408":10,"3409":10,"3410":10,"3411":10,"34354394":16,"34400":10,"34415049":16,"3457":10,"34570272":6,"3458":10,"3459":10,"3460":10,"3461":10,"3462":10,"3463":10,"3475":24,"348":[21,24],"3480":10,"3481":10,"3482":10,"3483":10,"3484":10,"35":[10,21,24],"351":33,"35118033":16,"352":33,"35440":10,"35800":14,"35856":14,"35866":14,"35963":14,"35986":14,"36":[6,10,24,29],"360":[6,11],"3600":13,"36050":14,"36063":14,"36065":14,"36125048":16,"36174":14,"36177":14,"36608":27,"3666":10,"3667":10,"3668":10,"3669":10,"3670":10,"367623":16,"368":26,"3680":10,"37":[10,23,24,26],"370":10,"3733":24,"373563":21,"375":19,"37841317":6,"38":[10,24],"38116775":16,"382403":10,"38561943":6,"3890":24,"39":[10,11,12,14,24],"390000":14,"391800":10,"3931145617":16,"39322864":20,"3950175":16,"39591267":16,"39822533":14,"39912885":16,"3d":[10,13,15,16,19,27],"3f":[25,26,27],"3rbzxjb16kv66g_p4wkzq16h0000gn":16,"3s":22,"3x3":27,"4":[2,6,9,16,18,22,24,33],"40":[9,10,11,13,14,16,18,21,23,24],"400":[10,15],"400000":21,"400x300":16,"409300":12,"41":[10,21,24],"416857":16,"42":[18,19,21,24,26,27],"42476644":14,"42510872":16,"4284":10,"4285":10,"4286":10,"4287":10,"4288":10,"4289":10,"429012":10,"42922743":16,"42m":29,"43":[10,12,14,21,24],"43014":10,"434":10,"438107857588658":12,"438107857588663":12,"4381084":12,"43814041":16,"4382164":12,"43901058":6,"44":[10,12,21,24],"442660214306567":12,"446":10,"45":[10,12,21,24],"4513":10,"45919889":16,"45956413":16,"46":[21,24,29],"462018":16,"4649":10,"46779875":16,"469":33,"47":[9,13,21,24,26,27,29],"47128343":6,"47232592":6,"47256154":6,"477011":21,"478654":16,"478900":10,"48":[21,24],"48120537":16,"482000":12,"4841":24,"48489432":16,"487000":12,"4880":24,"49":[12,14,19,21,24],"4901":[9,13],"49118717":16,"495126":6,"4954325":6,"498380":21,"4_multiclass_classif":19,"4_pandas_rend":10,"4ducqnd7mfihnh7d":3,"4p":14,"4s":29,"5":[2,3,6,8,9,10,13,14,16,18,19,22,23,24,25,28,33],"50":[10,11,12,14,16,19,21,22,23,24,25,26,27,28],"500":[3,6,10,22],"5000":[28,29],"500000":21,"5007397612756534":13,"501":13,"5034":24,"50748428":16,"50777458":6,"508000":12,"50m":29,"51":[10,13,24,28],"51078471":16,"51251051":16,"514368":21,"516241":12,"517":26,"51873336":16,"52":[10,12,24],"520022":12,"5268":20,"527306":21,"529":29,"53":[21,24],"53044455":16,"531903386":10,"5325":24,"532844":16,"5333":24,"534263":12,"53469999":16,"5364":20,"53814789":16,"53847563":16,"54":[21,24,29],"540813":16,"54114405":16,"543103":21,"54392202":16,"544":10,"54400":10,"5452":20,"54534953":6,"548094":16,"549381":21,"54988292":16,"55":[10,24,29],"550":10,"55000":29,"5550078":6,"5565551":16,"558363":10,"5599":24,"56":[10,21,24],"560":10,"5613":24,"5625":19,"5655":24,"5664":24,"569":33,"56922127":16,"56931501":16,"57":[14,21,24],"570":10,"577122":16,"5792":10,"579308":10,"58":21,"58000":10,"580796":16,"58242":10,"59":[10,13,14,21,24,33],"590":1,"59186646":16,"59194299":16,"5958515":16,"598":19,"5991453":16,"5x5":[26,27],"6":[6,10,13,14,16,18,19,24,26,27,29,33],"60":[10,14,19,21],"600":10,"60000":26,"600000":10,"6001989060169071":20,"6005":24,"601":10,"60435859":16,"605746":21,"60613125":16,"60763889":22,"608":[10,22],"608510":10,"608674":10,"6098":10,"61":[19,21,24],"61062942":16,"61318842":16,"61326113":16,"613687":14,"6173489951795071":13,"618141":12,"62":[19,21],"620":19,"62015573":16,"6206749":16,"62082943":16,"62095626":16,"621":19,"62107074":16,"6216":24,"622":19,"6228":10,"62288846":16,"623":19,"62343935":16,"62438435":16,"625":19,"626179":21,"628":22,"62831579":14,"62831949":14,"6284":24,"62847222":22,"62883364":16,"62906711":16,"62923072":16,"63":[10,19,23,24],"63147309":16,"6341":[6,12],"63453326":16,"636efa":10,"63723971":16,"63727695":16,"63771876":16,"6394":24,"64":[19,24,26,27,29],"64019598":6,"64059":10,"64240716":16,"643588":16,"64383652":16,"6448":24,"64495474":16,"64524934":16,"64642601":16,"64671513":16,"646886":6,"64734418":16,"6480666066247558":13,"65":[6,12,19,24],"652299":21,"653386":16,"6541":10,"65486061":14,"65663369":16,"65885774":16,"65990":10,"66":[10,21,32],"66048458":16,"6611":10,"66184574":16,"6624":24,"663000":12,"66389788":16,"665":10,"66522149":16,"66568594":16,"66571243":16,"6660137226595724":16,"66647019":16,"6666666666666666":20,"667":26,"66987819":16,"66994118":16,"67":14,"670":10,"6701":24,"6704":24,"6708":24,"67139297":16,"67241576":16,"67367877":16,"67370015":16,"6738216":16,"6755599":16,"67605116":16,"6765":24,"67676623":16,"67690662":16,"68":[10,14],"6805":24,"68054136":16,"68069155":16,"68133003":16,"6814":24,"68146157":16,"68184766":16,"68286217":16,"68309587":16,"68371465":16,"6847":24,"685500":10,"68573384":16,"68593435":16,"686":22,"68631":10,"68638609":16,"68641115":22,"6881":10,"68881933":16,"68885895":16,"69":[10,21],"6902":24,"69020771":16,"69057845":16,"69236319":16,"692383":10,"6924458":22,"69255292":16,"69322019":16,"6933":24,"69390867":16,"69452008":16,"69473128":16,"6958":24,"6966":24,"6968454":16,"69686411":22,"697":22,"69717451":16,"69871087":16,"69908115":16,"69922373":16,"7":[2,3,6,9,10,11,12,14,16,18,19,23,24,26,29,33],"70":[10,14],"700":13,"7000":28,"70025565":16,"70038786":16,"701149":21,"70223754":16,"70263944":16,"70370182":16,"70406565":16,"70426829":22,"705256":21,"70585277":16,"7062434298834965":12,"70830125":16,"70868214":16,"70993839":16,"71":[14,21,24,26,29],"710000":14,"7102":24,"71080139":22,"711":22,"7117385":16,"7136":10,"7143":24,"71446902":16,"71493118":16,"7150":10,"7151":10,"7152":10,"7153":10,"7154":10,"7155":10,"7156":10,"71595929":16,"71613791":16,"71624672":6,"71647227":16,"7175909":16,"71777003":22,"718":22,"718311":16,"71868257":16,"71870468":16,"7190":24,"719359":29,"72":[10,12,14,21],"7200":[13,14],"720000":[12,13,14],"72011236":16,"7215":24,"72189751":16,"72209849":16,"72237984":16,"72351704":16,"72452975":16,"72473868":22,"72486287":16,"725":[10,22],"726200":12,"72656201":16,"72693285":16,"72900597":16,"72967489":16,"73":10,"73011104":16,"7307":20,"73126145":16,"73170732":22,"732":22,"7321":20,"73263889":22,"733":22,"73321253":16,"73392689":16,"73392859":16,"73399564":16,"73406938":16,"73432084":16,"73497355":16,"73523528":16,"73527765":16,"73553435":16,"735987":10,"73622929":16,"73629291":16,"7371437":16,"73721913":16,"73884634":16,"73942066":16,"74":[10,14,26],"74047807":16,"74070909":16,"740872":16,"74152142":16,"74152169":16,"74176784":6,"74271586":16,"74273719":16,"74471303":16,"74516531":16,"74652778":22,"74695266":16,"74698581":16,"747":22,"74782772":16,"7490650993380316":12,"74923268":16,"74988807":16,"75":[10,11,12,14,19,21,26],"750":10,"750000":[14,21],"75050886":16,"75066744":16,"75202614":16,"75215033":16,"75337184":16,"754":13,"75402734":16,"75439721":16,"75515268":16,"75546079":16,"75559453":16,"756":13,"75617037":16,"75665801":16,"75700651":16,"75760721":16,"758688":10,"7592036":16,"75922639":16,"75926756":16,"76":[14,21],"76035029":16,"760632":21,"76096889":16,"76123913":16,"76139725":16,"76146594":16,"76309549":16,"76383818":16,"76427688":16,"76451254":16,"7647wqr96rhr49q":[13,19],"765200":12,"76686261":16,"76717763":16,"767943601369907":13,"7682":10,"76836771":16,"77":21,"77016488":16,"77125499":16,"772434":12,"772982":21,"772989":21,"77305065":16,"775000":18,"7763568394002505e":14,"77811399":16,"77844951":16,"77998847":16,"78":[10,12],"780000":14,"782500":10,"7831169485096":6,"784":[25,26],"78479013":16,"78485929":16,"78570":10,"78593105":16,"78740418":16,"78769807":16,"7889":20,"78912008":16,"79":21,"7921602":16,"79219349":16,"79253012":16,"794146":21,"79434712":16,"7944444444444444":23,"79515639":16,"79625474":16,"79678104":16,"79739309":16,"79815047":16,"7_data_spectral_transform":13,"8":[2,3,6,9,10,11,12,13,16,18,19,21,22,24,25,26,27,28,29,33],"80":[6,12],"80008821":16,"80058568":16,"80152883":16,"802":20,"80209433":16,"80258282":16,"80274267":16,"80413431":16,"804426":16,"80775088":16,"80786877":16,"80877866":16,"81":14,"81072996":16,"81105258":16,"81211786":16,"813000":12,"81382108":6,"814":29,"8151241":16,"81530":29,"81558153":16,"81562877":16,"81571315":16,"81576455":16,"816":26,"81719692":16,"8181818181818182":20,"8184":24,"81884902":16,"8190425043357745":12,"81983109":16,"81m":29,"82":21,"82043467":16,"82113359":16,"82269232":16,"82284":29,"8238563":16,"8238774989356271":12,"82403372":16,"82484302":16,"82486446":16,"82561676":16,"8263632119514472":23,"82768761":16,"82773":10,"82784456":16,"82811465":16,"828840":10,"8309308755379773":13,"832200":10,"84":[14,19,26,27],"8406":10,"840700":10,"841000":12,"8439":24,"8453316591120342":13,"8457":24,"8490":24,"85":[11,12,16,19],"850":10,"855000":12,"857143":18,"86":[19,29],"8610":24,"86349029869899":13,"8679961043240163":13,"87":[10,12,19,21],"8707":24,"8738":24,"874184":10,"875000":18,"878049":18,"88":[12,19],"88070032":6,"88107038":6,"8833333333333333":23,"88495106":14,"88495477":14,"8866":24,"887200925547722":12,"8888":24,"89":19,"890000":14,"8978":24,"898166":16,"899":19,"899511":12,"9":[2,10,14,16,19,20,21,22,23,25,26,29,33],"90":[6,10,19],"9000":[24,28],"900000":18,"901":13,"90265774":6,"904":26,"904762":18,"905":10,"905100":10,"90832086":6,"90972222":22,"91":[19,24],"910":22,"911":10,"9114":24,"91149589":14,"913043":18,"918000":12,"91986063":22,"92":[19,21],"920":22,"925":[10,23],"925120":16,"926829":18,"927000":12,"92880978865406":19,"93":[14,19,21],"9339":20,"9362":24,"94":[9,19],"940000":12,"942135":14,"9434":24,"944":22,"94425087":22,"9447":24,"9450421":22,"94657351":6,"94791667":22,"948":22,"94915864":6,"95":[6,18,19,21,27],"950000":18,"9500949":6,"951":22,"95138889":22,"952381":18,"954545":18,"9545454545454546":18,"95486111":22,"955":22,"95547329":22,"9555061179087876":19,"957200":10,"958":22,"95818815":22,"95833333":22,"9583333333333334":22,"96":[3,19],"9609":10,"9610569483132156":23,"9621008403361344":23,"9632119514472456":23,"965":22,"96515679":22,"96521245":22,"96527778":22,"96660859":22,"96864111":22,"96869193":22,"96875":22,"9688542825361512":19,"969":22,"97":[6,18,19],"972":22,"9720":20,"97212544":22,"97356514":22,"975000":[18,21],"97560976":22,"976":22,"97600531":6,"976744":18,"9767441860465117":18,"97703494":22,"979":22,"97909408":22,"97916667":22,"9793790849673202":23,"98":[16,18,19,26],"9825784":22,"9826966":6,"983":22,"98533885":6,"986":22,"98606272":22,"98611111":22,"987665408758737":22,"99":[10,11,12,19],"990000z":[13,14],"9964524":12,"99746591":6,"9976":24,"998100":10,"99866939":6,"9s":22,"\u00b5s":13,"\u00e5":12,"boolean":[9,17],"break":[1,29],"case":[6,9,10,12,14,21,24,29,31,32],"class":[5,6,10,11,12,13,14,15,16,17,18,19,20,22,23,25,26,27],"default":[2,3,4,6,10,11,23,24,28],"do":[4,6,9,10,12,13,14,16,18,19,20,22,23,25,26,27,28,29,32,33],"export":[21,24],"final":[16,19,23,28,31,32,33],"float":[6,8,11,12,16,19,20,25,26,27],"function":[2,5,6,11,12,13,14,15,16,17,18,19,20,22,23,24,27,28,29,32],"ga\u00ebl":18,"import":[2,4,6,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29],"int":[6,11,12,13,14,15,16,19,21,25,26,27],"long":[12,13,25,26,27,28],"m\u00fcller":18,"new":[6,7,9,10,11,12,14,16,18,20,21,23,24,30,32,36],"null":[9,12],"public":[1,4,36],"return":[6,10,14,15,16,19,20,24,25,26,27,28],"short":[4,28,29,33],"super":[19,25,26,29],"switch":6,"transient":29,"true":[6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28],"try":[10,11,12,16,18,20,22,23,24,27,28,32],"var":[12,13,14,16,20],"while":[16,20],A:[1,2,4,6,7,8,10,12,14,16,17,18,19,20,22,23,25,26,27,28,29,30,36],AND:10,And:[12,15,29],As:[6,10,12,24],At:[3,4,11,12,32],Be:4,But:[12,14,16],By:[6,12,33],For:[1,3,6,8,10,11,12,14,16,20,23,24,25,26,27,30],If:[3,4,6,10,11,12,13,16,19,20,21,24,25,26,27,36],In:[3,4,9,10,11,12,13,14,15,16,18,20,21,23,24,25,26,27,28,29,30,31],Is:[1,11,16,32],It:[1,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,31,32,36],NEAR:10,No:[13,32],Not:[4,13],OF:10,OR:10,On:4,One:[1,3,6,8,13,14,20,22,23,24,26,27,29],Or:[1,28],TO:[17,21],That:[20,23],The:[1,3,4,5,6,9,10,11,12,13,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,36],Their:[3,8],Then:[4,16,25,27],There:[3,4,6,9,10,11,12,13,16,17,19,20,22,23,24,25,26,27,32],These:[2,3,6,14,16,24,26,29,32],To:[0,2,3,4,6,10,12,13,15,16,20,23,24,26,28,29,33],WITH:12,Will:[21,32],With:[14,23],_1:6,_2:[11,14],_:[6,12,19,25,26,27],_________________________________________________________________:29,__call__:19,__class__:[23,27],__getitem__:25,__init__:[25,26,29],__len__:25,__main__:25,__name__:[23,27],_asarray_with_ord:19,_assert_all_finit:19,_base:19,_c:26,_check_estimator_nam:19,_check_i:19,_distn_infrastructur:22,_ensure_no_complex_data:19,_fit_and_predict:19,_fit_context:19,_funcwrapp:19,_get_sequential_output:19,_i:20,_lib:10,_lock:19,_n:6,_valid:19,_validate_data:19,_validate_param:19,_validate_target:19,_with_config:19,a_:6,a_nparrai:11,aa:[10,11],aar:10,ab:[13,14,16,20,21,27],abil:[5,12,36],abj:10,abl:[4,16,19,20,24,32,33],about:[2,4,9,10,11,12,13,14,16,20,24,27,28,33],abov:[4,6,10,13,16,25,26,27],abr:10,absolut:[14,21],ac:10,academ:4,academia:24,acc:18,accept:[4,12],accept_large_spars:19,accept_spars:19,access:[3,4,9,10,11,21,25,32,33],accord:[6,26],account:[3,6,12],accur:[13,32],accuraci:[12,18,19,20,21,22,23,25,26,27],accuracy_scor:[19,22,23],accuracy_tim:[25,26,27],accurraci:20,achiev:24,acknowledg:4,acoust:3,across:[8,32,36],act:23,activ:[2,25,27,28,29],actual:[16,20,21,24,31],ad:[3,5,11,26,28,29],ada:24,ada_clf:23,adaboost:[18,24],adaboostclassifi:[18,23],adam:[26,27,28],adapt:34,add:[2,4,6,7,9,10,11,14,16,17,21,25,26,27,29],add_subplot:[6,16],add_to:9,addit:[4,9,10,14,16,19,26],address:[1,4,9,12,15,33],adityakadiw:20,adjac:12,adjust:12,admiralti:10,adopt:[11,33],advanc:[3,33],advantag:[3,6,12,22],adversari:27,adw:10,affect:[10,16],affin:26,afford:3,afo:10,after:[4,12,16,25,26,27],ag:9,again:[3,6,9,10,12],against:[12,16,18,26],agenc:36,agg:10,agglom:16,aggreg:[16,23],aggress:24,ago:21,ahead:[11,24],ai:[24,31],aid:34,aim:[1,10,28],air:[8,11],air_temperatur:[9,11],aka:[11,18],akmehra:33,akshai:33,al:[4,27,29],alana:4,alaska:13,algebra:11,algorithm:[6,16,20,22,23,26,27,28,29,31,32],alias:2,align:6,all:[1,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,29,32,33],allcorr:6,alldataload:26,allevi:12,alloc:[3,11,27],allow:[1,3,4,6,9,10,11,12,20,28,32,36],allow_nd:19,along:9,alow:13,alpha:[6,12,14,16,18,20,21,26,27],alreadi:[2,3,11,14,20,23,24,25,27,31],also:[3,4,6,8,9,10,11,12,13,14,15,16,18,23,24,26,27,28,29,31,36],alter:31,altern:10,although:20,alwai:[16,20],amath301:33,amath:33,amaz:24,amazon:3,ambient:15,among:[7,8,12,15,16,26],amount:[6,9,12],amplitud:[13,14,27,32],an:[1,3,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,32,33,36],anaconda:2,analog:17,analysi:[9,12,15,16,17,27,31,33],analyz:[4,13,14],anchor:6,andrea:18,android:4,angl:[13,24],ani:[4,5,9,12,13,14,23,24,26,28,31,36],annoi:24,annot:6,annotate_heatmap:6,anomal:21,anoth:[6,10,13,23,25,27,29,31],answer:[10,11,12,14,24,33],anthoni:33,anticorrel:12,anyon:11,api:4,app:36,appdata:10,appear:[6,10,11,13],append:[6,9,11,12,26],appli:[6,10,11,13,16,17,21,25,27,29,31,32,33],applic:[3,4,6,12,13,26,36],approach:[6,7,10,12,16,23,25,26,30],appropri:[4,24,29,32,33],approxim:[6,12,13,20,26],ar:[3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33],arang:[6,11,12,13,15,16,19,25,26,27,28],architectur:[3,5,26,27,29],archiv:[3,32],arcitectur:25,area:[3,11,12,18,19],arendt:33,arg:19,argmax:6,argmin:16,argu:27,argument:[6,12,23,26,29],arian:34,aris:13,arithmet:11,around:[3,6,14,26],arr:11,arra:11,arrai:[5,6,7,8,10,12,13,14,15,16,18,19,20,21,22,23,25,27],arrang:[7,27],array_of_diff:12,arriv:3,artefact:13,articl:13,artifici:21,artist:14,asarrai:[6,12,13,16,19,25,27],ask:[4,20],aspect:13,assembl:16,assess:[12,18],assign:[10,11,12,16,17,21,24,26,27],associ:[3,9,15,25],assum:[12,13,15,16,20],assumpt:12,ast:6,astyp:[16,28],asynchron:10,atan2:6,atlow:13,atmospher:3,attach:11,attach_respons:[13,14],attain:16,attempt:[29,33],attent:23,attr:11,attribut:[7,9,10,11,15,16,19,25,32],attriobut:15,auc:[18,19],author:[4,27],autmn22:[1,4],autmn:33,auto:[13,24,27,30],autofmt_xd:21,autokera:24,autom:[24,30],automat:[2,4,6,7,10,11,15,22,24,32,33],autumn22:4,avail:[2,3,9,10,12,23,32],avalanch:15,averag:[12,16,20,21,23,24,25,27,32],averagepooling2d:27,avg:[18,19],avgpool2d:27,avoid:[4,10,12,27,28,32],avx2:29,avx:29,awar:[4,13],awesom:24,ax11:11,ax12:11,ax13:11,ax14:11,ax1:[6,11,16,21,25,26,27],ax2:[6,11,16,21,25,26,27],ax3:[11,21],ax4:[11,21],ax:[6,11,12,13,14,16,18,19,26],axes3d:16,axesimag:6,axi:[5,6,10,12,13,15,16,18,21,25,26,27,29,32],axisgrid:16,axvlin:[12,16],azimuth:[6,10],b76e:24,b:[6,11,12,13,18,20,21,26,27,28],b_i:25,b_j:25,b_k:25,back:[6,24,26,29],backend:22,background:18,backprop:11,backpropag:[26,28],backward:[6,7,20,25,26,27],bad:[10,18,23,28,29],badg:4,bag:29,bag_clf:23,baggingclassif:23,baggingclassifi:23,balanc:[15,19],band:[13,14],bandpass:13,bar:[4,13,21],barcontain:14,base:[6,8,11,12,14,16,17,19,20,26,36],base_estim:23,baseestim:19,baselibsvm:19,baselin:32,baseline_error:21,baseline_pr:21,bash:3,basi:[13,16,17],basic:[3,4,14,18,22,26,30,32,33],batch:[10,25,26,27],batch_siz:[25,26,27,28],bay:[17,18],bayesian:24,bbox_to_anchor:12,beat:32,beauti:36,becaus:[10,11,12,16,20,25,26,27,28,29,31,32,33],becom:[3,4,13,20,28],been:[11,20,24,27,32],befor:[4,11,13,17,18,25,32,33],begin:[9,12,14,18],beginn:33,behav:[11,26],behavior:32,behind:[23,36],being:[17,25,27],belong:[16,18,20],below:[1,3,4,5,6,9,11,13,14,15,16,17,23,26,27,29,33],benefit:34,best:[4,16,18,20,26,27,30,32],best_params_:22,beta:29,better:[6,12,16,23,24,26,27,28],between:[3,4,5,11,12,13,14,15,16,18,19,20,23,26,32],beyond:34,bhe:10,bhn:10,bhz:10,bia:[12,23,25,26,27],bias:[25,26],bibtex:4,big:[3,9,20],bin:[10,11,14,24],binari:[2,8,9,14,17,20,23,25,26,29],binary_crossentropi:29,binder:[4,36],binderhub:36,biomed:29,bit:10,bitbucket:4,black:[6,11,12,14,16,26],blank:[1,16],blast:15,block:[27,28,29],blog:14,blue:[9,12,25,26,27],bn1:10,bn2:10,bn3:10,bne:10,bnn:10,bnz:10,bo:16,bokeh:10,bokehj:10,bold:[1,16],book:[3,10,11,13,19,32,33,34,36],boost:24,boot:29,bootstrap:[23,24],both:[12,14,16,17,18,20,24,27],bottleneck:29,bottom:[6,10],boulder:34,bound:[9,26,32],boundari:[9,18,26],bourn:3,box:[4,12,24],bp:13,br:[1,24],bracket:11,branch:[4,5,26,29,33],breadth:33,break_ti:22,brew:3,brief:10,briefli:4,bring:13,broader:27,broadli:12,browser:[1,4,36],brute:22,bsd:18,bti:10,bucket:15,bucketx:15,bug:4,build:[12,16,20,26,36],built:[9,11,22,26,29,32],bundl:26,burden:12,butter:13,butterworth:13,bv1:10,c1:13,c2:13,c:[6,10,11,12,14,16,18,19,22,26,27,29,32,36],c_:[6,26],cach:[13,24],cache_s:22,calcul:[6,8,10,11,12,13,14,15,16,18,19,20,21,24,25,26,27,32],california:[3,10],call:[3,6,9,10,11,13,14,16,18,19,20,23,24,25,26,28,29,32,36],callabl:26,callback:19,can:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,36],cancel:25,candid:22,cannot:[10,13,26,29],canon:[13,29,33],canva:33,capabl:3,captur:[12,26],carbon:16,cardin:24,carefulli:[12,13],carpentri:[3,4,5,11,34],carri:[10,27],carto:10,cascadia:12,casino:12,cast_to_ndarrai:19,catalog:[3,10,27],catboost:24,categor:[8,9,10,21,24,26],categori:[15,17],causal:13,caveat:16,cbar:6,cbar_kw:6,cbarlabel:6,cc:[16,18,29],cch1:10,ccp_alpha:24,cd:4,cdot:[6,20,25],cell:[1,10,13,19,24,26,28],celsiu:11,center:[3,4,6,11,12,16],central:[3,10,12,13,14],central_mo:14,centroid:16,certain:16,certifi:14,cfg:15,chain:26,challeng:[8,9],chang:[4,6,10,11,12,14,23,27,29,31],channel:[2,10,13,14,26,27,36],chapter2:[10,13],chapter3:19,chapter:[3,8,24,33],charact:[8,9],characterist:[13,18,19],charset:14,chart:21,chatgpt:34,cheat:4,chebyshev:13,check:[2,4,9,10,12,13,14,26],check_arrai:19,check_consistent_length:19,check_param:19,check_x_i:19,check_y_param:19,checkout:4,checkpoint:[26,27],chile:10,chine:33,choic:[12,22,27],choos:[3,4,6,10,13,14,16,17,25,26,27],choosealicens:4,chronolog:12,cienc:33,circ:[11,20],circl:[12,16],citat:4,cite:4,citi:9,class_nam:29,class_weight:22,classic:[13,24,27],classif:[14,20,23,25,26,27],classifi:[8,15,17,19,20,22,25,26,27,29],classificaiton:[17,23],classification_report:[18,19],claus:18,clean:[4,10,12,14,29,32],cleanest:4,clear:[16,24,33],clear_output:13,clearli:[12,16],clf2:22,clf:[18,19,22,23,26],cli:4,click:4,client:[13,14],climat:9,clipboard:4,clone:[4,5,19,33],close:[12,18,20,29],closer:[12,16],closest:16,cloud:[1,4,5,6,9,11,32,33,36],cloudstor:3,cluster:[3,24,27,32,33],cluster_centers_:16,cluster_label:16,clusterid:16,clusters_new:16,clusters_old:16,cm:[6,13,16,19,26],cm_bright:26,cmap:[6,13,15,18,19,26,29],cnn:28,co:[6,11,16],coarsen:11,coast:10,coat:29,cobli:11,code:[1,3,4,6,10,16,18,20,24,32,33,36],codespac:[13,19],coef0:22,coef:12,coef_:[12,20],coeff:6,coeffic:12,coeffici:[6,11,12,13,16],cohort:4,col:11,col_index:16,col_label:6,colab:4,collabor:36,colleagu:4,collect:[6,9,13,14,16,18,23,24,32],collinear:24,color:[6,9,10,11,12,14,16,18,25,26,27],color_threshold:16,colorbar:6,colorblind:11,colorinterp:9,colormap:6,column:[6,8,10,12,13,14,15,16,19,20,21,25],column_or_1d:19,column_stack:16,com:[1,4,8,9,13,15,16,20,21,24,27,33,36],combin:[6,7,12,14,16,22,24,25,27,28],come:[2,11,24],comic:4,comma:8,command:[3,4,10,20,21,26,36],comment:16,commit:4,common:[9,13,15,16,17,18,29],commun:[4,9,34,36],compact:[10,13],compar:[5,10,11,13,14,18,23,25,26,27,32],compare_model:24,comparison:[6,24],compil:[26,28,29],complet:[10,13,14,16,18,32],completeness_scor:16,complex:[6,9,11,12,13,16,17,26,27,32],complex_:14,complic:[20,28],compon:[12,15,24,27,29,31,33],components_:6,compos:[1,3,10,25,26,27],composit:14,compress:[8,10,13,29],comput:[1,2,4,5,6,9,12,13,16,17,19,20,25,26,27,32,33,36],computation:[6,12],compute_cent:16,compute_clust:16,compute_dist:16,compute_elbow:16,compute_object:16,cona:2,concat:[12,15],concaten:[12,14,16,27],conceit:12,concept:[12,16,29,33],concurr:[19,22],conda:[23,36],condit:[16,17,30,32],conduct:4,conern:3,confid:[12,18],config:[4,11,19],config_context:19,configur:[4,24],confirm:24,conflict:4,confus:[18,19],confusion_matrix:[18,19],confusionmatrixdisplai:19,congrat:4,conj:14,connect:[3,4,25,26,27,28,29],consid:[13,17,18,24],consist:[16,22,30],constant:24,constitut:23,constrain:[13,26],construct:14,consum:30,contact:4,contain:[1,2,4,6,9,11,12,16,21,25,29,33,36],contamin:14,content:[3,4,5,9,10,14],context:[11,14,25,26,27],continu:[4,6,9,12,13],contourf:[9,13,26],contourpi:14,contribut:[3,4,5,6,16,23,26,34],contributor:4,control:[33,36],conv1:26,conv1d:27,conv2:26,conv2d:[26,27,29],conv2dtranspos:29,conv_decod:29,conv_encod:29,converg:[12,16,29],convert:[6,10,11,12,13,19,20,21,22,23,25],convnet:27,convnetquak:27,convolut:26,cool:[3,24],coord:11,coordin:[9,11,12,13,17,26,32],copi:[2,4,11,16,19,22,23,32,33],core:[3,10,11,16,23,29,36],corner:[4,9,13],corr:[6,7,15],corr_coef_collector:12,corrcoef:[11,12],correct:[20,23,24,25,26,27],correctli:[18,20,24],correl:[6,7,11,12,15,32],correlated_data:12,correlation_matrix:12,correspond:[10,15,16,20,25,26,33],cosin:13,cost:[3,12,24,26],could:[3,4,8,10,19,27,29],count:[10,12,13,14,18,19,21],cours:[1,4,5,9,10,11,12,34],cov:11,covari:12,cover:[13,27,32,33],cox:24,cpu:[3,11,23,24,29],cpu_feature_guard:29,cr:9,crap:[6,12,14,15],creat:[2,5,6,9,11,12,13,14,16,17,19,20,21,24,25,26,28,32,33,36],creation:9,credit:4,cristea:[33,34],criterion:[24,25,26,27],critic:[4,12,13,14,29],cross:[11,19,20,25,26,32],cross_val_predict:[19,23],cross_val_scor:[18,23],crossentropi:27,crossentropyloss:[25,26,27],cruis:16,cryospher:33,cs160:33,cs163:33,cs230:27,csr:19,csv:[1,7,8,9,14,15,16,20,21,24],cu:34,cubic:14,cuda:[3,11],cumsum:6,cumul:6,cumulativevarianceexplain:6,current:[2,6,16,19,20,21,28,32],curriculum:10,curv:[18,19,23,26,27],curvatur:13,cutoff:13,cv:[12,19,22,23],cv_results_:22,cwt:[7,13,32],cwtm:13,cwtmatr:13,cyan:6,cycler:[2,14],cyto:16,cytomet:16,d1:11,d2:11,d2dl:28,d:[6,8,10,11,13,14,16,21,25,26,27],da:3,dai:[6,10,12,13,21,24],daili:[6,21],dask:11,data:[1,3,4,10,13,15,17,20,22,23,26,28,30,31,33,36],data_elevation_mean:10,data_faith:16,data_group:10,data_shrink:16,dataarrai:11,databas:[8,9,11],datafram:[6,8,11,12,14,16,18,21,28],dataload:[25,26,27],datamanipul:[10,13],datapoint:26,dataset:[6,9,10,11,12,13,15,16,18,19,20,21,22,23,25,26,27,29,32],date:[4,6,12,16,21],date_year:[6,12],datetim:[10,21],datetime64:10,dateutil:[2,14],db:20,de:6,deactiv:2,deal:[6,12,21,27],debug:32,decai:14,decid:[16,18,20,26],decis:[17,18,23,24,26],decision_funct:[19,26],decision_function_shap:22,decisionboundarydisplai:18,decisiontre:23,decisiontreeclassifi:[18,23],declar:[11,12],decod:10,decoder_cnn:29,decompos:[6,13,29],decomposit:[6,13,16],decor:[14,19],decreas:[6,7,16,18,20,27],dedic:26,deep:[3,11,27,29,31,33],deepdenois:29,def:[6,10,14,15,16,20,25,26,27,28,29],default_rng:12,defin:[2,8,10,11,12,14,16,18,20,22,36],definit:6,degc:11,degre:[6,13,21,22,24],delai:19,delayed_func:19,delet:2,delta:[13,14,20],dem:13,demarc:16,demographisc:3,demonstr:[5,6,11,12,15,24,33],dendrogram:16,denoise_ae_cnn:29,denoise_decod:29,denoise_encod:29,denol:[33,34],denot:16,dens:[26,27,28,29],densiti:[10,16],depend:[2,6,7,10,13,26,27,36],deploi:[3,10,33,36],deploy:[4,33],deprec:[10,12,22,29],depth:[10,16,23,27],deriv:[20,26,36],descent:[11,17,19,25,26],descr:[19,22],describ:[4,9,10,11,12,14,21,29,31,33],descript:[4,10,21,24],design:[8,9,11,12,16,19,22,23,27,33],detach:20,detail:[3,4,8,16,22,24,26,33],detect:[15,27,29],determin:[12,13,21,25],determini:12,detrend:[12,13,14],dev:[10,13],develop:[2,3,4,33,34,36],deviat:[11,12,13,14,32],devic:[3,11],devid:12,df:[6,10,12,14,15,16,18],df_test:25,df_train:25,diag:6,diagon:[6,18],diam:16,diam_lwr:16,diam_mid:16,diam_upr:16,diamet:16,dict:[6,19],dict_kei:[19,22],dictionari:[6,10,11,19,22,23],did:[10,12,24],diff:[4,12],diff_mean:12,differ:[2,4,5,8,9,10,11,12,13,14,15,16,18,23,27,31,32,36],differenti:[11,26],difficult:[13,16,31],diffus:29,digit:[9,13,19,22,23,25,33],dim:11,dimens:[6,7,8,9,10,11,12,13,26,27,28,29,32],dimension:[7,8,9,10,11,16,17,27,33],dip:10,direct:[6,11,15],directli:[3,10,19,24],directori:[4,9],disabl:[25,26,27],disadvantag:12,disciplin:[8,33],discov:16,discret:13,discrimin:[6,14,17],discriminant_analysi:18,discriminatori:13,discuss:[3,4,10,12,16],disp:19,displac:[6,8,12],displai:[10,11,13,14,21],display_styl:11,dissimilar:11,dist:16,distanc:[13,16],distancemetr:16,distinct:16,distinguish:11,distort:16,distribut:[3,6,10,11,12,13,14,15,16,22,32,36],dive:[11,27],divers:8,divid:[12,13,14,32,33],divis:16,djf:11,dl:[9,13,15,16,20,27],dmatrix:23,dmc:[13,14],dn:16,doc:[8,10,11,12,16,21,24,26],docker:[24,33,36],docmument:4,document:[4,5,9,10,13,16,18,32,36],doe:[9,10,12,14,16,20,23,27,32,36],doi:[4,9,27,32],domain:[14,26,29],domin:[9,13],don:[24,28],done:[3,4,9,11,12,13,19,22,24,25,26,27],dot:[6,20,27],dowload:9,down:[1,4,9,25],download:[2,4,6,9,12,13,14,15,16,20,23,24,25,26,27,36],downsampl:[11,26,27],dozen:36,dp1:10,dp2:10,dp3:10,draft:18,dramat:3,drastic:18,draw:[12,16],dress:29,drive:33,driven:36,drlat:13,drlon:13,drop:[4,14,15,20,21,26,32],dropbox:[4,9,10,13,15,16,27],dropna:[10,14,20],dropout:[26,27,29],ds2:11,ds:[1,4,11,33,36],dt:[11,13,24],dtype:[10,11,14,16,19,22,24,27],du:11,ducelli:34,due:[12,13,16,33],dummi:24,duo:4,duplic:[4,12],durat:13,dure:[24,25,26,28,33],dw:20,dwa82x6xhjkhyw8:16,dz:14,e2019gl085870:27,e:[1,2,3,4,6,8,9,10,11,12,15,16,20,23,24,25,26,27,29,31,32],e_b:12,e_train:12,e_val:12,each:[2,3,4,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,33,36],earli:[9,19,28,33],earlier:[26,29],early_stop:26,earth:[4,11,15,33,34],earthdatasci:[4,9,11,34],earthquak:[6,10,13,14,15,17,27,29],earthrocgranit:14,eas:12,easi:[11,20,24],easier:[6,11,20,26],easili:[12,29,32],east:[6,9,10,12],eastward:12,ecosystem:33,edg:[10,13,27],edgecolor:[16,18,26],edit:[3,8,24],editor:4,edu:[4,6,12,33],educ:33,effect:[12,13,18,25],effici:[3,12,24,29],effort:[24,30],eh1:10,eh:10,ehn:10,ehz:10,eigen:6,eigenvalu:6,eigenvector:6,either:[1,3,6,11,12,16,20,26,27,29,33],el:10,elaps:[19,22],elast:24,element:[9,10,11,12,18,27],elev:[9,10,13],ellips:16,eln:10,els:[4,6,11,12,15,16,19,25,26,27],elsewher:27,elz:10,email:[4,33],embed:[6,9,31],emerg:9,empir:16,emploi:12,empti:[12,16,19,28],en:24,enabl:[3,13,29],encod:[8,9,24,27],encoder_cnn:29,encount:13,end:[0,6,7,10,12,14,16,17,18,25,26,27,33],end_dim:[25,26],end_tim:10,enddat:10,endtim:[13,14],energi:13,enforc:13,engin:[12,33],enhanc:9,enivron:2,enough:[11,32],ensembl:[18,19,21,22],ensur:[12,21],ensure_2d:19,ensure_min_featur:19,ensure_min_sampl:19,enter:[10,13,14,24],entir:[4,10,12,23,25,27,31],entri:[6,9],entropi:[20,25,26],enumer:[6,16,18],env:[2,14,23,29],environ:[4,5,32,33,36],environment:12,ep1:10,ep2:10,ep3:10,ep:18,epoch:[23,25,26,27,28,29],epr:12,epred_train:12,epred_v:12,epsilon:20,eq1:27,eq2:27,equal:[6,12,13,14,27],equat:[26,36],equial:11,equival:[10,11,20,25,26],err:18,error:[6,7,10,12,16,18,20,21,25,26,27,32],error_scor:22,erupt:16,escienc:3,esourc:33,especi:[12,27,32],ess490:[1,10],ess:[1,4,33,36],essenti:12,est:16,estim:[6,12,16,19,21,22,23,25,32],estimator__break_ti:22,estimator__c:22,estimator__cache_s:22,estimator__class_weight:22,estimator__coef0:22,estimator__decision_function_shap:22,estimator__degre:22,estimator__gamma:22,estimator__kernel:22,estimator__max_it:22,estimator__prob:22,estimator__random_st:22,estimator__shrink:22,estimator__tol:22,estimator__verbos:22,estimator_nam:19,et:[4,24,27,29],eta:[23,29],etc:[1,4,24,25,32],euclidean:16,euclidian:[11,16],evalu:[12,16,23,25,26,27,33],evaluate_model:24,even:[13,14,16,27,31],evenli:11,event:[10,13,15,27,36],eventu:36,everi:[11,13,27,31,33],everyth:[2,31],everytim:4,evolut:25,exact:[2,12,20,31],exactli:12,exampl:[3,4,6,8,9,10,11,13,15,16,17,18,19,20,21,23,25,26,28,30,33],exce:25,except:[1,26],exclud:24,exclus:26,execut:[1,2],execute_request:25,exercis:[9,12,15,18],exhibit:12,exist:[12,13,16,20,36],exist_ok:[9,26,27],exp:[10,11,13,14,20,25,26],exp_reg101:24,expand:1,expans:3,expect:[5,24,32],expens:[3,27],experi:[3,24,30,36],expert:33,expertis:32,expir:4,explain:[6,7,16,20,25,26,27],explained_variance_:6,explained_variance_ratio_:6,explan:4,explanatori:10,explicitli:12,explor:[7,12,14,16,19,22,23,25,30,32],explos:15,expon:14,express:[10,16],extend:[18,25,27],extens:[2,5,36],extent:13,extern:[2,10],extra:24,extract:[7,13,14,15,21,24,25,29,33],extractal:9,extrem:[12,24],f0e1ywupdbuv3l3:15,f1:[18,19,20,28],f1_score:18,f2:28,f4:12,f:[11,13,14,15,18,19,20,21,22,23,25,26,27],f_1:18,f_:13,f_a:13,f_c:13,f_path:[26,27],f_x:20,facecolor:16,facet:11,facil:32,facilit:[9,11],fact:[12,16,27],factor:[4,13,14,26,27],fail:26,fair:32,faith:16,fallen:27,faller:4,fals:[6,10,12,14,16,18,19,20,22,23,24,26],famili:13,familiar:[10,11],far:12,fashion:27,fashion_mnist:29,fast:[3,10],faster:9,fastica:[6,7],favor:27,fc1:26,fc2:26,fc3:26,fc4e2a:6,fc:16,fdsn:[13,14],fdsn_client:[13,14],feather:16,featur:[7,10,11,13,16,20,22,24,26,27,29,32,33,36],feature_import:21,feature_importances_:21,feature_list:21,feature_nam:[6,19,22],fee:4,feed:29,fetch:[4,33],fetch_openml:[19,22,23,25,26,27],few:[12,16,27],fewer:6,ff0000:26,fft2:13,fft:[7,13,14],fftfreq:[13,14],fftpack:[13,14],fftshift:13,fidel:29,field:[6,8,10,11,24,27,29,30],fig1:11,fig2:11,fig:[6,10,11,12,13,14,16,21,25,26,27],figsiz:[6,11,12,13,14,16,19,21,26,28],figur:[6,9,10,16,19,24,25,26,27],figure_:19,figure_format:11,fiji:10,file1:[9,13],file2:[9,13],file:[1,3,4,7,8,9,11,14,15,16,18,19,25,27,32,33],file_url:[6,12],filenam:16,fill:[13,14,27,32],fill_betweenx:16,fill_color:10,fill_valu:22,filter:[10,27],find:[3,4,6,7,11,12,13,15,16,17,18,20,23,25,26,27,29,30,32,33],finder:24,finish:22,finit:[13,15,27],first:[1,3,4,6,7,10,11,12,13,14,15,16,18,19,20,23,25,26,27,28,29,32,33],firstnam:9,fisher:14,fit:[6,12,16,18,19,20,21,22,23,26,27,28,29,30],fit_method:19,fit_param:19,fit_predict:16,fit_transform:[6,16,18,19,22,23,29],fivethirtyeight:21,fix:[4,10,12,22,26,27,32],flag:[16,29],flat:14,flatten:[23,25,26,27,28,29],flavor:36,flexibl:11,flip:11,float32:[11,27,28],float64:[10,19],floor:13,flouresc:16,flow:16,fluor:16,fly:11,fma:29,fmi:16,fn:[16,18,20],fname:9,focu:[3,9,11,12,15,24,27],focus:33,fold:[19,22,24],fold_shuffl:24,folder:[9,13,16,27,32],folium:9,follow:[0,3,4,6,9,12,15,16,18,24,27,29,33],font:[11,16],fontsiz:[11,16],fonttool:14,fontweight:16,forc:[4,20,22,33],force_all_finit:19,forecast:[21,24],forecast_acc:[21,24],forecast_noaa:[21,24],forecast_und:[21,24],forest:[17,18,19,23,24,26,33],forg:2,fork:4,form:[9,12,14,16,17],format:[1,6,7,8,10,15,16,18,19,21,25,26,27,32,33],formatt:6,former:34,formul:20,formula:[19,20],forth:24,fortran:36,forward:[6,7,11,25,27],found:[4,9,11,20,22,25,27,33],foundat:33,four:15,fourier:[7,14,15,29,33],fourth:[1,11,14],fowlk:16,fp:[16,18,20],fpr:[18,19],frac:[6,11,13,14,16,18,20,25,26],fraction:[16,18,27],frame:[10,12,14,15,19,22],framework:[9,13,33],free:[3,4,29,32,36],freq:[10,13],frequenc:[11,13,14],frequent:6,freqvec1:13,freqvec:[13,14],fri:21,friend:[2,21,24],friendli:4,from:[1,2,4,6,7,8,9,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,32,33,36],from_estim:[18,19],from_numpi:20,fs:[13,14,15],ft:13,ftp:10,full:[24,27],full_matric:6,fulli:[25,26,27,28,29],func:19,fundament:[7,11,12,18],further:[4,7,26,29],futur:[4,10,25],futurewarn:10,g:[1,2,3,4,6,8,9,10,11,12,16,20,23,24,25,26,27,31,32],gain:36,game:3,gamma:[18,19,22],gan:10,gap:[13,32],gate:[16,28],gather:[3,17],gaussian:[11,18,27,32],gaussian_process:18,gaussiannb:[18,23],gaussiannois:29,gaussianprocessclassifi:18,gb:23,gbr:24,gca:[6,12,14],gcp:3,gdrive:4,ge:11,gel:10,gener:[4,6,9,10,11,12,14,16,24,26,27,28,30,31,32,33],generaliz:[12,32],generate_time_seri:28,genr:8,geo:33,geodesi:[6,12,33],geograph:9,geohackweek:[9,34],geolog:[9,13],geologi:[9,13,33],geometri:9,geophys:[8,27],georeferenc:9,geoscien:33,geoscienc:[3,13,31,32,34],geoscientif:[8,11,13],geosmart:[4,33],geospati:[8,12,13,26,31,32,33],geq:20,get:[3,4,6,9,10,11,12,14,16,19,20,21,23,25,26,27],get_arrai:6,get_config:19,get_dummi:[21,24],get_features_by_domain:15,get_param:22,get_waveform:[13,14],get_xticklabel:6,getattr:19,geyser:16,giant:31,git:[5,23,33,36],github:[1,3,5,24,27,29,32,34,36],gitignor:4,gitlab:4,give:[2,4,12,13,14,16,18,20,24],given:[1,6,10,12,16,18,27,32],gla:10,glass:1,glo:10,glob:[6,12],global:[3,4,10,27],global_quakes_iri:10,global_skip_valid:19,gn:10,go:[4,9,10,11,12,13,15,20,24,25],goal:16,goe:25,gone:24,good:[4,7,12,16,32],googl:[8,21,24,33],got:19,gouraud:13,gov:[9,21],gp:[6,8,12],gpd:9,gpl:10,gps_timeseri:[6,12],gpu:[3,11,24],grad:20,grad_a:11,grad_b:11,grad_c:11,grad_d:11,grad_fn:20,grad_y_pr:11,gradient:[11,17,19,24,25,26,27,28],gradient_desc:29,graduat:34,grai:27,granit:14,grant:4,grant_sudo:24,graph:[11,21,26],graphic:[3,27],gray_r:19,great:[3,4,24,26,27,29],greater:[13,21,27],green:[9,12,16],grei:25,grid:[6,9,10,11,12,13,14,16,18,19,26,27,28],gridsearchcv:22,grobler:18,ground:[13,14,15,16,32],group:[3,9,10,11,12,15,16,17,19,23,24,32],groupbi:[10,11],growth:3,gst:10,gudelin:4,gueron:23,guess:9,gui:4,guid:[4,10],guidelin:[4,32],gzip:[6,12],h2o:24,h5:[7,8,9,15,27],h5py:[9,15,22,27,29],h:[6,10,20,26],h_y:20,ha:[4,6,9,11,12,14,15,16,17,20,22,24,25,26,27,28,29,32],hackweek:36,had:[4,25],half:33,hand:[23,25,36],handl:[3,4,10,17,24,26],handwritten:19,happen:[6,10,11,12,13,16,18],happi:26,hard:[4,23,33],hardwar:[1,3,36],harmon:18,hasattr:26,hat:[12,13,20,25],have:[2,3,4,9,10,11,12,13,14,15,16,20,23,24,25,26,27,28,29,31,32,34],hdf5:15,hdf:9,hdo:10,head:[1,4,6,9,10,14,15,16,21,24],headach:4,header:[10,25],heatmap:6,heavi:3,height:[9,10,27],help:[4,5,11,12,32],henderson:[33,34],here:[3,4,6,9,10,11,12,13,14,15,16,17,19,20,22,24,25,26,27,28,29,33],heterogen:9,hh2:10,hh3:10,hhe:10,hhn:10,hhz:[10,13,14],hidden:[26,27,28],hidden_layer_s:26,hide:6,hierarch:27,hierarchi:[16,27],high:[3,8,12,13,14,16,18,24,29,33],higher:[10,18],highest:[6,13],highlight:27,highpass:13,hist:[10,11,12,13,14,15],histogram:[10,11,13,14,15],histor:[21,24,27],histori:[25,26,27,28,29],hj2:10,hj3:10,hjz:10,hle:10,hln:10,hlz:10,hn1:10,hn2:10,hn3:10,hne:10,hnn:10,hnz:10,hold:9,home:[3,4,9],homepag:4,homewgrown:32,homework:4,homgeneity_scor:16,homogen:16,homogeneity_completeness_v_measur:16,honshu:10,hood:24,hook:20,hopefulli:16,horizont:[3,6,12],horizontalalign:[6,26],host:[4,33,36],hot:24,hour:[3,10,13],hover_data:10,hover_nam:10,how:[3,4,6,8,9,10,11,12,14,15,16,18,19,20,25,26,31,32,33],howev:[3,6,9,12,20,26],hp:13,hpc:[5,11],href:[10,13,19,26],html:[1,6,10,11,16,26,29,32],htop:3,http:[1,3,4,6,8,9,10,11,12,13,15,16,18,20,21,24,26,27,29,30,32,33,36],hub:[3,5,9,33],huber:24,hue:16,hulbert:27,human:[9,32],hv1:10,hyak:3,hydrolog:6,hyp_50m_sr:9,hyper:[17,24,26],hyperbol:26,hyperparamet:[12,23,24,27,32],hyperplan:17,hypothesi:12,hz:[13,14],i2:13,i6tv3ug15oe6yh:13,i:[3,6,8,10,12,13,14,15,16,19,20,25,26,27,29,32],i_it:20,ic:27,ica:[6,7,32],iclass:18,icon:4,id:[15,19,21,24],idai:[6,12],idea:[16,23,24,29],ideal:[6,18],ident:[11,18],identifi:[6,19,21,32],idna:14,ifft2:13,ifft:[13,14],ifram:10,ignor:[4,13,16,24,27],ignore_index:15,igs14:[6,12],ii:[6,12,18],iid:22,iik:12,illustr:[4,12,13,16,29],iloc:[9,10,15,21,24,25],im:6,imag:[1,6,9,13,14,19,22,24,25,26,27,29,33],image_index:29,imageri:8,imagin:[12,29],imaginari:29,img:1,immedi:19,impact:31,implement:[3,10,16,23,26,27,29],impli:6,important_indic:21,importantli:14,importlib:14,improv:[29,32],imput:24,imputation_typ:24,imshow:[6,13,19,29],in_channel:27,in_circl:12,in_featur:[25,26],in_squar:12,inaccess:4,includ:[1,4,5,14,26,29,32,33],incomplet:4,incoropor:33,incorpor:36,increas:[11,12,16,18,20,27,28],increasingli:27,ind:13,inde:[12,18,29],independ:[4,9,12,19,20,23],index:[9,10,15,16,21,24,25],indic:[12,14,16,26],individu:[3,11,16,23,25],induc:[12,27],industri:24,inertia:16,inexact:20,infin:20,infinit:13,influenc:[12,24],info:[2,10],inform:[4,6,7,9,26,31,32,36],infrastructur:36,infti:[13,14],inherit:25,init:[4,12,16],init_cent:16,initi:[4,11,16,20,25,26,27,29,32],initiali:16,inlin:[6,11,12,21,26],inlinebackend:11,inplac:[10,20],input:[6,7,10,11,13,15,24,25,26,27,28,29,32],input_nam:19,input_shap:[26,27,28,29],inquir:10,inquiri:9,inscrib:12,insert:[1,16],insid:[2,6,12],inspect:18,inspir:4,instal:[2,3,4,5,10,13,14,15,23,24],instanc:[1,3,6,10,14,18,19,22,23,26,27,32,33],instanti:21,instead:[10,13,14,16,18,19,20,23,29,32],institut:[3,32],instruct:[4,29],instructor:[4,10,13,19,33],instrument:[13,16],int32:[16,22],int64:[10,19,22,23],int_:[13,14],integ:[8,11,19,27],integr:[7,11,24],intend:[33,36],intens:[6,12],interact:[1,3,7,10,24,26,36],intercept:12,intercept_:20,interest:[13,15,29,34],interfac:[1,2,4,36],intermedi:[4,13,25,26,27,32,33],intern:[10,28],internet:36,interpol:19,interpret:[2,9,17,26,33],interpret_model:24,interrupt:19,interv:[12,26],intro:[10,11,33],introduc:[11,12,24,26,28,29,31,33],introduct:[3,10],introductori:9,intuit:26,inv_test_indic:19,invari:27,invers:6,inverse_transform:6,investig:13,involv:[10,12],io:[4,6,9,10,12,27,29,30],ipykernel_2672:10,ipykernel_47043:13,ipykernel_7989:16,ipynb:[10,13,19],ipython:13,iq1:27,iq2:27,iq:27,iri:[6,13,14],irisdf:6,isal:9,isel:11,isfinit:27,isin:10,isinst:6,island:10,isol:[2,6,31,36],isomap:6,issu:[4,5,24,28,32],ital:1,item:[1,4,10,11,25,26,27],iter:[12,15,16,19,20,21,22,24,25,26,27],iterable_with_config:19,ith:25,ith_cluster_silhouette_valu:16,its:[2,7,10,11,12,14,15,16,23,24,26,27,28,32],itself:[9,16],j4:16,j5lxhd8uxrtsxko:9,j:[6,16,20,25],jaqu:18,java:36,javascript:[9,36],jja:11,job:[3,24],joblib:19,john:9,johnson:27,journal:35,js:[9,13],jsgb:10,json:[1,8,9],juli:13,julia:[32,36],jump:25,jupyt:[2,3,5,21,24,26,32,33,36],jupyterhub:[3,4,36],jupyterlab:[2,4,10,36],jupyternotebook:36,just:[4,10,12,14,15,16,20,25,26,27,28,31],k:[6,14,17,18,19,20,21,23,24,25,27],k_means_cyto_3:16,k_means_cyto_8:16,k_means_cyto_bad_init:16,kaggl:20,kcpb:10,keep:[4,11,12,13,20,26],kei:[4,9,10,11,15,19,21,22],kelvin:11,kept:12,kera:[23,25,26,27,28,29,30,33],keras_tun:30,kerasclassif:26,kerasregressor:26,kernel:[1,17,18,19,22,24,26,27],kernel_s:[27,29],kf:12,kfold:[12,24],khbb:10,khmb:10,kilomet:10,kind:9,kit:[16,23],kiwisolv:[2,14],klat:13,klon:13,km:[10,13],kmean:16,kmeans_model:16,kmeans_pp:16,kmpb:10,kneighborsclassifi:[18,19,22,23],knn:[17,18,23,24],knn_clf:19,knn_predict:19,know:[1,3,10,17,20],knowledg:[27,29,33],known:[12,19,24,27],ko:16,koehrsen:21,kurtosi:13,kurtosis_valu:14,kw:6,kwarg:[6,19,29],kxk:18,l2:[11,27],l:[20,25,26,27],l_1:11,l_2:11,l_old:20,lab:[4,20,34],label:[5,6,10,11,15,16,17,18,19,23,24,25,26,27,28,32],label_binar:19,labelbottom:6,labelcolor:[25,26,27],labels:11,labels_:16,labeltop:6,lamb:10,lambda:[10,21],lambda_meters2kilomet:10,land:[3,9],landsat:[3,8],landslid:15,languag:[1,3,4,9,32,36],laplac:14,laptop:[2,4],lar:24,larg:[3,4,11,13,14,20,23,26,27,32],larger:[3,6,9,16],largest:[6,13],lasso:24,last:[4,9,10,11,13,19,20,21,23,24,26,27,28],lastnam:9,lat:[10,11,13,16],later:[2,12,20,21,26,28],latex:1,latitud:[10,13,26],launch:1,law:11,layer1:25,layer:[4,9,25,28,29],layout:21,lba:10,lbfg:26,lce:10,lcl:10,lcq:10,lda:[17,18],ldata:15,ldo:10,lead:[6,12,13,30],leader:3,learn:[2,3,6,7,8,9,10,11,12,17,18,19,20,21,22,25,27,28,29,32,34,36],learn_rat:23,learner:23,learning_r:[11,23,25,26,27,29],learnt:24,leas:32,least:[13,24,33],least_frequ:24,leav:[1,10],leaveoneout:12,lectur:[8,11,12,13,15,27,33],lecun:27,leduc:27,left:[4,6,10,11,12,26,27],legend:[6,11,12,13,14,19,21,26,28],legend_el:6,len:[6,9,12,13,14,15,16,18,19,20,21,23,25,26,27,29],lenet_checkpoint:[26,27],length:[6,10,11,12,14,20,25,27],length_a:12,length_sub:12,leq:[16,20],less:[6,10,12,13,24,32],lesson:[3,5,34],let:[6,9,10,11,12,13,14,15,16,18,19,20,25,26,27,28],letter:27,level:[1,10,15,18,24,33],lh2:10,lh3:10,lh:[10,11],lhe:10,lhn:10,lhz:10,lib:[9,14,19,23,29],librari:[2,24,29,32],licens:[4,18],lie:[16,26],light:[16,24],lightgbm:24,like:[3,4,8,9,10,11,12,14,16,20,27],lil:29,lilianweng:29,limit:[9,12,13,17,22,23,26,29,32],linalg:[6,11],line2d:[14,16,18],line:[1,2,4,6,10,11,12,13,14,16,17,18,19,21,24,26,36],line_color:10,linear:[6,11,13,14,17,18,19,20,22,24,25,26,27,29],linear_model:[12,20],lineardiscriminantanalysi:18,linearli:[11,13],linearly_separ:26,linearregress:12,linestyl:[6,11,16],linewidth:[6,11,12,18],link:[1,4,10,15,33],linkag:16,linregress:12,linspac:[6,11,12,13,14,26,28],linux:[3,5,32],list:[1,2,3,4,5,6,9,10,11,12,15,16,19,21,24,26,27,32],listedcolormap:[18,26],literatur:[27,32],littl:[17,18],live:36,llar:24,ln:6,lne:10,lnn:10,lnz:10,load:[6,10,14,27],load_data:29,load_dataset:11,load_digit:[19,22,23,25,26,27],load_iri:6,loaded_test:[25,27],loaded_train:[25,26,27],loaded_v:26,loc:[10,12,16,19,22],local:[4,5,10,13,16,19,27,33],locat:[1,9,10,13,14,15,16,21,26,27],log10:[13,15,16],log:[10,11,13,14,16,20,24,25,26,29],log_:14,log_i:16,log_x:16,logarithm:32,logic:25,logist:[17,25,33],logistic_regress:20,logisticregress:20,logit:25,logspac:[11,13,26],loguniform:22,lon:[10,11,16],longer:[13,16,20,28,29],longitud:[10,11,13,26],loo:12,loocv:12,look:[4,6,9,10,11,14,15,16,18,23,24,25,27],loop:[5,6,10,12,13,16,25,26,27],loos:[3,36],lose:27,loss:[6,7,11,20,22,26,27,28,29],loss_funct:[26,27],loss_tim:[25,26,27],lot:[3,24,28,32],low:[3,12,13,14,16,18,23,24],lower:[6,12,13,19,23,29],lower_critical_valu:12,lowest:[16,29],lowpass:13,lp:13,lr:[24,25,26,27,29],ls:[10,11],lstrip:26,lt:[25,26,27],ltn:10,lua:36,lucki:3,lunch:32,lw:16,lwd:10,lwh:10,lxml:14,lzmy975n0l5bjbmr9db291m00000gn:13,m1:24,m2km2:10,m2km:10,m8:13,m:[4,6,9,10,11,13,21,23],m_3:14,m_4:14,ma:33,mach:25,machin:[3,7,8,9,12,17,19,22,23,24,32,34],machinelearn:19,maco:3,macosx:[3,4],macosx_10_15_x86_64:23,macosx_11_0_x86_64:23,macosx_12_0_x86_64:23,macro:[18,19],made:[4,6,10,25],mae:[21,24],mag:10,magic:21,magnesium:14,magnitud:[10,13,23],mai:[1,2,3,4,6,8,9,10,12,13,14,15,16,20,23,24,26,28,29,32],mail:4,main:[4,9,16,33],maintain:12,major:[6,23,24],make:[2,4,5,9,10,11,12,13,14,15,18,19,20,21,24,26,27,28,31,32,33],make_circl:[18,26],make_classif:[18,26],make_moon:[18,26],make_pipelin:26,makedir:[9,26,27],mallow:16,mam:11,manag:[2,25,26,27,36],mani:[2,3,6,9,10,12,13,15,16,17,19,20,24,25,27,31,32,34,36],manifold:29,manipul:[5,7,9,10,11,15,21,24,25,33],manual:[10,32],manual_se:[26,27],map:[6,9,26,27],mapbox_styl:10,mape:[21,24],margin:17,mariana:10,marin:[33,34],marinedenol:[10,14,23,29],mark:33,markdown:[4,36],markedli:36,marker:[9,10,11,12,16],marker_clust:9,marker_s:10,markerclust:9,markers:10,market:24,mask:[9,22,29],masked_arrai:22,mass:16,match:[12,24,29],materi:[9,11,27,33,34,36],math:[6,11,16,20,33],mathbf:[6,26],mathcal:[20,25],mathemat:20,matlab:[32,33],matmul:6,matplolib:33,matplotlib:[2,5,6,9,10,12,13,14,15,16,18,19,21,22,25,26,27,28,29],matrix:[7,12,13,18,19,20,26],matshow:15,max:[6,9,10,11,12,13,14,16,19,21,22,23,25,26,27,32],max_depth:[18,23,24],max_featur:[18,24],max_it:[20,22,26],max_leaf_nod:24,max_percentag:[13,14],max_pool2d:26,max_sampl:[23,24],maxim:[17,25],maximum:[16,20,21,24,25,26,27,32],maxlat:13,maxlon:13,maxpool2d:[27,29],maxpool:27,maxpooling2d:27,mayb:26,mb:23,mcbrearti:27,mch:10,mcn:10,mcw:10,md:[1,4,32],mdenol:33,mean:[3,4,9,10,11,12,13,18,20,21,23,24,25,26,27,32],mean_a:12,mean_b:12,mean_fit_tim:22,mean_score_tim:22,mean_squared_error:12,mean_test_scor:22,meant:36,measur:[6,8,12,14,16,18,21,24,26,32],median:[10,12,32],meet:[24,32],mehra:33,member:[12,16,36],memori:[3,9,10,11,20,26,27,28],mention:4,menu:[1,4],mere:26,merg:[1,4,13,14,16,33],mesh:26,meshgrid:26,messag:25,messi:4,meta:23,metadat:11,metadata:[7,9,10,11,32],meter:10,meters2kilomet:10,meters2kilometers2:10,method:[6,11,13,14,17,19,20,21,22,23,24,25,26,27,30,33],methodolog:33,metric:[12,13,16,19,20,21,22,23,26,27,28,30],mgo:14,mhe:10,mhn:10,mhz:10,microsoft:[3,24],microstoft:3,middl:[6,14,16,26],might:[6,9,12,13,14,24],mimic:9,min:[9,10,11,12,13,14,16,19,21,22,26,32],min_impurity_decreas:24,min_impurity_split:24,min_samples_leaf:24,min_samples_split:24,min_weight_fraction_leaf:24,mini:[25,26],miniconda3:[14,29],miniconda:2,minim:[16,20,25,32],minima:16,minimum:[6,16,25,32],minipnw_metadata:15,minipnw_waveform:15,minlat:13,minlon:13,minmax:32,minmaxscal:[19,22,23,32],minor:6,minu:[21,24],minut:[16,33],misclassifi:[18,23],misenterpret:13,misinterpret:13,miss:[24,32,35],mistak:20,mitig:[13,26],mix:6,mixing_:6,ml:[3,18,24,28,30,32,33],mlgeo2022:4,mlgeo2022_uwnetid:4,mlgeo2023:4,mlgeo2023_uwnetid:[4,33],mlgeo:[4,5,13,14,19,29,33],mlgeo_sk:23,mlhub:3,mllab:2,mlp:[27,28],mlpclassifi:26,mm:[6,12],mmw:10,mne:10,mnist:[19,25,26,27],mnn:10,mnz:10,mobil:4,mode:[11,17,23],model:[6,8,9,13,17,19,20,22,23,28,30,33],model_lenet:27,model_select:[12,18,19,21,22,23,25,26,27,29],moder:26,modif:4,modifi:[4,10,11,18,19,21,22,23,25,26,27,33],modul:[2,6,7,10,11,12,13,14,15,16,25,26,27,32,33],modulenotfounderror:13,moistur:8,moment:14,mon:21,monaco:12,mondai:[17,33],monitor:3,month:[3,13,21,24],monthli:11,more:[2,4,6,8,9,10,12,13,14,16,17,18,20,22,23,26,29,30,32,36],morlet2:13,morlet:13,morn:33,most:[2,3,4,5,6,7,8,10,13,14,15,16,17,19,21,23,24,26,27,28,32],mostli:[3,12,15,16],mother:13,motion:[6,13,14,15,32],motiv:32,mousavi:29,move:[3,9,11,25],mpl_toolkit:16,mplot3d:16,ms:[10,13],mse:[12,24,28,29],mse_train:12,mse_val:12,mu:14,much:[3,6,8,16,20,24,26,27],mulbackward0:20,multi:[10,11,13,17,18,23,25],multi_output:19,multiclass:[17,26],multiclassif:27,multicollinear:24,multidimension:[6,9,28],multilabel:29,multipl:[3,4,6,11,12,13,25,26,27,28,32,36],multipli:[6,14],multivariate_norm:12,must:27,my:[1,4,11],my_kmean:16,my_metadata:10,my_mlp:26,my_pd:10,mybind:36,mycod:4,myenv:2,myst:36,n1:16,n2:16,n:[6,9,11,12,13,14,15,16,18,19,20,24],n_cluster:16,n_clusters_per_class:26,n_completed_task:19,n_compon:[6,16],n_dispatched_batch:19,n_dispatched_task:19,n_epoch:[25,26,27],n_estim:[18,21,23,24],n_featur:26,n_imag:29,n_inform:26,n_init:16,n_iter:22,n_j:16,n_job:[19,22,23,24],n_redund:26,n_sampl:[6,12],n_select:24,n_split:12,n_step:28,naiv:[17,18,28],naive_bay:[18,23],name:[2,4,6,8,9,10,11,12,13,15,16,18,21,24,26,29,32,36],nameerror:[10,26],nan:[10,14,22],narr:36,narrai:15,nat:14,nation:[3,9],nativ:17,natur:[12,15],nb:[17,23],nb_clf:23,nbin:10,nbsp:24,nc:[9,10,11,13],ncedc:10,nclass:[19,23],ncluster:16,ncm_geologicframeworkgrid:[9,13],ncm_spatialgrid:[9,13],ncol:[19,21],ndarrai:[6,11,19,22,23],ndata:15,nearest:[11,16,17,18,19],necessari:[4,12,14,20],need:[4,6,10,12,13,15,16,17,20,23,24,25,26,27,28,29,32,33],neg:[14,16,18,20],negbackward:20,neighbor:[6,17,18,19,22,23,24],neither:24,nenad:4,neonscienc:9,neq1:27,nest:[9,26],net:[24,26],netcdf4:13,netcdf:11,network:[3,9,10,13,14,20,29,31],neural:[13,20,29,31],neural_network:26,neuron:[25,26,27,28],nevada:12,never:23,new_a:12,new_b:12,new_nois:14,new_pair:12,newaxi:28,newcrap:14,newdata:[19,22,23],newfil:4,newli:12,newnoisef:14,next:[10,12,16,19,24,25,26,27,28,36],next_fast_len:[13,14],nf:13,nfft1:13,nfft:[13,14],nhat:[13,14],nice:[4,9,20],nicoleta:[33,34],nipy_spectr:16,nlabel:27,nn1:25,nn:[14,25,26,27],no12:27,no1:27,no2:27,no_grad:[25,26,27],no_val_x:19,noaa:[21,24],node:[3,9],nois:[6,13,15,16,17,18,26,27,28,29,32],noise2:27,noisi:[6,14,29],noisy_sign:14,nomal:20,nomin:8,non:[1,9,13,29],none:[6,10,13,19,22,23,24,25,26,27,28,29],nonlinear:26,nor:24,norm:[6,16,22,27],normal:[6,11,12,14,16,18,19,22,23,24,25,26,27,32],north:[6,9,12],northern:10,northwest:[12,15],notat:9,note:[9,12,13,14,19,20,22,23,24,29,33],notebook:[2,3,4,5,10,11,13,19,21,24,32,33,36],noth:[11,14,20],notic:[11,12,13],notifi:4,noverlap:13,now:[4,6,9,10,11,12,13,14,15,16,18,20,25,26],np:[2,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29],nperseg:13,npmap:9,npoint:6,npt:[13,14],npts1:13,nrow:[19,21],ns:10,nsubset:12,nt:15,num_class:[23,25,26],number:[2,6,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32],number_run:12,numel:11,numer:[8,9,11,17,21,24],numeric_onli:10,numpi:[2,6,7,9,10,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29,33],numsv:6,nvidia:3,ny:9,nyq:13,o:[3,10,11,12,16,32],obj:16,object:[8,9,10,11,14,16,20,21,22,23,24,25,26],objective_new:16,objective_old:16,observ:[6,10,12,16,20,21],obspi:[13,14],obtain:[20,21],ocean:3,oceanographi:[3,33],ocf:10,off1:28,off2:28,off:[6,16,18,29],offer:[3,4,10,33],offic:11,offici:4,ofr20191081:9,often:[2,3,11,12,13,14,27],ok027:27,ok029:27,ok:14,okai:12,old:16,omega:20,omp:24,onc:[4,10,12,20,24,25],one:[1,3,4,7,9,10,11,12,13,14,15,16,17,18,20,21,23,24,25,26,27,29,30,31],oneapi:29,onednn:29,ones:[6,15,16,17,23,27],onevsrestclassifi:19,onli:[3,4,6,9,10,12,13,16,21,23,26,29,33],onlin:4,onto:[6,13],oob_scor:[23,24],open:[1,3,4,5,9,32,33,36],openeew:3,oper:[3,9,10,11,18,19,26,27,29],opt:[14,29],optim:[3,9,16,17,20,22,23,24,27,28,29,30,32],optimist:12,optimizer_v2:29,optimizi:17,option:[4,6,10,20],oracl:11,orang:[6,16],ord:11,order:[1,11,13,19,25,26,27,29,36],ordin:24,oregon:6,org:[6,9,10,11,16,18,20,26,27,32,36],organ:[4,6,7,8,9],orient:[6,21],origin:[4,6,7,9,10,12,13,14,15,16,18,24,27,29,33],origin_dist:12,orthogon:[6,24],orthograph:10,orthonorm:13,os:[3,4,6,9,12,13,15,16,22,26,27],other:[1,2,4,9,11,12,13,15,16,17,18,24,25,26,28,29,31,32,34],otherwis:25,otodo:10,ouput:27,our:[0,6,12,16,18,19,20,21,26],out:[2,3,4,9,10,13,14,19,21,22,24,26,27,28],out_channel:27,out_featur:[25,26],outcom:10,outlier:[24,32],outofboundsdatetim:10,output:[1,6,7,8,9,10,11,12,13,17,19,23,25,26,27,28,29,32,33],output_notebook:10,outsid:10,outstand:32,over:[1,4,6,12,13,25,26,27],overal:[5,12,16],overestim:12,overfit:[23,24,26,27],overlai:[6,13,15],overlap:13,overli:12,overview:29,overwrit:[4,10],overwritten:6,ovr:22,own:[3,4,11,20,32,33,36],owner:4,p395:[6,12],p:[10,11,12,14,16,18,20,24,25,27,29],p_valu:12,pacif:[12,15],packag:[2,6,9,10,11,12,13,14,15,16,18,19,20,23,24,29,30,33,36],pad:[21,27,29],padding_mod:27,page:[4,9,10,24],pai:23,pair:[6,9,16,21,25,32],pairgrid:16,pairplot:16,panda:[2,6,7,9,11,12,13,14,15,16,18,20,21,22,24,25,27,28,29,33],paper:[4,27,31,33],par:24,paragraph:1,parallel:[3,19,22],param:[11,22,23,29],param_c:22,param_distribut:22,param_gamma:22,param_grid:22,param_kernel:22,paramet:[11,12,16,17,20,22,23,24,25,26,27],parameter:[13,16],parametr:12,park:9,parks_wa:9,parquet:[8,9],pars:[8,24],part:[4,25,26,27,28,29,33],partial:20,particip:36,particl:16,particular:[9,11,15,32],particularli:[3,8,12,26],partit:[12,16],pass:[3,11,13,19,25,26],passiv:24,password:4,past:[12,13,28],path:4,pathcollect:[6,18],pathwai:33,pattern:[21,27],pby:10,pc:[6,16],pca:[7,17,24,29,32],pcolor:11,pcolormesh:13,pd:[6,9,10,12,13,14,15,16,18,20,21,22,24,25,27,28,29],pdf:[13,33],pdist:16,pdt:33,peak:[16,27],pearson:[11,12],peform:18,peopl:[4,24,31],per:[8,10,13,19,25,27],percentag:[20,21,25],perceptron:25,perfect:[12,16,24],perform:[3,4,10,11,12,13,16,22,23,25,26,27,29,30,32,33],period:13,permiss:[4,33],perol:27,person:4,perspect:16,pg1:10,pga:32,pgc:10,phase:[13,14],phd:4,phi:26,phone:4,physic:8,pi:[6,11,12,13,14,16],pi_est:12,pick:27,pickl:19,picoeuk:16,piec:4,pillow:14,pio:10,pip3:2,pip:[13,14,15,23,24],pipelin:[7,16,17,26],pitfal:13,pixel:[6,9,25,27,29],piyg:18,place:[10,12,19,27],plai:4,planetari:[3,33],plate:[6,14],plateau:16,platform:[3,4,29,32,36],pleas:[0,3,4,5,10,13,24],plenti:[3,11],plot:[5,6,7,9,10,11,12,13,14,15,16,18,19,21,24,25,26,27,28,32],plot_height:10,plot_imag:29,plot_test:11,plot_width:10,plotli:[7,16,33],plt:[6,9,10,11,12,13,14,15,16,18,19,21,22,25,26,27,28,29],plu:[21,24,28],plugin:9,pm:33,png:[1,10,11],point:[4,6,8,9,11,12,13,14,16,17,24,26,28],poisson:11,polynomi:[13,17,24],pooch:11,pool:26,pool_siz:29,pop:16,popul:[3,12,16],popular:[15,17,23,24,26,27,29,36],popup:[9,24],porotomo:3,port:3,portion:23,posit:[6,11,12,14,16,18,19,20,25,26,27,32],positron:10,possibl:[5,10,14,20,23,29,32,36],post:4,postalcod:9,potabl:20,potenti:[13,32],pow:11,power:[11,16,26],pq:10,pr:18,practic:[3,4,5,8,10,11,12,13,17,19,29],practition:30,pre:[6,7,13,14,16,18],pre_dispatch:[19,22],precipit:10,precis:[18,19,20],precision_recall_curv:19,precision_recall_fscore_support:20,precision_scor:18,precisionrecalldisplai:19,precison:18,precondit:32,precursor:13,pred:[12,23],predecessor:23,predict:[8,11,12,15,17,18,19,20,21,22,23,24,25,26,27,29],predict_proba:[18,23,26],predictions_data:21,predictor:23,prefer:[4,27],prefer_skip_nested_valid:19,preinstal:2,preliminari:32,prepar:[7,25,33],preprocess:[6,16,18,19,20,22,23,25,26,27,32],prescrib:16,presenc:29,present:[0,8,13,14],preserv:13,prevent:19,previou:[12,19,23,26,28,31],previous:[10,16,27],primarili:12,princip:33,principl:33,print:[6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29],print_progress:19,printer:11,prior:[14,21,24],privat:[4,33],pro:[4,16],proba:23,probabilist:12,probabl:[16,17,19,20,22,23,25,26,29],probe:27,problem:[13,14,16,17,20,22,24,25,26,27,32],proce:26,procedur:12,process:[1,3,6,7,12,13,14,15,16,18,27,31],prochloro:16,produc:[9,17,24,31],product:[10,13,17,24,27,31],profession:24,profit:1,program:[1,3,4,10,33,36],progress:[23,33],project:[1,4,6,7,9,11,13,16,33,36],projection_typ:10,promis:32,promot:0,propag:[12,25,26,27],proper:[2,13],properti:[11,13,14,20,23,29],proport:14,propos:[15,29,32],prove:10,proven:32,provid:[2,3,4,6,10,11,12,17,24,26,27,30,32,33,36],proxim:11,pseudo:13,pseuo:13,psi:13,pt:[26,27],pub:10,publish:[31,36],puget:13,pull:[4,5,24,33],pullov:29,puor:6,pure:14,purpos:[3,4],pursuit:24,push:[4,5],put:[20,26],px:[10,16],py3:[13,23,24],py:[2,4,10,13,16,19,29],pycr:9,pydata:16,pylab:11,pypars:[2,14],pyplot:[6,9,10,11,12,13,14,15,16,18,19,21,22,25,26,27,28,29],python3:[2,14,19,23,29],python:[3,4,5,7,9,11,13,14,15,16,20,26,32,33,36],pytorch:[2,25,27,30,33],pytz:2,qc:16,qc_lwr:16,qc_mid:16,qc_upr:16,qda:18,quad:10,quadraticdiscriminantanalysi:18,quak:[10,27],quakes2:27,quakes2plot:10,qualit:[8,17,20,33],qualiti:[16,24,36],quantifi:[16,18],quantil:12,quantit:[17,20],quarri:15,quarter:[12,33],queri:[13,14],question:[31,32,33],queue:3,quick:32,quota:16,r2:[12,24],r2_score:12,r:[6,11,12,15,21,23,26,27,28,32,33,36],r_valu:12,radial:17,radiant:3,radiu:[12,16],rain:33,rais:19,ran:3,rand:[11,14,20,27,28],randn:[6,11,14,16],random:[6,15,16,17,18,19,20,23,24,26,27,28,31,32,33],random_project:6,random_split:[25,26,27],random_st:[12,16,18,19,20,21,22,24,26],randomforestclassifi:[18,19,22,23],randomforestregressor:[21,24],randomizedsearchcv:[22,26],randomli:[11,12,13,16,24,26],randomsampl:26,randomst:[19,26],rang:[6,9,10,11,12,14,15,16,19,21,25,26,27,28,29,32],range_color:10,rank_test_scor:22,ransac:24,rare:[12,13,24],raster:8,rate:[8,10,13,14,18,19,23,25,26,27],rather:[3,29],ratio:[6,12,14,18,24],ratt:[13,14],ravel:26,raw:[7,13,14,15,19,22,23],raw_moment:14,rbf:[18,22],rcparam:[11,16],rdbu:26,rdylbu:13,re:[4,11,12],reach:[3,16,20],read:[6,11,12,13,15,16,21,24,25,31,32],read_csv:[10,14,15,16,20,21,24,25],read_data:15,read_feath:16,read_fil:9,readabl:[7,9,25,32],readi:33,readm:[1,4,32],real:[3,13,14,26,29,32],realli:4,reason:[24,26],reassign:32,rebuild:29,rec:18,recal:[18,19,20],recalcul:12,recall_scor:18,receiv:[6,18,19,27,28,31],recent:[10,13,19,26,27],recogn:[4,5,10,24],recommend:[2,3,4,6,16,33,36],reconstruct:[6,29],record:[6,12,14,15,21],recov:[6,10,29],recreat:13,rectifi:26,recurs:16,red:[6,9,12,14,16,25,26,27],redefin:12,reduc:[4,6,7,11,12,13,16,18,27,29,32],reduct:[7,17,23,27,29,33],refer:[3,8,11,12,17,21,26],refit:22,refresh:33,reg:24,regard:26,region:[3,9,10],register_hook:20,regr:12,regress:[11,23,24,25,26,28,33],regressor:[22,24],regrid:11,regular:[23,26,27,28],regularli:[11,13],reinstal:24,reject:12,rel:[14,28],relat:[2,8,9,12,13],relationship:12,relev:32,reli:36,reliabl:[24,32],relu:[25,26,27],remain:[4,7,12,16,22],remean_elev:10,remedi:28,rememb:20,remot:[3,4,5,33,36],remov:[2,4,6,7,10,11,13,14,21,24,29,32],removablehandl:20,remove_anyth:10,render:10,reno:12,repeat:[12,13,24,27],repeat_kmean:16,repeatedli:12,replac:[4,9,10,12,14,15,16,23,27,36],repli:25,replic:16,repo:[1,4],report:[9,12,14,15,18,19,26,33],reposistori:33,repositori:[3,5,24,33],repres:[6,12,13,17,29],represent:[13,16,26,27,29],reproduc:[2,7,12,16,27,32,33,36],request:[3,4,5,6,9,10,12,14],requir:[2,3,4,13,14,17,19,23,25,26,29,32],requires_grad:20,resampl:[11,23],rescal:10,research:[3,4,27,29,32,34],reset:[4,10,19,28,33],reset_index:[9,10,20],reshap:[6,11,12,13,15,16,19,25,26,27,29],residu:[11,12,23,29],resnet:29,resolut:[10,29],resolv:[4,13],resour:3,resourc:[3,5,9,14,32,34],respect:[6,11,12,15,16,20,26,27],respons:[13,17,33],rest:26,restart:[1,24],result:[10,11,12,16,17,18,20,24,25,26,27,31,32],retain:6,retain_grad:20,retina:11,return_gener:19,return_sequ:28,return_train_scor:22,reus:[4,32],revers:[11,20,21,26],revert:26,review:[0,5,26,32],rf:[17,21,23,24],rf_clf:[19,23],rf_most_import:21,rf_predict:19,rgb:27,rich:36,ricker:14,ridg:24,right:[2,4,6,10,11,19,26],risk:12,rlat:13,rlon:13,rmse:24,rmsle:24,rng:[12,26],ro:[16,21],robust:6,roc:[18,19],roc_auc:19,roc_auc_scor:19,roc_curv:[18,19],roccurvedisplai:19,role:27,roll:11,root:[9,14,25,26,27],rotat:[6,16,21],rotation_mod:6,rouet:27,round:[21,26],routin:11,row:[6,8,10,11,13,14,16,20,21,24,25],row_index:16,row_label:6,rs:12,rstudio:1,rubi:36,rule:[17,26],run:[1,3,4,10,11,12,13,16,19,20,31,32,33,36],runner:24,running_loss:[25,26,27],runtimewarn:13,rv_frozen:22,s1:6,s2:6,s3:[3,6],s6x10hzdyra:3,s:[6,9,10,11,12,13,14,15,16,18,19,21,23,24,25,26,27,28,29],s_:6,sa:14,safe:26,sagemak:3,sai:[15,27],sake:12,same:[2,4,6,8,10,11,12,14,16,19,23,24,27,29,31,32],samm:23,sampl:[6,8,11,12,13,14,16,17,18,19,22,23,25,26,27],sample_silhouette_valu:16,sample_weight:19,sampler:[25,26,27],sampling_r:13,sandal:29,sat:21,satisfi:[14,23,30],sattelit:8,save:[2,4,6,7,8,9,10,11,18,21,24,25,27,32],savefig:11,saw:6,sawtooth:6,sc:16,scala:36,scalar:[20,26,28],scale:[3,6,10,13,14,16,22,23,25,26,27,32],scaleogram:13,scaler:[16,19,20,22,23],scan:9,scatter:[6,12,14,16,18,26,29],scatter_3d:16,scatter_geo:10,scatter_mapbox:10,scatterplot:[7,11],schedul:3,schema:8,schemat:27,scheme:[16,22],scholarship:33,sci:[16,23],scienc:[1,9,11,33,36],scientif:[1,9,11,13,32,33],scikit:[2,6,7,12,18,22,32],scikitlearn:[18,20],scipi:[2,6,7,12,13,14,15,16,22,23],scitkit:7,score:[16,18,19,22,23,26,27],scott:[33,34],scratch:[1,3,10],screen:[25,26,27],script:[4,7,33],se:[6,12],seaborn:[2,7,16],search:[26,27],season:11,seasonal_mean:11,seattl:21,sec:24,second:[1,6,8,10,11,12,13,14,20,23,25,27,28,29,33],section:[11,13,33],see:[1,3,4,6,8,9,11,12,13,14,16,18,24,26,27,36],seed:[6,16,26,27,32],seek:16,seem:[12,24,27],segment:29,seismic:[3,10,13,14,15],seismogram:[8,27,29],seismolog:33,seismomet:[3,13],sel:11,select:[1,4,7,10,11,12,13,15,16,21,22,24,26,27,32],self:[9,10,19,25,26,27],selu:29,send:[3,26],sens:[3,8,10,16],sensit:[13,14,16,18,20,32],sensor:[8,10,13],sent:27,sep:[10,25],sepal:6,separ:[6,8,16,17,29,32,36],sequenc:[11,27,29],sequenti:[23,26,27,28,29],sequential_15:29,sequential_1:29,sequentialbackend:22,seri:[4,6,8,10,11,12,13,15,27,28,29,32,33],server:[3,4,13,14],servic:[3,36],session:4,session_id:24,set:[3,6,7,9,10,11,12,13,15,16,18,19,23,24,26,27,28,32,33],set_aspect:[6,12,14],set_axis_off:19,set_axisbelow:6,set_grad:20,set_opt:11,set_size_inch:16,set_them:16,set_titl:[6,11,13,14,16,19,21,26],set_vis:6,set_xlabel:[6,11,12,13,14,16,21,25,26,27],set_xlim:[13,14,16,26],set_xscal:[13,14],set_xtick:[6,16,26],set_ylabel:[6,11,12,13,14,16,21,25,26,27],set_ylim:[13,14,16,26],set_yscal:[11,13],set_ytick:[6,16,26],set_zlabel:6,setp:6,settingwithcopywarn:16,settl:24,setup:24,setuptool:14,sever:[4,9,10,11,12,13,14,16,17,19,23,27,29,30,32],sgd:[17,25,26,29],sh:11,shade:13,shap:24,shape:[6,9,11,13,14,15,16,19,21,22,23,25,26,27,28,29],share:[8,9,33,36],sharex:[12,13],she:10,sheet:4,shell:[3,33],shift:[13,14],shirt:29,shn:10,shorter:13,should:[0,4,6,11,12,19,24,26,27,32,33],show:[6,9,10,11,12,13,14,16,18,19,24,25,26,27],show_reconstruct:29,showcountri:10,shown:[27,29],shrink:22,shuffl:[12,19,22,23,24,26,28],shufflesplit:12,shz:10,si:3,side:[12,14],sidebar:4,sig:[6,14],sigm:26,sigma:[6,14,20,26],sigmoid:[25,26,27,29],sign:[6,16],signal:[6,13,27,29],signatur:13,significantli:31,silenc:10,silhouett:16,silhouette_avg:16,silhouette_sampl:16,silhouette_scor:16,silic:14,silica:14,sim:12,similar:[11,13,14,16,21,23],similarli:[11,13,20,25],simpl:[1,5,10,12,15,16,17,20,24,26,27,28,32,33],simpler:6,simplernn:28,simplest:[25,28],simpli:[11,14,26],simplifi:[11,16,27],simul:[8,11,12],sin:[6,11,16,28],sinc:[9,12,19,26,28],sine:[11,13],singl:[6,9,15,16,23,24,25,26,27,28],singular:6,sinusoid:6,sio2:14,sio:14,sit:[12,14],site:[2,14,19,23,29],six:[2,14],size:[6,9,10,11,12,13,14,16,20,23,25,26,27],size_cluster_i:16,size_img:[25,26],skew:13,skicit:21,skill:[5,10],skip:[27,29],skip_parameter_valid:19,skiprow:10,sklean:6,sklearn:[6,12,16,18,19,20,21,22,23,24,25,26,27,29,32,33],slack:36,sle:10,sleep:13,slice:[12,16],slick:4,slide:[8,14],slightli:[26,31],sln:10,slope:12,slow:27,slz:10,small:[6,16,20,23,27,28],smaller:[6,7,12,16,20,23,26,32],smallest:29,smi:3,smith:9,smooth:[11,13,14,26],sn:[6,12,16],sneaker:29,snr:14,so:[2,4,6,10,12,13,19,20,24,25,26,27,28,32],societ:32,soft:23,softmax:[23,25,26,27],softplu:26,softwar:[3,5,9,14,34,36],software_carpentries_intermedi:35,sofwar:11,soil:8,solid:24,solut:[24,25,32,33],solv:[9,16,20,28,32],solver:26,some:[2,3,4,6,9,10,11,12,13,14,16,17,20,24,26,27,33,34],somebodi:4,sometim:31,somewhat:28,somewher:4,son:11,sort:[10,13,15,16,21],sort_valu:10,sosfilt:13,sound:13,sourc:[1,4,5,6,9,14,15,18,32,33,36],source_typ:15,south:[9,10],southern:[3,10],sp1:10,sp2:10,sp3:10,space:[6,7,8,11,14,16,22,26,27,30,36],span:13,spars:26,spatial:[11,13,16,27],spatiotempor:16,speci:6,special:[9,11],specif:[1,2,3,4,8,9,10,11,13,14,15,18,19,20,22],specifi:[10,14,20,25,26,27],spectra:13,spectral:[7,14,15],spectrogram:[13,27],spectrum:[13,14],speed:[13,14],spend:33,spine:6,split0_test_scor:22,split1_test_scor:22,split2_test_scor:22,split3_test_scor:22,split4_test_scor:22,split:[6,12,15,16,18,22,23,25,26,27,28],splitlin:[6,12],spread:14,spreadsheet:8,spyder:2,sqlalchemi:14,sqrt:[1,6,11,13,14,16],squar:[6,11,12,14,16,26],src:1,sse4:29,ssh:4,st:[14,15],sta:[6,12],stabl:[6,11,13,16,26,32],stack:[27,28],stacked_a:29,stacked_ae_cnn:29,stacked_decod:29,stacked_encod:29,stacklevel:19,stage:[4,29],stai:29,stain:16,stamp:15,standalon:10,standard:[6,8,9,10,11,12,13,14,32,33,36],standardscal:[16,18,20,25,26,27,32],standardtransform:26,stanford:27,star:2,start:[3,4,6,7,10,11,12,16,18,20,24,26,29,32],start_dim:[25,26],start_tim:10,startdat:10,starttim:[13,14],stat:[12,13,14,15,22],state:[9,12,28,32],state_dict:[26,27],statement:5,station:[10,12,13,14,27],stationari:29,statist:[7,10,11,12,13,15,17,21,23],statu:4,std:[6,10,11,12,13,14,21,26],std_err:12,std_fit_tim:22,std_score_tim:22,std_test_scor:22,steelblu:6,stefan:[33,34],step:[4,7,11,14,16,20,24,25,26,27,29,32],step_ahead:28,stft:[13,32],still:[4,19,26,36],stochast:[6,17,19,25,32],stop:[11,16],stop_alg:16,storag:[3,4,11,15,32],store:[3,9,10,11,12,15,19,22,23,26,32],str:[6,9,10,12,16,21,24],strategi:[12,16,29,32,33],stratifi:24,street:9,streetaddress:9,stretch:18,strictli:[17,26,27],stride:[27,29],string:[6,9,10,11,15],stringio:10,strive:[0,36],strmethodformatt:6,strong:12,strongli:[12,23],strptime:21,structur:[7,8,9,10,11,12,14,16,29,32,36],student:[5,34],studi:32,studio:[3,4],style:[16,18,21],sub:4,subarrai:11,subclass:25,subdata:16,subduct:12,subgroup:16,submiss:[4,33],subplot:[5,6,11,12,13,14,16,18,19,21,25,26,27,29],subplots_adjust:26,subsequ:26,subset:[9,11,12,19,22,23,24,26,32],subsetrandomsampl:[25,26,27],success:[16,27],successfulli:[13,23,24],suffici:[3,17,27],suggest:[4,32],sum:[6,11,14,16,20,23,25,26,27,29],sum_:[12,16,20,25],sum_i:11,sumatra:10,summar:[16,17,33],summari:[10,16,27,28,29],sun:[21,33],sundai:21,superimpos:13,superseismo:4,supervis:[6,7,17,32],supplementari:27,suppli:6,support:[1,9,11,17,18,19,22,33],suppos:32,suptitl:[16,19],sure:[2,4,11,12,15,19,28,32],surfac:[3,6,8,9,13,15],sv:[6,12],svc:[18,19,22,23],svc_clf:23,svc_predict:[19,22],svg:18,svm:[17,18,19,22,23],symmetr:[6,29],synchron:4,synecho:16,syntax:[9,11,12,26],synthet:[11,16,28,32],synthetics_pca:16,synthetics_sc:16,system:[3,4,5,6,9,11,12,17,31,36],systemat:[18,26,30],t20:16,t:[6,11,12,13,14,16,20,24,26,27,28,33],t_b:12,t_train:12,t_val:12,tab10:29,tab:[25,26,27],tabl:[8,10,24],tabular:[8,9,10],tacc:3,tackl:16,tag:[6,9,33],tail:[13,14],take:[7,10,12,13,14,15,16,20,23,25,27,28,29],taken:[10,14,16],takewai:4,talk:20,tangent:26,tanh:[26,28],taper:[13,14],target:[6,12,19,22,23,24,32],target_nam:[6,19,22],task:[3,11,19,26,32],taught:33,team:[27,31,33,36],technic:36,techniqu:[24,33],technolog:32,tediou:24,tell:24,temp:[10,21,24],temp_1:[21,24],temp_2:[21,24],temperatur:[8,10,11,21,24],templat:[4,27,33],templates_027:27,templates_029:27,tempor:[7,8,13,15],temporari:3,tend:[13,20,23,25,32],tensor:[3,20,25],tensorflow:[23,25,26,27,28,29],tenv:[6,12],term:[6,12,14,18,27,28],termin:[1,3,4,24],terminolog:4,test1:16,test:[10,12,16,18,20,22,23,25,26,27,28,32],test_dat:21,test_data:25,test_df:24,test_featur:21,test_imag:25,test_import:21,test_index:12,test_indic:19,test_label:[21,25],test_siz:[12,18,19,21,22,23,26,27],testload:[25,26,27],texa:3,text:[1,4,6,9,11,12,13,14,16,24,26,36],textcolor:6,textkw:6,tf:[13,28,29],th:[16,20],than:[6,12,13,14,16,17,23,27,28,32],the_turing_way_community_2022_6909298:35,thei:[3,6,7,9,10,12,13,14,16,17,20,26,27,28,29,32],them:[4,6,7,8,10,14,15,16,18,24,25,27,29,33],themselv:15,thenarrai:15,theorem:32,theori:33,therefor:[12,13,16,26,29],theta:[6,16],thi:[1,3,4,5,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,36],thing:[8,32,36],think:[12,24],third:[1,14,20,23],those:[6,11,24,27],though:[3,5,31],three:[3,9,11,16,20,27,33],thresh:[13,16],threshold:[6,18,24,25,26],through:[3,6,12,25,26,31,33],throughout:[27,33],thu:[6,18,20,27],tick:[6,16,21],tick_param:[6,11,25,26,27],ticker:6,tier:3,tif:9,tiff:9,tight:16,tight_layout:[6,14,21,25,26,27],tightli:3,tile:6,time:[3,6,8,9,10,11,12,15,16,24,25,26,27,28,29,30,32,33],time_series_features_extractor:15,timedelta:10,timedistribut:28,timeit:[10,11,13],timestamp:10,tip:11,titl:[6,10,11,12,13,14,16,19,21,26],tlu:25,tn:[15,18,20],tnr:18,to_csv:10,to_datetim:10,to_netcdf:11,to_numpi:[16,20],to_parquet:10,to_zarr:11,todai:[21,24],todoran:[33,34],togeth:[2,25],toi:[6,32],token:4,tol:22,too:[12,18,20,27,28,32],tool:[2,9,10,11,16,18,22,32,33],toolbox:[13,16],toolkit:[22,33],tooth:6,top3:24,top:[1,3,4,6,10,27],topic:33,topographi:9,torch:[11,20,25,26,27],torchvis:[25,26,27],total:[4,11,18,22,23,25,26,27,29],totensor:[25,26,27],touch:4,toward:7,towardsdatasci:21,towfish_001:16,towfish_002:16,towfish_003:16,towfish_004:16,towfish_005:16,towfish_006:16,towfish_007:16,towfish_008:16,towfish_009:16,towfish_010:16,towfish_011:16,towfish_012:16,towfish_013:16,towfish_014:16,towfish_015:16,towfish_016:16,towfish_017:16,towfish_018:16,towfish_019:16,towfish_020:16,tp:[16,18,20],tpr:[18,19],tpu:3,trace:15,trace_nam:15,traceback:[10,13,19,26],track:[4,11,12],trade:18,train:[12,16,17,18,20,22,23,28,29,31,33],train_data:25,train_df:24,train_featur:21,train_imag:25,train_import:21,train_index:12,train_label:[21,25,27],train_set:[25,26,27],train_test_split:[18,19,21,22,23,25,26,27,29],trainabl:[27,29],trainload:[25,26,27],transform:[6,7,9,10,11,15,16,19,20,22,23,24,25,26,27,29,32,33],transit:11,translat:[13,27],transmit:31,transpos:6,treat:27,tree:[9,17,18,23,24,26],tremend:34,trend:12,trial:26,trignometri:24,trim:13,triplic:16,trouser:29,true_data:21,true_label:16,truth:[16,28],tsfel:[7,15],tsfresh:[7,15],tshirt:29,tslib:10,tsne:29,tstart:[13,14],tt:[12,24],tue:21,tunabl:16,tune:[12,14,24,29,32],tuner:27,tupl:21,ture:[4,34],turn:[6,13,26,28],tutori:[3,4,9,10,11,12,16,19,21,24,26,29,34],twin:14,twinx:[25,26,27],two:[4,9,10,11,12,13,14,16,17,18,21,27,29,30],txt:[2,4],type:[1,4,5,8,9,10,11,13,14,15,16,17,19,22,23,24,26,29,32,33],typic:[3,10,11,12,13,15,16,23,29],u:[1,6,16],u_:12,u_n:12,uc:[21,24],ue:[6,12],ug3_fcm_distribut:16,un:[6,12],uncertain:12,uncertainti:[12,16,28],unclear:27,uncom:11,under:[4,15,18,24],underestim:12,underfit:[23,24],underli:[11,12,36],underlin:1,understand:[6,33],undertak:6,underwai:16,underway_002:16,underway_003:16,underway_004:16,underway_005:16,underway_006:16,underway_007:16,underway_008:16,underway_009:16,underway_010:16,underway_011:16,underway_012:16,underway_013:16,underway_014:16,underway_015:16,underway_017:16,underway_018:16,underway_019:16,underway_020:16,underway_021:16,underway_022:16,underway_023:16,underway_024:16,underway_025:16,underway_026:16,underway_027:16,underway_028:16,underway_029:16,underway_030:16,underway_031:16,underway_032:16,underway_033:16,underway_034:16,underway_035:16,underway_036:16,underway_037:16,underway_038:16,underway_039:16,underway_040:16,underway_041:16,underway_042:16,underway_043:16,underway_044:16,underway_045:16,underway_046:16,underway_047:16,underway_048:16,underway_049:16,underway_050:16,underway_051:16,underway_052:16,underway_053:16,underway_054:16,underway_055:16,underway_056:16,underway_057:16,underway_058:16,underway_059:16,underway_060:16,underway_061:16,underway_062:16,underway_063:16,underway_064:16,underway_065:16,underway_066:16,underway_067:16,underway_068:16,underway_069:16,underway_070:16,underway_071:16,underway_072:16,underway_073:16,underway_074:16,underway_075:16,underway_076:16,underway_077:16,underway_078:16,underway_079:16,underway_080:16,underway_081:16,underway_082:16,underway_083:16,underway_084:16,underway_085:16,underway_086:16,underway_087:16,underway_088:16,underway_g3:16,unecessari:6,unifi:3,uniform:[11,12,14,16,22,26,32],uniqu:[6,10,15,16,19,23,27,29],unit:[3,6,11,13,25,26],univers:[12,26,33],unix:5,unknown:24,unlik:[12,13],unord:1,unr:[6,12],unread:11,unrealist:13,unseen:[12,24],unstag:4,unstructur:9,unsupervis:[6,7,16,32,33],unsur:11,until:[13,14,16,20,23,27],unzip:9,up:[6,10,12,13,14,17,18,23,24],updat:[6,11,16,20,24,25,26,27,28,29,33],update_geo:10,update_layout:10,upload:[4,33],upper:[4,12],upper_critical_valu:12,upsampl:11,upstream:31,url:[1,9,10],urllib3:14,us:[1,2,3,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,36],usabl:26,usag:[3,4],usecol:10,user:[1,2,4,9,10,11,14,23,29,36],user_guid:16,usernam:4,userwarn:29,usg:9,usi:24,usp:8,usual:[3,12,15,16,17,24,26,27],utcdatetim:[13,14],utf:[9,10],util:[12,19,20,25,26,27,36],uv:[6,12],uw:[1,3,4,5,13,14,33,34,36],v:[6,16],v_e:12,v_measure_scor:16,v_n:12,v_size:12,va:6,vae:29,val_index:12,val_loss:29,val_set:[25,26,27],valfmt:6,valid:[10,19,26,27,28,29,32,33],validate_separ:19,validation_data:[28,29],valu:[6,8,9,10,11,12,13,14,16,17,18,20,21,23,24,25,26,27,28,32],valuabl:12,value_count:10,valueerror:19,vanish:[26,28],vanuatu:10,varaibl:12,vari:[11,14,15],variabl:[5,6,7,9,10,11,12,13,16,19,20,21,24,26,29],varianc:[6,12,13,16,17,23,24],variance_1:15,variat:[11,16],varieti:9,variou:[3,4,12,13,15,16,18],varoquaux:18,vcl:10,vco:10,vdt:10,ve:12,vea:10,vec:10,vector:[6,11,12,13,17,19,20,22,26,27,33],vei:10,vel:12,veloc:[12,13],venv:2,vep:10,verbos:[19,22,24],veri:[2,10,11,13,14,16,17,20,23,24,26,28,32],verifi:12,version:[1,2,9,10,26,27,31,36],versu:16,vertic:[3,6,13,15,16,21],verticalalign:6,vfp:10,vi9gmjy8d4zd5jv:27,via:[2,16,26,33],vibrat:15,video:[3,36],view:[16,26,27,33],viewoutput:26,viridi:13,virtual:[3,4],visit:2,visual:[3,4,6,7,9,11,12,14,16,18,21,24,27,29,32,33,36],vki:10,vm1:10,vm2:10,vm3:10,vmax:[6,11,13,15],vmin:[6,11,13,15],volum:[16,27],voting_clf:23,votingclassifi:23,vpb:10,vrc:10,vs:[4,6,9,12,14,23],vscode:[3,10,13,19],vsp:10,vstack:[6,16],vt:6,vwb:10,w1sdnnjb2rllxjlbw90zq:13,w:[6,11,13,20,25,26,27],w_i:25,w_j:[20,25],w_k:25,wa:[9,10,12,14,17,18,19,21,22,23,27,29],wai:[2,4,6,9,10,11,12,16,20,22,24,27,29,32,34],wait:[13,16],want:[9,10,11,12,13,20,21,25,26,28],ward:16,warm_start:24,warn:[6,10,13,14,19,20],washington:[9,33],watch:[3,19,22,23],water:20,water_pot:20,wave:[28,29],wavedecompnet:29,wavefield:29,waveform:[13,14,15,29],wavelet:[7,14,15,33],wavenumb:13,wdb25puxh3u07dj:[9,13],we:[0,2,3,4,6,9,10,11,12,13,14,15,16,17,18,19,20,22,23,25,26,27,28,29,33,36],weak:23,web:[3,36],wednesdai:33,week:[21,24,33],week_fri:[21,24],week_mon:[21,24],week_sat:[21,24],week_sun:[21,24],week_thur:[21,24],week_tu:[21,24],week_w:[21,24],weight:[11,14,18,19,23,25,26,27,28],weka:24,welcom:[4,36],well:[11,12,16,18,19,20,26,27,32],went:31,were:[3,9,10,11,16,18,19,20,23,25,27,34],west:[9,11],westward:12,wget:[9,13,15,16,21,22,24,27],what:[3,4,6,10,11,12,13,14,15,16,18,20,22,23,24,27,32],when:[3,4,9,10,12,16,18,19,20,23,25,26,27,29,32,33],where:[1,3,6,9,10,12,13,14,15,16,20,24,25,26,27,31,32],whether:[12,18,26,27],which:[2,4,6,8,9,12,13,14,16,17,20,22,23,24,25,26,27,29,30,32,33,36],white:[6,11,14,16],whl:[13,23,24],who:[4,11],who_is_awesom:11,whole:[9,10,14,20],why:[3,12,24],wich:11,wide:[12,14,22,24,26,29,36],widget:24,width:[1,6,9,10,13,14,27],wiki:18,wikimedia:18,window:[3,4,11,13,14,26,27],winner:[13,19],wise:[11,24],within:[3,8,9,11,12,13,16,21,24,26],without:[4,6,7,14,23,26,27,32],wmp:10,won:28,word:27,work:[0,2,3,6,9,10,12,16,20,23,24,27,28,32],worker:[19,22],workflow:[3,4,7,12,13,15,24,33],workspac:[13,19],world:[3,24,32],worlpert:32,would:[3,4,6,11,13,15,20,21,23,26,27,29,31,32],wrap:11,wrapper:19,write:[4,7,9,10,11,20,27,32,33],written:1,wrong:24,wrote:3,wt:14,wwvb:10,www:[9,11,13,15,16,20,21,27],wx:[25,26],x1:[11,16,27],x1test:16,x25sdnnjb2rllxjlbw90zq:19,x2:[11,16],x2test:16,x3:[11,16],x4:11,x54szmlszq:10,x:[1,6,9,10,11,12,13,14,15,16,18,19,20,21,25,26,27,28,32],x_:[12,20],x_a:12,x_b:12,x_i:[11,12,16,20,25],x_int:11,x_label_list:13,x_lat:11,x_lon:11,x_max:26,x_min:26,x_new:[6,26],x_p:16,x_pca:6,x_scale:32,x_std:32,x_t:11,x_test:[18,19,22,23,26,27,28,29],x_tl:11,x_train:[18,19,22,23,26,27,28,29],x_train_ful:29,x_val:[28,29],x_val_2d:29,x_val_compress:29,x_valu:21,xarrai:[7,9],xarrrai:11,xavg:6,xc:6,xgb:23,xgboost:[23,24,26],xkcd:18,xlabel:[6,10,11,12,13,14,16,18,19,21,26,28],xlat:13,xlim:[6,13,14,16,19,26],xlon:13,xne:10,xnn:10,xnz:10,xp:19,xr:11,xscale:14,xtick:[6,11,12,13,21],xx:[15,26],xxx:14,y2:16,y3:16,y:[6,9,10,11,12,13,15,16,18,19,20,21,22,23,25,26,27,28],y_i:[11,16,20],y_k:25,y_lower:16,y_max:26,y_min:26,y_numer:19,y_pred:[11,19,22,23,28],y_proba:26,y_score:[18,19],y_test:[18,19,22,23,26,27,28,29],y_test_pr:18,y_train:[18,19,22,23,26,27,28,29],y_train_ful:29,y_train_pr:19,y_true:[19,22],y_upper:16,y_val:[28,29],yaxi:16,ye:[2,20,24],year:[4,6,10,12,13,21,24,26,32],yellowston:16,yesterdai:[21,24],yet:4,yhat:20,yield:[13,30],yin:29,ylabel:[6,11,12,13,16,18,19,21],ylim:[6,13,14,16,19],yml:[4,32,33],york:9,you:[1,3,4,6,8,9,10,11,12,13,14,15,16,18,20,23,24,26,27,29,31,32,36],your:[3,9,11,12,13,16,18,20,24,26,32,33,36],youtu:3,yscale:[13,14],ytick:[11,12,13],yy:26,z:[9,13,14,15,16,20,25,26],zarr:[7,11],zel:13,zenodo:4,zero:[6,10,12,13,14,15,16,18,20,25,26,27,32],zero_grad:[25,26,27],zf:13,zhat:[13,14],zhu:29,ziheng:33,zip:[6,9,19,21,25,26],zipdataset:25,zipfil:[6,9,12],zipp:14,zone:12,zoom_start:9,zorder:6,zp:14,zsort:13,zxx:13},titles:["1.1 Open Reproducible Science","1.3 Jupyter Environment","1.3 Python Ecosystem","1.4 Computing Environments","1.5 Version Control & GitHub","Getting Started","2.10 Dimensionality Reduction","2.10 ML-ready data","2.1 Data Definitions","2.2 Data Formats","2.4 Pandas","2.3 Data Arrays","2.6 Resampling Methods","2.7 Spectral Transforms","2.8 Statistical Considerations for geoscientific Data and Noise","2.9 Feature engineering","3.1 Clustering","3.2 Classification and Regression","3.3 Binary classification","3.4 Multiclass Classification","3.5 Logistic regression","3.6 Random Forests","3.7 Hyperparameter Tuning","3.8 Ensemble learning","3.9 AutoML","4.1 Neural Networks","4.2 Multi Layer Perceptrons","4.3 Convolutional Neural Networks","4.4 Recurrent Neural Networks: Processing sequences","4.5 Auto-encoders","4.6 NAS: Network Architecture Search","This chapter focuces on model workflow and ML reproducibility","The MLGeo Project","Machine Learning in the Geosciences","Acknowledgements from Contributors","Bibliography","Glossaries"],titleterms:{"1":[0,1,2,3,4,6,8,9,10,11,12,13,14,16,17,18,19,21,22,23,25,26,27,32],"10":[6,7],"1d":11,"2":[6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,26,27,28,32],"2d":[11,13],"3":[1,2,6,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,26,27,32],"3d":6,"4":[3,10,11,12,13,14,19,21,23,25,26,27,28,29,30,32],"5":[4,11,12,20,21,26,27,29,32],"6":[11,12,21,30,32],"7":[13,21,22,32],"8":[14,23],"9":[15,24],"do":2,"function":[10,25,26],"import":21,"new":4,"short":13,But:9,One:[12,21],The:[8,14,16,32],account:4,acknowledg:34,activ:26,adaboost:23,ahead:28,algorithm:17,an:[2,4],analysi:6,anatomi:27,app:4,appendix:20,ar:2,architectur:30,arrai:[9,11],assess:21,authent:4,auto:29,autoencod:29,automat:20,automl:24,aw:3,azur:3,b:25,bag:23,baselin:21,basic:[1,2,10,11,13],befor:16,best:24,bibliographi:35,binari:18,boost:23,bootstrap:12,build:33,c:25,can:28,carlo:12,chapt:32,chapter:[31,32],check:[21,24],choic:16,classif:[17,18,19],classifi:[18,23],cloud:3,cluster:16,cnn:27,code:2,colab:3,column:24,command:[1,2],compar:24,compon:6,comput:[3,11,21],conda:2,consider:14,contributor:34,control:4,conv:27,convolut:[27,29],cours:33,covari:6,creat:[4,10,27],cross:[12,22],csv:10,data:[6,7,8,9,11,12,14,16,18,19,21,24,25,27,29,32],datafram:10,deal:2,decis:21,decod:29,defin:[25,26,27],definit:[8,36],denois:29,descent:20,design:[25,32],desktop:4,determin:6,differenti:20,dimension:[6,29,32],displai:24,distanc:11,download:[21,32],ecosystem:2,elbow:16,encod:[21,29],engin:15,enhanc:4,ensembl:23,environ:[1,2,3],evalu:24,event:14,exampl:[2,12,27,29],exist:4,explor:[6,15,18,21],extract:[6,11],far:28,featur:[6,14,15,21],file:[2,10],filter:13,fine:26,first:[21,24],fo:11,focuc:31,fold:12,forecast:28,forest:21,format:9,forward:26,fourier:13,frame:[8,32],freez:2,from:[5,10,34],fundament:10,futur:28,gener:36,geodet:12,geojson:9,geolog:14,geopanda:9,geoscienc:33,geoscientif:14,geotiff:9,get:[5,24],git:4,github:[4,33],glossari:36,googl:3,gradient:[20,23],grid:22,handl:9,hassl:24,hdf5:9,hierarch:[9,16],high:11,homework:33,hot:21,how:[2,27,28],hpc:3,hub:1,hyperparamet:[22,26],i:9,implement:20,independ:6,index:11,infer:12,inform:14,initi:21,interpret:24,introduct:[11,20],jupyt:1,k:[12,16],kurtosi:14,lab:1,label:21,larg:9,latent:29,layer:[26,27],learn:[5,16,23,26,33],leav:12,lenet:27,level:[11,12,13,14],linear:12,load:25,local:3,logist:20,loss:25,low:29,lstm:28,machin:33,manupul:10,map:10,markdown:1,matplotlib:11,matrix:6,mean:[6,14,16],measur:11,metadata:15,method:[12,16],metric:[18,24],ml:[7,27,31],mlgeo:32,mlp:26,modal:8,model:[12,18,21,24,25,26,27,29,31,32],mont:12,more:24,motion:12,multi:[26,29],multiclass:19,na:30,need:2,net:29,netcdf4:9,netcdf:9,network:[25,26,27,28,30],neural:[25,26,27,28],nois:14,norm:11,note:[4,27],notebook:1,number:16,numpi:11,nyquist:13,o:9,object:[5,33],one:6,open:0,optim:[25,26],organ:32,other:[6,27],out:12,outcom:6,overview:33,panda:10,paramet:6,parquet:10,past:23,pca:[6,16],perceptron:26,perform:[18,21],physic:14,plate:12,plotli:10,pool:27,practic:[16,27],predict:28,prep:27,prepar:[19,21,27,32],prerequisit:33,princip:6,problem:28,process:28,project:32,publish:[4,27],pycaret:24,python:[2,10],pytorch:[11,20,26],qualiti:21,random:[11,12,14,21,22],randomli:21,raster:9,rasterio:9,re:19,read:[9,10,27,33],readi:[7,24],realist:14,recod:27,recurr:28,reduct:[6,32],regress:[12,17,20,21],repeat:16,repositori:4,reproduc:[0,31],resampl:12,respons:10,restor:26,rnn:28,robust:12,run:[2,24],save:26,scale:19,scienc:0,scikit:[16,26],search:[22,30],section:10,seismic:27,seismolog:29,select:6,separ:21,sequenc:28,seri:14,set:[4,14,21,25],sever:28,shape:24,signal:14,skew:14,skill:33,slice:11,slow:9,softwar:4,solut:28,space:[13,15,29],specif:33,spectral:13,split:[19,21,24],stack:23,start:5,statist:14,step:[6,28],strategi:25,structur:26,student:[10,33],subtract:6,svd:6,syllabu:33,synthet:[14,18],task:29,team:4,technic:33,techniqu:[6,12],technolog:36,tensor:11,test:[19,21,24],text:10,thi:[2,31],three:6,tier:33,time:[13,14],tip:16,tool:36,train:[19,21,24,25,26,27,32],transform:13,tree:21,troubleshoot:24,tune:[22,26,27],tutori:33,two:6,typic:26,u:29,uncertainti:13,up:[4,21],us:[4,10,12],valid:[12,22],varianc:14,version:[4,33],via:6,virtual:2,vote:23,vs:10,wavelet:13,we:[21,24],webinar:33,what:[1,2],work:4,workflow:31,xarrai:11,yml:2,you:[2,28],your:[2,4],zarr:9,zero:5}}) \ No newline at end of file