diff --git a/Chapter3-MachineLearning/3.3_binary_classification.html b/Chapter3-MachineLearning/3.3_binary_classification.html index 7070101..cae70d5 100644 --- a/Chapter3-MachineLearning/3.3_binary_classification.html +++ b/Chapter3-MachineLearning/3.3_binary_classification.html @@ -703,9 +703,6 @@

1.1 Synthetic Data -../_images/3.3_binary_classification_5_0.png -

We will start with the fundamental LDA.

@@ -730,11 +727,6 @@

1.1 Synthetic Data -
The mean accuracy on the given test and labels is 0.875000
-
-
-

The results shows a not-too bad classification, but a low confidence.

Let’s try a different classifer: KNN

@@ -776,15 +762,6 @@

1.1 Synthetic Data -
The mean accuracy on the given test and labels is 0.975000
-
-
-
<matplotlib.collections.PathCollection at 0x7f7c5ad06230>
-
-
-../_images/3.3_binary_classification_10_2.png -

Now we will test to see what happens when you do not normalize your data before the classification. We will stretch the first axis of the data to see the effects.

This drastically reduces the performance.

@@ -927,17 +889,6 @@

2. Classifier Performance Metrics -
confusion matrix
-[[18  1]
- [ 0 21]]
-precison, recall
-0.9545454545454546 1.0
-F1 score
-0.9767441860465117
-
-
-

A complete well-formatted report of the performance can be called using the function classification_report:

Precision and recall trade off: increasing precision reduces recall.

\(precision = \frac{TP}{TP+FP}\)

@@ -986,12 +924,6 @@

2. Classifier Performance Metrics -
[<matplotlib.lines.Line2D at 0x15225a3a0>]
-
-
-../_images/3.3_binary_classification_21_1.png -

We now explore the different classifiers packaged in scikit learn. We can systematically test their performance and save the precision, recall,

diff --git a/_images/3.3_binary_classification_10_2.png b/_images/3.3_binary_classification_10_2.png deleted file mode 100644 index 7eb4937..0000000 Binary files a/_images/3.3_binary_classification_10_2.png and /dev/null differ diff --git a/_images/3.3_binary_classification_11_1.png b/_images/3.3_binary_classification_11_1.png deleted file mode 100644 index 7eb4937..0000000 Binary files a/_images/3.3_binary_classification_11_1.png and /dev/null differ diff --git a/_images/3.3_binary_classification_14_2.png b/_images/3.3_binary_classification_14_2.png deleted file mode 100644 index f5fa6ea..0000000 Binary files a/_images/3.3_binary_classification_14_2.png and /dev/null differ diff --git a/_images/3.3_binary_classification_21_1.png b/_images/3.3_binary_classification_21_1.png deleted file mode 100644 index e5bafa8..0000000 Binary files a/_images/3.3_binary_classification_21_1.png and /dev/null differ diff --git a/_images/3.3_binary_classification_5_0.png b/_images/3.3_binary_classification_5_0.png deleted file mode 100644 index 5d0efde..0000000 Binary files a/_images/3.3_binary_classification_5_0.png and /dev/null differ diff --git a/_images/3.3_binary_classification_8_1.png b/_images/3.3_binary_classification_8_1.png deleted file mode 100644 index 1d69424..0000000 Binary files a/_images/3.3_binary_classification_8_1.png and /dev/null differ diff --git a/_sources/Chapter3-MachineLearning/3.3_binary_classification.ipynb b/_sources/Chapter3-MachineLearning/3.3_binary_classification.ipynb index 687de92..1e58896 100644 --- a/_sources/Chapter3-MachineLearning/3.3_binary_classification.ipynb +++ b/_sources/Chapter3-MachineLearning/3.3_binary_classification.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "6107cdf4", "metadata": {}, "outputs": [], @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "d396cc63", "metadata": {}, "outputs": [], @@ -72,21 +72,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "be32d69c", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXb0lEQVR4nOzdd3QUZdvH8e/sbpJNb5AGIfTeQXrvIE0p0gUFAUVERBQr4Cs+j6KCjV4UaQrSpPfem4DUUEMP6W3rvH9EojxJkJLspFyfczwe5t7s/O5Nsrl25i6KqqoqQgghhBC5hE7rAEIIIYQQj0OKFyGEEELkKlK8CCGEECJXkeJFCCGEELmKFC9CCCGEyFWkeBFCCCFEriLFixBCCCFyFSlehBBCCJGrGLQOkNXsdjs3btzA09MTRVG0jiOEEEKIR6CqKvHx8YSEhKDTPfzaSp4rXm7cuEFoaKjWMYQQQgjxBK5du0bhwoUf+pg8V7x4enoCqZ338vLSOI3jWSwWNmzYQKtWrXByctI6jsPl9/6DvAb5vf8gr4H0P3f2Py4ujtDQ0LS/4w+T54qX+7eKvLy88m3x4ubmhpeXV676oc0q+b3/IK9Bfu8/yGsg/c/d/X+UIR8yYFcIIYQQuYoUL0IIIYTIVaR4EUIIIUSuIsWLEEIIIXIVKV6EEEIIkatI8SKEEEKIXEWKFyGEEELkKlK8CCGEECJXyXOL1AkhRHa4ePEie/fuRafT0ahRIwoVKqR1JCHyLSlehBDiIe7cucPAl1/m99WrUVUVAL1OT7du3Zg6bSre3t4aJxQi/5HiRQghMpGQkEDTxk24fuEK3dVqVKEQNlSO2q+xcskyLl++zI6dO3LlEuxC5GYy5kUIITIxZ84czp49yxBrPWorRTEqTrgrzjRQSvCyrQ779u9j6dKlWscUIt+R4kUIITIxd/YcKhJCoJJ+k9diij8l9QHMnTNHg2RC5G9SvAghRCZu3bxJoOqRaXuAzZ2b1286MJEQAqR4EUKITIUUKsRNJT7T9lv6BAoXCXVgIiEESPEihBCZemngy5ziBtfVmHRt59W7XLTd5aWXX3J8MCHyOSlehBAiEy+++CJVKldlmn4PO9QLxKrJRKtJbFHPMVu3jyaNGtOpUyetYwqR78hUaSGEyISbmxubt27mtVdf49dff2G57Q8AnJ2c6ffii0yePBmDQd5GhXA0+a0TQoiH8PX1ZcHCBXz51ZccOHAAnU5H3bp1KVCggNbRhMi3svW20Y4dO+jQoQMhISEoisLy5csf+vht27ahKEq6/27dupWdMYUQ4l8FBwfTqVMnOnToIIWLEBrL1uIlMTGRKlWq8P333z/W1509e5abN2+m/RcQEJBNCYUQQgiR22TrbaO2bdvStm3bx/66gIAAfHx8sj6QEEIIIXK9HDnmpWrVqphMJipWrMjYsWOpX79+po81mUyYTKa0f8fFxQFgsViwWCzZnjWnud/n/Nh3kP6DvAb5vf8gr4H0P3f2/3HyKur9bVKzmaIoLFu2jM6dO2f6mLNnz7Jt2zZq1qyJyWRi5syZzJs3j/3791O9evUMv2bs2LGMGzcu3fEFCxbg5uaWVfGFEEIIkY2SkpLo1asXsbGxeHml35Ljn3JU8ZKRxo0bU6RIEebNm5dhe0ZXXkJDQ4mMjPzXzudFFouFjRs30rJly3y5021+7z/Ia5Df+w/yGkj/c2f/4+LiKFCgwCMVLznyttE/1apVi127dmXa7uLigouLS7rjTk5OueqbltWk//m7/yCvQX7vP8hrIP3PXf1/nKw5foXdY8eOERwcrHUMIYQQQuQQ2XrlJSEhgQsXLqT9+9KlSxw7dgw/Pz+KFCnCmDFjuH79Oj/99BMAkyZNolixYlSoUIGUlBRmzpzJli1b2LBhQ3bGFEIIIUQukq3Fy6FDh2jatGnav0eOHAmk7hcyd+5cbt68ydWrV9PazWYzb731FtevX8fNzY3KlSuzadOmB55DCCGEEPlbthYvTZo04WHjgefOnfvAv0ePHs3o0aOzM5IQQgghcrkcP+ZFCCGEEOKfpHgRQgghRK6S46dKCyGESHX+/HlOnz6Nu7s7DRo0yHCZCCHyA7nyIoQQOdy5c+do1qQppUuXplOnTrRo0YJCQSF88cUXDx1XKEReJVdehBAiB7t8+TIN6tZHF2uhN89QmoLEY2JvzCVGjx7NvXv3+M9//qN1TCEcSq68CCFEDjZ+/Hgsccm8ZmtADSUUT8VIiOJNF6Uq7ajAF59/wZUrV7SOKYRDSfEihBA5VEpKCgsXLKSuNQwPJf34loaUwEXnlLbQpxD5hRQvQgiRQ0VHR5NiSiEE7wzbXRQDBXUeREREODiZENqS4kUIIXIoHx8fnAwGbhOfYbtFtXHPnkhgYKCDkwmhLSlehBAih3J1daVbt27sM1whRbWka9/HZRJtKfTt21eDdEJoR4oXIcRTuXXrFkePHuX69etaR8mTPvzoI8xGmKLfzWn1FjbVToyazFr1T1YoJxg8eDClSpXSOqYQDiXFixDiifzxxx+0a9uWkJAQqlevTuHChWnWpCn79u3TOlqeUrZsWbZu34ZvuULMYA9vs5zxrGWX8TJvj36b77//XuuIQjicrPMihHhsR44coVGDhnianeimVqUQPtwmnp27/qBxo8as37CeJk2aaB0zz6hevTrH/jjOgQMHOHXqFB4eHrRu3Rpv74wH8gqR10nxIoR4bK8OeRU/s5FXbQ1wUVLfRkLxpaqtENPVvbwycBBnz59DURSNk+YdiqJQu3ZtateurXUUITQnt42EEI/l1KlT7D+4n+a2UmmFy30GRU9re1nOh19gx44dGiUUQuR1UrwIIR7LhQsXACiGf4bt94+Hh4c7LJMQIn+R4kUI8Vh8fHwAiCYpw/b7x+8/TgghspoUL0KIx1K/fn2CAgLZScZXVnZwAS8PT1q3bu3gZEKI/EKKFyHEYzEYDHzy6f9xmGssU48TpyYDkKCaWKOeYifhjHn/Pdzd3TVOKoTIq2S2kRDisQ0cOJCEhATeGzOG3aZLeBvciLcmo9Pr+Pj9j3nnnXe0jiiEyMOkeBEiB4iJieHgwYOoqkrNmjXx8/PTOtK/GjFiBP379+fXX38lIiKCwMBAunXrRsGCBbWOJoTI46R4EUJDSUlJjBo1ijmz55BiSgHAxdmFvv368vXXX+Ph4aFxwofz8fFh0KBBWscQQuQzUrwIoRGr1UrH9h3YtX0nTe0lqUYoAMfN1/l5zk+cPvUnW7ZtxdnZWeOkT0dVVfbt28fs2bO5cuUKBQsWpE+fPrRu3RqdTobdCSEen7xzCKGR3377jc1btzDAXptWSjkKKh4UVDxooZRhkK0uu/fuYeHChVrHfCo2m43+/ftTr149ls9dzK2Np9i+eC3t2rWjRbPmJCQkaB1RCJELSfEihEZmz5xFCX1BSisB6dqKKf6U1QUxc8ZMDZJlnU8++YSf5/1MD2rwrrUFA5Q6jLQ14RXqs2/XHl6RW05CiCcgxYsQGrl65QohNq9M20PsXly7csWBibJWcnIyk7+eREO1OLWUMHR/7XOkKApllUDa2cqzePEvXL16VeOkQojcRooXITQSEBjIXV1ipu2RSiIBgYEOTJS1Dh48SExcLDUpkmF7TYqgqiobNmxwcDKR1aKiojh+/LgUosJhpHgRQiP9+r/IWfttrqsx6dpuq3Gc5CYvDujv8FxZxWw2A+CSybwAJ/QoipL2OJH7XLp0iRdeeIHAgACqVq1KWFgYdevUZdOmTVpHE3mcFC9CaKRnz55UrlSZ6fq9HFCvYFZtWFQbh9SrTDPspXSp0rz44otax3xilStXxslg4BQ3M2w/zS3sqp1nnnnGwclEVrh06RJ1atVh029reNZWgTdoQj9qcedgOK1btWbp0qVaRxR5mBQvQmjE1dWVTVs20bhNMxZxmHdZwTusYAGHqN20Ptt2bMvx67w8TEBAAN26d2eL/gK31bgH2uLVFFYb/qRm9RpSvORSb7/9NraYJN6wNqKxUpIwxY+qSmFetTegEsEMHvQKKSkpWscUeZSs8yKEhgoUKMCq33/nwoULbN++HVVVadCgAWXLltU6Wpb45ptvOHbkKF+f20YVeyEK48NdEjiqj8DD15v5CxdoHVE8gbt377J82XI62iviqRgfaNMpCm3V8vwneiPLly+nR48eGqUUeZkUL0LkACVLlqRkyZJax8hy/v7+7N2/jx9++IEZU6dz/Maf+Pv5M6z/CN544w2Cg4O1jiiewOXLl7HZbRTDP8P2AMUTL70bFy5ccHAykV9I8SKEyFZeXl68++67vPvuu1pHEVnEx8cHgBiSKIxPuvZk1UKS3YS3t7djg4l8Q8a8CCGEeCwlS5akcsVK7NZdQlXVdO37uIQKdOnSxfHhRL4gxYsQQojHoigKn3z6f5y132Yhh4lSkwBIUS1sU8+zRvmTIUOHEBISonFSkVfJbSMhhBCPrWPHjvz4448Me/U1jiStx8fgToLNhFW1MXjIYCZNmqR1RJGHSfEixP9ITk4mKioKHx8f3N3dtY4jRI7Vr18/nn/+eZYsWcLFixfx8fGhW7duhIaGah1N5HFSvAjxl8uXLzNu3DgWLliIyWzCyWDg+S5d+PjjjylXrpzW8fKkM2fOsGDBAiIjIylSpAh9+/alUKFCWscSj8HDw4P+/ftrHUPkM1K8CAGcO3eO+nXrYYtLobm1BCH4cMcaz5ala1jz+2q2bt9GjRo1tI6ZZ1gsFgYPHsycOXPwMBjxVdy5Y4/jg/c/4OOxH/PBBx+g/LWRoxBC/C8pXoQAhg4egj7WynBbEzwUFwDKE0Qda1GmqnsY8GJ/jp/4Q/6gZpG33nqLn+b+SFeqUssahkHRk6Ja2Mo5PvroI/z9/Xn11Ve1jimEyKFktpHI986fP8+WbVtpYSudVrjcZ1ScaGsry4lTJ9m/f79GCfOWu3fvMnXKVFqr5ainFMeg6IG/XmulAjUpwqef/B9Wq1XjpEKInEqKF5HvnT59GoBSFMywveRfx//880+HZcrLVq9ejcVqoS5FM2yvR3Fu3LrJwYMHHRtMCJFrSPEi8r37M4oSMGXYfv94bt4kMSdJSEjAoOhxwznDdk9c0h4nhBAZkeJF5HsNGjSggK8/e7iYYfseLuFqNNKqVSsHJ8ubypcvj1W1cYl7Gbaf5w6KouSZzSmFEFlPiheR77m4uPDOe++yh0tsVM9gUlPHWphVGzvVcDYr5xj+xhtp+7mIp9OkSRNKFi/BGv1pzOqD41ri1RS2GC7Qrm1bWStECJEpmW0kcgWLxcLKlSuZP38+UZH3KFaiOAMHDqRevXpZMgPorbfeIioqiv/+579s012ggM6TKHsiibYUhgwewqeffpoFvRAAOp2OH+f9RIvmLfha2U5daxgF8CCCaPYarmD09eTb777TOqYQIgeT4kXkeFFRUbRp3YaDhw5SVF8AX5uR1XuPMXfuXPr378/MmTPR6/VPdQ5FUZgwYQJDhgxh3rx5REREEBgYSO/evSlVqlQW9UTcV69ePfbt38cnn3zC8mXLsNpsuBqN9O7Th48++kiuugghHkqKF5Hj9e3dh9NHT/A6jSlm9wcF7FaVQ1zlpx9/pGTJkrz//vtZcq4iRYpk2XOJh6tcuTK//vorCQkJxMTEUKBAAYxGo9axhBC5gIx5ETna6dOnWbNuLZ1sFSmm+Kcd1ykKtZQw6qrFmPzVJMxms4YpxdPw8PCgcOHCUrgIIR6ZFC8iR9u4cSNOOgNVyHi/m5oU4W5UJMeOHXNsMCGEEJqR4kXkaFarFZ2ioMvkR9UJfdrjhBBC5A9SvIgcrVatWphsFi5wN8P2E9zA1WikYsWKDk4mhBBCK1K8iBytfv36VKpQkZWGk8SrKQ+0XVOj2aG/yIv9++Pl5aVRwsdz+/ZtPvzwQ4oUDsXN1ZUypUrzxRdfEB8fr3U0jh8/zquvvkrDBg1p26YtM2bMIDExUetYQgiRTrYWLzt27KBDhw6EhISgKArLly//16/Ztm0b1atXx8XFhZIlSzJ37tzsjChyOEVR+GXJr1h9nPmPfjNL1WNsU8/zEwf4RtlOhaqV+Pzzz7PkXCdPnmTYsGHUr1uPli1a8N133xEXF5clzw0QHh5OtSpV+fKzzwm97kSrlFJ4hpt4790x1KtTl6ioqCw71z+pqoqqqg99zNixY6latSqLZvxE0u4rXNpwlMGvDKZ82XKEh4dnSy4hhHhS2Vq8JCYmUqVKFb7//vtHevylS5d49tlnadq0KceOHWPEiBEMHDiQ9evXZ2dMkcOVLVuWY38cY8TokVwtZGazaziWsl58Nelrtu/Yjqen51Of47///S+VKlXi52lzSNkXwfUtp3hj+BuULV2GU6dOZUEvoHfPXtjuJTHa1pyuSjUaK6XoTU1G2pty+Ww4w4cPz5Lz3PfTTz9RrUpVDAYDrkZXunTpwt69e9M9btGiRYwbN462lOc9a0v6KM8wmPq8S0tMt+Jo16YtNpstS7M5gs1mY/Xq1Xz66adMnDiRM2fOaB1JCJFFsnWdl7Zt29K2bdtHfvzUqVMpVqwYX375JQDlypVj165dfP3117Ru3Tq7YopcIDg4mAkTJjBhwoQsf+5Vq1bx7rvv0oIytLaWQ6+k1vRRahJzIvfTtnUbzodfwMXF5YnPceTIEfYfPMBL1MFbcX2gLUjxopmtFL8sXsxXX31FQEDAU/XnfqEx/PXhFDf58Ly9MslmC3tXbqHh8hXM+3kePXv2THv8F//9nLK6IFqqD+4lVFDxoIe1GpMvbGPNmjV06NDhqXI5WpVKlTl34TyeBlfMditvv/02nTt24sd5P+Wa24xCiIzlqEXq9u7dS4sWLR441rp1a0aMGJHp15hMJkymv3cDvn+Z32KxYLFYsiVnTna/z/mx7/Bk/f9m0mTKe4TSzlblga0G/PGmn1qHSVHbWLp0Kd26dXviXIcOHcLd1Y0KhKIo6S94VlaLsJELHDt2jKZNmz7xeQDmz59PgQIF6OdalzJKgbTjzdQKLFWO8eqQoTRq1IiAgACio6M5ffYM3V2qoShO6Z6rKIGEGQLZvHkzbdq0eapcjnL/CotbLLzl2orCii821cZxrrNmy3a6d+3Gyt9XZcm2EjmVvA9I///5/9zicfIq6r/dDM8iiqKwbNkyOnfunOljSpcuzYABAxgzZkzasTVr1vDss8+SlJSEq6truq8ZO3Ys48aNS3d8wYIFuLm5ZUl2IYQQQmSvpKQkevXqRWxs7L9eHc1RV16exJgxYxg5cmTav+Pi4ggNDaVVq1b58tKwxWJh48aNtGzZEien9J+k87rH7X9KSgqBgYF0pSrVlSIZPma6bg+1uzZn+vTpT5zr2rVrVKpUiU5qJWopRVFVlXX8yU7C8cJIGH5Ek0QEMVQsX4FlK5Y/0e0jm81GoUKFmD17Npdf/hU1Of36N3PYR/mOdfnpp59QVZXKlSrhFwHdqZbusffUBL5kC1OmTKFXr15P1HdHUlWVYkWL8cOUHzLsv6qqTDZsp12f55k8ebJGKbOfvA9I/3Nj/x9ngkSOKl6CgoK4ffv2A8du376Nl5dXhlddAFxcXDIci+Dk5JSrvmlZTfr/aP13cnKiRLHiHD19hWoEp2uPUZM4q1zntZo1n+r1LF68OB3at2f50hX42Jy4SwIbOElHKtGQEmnjbK6qUcw5foAe3V9g5+5dj30eg8GAxZx66VVNtqImp78MG6tLQKfTpfVn8JAhjHprFGVVPyopIWmPM6lWFusO4u7jRvfu3XPFz5PJZCI6JhrIvP8uCkRGRuaK/jwteR+Q/uem/j9O1hy1zkvdunXZvHnzA8c2btxI3bp1NUok8oM33hzBKfUmh9WrDxw3qzZ+1R3Dw92dvn37PvV5ZsycSa16tZnCLlZygqoUpolSKq1wASii+NHFWplde3Zz8ODBxz6Hoii0atUSAHsGd4RvqXFcsd3j2WefTTv2+uuv89xzzzGHfUxTdrNZPcsK9Q8mGDZywyWBpct+y/TDQ07j4uJCUEBgpu0W1cYNJZbixYs7MJUQIqtla/GSkJDAsWPH0vaduXTpEseOHePq1dQ/EmPGjKFfv35pjx8yZAgXL15k9OjRnDlzhh9++IFffvmFN998MztjinzupZdeot+L/ZjPIb7X7WSTeoaV6gk+M2zkklMMS35bmiW3ID09Pdm8dQvTp0/HjI1nyPg2VXmC8TAYWbt27ROdZ/gbbwCwnOOkqH9febitxvGT4SBFi4TRpUuXtOMGg4HFvyzm559/xr92cXZ5XONcQAIDXh3E8RN/0KhRoyfKoZX+Lw0A4I6a/hL0Ns6TYEvh5ZdfdnQsIUQWytbbRocOHXpg5sT9sSkvvvgic+fO5ebNm2mFDECxYsVYvXo1b775JpMnT6Zw4cLMnDlTpkmLbKXT6ZgzZw7PPvssP3z3PXuPH8foYqR31/4MHz6cMmXKZNm59Ho99evXB8A5k18/naLgpBieeKZA3bp1WbNmDccNNzigv0gxux8mnY1LtkjCgouwfuOGdLda9Xo9vXv3pnfv3k90zpxk2LBh7Ny5kxn6fdRUgyhHEMlY2K9c4SjX+OCDDyhVqpTWMYUQTyFbi5cmTZo8dGXPjFbPbdKkCUePHs3GVEKkpygK3bp1e6rp0I+qePHi+Hr7cCr2JiUokK79mhpNtCWBZ5555qnOc+LkSebOncuRI0cwGo180qEDXbt2far1anKD+4sWdu/XkzmzZ7Mu5TQAxYoUZdp70xg0aJCW8YQQWSBHDdgV2UNVVY4dO0Z0dDTFihWjWLFiWkfK14xGI4MGv8LkL7+mki2EYop/WluyamG5/gShQYVp167dU50nODiYjz766Gnj5lqTJk3is88+4/z58xiNRsqVK4dOl6OG+QkhnpAUL3ncr7/+yvtj3uN8+IW0Y82aNGXyt9/ITswa+vjjj9m7ew/f79lJJUIopvoRQzKHDREoRgOblq3BYJBfz6fl5eVFjRo1tI4hhMhi8jEkD5szZw7du3fH+WIiQ2jAe7SiFzU5vfMo9evWy7I9e8Tjc3NzY8OmjUz+ZjK2ct6sdT7LKf9oBrw6iGN/HH/qW0ZCCJGXyUe7PCopKYkRw9/gGcLooVZPWwq9AB5UtAUzOXkHo99+m9Vr1micNP8yGo0MGzaMYcOGaR1FCCFyFbnykketXLmS+IQEWlM23R4uRsWJxrbirF23jps3b2qUUAghhHgyUrzkUdeuXcPTyRU/xT3D9lB8UVWVa9euOTiZEEII8XSkeMmj/P39SbSmkKiaMmyPJBGAAgXST9UVQgghcjIpXvKojh07otfr2Ul4ujabamenLpzaz9SWZdJFlrHb7ezZs4eVK1dy7Nixh67xJIQQT0OKlzyqQIECvP3OaDZyltXqSeLUFACuqzHMVfZzhWg+/exTjVOKvOLXX3+lZPES1K9fn06dOlGtWjWqVanKzp07tY4mhMiDZLZRHjZ+/Hj0ej2f//dzNpvO4awYMKtWggoG8tuM32jevLnWEUUeMH/+fPr06UNFJZhhNKIAHkQQw+ZT52jRvAWbt2ymQYMGWscUQuQhUrzkYTqdjnHjxjFixAhWrVpFdHQ0xYsXp02bNrlqm3SRc5lMJkYMf4NqSih91JppM9vKE0Rpe0F+YBcjR7zJgUOPv0O2EEJkRoqXfMDX1/eB3buFyCpr164lMuoeL1Et3ZR8g6Knqb0Ucw7vY9q0aSxb+hu7du1CURSaNmvKmyNHPrBxqxBCPCoZ8yKEeGIREREYFD1BileG7YXwBmDIkCGc2XKYpsnFaZxUlCPrdtOsWTMmTZrkwLRCiLxCrrwIIZ5YQEAAVtXGPRLxz2BNodvEA9CA4jxvrwp/XZxpZi3N75zkzTffpEmTJlStWtVxoYUQuZ5ceRFCPLH27dvj5eHJFs6la7OrKts4jzN6OlP5gTZFUWhHBXwM7kyZMsVRcYUQeYQUL0KIJ+bm5sann01gL5dYrB7hjhqPXVW5qkYxR9nHee5SliB0ig6raiNGTSJFtQCgV3SUtRZk/569GvdCCJHbyG0jIbKYqqpcunSJ5ORkihYtirt7xls05BXDhg1Dp9Px4XsfsD92Y9rxwsGFCLYG4nJHzxL1KIe5hgkrClBeDaIlZTFjw8nZWbvwQohcSa68CJGFFi1aRKUKFSlRogQVK1YksGAAw4YNIzo6Wuto2erVV1/l+q0bLF++nBkzZrB+/XouX71C2/bPcoQIjnOdRpRgIPV4nircI4nv2MEJ5QbPdmivdXwhRC4jV16EyCJffvklo0aNorwumJeogxvOnE2+w9ypM9m+dRu79uzG29tb65jZxmg00qlTpweO3blzB1eceJOm+Cpuacdrq0WZyR7C1XsMGDDA0VGFELmcXHkRIgtERETwzuh3aEopXrbXoaISQnGlAG2V8rxma8iFs+f54osvtI7pUPfu3WP9unU0o/QDhQukrgHTgUrYsHP06FGNEmZOVVWSk5Ox2WxaRxFCZECKFyGywJw5c3BS9LSkbLrF2oIUL2raCjN96nTsdrtGCR0vPDwci9VKKQpm2F5I8cHT4Mqff/7p4GSZM5lMTJw4keJFi+Hm5oaLswvPdX6Offv2ceLECYYMGULFcuWpXKESI0eOJDw8/canQojsJ7eNhMgC586do5Dig1HJeNuF4hRg172LJCQk4OWV8YJuec39gcrxmDJsN6lWUuwWPDw8HBkrUyaTibat27Bz506qqoWoR00S7Cb2r95G/VUrUe0q3gY3ylsDsKEy4+xUvv/uOxYtXsxzzz2ndXwh8hUpXoTIAt7e3sSSgqqq6a68AMSQjEFvwNXVVYN02ihfvjylSpRk78VLlFED0r0uB7mCVbWlGyejlS+//JKdO3cy2F6fEkqBtAX1GlpL8DMHOclNRlob46EYATDbbCy0H6bHCz04e+4sRYsW1S68EPmM3DYS4i/JycnMmTOHDh060KxJU4YPH86pU6ce6WtfeOEFIq1x/MmtdG1W1cZ+w1Wee/65fLUhpqIofDxuLCfUG6zkBImqGQCbauegeoXfdafo17cfYWFhGicFu93OD999Tw17aGrh8g96RcdzVEZF5SjX0447K3p6qNUx2BWmTp3q6MhC5Gty5UUI4OLFi7Ro1pzLV65QUlcQd7sTP+0+wLfffsunn37Ke++999Cvb9CgAc2aNGXhzj08b6tMFQqhV3TcVuNYoTtJjC6FMWPGOKg3OUfv3r25e/cuo99+m732ywTqvYlVk4mzJvFC1xeYOi1n/NGPiYnh+s0btKB2hu1eiiuFVB9uEPPAcRfFQDlbAFs2bXZASiHEfVK8iHzPZrPRrk1bEq9H8Q4tCFA9QQGr1c4mzvD+++9TunRpunbtmulzKIrCshXL6d2zFz+vWc1v+j9w1TlzzxJPgG9Bfl/0O9WqVXNgr3KOESNG0LNnT+bNm8fFixfx8/OjR48eVKxYUetoaVxcXABIwpxhu6qqJGPGgD5dm4KCqqrZmk8I8SApXkS+t2bNGs6eP8cImhCgeKYdNyg6WqvluKKL5vP/fv7Q4gXAy8uLVat/58SJE6xcuZLk5GQqVarEc889h3M+X0U2MDCQUaNGaR0jU+7u7jRt3IRDu05S21YU3f+MzwknkkgS6ULwA8fNqpXT+jsMbdbdkXGFyPekeBH53vr16wly8qGI1S9dm6Io1LCHsuDQQWJiYvDx8fnX56tUqRKVKlXKhqQiO7373hhat27NUo7RXq2Aq5JacF5S7zGPA3jiQol/TPu2qjZ+UY5iVqwMHTpUq9hC5EtSvIh8z2q14pTB7YD77rdZrVZHRRIaaNWqFTNmzODVoUM5Yo+giOJLomLmhjWG0JDCXLsRwX8NmyhvDcSOygnDLZIxM3/BAooXL651fCHyFZltJPKEs2fPsn79eo4cOfLYX1urVi0iLFFEqYkZtp9UblK0SBj+/v5PG1PkcAMHDuTK1at8OP5janZvTtsXu7Bq1SouXb3M4cOH6di3G7eKQWRJPX0HD+CPEyfo1q2b1rGFyHfkyovI1Q4fPszw14ezZ+8eAFxdXVm4cCErVqz41zEq9/Xo0YNRI9/i1/hjDLDXxln5+9filHqTo0oEX7zxRYbrt4i8Jzg4mPfffz/d8erVqzN79mwNEgkh/pcULyLXOnr0KI0aNsTPbKQftSiCHzFYAOjXrx9JSUn069fvX5/Hzc2Npct+49l2z/If62aqWQvhiQvndHc5o97iuU6dGT58eHZ3RwghNGWz2YiIiEBRFAoXLoxOl3NvzuTcZCJfs1qtrFixgo8//phPP/2UY8eOpXvMW2+OxNds5DVbQ6oqhfFT3NIWGKuqhDJi+BskJyc/0vmaNm3K0WNH6TGwLyf9o9jidhGv6qHMnTuXX5cswWCQOl8IkTfZbDa+/PJLihYLo2jRooSFhVG8ZHG+++67HLsfm7wjixxn7969dO/ajYgb1/Fxcsdst/LBBx/QsnkLFv2yGD8/Py5fvszW7dvoTU1clPQ/xs3VUuyNPcfKlSt54YUXHum8ZcqUYcqUKUyZMiWruySEEDmS3W6nT58+LF68GM+SRgq18gUVoi/eYfjw1zl+/DjTp0/PcbfNpXgROcq5c+do1aIlASY3RtKUwlZfbKqdE9zgt227eLbds+zes5tr164BUBifDJ/HX/HATe/C1atXHZheCCFylxUrVrBo0SJCmvngWfzvvdc8woy4hTgzc+ZMevToQfPmzTVMmZ7cNhKPJDk5mZMnT3LmzBlsNlu2nWfixIk4mWGQrS6FFV8gdW+Zqkph+tmeYd/+faxfv56CBVPX27hLQobPE68mk2wzpz1OCCFEelOnTsE9yPhA4XKfV2lX3PyNOXLvLilexEMlJSUxevRoQoKCqVSpEuXKlaN40WJ8++232bIk+qIFC6lpDc3wVlAJClDI4MuiRYsoU6YM1apUY4cuHHsGOXZxEaPRhc6dO2d5RiGEyCtOnf4Tl8CM17lSFAXnQB2n/jzp4FT/TooXkSmTyUTb1m345qtJVIsL4HUaM5j6FLyuMHz4cN54440sPZ/dbic+MQEf0n8CgNRfJC+rC7GxsSiKwn8+/w8X1XvMUfYTocYAEKMmAbCTcD748MNHWhFXCCHyKy9PL6xJmQ/KtSWpeHl5OzDRo5HiRWRq1qxZ7Nq9m1ds9eigVKKY4k8ZJZDe1OQ5qvDtt99y8ODBLDufTqejaJEwLitRGbZbVRsRhlhKliwJpK6Iumz5MqIC7HzFFkazgs/ZBMC4ceOydRdnVVVZuHAhdevVxehqxMvbiz59+jzRInlCCKGVnj16knTZjDU5/XAAS4KNxGsmevboqUGyh5PiRWRq6g9TqEgwxZT0K8vWpzj+Bg9mzpyZpecc8upQjinXiVCj07Vt4wLx1mQGDhyYdqxjx45cjbjG77//zqRvJ6ctIjZixIhsGx1vt9sZMGAAvXr14uS143hVcca5pMpvq5dQq1YtlixZki3nFUKIrDZ48GC8vX24uT6WlLupu6qrqkrybTM3N8QSFBTEiy++qHHK9GS2kchUeHg4LdSSkEENoFMUQq0+nD97LkvPOWzYMJb8soQpx3dTz1aU8gSTgoUDylWOE8H7779P2bJlH/gag8HAs88+C4DFYmHNmjVZmul/zZs3jx9//JHgJj54lfz7FpdaVeXW9lj69OlNo0aNCAgIyNYcQjhCQkICM2bMYNaMmUREXCegYEFefKk/Q4cOxc8v/WamIncJCAhg65atdOjYnisrruLqYwRVJTnWROkypVi18vcceftdiheRKW9vb2JSMl/kLVafQjFfnyw9p7u7O1u2beGDDz5gzqzZbE5MLY5KFC3O9DHTH7jqopXJ30zCs4jrA4ULgKJTCKjrxaXFkcyePZt3331Xo4RCZI2oqCiaNGrM6T9PU4kQGqiFuRufwPiPxjFz+gy279xBkSJFtI7pcPHx8SxcuJCzZ8/i6elJ165dqVixotaxnlilSpW4cD6cNWvWsHPnThRFoWnTprRu3TrHrrIrxYvIVM/evZg++Qda2cripjg/0HZNjeaSLZL/9Mz6e6Genp5MnjyZzz77jPDwcFxcXChZsmSO+CWy2+0cO3qcgHqeGbbrjTqMgU5ZOhZI5B4pKSncunULLy+vPHFVYtiwYVw6c4E31SYEK95pV2Fb2csx5cYuXuzbj63bt2ma0dEWLlzIoEGDSEpKwtXXiDXZyrhx4+jcuTM///wz7u7uWkd8IgaDgY4dO9KxY0etozwS7f8aiBzrjTfewMnDyHT9Xq6oUaiqil1VOaneYLZhP5UrVsrWqchubm5UqlSJ0qVL54jCBVJnPOn1euyWh0wTt4KTk5PjQgnN3blzh9dee42C/gUoVqwY/v7+tGzRgp07d2od7Yndvn2bX3/5hRa20qmFyz/4KW48ay3Pth3bOXXqlEYJHW/Tpk306dMHfZCdYj0KEvq8D0V7+hPU2Jvf16yiT58+WkfMN3LGXwSRIxUpUoTNW7dgCPViMtsYb1jPx/q1zGYflevUYMOmjTg7O//7E+UhiqLQunVrEi9ZMlznxhxrJfFWCm3btn2q8yQnJ3PkyBGOHj2KyWR6que6z263s2rVKjp26kj5iuVp1LgR06dPJzExMUueP7+6ffs2dWvX4afpc6ibFMpg6tOd6pzbdoxmTZuyfPlyrSM+kSNHjmC12ahESIbtFQkGYN++fY6Mpalx48fhGuBMUBNvnNxT10ZRdArepdwoWM+T5cuXc+LECY1T5g9SvIiHqlatGucunGf16tWMeP9t3h37PgcPHmTHzh0EBgZqHU8Tb7/9NsmRJu7sicNu/buAMcdbub01jpBCIXTv3v2JnttkMjFmzBiCgoOoUaMG1atXJ6RQCOPGjcNqtT5xZovFQpeuXejYsSNb9m3kpnqFo5cPMWTIEKrXqM7Nmzef+Lnzu/fee4+7Ebd4w9qItkp5yiiB1FGK8rqtIeXtQbzUf8AjbxCak+j1qX+cLWS8oraV1LVB8sumpXfv3mXXzl14lnHJcCajZ3Ejzm5OMtvQQfLHT514Knq9nnbt2tGuXTuto+QIjRs3Ztq0aQwZOoTESxZcAnWoVoWkGyYCgwLZsH4Drq4ZL7T3MFarlU6dOrJp8ya8yrlSpJg/qBB3MZnx48dz4uQJfln8yxPdQhs/fjwrV64kpIUvnkWNacdN0RaubLhM9xe6s3NH7rvFcfv2bQ4ePIiiKNSpUwd///TT+rNTfHw8C+YvoJm1OP7Kg2Md9IqOZ9UKfBa7gaVLl+a6Wwp16tTBzejG4ZRrtKV8uvbDXEOn6GjWrJkG6RwvISF1KxKDWyar0eoUnFwNxMXFOTJWviVXXoR4AoMGDSL8Qjij3hxFvTKNaVa9JdOmTePC+QtUqFDhiZ7zl19+Yf36DQS38CGgtheuAc64BjoTWNeboKZeLF2ylLVr1z7286akpPDtd9/iXc71gcIFwMXXCf9abuzauYujR48+UW4txMbG0q9fP0ILF6ZDhw60b9+eQiGFGDx4sEOvcly9epUUUwolyHgPrYKKB/5Onpw+fdphmbKK2WzGxejMZs7yh3r9gdukF9S7rNb9Sffu3QkNDdUwpeMEBQXh7u5G8i1zhu2WRBtJ0SnplnIQ2UOuvAjxhIoWLcqECROy7PmmTZ+GRyEj7oVd0rV5FDXiFmBk+ozpaWvaPKo//viD2JhYijTO+KqER5gRg5OerVu3Uq1atSfK7kgpKSm0aN6CP4+doK2tHFUohIrKEXMEP86aw5VLlxn62qsOyeLh4QFAPCkZtltUG0l2E56eGc9Oy8neeecdLPEplKAAc9lPMF4UUn24QzxXicZF78x333+ndUyHcXV1pX//AcyYPR2vkq44e//951NVVSIPxuPq6krPbJiBKdKTKy9C5BAXwi/gXOAhG6QV0HH+wvnHft77n5gfuuKwQrZstJkd5s2bx+HDhxlsq0cTpRS+iht+ijstlDK8ZKvNjl2Ou/1VpEgRqlWpxh7d5Qxfv8NcI9lm5vnnn3dYpqwQGxvLgvkLaGQrzmAaMJj6BOHFPRLxxpVOVMJkMbNjxw6tozrUuHHjKFK4CNd/jyHyUDyJN0zEnk/i+uoY4sNTmD5tOl5eXlrHzBekeBEih/Dz9cOa8JAN0hJU/P0ef0xHxYoVcfdwJ/5SxrdTEiNMWM02GjZs+NjPrYVZM2ZSThdEqOKbrq2UEkBRfQGHZVEUhY/Hfcw5+21+5RjxauoVGJtq55B6lRW6E7zQvTulS5d2WKasEB4eToophTIEolMUyiiB9FVq8brSmAFKHRorpfA2uOW7mTX+/v7s3bOPgQMGkXzOTsSaKG5tj6VKieqsW7eO3r17ax0x35DiRYgcom+fviReMWFJSD+7wxRjJeFaCn16P/6gT3d3d4YMHkLsnykk3nhw2rUl3sq9A0nUfKYGzzzzzBNnd6TrERGE2DP/dBtk83BgGujUqRPTp0/nmMtNPlHW86UhdVmBBRyifecOzJ4zx6F5soKbmxsACWQ8Td+i2khRLWmPy08KFCjA999/T2RkJBcuXOD27dvs3rWbVq1aaR0tX5HiRQCpiy91aN8eb08vfLy8ea7zc2zfvl3rWPnKwIEDCQ4O5ub6WBIjTKiqimpXSbiSwq0NsZQoWfyJZ6z83//9H00aNSZiTRTX18Vw92AcN7fGcHnJPQp6BfDrL0uybSPLrBYYFMQdJSHT9rs6x69bM2jQIK7fuM5Xk7+my9A+jBgzihMnTrBk6dJc+Qe+TJkylC5Ziv3KlQzbj3INk81Cp06dHJws53B1daVEiRKyh5lGHFK8fP/99xQtWhSj0Ujt2rU5cOBApo+dO3cuiqI88J/RaMz08eLpffbZZ7Rs2ZJj6/fSICGUevGFObB6O02aNGHy5Mlax8s3/Pz82LZ1O2WKliViXRSX5kdycX4k1zdGU7VCdbZu2fbES48bjUbWrl3HvHnzqFa8JsZIL8LcS/Lf//yX48eOU7Ro0aztTDZ6cUB/TnKTW2r6KalX1CjC7Xc1SJX6/Xv99deZPHky48ePz9V73SiKwvsffsAf6nV+V0+SoloAsKsqx9XrLNefpGuXLpQqVUrjpCK/yvbZRosXL2bkyJFMnTqV2rVrM2nSJFq3bs3Zs2czrVi9vLw4e/Zs2r9zyyfC3Gjv3r289957tKIsra3l0l7rFtYyrOIkI0aMoFGjRrliFkpeUKJECY4cPsqePXvSNkhr1qxZltzScXJyok+fPrluvZH/NWDAAKZ8/wPTwvfQ1vr3bKOjRLBGf5pqVatrHTFP6NevHzdv3uT9995nj3KZEMWbGJKJsibQtmUb5sydq3VEkY9le/Hy1VdfMWjQIAYMGADA1KlTWb169UN33VUUhaCgoOyOJoBvv/2WAIM3rf5RuEDq9+BZtQLHDTf5/vvvmTlzpoYp8xdFUahfvz7169fXOkqO5OHhwbYd23mp/wAWrV3DIg4DoFN0PN/5OaZMncru3bs1Tpk3vPPOO/Tu3Zs5c+YQHh6Oj48PPXv2pFatWvKhUmgqW4sXs9nM4cOHGTNmTNoxnU5HixYt2Lt3b6Zfl5CQQFhYGHa7nerVqzNhwoQnXvhLPNz+3XspZy2ILoM3Ir2io5y1IPv3ZP69EkILAQEB/L5mNRcuXGDPnj0oikKjRo0ICwvDYrFoHS9PKVy4MB9++KHWMYR4QLYWL5GRkdhstnR74AQGBnLmzJkMv6ZMmTLMnj2bypUrExsby8SJE6lXrx6nTp2icOHC6R5vMpke2Lju/tLMFoslX76J3e/zo/bd3cMdxdWGomS8C7KiOuHu7pFrXsvH7X9elJ9eg7CwMMLCwtL+/c/f+/zQ/8zk99dA+p81/b906RJr164lOTmZChUq0LJly7Q9r7LD4+RV1GxcmerGjRsUKlSIPXv2ULdu3bTjo0ePZvv27ezfv/9fn8NisVCuXDl69uzJJ598kq597NixjBs3Lt3xBQsW5MpR/kIIIUR+lJSURK9evYiNjf3Xxf6y9cpLgQIF0Ov13L59+4Hjt2/ffuQxLU5OTlSrVo0LFy5k2D5mzBhGjhyZ9u+4uDhCQ0Np1apVvlzp0GKxsHHjRlq2bImTU8ZXU/7p4sWL1K5Vm1LWAnRRK2NUnAFIUs38qjvKNZc4Dh46lOFVr5zocfufF+X318CR/bfZbGzevJlz587h4eFB27Ztc8Ru6/Iz4Lj+2+12Xn31VRYuXIhHIVeMwXrsFki+bMGcYGXOnDkOn1L+NP1XVZUXXniBzVs34VfDHc/irugMCin3LEQfTsQWq7B1y1bKlSuX5bkfZ1PLbC1enJ2dqVGjBps3b6Zz585A6jd68+bNDBs27JGew2azceLEiUx3NHZxccHFJf1eME5OTvnyl/a+R+1/mTJl+Hn+z3Tr2o0TlquUshdEReW87i5ORmeWL15BsWLFHJA4a+X37z/Ia5Dd/d+6dSsv9u3HtesRGPXOmO1WdDqFQa+8wuTJk3PEay8/A9nf/x9//JHZs2cT3MQHr5J//y1yL6/n1vZY+vTpzdWr1zRZD+ZJ+r9v3z6WL19OSHMfjMV0WDCBFRRv8GnkwrXl0fznP/9hwYIF2ZL3UWX7Oi8jR45kxowZ/Pjjj5w+fZqhQ4eSmJiYNvuoX79+DwzoHT9+PBs2bODixYscOXKEPn36cOXKFQYOHJjdUfOt9u3bc+nyJd4f+yFBzcsT0qIiY/9vPBcvXaJFixZaxxMixzl06BBtWrfB9aaZETRhgr09n6jtaGMrx4yp03nllVe0jigcZPI3k/AIdcWrpOsDxxWdQkBdL6x2G7Nnz9Yo3eNbuHAhRi8XPIqmX19NZ1DwKOXMkiVLNB9PlO1TpV944QXu3r3LRx99xK1bt6hatSrr1q1Lu7R69epVdLq/a6jo6GgGDRrErVu38PX1pUaNGuzZs4fy5ctnd9SHunjxIocPH8ZgMNCoUSP8/R9/j5mcLCgoKHVGgUwqEOJfjRs7Fn+7GwPtdTEoqQMYXRVnmlEaF9XA3LlzGTNmTK7b00g8HrvdzrGjxwmol/Gu4XqjDmOg00MXZs1poqOjMbjrMp0K7+Spx2KxkJiYiI+Pj2PD/UO2Fy8Aw4YNy/Q20bZt2x7499dff83XX3/tgFSP5saNGwwaOJC169al7Rrr4uzCSy+/xFdffSWr/wqRz8TGxrJ6zRq6qFXSCpd/qkUY6/RnWLhwIR9//LEGCYWjKIqCXq/HbnnIvBdr6hCK3KJ48eKYoizYLXZ0TulvzqTcseDj66P5mFLZ2+ghoqOjadSgIXs37uAFtRqf0J6PaENzcwlmTZtB1y5dsNsz3wVYCJH3REdHo6oq/mS8VYOTosdH50ZkZKSDkwlHUxSF1q1bk3jJQkYTd82xVhJvpdC2bVsN0j2ZAQMGYLPYifoj/R5h5lgrCedNDBo46IE7JlqQ4uUhvv/+e65ducZQa31qKUVxV5zxUdxooZSlj70mq9esYcuWLVrHFEI4UEBAAEYXI1eJzrA9UTVz1xaXKwe6i8f39ttvkxxp4s6eOOyWvz/MmuOs3N4aR0ihELp3765hwscTFhbGuHHjuHc0gZtbYki8biLlnoV7xxO4vjqGsCJhvPPOO1rHlOLlYebMnE1VeyEKKB7p2ioQTIjBh7myv4fQ0PHjx/nmm2/45ptvOH78uNZx8gU3Nzd69e7FHsNl4tTkdO2bOQs6JdfvISUeTePGjZk+fTpx51K4vPge1zdGEbEmiku/3sXb2Y8N6zfg6ur670+Ug3zwwQfMmjULPzWQiLVRXFkWSdzxFHp07cme3XtzxJhPh4x5ya1u3r5JJTIecKcoCgFWD65fi3BwKiHg+vXr9OjZg107d6E3pH4GsVntNGzUkJ/n/axxurxv7NixrP19Dd9G7aSJtSQlKUg8KexWLnGcCL747AtNpsYKbQwcOJDmzZszY8YMDh8+jIuLCx06dKBXr15PvBO81l566SX69+/Pn3/+SXJyMiVLlsTX11frWGmkeHmI4MBgbl3JeNEcVVW5Y0ikQmjuWLxN5B3x8fE0adqYiNvXCGnug0dY6qDxhCspHDiwn3bPtuXT/5ugccq8LTQ0lD379/LmiDdZtnIldjX1dkGxIkWZM3YO/fv31zbgX/bu3cv27dtRVZUGDRrQtGlT2VAxmxQrVowJE/LW751Op6NixYpax8iQFC8PMWDgS/zfx+NpYS+Dv/Jg9XyKm9ywRueYNymRf/z444+Eh1+kaJcCOHv//SvsWcwVF18nLq29rF24fKRo0aIsW76Mmzdvcv78eTw8PKhatarmAxkBrl27BkCbNm3QW0ABPrYmU6FceZatWE6pUqW0DSjEU5Li5SFeffVV5syazQ8Ru2ltLUNFgjFj4zBX2ag7S7vW7WjWrJnWMUU+M+/nn/AoYnygcLnP2ceAe2GZvu9IwcHBBAcHax0jTXx8PM+2bcd/Pv8vL1GHYlYfFOACkfx2/g+aNGrMHydP5IhxC3nB1atXOXHiBC4uLtSvXz/XjW/JrbT/iJCD+fn5sXP3Luo0b8AiDvMBvzOetWx0Os9Lrwxk6W9Lc8SnLJG/3Ll7F4Nn5j93Bg/5mczPfvzxR65FpI7FK6kEoFMUFEWhlFKQwda63L1zl5kzZ2qcMveLiIigffv2FC1alPbt29OyZUuCgoMYP368LKHhAHLl5V+EhISwZt1awsPDOXToEE5OTjRu3Fg+tQjNlCxegn1/3s603Rotb5z52cIFCyhLxptD+ihuVLIHs+Dn+TliumtudefOHerVr8fdmNsE1PfCPdQFu8lO7Llkxo4dy/Xr15k2bZrWMfM0KV4eUYkSJShRooTWMYRg4MBBbOqxmcQIV9wLP7gpaWKEiYSb6afvir8lJiaye/duzGYzlStXpkiRIlpHylIxUdEEqek3q73PB1fCo2McFygPmjhxIrfu3CK0sy9OHn+tsuyuJ6COE05eeqZPn86wYcOoVKmStkHzMLm+LEQu06VLF1q2bMHNzbHcPRhHyj0LKfcs3D0Yx83NsTRrLuOwMmKz2fjwww8JCQqmdevWdOjQgWJFi9GpY0du3LihdbwsU6pMaa4ZYjNtv6KPoWRpGbD7pFRVZeasmXiUdP67cPkHn7JuuHg4M2fOHA3S5R9SvAiRyxgMBlauXMWI4SMwhcOVZZFcWRaJKRxGDB/B4kWLtY6YIw0cOJAJn06gekIQ79CCj2lLF7UKO9duoUG9+nlmOf9XBg8mwprx6r+n1JuE2+7wypDBDk6Vd5jNZqKjonHxz/jGhaJTcPLRpc34EtlDbhsJkQsZjUYmTpzIuHHj0lbWrVKlCu7u7ppvVZ8THTp0iLlz59KdatRR/l62vy7FKGMNYOK1LXz66aeMHTsWb29vDZM+vbZt29KlSxcAlqnHqKgGoKBwnAj26a7Q8dkOae3i8Tk7O+Ph4Y45xpphu2pXscarBAZmPO5IZA258iJELubu7k69evWoV69erl3J0xHmzp2Ln8GDWhR94LhFtXGIq6h2lUmTJuHj40PD+g1YvXq1NkGzgKIozJgxA4ArBZL5gZ18zw7O+sXx/ocfsGTpUvT69Lc7xKNRFIUXX+xPwgUz1pT0g+PjL6WQEmuiX79+GqTLP+TKixAiz4uIiCDQ6oHuH6vLWlQb09nNFaKoSRHKEUQyFg7uP0f79u35/vvvefXVVzVM/eTuFyd/njnNpUuXUFWV0qVL4+zsrHGyvGH06NEsXLSQG2tj8KvuhnuoCzazSuzZJKKPJvJ8l+d55plntI6Zp0nxIoTI8wICAthjSMJuVdMKmF2Ec5l7DKUhxZUCaY99xlaEZfzB8NeH06lTJwoVKqRV7Kfm5OREhQoVtI6R5xQpUoRdO3fRt18fDm88knbcycmJQQNfYdKkSbINQzaT20ZCCIeJjo7mq6++onmzZjSoV58333yTs2fPZvt5+/bty11rHH9wPe3YHi5RjdAHChdIvS3QjvI4KXpmzZr1yOeIjo4mIiICs9mcZblFzlWuXDkOHTzMoUOHmDlzJj///DMRERFMmTIFF5fMp6qLrCHFixDCIQ4fPkypEiV5Z9Robm87Q/Lea8z6bhrlypXjhx9+yNZzN2jQgE4dO7JId4Qt6jli1CTukUgpCmb4eKPiRBHVl5MnT/7rc2/atIkmjRrj5+dHaGgoQQGBvP3228TGZj5dWeQdNWrU4OWXX6Z3796yk7gDyW0jIUS2i4+Pp23rNnjG6XhdbYWX4goKWK02VnGS1157jfLly9OkSZNsOb+iKCxavJg33niDObNn87s1tSiJx5Tp1yTozHh4eDz0eX/++Wf69etHmM6fHlTHAyMXYu/y/dffsGHdenbs2pnrZy8JkRPJlRchRLabP38+96Lu0ddWM7Vw+YtB0dOZyhQ2+PHVl19mawaj0ci0adOIuH6dn3/+mZo1anBQfxWbmn7GyCX1Hjes0Tz//POZPl90dDSvDHqFGhRhmK0htZSilFeC6KhU4jVbQ86fPsuECROys0tC5FtSvAiRTaxWKwcPHmTHjh3cvXtX6zia2rBhAyWUgvgqbunaFEWhqjWEDRs2OiRLQEAAvXv3ZsrUqUQpScxTDhKjJgGpq6eeV+8wz3CIKpUq07Zt20yf5+eff8ZiMtNerfDALCaAEMWbWrYizJw2Q9bdESIbSPEiRBZTVZXvvvuOsNAi1KpVi8aNG1MoJISePXty69YtreM9kZSUFH766Sd69epF9+7dmThxIvfu3Xvkr7fZbBjUzN9unNBjs9lQVTUr4j6SmjVrsmTpUi65xfJ/yga+NmznM6dNTGEXJSqVYe36dQ9dD+X06dMEGbzxUowZtpeiIFGx0fm+cBUiO8iYFyGy2AcffMCECRN4hjC60Bg3nDhjvcPaJSs5sG8/+w8eoECBAv/+RDnEqVOnaNW6FTeu38A9yIiih6W/LeXDjz5k0cJFdOrU6V+fo06dOqz7fS1JdjNuSvq1Rk7qb1K7dm2HTy/t2LEj12/eYP78+Rw7dgyj0UiHDh1o1qzZv2Zxd3cnUTVhV9V0V14A4v4aTyOLBwqR9eTKixBZKDw8nAkTJtCO8vRUalBM8SdQ8aKxUpJh1obcunaDzz//XOuYjyw+Pp4WLVsQY7pHsa4FKdzel0JtfSnWowDOQQrdunVL257gYV566SV0Tnp+VY5h/Z8xJnvUi5y33eGNEW9kVzceytPTkyFDhjB16lQmTZpE8+bNH6mI6tKlC9HWRE5xM12bXVXZr79C86bNZMCuENlAihchstCcOXNw1xtpRPpde/0Vd56xhTJrxkzs9vSDRHOi+fPnc/vWbQKbe+Hs8/eFWoOrnqAm3ujddEyaNOlfnycwMJCFixZyWn+bzwyb+F09yUb1DN/odrCEYwwbNoyuXbtmY0+yXu3atWnRrDmL9Uf5Q72O/a9bXrFqMguVw1yzR/PeB+9rnFKIvEluGwmRhS5fvkwwXjgrGY+VKIIv22MukJCQgJeXl4PTPb5Vq1bhFuKCs2f6twpFr+BWzIkVK5cDc/71uTp37syhI4eZPHkyv69YhdlipuYzNZn8+ut06NAh161IqigKS35bSrcuXZm7eRPeBjc8FSM3rDEYjUZ+nvUzzZo10zqmEHmSFC9CZCF/f3+ilKRMx0FEkoiLswtubuln3eREKSkpKE6Zt+udFRJTMl8r5X9VqlSJmTNnwswsCJcDeHt7s37jBg4ePMhvv/1GQkIC5cuXp3fv3nK7SIhsJMWLEFmoV69efPPNN/zBdapS+IG2FNXCfsNVevTsgcGQO371qlevzq69O1P3BDKkL8aSr1uoWq26BslyDkVRqFWrFrVq1dI6ihD5hox5ESIL3L17l//+97+MHz+ewIBAFilH2KWGY1KtqKrKRTWS6fq9WFzg3Xff1TruIxs8eDBWk427B+PSTWOOu5BMwvUUhr02TKN0Qoj8Knd8/MtB4uLiWLhwIefOncPb25uuXbtSvnx5rWMJDa1bt47nuzyP2WzCGOyE6qRiUW38xnFWKCcw6PSYbBZKFCnOpkWrKVu2rNaRH1nJkiX59ttvee211zDfteNR3BnFoJB01Uz81WRefPFFevTooXVMIUQ+I8XLY/jpp58YOmQoKSkpBBi8iFdT+Pjjj+nerRtzf/wRV1fXf38SkadcuHCBzs91xjlAR0ijghiMqRczrUk2bm6OxRaj8s4779KwYUOaNWuGTpf7Lna++uqrlClTholfTmTjhg3YbHaqVK3MG2NH8OKLL+a6gbZC5FYmkwm73S5/a5Di5ZGtWbOG/v37U1MtQjvK4211xaraOcI1flu6nJd0A1i4aJHWMYWDff/996g6O0HNfB8YE2Jw0xPSyofLiyNRFIUWLVpomPLpNW/enObNm2O327Hb7blmzI4QecHq1av5/IvP2bF9BwDlypfljeEjGDRoUK78QJQV8mevn8C4seMooRTgBarj/dfGcgZFRy0ljM72SixavJizZ886NNPly5f54IMPeO655+jTpw/Lli3DarU6NEN+t+r3lbiFOWU4mFXvosM11IlVq1ZqkCx72O12Vq1axejRoxkzZgybN2926JL+QuQ3X331Fe3bt+fwuQME1vciqLE315OvMGToEPr07ZNr1ozKavLx6RFcv36dAwcP0I9aGU5/rUEoq/SnWLJkCe+/75hFqSZPnszIkSMxKk4UsfuSqDMzf/58qletxkdjP3ZIBgEmsxmdW+a3TXROOkzmR59KnJMdOXKETp07EXEtAldvF1S7yn/+8x8qVa7EyhUrKVq0qNYRc5SzZ88yd+5cIiIiCAgIoE+fPlSrVk3rWCIXOXPmDKNGjcKvsjsFnvFMu0XrXcoNj4suLFywkPbPtqdXr14aJ3U8KV4eQXx8PABeZLwBm5Oix0NnTHtcdlu5ciUjRoygMSVpQ3lcFAPY4SpRLA4/BZBvq3FHq1OrDqu3/I76jJpu7IdqVzHdsFK7ax2N0mWdiIgImrdojsU5hbDOBTAWcEJVVZJvmjm/5xzNmjflxB8nZR8fUjfmHDlyJJMmTcLD4Eqg6sE9JYmvvvqKnj16MvfHuTg7p9/fSYj/NW3aNJzcDPjX8Ez3/uJZ3BWPsya++/47KV5ExgoXLozRxUi4KZLipN9QL0pNJNISR5kyZbItw9GjR9mzZw86nY7pU6dRSh9AR1ulB36giyh+dLVWBmDHjh20bNky2/KIVMOGDWPJkiVE/ZGIfxWPtOOqqhJ5OJ6UODPDhuX+qcTfffcdickJhD3rj/6vQcmKouAW4kJwCz2Xll5m4cKFDBw4UOOk2vv888+ZNGkSHalEfWtxnBQ9NtXOYa7x6y+/4F/An2+//VbrmCIXOHr0CC4BenT6jK/uuhYy8Mcffzg4Vc4gY14egYeHB7379GaX4RJRauIDbXZVZbVyCk8PD7p3757l57569Sr169WjevXqjHj9DYa9+hrH/jhOTVtohrM8iuEPpE7fFdmvcePGfPTRR0QejCdiVTRRfyQQ9UcCEStjiDqeyMSJE/PErYJFixfhXsw5rXD5J2cfAx6FjCxaLAPWU1JS+Pw/n1Of4jRRSuH01zYR+r/Gx7Wyl2X61GlERkZqnFTkBm5u7tjNmbfbTHZcjC6OC5SDSPHyiD799FMKFApksmEH69XTnFfvcki9ynf6nRznBjNmzczyS+YxMTE0btiIcwdP0p/afKZ24H1aAWAk4zXb7xc0JlPeGGeRG4wbN47ff/+dOhXrEXvcRNwfZhrVbMLGjRt56623tI6XJeLj4zG4Zf52oXNTiI2NdWCinGnv3r1ExURRh6IZttehKGarRT5ciEfSuXNnkm6YMMeln4hht6okXrTQ5bkumX79pk2b6NevH+3ateO1117j6NGj2RnXoaR4eUSBgYHs3b+PXi/3Y6fxMlPYyQIOEVavPBs2bsiWqy7Tp0/nesR1BlvrUVkphF7R4Y0b3hg5za0MvyZaTQKgatWqWZ5HZO7ZZ59l06bNmFJMpCSnsHbN2lw/PfqfypYtS8ptW4ZtqqpivmOnfDlZrDE5ORkAdzIe0+L21/H7jxPiYXr16kVwSDC3NsdhirKkHbcm2ri1NRbVDCNGjEj3dffHX3bp0oWla35l56ktzJ43k+rVq/Pqq6/miTGRUrw8hsDAQKZOncrde5GcP3+e27dvs23Hdpo3b54t55s39ycqqyH4K39f0dEpCvUozkGuckG9+8DjraqN1brUAbtdu3bNlkwi95g+fTo9evSgZ8+eTJ8+nYSEhCd+rqFDhpIQkUzCtZR0bTGnk0iJMTFkyJCniZsnVKhQAUVROMudDNvPchuAypUrOzKWyKU8PDzYvGkzBT0CufxbJBEro7m+OoZLi+9iv6dj+bLlGa7wPnToUAAKtfClcGcfCrXyo0g3PwLqeTFl6hS+/PJLR3cly8mA3Sfg5uZGyZIls/08kZGRVFZ94X+GtjSlFOFEMpVdVFZDKE0A8Zg4ZIjA/NfALpn1kX/t2rULgHfeGY3ibUdVYfHixYx5bwyrf19NnTqPP/upZ8+eLF68mDVr1+BZyoRnUSOqTSU+PIW4i8m8/vrr1K1bN6u7kuuEhYXRrm1bNm3YQRlrID7K3yuhJqlm1urPUKV8ZdnEUTyysmXLcv7ceZYtW8a6deuwWq3Url2bvn37Zrhz+YULF1i1ahW9evXCrZALJmvqBw5Fp+Bb3h1TlJWJX37BiBEjcHJ6yJbxOZxcecnBwoqGEaFLP47AoOh5mbp4Ka5cdI/jF46y1eUirbq3Z8vWLRokFTnF5cuX6da9GwBhzxegUDtfCj/rS7HuBTA5J9G6TWtu37792M+r1+v57bffGD9uPMYYDyLWRXF9YzQFlWCmTJnC5MmTs7orudYPU6ZgLOjFV4Zt/K6e5KgawXr1NF8atpLgbuOnn+fJlgrisTg7O/PCCy8wZ84c5s2bx7BhwzIsXCB1soZOn/mfdu9Srty5fTfXj3+R4iUHG/jKIE7bb3FZvZeu7Sy3iVGTWLB4ITabjaTkJH6eP59KlSppkFTkFD/88AMWe+q9cYO7Pu24k6eB4ObeJCUnMmPGjCd6bicnJ95//30irl0nPDycy5cvc+7ceYYMGSJ/jP+hSJEiHDx8iJdeHcQhj5vM4wDbXS7xXL8XOHTksNwyEtnKbDZnOrUaQOekpD0uN5PiJQfr27cv9erWZbp+LxvU09xW47ihxvK7epKfdAfp2KEDbdu2RafTPfUfD7vdzoULFzh79myu/6HOz5avWIZraMaXgvVGHW6hzixbvuypzmEwGChevDhhYWH5dl+VfxMcHMzkyZOJiokmJiaG+IR4Zs2aRYkSJbSOJvK4GjVqYDVnPLgeIOGaCWcX5wzHyuQm8s6Tg7m4uLBuw3oGvPIy242X+C+bmMhmDnncZOSot/h1yZKn/uOhqio//PADJYuXoFSpUpQtW5ZCQSF8+OGHMt06F0oxmdA7P+RTl7NCSorMdHEUvV6Pt7e3bGQpHKZRo0aULlMKAFvKg7OKTNEW4k6m0LtXb/z8/LSIl2XkNyqH8/Dw4IcffmDChAkcP34cnU5H9erVs2xA7htvvMG3335LdSWUFtTDgJ6T0Tf474T/sG/PXtasW5urB3XlNzWq12Dnge0Ztql2FdNNGzU7PuPgVEIIR1EUhR/n/sTly5eJWBWNLsSGs5eelLsWEi6ZKVe2XJ6YbSRXXnIJHx8fGjduTMOGDbOscNm/fz/ffvstz1GFPjxDOSWIUkpBnlOqMNBeh81btjB37twsOZdwjGGvDSMpKv10ZoCo4wkkx5h47bXXHJxKCOFI928JDew/COWGM3f3JuBtKsj4sePZs3sPvr6+Gid8enLlJR+bPn06BQye1LcWT9dWSgmgnBLEtClTGTRokAbpxJNo3rw5w4cPB+Dmxlh0QVZUFZIuWUi4mczYsWNlmq4Q+cRnn33GxIkTtY6RLeTKSz529vQZilh90GUy2Le43Z8zZ844OJV4WuPHjwegXOGK3N4dx9298VQrVZPly5fz8ccfa5xOCCGenlx5ycd8fH25pTsPasbtMSSTkpLCvXv38Pf3d2w48cTuzzzbtHETiqKgKAp6vf5fvkoIIXIPufKSj73Q4wXC7Xe5oaZfCC9JNXOYq9hVldmzZ2uQTmQFg8EghYsQIs+R4iUf69atG3pFx3R2c1q9hV1NvQRzTY1mGrtQUChBAbZskVV7hRBC5Bxy2ygfMxqNOLs4o0/RMYM9eOCCQdURQzJ+uDGE+qzjNKqayX0lIYQQQgNSvORzjRo14s9Nh+htr8k57mBHJQw/yhFEMhYu6CLp3aiR1jGFEEKINA65bfT9999TtGhRjEYjtWvX5sCBAw99/K+//krZsmUxGo1UqlSJNWvWOCJmvjTizTe5Zo/iAndpTTnaKRWooARjxc4i5Qh6ZycGDhyodUwhRD5js9mYP38+9RvUx7+AP0WLhfHOO+9w7do1raNlm8uXLzN37lxmz57N2bNntY6To2V78bJ48WJGjhzJxx9/zJEjR6hSpQqtW7fmzp07GT5+z5499OzZk5dffpmjR4/SuXNnOnfuzMmTJ7M7ar7Upk0bPvnkE9Zxms8NW1ipnmCJepT/06/ngtM9lv62lICAAK1jCiHyEYvFwvNdnqdPnz78ceUouqJmYl0j+fqbr6hUuRKHDh3SOmKWio6O5vnnn6d48eIMGDCAl19+mbJly9KyVUtu3rypdbwcKduLl6+++opBgwYxYMAAypcvz9SpU3Fzc8t0BsvkyZNp06YNb7/9NuXKleOTTz6hevXqfPfdd9kdNd/64IMP2LVrF026tOFKqJnIEnoGvj6Ek6dO0rZtW63jCSHymYkTJ/L7qt8p1NKXQm188K/mSWB9b8K6+WN1MdGpcycsFovWMbOE2WymZauWrF73OwH1vSj1YiCl+gcR3MSHnft20KhxQ+Li4rSOiaqqbNiwgU6dOxEaFkqZsmUYM2aMZlfCsnXMi9ls5vDhw4wZMybtmE6no0WLFuzduzfDr9m7dy8jR4584Fjr1q1Zvnx5ho83mUwPbCB4/5tssVjyzA/347jf58fte61atZg3b16mz5dbPGn/cxur1Yper89wN/H88hpkJr/3H3L3a2Cz2ZgxczoFK/riX8LrwUYDFGrsxLVV91i5ciUdO3bM8DlyU/9//fVX/jz1J0XbBWAs6Jx23LWsK97BnlxbdYs5c+bw6quvPvJzZnX/VVXlnXfeYdq0abj5G3EJ1hNrSuKHad8za9ZMli79jTp16jz1eR4nr6Jm41SSGzduUKhQIfbs2UPdunXTjo8ePZrt27ezf//+dF/j7OzMjz/+SM+ePdOO/fDDD4wbN47bt2+ne/zYsWMZN25cuuMLFizAzc0ti3oihBBCiOyUlJREr169iI2NxcvL66GPzfWzjcaMGfPAlZq4uDhCQ0Np1arVv3Y+L7JYLGzcuJGWLVvmy92g82r/4+LiaPdsO/48/SfuYS64BhiwJNhJumhGrxpYtmw5tWvXBvLua/Co8nv/IXe/Bjdu3KBcuXIEN/HBI8yYrl1VVSKWxTD4pSFpW2H8r3v37rF//37ee3cMl65cxtvTixd69uD111+nSJEi2d2Fx1Kvfl2umS8TWDfjv1f3jiZguO3K+XMXHvk5n+T7f+fOHebMmcNvy34jISGB8uXK8/LLL9O6dWsaNW7ExXvnCW7unf5c8VYuL4vkm8nf8OKLLz5yxow8zu2xbC1eChQogF6vT3fF5Pbt2wQFBWX4NUFBQY/1eBcXF1xcXNIdd3JyynW/tFlJ+p+3+v/xxx9z9PgRQtr6YPRP7ZcLOtzK6rixIZYePXtw+dJlDIa/f6Xz2mvwuPJ7/yF3vgZFihShcOFC3D57HadCPunak26aiL4TQ7NmzTLsW2RkJG1atWbcJ+MpeEWlYnI5IpMTmPP9DOb9+BNbt2+jcuXKDujJowkMCOL0oVP4WJ0zbI+7lUDZwLAn+j4+6vf/2LFjNGvejPiEONzCnDG46ti07xorVqygT58+7N+3n6CG3pisGexY7wo6L9ixY8dTz0x9nD5m64BdZ2dnatSowebNm9OO2e12Nm/e/MBtpH+qW7fuA48H2LhxY6aPFyKvS0xMZM6cOXiVM6YVLvfpnHQUqO3B9YjrDl1SICUlhfj4eFnAUGQ5RVF4++3RxF1MJvpk4gM/Y+ZYK3d3J1KhYgWaN2+e4dePfPNNblyOAKCzUoU6SlHaKxV529oMt3iFni/0yFE/ty+//DKJt1NIjDCla0u5aybhagqDBr6Sbee3WCy079AekyGZsG7+BDf2oWAtLwp38CWosTc///wzAA99yVQ1w/F32SnbZxuNHDmSGTNm8OOPP3L69GmGDh1KYmIiAwYMAKBfv34PDOh94403WLduHV9++SVnzpxh7NixHDp0iGHDhmV3VCFypAsXLpCUlIR7aPorjADGAk64eDhz5MiRbM+yefNmWrZsiaurK15eXhQtXpSJEydiNpuz/dz5idVqJSYmBpvNpnUUTQwcOJARI0ZwZ18cV5dGc3N7DNfXR3N5SSRBvkGsWrkKnS79n6/IyEgWLVpMI2vxdG3uijPtbeX588xpdu3a5YhuPJKOHTvSsmULbm6OJfJIPOZYK5Z4K1F/JHBjfSzVa1Snb9++2Xb+FStWcD3iOgENPDC4PrgPmncpN7xKuOJidCHxcsa/4+Y4K4m3U2jatGm2ZcxIthcvL7zwAhMnTuSjjz6iatWqHDt2jHXr1hEYGAjA1atXH5jHXq9ePRYsWMD06dOpUqUKS5YsYfny5VSsWDG7owqRIxmNqff97eaMP/qodhW7xZ72uOwyc+ZMWrZsyd4Tuwis70VwUx9iDXd555136NixQ66Y2ZHThYeH89JLL+Hp4Ymvry8+Xt4MGzaM69evax3NoRRF4euvv2bv3r306NyT0j4VqF2mPlOnTuXkiVMUK1Ysw6/7888/sVgtlCHjtalKURBnnYHDhw9nZ/zHotfrWbFiJUMHDyXxtJVLv97l4uK7xBxNodcLvdmyeUu2/m7v2LEDNz8jLn4Z37LxKGbElGIiISKZe8cTHrhqZU22cWd7PAUDCvLCCy9kW8aMOGTA7rBhwzK9crJt27Z0x7p160a3bt2yOZUQuUOpUqUoWqwoUedu4144/dWX+EspWExW2rdvn20Zbty4wZChQ/Au40pAfa+0S8ReJVzxLGViw/qN/PDDD7zxxhvZliGvO3HiBI0bNoJEC42txQjEkxtJsfw0bTa/LVnK7r17Mv2jnVfVqVPnsabgOjunjhtJwZphuxkbNtWe4ThJLbm6uvLtt9/yySefcODAAex2OzVq1KBgwYLZfm5FUeBfbgkBjBgxgkmTJpF43oxLsB6bWSXpihlPT0/WblyLq6trtmf9J9lVWogcTqfT8d6Y94i7mMy9o/HYralvJqqqknjdxL19ibRu0zpbr07OmjULRQcFanmmu7ftXsgFz6JGvvteFpJ8Uqqq8mLffrglKLxlbUprpRxVlcK0UyrwlrUJlnuJDB08ROuYOV716tUJKFCQI1zNsP0wV7Gj0q5dOwcnezQ+Pj60atWKNm3aOKRwAWjatClJ0SmkRGZ85TThkolSZUrx1VdfsXv3bp5/tivBujBK+ZZj/LjxnD1zlho1ajgk6z/l+qnSQuQHAwcO5OrVq/zf//0fcadNOPvrsSdB0r0U6tary8IFC7P1/H/88QfGgk7onTP+vONW2JkLOy5gsVhy3eyWnODQoUMcPX6MgdTDTXlw1omX4koLa2kWbdzApUuX8t3Vl0d19+5djh8/zvNdu/DTjz8BYFftKKQWh6e5xe/6P3mha3fCwsK0DZuDtG/fnrCiRbi76zbBLb0xuKeOe1FVldizycRdTObzqW+hKAr16tWjXr16GidOJcWLELmAoih88skn9O3bl5kzZ3LhwgV8fHzo0aMHLVq0yHDwYlZydXXF/pAxubYUOwAHDx7MMW9uucmJEycAMh2rUfav4ydPnpTi5X/cu3ePESNGsGjRIqzW1NtF99f4+sKwFV/VQJQhmdvWWFo0bs6MmTO1jJvjGAwGVv++hmbNm3H510jcQl3QuyqYb9tJupfCkCFDeOWV7Jvt9KSkeBEiFyldujSff/65w8/buXNn5s2bR8pd8wNLmEPqgOHYc0noXXS8Pvx1Dh/SbjBkUlISixcvxs/Pj+7du1OpUiUGDhyY4xYm+1/3xwskYcaT9IMzEzE/8DiRKj4+nsZNGnP+4jl8a7jiUcSI3api/uuuUUCxEIoVK4a/vz99+vShSZMmDp/SmxtUqFCB03+eZvbs2fzy62Li4uOp3KwyQ4YMoWnTpjnyNZPiRWjGZrNx9epVFEWhSJEi2X71QDy5jh07EloklOsbrxPSwhfXgNQCxppk486+OMyxNgo+48mRA0c4ceIElSpVcnjGM2fO0LJVS+5F3mPhwoXs+nMbv6/9nQmfTWDG9BlpyzPkRK1atcLF2YV95su0pGy69n1cxs/blwYNGmiQLuf64YcfOHPmNKGd/HDx/ft2pXdgagF4/vx5pkyZIlcDH4Gfnx+jRo1i1KhRWkd5JPLXQjiczWbjiy++oGiRMIoXL06xYsUoXrQYkyZNwm63ax1PZMBgMPDaq69hTbZzdeU9Li25y5WVkYQvukPCVRMhzXzwKpl6VeDSpUsOz5eSkkKr1q24l3SXsM4FAAhp5kuxF/zxKOnCyy+/zM6dOx2e61H5+/szZOgQNipn2adexqam/h5YVBvb1fPs4iJvjR6V7dPhc5vpM6bjUczlgcLln1y9XZg1a5aDUwlHkCsvwqHsdju9e/fm119+oaZahLbUQwWORUQw8s2RHD9+nNmzZ+fIy5T5XalSpUCFwAZepERaUW0qnsVd8S7pit6oI/l26q0Nf39/h+ZSVZX58+dz7eo1inYtiLP3329rOmcdgfW9sETa+WLiFzRs2NCh2R7HF198QVRUFPPmzWO94Qz+qjt3lAQSrMkMHz6cd999V+uIOU5ERAQ+1TIv6PQ+CpevXHZcIOEwUrwIh1q5ciWLFy+mH7WoqhROO16eIEpRkLlz59KzZ09atWqlYUqRkTZt2uDp5YnpnpWgBg9u0KaqKtEnEylSJPSx1uV4GlarlR9++IFvvv2G8AvhuBRwwsUn/Vuaoii4F3di7Zq1qBosY/6onJyc+Omnnxg1ahTz5s3j9u3bFC5cmP79+1O6dGmt4+VIfn5+pDxkMz97gkpgQKADEwlHkeJFONS0KVMppi9AVXvhdG01KcIOw0WmTZ0mxUsO5Obmxrix4xg5ciSKXsG3kjtO7nrMcVaijiUQfymFqfP/g16v//cne0pWq5XnnnuO1WtW41nUiEsBA3rnzIsSnbMOq9WK3W53SL6nUblyZb744gutY+QK/V/sz5eTJmKtasPglv77mnTPRJ8+fTRIJrKbjHkRDnXm9GmK2fwybFMUheJWP06fOuXgVOJRjRgxgs8//xzTRZWLi+5wcd5dLv1yF/W2EzNnzqRXr14OyTFjxgxWr15NSEsfgpv54FnUleTbZmymjMdMJV0zU7lKpRxfuIjH88Ybb+Dn48+NdbEkXElJ2yoj9mwiAPXr16d169YapxTZQa68CIfy9PIijswv88YqKXh5F3JgIvE4Unf8fZvBgwezfPnytFsbnTp1ws3NzWE5vv3uGzyLGvEITR3v4F3alXtH47m9J5aizR+cThx/MZmEq8kM/1C2LshrgoKC2LljJz179eDwxiMoOgVVVXF3cwfgl19+kYI1j5LiRTjUCz17MP6jcbS3p+ClPDjQLlpN4k/lFp/3fEujdOJReXl50a9fP03ObbPZOP3nGQL/Me7G4KYnqJEPN7fFcCUhEtpBzOlEoi/GE38tmZ69euboqdLiyZUqVYpDBw9z6NAhDh48iJOTE82aNePEiRN4eHhoHU9kEylehEO98sorfDPpG2ZE76WrrQpF8AXgMlH8ajhGYMFA+SMjHkqn0+Hk5JTuFpFXCVecPPUkn089HnkwgbLlyvH6+Nfp16+frCOUx9WsWZOaNWsCYLFY0lYtFnmTFC/CoQoWLMiWbVvo1KEjky9tw9/JExWVKEsCZYuXYcWqlfj4+GgdU+RgiqLQoWMH1mz5Hb9K7ii6vwfqugY4YzSm3iaYM2cO3bt31yqmECIbSfEiHK5ChQqcPX+OdevWsWPHDhRFoWnTprRs2VI+HYt/ZTabiY2JJSXazM1tMQTU9cLgmlqwpERaiNuXDL3g2Wef1TipuM9qtXLx4sXUQfnFi+fKcSh2u53169cza9YsLl66SEBAAH379KVr1664uLhoHS/fkeJFaEKv1/Pss8/KHxjx2EaPHs3W7VvxKe9G7NkkEi6nYCzohM2sYo62EhwSDICzs/O/PJPIbhaLhc8//5xvvv2GO7fvAFA4tBBvjhjJiBEjcs2HFbPZzAs9XmD5suW4FTTi5Kdw/sRp1vdZz8QvJ7Jp4yaHL86Y30nxIoTINaKjo5kydQq+VdwoUM2TAtU9iT2XRMo9C056BWdvA6Y4k9YxBakDq7t178aqlavwLG2kcHU/UCH+YhRvjXqLEydO5JrVtD/++GNWrlpJSAtfPMJc0jKn3DXz58ZT9O3bhzVr1mqcMn+R4kUIkWts2bIFs8mMd2kfAPRGHX6V/55RYo6zcmtVgkbpxD8tXbqUFctXUKilLx5hf88sdC/sgmuwM3PnzqV37960aNFCw5T/LjExke++/w6f8q54Fn1whqSxoDN+z7ixdu06zp49S5kyZTRKmf/kjmt2QmSze/fu8c033/Dmm2/yySefcP78ea0jiQyYTKlXVTJbTVfvLG9pOcWUqVPwCHF9oHC5z6ukK27+RqZPn65Bssdz5MgREuIT8CzhmmG7ZzFXFJ3Cli1bHJwsf5MrLyLf+/bbbxk16i2sdhuu3i6YEy189NFHDBgwgGnTpuHklPGOtcLxqlatCkDiNROexdP/MUm4luLgRCIzZ8+ewTkg44G5iqLgHKDj9Jk/HZzq8dlsNgCUTOpiRZfan/uPE44hxYvI1+bPn8/w4cPxKe+GfzVfDK567FaV2HNJ/PjTjxiNRn744QetY4q/lC9fngYNG3DoyEFcg5wf2M/Gkmgj5lgyTZs00zChuM/b24cbibGZttuSVLxDfRwX6AlVrVoVF6MLCZdTcPFN/0Em4aoJu81O/fr1NUiXf8k1VpFvqarKxx9/hGdR4wPTbXUGBd/y7vjXcGf69OncvHlT46Tin+bOmYu30Ydry6K5sz+O2HNJ3NkXx7Vl0fh5FOC7777XOqIAevXsRdIVM9ak9FckzHFWEq6l0LNHTw2SPR4fHx/6v9ifmJMpJN8xP9BmibcSdTCJOnXrUK1aNY0S5k9SvIh86+TJk4SHX8S7nFuGMx68y7qhqnaWL1/u+HAiUyVKlODI4SMMG/o6aoQTt3bEotx0YcTrIzh86DChoaFaRxTA4MGD8fXx4+aGWJJvm1FVFVVVSbph4taGOEJDQzXbYuJxTZw4kRrVanBtVRQ3NsYQeSQ+dSuK36II8Alk0cJFWkfMd6R4EflWfHw8AAa3jH8N9M469M76tMeJnCMkJIQvv/yS6KhozGYz9yLv8fnnnxMUFKR1NPGXgIAAtm3dRohvYa6uusfVX6K5sjiKa2uiKBFakm1bt+Hp6al1zEfi4eHBtq3bmDp1KqUKloOrLgQbivB/4/+Po0eOEhYWpnXEfEfGvIh8q0SJEuj0OpJumjO8l51yz4IlxUrZsmU1SCcelQyozrnKly/P2TPn2LBhA7t27UJRFJo1a0aTJk1yxfou/2Q0GnnllVd45ZVXtI4ikOJF5GOBgYF07NiRdZvX4FnU+MDgT9Wmcu9QIsEhQbRr107DlELkbjqdjjZt2tCmTRuto4g8RIoXka9N+noStevsJWJlNJ5lXTAWdMISbyP+TAqWWDtLf/8Rg0F+TYQQIieRMS8iXwsLC+PggYP07NqLuBMmItZGcWd3HA1rNmHHjh20atVK64hCCCH+hxQvIt8LDQ1lzpw53Iu8x4ULF4iMjGTd2nXUqVNH62hCCPHIVFVlwYIFNGueutZRYFAgzz3/HLt379Y4WdaT4kWIv3h4eFCiRAn8/Py0jiKEEI9FVVUGDRpE7969OXszdeVi93IGNuxYS6NGDZk7d662AbOYFC9CiBzLZrMxd+5caj5TA2dnZzy9POnbty/Hjh3TOpoQOcrixYuZNWsWQY28CW7hDYBfJQ8Kd/bFs5QrAwcN5MqVKxqnzDpSvAghciSbzUaPnj0YMGAA5+6cxreGKy6lYMmqX3nmmWdYuXKl1hGFyDG++fYbPAoZ8S7t9sBxRVEIqOOJTq/kio0wH5VMoxBC5EjTp09n6ZKlhDT3wbPY35sw+ldRubUtlh49e3A94jq+vr4aphQiZzhy5AheVZwzbNM56XAJ0nPo0CEHp8o+cuVFCJEjTf5mMp5FjQ8ULgCKXqFgXU9MJhM//vijRumEyFmcnJywW9RM21WrgrNzxsVNbiTFixAix0lOTubsmbO4hWb8Zmtw0+Ma4MzBgwcdnEyInKn9s+1JumhBtacvYCzxVpJumGjfvr0GybKHFC9CiBzHYDCgKAp2a+afJLGRpz5JauX06dMsWrSIZcuWERMTo3Uc8YRGjhyJKd7CrR2x2Ez2tOPmOCu3tsQTEBhA7969NUyYtaR4EULkOE5OTjRr1pTE8NTdiP+XKcpC4p0U2rZtq0G6vCE8PJxGjRtRvnx5evbsyfPPP09wSDCjRo3CYrFoHU88pmeeeYb5P88n+YqVq0vvAXBjQwyXfr2Lp96bjRs24uHhoXHKrCPFi8gyiYmJzJs3jwkTJjBjxgzu3bundSTxGM6fP8/w4cMpEhZKQGAA7Z5tx+rVqzMsHhxh9Oh3SLydwt19cQ9cgTHHWrm9LZ6ixcLo3LmzJtlyuxs3blC/QX0O/XGA4KY+lOwXSPEeAbiXNfD111/Rv39/rSOKJ9CjRw+uXLnCO6PfBaD5M62YMX0G4RfCqVSpksbpspYULyJLzJo1i5CgYF7s9yL/+fj/GDp4CIVCCjFu3DjN/viJR7d+/XoqVa7EtNlTSfCMwl4omR2Ht9K+fXuGDx+uyfewVatWfPfdd8SeTuHyokiub4wiYk00l369SwGPADas35itt42Sk5O5desWJpMp286hlYkTJxIdF0VIO2+8Sriid9bh5KGnQA1PAhp4sWDBAg4fPqx1TPEEgoODGT16NADz5s1j4MCBuLu7a5wq60nxIp7awoULGThwIGUT/Hmf1oyzteVjtS0NzUUZO3YsEyZM0DqieIjo6Gi6dO2CU4COsG7+BNT1pkANTwp38CWwvhffffcdixcv1iTba6+9xvnz53lrxCgalGtKq9ptmTNnDmfPnKVUqVLZcs7Tp0/Ts2dPvLy8CA4OxsfXh1deeYVr165ly/kcTVVVZs+ZjXsJ5wd2Ur/Pq6QrRi8XmcklcjRZ50U8Fbvdzvtj3qOSEsILajUURQHAQ3GhHRWwqnY++3QCr7/+Ol5eXhqnFRmZO3cuycnJFGtQAJ1BeaDNp5w7iVcsfD3pa3r06KFJvuLFi/PZZ5855FwHDx6kadOm2Jys+FZ3xdnbQMo9Cz8t/JEVK1ewd89eihcv7pAs2cVsNhMbE0tQFe8M2xWdgsFL4caNGw5OJsSjkysv4qkcOnSIS1cu01AtkVa4/FMjSpCYnMTq1as1SCcexZ49e3ANzPhTOIB7mBMHDxzEZrM5OJljqapKvxf7goeN0E4++FX2wCPMSIHqnhTu6EOcKYZXX3tV65hPzdnZGW8fb0xR1gzbVbuKNc5OSEiIg5MJ8eikeBFPJTo6GgB/Mr6n6o0rekVHVFSUI2OJx6DX6+EhQ1pUW+oS4xkVp3nJ7t27OXP6LL413NA5PfjWaHDT41PZlQ3rN3D58mVtAv5FVVW2bt3Kiy++SLNmzejduzfr1q3Dbrf/+xeT+r18acBLJF4wY01KX5DGXUgmJc4sg3b/h9VqJTIykpSUFK2jCKR4EU+pWLFiAFwm4+Ikghhsqj3XX2rPy5o3b07irRTM8ek/iauqSuIlM02bNkGny9tvF6dOnQIF3IIzHgTsFuKCqqqcOXPGwcn+Zjab6dK1C82aNePX3xdz6Mpelm/4jbZt29KmTWuSkpIe6Xnefvtt/Hz8ub4mlrgLydhMdszxViIPxXNnVxx9+vShevXq2dyb3OH27duMGDECXz9fChYsiKenJy+88AInTpzQOlq+lrffjUS2K126NA3rN2CL/jwm9cE/fjbVzjrdaQoFh9CqVSuNEop/06tXLwoUKMCdbfEPfBJX7SqRh+JJvJ3CqFFva5jQMdzd3UEFW0rGVzBsyamvjZubW4btjjBmzBhWrFxBSDMfQp/zJaSZL4U7+VCotS9bt29l2LBhj/Q8wcHB7Nm9h7rV63FzWwwX5t3m0uK7JJ2zMWrU28yZMyebe5I73Lhxg1q1azFl+g84F1cJaeGLb3VXVm1YQe06tdm9e7fWEfMtGbArnto3331Lw/oN+Ma0g8a2EhTGh7sksEMXzlWiWTFjReqtCZEjubu7s27tOlq2asnlXyJxK+yM4qxgumnDFG/m888/p02bNlrHzHZt27bF2dmJmDNJ+Ff2wBSTWow7exvQGRRiziRRMKAgderU0SRfbGwsU6ZOwbeSG57F/97vSVEUPEKNmKtZ09ZZ8vf3/9fnK1asGFs2b+Hs2bMcP34co9FIkyZNZGD9P4wcOZLbUbco3NEHJ8+//1z6lFe5sT6GXr17cTH8ory/aUCKl3zIZrNht9txcnLKkuerWrUqu/fuYfSot1m0cUPa8do1ajPrv5/RtGnTLDmPyD41atTg/LnzzJkzh+UrlpOcnEytZrUYOnQolStX1jqeQ/j7+zNkyFC+/fZbok8kYjenDgTSuSi4+BpIvmXh668naLYlwe7du0lOSiaoVMEM271KuXF3fzxbt26la9euj/y8ZcqUoUyZMlkVM8+4c+cOS5Yswf8Z9wcKFwCdQcH/GXeurrzKxo0b80Vxn9NI8ZKPbN68mYlffMGGjRux2+1UqlCR198Yzssvv/zU4xkqV67Mug3riYiIICIigoIFC1KiRIksSi4cwd/fn1GjRjFq1Cito2hCVVVu3ryJiop3CTc8S7iiKBB/KYXoPxMpXqI4r732GgAnTpxg5syZXL58GT8/P3r16kXz5s2zdVyQ1Zp6Jeh/p7Pfd/+4LO2fNc6dO4fNZsOtUMbFqrGgEwYXA6dOnZLiRQNSvOQT06ZNY8iQIYTq/ehor4gzBk6fvsXgVwazdctWfp7/c5a88RYuXJjChQtnQWIhHGvdunX8+uuvBDfzwesft2VcA51xL+zCxXUX+eWXXzhw4ADffPMNLh7OGHwV7Impa+U0btKYVStX4enpmS35qlevjk6nI+FKCj7l0s/uS7iSOgvmmWeeyZbz5zf3xzZlNgZKtajYLTZNx0DlZ1K85AOXLl3itVdfoz7Fed5WJW3Kax21KMeI4KdFC2nbri19+/bVOKkQ2pk2fRpuBY14FjOma3Mv7IJHISMfffwRF8MvUrCOF77l3VB0SuqMrAgTe7btpn///ixdujRb8hUuXJiOnTqyduMa3EJccPb+++3bkmAj+kgSjZs0ply5cnL1JQtUqVKF0CKFiT1zD7dgl3TtseeSQVHo0KGDBumEzDbKB2bMmIGLYqADFdOt1VFVKUxZXRDfTv5Go3RC5Aznz5/DuYAu0/VsnAsauHLlMt6lXfGr6I6iS33c/QGzfrXc+e233wgPD8+2jFOnTKVISBhXl0dxa0cMUScTubUrlqu/3aOAVwA//fhTtp07v9Hr9Xzw/ofEhScTeTgeuzn1CoxqV4k9n8S9w4n07dtXrjRrRIqXfODo0aMUt/nhrGR8oa2sPYDjf/zh4FRC5Cx+fv7YEjNfrc+aYMNms+NVOuPbBF4lXNHpdaxZsya7IhIYGMiB/Qf4ZNwn+FmDiDtmwjPRj/fHfMDRI0cpUqRItp37ScXExDBlyhTeeustPvnkE86ePat1pEc2aNAgxo8fT/TxJC4vvsf132O48ksUt7bH0rlTZ6ZOmap1xHxLbhvlA0ajkRSdNdNVVJOxYHRJf1lUiPykT+8+7B66G3OMFWefB98aLYk2Ei6bQAW9c8ZXZhQ96PS6bN+F2sfHhzFjxjBmzJhsPU9WmD17Nq8New2zyYTRx4glycpHH31Er969mD1rNi45/H1HURQ+/PBD+vfvz9y5c7l06RL+/v706tWLatWqaR0vX8vWKy9RUVH07t0bLy8vfHx8ePnll0lISHjo1zRp0iRtKfL7/w0ZMiQ7Y+Z5HTp0INweyV01/WtvU+0cMVynY6eOGiQTIufo06cPxUsU4+aGWBKupqDa1dTxLNdN3FwXS0DBAJycDCRcy7g4Sb5lxmq2ysq0f1mxYgUvv/wyLkV0FOtRkNDnfSja05/ABt4sXryIQa8M0jriIwsNDeXDDz9k9uzZfPHFF1K45ADZWrz07t2bU6dOsXHjRn7//Xd27NjBK6+88q9fN2jQIG7evJn23+eff56dMfO8Hj16ULhQIeYaDnBLjUs7nqCamK8cIoYk3hw5UsOEQmjP3d2dbVu3U7lcFa5viObSgkguL7hHxNooSoaWZueOnfTu3Ye4UymYoh8cEGsz2bl3MIlSZUrJukakTjv/6OMP8ShkJLCBV9qmnzq9gk9ZN/xrefDzvJ+5ePGixklFbpVtt41Onz7NunXrOHjwIDVr1gTg22+/pV27dkycOPGhO5a6ubkRFBSUXdHyHTc3NzZs2kjrlq34PGITYTp/nFU9l5Uo9E4GFi/8RT4tCkHqjJ59e/dz4MABtmzZgqqqNGjQgIYNG6IoCl9++SUHDh7g7MqzeBR3xljQGUu8lcQLFoxOrvyy6Jc8v4Hlo7h06RJ/HD9BSAvfDF8P79JuRB1K5Lfffsu36wqJp5NtxcvevXvx8fFJK1wAWrRogU6nY//+/Tz33HOZfu38+fP5+eefCQoKokOHDnz44YeZzqU3mUwP3GOOi0u9smCxWPLldMH7ff7fvpcoUYI/z5xmxYoVbNy4EbPZzJAaNejVqxf+/v555rXKrP/5SX5/DbKi/9WrV3+goL+/QJynpyc7d+xkypQpzJk7hxuHb+Dp5cngl3vw+uuvExYWliNed61/BmJjY3F1dcXD2w0XQwaLvBnA08eTxMTEbMmodf+1llv7/zh5FVVVMx9e/xQmTJjAjz/+mG5keUBAAOPGjWPo0KEZft306dMJCwsjJCSEP/74g3feeYdatWrx22+/Zfj4sWPHMm7cuHTHFyxYIIsHCSGEELlEUlISvXr1IjY29l/32HrsKy/vvvsu//3vfx/6mNOnTz/u06b555iYSpUqERwcTPPmzQkPD89wufkxY8Yw8h/jNeLi4ggNDaVVq1b5coMxi8XCxo0badmyZZbtXZSb5Pf+g7wGOb3/Bw4cYORbb3Lij5NpxwoGFOD99z5gwIABWXKOnPAavPLKKyxfvYzg1t44efy9caFqV7m1PQ59nDPnz53PlhlHOaH/Wsqt/b9/5+RRPHbx8tZbb9G/f/+HPqZ48eIEBQVx586dB45brVaioqIeazxL7dq1Abhw4UKGxYuLi0uGP/xOTk656puW1aT/+bv/IK9BTuz/oUOHaN6iOXpvBb9GrrgGOGOJtxF9KpLBgweTlJTEiBEjsux8Wr4Gn376KZs2byJ82U28yrrgGuiMJcFG3BkTKffMLF2yFA8Pj2zNkBN/Bhwpt/X/cbI+dvFSsGBBChbMeFfTf6pbty4xMTEcPnyYGjVqALBlyxbsdntaQfIojh07BkBwcPDjRhVCiBxl9Oi30XtAobY+aRsp6l10BDf2Qeek8N777/HSSy/liavGISEhHNh/gA8//JD5C+YTeTh1qYYmTZsw9uOxNG7cWNuAIlfLtqnS5cqVo02bNgwaNIgDBw6we/duhg0bRo8ePdJmGl2/fp2yZcty4MABAMLDw/nkk084fPgwly9fZuXKlfTr149GjRpRuXLl7IoqhBDZ7tq1a2zdug2vCsYMd4b2r+JBSnJKtu2NpIXg4GBmzpxJ5N1Izp8/z+3bt9m6ZasULuKpZesKu/Pnz2fYsGFpW8V36dKFb775ew8di8XC2bNnSUpKAsDZ2ZlNmzYxadIkEhMTCQ0NpUuXLnzwwQfZGVMIIbLdzZs3AXDxy/jSuMFdj7ObE9evX3dkLIdwd3enZMmSWscQeUi2Fi9+fn4sWLAg0/aiRYvyz8lOoaGhbN++PTsjCSGEJgIDAwEwR1sx+qcvYKxJNszJFlnjSohHIBszCiGEA4SFhdGgYQNi/0zGbku/QkXUiUScnZ3p2rWrBumEyF2keBFCCAf5/L+fY42xc2N9DEk3TNitKqYYK7d2xRJ9IpFxY8fh4+OjdUwhcjzZVVoIIRykbt26bNiwkUGDB3F+zfm04z6+PkyaNIHhw4drmE6I3EOKFyGEcKDGjRtz9vRZ9u7dy8WLF/Hx8aFFixYYjUatowmRa0jxIoQQDqYoCvXq1aNevXrZep6UlBT+/PNP9Ho9ZcuWxWCQt3yRN8hPshBC5DEpKSkAlCxVkju3U1c6Dw4J4q2Ro3jzzTfR6WS4o8lkYunSpaxduxaz2UytWrXo378//v7+WkcTj0B+goUQIg8xm8106doFAH2onSId/Alt50eSZxyj3h7FK6+8Qjbtx5trnDlzhlKlS9G7d2+WbVzCml0rGf3OaAqHFmb58uVaxxOPQIoXIYTIQ3766Sd27doFQMGanrgGOuMW4kJQQ28CG3gza9astPb8KDExkRYtWxCZeIeiXQpQuIMvhdr5UqxHAZyDFbp165a2LY3IuaR4EUI8kYiICD766COaNW9Gy1YtmThxIvfu3dM6Vr43ZdoUPAq7ZtjmXdoVV18XZsyY4eBUOcfChQu5fv06Qc28cPH9e7FAg6ueoMbeGNz1fPXVVxomFI9CxrwIIR7bL7/8Qp8+fVB1KsZgA9hTN1795JPxrF69hgYNGmgdMd8KvxCOZ3nnDNsURcGpgI5zF845OFXOsXLlStyDjTh7p//zp+gV3Is7sWLlCg2SicchxYsQ4rEcP36cXr174R7mTGB9L3TOqRdwrck2bm2No92z7Qi/EP5Iu8+LrOfj40NKYkKm7fZEFb9Sfg5MlLOkmFJQnDIf86Nz0WEymRyYSDwJuW0khHgskydPxskt9RL7/cIF/rrs3sybpOQkZs2a9cjPZ7FYWLNmDdOnT2f58uVpM2XEk+ndqzfJV8wZtqXcs5BwI4WePXo6OFXOUb1adUx37NitGRcwyRFmqlSp7OBU4nFJ8SKEeCxr1q7BragTik5J12Yw6nAt5MTqNasf6bl+/fVXQosU5tlnn2Xw4ME899xzBIcEM3369KyOnW8MGzYMTw8vAJJvm1FVFdWuknAlhVub4ihXvhzdunXTOKV2Bg0ahM1k4+6BuHSzruIuJpMQkcLrw2Sl45xObhsJIR6L1WpFMaQvXO5T9GC1Wv71eZYtW0b37t3xLOZK2HMFcPEzYIm1EfVHAoMHD0ZVVQYPHpyV0fOF4OBg1q5Zy8WLF4lYF4VNsaLaVSwpVurVr8fSJUvz9Wq+JUqU4LvvvuPVV1/FEmnHvbgzOieFxGtmEq4k07NXT3r16qV1TPEvpHgRQjyWOrXrsPXAZtRqKoryYBFjt6qYbtqo16n+Q5/Dbrcz6u238ChiJLiZd9rzOPsYCGrkgwqMeW8M/fv3x8XFJbu6kmeVLVuWixcvsmLFCvbt24fBYKBFixY888wzWkfLEYYOHUrp0qX5YuIXbNywEbvdTsVKFXhj+gheeuklWcQvE+Hh4cyePZvw8HB8fX3p2bMnDRs2TPc+4AhSvAghHsvw4cNZ3Xo10ScS8avskXZcVVXu7IvDmmJjyJAhD32OgwcPcjH8EqHt/DJ84/Or7MHlJXdZt24dnTp1yvI+5BdNmjShZcuWWsfIkZo3b07z5s2x2WzYbDacnTOeoSVSf7fHjh3LJ598gpPRgLOfHluiytSpU2nRojm//bYMT09Ph2aS4kUI8VhatWrFe++9x4QJE0i6YsG1iBOqTSXpsoWUaDMzZsygVKlSD32OO3dSl6x39vn/9u48Kqr7bgP4cweGGRaBEJRFcYEo2JiIaKTQFOgRJWqj9s2K1JrEhGq0r1SrwZNUjxprNEZzzGtjezyRNM1exdTEaIhrNIhRISIicaGQRAZxgRkYGJb5vX9YJiEsMsDMnTvzfM6ZP+be3x2e773D8OXOXTr+CPLwc2szjshW3Nzc4ObmJncMh7Zt2zasWrUKd8b4IOBeH6jcJQghUFduwqEjhzF79mzs3LnTrpm4b4yIrLZmzRp88sknuH9MIhrOCzRfdsOvJ0zDsWPHMGfOnNsuP2jQIAC3zn7piOl6MwAgLCys70ITkdXMZjPW/GUNfCM8ERjTD6r/Hu8mSRJ8hmgRGOuN7OxsfPONfa8dxOaFiHpkypQp2PvpXhj0BlTfrMYHH3yAuLi4bi0bHR2NUfeMQvWZeoiWtmd8CCFwo6AWIaHBSE5OtkV0Iuqm4uJilP2nDL4jOr5qc79wT7ip3bB792675mLzQkR2J0kSXtv8GkxVzfh+bzVqv21Ac10LjFdMuPJZNWrLTHht8//B3Z3fbBPJqb6+HgDgpum4XVC5S3BXu9n9+kxsXohIFklJScjJyUHEgOH4ft9NXHr3Kr7dcwMh2lt39n3ooYfkjkgKYzQasX37dssp9tu3b0dtbedXG6bbGz58ODRaDeq+6/iqw/VVjTAZGzF69Gi75mLzQkSySUpKQkH+18jPz8fu3buRl5eHkpJvMG3aNLmjOazGxka89957mDxlMmLGxuChhx7Cnj17YDab5Y4mq1OnTmHosKF4as5T2H1gFwDgj3/8IwaFDcIXX3whbzgF8/PzQ9rMNOjPNcBU3dxmnrnJjOsn6jAobBAmT55s11zcJ0tEspIkCdHR0YiOjpY7isO7efMmJqVMwsmvTsInVAs3HwnfHC3Gzp07MXXqVOzYscMlr4tTVVWF5InJaPJowLCH+6PfnbdO4R/ymzvx7cEqTJkyGUVF5zB48GCZkyrTyy+/jC9zj+Hi7kvwCfeAdoAazbUtqL3YCFWTO97Ped/uZ2xxzwsRkUI89dRTOHP2awyedicGTrkDwQn+GPigPwZOvAN7932K559/Xu6Isti2bRsMBgOCk33b3C1a3c8dwcl+MDU34vXXX5cxobIFBAQg98vjyFySCfV1b+gO18BwthGPzUjFyZMnER8fb/dMbF6IiBSg9Yq5d4zzgueAHy6o1nrKqt8oL2zd+joMBoOMKeWxM3sHvIZ4wN2z/X//bh4qeA1VY8fOHTIkcx7+/v5YvXo1KnWVMBqNMBrrkZWVhZEjR8qSh80LEZECHDx4EEII+EZ0fMqqb4QWdXVGnDhxws7J5Gc0GuHm0fkl6t00Euob6u2YyHlJkgRPT0/Zb6HA5oWISAFaWloACejsNjKSm/TDOBczNmYcTBUt7e4SDdy6blDDlRaMiR4jQzKyFTYvREQ9UFxcjIyMDCQmJmLy5Mn4+9//btPTcuPj4wEB1JZ1fD0NQ2kD1B5qxMTE2CyDo3r22WdRX23CjTN17eZVFxthrGrAgvkLZEhGtsLmhYjISq+88gp+9rOf4fVtf0X+dyfwxdlDmDt3LiKjInH+/Hmb/MxRo0bhlwm/xI2TRjQa2p6y2nCtCTWF9UibmYbAwECb/Hx7EELg8OHDyMzMxKJFi/DOO+/AZOr4+iI/9vOf/xwvvPACrn1lwPef3kTNN0YAQMX+Glz9Uo8//OEPvEGlk+Gp0kREVvj444/xpz/9CQH3euPOsf2g+u/XNY36Zuj2X0fKAym48M0Fm9yl+O1/vo3EpASU7yiH91AN1H5uaLzegtryBsTExODVV1/t859pL1euXMH0GdNw8qtT0PbzgEqtwqZNDViYsRA7/rUDCQkJXS6/evVqjB49Ghte2YAzuWeA/wUiAkdg4/L5SEtL6/Du5aRc3PNCRGSFdevXwTtEi8D7fmhcAMDD1x1Bif1QXlaO7Oxsm/zssLAwnD6Vj7+sWYtQ9RCgTIOIOyLx1y1/xRdHvoCfn59Nfq6tNTU1YeKkiSg8X4hBDwRg8KMBCPufOzD04f5o8KjFA5MfQElJyW1f5+GHH8bx3OOoqqoCABw5fAS//e1v2bg4ITYvRETdZDKZcPSLo/AJ9+jwD6ImQA3v/lrs27fPZhn8/f2xdOlSFJ8rxrWqa8g/nY+5c+fC07Pjs5CUIDs7G+eKziF4gi+8B2ks61bj746QZD+Y3VqwcePGbr+eLfZ6kWNh80JE1E2tZ/JI7l38J+8mobm5ufP51M6OHTvgFaSFNlDdbp5KrYJ3uBrvf/C+DMnIUbF5ISLqJk9PT0RGRcJY3tjh/Ka6FhivNmD8+PF2TqZser0eKm3705xbuXu7oa62/ZlE5LrYvBARdZMkSchYmAH9f+qhv9z2omfmZoGqYwZ4e3tj1qxZMiVUpqioKDRdM8Pc0nED01DRhOEjhts5FTkyNi9ERFZIT09HamoqKg5U4/tPq3HjTC2qTuhRvuMGTJUt+NeH/1LsgbNySU9Ph6muCTe+bn+dHOMVEwxlDXh23rMyJCNHxeaFiMgKKpUK/3zrn3jnnXdw79AxqC8WkCq0eGLmkyjIL0BKSorcERVn5MiRWLlyJa6frsWVnGoYSutR950JlcdqcOWzGiQmJuKZZ56ROyY5EF7nhYjISiqVCqmpqUhNTZU7itNYvnw5IiIisPaltSjaXwQACOwfiBeeX4Jly5ZBo9HInJAcCZsXIiJyCGlpaZg5cyYqKirQ2NiIgQMHQq1ufwYSEZsXIiJyGJIkITQ0VO4Y5OB4zAsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFYfNCREREisLmhYiIiBSFzQsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFsVnzsmbNGsTHx8PLywv+/v7dWkYIgeXLlyMkJASenp5ITk7GhQsXbBWRiIiIFMhmzUtjYyMeeeQRzJs3r9vLrF+/Hps3b8bWrVuRl5cHb29vpKSkoKGhwVYxiYiISGHcbfXCK1euBABkZWV1a7wQAq+++ipeeOEFTJ8+HQDwj3/8A0FBQdi1axcef/xxW0UlIiIiBbFZ82Kt0tJS6HQ6JCcnW6b5+fkhNjYWubm5nTYvJpMJJpPJ8lyv1wMAmpqa0NTUZNvQDqi1ZlesHWD9ANeBq9cPdL4OiouL8fXXX0Oj0SAxMREBAQFyxLM5V38PKLV+a/I6TPOi0+kAAEFBQW2mBwUFWeZ1ZO3atZa9PD/22WefwcvLq29DKkhOTo7cEWTl6vUDXAeuXj/Q8Trw9fUFABw/ftzecezO1d8DSqvfaDR2e6xVzUtmZibWrVvX5Zji4mJERUVZ87K9smzZMixatMjyXK/XIywsDJMmTbL8krqSpqYm5OTkYOLEiVCr1XLHsTtXrx/gOnD1+oG26+D69eu4/5f3o7ZRD//RWngN0sLcaIb+Qj1unjVi2q+nISsrC5IkyR27z7j6e0Cp9bd+c9IdVjUvixcvxhNPPNHlmPDwcGte0iI4OBgAUFlZiZCQEMv0yspKREdHd7qcRqOBRqNpN12tVitqo/U11u/a9QNcB65eP3BrHWzatAm6qxUI+80dcPeS0AQT4AF43+2OFo0a7777LhYuXIjY2Fi54/Y5V38PKK1+a7Ja1bz0798f/fv3tzpQdwwbNgzBwcHYv3+/pVnR6/XIy8uz6owlIiL6wfas7fC+ywPuXm7t5vUL1+JmvgZvvvmmUzYv5Lxsdqp0eXk5CgoKUF5ejpaWFhQUFKCgoAC1tbWWMVFRUcjOzgYASJKEjIwMvPjii/j3v/+NwsJC/O53v0NoaChmzJhhq5hERE6rubkZ1Terobmj4/9TJZUEd1+py+MKiRyRzQ7YXb58Od58803L8zFjxgAADh48iKSkJABASUkJampqLGOWLl2Kuro6pKeno7q6Gvfffz/27t0LrVZrq5hERE7L3d0dAXcGwHTD1OF8YRZorjZj4MCBdk5G1Ds22/OSlZUFIUS7R2vjAty6tsuPj6GRJAmrVq2CTqdDQ0MDPv/8c4wYMcJWEYmInN7Tc55G7UUTmmpb2s3TX6hHg6HxtscyEjka3tuIiMiJLV68GEH9g3BlTzVqvjGiub4FjTXNqPpKj8pjesyaNQtjx46VOyaRVdi8EBE5sQEDBuDLY7lIjEuC7kgNLr19FaUfVsF0USDzuUy88cYbckcksprDXKSOiIhsIywsDHv37sPly5ctV9hNSEiAj4+P3NGIeoTNCxGRiwgPD+/xtbiIHAm/NiIiIiJFYfNCREREisLmhYiIiBSFzQsREREpCpsXIiIiUhQ2L0RERKQobF6IiIhIUdi8EBERkaKweSEiIiJFcbor7AohAAB6vV7mJPJoamqC0WiEXq+HWq2WO47duXr9ANeBq9cPcB2wfmXW3/p3u/XveFecrnkxGAwAbt3Lg4iIiJTFYDDAz8+vyzGS6E6LoyBmsxlXrlxBv379IEmS3HHsTq/XIywsDN9++y18fX3ljmN3rl4/wHXg6vUDXAesX5n1CyFgMBgQGhoKlarro1qcbs+LSqXCoEGD5I4hO19fX0W9afuaq9cPcB24ev0A1wHrV179t9vj0ooH7BIREZGisHkhIiIiRWHz4mQ0Gg1WrFgBjUYjdxRZuHr9ANeBq9cPcB2wfuev3+kO2CUiIiLnxj0vREREpChsXoiIiEhR2LwQERGRorB5ISIiIkVh8+IE1qxZg/j4eHh5ecHf379bywghsHz5coSEhMDT0xPJycm4cOGCbYPayI0bN5CWlgZfX1/4+/tjzpw5qK2t7XKZpKQkSJLU5jF37lw7Je69LVu2YOjQodBqtYiNjcWJEye6HP/hhx8iKioKWq0W99xzD/bs2WOnpLZhTf1ZWVnttrVWq7Vj2r515MgRPPjggwgNDYUkSdi1a9dtlzl06BBiYmKg0Whw1113ISsry+Y5bcnadXDo0KF27wFJkqDT6ewTuA+tXbsW9913H/r164cBAwZgxowZKCkpue1yzvYZwObFCTQ2NuKRRx7BvHnzur3M+vXrsXnzZmzduhV5eXnw9vZGSkoKGhoabJjUNtLS0lBUVIScnBx8/PHHOHLkCNLT02+73DPPPIOKigrLY/369XZI23vvv/8+Fi1ahBUrVuD06dMYPXo0UlJScPXq1Q7Hf/nll0hNTcWcOXOQn5+PGTNmYMaMGTh79qydk/cNa+sHbl1p9MfbuqyszI6J+1ZdXR1Gjx6NLVu2dGt8aWkppk6dil/96lcoKChARkYGnn76aezbt8/GSW3H2nXQqqSkpM37YMCAATZKaDuHDx/G/Pnzcfz4ceTk5KCpqQmTJk1CXV1dp8s422cAAECQ09i+fbvw8/O77Tiz2SyCg4PFyy+/bJlWXV0tNBqNePfdd22YsO+dO3dOABBfffWVZdqnn34qJEkS33//fafLJSYmioULF9ohYd8bP368mD9/vuV5S0uLCA0NFWvXru1w/KOPPiqmTp3aZlpsbKz4/e9/b9OctmJt/d39vVAiACI7O7vLMUuXLhV33313m2mPPfaYSElJsWEy++nOOjh48KAAIG7evGmXTPZ09epVAUAcPny40zHO9hkghBDc8+KCSktLodPpkJycbJnm5+eH2NhY5ObmypjMerm5ufD398e4ceMs05KTk6FSqZCXl9flsm+//TYCAwMxatQoLFu2DEaj0dZxe62xsRGnTp1qs+1UKhWSk5M73Xa5ubltxgNASkqK4rY10LP6AaC2thZDhgxBWFgYpk+fjqKiInvEdQjOtP17Kzo6GiEhIZg4cSKOHTsmd5w+UVNTAwAICAjodIwzvgec7saMdHut3/MGBQW1mR4UFKS474B1Ol27Xb/u7u4ICAjospaZM2diyJAhCA0NxZkzZ/Dcc8+hpKQEO3futHXkXrl27RpaWlo63Hbnz5/vcBmdTucU2xroWf2RkZF44403cO+996KmpgYbNmxAfHw8ioqKXOImrp1tf71ej/r6enh6esqUzH5CQkKwdetWjBs3DiaTCdu2bUNSUhLy8vIQExMjd7weM5vNyMjIwC9+8QuMGjWq03HO9BnQis2Lg8rMzMS6deu6HFNcXIyoqCg7JbKv7tbfUz8+Juaee+5BSEgIJkyYgEuXLiEiIqLHr0uOJy4uDnFxcZbn8fHxGDlyJP72t79h9erVMiYje4mMjERkZKTleXx8PC5duoRNmzbhrbfekjFZ78yfPx9nz57F0aNH5Y5id2xeHNTixYvxxBNPdDkmPDy8R68dHBwMAKisrERISIhlemVlJaKjo3v0mn2tu/UHBwe3O1CzubkZN27csNTZHbGxsQCAixcvOnTzEhgYCDc3N1RWVraZXllZ2Wm9wcHBVo13ZD2p/6fUajXGjBmDixcv2iKiw+ls+/v6+rrEXpfOjB8/XtF/9BcsWGA5QeF2exCd6TOgFY95cVD9+/dHVFRUlw8PD48evfawYcMQHByM/fv3W6bp9Xrk5eW1+Q9VTt2tPy4uDtXV1Th16pRl2QMHDsBsNlsaku4oKCgAgDbNnCPy8PDA2LFj22w7s9mM/fv3d7rt4uLi2owHgJycHIfZ1tboSf0/1dLSgsLCQoff1n3FmbZ/XyooKFDke0AIgQULFiA7OxsHDhzAsGHDbruMU74H5D5imHqvrKxM5Ofni5UrVwofHx+Rn58v8vPzhcFgsIyJjIwUO3futDx/6aWXhL+/v/joo4/EmTNnxPTp08WwYcNEfX29HCX0ygMPPCDGjBkj8vLyxNGjR8Xw4cNFamqqZf53330nIiMjRV5enhBCiIsXL4pVq1aJkydPitLSUvHRRx+J8PBwkZCQIFcJVnnvvfeERqMRWVlZ4ty5cyI9PV34+/sLnU4nhBBi1qxZIjMz0zL+2LFjwt3dXWzYsEEUFxeLFStWCLVaLQoLC+UqoVesrX/lypVi37594tKlS+LUqVPi8ccfF1qtVhQVFclVQq8YDAbL7zgAsXHjRpGfny/KysqEEEJkZmaKWbNmWcZfvnxZeHl5iSVLloji4mKxZcsW4ebmJvbu3StXCb1m7TrYtGmT2LVrl7hw4YIoLCwUCxcuFCqVSnz++edyldBj8+bNE35+fuLQoUOioqLC8jAajZYxzv4ZIIQQbF6cwOzZswWAdo+DBw9axgAQ27dvtzw3m83iz3/+swgKChIajUZMmDBBlJSU2D98H7h+/bpITU0VPj4+wtfXVzz55JNtGrfS0tI266O8vFwkJCSIgIAAodFoxF133SWWLFkiampqZKrAeq+99poYPHiw8PDwEOPHjxfHjx+3zEtMTBSzZ89uM/6DDz4QI0aMEB4eHuLuu+8Wn3zyiZ0T9y1r6s/IyLCMDQoKElOmTBGnT5+WIXXfaD3t96eP1ppnz54tEhMT2y0THR0tPDw8RHh4eJvPAiWydh2sW7dORERECK1WKwICAkRSUpI4cOCAPOF7qaO6f/r57gqfAZIQQthtNw8RERFRL/GYFyIiIlIUNi9ERESkKGxeiIiISFHYvBAREZGisHkhIiIiRWHzQkRERIrC5oWIiIgUhc0LERERKQqbFyIiIlIUNi9ERESkKGxeiIiISFHYvBAREZGi/D8A63s0MIBnFAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.scatter(X[:,0],X[:,1],c=y, cmap='PiYG', edgecolors=\"k\");plt.grid(True)" ] @@ -102,18 +91,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "85f7d5b3", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mean accuracy on the given test and labels is 0.875000\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n", "\n", @@ -136,31 +117,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "da24f78d", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbAklEQVR4nOz9dXxc5533/7/OMGhGzEyWLINsmZnt2A5j0wZLKSSFbLu7Wfp9e9+7d7ew3XLatGkYGkYncWJmFllgySKLWSMaPr8/HMlWJJOs0YCu5+ORR2ud0Tkf0cx7rnNdn0uSZVlGEARBEATBCxTeLkAQBEEQhKlLBBFBEARBELxGBBFBEARBELxGBBFBEARBELxGBBFBEARBELxGBBFBEARBELxGBBFBEARBELxGBBFBEARBELxG5e0CLsftdtPY2IjJZEKSJG+XIwiCIAjCVZBlmd7eXuLi4lAoLj/m4dNBpLGxkcTERG+XIQiCIAjCOJw7d46EhITLPsang4jJZALg9SX/gkGl83I1gjBaRErUiH8HZURd4pGC4LuCpsUP/39NlMmLlQiBore/j2k3Lxx+Hb8cnw4iQ7djDCodRhFEBB8SmRY9/P9N02K8WIkgjJ8p+8I7VU2M2YuVCIHqaqZV+HQQEQRfIwKIEAhEABF8iQgignAFInwIgUCED8FXiSAiCJcgAogQCEQAEXydCCKC8AUigAj+7uLwASKACL5NBBFBQIQPITCI0Q/BH4kgIkxpIoAIgUAEEMGfiSAiTDkXhw8QAUTwTyJ8CIFCBBFhyhCjH0IgEAFECDQiiAgBTwQQIRCIACIEKhFEhIAkwocQCET4EKYCEUSEgCICiBAIRAARphIRRISAIAKI4O9E+BACgSrWeP5/e11X/zmeKkYQPE2EDyEQiAAiBIKhAAKgMGpQuDRX/7meKEgQPEkEECEQiAAi+LuLwwecDyDjOs9EFCMInibChxAIRPgQAsEXRz+u+3zXfQZB8CARQIRAIAKIEAgmOoAMn3fCziQIE0gEEMHfiY3nhEDgqfAx4hoeOasgjIMIH0IgEKMfQiCYjAAyfC2Pnl0QroIIIEIgEAFECASTGUCGrzkpVxGELxAbzwmBQIQPIRB4I3yMuP6kX1GY0sTohxAIRAARAoG3A8hwHV67sjCliAAiBAIRQAR/N1G9PyaSCCKCx4jwIQQCET6EQOArox9jEUFEmHAigAiBQAQQIRD4cgAZIoKIMGFEABH8nej9IQQCfwgfFxNBRLguInwI/kCWZWxOOyChU49+YhajH0Ig8LcAMkQEEWFcRAAR/IEsyxytKWZ/2UnqW5tAgpSYBFZmz2dOYhbm6YnDjxUBRPBX/hpAhoggIlw10ftD8CeyLPPWqR3sPnGQWJeZRYYUZGSqmzp5vuMDuje5uTNmhrfLFIRx8ffwcTERRIQrEqMfgj8qa65mz6nDLNZkkG1KQB1y/ol7BlDYV8O2/Z+Rt3A+aQkpXq1TEK5FIAWQISKICJckAojgzw6fLcRkUzMrNWv4Y0rD+SfuOfpMSqrOse/kYRFEBJ8XiOHjYiKICCOI8CEEAlN2Am17+0kKjRsOHxeTJIk4TSj1DfVeqE4Qrk6gB5AhIogIgAggQmC4ePWLIdSEvbnzko8ddNqI0GonoyxBuCZTJYAMEUFkihMBRPB3l1p6mzd7Dm8W/h2r045ONfLJvN8xSCM9rM+ZPWl1CsLlTLXwcTERRKYgET6EQHCl3h/L5y5m577dfFh7iHUJeYRoTQB0DPbwWcNJojMTWJK7YLLKFYQxTeUAMkQEkSlEBBAhEFxt87FQcwjfe/jbPPnS07xRfRCTS4uMTJ/aQUJOMt/9yjcw6g2TUbIgjOCLG895kwgiAU6EDyEQjLfzaWp8Mv/1+L9zqrSIynPVSJJEVko6szNnoFKJpz9hconRj7GJv8QAJQKIEAgmovW6WqVm4aw8Fs7Km6iyBOGaiAByeSKIBBgRQAR/JzaeEwKBCB9XTwSRACDChxAIxMZzQiAQAeTaiSDix0QAEQKBCCBCIBABZPxEEPEzYuM5IRCI8CEEAhE+JoYIIn5CjH4IgUAEECEQiAAysUQQ8XEigAiBQAQQwd+J3h+eI4KIDxLhQwgEInwIgUCMfnieCCI+RAQQIRCIACIEAhFAJo9Hg8hPf/pT3nrrLcrKytDr9SxdupSf/exnZGVlefKyfkcEEMHfid4fQiAQ4cM7PBpE9uzZw3e/+10WLFiA0+nkX/7lX9i4cSMlJSUYjcYrnyCAifAhBAIx+iEEAhFAvMujQeTjjz8e8e9nn32WqKgoTpw4wcqVKz15aZ8lAogQCEQAuTyn00lRZSkt7a1oNBpmT5tBREiYt8sSvkAEEN8wqXNEenp6AAgLm1p/kKL3hxAIRPi4OmXVFTzz+gs01Tagdkg4cKEJMbB82XK+svVO1Cq1t0uc0kT48D2TFkTcbjc/+MEPWLZsGTNnzhzzMTabDZvNNvxvi8UyWeV5hBj9EAKBCCBXr7bxHL95+g8Y29zcFrOIcH0wDreTss5adn34KU6Hg6/f+YC3y5ySRADxXZMWRL773e9SXFzM/v37L/mYn/70p/zkJz+ZrJI8RgQQIRCIAHLtPtr3GTQPsDVtNUqFEgC1QsWsiHRUChUHDx1i84oNxEfHernSqUH0/vAPkxJEHn30UT744AP27t1LQkLCJR/3xBNP8Pjjjw//22KxkJiYOBklXjcRPoRAIMLH+NnsNk6eOsns4OThEHKxaaGJHK0q50RpvggiHiZGP/yLR4OILMs89thjvP322+zevZvU1NTLPl6r1aLVaj1Z0oQTAUQIBCKAXL9BmxWn04lJYxjzuFJSoJc0DFitk1zZ1CECiH/yaBD57ne/y8svv8y7776LyWSiubkZgODgYPR6vScv7XEigAj+ToSPiRWkNxJkMtHU0UlqcNyo41anjV5sYvXMBBPhw/95NIg8+eSTAKxevXrEx5955hkeeughT17aI0T4EALB1QaQ3v4+Onu60Gq1RIdFIknSZJTnt1QqFSuWLGPb6+8yw5ZKsPbCC6QsyxxtLkUfaWbhzDwvVhk4RAAJHB6/NRMIRAARAsHVBpDOni7e2bmNI0ePYOu3olApSMtMZ+uaG5ibPWsySvVbNyxbR1FpMe8UH2BmUDIJpkgGnTaKOqpoN9h54Nb7MAeZvF2m3xKTTwOTJPtwWrBYLAQHB/Phiv+DUaWb1GuL8CEEgmu9/dJl6eZnf/5f2ssbmB2cQrwxkj7HIIUdZ+kyOfn6/Q+zdM5CT5bs9yx9vbyzaxuHjhxisHcAhVJBcnoqN67ZxLycOd4uzy+J0Q//Y7FYCE+No6enB7P58s89YtO7LxABRAgE453/8f6eT2gvr+eO5BUY1efncUUSQoo5hl31J3n57deYmz0Lvc6/53h5kjnIxAM33cOdG26mvasDjUYjbm2NkwggU4MIIp8TAUTwd9e78ZzVZuXQkcPMMCUPh5AhkiSxMDqHVxv3cqK0gOVzF193vYHOoNOTFHvpdgXC2ET4mHqmdBAR4UMIBBO1+qW7z4K1f5AYY/qYx4M0evSyio7urnFfQxAuRQSQqWtKBhERQIRAMNHLbw1aPUq1Eot9gPgxjjvcTqyyE512cudrCYFNBBBhygQRsfGcEAg82fvDHGRi1sxZFO3NJys0EYWkGHG8tKMGdbCevOmzJ/S6wtQjwodwsYAPImL0QwgEk9V8bMvqjfyipIRtNYdZGjuTMJ0Zu8vB6Y5qTgxUsenGLUSGhnvs+kJgEwFEGEvABhERQARf1tVvoaG7FaVCQWpEPDr12FsbTHb308ykNB772rd57s2XeKvuMGqXhEN2oQ01suWWG7lzwy0er0EILKL3h3AlARVERPgQfF3PYB9vn9hBQVUp9kEbkiRhMptYnjOfG2YuRalQer31+qzM6fz3j/4/iipKaOlsR6/VMXtaDqHmkEmvRfBfYvRDuFoBEUREABH8wYDdypM7XqWtrpl5xlRSwqJwuF2U9dXz0cFdWM1KHtx0F+D9vV9UKhVzLzMXxGqzsv/UEQ6eOEJXVyehoWEsnbeI5XMXicmsU5wIIMK18usgIgKI4E/2V56i8Vwjt4UvxKw+v0OrOdzIsshIIrojOHj0EOvXryctIcW7hV5Bb38f//vsHzlbWEaCIoQErZnOhmZeKHyOgyeO8MOHvoPJGOTtMoVJJMKHcD38LoiI8CH4qyMVBaQoIzCrDahDLjxxKw0apuvTOFlVzeHCEz4fRF7+8A1qT5Vze8JSQnUX9k3psvby3qlDvBz5Bo/c/ZD3ChQmjQggwkRQXPkhviEyLXo4hJimxYgQIvidnr5eosMih0OI0qBBaTj/5C1JEiGSge7ebi9WeGUdPV0cO36ceSGZI0IIQKjOxLyQDI4dP05Hj2h6FshUscbhEKIwakQIEa6LX4yIRKREAWIERPBPQ5NPI+Jj6G4fHA4fF5NlGYs8iDnIu3NDrqS2sQ5bbz8Z8XFjHs8IiedQ/RlqG+sIDw6d5OqEizW1NbP35CHKKs4AkJ05jZV5S4iNHN/zqBj9EDzFL4JIUEYUJp3xyg8UBB/yxdUvK9es4s2XXmOefQCTxjDisWd7GrAaYNGseZNd5jWRJAUSEi7ZPeZxp9sNkoRCoZzkyoSLHS06ydMvP4uzrZ9kbSQA2/M/YOfuXXztyw+xcFbeVZ9LBBDB0/wiiAiCP7nU8tvV85dz6MRR3i09wIKwLFLNcTjcTko7a8jvr2HZ+lVkJKZ6o+SrlpGYijHMTFlnHfOis0YdL++qIyjMTLqPz3MJZE1tzTz98rNE92hZk74E5ecdcl2ym13nzgeUxMfjLjsyInp/CJPJb+aICIIvM2UnDP+niTEP/zfiMcYg/uFrjzFj5QIOuap4tu5TXm7cQ4Whiy233cTXbr/P57eKNxmDWLFsOQX9NdRZWkYcq7O0kN9XzYply8WqGS/ae/IQzvZ+1iTMHQ4hAEpJwZrEPJzt/ew9eWjMzx1r7ocIIYKniRERQbgO19p8LDw4lO/f/whNm1uob25EqVQwLTmDIIP/3Hq8c8PNtHd18unho5jaVISqguhy9tOrczBv9RLu3HCzt0uc0sorzpCkiUA5xu0xpaQgSRNxft7IpgsfF7dfBG8SQUQQrtFEdD6NjYgmNiL6yg/0QRq1hkfv/TqnF67gcMExunu6SQoOYXHuAmakZ6FQiIFWfyDCh+ArRBARhKvk7dbrvkShUDArczqzMqd7uxThC7Izs/ik4H1cbteoURGX20Wd3MmWhWsAEUAE3yDeugjCFQzN/QDGnPshCL5kxbwlqCKM7Kw/icvtAkAyqHDrJHa3FaKONrF67RoRQgSfIUZEBGEMYvRD8FexEdF87csP8fTLz/Ji/a7h5bt1zg7UMUF88zvfJjZG9GQSfIcIIoLwuY6+bgpsDZTXnkVxSiIndxbL8xYT4e3C/Igsy9Q11dPe3YFep2daUjoqlXiamWxLN64gNTeTvYcPUFpRDsDmGWtYvXylCCGCzxHPEMKUZ8pO4FRFMU/vegl7ex+JhvPvIN8teYNPdn7KN+/7KnOzZ3m5St9XVV/Dy++/ztnySpxWOwqVksj4GG7ZtJUVeUu8XV7A++Lk0/i0JO5NS/JiRYJwdUQQEaasodsvzZ1tPPPR34kc0LEuaxmqzyf4OdxOdtSd4KkXn+Ynj/8bUWFibORSahrr+OWff4u62crayBxiI8Ox2AfIP1fB0889g8PpZO3CFd4uMyCJ1S+CvxOTVYUp54uTTw+fK8LR1sf6xHnDIQRArVCxPmk+thYL+y7RAEo4793PtiE19XNL6nKSzTFolGoi9MGsT5pPhiuct7e9y6B10NtlBhSx8ZwQKEQQEaaEy3U+LTlTRrImcswGUCqFkiR1BKVnyia7ZL/R2dNFYWEhc8IyRgS5IXlRWXQ3d5BfXuyF6gLLUPhQxRpF51MhYIhbM0JAu5rVL7LbDZfprC5JEm732Ju8CdDb34fL7iQsdOzvb5BGj0ZW0tPXO8mVBQ5x+0UIZCKICAHpWpbfTsvIZFfRJ7hlNwpp5CChS3ZTZ2tnQ8Zij9QZCEzGIJQaFZ2DFiL1IaOO99kHsUsugoNMk1+cHxMbzwlThbg1I/ilnsE+SpuqKG+uweqwAVe38dxYVs1fhhSuY29DAe6Ltrd3y2721OejiDCwap5Y9XEpYcGhzJ49m/yus8MNtC52srWckJhw5mTN9EJ1/kdsPCcEgj5t11U/VoyICH6l3zbIu6d2caKiGNugFYCQhChWL1zOTa4YDPFh13zOhOg4HvzSfTz7you8dHYHqfpoZGRqrK0QpuOr9z542S3TBbhl/RZ+XnGGd6r3syAymxhjOL32fk61VVCn7uH+zfeh1+m9XaZPE7dfhEDQp+08/39sV/85kizLsmfKuX4Wi4Xg4GBO/+QtTDr/2Z1U8Ayrw84fd7zCuao65kVlk2aKxSW7KO+u57S7kaXrVvLI3Q8hSZeZ8HEZdU317Dl+kNLyUiRJYnpWNqvmLyMxJn6Cv5LAVFlXzSsfvEHVmUocg3aU6vN9RG7euJWVYkRpTCJ8CIFgOHwAKM/faLFYekmOnk5PTw9m8+VHpkUQEfzGvoqTvHlwO7dGLSJMa0ZpuPDEXdXTyO7+Uv7xB/9ATlqWF6uc2mRZprbpHB3dnaKz6mWIACIEgrECyJBrCSLiGULwC6bsBE4deZMEKZTI0NGNxVLNsRxrL+dwwXERRLxIkiRS4pJIiRMdPcciAojg70aEDxgVQMZDBBHBZ31x5UuPvZ/k4PAxHytJEqEqI51dnWMeFwRvEeFDCASXG/24XiKICD7nUktvQ0KC6WzquOTn9TgHSDYHe7S28Rq0DtLa2Y5KqSI2MhqFwjsL1mRZxu6wo1Frxj2XRrg6IoAIgcCTAWSICCKCz7hS748l8xbzctEL9Nj6CdaOnDN0rrcVi9bBotnzr6sGS18vgzYrwUEmdFrddZ0LYMA6yDs7P2T/oYMM9PQhKSRiE+PYtGoDK+ctmbQw0NHTxWeHd3PgyCEG+voxmU0sX7yM9YtXERx05SXOwtURvT+EQDAZ4eNiIogIXnUtjcdW5C1m/9GDvFd8kIVhWaSHxON0uyjvquOE5SxzVyxgZkb2uOo4U3uWbXu2U1xcjNvhQhdkYOmixdy4ahMhpvGNslhtVv732T9QeaKEGcYkUkOysLkclFRW87fqv9Fl6ebWtVvGde6L1TXVU3muGlmWyUhMJTkuccTx5o5WfvmX39J1tolp+jjCdJG0t/Twwd/f5nj+SX70je8RHhx63XV40tCcel8dxRGjH0IgmOwAMkQEEcErriWADDHo9Dz+1e/ywnuvcSj/FHtqTwMShlATa2/ayD033DauWx755cX88Zk/o+1wsiA0FZPBQFNvO7ve/YSSM2X8+OvfI9Qccs3n3X38IGdOlXBr3GLC9RfCTIIpkhMt5by/7QMWzZ5HbET0NZ8boMvSzd/efJHThcW4++3InH8RzJk1g6/dcR9hn4eLF979O32Vrdydsgq9SgtAFpBrz+Cd8v28su1NHr336+OqwdOqG2rZcXgvJ/NP4XA4SE1JYdWi5SzJXeC121sXEwFECATeCiBDRBARJs14wscXhZpD+N5936R5cyu1jedQSAoyk9PGPWrhcDp4/s2XCetSckPa0uEW7wmmSLLtybxdup/3dn/Mgzd/6ZrPve/IflJUESNCyJA5kRkUV9dxqOAYt6+78ZrPbbVZ+fVzT9JYcJaVkTNIiTrfcK3W0sz+gwX8utfCE488TkdPF6XFp1kRkT0cQoYEafTMC8nk6ImTtN3QQWTo2BOBveX46VP8+fmnUXXYmWZKQKNUUZt/jqeKnqJsXSUP33qvV8KICB9CIPB2+LiYCCKCx01EAPmimPAoYsKjrvs8BeXFtJ9r5s64paP2mTFpDMwISubwkcPctfEWDNfQGdTtdtPa2kaeYWQzNLvLSUX3ObqtfVh6LVTX146r7qPFp6g+XcEdCUsJ1V3YwyU1OI5QnZk3SvZzuOgEBp0ee7+V5IixO8Mmm2M40FhOY1uzTwURS18vf3v1BaItWtanLxv+2cyKSKeyu4E9O3aSnZrBsrmLJq0mEUCEQOBLAWSICCKCx3gigEy01s52tC4lIdqxN2RLCIqksLeezp6uawoiCoUCvUGPpb1/+GPlXXV8VnWMwYEBDLKapsEOtn/2KREhYXx5652oVeqrPv/RguPEyKYRIWRIiDaIOEI4WnCcDcvWICkU2Fx2VIrR9VtddlAoUPtY07FDhcfpa+ni1qS1owJiRkg8Zd117D6yz+NBREw+FQKBL4aPi/nWs4/g9/whfFxMq9Fil1w43E7UitF/Dn2OQSSlclwraJYuXMKnb3xAniuL5v4OtpUfIM5hIs+QDS43dYoOjKZwdm77FEmSeOAabv/09fVjVhsuedysMdBr6SUrJRNTRAinO6pZGJMz6nGnO6oJjQ4nIzH1mr8+T6pvbiACIzrV2C/8KUHRnKqpxe12e+T2jBj9EAKBrweQIb5bmeBXhna9Ba5611tfkJs1E3WwgdKOmlHHZFmmqLOaadnTxrWqZN2ilZhTInm35gCf1hwjxKZhmTELp8NBg7WDqKgoFiXOZJEpkz1799La2X7V546MjKTV3nPJ4622bqKiojHqDaxduZpC6zlKOmqGdxd2uV0UtlVS7mph05r1aNS+9WKrVCpxyKN38h1idztRqZQTvopmrJ1vBcHf9Gk7L4QQpcKnQwiIICJch6Hw4Y8BZEhESBirV6zkaN9ZiturcH6+jX2ffZAd507QbXayZdWmcb3gRYaG88OvPYohK4rijip0LhUVfQ200kt0Qhw56dOQJInssGRcFiunyoqu+tzL8hbRo7VT3dM06litpZkujY3l887ftrht7VbWbd7AUVc1L1bt4O2qfbxYvZOTUj1bbtrKDcvWXfPX5mkzM7LpUdvoGBwdttyym/LeeubmzpmQIDIUPlSxxuHwIQKI4G+GwkeftvNC+PDxADJE3JoRrpm/3X65ki9tvh0Zmd179nC0pgKdpGZAchAcE843b/8as6eNvqVxtZJiE/jhg9+muuIsWVIa0YYwwswh6C+ab6JSKNFKKqw261Wfd3ZmDkuWL2Pnrn1M62tlWkgiSFDZ1UCpvZFFq5cxJ2sWcH504cFb7mXtopUcLT5Jb38fwUFmFs+eR2zk2JNYvW1O1iySpqXxcfExNicsJEx3/vfM5nKwr6EAR6iadYtXXdc1xO0XIRD4y+2XyxFBRLhqgRZAhqhUKu6/6R42LVvHqbIiBq2DRISGMT9nzoR0Vw01hxAZFYWrV0F8VOyo4xZbP4OSg6iw0Zv5XYpCoeDrd9xPfEwsO/ftpqLtFMgQEh3GHcvuYuuKDaPmTiTGxJMYEz/2CX2MSqXiew98i989/2feOnOIEIcWNSo6pH70UWa+ec9XSR/nvBYRQAR/54mN57xJkodaFvogi8VCcHAwp3/yFiad8cqfIIxLW28Xh6sKqWyqPd+dMzaZxemziTKFBWz4mGwvfvAau979hNsTl2PSXJhkKssy2+uO0Rur5Bf//H/RarSXOcvYHE4Hja3NyMjERcb43HyP6+F0OjlVVsTps2U4XU4SouJYnDv/mvvGiPAhBAJ/Gv2wWHpJjp5OT08PZvPlXzvEiMgUV1B/hhf3vIujx0qiMgwk2FW9j4O1RTx861eYT4IIIBPgptU3UHqmnLdK95NjTCQ+KJI+xyBFndX0h8K37vj6uEIIgFqlHtXWPVCoVCoWzJzLgplzx/f5IoAIAcCfAsh4iCAyhbX1dvHCnneJ6tOyKmo+KoUSdYgRl9vF7uYCnvv4NVJzMohFBJHrFRxk5h+/+X3e3/0xB48cprivCYVSyfQl09myeiM5aVneLjFgiN4fQiAI9PBxMRFEprBDVQW4eqxsmLYKpUIJgNKgQQmsS1/Ii2c/Y8+JQ3zphtu8W2iACA4yc9+Nd3Pnhpvp6u1Br9WNuzW9MJoY/RACwVQKIENEEJnC6uxdpJhjUSqUKA0jn7iVkoJkbSSlZ8rgBi8VGKB0Wh2xEzAJVjhPBBAhEEzFADJEBJEp5uLJp/JRNwqtelQIGSaB7PbZuczCFCbChxAIpnL4uJgIIlPEWKtfcnJn8UnF+7jcruFbM0Pcsps6WxvrshZOap2Cb5Flmar6GgrPlGB32omNiGHBjDkj+qBMJhFAhEAgAshIIogEuMstv10xbwk7du9kV/0p1iTmofx8czG37GZ3fT5SmJ6VeUsmtV7Bd/QPDvDUa89ReOoUqn4ZrUKFRbLyRmwED9/zAHOzZ01aLSKACP4u0Hp/TCQRRALQ1fb+iI2I5mtffoi/vvQsL1V9RpI2EgUSNbY2pDAdX/3yg8RHj27AJQQ+WZb509+f4fSBE6yOmE1KdAySJNFnH2R/YyFPPvsU//Tdx8fdVOxqiPAhBAIx+nFlIogEkPE0H1s4K4+Ex2PZc+IQpeVlgMyazDxWz18uQsgUVlFXRdGpAtZF5pJsvtAGPkijZ2PyAl4/u5ttez8lLyeXcy2NqJRKZqRnk52aed37v4gAIgQCEUCunggiAeB6u5/GRcVy7+bbYfNEViX4s4LyYrQDMkkx0aOOKSQFCeowXnz9FY5EHyAEAw63kw/075M1M4dv3/vV6+p8CiKACP5JhI/x8eh3au/evdx0003ExcUhSRLvvPOOJy83pVy88+3QrreiA6owUWwOO1pJPeboRv/gAI31DUj9Tm6NWsLdqav5cto6NppyOXv0NL974SlcLtdVXWdo11tA7Hwr+K3hXW/Br3a99RUe/W719/eTm5vLH/7wB09eZkoZCh+ACB+Cx8SER9HNIFanbdSxhtYm2ga6SQ9LINIQAoAkSSSYItkUN4+K0+UUVpRc9vxjBRBB8DcigEwMj96a2bx5M5s3i/H+63XxrRcQm88Jnrdo1jzein6XA03FrE3IGzEyUtFUQ5vUz6aYOVjsA/Q5BjCodITqTEQbwjA3qSkoLx61qkbM/RACgbj9MvF8ao6IzWbDZrvwDsxisXixGu8TO9/6D7fbzZnas3R0d2LQG8hJmzbuTex8gckYxAN3fZm/vvAMb1btISckBb1KQ62lhX2D5YSazNT2NHOwpgC3y41CqSA2JJLlCbloJRV2h334XCKACIFABBDP8akg8tOf/pSf/OQn3i7D60QA8S8lVeW8/O7r1FfV4rDaUaqVhMZEctPGLaxbtPK6V5F4y+LZ8zF/28T2/Ts5XlyM2+EmLCGcaGUSLeV1hFm1LNalEqo2YnENUtJaz+s9O5CC1KyOjBYBRPB7InxMDp8KIk888QSPP/748L8tFguJiYG5vfkXifDhnyrqqvjNX/9AULvMlui5RBvC6LUPcKq1ghdeehGX282mpWu8Xea45aRlkZOWxYB1EIfTgckQxKP/9Y8MFDexMjgLs/Z82AhRGUlQh/FO1zFqNZ0sW79ShA/Bb4kAMrl8KohotVq0Wv8dzh4PEUD82zuffYi21cGN6SuHO9OatUZWJcxB2VDIex9/wIq8xRi81BJ9opyvX09TWzODnb3Mj5lOY08XvY4BTBoDbgV0W3tJ0IdjDdbTOWghhniv1NrU3MzxUyfo6+8nPCyMhfPmE2wOpvZcHfUN9ShVKnKysgk2i52PhZFEAPEOnwoiU4WYfBoY2ro6KD1dwvKIjOEQcrG5UdMobdhNQXkxS3IXeKHCidfR04XL5mRJ1iJ6B3tpaGikeaAXSZIISQhnRcJs2loP09HZMem1uVwuXvz7y+z48FPkLisGhYY+2caz5mfQmvU4ugdw9tpAAYaIYFZvWsu9d96DWq2e9FoF3yHCh/d5NIj09fVRWVk5/O/q6mry8/MJCwsjKSnJk5f2SWL0I7D0DfThdjgJDTKNedyo1qF2K7H0901yZZ5j1BtQBWnoV9lJiEsgMSkJh8OBJClQqVT0WPuQ1EqMxqBJr+21t9/kk1feY5F5GjnTUlEqlFgG+njjwDZO9dVxw6wVrM9agN3lpKS1io9ffIfe3j6+841H/HYejzB+IoD4Do8GkePHj7NmzYX740PzPx588EGeffZZT17ap4gA4h8sfb0cKT5Bc3srWrWGOdmzyExKu+SLVHCQGaVWTetgN+H60cP8Fls/TqWbMHOIhyufHKpYIxkx00nITCG/uJK4kGhAQq2+MBfkVFM54YlRzJyeM6m1WSwWdmz7hDmGVGZFZwx/vL21lVRnKDqdkrqORkgHnUpDXlw2pg4j+z7bx8Z168lMz7jM2YVAITae800eDSKrV69GlmVPXsJnifDhXw6cOsILb7zCQFsPoRgYlO1sM2xj1txcvnXPwxj1hlGfExYcyuzcXPJ3nyAjJB614sKfkyzLHGspIzQ2ktnTJvdFeSKNtfLljnvu4nd1v+azs0dYkDCDEJ2JPvsAJxvLOavs4OE7voFGM7kTVYtKT9PX2sPMtIUjPt7c2IRZZSBUE8xnltO09ncRExQOQEZYAkfKSjh64rgIIgFOjH74NjFHZIKJAOJ/iitLefqlZ0keNLMkaS06lQZZlqnrbWHXgRM8JSn4wQPfGnNk5Pb1N/LzygreqtrHvIhpxBrD6LH1k99WQavRytduetgv+4lcbuntgrx5PPKD7/DqS6/weu0+FA5wKyEkIYIH7/oa61ZP/iohm9WKwg1a5YX5HrIsY7c7CFYaUSpUyDI4XM7h45IkYZJ0WHqndr+iQCYCiH8QQWSCiADivz7e+xnBFiWrU+cOhw1Jkkg2x7BKdrP7VD416+tIjU8e9bmJMfH86Jvf57WP32F/8WmcFjsKtYr4rES+vfFGFsycO9lfzrhdy8ZzyxYtYcHceRQUF9Hd001QUBBzZs5Gr/fO6qDYmFgkg5rmvg5iTRHA+Z+hTqdj0GKjV+49399Ff2E+j1t20y0PEhYa6pWaBc8Q4cP/iCByHUT48H99A/2UlZWxMCR5zBGPFHMsyo7TFJ4pGTOIACTHJfLjrz5GU1sz7d1dGPV6UuKSUCj840lwvI3HNBoNC/LmeaKka5Y9LYvk6ekcPFHELdNWolIoAYiNj6Wk8zTl9hYy0tMI0ly4xXa6tQo5RMPSRUu8VbYwgUQA8V8iiIyDCCCBw+F04Ha50WnHfgGWJAnNF1qWX0psZAyxkTETXaLHBFLnU0mS+OrDD/PL1l/y97LPmBGaQojORKOri6PKc/RIAyw0hmKx9mN3OShpq+aMs5nNX7mVxPiEK19A8FkigPg/EUSukuj94dtsdhtHi09ytOAEvX19xERFs3TuImZlTr/s0kyz0URoeBjnmlpJMceOOt5rH6BPshHnRwHjcgIpfHxRRlo6//of/8q2Tz7m6P5DOKwNGKKCuP+WR+jt7aXo2ClKGvchKSXCE6P5ypaH2bxhk7fLFsZBhI/AIoLIFYjRD9/XZenm1889SfXpCqLlIMxqIyVFtRzaf5ClK5bxtdvvQ6Ua+1ddqVSyauly3nrldbIGkogyXJgv4JLd7GsoJDQhivkz5kzSV+MZgRxALpYYn8AjX/06D33lfgatgxgNxuGGZd093TQ0NaJSqkhLSRWNzPyQCCCBSQSRSxABxLd09HRR21iHJCnISEzFdFHDrL+9+SINBWe5I2EpoboLkxGrehrZuXMP8dGx3Ljq0u98Ny1dS2nlGd4/dpRUVSQJQZEMOK2U9tThjtTxnXse8MuVLzB1AsgXjbVdREhwCCHBId4pSBi3QOn9YbH0cmDfYQ4fOoKlr5f42DhWrFzG/IVzUSqV3i7Pq0QQuYgIH77H0tfLK9ve5Njx49gs/SBJGENNrFi2nLs23kJzeyunC4tZGTljRAgBSAuOo6GvjZ37d7Np2VrUqrHfAWs1Wn7wwLfYmb2PXQf3cri9GoVGybyNS9m4bM0lJ6n6qqkaPoTAEkijH81NLfzyF7+hsr6SoBg9eqOOYxXnOHzyCKuXruKR73x1So/QiSCCCCC+ymqz8uvnnqT2VDnzQzNJT4jDJcuUdday/d2PaO/qJCc9C1e/nZSosedwTAtJ5MPWUzS1tZAUe+lJiVqNls3L13PDsnUM2qxoVOpL3s7xVSKACIEgkAIInO9n85c/P8PZ1krmbs5Bq7/wt9nR1MWOAztJTk7kplu3eLFK7/KvZ9oJJgLI9XO73VTUVdHTa8EcZGJacvqELVs9kH+Us4Vl3P6FWy7zorOItITw6ZFjGD7veCpxiQmpn3/4ajv8SpLkVzvlXkvvD0HwVYEWPi5WceYsp8+UkLkwZUQIAQiPDaUtsZMdO3dzw9YNU3ZUZMoFERE+Js6psiJe//AtGmrqcdkdKDUqYpPiuXPLrcyfcf2NvA6eOEy8FDLqlgtAkjkaU5uKjq4OFEY1tb3NY656qeiqJyQ6jLhLjJj4KzH6IQSCQA4gQ2qqa7G5rIRGj96PCiAmOYLaw820NLeRkBg3ydX5hikTREQAmVj55cX84W9/IqxbxY3ReUTog+m09nLsbBl/fOYpvvPwN687jHR1dhGvu/TPKlQVhAKJ6TNy2H+kiFCtmWDthRfoOksLZfYm7lh21yXnh4xXS0cbtY3nUCoVZCSlERw0Ob9TIoAIgWAqBJAhkiQhA8gw1sCt2y0jSRLKAP8+XE5ABxHR+8MzZFnmzY/eJbRbydbUJcN9OiINIWxOXsRHtUd4Y9s75E3Pva7bNKFhoXTUN1/yeJezn6SQUG7fcBP/2/cHXi/dR4IUikltoNXWTYfaysLVS9m6YsO4axh1TUs3z3/wdw6XHqPX3oskSYTqQ1mft5p7Nt3qkdU1InwIgWAqhY+LZWVnYlAZaWvoICoxYtTxpqoWEuMSiY6J8kJ1viEgg4gY/fCsqvoazlXXckNU7qhmYZIkMT8qi/frjlNeU8n0tGnjvs7SeYt5vuBZuqy9o27P1Fla6NU5WJy7gPDgUP7lW//A4cLjHMk/Tl9vL6nRs7kvbyFzs2dP2JyV/sEBfvH87yhoLiJ5ehzZcSm4XG4a61r4+8E36bR08b17vzlh1xMBRLgadrudEwWnaGxqRKPWkDtrNkkJid4ua9hUDSBDkpITmT8nj70n9qIP0mEKPd96QJZlGs+2MNDsYOM31vvNlhCeEFBBRASQyWHp78NldxB2idsm4TozLruT3v6+67rOsjkLOTD7MO+dOsS8kAwyQuJxut2Ud9WR31/NvFVLmJGeBYBBp2ftwhWsXbjiuq55OftOHqawoZjcVdMxGHUAKFVKUjITCDIb2HvyAOurVjEzY/p1XUcEEOFqFZUU85en/kJ7dRMGpwo7Tl4zaViwYjFff/irGAyGK5/EAzwZPmRZpqG+ic6OToxBBlLTUnz+Rfxr33iAvr4+8ncVogwCrVFNf5cVnVvPHTfdytr1q7xdolf5fRAR4WPyBQeZUGrUtA/2kGCKHHW8fbAHpUZNsOn6fh46rY4fPvQdXol6g6PHjnOo4QwSEsYwMzdsuJE7Ntw0qU9A+/IPEhSlGw4hF4uIDqNKe44jRSfGFURE+PAuWZZxOp2oVKrLbgngS2rqavnNL3+NudXNnUnLCdGZcMtuznY2sO/DPbjcLn7w6Pcm9evx9OhHdVUNr77yJkUlxdgcVtRKNWnJqdx++y3MX5g34debKMEhwTzxbz/i5PECThw/RW9fH7F50Sxdvpj0jFS/+Z3zFL8NIiKAeE9qfDLJ6amcKCojLigchXThCUeWZY63lhM/LYHMpLTrvpbJGMQ373qIOzbeQl3jOSSFgvSElBGdVSdLR28nhohLv8PUBmno6u25pnOKAOJdAwMDfLZ7J7t27KKrrQOdUc/SVcvZtHY90VHR3i7vsj7a/gk09rM5ex3Kz3cbVkgKMsMTUUoKdu87SuWWs2SmZ3i8lsm4/VJTXct///evaLe3kDI3AXO4icE+K9UlZ/nf3/6OR7/9bZYsW+iRa08EtVrNoiXzWbRkvrdL8Tl+FUTE5FPfIEkSd225ld80/IH3qw8yLzLr81UzFk60ltMZ7OTRrbdP6GhFeHAo4cGhV36gB0UFR1LWUzrmMVmWsfbaCU+/co1fDB8ul4vKqrMMDA4SHRlFXOzoZchXq7unm70H9nMs/zhWu5X0pDRWLVtJ9rSsKf+u64v6+vr4+a9+ydkjp0lTR5FhSqKnvZ+dz73Hkf2H+PE//piUJN/squtwODh28AgzQ5OHQ8jFUkPjONBazMmCUx4LIpM99+OtN9+jzdrMvI2zUKrOf81avYbgldM5feAMr7z6GvMXzp2yvTj8mV8EkaBp8ZgM598Bi/DhG2ZmTOf73/gur297h+1nC3F1OlBq1CTmJPPY5luYkzXT2yVOuJVzl3LynQL6LAMEmUeOjLQ2daB1aFmSu+CSnz/W6Me+g/t5/f23qGmqxulyotfomTdjHvfd/eVrnnBYVVPNz3/3S6rbqjBG6tFo1RQdLGT7/k+558Z7uPu2O0QYucib771NzaESbk9ZTqj+wvNKniuLdyv28pe//pX//Mn/8cnvmcPhwO1wYtQYcDod9Pb1IUkQZDQN317SS2psNvuEX9sbk0/b2zo4VZBP0oy44RAyRJIk0nKTOP1pJUUFp8mbP2dSahImjl8EERABxBfNzJjOjMeyqW6oHe6smpaQ4pNP3BNh+dxF7C84zLEDx4nLjCY6PgK3201DbQsd1d1szdtEVsrod5+Xuv3y6a4d/OH5P6IIc5OxNBGdUUdXWzd7T++h+n+q+f9+/B/Ex11dgyO73c6vnvwNdf21LLhhNmrt+XeFsixTe6ael957ieTEJBYv8L2ha1mWOVtdxanCfKxWG7HRMSxesJCgIM/dfuvv72f/zn3MNKeMCCEAGqWaZXGz+ajkFGVnypmele2xOsZLr9djDg/h+NFCmuzVOK3nA4dapyE2IZ64hDi65UGioyZmSai3N57r6enB5rAPrzj5IoNJjxsX3d3XdmtU8A1+EUQ0UaM7awq+QZIk0hJSvF3GpNBpdfzDfd/l1Y/fYl/RQQrLz6CQJCKDInho3Ve4dc2W4RB2pbkf/f39vPjWy2hjlOTMvzC5NSYxioiYMI5+WsDbH7zLo9/89lXVduzUCc42VjJ7XdZwCIHzP5+UrEQ6morYvvsznwsiAwMD/Pnpv3Bi31FUfS70kpoeBnkt7lUe+NpDLF+81CPXbWlrZaC7l5TwsScWx5oioNFJfWODTwYRl8tFr22AosYyYo1zSDWen8/SY+2jtvwsB+sL0c+OZMmCRdd1HV9ZemsymdCo1PT3DGAMHj1Py9pvRYECs1m8VvgjvwgiguArTMYgvnHHA9y54WbONTeiUJwPYkP701zt5NMT+Sdp6W4mb/GMUcdUahUJmTHsP3GAB3vvw2S68pPr2aoqFIbz7wzHEp0YTknFaWw2G1rtxDddG6+n/vZXTmzbz+roXFLj45AkCavDxoFzhTz12ycJCQ5m5vTR36PrpVKpkBQKbK6xb1043S5kSUbtoxsfHj91kv76TtLikjnZVYdlwEa8Ngyr0kHlYCune5r43opbMJvHN5LsKwFkSFR0JLNnzOJIyWEiE8KRFCNHXauKzxETEces3In/XRE8z/u/YYLgh0LNIcyelsPMjOmYUyNQxRqHQ4jCqLniCpjunh4UagmtbuzHmUKDsDqs9FgsE1Lv+S3/JJ+6bVZTV8uJ/UdYGTWLtLD44dp0ai1rU+dj6pbY9vFHHrl2Qlw8sWkJlLRWjXm8rL0GbVgQM3N884Vt/4H9xLhNPDz/ZuZNz+WcoZddjjIOy9WYEyOYEZfB4MDANZ2zT9s5/B9KxYX/fMStt99EsCKMkzuL6WrtQXbL9PcMcPpgOfYWN3fdeZtPhWzh6vlm3BcEP3A9S2/NJhNuh4zd5kCjHT3Lv6+nH61Kg/kqRkMAMjMykLdJ9FsGMJpHD1231LWzaNoSNBrfWSKcX1iAwuIkLSt+1DFJksgJT+HYySL6+vomfL6IQqFg69Yt/OXMkxxvKGVO7DRUCiWyLFPV1cDRrjOsuXszEeGjW3L7go7WdsJ1wWhVGlal5LEsKZc++wAqhZIgjYE9NSdpb227qnP52ujHpUzLyuDHP/oBL734KpWHzlLuqEalVJMQHc8dj9zC8pWeuY0neJ4IIsIVOZ1OTpUVcaToBD3d3YSHhbNk7kJmZUz3+Y6GnjARvT/mzckj0hxFdWkdWXPSRxxzOV3Un2lm8/wtVz20Pn9OHhkJmRQfLmfuyhloPh9pkWWZ6tJzKPpUbFq7cVy1eordYUcjqUb0obmYXqXDbXVjd0z8yg+AVctX0tXdzTt/f4uiMzWEoKdftmE3KVl00yruv/crHrnuRAgOC6HVdmEfJpVCSchF2yB023pJDE297Dn8JYBcbHpOFv/3v/6DyooqOju6MBgNZE/PFEt2/ZwIIsJlDVgH+d2LT3H6ZAHhTgPBaiMljrMc2n+ABUsX88hdD074zra+aKIbj5lMJu656S7+/MpTlDjPkJyVgN6oo6u1m8qiWqL1sdyy5aarPp9areYfvvMD/vu3v+D4x0XoI3RoNCos7f0YCeLB2x9g/lzf6jwZFxNLn8JGr20Ak3b0KM65nmZCEsMwX2eH3kuRJInbbrqFpYsWc/DIYdo7OzAajCzIm0dGWrpP3cb6oiWLF/PnPcfoGOgh3DBye/m2/i5alf3cvWTJqM/zx/DxRZIkkTkt/coPFPyGCCLCZb38weuUHSngxpj5xBjDhz9ea2nms10HiA6P5K6Nt3ixQs/yZOfTrZs2o9FoeP2DNzm9sxKHy4FBY2Bu+jweuveBa26mlZyYxM/+/b84cOTQ+YZmNitpOWmsWr5iUrprXqv5c+cRlhzD3ppTbM5cMmJkpK2/izO2Ju5Y9xVUHp4wGh0VzW03+dfv8OIFi9i1cDfvHzjA4sgcMsLP95w5017H0Y4ypi/PZWHehQ6egRBAhMAlybIse7uIS7FYLAQHB9O0owRzkFiWNdk6err4p//6d/LcCcyMGD3Me6SphJrgPn7xL/85vGokUExm63WbzUZJeRmD1kGiIiJJT03z6XfjE+lUYQG/+9VvULVYmR6aglGto97SSpWjhexlc/nRDx9Hpxu9t49w/vnxuZde4Pj+I1i7+kECXaiRhSuW8MCX70OKcIz8BBFAhElksfSSHD2dnp6eK95iFiMiwiVV1lVh7eljWtLYHT6zwhIpaj1MTWMdOWlZk1zdxPPWvi9arZa5s3Mn7Xq+ZO7sXP71//dvfLT9E04eOobL6SIsNZy71j3ApnUbRAi5DLPZzGPf/i4td9xJRdXZ87cs0tIxJKiAz0OICB+CHxBBRLgkWZZBBsUl3p0rUAAyPjyodlXExnPelZ6axqOPfBv7w1/DbrdjMBim5CTo8YqOiiY6KnpK335pa23nTHkFbrebpOREkpITfX5UsbGhiX17DpJfUIDL5SJn+nRWrl5GWvrlJxkHIhFEhEtKjU9GazZwtruBrLCkUccruusxhphIikkY47N928XhA0QA8QUajWbSlxdbrVZkWUan0/n8C9dYpnL4ABgYGOTlF/7O3gP7sQxYQJIxaIzMmZnLw1+7n8go31x+ffJ4Pn/445/pGGgnJN6EQqHg3Z0V7Ni9i4ceuJ91G1Z7u8RJJYKIcEnR4ZHMmTuXI7sOE20MJUR7YZ5Oy0AnhX01rFt3Ayaj5/YEmWhi9EOQZZmjJ47z6aefUllaDjKkTEtn/Yb1LFu0xC8CyVQPIABut5sn//AX9h3bR8KsGLJSk1EoFLQ3dnIo/xAdv+jgX//9n3yu7XtnRxdP/ukvDOr6WLg+d3j0T86Tqcyv4ZnnXyA5JYmMzDQvVzp5RBARLuuBW+7hV53tvFF8gAQplBBtEG3WHloUvcxYlMsd669+iak3iQAiDHn7/Xd56/m/EzGoY0FYMhISZ4/U8sdTv6X2S3V8+a57fDaMiABywemiUo6cOMq0pamExYQMfzwyIRxzuIlTH5Wwf89Btty0yXtFjuHAvkO0WdpYcPOsEbcgJUkiY04KxxoK2bN7vwgiwsRxu93UNNYxaLMSERJOdHikt0u6JsFBZp745g85VHicQyeO0NHTQ2R4GrfOW8zCWXk+3UNEhA/hiyqrzvLOK28wV53M3KQLE6yzI1M43VrFR2+8R+6sWR7Z32a8RPgY2/GjJ3FpnSNCyBCtXoMp1sC+/b4XRCoqzqIP16BUKUcdkySJsIRgTpeUeKEy7xFBxIOOFp3k3U8/pKH2HG6nC5VOw8xZs7hn823ER8d6u7yrptPqWLNgOWsWLPd2KVdFBBDhUvbu34e628Wc7GmjjuVEplJcVsWefft8IoiIAHJ5lt5eNIZLv4QZzXp62nsmsaKrIymky07wd7vdKKfYZO2p9dVOor0nDvHk357CfaaTG0y53BO9nKWqdCr25/OzP/8vTW3NVz6JcE2udeM5Yeo5V1tHnDZszFsvkiSRYIikrqpm8gv7nK9vPOdLIiMjsPbYLvmibunoIyY6ZpKrurLp07Oxdjpw2Byjjsluma56C7NnzfJCZROnrHs7FT07r/rx4jfcAwatg7z+/psk24O5IXkRcUERmDQGpoUmckfqSmx1Xby70zO7ik41Q+FDFWscDh8igAiXotXpsLpslzw+4LSi009+75Lh8AEifFylRUvmo5eMNFa1jDpm6ezD2u5g5cplXqjs8pYsW0h8eDxF+8txOpzDH3e73JQeqSBYE8KqNSu8WOH4lXVvp6x7OwAK6epv24tbMx6QX15MT3Mnm+NWjnrnpVGqyQ1J48TJE1i23ik6xo7TVLr90tvby4Ejh8gvLsDhdJCZmsHKpSuIi/Wf23u+Im9eHs/uPkq/fRCjZmQ3YKvTTp2jg3sW3Dhp9YjbL+OXlp7K5vWbeOej97B09BGfHo1CpaS1rp3Wig4W5y5mybKF3i5zlOBgM9/7/nf47W/+yPH3i9CHa1EoFfS3DxKmD+eRR75OUrL/tEQYCh5DlNLQ87Fz9IMvQQQRD+iydKOVlQRpxm57HmkIwdFTTU+fRQSRazCVwseQqppqfv67/6G6tQptmBqVSsn+on28s/09vnXfN1i9YpW3S/QrSxcu5qPsj3i/ZD8bkhcObxjXPdjLZ7XHCMuIZeUyz86FGit8uN1u7FYrGo1GNHO7SpIk8ZUH7yEiKoJPPvmUs/vrkWWZEHMI99x8N7fcfiNardbbZY4pKzuT//fT/48D+49w+nQJbpeLzFWZLFuxmOiYKG+Xd1UuDiAXwsf4iCDiAUGGIGw4sTpt6FSj/xC6rX0o1SqCDMYxPlv4oqkYQAAGBgb4xR9+xbmBGubfMBON7vzX7na7KTtZyR+ee5LYmFiyMkdPvBTGFhQUxD88/ji//d3veLvsICaHBmQZi9pObE4Sjz32GCHBIR659lgBpLurmx2f7uHAp/sZ6OlHbzawZN1S1m9cQ1h4qEfqCCQKhYLNWzewfuNq6s814HK5iY2LwWgcvZuzrwkOCWbLjRvZcuNGb5dyTSYygAwRQcQD5mbPwhBuJr+tksWxI2ffu9wuCjrPMmtlLqHmEO8U6CemagAZcuT4Uaqbq5i7cfpwCIHzT77T52Vy5JN8Pt21QwSRa5QQH8//+8//5FRhAWcqK5BlmYy0dObNmYtaPbHL0UeEDxhx+6W9rYNf/ddv6CisJ9MQR4Qxis5WCzue+oCTB07ww3/7vt+8O/YWp9OJzWZHp9OSmpbi7XIClifCx8VEEPEAkzGIGzdt4bXXXsfZ4CI3MoMgtZ7mgU6OtJTijNJy05obvF2mT5rq4eNiZRVnUJokdIbRkyclSSIyMZQTxSe9UJn/U6lULMibx4K8eR45/9XM/Xj1hdfpKWjkzsyVGDQXfsazHRm8e3o/Lz37Ko//8/c8Up+/a2ttZ/vHO9i7bz+DNismYxBrVq9iw6Y1BIcEe7u8gOHpADJEBBEP2bpyIyqVmg8/3UZp0z7kz/uIJOQk881b7iE9ceptbHQ5IoCM5na7uVyDT0lS4Ha7Jq8g4YqudvJpa0sbRQcLWBSZOSKEAOjVWhZEZ7P/6Gka6huJT4jzVLl+qaG+kZ//7H+pbashMi2MMHMQvZ19vPj2Sxw7fpx//KfHCY8I83aZfm2yAsgQEUQ8RJIkbli2ltXzl1JSVc6AdZCIkHCyUjJ8tn30ZBMbz11eemoajr1u7DYHGu3oWwbtDZ2snbneC5V5X0NjI7X1dSgVSqZPy8JsNnutlvGsfGlqbMZhsZKcOnafi6TQaBwVhTQ1NosgchFZlnnu2Zc4113HvC2zUGvOv4TFpESSlG3j1GclvPbqW3z70a97uVL/M9nh42IiiHiYTqsjb3qut8vwKWL04+osW7SE195/g+LDZeQuyxluCS3LMtWl51Dbdaxfvc7LVU6utvY2nn3heYqO5mOzDCApJIIig1m9aR333H7XhM/xuJzrWXqr1qiRVAoGnXZ06tET2m1OO5JSMalfjz+oqz1HUUkxqfMSh0PIEK1BS8L0GA4fO8Ld7beLUZGr5M0AMkQEEWHSiABybUwmEz/45vf45R9/xZFt+YTEmVCplHQ2W9C7DDx42/3kzvTvDozXosfSw89+/gs6C+tYHp1DamYcDpeT061VbHv+bXp6LHznG494fMRxInp/pGekEhwfRkljNctSZ486frqlGlNcGJlZGeMtMyA1NjQzYBsgInbsFUUR8WE0F1XQ3NwigshlXLr3h3eIICJ4lAgf12f2jJn8/D9+yu79eziafwyH08nShatYu3I107OyvV3epNqxexctxdXcnbFmuBmZUqEkLy6bwVobb776GlqthrWr1pCanDKhgWSiG49ptVrW37KBN373KqYmAzOiU1EqlLjcbspaaykerOfWm+/EYBi7F9FUpdGoUSqU2G0OtPrRzyd2qwOFQolGI55rxuILox9jEUFE8AgRQCZOTHQ0X7rjbr50x93eLsWr9u3ZR5ouZkRH1I6BHj4o3UdrZxuDlh5e/8Pz7Nm2gxkLcvnWN7553T1BPNn59IYt6+nr7WPHm5+SX1aFSdLTJ1txh6pZf/8N3HjL5gm9XiDIzskiIiSC+jNNpOcmjzpef6aJhJg4UtNGH5vKfDWADBFBRJhQIoAIniDLMj1d3aToLkzu7LcP8kbBp7i7rKwz5mDVD2AOjyLIEMqez47zP/39/PsT/3rN744v1/tjIikUCu6+93ZWrFrK8aMn6emxYDIFMX9hnpigeglGo4EbNm3kxddeRqtvIi4jGoVCgcvpoq6sgYEmO1u/vhmVSry0+Xr4uJj4aQnXTYSPqc3hcJBfVEhTcxMajYbcmbOJjZnYXU8lSSI8MoK28q7hjxW1VNLX3cut5vnolGoqBnrRaXWkhMZh0hp568QBjp06wbJFS67qGt7a9yU2Loabbt0yadfzd7fctpWB/kE+/mw79SWFqPRKnAMugrXB3H/PvaxdP7W3PfCnADJEBBFh3EQAEYpLT/P0X56m+Ww9OqcCu+zi5RAdy9av5KGvPDChe32sXL2SV4ufpcfaR7AuiLKWGpIUYeiVGrqsFmSNguio851Iww3BRDoNHDt+7JJBxGKxsHv/XvYc2km/pY+o+GiWrVvKwsXzUYsN6HyWUqnkvgfvYd2GVRw/epK+vn6Cg80sXDyfiMhwb5fnNf4YQIaIICJcE9H7QxhSXVvDb375a4wtTu5MXEao3ozL7aK8vY69b2zH6XDy3Ue+PWHXW7tyNYcPHeado/vIC8+kz9pPKEE093XQ5eonIT0JU1DQ8OOD1Ab6e/vHPNfZ7jJ+/dPf03a6gRRNJEk6I601dTx9qJhj607w7e9/w2c3TBPOEyNJ/h0+LiaCiHBVxOiH8EUfbf8YGvrYmr0OpeJ8jxOlQklOVCoqhZIDuw5w45atJCcmTcj1jEYj//ijH/Hya69ydO8hah0d9A/0EB4ZQkbSNJISk4DzK2VkWabV3sOS2JG3iPq0nciyzDN/eoH+4lbuyVw1orNps6WDjz45zoepSdx+180TUrcgTLRACSBDRBARLksEkGvT19dHflEBA4ODhIeFkztzVkBOnLPZbBw/eJRZYanDIeRiGeEJHCov4cSpkxMWRACCzcF8++uP8KU772bb9k/4+19eID4+leSw+BGPK22rwWqSWL50GTBy/sfZ6lrO5p9hXfysUe3VY8zhTO+KZ98n+9h68yYxKiL4jEALHxcLvGdI4bqJ8HHtZFnm3Q/f58N3PqCvuROVrMClhui0BO574H7mzZnr7RIvqaikmJ17d1NUVoRCqWTB7PmsW7WGtJRL74dks9lw2Z0Eacbuc6GQFBgkDYNWq0dqDg0J5Ut33EVHRzs7PtxDpqWFzLBEXLKbMx21VMsdrL5vHXEzwumTOkdMPq2tqUPuc5KQGDnmudPC4yltOUlLcytJyYkeqV8QrlYgB5AhIogIw0QAGb93P3yf1/76IjPVCeSm5qFXa+kctHDoTBG//9Vv+IcnfszM6TO8XeYo7374Ps+++Tw29QARcaG43W7e3PsGnx3YwWNf/S7LFy8d8/OMRiPm8BCaGtpJD0sYddzqtNODlajIsV/sJ4JSqeQ73/gWyUnJ7Nj+GR83FSBJEJ4TwZe2fJk1a1cgqUaP1igUCmRJxi3LKMdoeuZyu5AUEpIkJqwK3jMVAsgQEUQEEUCuU29vLx++/T4z1YksTpw5/PEwvZktmUt5u3wP77z7LjOyc3xqw8PTZSU89+bzmFN1pOVkDX88Y5ZM8dFy/vjsk0xLzyAqMmrU5yqVSlatW827f36VmYPphOhNw8dkWebwuSIMsSEsnr/Qo1+DSqXilq03sermRbS0tKFQSETHxaBQXDpEZGVnogzWUdXRQGbk6BGPstY6IjKjiY2L9mTpgjDKVAofF5uUyP+HP/yBlJQUdDodixYt4ujRo5NxWeEyVLHG4f8URs3wf8K1yy8qoK+lizkxmaOOSZJEblQGZwpKaW1r9UJ1l7Zr7x6sqgFSp4+cwyFJEjnzMmkfaGfvwf2X/PzN6zeRsnA6b9Xs4/C5YhotbZztrOf9M/uo1nZz34P3YTKZLvn5E6FP20mfthOVSkV8UjyxCXGXDSEAcfGx5K6Yy8HWUlp6L8wdkWWZ0pYaquR21t64JiDn9gi+qax7+3AIUUqaKRVCYBJGRP7+97/z+OOP86c//YlFixbx61//mk2bNlFeXk5U1Oh3WoJnidGPidc/MIBKVoy5iypAsDYIV5+T/oGBSa7s8korSwmLDR5zlEapUmIM11FRVXnJzzcajfzTj37Mu9s+YO+O3ZR0FaBQKchclsUDW28kL3eOx2q/3uZjD3z9KzzZ188HB44Tek5LkEpPh6MXe7CC9ffdwLoNqyeuWEEYg69tPOdNHg8iv/rVr/jGN77Bww8/DMCf/vQnPvzwQ/72t7/xz//8z56+vIAIH54WHhaOUyXTPdg74hbFkOa+DjQGLWGhY+8Y6i1KpRKX033J4y6X64qjAkFBQXzl7i9xx8230tnVhUajJjws3CO3oCay86nJFMTjT3yPwvxiTh7Pp6+nj8yYCJYsW0haeqpP3UITAstUvf1yOR4NIna7nRMnTvDEE08Mf0yhULB+/XoOHTo06vE2mw2bzTb8b4vF4snyAp4IIJ7X0NhIxdkK2qw9vH3iM27KWUF46IUXYqvTTkFHJfNuW3XdG7BNtPm583npkxdxz3GPup1ht9qxdTnJnTF6i/qx6HQ64mJjPVGmx1qvq1Qq8ubPIW/+nAk7pyBcigggl+bRINLe3o7L5SI6euSkr+joaMrKykY9/qc//Sk/+clPPFmS11j6ejlUeJzG1iZUKhWzMnOYnZlzxfvZ4yECiOfJsszb77/LK++9isVpwR5u42hDDY37m8mLnsa8nDm0DfZwqr0CY1YUd9xym7dLHmXtitV8vPsTCg+VMnNhFir1+acDm9VOwf4SUqNSWbJgkVdqm6yN5wTBk0T4uDo+NRvriSee4PHHHx/+t8ViITHR/9fxHy48znOvvchAm4Vw2YBNdvKpZjsZOdN49L5vEBZ8/UP2InxMrn0H9/PsW88Rmh5ETvYcFAoFLQvbKNh7mvdKj3KooIrM7Gnk3bKCO2+7Y8I3gZsICfHxPP7ID/jd07/n6LZCtCEq3G4ZZ4+blKhUfvzo4x6fbPpF3tp4ThAuJssydbXn6Om2YA42kZySdE2360QAuTYeDSIREREolUpaWlpGfLylpYWYMZ6YtVptwHUyPFN7lr++8AzxA0aWJa5Bpzr/S9ky0Mn2Uyf4g/RX/vVb/zDukZGrDSBOp5OBgQH0ej1qtXpc1xLOk2WZ97d/iCIU0nKShz8enRjJhi+voup0Ha2lXfz4iX8iZ/p0L1Z6ZfPn5vHr//wf9h86SGX1WRQKBTOycliycBFGo/HKJ5ggIoAIvqK0pJy/v/om5ZXl2Jx2NCoN09Iyuevu25k1O+eynysCyPh4NIhoNBrmzZvHjh07uPXWWwFwu93s2LGDRx991JOX9hmfHtyNttvF2rS8EYk62hDGxth5fFByguLKMmZPu/wv+MWuZeO57p5utm3/hH07d9Nv6Uet07Bk5VK2bNzssXv6ga65pYWz9VUkzh39/ZMkibScJFrOtlPXcM7ngwic71K6btUaFAoFuw7s5kTRST78bBtrlq1mzYpVHhsV8dXw4Xa76ersRpZlwsJDPXL7VPBNJafL+OX//JpeuklZkIgpNIi+7n5Ki0/zP7+q4/EffI/Zc2aO+BwRPq6fx2/NPP744zz44IPMnz+fhQsX8utf/5r+/v7hVTSBzOVyUVBYwCxz4pjDetHGMIzNSooqS64qiFzr7ZeOzg5++rOf0VJQzXRTIlHGeLr7eznwyiecOHKcf/ynfyQ1OeWavibh/M/VLbtRjtG1EzjflVOhwOVyTXJl42OxWPjpr3/OqYqTGKP1mOOCqLfU8IdX/8ieQ3v5lx/+E+FhE7e9uq8GEFmW2bNrPzu37aK5qhGQiUqOZc2W1axZt1IEkgAnyzKvvfomvVIPeetmISnOP2eHxYQQGh1M/q4SXn31DWbOPj+3TwSQiePxIHLPPffQ1tbGf/zHf9Dc3MycOXP4+OOPR01gDUQutwu3y4VWeelbIWpJhdPpvOx5rjWAWCwWevv6+Psbr9FeUMvdGWswXrQnyMzodN6t2MfTz/yN//v/+4lYqniNoiIjiQiOoLW+jdDI4FHHu9t70KAhyU/mN7342iucrDpB7rrpGE2G4Y8P9ls5tbuIZ15+nh89+sPrvo6vBhA4/yL0yguvseOVT0hyh7I6IhuAqtIGXi55nnN19Tz41a+Iv5UAVltTR/nZM6QuTBwOIUMkSSJtdiKFu4+y/cQLpGSeHw0VAWRiTMpk1UcffXTK3Iq5mFqlJi4+ntqyFrLDkkcdH3Ta6JIGSIiOG3VsPJNP6+rP8c7773Lq0HH6e/spKy9nXdgscLjholNolGqWxM5ke3E+FWcrmZYxuiOocGkajYZNqzbw9FtP051kISTcPHzM6XBSfrKaGckzmZF99bfbvKWzq5O9R/eSkB0zIoQA6I06UmbEczj/ME3NzeOacOvL4eNiZaVn2PXGZyw1ZZEddeFvNTk0hsT2eva9vZu8eXNGDcsLgaOn24LNYcMUOnpuVLetHrfBjd3pYKDXIQLIBPOpVTOBRpIkVi9ZwbNlz1BnaSHJfGEUyC272ddQgCk6jMWz5w9/fLyrX85WV/GL//4Fztpu8iIysGpsNDmqUbfaOWU/Se6cOZiCLtzrjzdH4myy09TcJILIONx0w1bOnK1g//796CLUhEYEM9hvpbO+h+TwFL77tW/7xVB+XX09lkELaQnZYx6PToik5mQjtefqrimI+EsAGXJw32EMfQqyEpNGHcuISKCw7SwH9h4WQSSABZmMaNQa+noGCI06P9LZbasfPj7Yc37iqsGoG/F5breb6vIGKkrqcDpdRMWFMXteJjpDYC288CQRRDxsZd4SSs+eYfu+AyR0hpBkisbqslPeW48rXMMjX/oaRr3hupbfyrLMiy+9hFTXy93Z61AplDRa2gjSGYjShNPf20dlZSVzL9qK3ua0gwLUGpHsx0On0/Hjxx5n0YGFfLZvB/X1DYQYI7nl5ttZt2oNkRGe23V2IqlUShSSAqfTxVhPm06nC0mSUCrHng9zMX/u/dFc10y0NuSSt15i9GE01TZOclXCZEpLTyUjJZ2CU4fJWZWCJElIn2/HJssy50paiY+LInXahRHs3p5+Xn7qI8rKqnGpXCjVEs5+N5Fvh3HXgxuZnpvqrS/Hr4gg4mEqlYpv3f0QMzKz2X1oHycazqHUqJi3dBkbb7qB9JTzv6jX0/ujpq6WisIy1sfORKU4/4IRHRROsMlMZXcTs/VJNHV00d/fh9EYBEBRSyWm6DBm+eDW9P5Co9Gwfs1a1q9Z65XrDw4OcujoYY7nn6TfOkBKfBIrl60gPTXtqs+RnpJGVGg0DWebmDYnfdTx+rNNRJgjyM6cdslz+Nvox1j0QXo6HdZLHu+3D2Iw+VaLfmFilfd8yoIb4ih5Uk3Z/nMk5kRhDNUz0GPlXEkrUq+SG768bHik0+1289Kft1F8ppL0xXGYIwxIkoR90MHZk428+NQHfOcf7yE+WeypdiUiiEwCpVLJ6vnLWD1/GU6nE22Cefid10Q0H2tpbcU5YCUu7sK7cKVCwcLkWXxqOYDerkHjVjBotaLT6ylpq6ZgsJab77l70htWCROjuaWFn/3ul5TUnEYbpkajVXGk/BAf7PqQe2/+EnfcfNtVTazU6/VsXbeZv7z+VxpDmolNjkaSJGRZprW+nZaKdu6/8f4xf08CIYAMyVs0lxd2nMRi7cesGzlHYMBu5Zyriy8tudFL1QmedPHql5zcTB769m1se3MfNQdbcDgdqFUq4mKjuOGby5mZlzH82MrSc5SXV5OxJA5zxIXfGY1eTfaSJAo+qeTQrkLufGj9pH49/kgEkUkydOtl6Bs+kd1PDQYDCpWKXls/ofoLEydzYzKxOm3sKj9G10A3zedcyO0KCNay6d6buevW2yesBmHyuN1ufv2n31LaVMzcjTPQf37PWpZlasrref7tF4iLjWPpwsVXdb5bttxEe2cHH+/9mNrTDWiC1NgHnOhcerYuv5F7br9r+LGBFD4utmjJfHbM2cmHJw6zMmE2ceYIAFp6O9lzroDo2YksXrrQy1UKE+VyS2+n56aSNSuZmoom+iz9GIP0pEyLR/mF3/czxbW4Ne4RIWSIpJAITw6m4EQ5tz+w1i/mi3mTCCIeNhmt16dPyyI8KZqCcxWsTp03/HFJklicOIv2gW6qjRbW334bZpOZhfMW+GTLceHqFJWc5nTVaaYvyxwOIXD+552anUhXSxEfffYxSxYsuqpREZVKxTcf/BprV6zm0NEjdHZ3EmIOYfGChWRlTkOSpIANIEP0ej3f+8fv8pff/43tpwpRN8pIgF0PSUvS+eZjX8VkCvJ2mcJ1utreHwqFgrSs+Muey+lwoVRf+m9BrVNhc1lxu2VEDrk8EUQ8ZDL3flGr1dx82y08+/u/oKkrIC82G51ay4DDysnGMlr1g3z/scdYvWLVuM5fVVPN/sMHaWlqxmA0Mj9vHvPmzL3iFvGCZ5RXlONUO0YsG75YTHIU5WXl9PX1XfWtN0mSyEzPIDM9Y8THAz2AXCwyKoInfvJjzpRXUnnmLLIsk5aRyvScLNE/xI95qvFYZEwo9l4XTrsLlWb0ZO7u5l4S4uJQXaLxoXCBeCWZQN7ceG796rXY7Xbeef0tSqp3oEWFDSfG2FDuu+dhVi1fec3nlGWZV998nY/efA9lt5MolZl+l5X9H+4ka/5Mfvj97xNsHt3QS/AsWZYv+8KoUEjInz9uPKZS+PgiSZLIys4kK1ssafd3nu58mrtwGh+/d4Dq/CYyFsSP+Jvsbu7F2uZk8Y2zJvy6gUgEkQngCzvfSpLE1k2bWbl0OSfyT9JjsRASHMz8ufPGvXnZ7n17eP+lN1moT2dWdsbwH1pbfxfbDhzmT4an+MfHfyTeLU6ytJQ0JJuC3u4+TCGjbxc017WRlZBzzRORp3IAEQLHZLVeDzIbuPO+Dbz8t20UflZFZEowKo2SrsZeBlsdLFo0k7ylvr/XlC8QQeQ6+EIA+SKTyTTuWzAXc7vdfPLxJyS5QpgVnU57RzutbW04HQ70Bj15pjSOHc2npq5W7FczyebOziUzcRolR0uZu2omGu2FLQQaa5qxd7i44faNVxUQRfgQAoG39n3JXTgNc4iRgzsLOF1YiVuWiYmJYvEDs1mwYoa4LXOVRBC5Rr4YPjyhrb2NhqpzrAqZxqn8fLrbOtC4VKglJd1yGy4VtOkbOF1aIoLIJFOpVPzgkcf479/+guMfFWKKMaDVaehq7UVl03DHhjuueCtOBBAhEPjCxnOp0+JJnRaP0+HE6XCh1WvEKPE1EkHkKk2VADLE5XKDLFNdU4uidZDkoCj06s+XiSLTNWChp62YkwX53HjDFi9XO/WkJCXz03/7v+w9sJ/DJ47Qbx1gQe4SVi1fxZxZsy/5RCgCiODvLg4f4Dsbz6nUKlRq8ZI6HuK7dhlTLXxcLCoyEo3ZwJmTZ1ltyhkOIQASEi61hKyQqKqoxOVyXVULcGFihYaEcsvWm7hl602XfZwIH0Ig8IXRD8EzxLPSGFSxxuEQojBqplwIgfPD/0kZKZx1tDAgOUYcs7kdHO2rIC4iGkePlcbmJi9VKVxOn7bzQghRKkQIEfxSWff24RCilDQihAQgMSJykak8AjKW+XPy+DDkHXYOlhAzaCZKZWbAZaPG3YEuxMi6jPkctlXidru9XarwOX/eeE4QhojRj6llygcRET4uLTM9g4z0dNKc4TT3tlPZ34VOpWVBzBxyY6ZR1FJBcHQoMVHR3i51yhO3X4TJUFdbT1FBMXa7g+iYKPLm56LT6a78iVfJGwHEZrVjtznQG3VilYuXTNkgIgLIlWWmZzBtTg4NB0q5dcZqDBfNE2m0tFE62MCtG76EVjvWBvLCZBABRJgMVquVZ/76AvsPH2TA2Y9CrcBtlUmISuDrX3+I3LnX17jLGwGkobaVfZ+epPBUBS6XC7M5iEXLZ7FsXe6IrRMEz5Pk8bZfnAQWi4Xg4GCadpRgDrr+XWIvDh8gAsjVaGpu5he//AUtJXWkaiIxa4No7u+gSWEhb+1ivv+dx9BoxPdxMonwIUwmWZZ58vd/Yfu+z0jJiyc6KQJJIWHtt1J+vBq91ci//us/kp6Rdk3n9ebtl4qSOp578n16nb1EpoagNajpaeun51w/WRmpfPX7t2KY5DBiHbBRdLKSqrJ63G438clRzFmUjTlkfA0pva2vd4C1md+kp6cHs3ns7SiGTIkgIkY/rk+PpYc9+/dxcP9B+iy9xCbEsnLlSpYsXCz2m/Ewh8OBw+FAr9fTr+u6cEAEEGGS1NbU8cS//gfRs0OJTo4ccUx2yxz7uJD1C9bznce+cVXn8/b8D6fDyS/+/TnabZ1MX5GCQnFhqfugxUbZ7jq2bFnB5juXT1pNjXVtPP/k+zQ0taAKVqJQSNi6HYSZQ/jSQ5vImZs+abVMlGsJIgH9KiICyMQINgdz85YbuXnLjd4uZcoorzjDxzu2c/jUEeySlfjYONauWcXq9StF+BMmVcGpIgbdA0Qljt5/R1JIxGZEcvTEcb5qvf+S80WO1b6DzWrHFGxEq1N7dQJqWVENTS1tTFuTMCKEAOjNWsJSTBw5UMy6mxaN6Fo8UWRZxuV0oVQpkSQJ64CN5598n2ZLGzkbk9Eazn9vnA4XlcfqeenpbTz2z/cSkxAx4bX4ioB7RhPhQ/B3h44d4ZdP/5I+LESnRWDQGalrqOHJZ8opKS3nO499Q4QRYdJYrTaUGiWSYuwmeVq9BotrEJvNPiqIbDvyDPs/yqc2vwGcoDFryV2dzarN8wgyGyaj/FHaW7qR1GAwjx2aQmJNNJxrp6erj8iY0Am77mC/lSN7izmyr4ju7l50Og3zF81Aq9fQ0NxCzsYUtPoLwUelVpK1OImCjys5uu80N997/Vt3+KqAeTYTAUQIBE32On73wu9wmW3MX3ahQ2psahSdzd3sPriHmbNyWLs+cJ+UBN8SHROFa9CNbdCOVj/6ubWzuZvw0AiCgi48B5d1b6ckv5q3fvMZwZ0aloSnYQjS0tLTzckX8qkqPsfDP77VK2FEo1Hjcsi4XW4UY9zidAw6UCqUqDUT9/LY3zfI337zLmfOVmOK1WPOMGDts/Pxp/vpb7ZiSNSMCCFDJIVEcFwQJYVnRRDxZSKACP7u4smnR/edoNXSSt6KGaPatIfFhKCPbGbHjt2sWbdywvezcDgcFOYX09LcilqjZnbuTKJjoib0GoL/mb8wj+hXo6k4Wc2MpdNG/N71dvXTc66P2++9g4reHcMfd9kltj17gLgeE6unXfhdjjWHkhERwwf5p9jz0Qm23rNi0r+eaTOTMGr0tNZ2E5MWNuKYLMs0ne1kemY6waGjd7Yer8/ePUx5VRXTVyejN19YZRg/PZJPnzqGtd16yc9VqhU4+10TVosv8ssgIsKHEAjGWv3S1NyC2qi85L3p8LhQGs40YLfbJ3TZ9OniUp7+63PUNtYiq9zITpkgrYm1q1bz5fvvFku0L0GWZc6UV1JUcBqHw0FsXAwLFs3DaPTObQdPMBoNPPzQA/zhT3/mxPYi4jKi0ejVdDR20X2ul9TMcJIWnW9qODT3o7jgDP11vWxKnD8qMAdp9WSbYinYXcb6Wxah1U3uc3hEdCgLlsxk955jKJQSkYkhSAoJh81JTWEzaquaVZvmTVjQH+i3cuxwCVEZISNCCJy//ZKQE0XFqTq6O/sICRsdfrqb+lgw8/qWR/s6vwoiIoAIgeByy2/VGjUuhxtZlsd8InTYHCiVygmdI1JTXcv//u/v6FX2kLMuHWOwAbfLTWNVC+9t/wCXy8XXH3lowq4XKCyWXp763dOUHT6Nrl9Cq1DRzSBvJ77N/d++j/kL87xd4oRZtGQ+JnMQn3z8GfkFBbjcLpTGQdbfmMuydbMxGkeuauxs60HvVhOk1Y95vhhTCMWWJnp7+ic9iADcfO8qXC43x48U01DUjkqrxNnvIjQ4mLseXEPWrJQJu1Z7Szf9AwNEx8WOeTx9fhxnDtdy9lg9eRuzRvzdN5S3obSpWLBixoTV44v8IoioYgyoTBf2fhEEf3O1vT9mzsrhzXc1dLdZCI0KHnFMdsu0VHewacmmCd1k8KMPP6XT3s78zbNRKBTIMrhcLmJSI1EoFezat4cbtmwkITFuwq7p72RZ5i+//xsVnxWyIX4O8UmRSJLEgN3Kwdoinv6fpwn5zxAyMq+tt4Yvy5mRjSK+jpV9iTjtLszBwZfsRKrVabDLTpxuFyrF6Mf0221IKoVXQgiARqvmnq9tZOXGPMoKq7FZ7YRFBjMjLx1j0NjhabxUqvPLcZ32sW+vaHVqImJCcXdB/seVhCWYUCgVdDf2orApueHG5WTmJE1oTb7GL4KIwjA1N54T/N+1Nh+bnpPFnJm5HD14hGmLUwmNDkaSJGyDdsqPnSVYFcKGTWsmrD6r1crRE8eJzYhCQqKhvpGGhib6+/uQJImQkBA6e/rIP1kggshFzpRXUnqomA3xc0gIuTCPxqDRsTZjHm+V7uXTj3YGTBC5uPeH2RR8mUeC2+0mLNKMVeukvLmRGXGJI47LskxpRwMpaxIwBXu3WVdsYgSxiZ5dFhuTEE5sbBTNZ9sJjhz99bZUdxEXH8UDj9xIaWE1JQVncbll8mbMZNGKmWTOSJrw+WC+xi+CiCD4m/F2P1UoFHz30W8g/UEi/0g+lcpaFGoFrj4X0WGxfPO7D5OWnjphddqsNpxOB1q9gdKScuqbG1DpFOjCdMhuN209bbS0dXPi2CluvGXzhF3X3xUVnEbbD/FJkaOOKSQFWaGJFBzKx/4tu992Hr7WxmOyLHPyYCl7tp+gsbGVxp52mppaaWvpYvGMbHQaDX22QY6dO4sl3MlNmwPn1tXlKBQKVm7I45Vnt3HudAtx2ZEolQpkWabjXA8tZV2sX7eY6blpTM9N4/b713m75EkngoggTJCJar0eHBLMP//L45SVnqGo4DQul8tjkyCNQUZCgkOoqaij292JKcqI3nhhQp1Gp6XJ2cnR4ydoa20nMmpymirV1Z5j/95DnK2uRqvWMDt3FkuXL8Jsvv6tHiaCw+FAJ6ku+U5Vr9Yiu9w4nS78LYeMt/Pp7m3Hee+t3WjClcTNDydhUQRFO6r46HQ+xzurSIqPxqpyYkwycceDG0nPTvBE+T5pwfIZ9PUMsP3DgxRWnUVlVOKyutHIapYtncuWuyZ/9ZAvEUFE8BktrS1UnK1ElmXSU9OJix17cpev8cTeL5IkMT0ni+k5WRNyvktRqVSsWbWK//rVfxM0XTMihMiyTHtFF6GhIUhGOHTgCDffttWj9QB8+slOnn/pZfqcFoIiDTgdTg6ePMRHH33CDx9/lJTUZI/XcCWxcTF0S1YG7FYMmtGNsc51txAxPQq93n82T7ue1uvtrd18/MEBQtIMJM64sBv3sntm0dHQQ+FHVQQvjmDrhrlMz031SMdSXyZJEmtvXEjuoiwKj56hp6sPnUHLzLx04pOjAv7Wy5WIICJ4XV9fH8+++DzH9h3G1tWPjIw2xMjcJfN5+IEHCQkO8XaJowTSxnMbN6/j5z//FZ2lvahcKowRepw2F13nepF7JfJWzqK9sYumphaP13K6uJRnXngBQ4KanNm5w9087TYHhbtL+c2v/8hPf/aTCd16fjwWLJrH24lvc7C2iHUZI5eoNls6qHF1cPemG3z+BWai9n0pPHqGAfsgmdmj5xGFxwcTPyuCQauV3IXTxn2NQBAeGcyarQu8XYbPEUFE8CqHw8H//vY3VOwrYFFENpnTkpCAs50NHPrwAL/s6ODf/vlfvP7CMySQAsiQoCAjc+bO5mxLJbYWGy11XUiSgojocDKXphKdHElLTTtarefuMciyTGVFFX/87VM0WxqZnzgbLnoR12jVzFw+jcKPz3D86EmWr1zqsVquhtFo4P5v38fT//M0b5TuJis0EYNax7nuFmpcHczaOI8161Z6tcbLmeiN57o7e1EFKcfsVApgjjTSWdmD0+m65EobYeoSQUTwqmOnTlB6pICbkxYTZbywr8O0iCQijSG8cXwfh44eZs3K1d4rksAMIBdbuWI5LR81s/zWBditTlRqJTqjFkmSsHT2IQ0omZ070yPX7mjv5M9/epqC04UUFhQTlK7l5Kl8QoJDyMnJwvD5vBidUYciCCrOVHk9iMD5jqMh/xnCZx/vpPBQAW6ni4jpUdy96QbWrFuJWu1btx8uDh8wsTvf6g1aXIOX7n9j7bOh02tRBuDfjnD9RBARvOrIkSNEOA0jQsiQUL2ZOEI4ePCgV4JIoIePi61Zt5I9+/Zx+mAF0xdloA/SIcsyXa09lB+qYk72XGbPmfggYrVa+d9f/Y7immIyFiRT33YOQ4yGoCg9nW0dFBYWkzdvLhrN5y/qPnanIyMzjYzMNBzfcuBwONHrdT53O2aiRz/GkjM3nc8+OUxno4Xw+JHLe50OF111fWzetMLnvjeCbxBBRPCqnq5ugtWX7iUQqguip6tnEiuaWgFkSGxcDD/84WP86cm/ULT9DAq9hNvlRu3SsCBnAd/5rmd2/D1+9CQlFaXM3pCNwawnMi6CluZmwpODCY8PpaOui5bmVhKT4rEN2nH1yqSlp0x4HddLrVb79AiIpwLIkKS0GPLmTefQkULsg06iUkNRKCQs7QPU5jcTFRLO4tWB3aZcGD8RRASvioiK5LS98pLH2wZ7SIjxzC2Bi40IHzBlAsjFsqdP42e/+E9OHMvn3Ll6VEoV02ecX7njqXeyJ47now5RYDCf72aZkpNI0yfNdFR3E5YSjEqvpLW1ldjYGE4fOENCdAILFs3zSC2BYDLDx8UkSeLOhzag02s5eriY5tOdoJBQS0rSU5K444H1hEVevhGaMHWJICJ41bKlyzi4fS81XU2khI5crttoaaNV1c89y5Z57PpTcfTjcrRaLUuXLwIWTcr1+vr60BguvGBGJ0eQMy+LkpNn6GnoR9LK9Dps2OsKiQ+P57HHvo3BMLEtuAOBtwLIxbQ6DXc8uJ41WxZQWXYOl9NNVGwYaVnx4paMcFkiiAhelTtzFos3LOezD/Ywo7edaRFJKCSJio5zFPXVkLdxCQvz5k/4dUUA8Q3x8XEcLDpIxZmz9Pb2opAUhEWGsWTTPJqqWik/cZaEyCi+du9DLFuxhPCIsCufdArxhQDyRWGRwSz04OiH0+lCqVSIcBNARBARvEqhUPDtrz9CbGwsOz/5jNMthwEZU0QIW+68kztvuW3C5iaI8OF7JEmipvQcbY4WQhNNuN0yLR2tBOmNxMXEMy0jkyd+/GPmzsv1dqk+Y6LCR1/vAGeK67BZ7YRHBpM+PdFnV7U4HU6OHyjl8N5CWps7UKvV5M6fxtI1ucQkTE63X8FzRBARvE6tVnPXrXdw0w1bqamrBSApIRGDYWLamYsA4ptKS8r5ZMenxKZG0dPdw4DaRnBcEBqjTH1ZM7VtzXzr4W+QO1dMcoSJCyBut5tP3z3M3h0n6enrRVJKKGUFCfHR3PbltaRPT7zySSaR0+HkxT9t4+SpUvQRaoLTjTisTnbvO0r+sTIe/PbNPlezcG1EEBF8hk6nI3vaxLU0FwHEt+3asRebysrae5dRV9ZIVXEt7UUWZCBYH4rbJDN9xnQUiqn7s/NE749P3jrIRx/uJzzDxKzMVNQaFX1dg9QUNPPMH9/jkcfvIDE15rqvM1EO7SrkxKkS0pbEjti9Nj47ktIDtfz92U/40f95cMq1jQ8kIogIAWW84UOWZZoam7HZbIRHhPvM5mqBSpZl8gsLiUwKRaFQkJKTQHJ2PAN9gyCD3qTj5GfFVJ2tZs26qbchmKfmfnR39LJ35wkisoJJyL6wc3BQqJ6clSkUfXqWvZ+c4Cvf8vyeQlfD7XZzaE8BQbG6ESEEQKFUkJ4XT9mOOkryq5izyLP7MgmeI4KIEBCuZ/Tj5PF83ntvG2fOVuB0OQnSG1m6ZAm333EzYeGjG60JE0SWR7RxlxQSRvPI23Gy2z3ZVXmVpyeflhZU0Ts4QFrG6A0lFQqJ6IxQigoq6esdIMg0sTs9j0d/7yAd7T1EzBr7jYEuSINCJ9HS2DHJlQmXs6P0Taz9jqt+vAgigt+aiN4f+/ce5Mmn/oLTYCcxLxatQUtXSzcf7PqAM2cqeOJf/oHQMBFGJpokScyckcPegr2k5IzeDv588zI36ZlpXqhuck3mypfBARtKjYRSNfbfii5IS5erH+ug3SeCiEqlRFJIOB2uMY/Lsozb6fZIsz3h2uwofXP4/xtVYShU9qv+3Kl781XwW33azgshRKm48N81GhgY5MWXXkUZLjNnTQ4R8WGYQo0kZcczd+MMztSX8+H7n0xw9cKQNetWo7ZrqSqqQ5bl4Y87HS5OHzxDQlQiCxdP/NJtX1HWvX04hCglzaQsvw0JM+G2ydgHx3632tsxgF6vw2T2fggB0Bt1TMtKprW6e8TvyJDu5j7UqMnIEZNVvWVH6ZvDIcSoCsOouvYl9iJGCn5joiefnjx+ipauFuZsnj6qJ4FWryEqPZy9+/dz5z23+szuv4Fk1uwc7r/3y7z091c5VltIcEwQToeL3uYBYkNjefSxb2E0+sYL4kTyZu+PnDlpRISFUlPYTObChBG/93arg/aqHtavXYJW5xs9SQCWb5hL6W+rqDrZSMrsGJRqJbIsY2kfoOZ4M3NnTScpzXcm104FXxz9uF4iiAg+zZMrXzraO1FoJLT6sZ90QyLN1Ne2YenpFUHEQ7bctIlp2Zns23OAispK1Ho1eavmsHzl0oBqXuYrjcd0Bi033bmKV577iJJ9NcRmhKM1auhp6aOloovE6FhW3eBbLfSnzUjm7vs38c6ruyj4qAqNSYnT5kbpUDJ7RhZ3f22jaG42SSY6gAwRQUTwSZOx9NZgNOC2u3E5XShVylHHB3oHUSvV6EVLcY8a2sE2EPlKALlY3tLp6Axadn10jJr8BlxuFzqtllXLFrD+pkWEhPneirEFy2eQNTOFgqPltLd0o9aoyJ6dSlpW/JRe3j1ZPBVAhoggIviUyez9MTcvl+CXQ6ivaCZ5evyIY263m8aKVtbOX4vJFOTROoTA4ovh44ty5qQxPTeV9pZubFY7IeEmn5icejnmECMrNuZ5u4wpw9Ph42IiiAhe563GYxGR4WzetIm/v/06LqeLxGmxqLVqLJ19VJ6qIUwdztYbN01aPYJ/84cAcjFJkoiMESvChJEmM4AMEUFE8Bpf6Hx65z23olQp2fbxJ5woP42klFChIi0pjQcfuo/UtBSv1CX4D38LIMLEsNsclORXca6qGUmSSEqPIWdOGiq1/72sXhw+YPICyBD/+44Jfs0XwsfFlEold959Kxs2raW4qATroJWoqEhyZmajVI6eNyIIIMLHVFdf08KLf/6QxuZWFIbzE2Xdn8gkxsdw3yM3EpvoHxvxeWP0YywiiAiTwtcCyBcFB5tZtnyxt8sIeHW159i35+D5FTJqDXNyZ7FsxWJCQkO8XdpVEQFEsHT388zv36PD1kn2uiR0Qed/DwYtNiqO1PPs79/le//+ZYxBvjvJ3VcCyBARRASP8vUAIkyez7bv4rkXXqTP1Ysp2ojL4eLYi0fZ9tEnfP8H32VaVoa3SxyTJzaeE/zXyUOltHS0MXtzOirNhVFTvVlL9ookTn9SQ8GRMyxdl+vFKkfztfBxMRFEhAknwofwRaUl5Tzz/PPoE9Tk5OYO931wOpwU7i7ld799kv/++f/1qQZmYvRDGEvxqUqConUjQsgQjU6NLkJDSUGVzwQRXw4gQ0QQESaMCCDCpezeuQ+rcpCZuRkjmk+p1CpmLM8i/6NSjh4+zpp1K71Y5XkigAiX43A4UGkv/dKp0iixO65+wzdP8YcAMkQEEeG6TMTGc0LgKywuIiIxZMwOmFq9BpVZQeWZs14LIiJ8CFcrITGammMNyLI86vdZlmX62waJz4n0Sm3+FD4u5rEg8l//9V98+OGH5Ofno9Fo6O7u9tSlBC8Qox/CtZDdMlyhDfcYe5p5nK8HEOugncLjZygrrMZqtROXEMncxdnEJ0d5u7Qpa96yGRw5VERTRQdx00aujqkvbUMn6Zi3LGdSa/LXADLEY0HEbrdz1113sWTJEp5++mlPXUaYZOMJILIs09vbhyzLmM0msS+El7jdbkpOl9FQ34RKpSRnRjaxcZOzWdjsWbPYcXwHKTkJo37+tkE7zh43GdMmr827rwcQgPaWLp79w/vU1DWgDVOh1igpLj/D3p0n2HzzclZvmS/+lrwgdVocG7cu5eMP9tPV2Et4ohlZho5zFqQBiZtuX01CSrTH6/B274+J5LEg8pOf/ASAZ5991lOXECbJeEc/ZFnm4IEj7PhwFw0VdQDEZyay5oZVLF+5VDyJTqLamjqe+vPfqKiuxCk5cLtkgrQmVixZxv0P3YvBw/vprF67gv1HDlJVWEva7OSLJqu6OH3gDPGR8SxassCjNfhD+Bjicrl56c/bqGtpYMaGZLTG8/XKskx9aRvvv72HyNhQZub55kqjQCZJEhtuWUxcUiSHdhdSXVkPwMxpmSxePZucOZ4N1P4++jEWn5ojYrPZsNlsw/+2WCxerEa4ntsvsizz+qtv88kLHxLvNLMs7PwT5tkT9TxX8DfO1TVw7313iTAyCVpb2vjFL35Nc38jmctTCI4w43a5aa5t46PdHzEwOMAPHv+uR38WOTOyeei++3j+pZc5WptPcKwJp8NFX/MAceHxPPa9b0/Yipn6c43s23OA0yUlAISluJm3bDrR8WE+H0CGVJbUUV3TQMby+OEQAudfBBNzouhprebAzgJmzE0Xf0NeIEkSM/MymJmXgdPhBPB4R9VADCBDfCqI/PSnPx0eSRG8ZyLmf5wpr+TTVz9mkSGDGTGpwx9Pj4inrLWWXa9/ypy82eTMyL7ecoUr2PnZHuo7zjF/66zhJ0uFUkFcWjQanZojx45SXraR7OnTPFrHxhvWkTktnf17DnGmsgK1Sc3ctbksW7GEsPCJ2fPk8MFj/Pmpv9LYX4U55nywsXw6wKG9Rdzz4A3kLvTs1zhRaiobkTVugsLGDmeRycFUn6nHNmhHZ9BOcnXCxTwZQAI5fFzsmr6D//zP/8zPfvazyz6mtLSU7Ozxvbg88cQTPP7448P/tlgsJCYmjutcwrWZ6MmnB/YewtArkTM9ZdSxrMgkikqr2b/noAgiHibLMvsPHCQ8OWTMJ8zw2FCqlOc4daLA40EEIDUtxWP79zQ2NPHLP/w/5GAXc1ZloFCc7/Mgu2UqjtXz9+c+JjYxgqhY339Cl90ykuLSIx3nj8nI3pjhK3jcVAkgQ64piPzDP/wDDz300GUfk5Y2/vtjWq0WrVak+8nkqdUvjdUNxOhCxxw2liSJOH0YjdWNE3Y9YWyyLNM/0I8xVjfmcUmSUOoUDA5aJ7myiVXWvZ1PPj5Er72fOQsyUVz0Ii4pJDIWJFCwrZITB0rYfOfySavL0t3PyUOllBRWYbc5SEyOZt7SHFIy4y77efEp0bgHZQYsVgzm0T+7jvoekhISpsxoiM1qp7m+HYCYhAi0Ov+4xXatploAGXJNQSQyMpLISO+sjxYmzmT0/tAZ9VgcrZc8Pui0oTNOnT80b1EoFMTGxFDXWkNCZuyo426XG0evk4gI//tZfHHyaXVFE6Zow4gQMkShkAiK1nP2TP2k1Vdf08Izv3+Plo42jNE6VGolVQfrOHygkM03L2fN1gWXnN8xfXYKCXExVB5tIGdlyogunq01Xdg73Cy9dXbAzw9x2J3s2naMQ3sL6O45P2cwJNjMkpW5rNmyALXGp2YXjMtUDR8X89hPsa6ujs7OTurq6nC5XOTn5wOQkZFBUFCQpy4rXMZk9v6Yu2gOL+/Op882SJB25IqMAbuVOmcH9yze4tEahPNWr17Jn/5WhqWzD3PYyL+96tPnMGtDWLx0oZequ3aXW/0iuy9zq2ISb2PYbQ5e+NOHdNg6R+xJIssyDeXtfPjOXmISIi65wkKlVvGVb27hmd+/S9HHVQTF6FDrVPS2DiBZlaxbv5C8pdMn7evxBrfbzWt/+4TDRwoJTQ0iLff8KFJ7bTfvvbublqZOvvzNzSj9tI+RCCAXeCyI/Md//AfPPffc8L/nzp0LwK5du1i9erWnLiuMwRvNxxYvXciOGTv5sPAwa5LnEBV0fjJiW183u2tPETkjgSXLFk1KLVPdqjXLOXkin8N7jhCRGkJkQhgOu5PGihZc3fDAvV8hKtr3RzqvtPw2c3oyZe9X0dsxQGtNF4O9NlQaJVEpoQRHGelrGSRzQdKk1Fp88iyNza1M35A0YjRDkiQSsiPpburj8O7Cyy71jE+O4rF/uZeTB0spPFmBzWYna2Ya85fNYNrM5IAfDSkrqObY0dOkLoohJMY0/HHj7BiCo4M4ceQ08xZnkzM33YtVXhsRPsbmsSDy7LPPih4iXjTe8FF/rpHjR0/S399PSEgwCxfPJzIq4sqf+AVGo4HH/uk7PPWbv/JB0XEM584/GQ9oXcTPT+GR738Nk0mMjE0GrVbL9x//DunvprFrzx6q65pQSArSkjPY/JVNLPXhQHgtvT/mLsnmjec+5bPnjqEL06AxKXFZZWpKm1C4FaQmxTNvWQ42q526qmZcThdRsWGERQZPeN3nqptRBUnojGPXHJ5govJMHS6X+7Lv6INDg1izdQFrtnq2x4ovOnmkDMnIiBAyJCQ6iHPGVk4eKfOLICICyOX5/w02YYTxBhCn08lLz/+dAx/sRdntxKjQYXEP8n7Ee2z+0hZuvm3rNb8Di42L4d9/+i+cLiqlsqIKWZZJz0hlVu4MFAr/HE71V3q9nru+dBs33bqZ9rZOVCol0TFRPvuuejzNx86dbQY1mBP1aCPUqI2q85N1W630nrUSHR1O0bEK9u44SWd3D7LbjV6nY/acaWy9ewUhYaNf8MZLQuKKN4J881vvMzraezCEXHoyriFES0db9+QVNA4igFwdEUQCxPXefnnnzffZ+8pnLA3NZtr0RBSSAqfbRWFjJe/99W1MZhNr16+65vMqFApm5c5gVu6Ma/5cYeLpdDoSEi+/YsNbLg4fcG3dT91uN3s/PUlIipG5eRm0t3Rj6ekHIGF2DGTCqf1llJVXE5kVwrS8eFRqJZ2NFg6fKKC5sYNHfnwHQaaJaaqWmBaN+1MZa58dXdDor6PjnIVZWVl+O79hMphMRs51NlzyuK3fjinC90ZVRfi4diKI+LGJmvthsfSy+/3d5BpTyI5KHv64SqEkLyGLnsp+tr+znZWrl6FSiV8ZYWJNROv1jtYe6htaiM0LQ6vTEJ8cRfxFx/ssA3T0dJORkkDqnAurh6JTwwiJDqLks1qO7ilm7Y0TM2l3xtx0EuKiOXP4HNNXJKP+fNv4oRbt0qCCJatnT8i1AtWchVmcOlVKf48VY/DIJcz9PVZsnS7m3JXlpepGEwFk/MSrih+a6MmnZSVn6G/uYUZ63pjHZ8Sk8mHNCWpr6kjPmLyNyYTANpF7v7icLmTZjUqtHPN4V4cFWZIJjhr9Dlpr0GCON3B0/8QFEY1WzVe+uZXn/vgeRR9XY4jQoNIo6WsbRCfpuOn21WTPTr3yiTzE6XRxpqiG2rNNyDIkpESRMyfN423Kr8XMvHRystM4vbeShFmRRCSen8vTfq6HhuJ2pmelMTPPu/NDAmnjOW/ynd864bI8ufLF4XQgu91oVWO/GOhUGmSXjN3umNDrClOPpzaeC40wYzYF0dlgwRQ++vaKpX0A3Ix5DMAYosNytu+Kk0evRXxyFN/7ty9z6lA5pUVVOOwO4qdHM395zqTsznoprU2dvPTnbdTUNiB9vrLePSiTEBfNV765lfjkKK/VdjGNVs39372Rd1/aTeGpM5w71YYkgVFrYPH8XG75ymo0WrVXahOjHxNLBBEfNxlLb+PiYlCbdNT3tJIYMvoJsq67BY1ZR2ys9548Bf/m6Z1vtToNi5bP5sMP9hCeGExQ6IXeNU6Hi44qCypJRUj02HMKBnqsBJmCJnzORpDJwIqNc1mxce6Enne8BvutPPv792jobCZjVTzGkPPfp0GLjYpj9Tzz+3f53r9+GXOI0cuVnhdkMvCVb21hU8sS6qpaAEhKiyYiemL2JrpWIoB4hggiPmoye3+kpCaTNieTw/tKiAoKQ6u68C6jzzZAfvtZ5t69jJDQEI/WIQSW65l8Oh6rN8+nrrqJon0VGKI0mMMNWPsddJ/rIy40GpPSSNu5bqJTR76A2Acd9NQPsPrWxR6tzxcUHq/gXGMTORuS0Rou/Dz0Zi05K1Io+riKEwdLWLPFt5YLR0SHivARwEQQ8SHeaDwG55ss3f/1r/Drlt/yevlusswJhOiCaOvvpmKgiej5ydx97+2TVo/g3zw9+nEpOr2Ghx69meP7Szi6v4jWmi4MBh1bt+SxYOUM9n58kp07j2LttROTHoZKo6Sj0ULD6XaSE+JZtGrmpNXqLaWF1WjD1CNCyBCVRokxWkfRyUqfCyLeIALI5BFBxAd4K4BcLCExjn/6Pz/is+27OLzjELb+NozxJjZvuI11G1djNk9cjwUhMHkrgFxMo1WzdF0uS9flIsvyiD4pN927iiCzgf27TlFaXYcsy+i1OubPnsnNX1qFKfjKtyPcbjdulxulSumzPVguxzpoG9Hp9YvUWhV2m30SK/I9IoBMPhFEvGQyNp67VpFREdx7313c8+U7sFpt6HRa0XhMuCxfCB+X8sWgoFIp2XDLYlZsmEtNZSNOp4vouHAiY6485N9Q28qhXYUUnCjH6XIRHR3OopWzWLA8x6dWmlxJXGIUJZWVo0LakN62AXLmZHqhMu8S4cO7/OcvKED4wujHlSgUCgwG/ZUfKExZvhxArkRn0F7T0tnyohqe//P79Dr7iUg2Y9DpaGpu4ZUX6qksrePeb9zgN2Fk3tLp7N99kvrSNhJzRq6Oaa7qRGlXMn9Zjpeqm3wigPgG//jrCQD+EEAE4Ur8OYCMh3XQzmvPbseus5G7NB1JcX4UITo1jJ7WPo4dLiZtWgLL1s/xbqFXKT45is23LOeDt/dQ3FpNZFIwSBId9T04u91s2LiEjOmJ3i7To0TvD98jgogHifAhBIKpFj4udvpkJa0dHeRsTB4OIUOCo4IwRGs5tLeQpety/WbOyOrN84mODePArgKqKuqRkUlPTmLxXbOZsyjLb76OayVGP3yXCCIeIAKIEAimcgAZ0tLYicqoGHOVCUBYrIm20k4GB2wYjLoxH+NrJEkiZ246OXPTsVntyDJodWoRQASvEUFkAokAIvi7ye794etUaiUuh3zJyZ0OuwuFpPDbzeu0usD8+Yrw4V9EELlOInwIgUCMfowtMycJ1Qcqelr6CIkZuYRdlmXaqruZN3NGwL6g+xsRQPyTCCLjJAKIEAhEALm8lMw4cnLSKTheRtoiBeYIA5Ik4bA7qclvRuvSsnTtHG+XOeWJAOLfRBC5Br7Y+0MQrpUIH1dPkiS+9I1NuJ9yU3q4CrfahUKtwNHnItRk5vaH1pGeneDtMqckET4ChwgiV0GMfgiBQASQ8QkyGfj6D2+jqryB8qIaHA4nkdGh5C6cRpB57N18r5Xb7cZhd6LRBu6k0YkiAkjgEUHkMkQAEQKBCCDXT6FQkDE9ccJ7bHS29XBoZyHHDp/GZrVhMhlZuHwWi9fMIsg0MSHHl9ltDkryq2ht6kSlUjJtZjLxyVGjwpjo/RHYRBD5AhE+hEAgwofva2no4OnfvE1TZxthSSaCzQb6Ovt5952dFJ2q4Os/uO2q9r/xVxUldbz2zHZa2ttR6CTcThnNu2pmzs7k7q9uxGDUidGPKUIEkc+JACIEAhFA/IMsy7z14k5aetuZuTEVteb8U3FUSijWLDulu2r55O1D3PnQei9X6hmNdW089+T7WNWDZK9LQhekQZZluhp7OXGymIr/V8Sar5xvriYCSOCb8kFEBBDB3010+Ghp6ODI3mKK8ytwOFwkp8aycMVMpuemivkLE6ShtpXKyjqS8qKHQ8gQnVFDdFYoJ4+WsOm2JQE5KnJwZwEWu4XZazJQfN6xtrGnBoygz3LRlD9IX4OSmJQQr9YpTI4pGURE+BACgSdGP8qLanjhqQ/psVoITQhCqVZScKaMwoJy1m5YxNa7V4gwMgFaGjqw2W2ExASNeTws1kx7aT3tLd0BF0RcLjf5J8qJSAlGoZBo6K4ePqZSaAmJ1tCmGuDcmXYRRKaIKRVERAARAoGnbr/09w3yyt8+xqYbJPeid6qJOVG0VHWyY/sRkjPimDUvY8KuOVWdHwWRcDpco0ZEABw2JwqFAqVKOfnFeZjL6aKpq46QKANSdz9wPoAMkSQJpUaB0+H2VonCJAv4ICLChxAIJmPuR+GxCjq6u5h5Q+pwCBkSnRZGW10PR/cWXTaIOOxOTh0p4/iB07S1dBFkMpC3aDrzl+cE3Dv765GWnUCwyURzZSeJOVGjjjdVdhAd/f9v7+5jm7rvPY5/zrFjx3Zi58lxnhNCIClPoUDICB0kG2tZ127c3XFX7VaDquL2VoBu10pX3O5KaJqmahrSJlHGiibRbbpdu92NduvW6dLw2BVoCU0hQDJSAglOYhJC7MQkdmKf+wdNmpQk5Mn5Hf/8eUlIIbbJtzoNfvPLOb+Tiqw8p4DpIqf68h+gaRoSk+PR1xlCWr75nueEBsIY6A3BnmIRMCGJIG2IMEBIBnN58mlrcweMdgPizGP/tZCSlYimT9zj3ncl0B/Eb37+F5y/0ABzmhGJ6Vbc6u3CH//wLj74ex2e/o9NSHMlR/S/IVokJFqxtnI53vnLSZgsRqTnJ0NRFYRCYbQ2dKLfM4D1310FoyQrIiOvfkmIS8XSVYU4+bfL8HcFYEv5LEY0TUPbxduwxptRuNQlYlQSQLoQYYBQtBN14zmDQYUW0sZ9PDQYhqqO/z119K9nUXuhHgseykZi6md7YAT7B3Dp2HX8/tV38e//+S2eY/KphzetQf+dAE699zFaL96C0WrAYG8IVrMFj21aj/L1S0SPOCMTXXpbXJaNG590oemMB7ZMM+wZFgwGw7h9rRdKv4p1X18ES0JsXfWlaRo6WnzobPUBigJXngMpGQkx8f0iRYgwPkgGoi+9nbcwG0eqNfT1BGBJHL1krmkaulp8qFj14LirIWfeO4/UeYmjIgQATPFxyF/uQmPNdTRfbUf+/MyI/ndEC6PRgG9+98tYU1WKunONuOPvhz3JhmVlC5HqdIgeb9oms/eHMc6AL317KS6fTkL9OTc6z/dCUYC8eU4sXpOH7KLYumTX19WHk4cuobW5CyGEoWka4lQjcuen4YubHoA18d4fYckkqkOEAUIyEB0gQxYtL0Rebhb+8X4Litfe3dsBuHuVQ9O5VsRr8fhC5bIxX9vp6YbX14uCJfee7wAASa4ENIXa0dbSyRD5nMzcNGTmpokeY8amuvlYnMmAZesKsGRtHvrvDMBgUGG2xkVyRF3qvxPE4f+pRafXh8wVyUhwxgMa4PP0oem8B4HfDuDRp1bAGCfHj+nGEnUhwhvPkQz0Eh8jxZmM+O6zj+HX+99GfXUzDIkqDEYF/d2DsFsS8O0tXxk3IlRVhaIAoXF+tKOFNUADVIP8y8yxZDZ2PlUNqvT/4p/IJx97cPOmF4VVLpgsn74lK4Aj0wqzzYjr73Xi+uUOzF+WIXbQCIqaEOHqB8lAjwEyUnpmCna++AQufnQVVy5ex+BgCFm5TiwvL0Zymn3812WlwJWeCs/VLjic914d09Hshc1kQeHC7EiOT3OEW6/Pnqt1HljTTZ9FyAjxdhPiHAZcu8QQEa7XfBt2JDJAKGrpPUBGMsebsGJNCVasKZn0awwGFV/csBKv/+YdtF3pREZR6vC5JN4OP9wXOvDQmhW8aiaKTfXGc5qmIdA3AC0MxNt4V+Hx9PcFEWcb/604zmJAoG9gDieae1ERIjCojBCKOtEUH7PhC5VL0dXhxbF3P0T7P27DbI/DQN8g1ICKB5c+gG98p1L0iEL03wmguakdWliDKzsVSSmJokeakqmufmiahqa6m7h0pgU3W70AgJS0BDywOgcLVmTds0dNrEtKtaG5tWPMxzRNQ3/3ABy5ct+JOTpChCiKxFqADFEUBY9ufgjLy4tRe6YBXZ1eWG0WLFkxHwsW50146a+MBgdDqP7zGbx//GN0e33QoMFmseLBlSV49F8eQkKivt9cpvvjl4+PX8MHRxthdKhIKrFCMSjodvtx9K06dLp7UPH1Yq6OjFC0PBNX69vh8/TB7hq9iVv3DT+UoCL1j2UAhgjRrBC194feKIqC7Px0ZOePffVMrNA0DX/8VTVOnqxByvxEFK/KhWpUcOuGDyfePwtPexe2fe+fEG/V10maMz33o7PVh5rjV+GYb0H6gs8uQU7KsqH7hh8Xa5qRW5yKvBK5doydifySNCxcmo2GmhvoybEgKdsKLQzcbunFnfYgSssL4MqP3su5J4MhQjQDsbr6QRO7dqUVZ06fR+4KJ9LykoY/n1mUiqT0BNQfbcK5U/Wo+HKpuCFHmK2TTz+pbcegMghn0b2hkZRjw62rvbjyURtDZATVoGLdNxchNSMBl87eQNvZbigAHMk2rPpaEUpW50i/gsQQIZoGBghN5PzZKxgwDCI1995/yVrsZlhdZpw9dVF4iMz21S+3O/yITzGN+8ZpTTPhlqd3xl9HNgajimXrCrC4Ig++W3cARYEj1QI1Rs6NZIgQTRLjgybL190Lc4Jx3DdkmyMetzt8czzVXZG89DbObMRgZ2jcxwcDYVhM8m7MNVMGo4pkV4LoMeYcQ4ToPhggcrnd6cPZ9y7hQu0VBAIDyMlzoWztIhQvLZi1JfBEuw2B3sFxbxB4xxtAZtLcnkczF3t/5BWn4crFVgT8AzDbRu+SGhoIw+8JoPRLBRH52hS9GCJE42CAyOf6J2341b4/ocN7C4mZNsRZDTh36SI+qrmMqg1leOzb62YlRpauWoATx2rQ1epDavboH8/09QbQ6+nHqn9dPOOvcz9T3fvj83q7+9FY24aWK7cQDoeRnuPAwhVZSM0c+xLkgkVOpL/vwPVTnchekTJ8Z91+XxA3PupCst2Goge5xT+NxhAhGoHxIa9gYACvHfgrukNeLNs4H4YR9+7wNHWh+vAHyClw4cEvTH4jt/EUFmejrHwJ/v7+R7jjDcA1LxmqUcWtFi/cl25hQWH+lDaMm6rZWP1oa7qN6jfOo6evD9Z0M1SDgraa27hccwNrHinGA+U597wmzmzEV75TiqO/q0PrmS5ocYCiAuF+Dc50Oyr/eQlsdn1dKUTiMUSIwACJBRc/+gStng488JW8URECAK55Kbh1w4fTxy9gefnM97lQFAWbt26AIykBp05+jEtXrkPTNFjjLagoW47Hn1gHiy1+Rl9jLLP145c+fxBHf38BgbgBLFibCYPx7kmTmqah7VI33v9bA1IyEuDKT7rntYnJFjy2bRXart6Gp7kbWlhDWrYdOQtSh/8copEYIhSzGB+xxX39Jgw2BfG2sY91ao4dzf9oQzAwAHP8zP9/MMYZ8ejmh7D+qytxvbENWlhDZm4aUpyzuydEJM79aLrggbfnDoo2ZIyKB0VRkLkoCY2edtSfdY8ZIgCgqgqyi1KQXcT70ND9MUQo5jBAYpOiKMDYNwcGAIRDGhQFs74DrC3BgkXLC2f1zwQie/Kpp9kLU5IRxjGucFEUBYlZFribusZ4JdHUMUQoZjBAYtu8BVnQ3gH83X2wJVnuebyz2YtlJcWIM+n3r8WZnnxKpEf6/Y4jmgWMDxqycGkBCgqy0XjmBkoeyoP50x/RaGENzXUeGPoMqKjSx06nnzcXl96O5MpzoP7CDQwGQ/esimiahp7WPpSUZEd8DooNDBGSEgOEPs9oNODJZ76GX/38z7h0+DpMyUYY4lT0dQVhNVrwjc1fQvHSAtFjjjLXATKkcJkLtSevofnDTuSXOz87WTV892RVw6ABxasYIjQ7GCIkDd54ju7HmZGMHf/1BOpqGlF/oQmBwACyVqdhxZoH4MpOFT0eAHHxMVK81YSqby3Bkd+dx5V322F1mqAaFPhvBmBSjKj4avG4J6oSAcCxsx9O+rmKpmkTnL4lls/ng8PhwHXPZdjtY2+gQ8TVD5KBHgLk8/zefjTWtqOl8RbCobsbmi14MHPcDc2I3j1zGgAw0B/CO/9dD6/XC7vdPuFruCJCUYsBQjLQY4AMsTniUbq+AKXrC0SPQjo2FB9D0hMKEDQMAKif1OsZIhRVGB8kAz3HB9FkjQyQ9ISCaf85DBGKCgwQkgEDhGQwWwEyhCFCusYAoWjHvT9IBrMdHyMxREh3GB8kA65+kAwiGSBDGCKkGwwQkgEDhGQwFwEyhCFCQnHvD5IB44NkMJfxMVLEQuTatWv44Q9/iCNHjqC9vR1ZWVl48skn8f3vfx8mE99sYh1XP0gGDBCSgagAGRKxEKmvr0c4HMYrr7yCoqIi1NXVYdu2bfD7/dizZ0+kvizpHAOEZMAAoWg31t4fokQsRDZu3IiNGzcO/76wsBANDQ3Yv38/QyTGMD5IBowPkoHo1Y+xzOk5Il6vFykp438DBwIBBAKB4d/7fL65GIsihAFCMmCAkAz0GCBD5ixEGhsbsXfv3glXQ1566SX84Ac/mKuRKEIYIBTtuPcHyUDP8THSlG96t2vXLvz4xz+e8DmXL19GSUnJ8O/dbjfWr1+PyspK/PKXvxz3dWOtiOTm5vKmd1GA8UEy4OoHyUAPARLsG8Cvv/d/kbnp3QsvvICtW7dO+JzCwsLhj1tbW1FVVYWKigocOHBgwteZzWaYzeapjkQCMUBIBgwQkoEeAmQ6phwiTqcTTqdzUs91u92oqqrCypUrcfDgQaiqOuUBSX+49wfJgPFBMojW+BgpYueIuN1uVFZWIj8/H3v27EFHR8fwYxkZGZH6shRBXP0gGTBASAYyBMiQiIXI4cOH0djYiMbGRuTk5Ix6bIqnpZBgDBCKdtFy8mngzgCu1nlwu70XqkFFZmEychakwmDkajLJFR8jTflk1bnk8/ngcDh4sqoAjA+SQTStfrQ0dOL4m5fQ03sHcQkGhMMawnc0ZGQl4ctPLENiskX0iCRINAZIRE9WJbkxQEgG0RQgANDV3oMj/3sBYZuGovIMGM0GAECfN4iWD2+h+rfn8fi/lXFlJMZEY4BMB0OEePIpSSHa4mOk+g/d6A8HsaAsE4qqDH/e4jAhrzwV1092ormhE/MWpwuckuZCrMTHSAyRGMbVD5JBNAfIkKbLN2HPto6KkCHxiSYYbCpaG7sYIhKLxQAZwhCJQQwQkoEMATIkNBhGnClu3MfVOAWDA6E5nIjmgp5uPCcSQyRGMD5IBjLFx0jOLDvaPLfhnH/vSX2hwTCC3kEkuxIETEaREMurH2NhiEiOAUIykDVAhhSvzEbL7zvR7fYjKds2/HlN09B6oQtWsxnzS7n/UrRjgIyNISIpBghFu2jZ+2M2FCxOx+KreairacbtZj/smRaEBzV0t/hhHDRg/TcWw2bn7S+iEePj/hgiEmF8kAxkX/0Yi6oqWPN4MVz5DtSfdaOz0QdFVbBgYRYWrc6BKz9J9Ig0RQyQyWOISIABQjKIxQAZSVUVFC3PRNHyTIQGw1BUBeoYV9GQvjFApo4hEqW49wfJINbjYzzcuCy6MD5mhiESZbj6QTJggJAMGCCzgyESJRggJAMGCEU77v0x+xgiOsb4IBkwPkgGXP2IHIaIDjFASAYMEJIBAyTyGCI6wgChaBdLe3+QvBgfc4shIhjjg2TA1Q+SAQNEDIaIIAwQkgEDhGTAABGLITKHuPcHyYDxQTJgfOgHQ2QOcPWDZMAAIRkwQPSHIRJBDBCSAQOEoh3jQ98YIrOM8UEyYHyQDBgg0YEhMksYICQDBgjJgAESXRgiM8CTT0kGjA+SAeMjejFEpoGrHyQDBgjJgAES/RgiU8AAIRkwQCja8cZzcmGI3Afjg2TA+CAZcPVDTgyRcTBASAYMEJIBA0RuDJHPYYBQtOON50gGjI/YwRAB44PkwNUPkgEDJPbEdIgwQEgGDBCSAQMkdsVciHDvD5IB44NkwPggIIZChKsfJAMGCMmAAUIjSR8iDBCSAQOEoh33/qDxSBkijA+SAeODZMDVD7ofqUKEAUIyYICQDBggNFlShAgDhKId9/4gGTA+aDp0HSKapgEAenp673nsivfI8MeqEjfikcFIj0U0a443/Gn4Y6sxefjjvkBQxDhE03Ls7IfDHztteQCAYN+AqHFIB4L9d9+Lh97HJ6LrEOnp6QEALCkqEzwJERFNTr3oAUhHenp64HA4JnyOok0mVwQJh8NobW1FYmIiFEURPc6s8/l8yM3NRUtLC+x2u+hxYh6Ph77weOgLj4f+6PmYaJqGnp4eZGVlQVXVCZ+r6xURVVWRk5MjeoyIs9vtuvufKJbxeOgLj4e+8Hjoj16Pyf1WQoZMnClEREREEcQQISIiImEYIgKZzWbs3r0bZrNZ9CgEHg+94fHQFx4P/ZHlmOj6ZFUiIiKSG1dEiIiISBiGCBEREQnDECEiIiJhGCJEREQkDENEB65du4ann34a8+bNg8Viwfz587F7924Eg7zfiCg/+tGPUFFRAavViqSkJNHjxKR9+/ahoKAA8fHxKC8vxwcffCB6pJh04sQJPP7448jKyoKiKHjzzTdFjxTTXnrpJZSVlSExMRHp6enYtGkTGhoaRI81IwwRHaivr0c4HMYrr7yCixcv4qc//Sl+8Ytf4MUXXxQ9WswKBoPYvHkznn32WdGjxKQ33ngDzz//PHbv3o1z586htLQUjzzyCG7evCl6tJjj9/tRWlqKffv2iR6FABw/fhzbt2/H6dOncfjwYQwMDODhhx+G3+8XPdq08fJdnfrJT36C/fv34+rVq6JHiWmvvvoqnnvuOXR3d4seJaaUl5ejrKwML7/8MoC7953Kzc3Fzp07sWvXLsHTxS5FUXDo0CFs2rRJ9Cj0qY6ODqSnp+P48eNYt26d6HGmhSsiOuX1epGSkiJ6DKI5FwwGUVNTgw0bNgx/TlVVbNiwAadOnRI4GZH+eL1eAIjq9wuGiA41NjZi7969eOaZZ0SPQjTnOjs7EQqF4HK5Rn3e5XKhvb1d0FRE+hMOh/Hcc89h7dq1WLJkiehxpo0hEkG7du2CoigT/qqvrx/1GrfbjY0bN2Lz5s3Ytm2boMnlNJ3jQUSkV9u3b0ddXR1ef/110aPMiFH0ADJ74YUXsHXr1gmfU1hYOPxxa2srqqqqUFFRgQMHDkR4utgz1eNBYqSlpcFgMMDj8Yz6vMfjQUZGhqCpiPRlx44dePvtt3HixAnk5OSIHmdGGCIR5HQ64XQ6J/Vct9uNqqoqrFy5EgcPHoSqcrFqtk3leJA4JpMJK1euRHV19fBJkeFwGNXV1dixY4fY4YgE0zQNO3fuxKFDh3Ds2DHMmzdP9EgzxhDRAbfbjcrKSuTn52PPnj3o6OgYfoz/AhSjubkZXV1daG5uRigUQm1tLQCgqKgICQkJYoeLAc8//zy2bNmCVatWYfXq1fjZz34Gv9+Pp556SvRoMae3txeNjY3Dv29qakJtbS1SUlKQl5cncLLYtH37drz22mt46623kJiYOHzelMPhgMViETzdNGkk3MGDBzUAY/4iMbZs2TLm8Th69Kjo0WLG3r17tby8PM1kMmmrV6/WTp8+LXqkmHT06NExvxe2bNkierSYNN57xcGDB0WPNm3cR4SIiIiE4YkIREREJAxDhIiIiIRhiBAREZEwDBEiIiIShiFCREREwjBEiIiISBiGCBEREQnDECEiIiJhGCJEREQkDEOEiIiIhGGIEBERkTAMESIiIhLm/wGdDGNJwBq6UAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\n", "from sklearn.inspection import DecisionBoundaryDisplay\n", @@ -183,38 +143,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "76e3f16d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mean accuracy on the given test and labels is 0.975000\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChXUlEQVR4nOz9d3wl553f+X6q6uSEA+Ag59BAZ3RusptskmISJVGBI4maZEnj0dgeyeuxvLZH3l3dneudle3ZOx57bI/s6/FIsuKMMiVmskk2O5GdM9BAI+d4cq7aP8CDRjjIJwF43q8XX1KjgKoHwEGdbz3h90iapmkIgiAIgiBkgZztBgiCIAiCsHWJICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtbost2ApaiqysDAAHa7HUmSst0cQRAEQRBWQNM0vF4v5eXlyPLSfR45HUQGBgaoqqrKdjMEQRAEQViD3t5eKisrl/ycnA4idrsdgJ8c+9+x6kxZbo0gCIKQLsW7q7BuK852MzLKvqMcAH2hPcstST2vz0v9Yy0z7+NLyekgkhiOsepMIogIgiBsYjajBZvZmu1mZIxj13Qvgd61+ULIbCuZViEmqwqCIAhCBm2VELJSIogIgiAIQoaJEHKfCCKCIAiCIGSNCCKCIAiCIGSNCCKCIAhCVpW01GS7CRmTmB8i3CeCiCAIgpA1iRBiay7JckvST0xSTS6nl+8KgiAIm9dWCSGze0FECFlIBBFBEAQho7ZKAAHRC7ISYmhGEARByDgRQoQE0SMiCIIgCCkkAsjqiB4RQRAEQUgREUJWTwQRQRAEQUgBEULWRgQRQRAEQUgREUJWTwQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEIWMS+8xsNrM3thNWRwQRQRAEISM262Z3opDZ+oi9ZgRBEIS0mt0LsplCiAggqSGCiCAIgpA2ohdEWI4YmhEEQRDSarOFkAQRQlJDBBFBEARBELJGDM0IgrDpaZpGRI0BYFT0WW6NIAiziSAiCMKmpWka19ydXBhvY9g/AUC5rYjDhU3sdFQjSVKWWygIgggigiBsSpqm8erQRd4bukO55uABfR0qGp1TI/zMc4rR8r08Wrw3280UNhgxSTX1RBARBGFT6vAP8v7wHY4qdTQZS2c+3mgo4Uaoj9ODN9hmK6fC4spiK4WNRISQ9BCTVQVB2JSuTHSQFzfOCSEJu4wVmGIKl6c6stAyYSMSISR9RI+IIAib0khoijIlP+kxSZIokx2MBqcy2yhhQ3LsqhQBJI1Ej4ggCJuSQdYR1qKLHg9pUfSyeBYThGwTQUQQhE2pKa+KbnWcsLowjATUMAOamyaH2KhMELJNBBFBEDal/c56zBYLrwdu4o4HZj4+Gffzmv8meVYHe5y12WugIAiAmCMiCMImZddbeL72EX7S/S6/DFwhTzOhoeGRwxQ6nHy6+mHMijHbzRRyXGKSqpA+IogIgrBplZsL+UdNH6PV20dvYAxJghpLMY22cnSyku3mCTlsdgARE1XTSwQRQRA2NZ2ssCuvhl15Nct/siAglupmmpgjIgiCIAgfECEk80QQEQRBEIRZRAjJLBFEBEEQBEHIGhFEBEEQBEHIGhFEBEEQBAGxVDdbRBARBEEQtjwxSTV7RBARBEEQtjQRQrJL1BERBEEQtiRRtCw3pLVH5Bvf+AaHDx/GbrdTXFzMJz/5SVpbW9N5SUEQBCFHlLTkfhE5vcsuQkiWpTWIvP3223z5y1/m3LlzvPbaa0SjUZ566in8fn86LysIgiBkWSKE2JpLstwSIdeldWjm5ZdfnvPvb33rWxQXF3Px4kVOnDiRzksLgiBkTUyN0+EfZDzswSDraLRV4DRYs92sjBEhRFiNjM4RcbvdABQUFGTysoIgCBnT5R/mV33nmAx4MKo6IsRQ9Dr2uOr5cOmhTb3ZngggwlpkLIioqsof/dEfcfz4cXbv3p30c8LhMOFweObfHo8nU80TBEFYt8HgBH/b+RbOsJGPmVvIV6zEtDjtkWEuDt4lpsb5ZOWxbDczrUQIEVYrY8t3v/zlL3Pjxg1++MMfLvo53/jGN8jLy5v5r6qqKlPNEwRBWLczY7fQhyUet+4iX5keitFJCtuN5Rw11HFzvIuR0FR2GykIOSYjQeQrX/kKv/rVrzh58iSVlYtXrvva176G2+2e+a+3tzcTzRMEQVi3iBqjbaqX7fpSFGnhrbVeX4wuBne84r4mCLOldWhG0zT+8T/+x/zsZz/jrbfeoq6ubsnPNxqNGI3GdDZJEAQhLcLxKJqmYZVNSY/LkowZPaF4NMMtE4TcltYg8uUvf5nvf//7/OIXv8ButzM0NARAXl4eZrM5nZcWBEHIKLNiwKgzMhLxUK0vXHA8pEbxEsap35yrZzZCzRAhN6U1iPzVX/0VAI8++uicj//N3/wNX/jCF9J5aUEQ1ikQC+GOBjDIOgoMdiRJynaTcppOVmgprOdC3y2a46XYlfsPW5qmcTXUjc6oZ1fe5nrDFitlhPVK+9CMIAgbiyca4K2Ra9ya6CIWjyFJMmW2Qo4X76LZLnYnXcqxwh10eAZ40XONHboyynX5BLUId8KDjOh8PF1+BKsu+dDNRiRCiJAKYq8ZQRBmeKMB/ue91wl4/ewxlFOqdxLQwtyeGuDHvnd4tuZB9jqXnuu1lVl0Jn6n7nHeGrnGzYlOrkX7kSSJkrwCnit+mB2O6mw3MWU2egiZvc+MkF0iiAiCMOOd0Rv4vX4+Zm3BIk9PHC/ERqWugDPBu7zaf4FmeyVGRZ/lluYuq87ER8uP8HjJPqYiPvSbeGhro4cQscdMbshYHRFBEHJbOB7l5kQX2/WlMyEkQZIk9plqCIZD3Pb0ZKmFG4tJMVBqLqDQ6NiUIWSjEiEk94geEUEQAPDFgkTjUYp1jqTHrbIRq2bAHQ1kuGWCsH4igOQu0SMiCAIw/QQvSRI+NZT0eEyLEyKKURHPL8LGJEJIbhJBRBAEYHpuQ11eObcjg6hJVrzdjQyBXqHZLrZeEAQhdUQQEQRhxvGiXfgNMd7032Qq7gcgosW4EerjYqyb/UWN5BtsWW6lIAibiehjFYQscEf9DIemkCWJKnNRzqxCqbYU8em6E7zY9x4vBK5i0BSixFEMOg4X7+Txkn3ZbqIgCJuMCCKCkEHeaJBXhy7SNtlLLBYDCcxGMwdd2zhRtCfpZmmZ1mgr5w+bnqXDN8hExItR0bPNVo5db8l204QcIcq5C6kkgoggZEgwHub7XW/icXs4aKiiylxITItzNzLE6b5reKNBni0/mhNLPXWyQrNj8YJP4XiUq1P3uD7ZiTcawK63sCe/jhZnfc707gipNzuAbNQaIkLuEUFEEDLk4kQ7455JnrXsm7MPyQFzHXkRC+dGOziY30iFxZXFVi4vEAvx/a6TDHvGqCCfOsXJZDDAa573uDZ5j9+qfQzLJipjLkzb6JVUhdwlgoggZMjVyQ5q5MI5ISShXl/MlXAP193dOR9EXh68yLh7ko+Z95Gn3B+ucccDvOy+zsuDF3mu6ngWWyikmgghQjplf0BaELYIbyRAgZJ8xYkkSeRJZnyx3C4W5o76aZ3sYZ++ek4IAchTLOzTV9E62YM76s9SC4V02aghxLGrEseuSlFDJIeJHhFByBCb3sJUIPkbtKZpeAhRkeNDGoPBCaKxKDXm5L02Nfoizgc7GQxOkKe3Zrh1wmxjYTeXJzvo9g0DUGMrYX9+Ay5jXpZbljmimurGIHpEBCFD9hbU06mO4VfDC451R8cIKFF25dVmvmGrIEkSEhIqatLjcVQkJOQcWP2zld10d/Pf217iUv8drF4Jq1fiUv8d/nvbS9x0d2e7eRkhQsjGIXpEBCFDDuU3cmOyk5c919hvrKFKf3/VzLVYHzuL66lapKchV1SZXRgNBjoiI+wxLaywei8ygtFgoNJcmIXWCTDdE/JCz1kqYw6OWbfNhMKjmsqZ4F1e6DlLSZNz0/aMiACy8YjHFkHIEIvOxG/XfYiKolLOaZ38IHCOHwcvcEcZ4XD5Tj5e8UBOLN1dikVnYm9hA9djffRHJ+cc649Oci3Wx97CBrFqJosuT3YgRVQeNG+b0zMlSzLHzNuQIiqXJzuy2ML0ESFkYxI9IoKQQXl6K5+reZSxsIfh0CSKJFNtKcaiM2a7aSv2eMk+3BE/JyfukBc24pQsTGkB3HKYba4qUX01y3p8w1TJ+UmL48mSTJWcPzNvZDMRIWTjEkFEELLAZXTgMjqy3Yw10cs6PlP9MPcKh7gx1YU3GqRKn88zzlrqraVifoiQUSKAbHwiiAiCsGqyJNNoK6fRVp7tpgjz1NhKuei+TVxTF/SKxDWVXnWSg7YdWWpdaokQsjmIRxdBEIRNZF9+A5pB5kygjbh2f3VTXFM5G7yLZpDZl9+QxRamhgghm4foEREEQdhEXEYHz1Y/yAs9Z/mx/32q5HwAetVJNIPMs9UPbthhQRABZDMSQUQQPjAZ8XFlqoMe3wgSEtW2YvY5G3AaRGGuldI0jaHQJFNRHybZQJWlCJ2sZLtZW86uvBpKmvK5MtlBt28IgAO27ezPbxQhRMg5IogIAnDH08sves6ghWNUSE404Ozkdd4bucMnao7RbF98J1phWn9gjFcGLzDgHUdV48iSjMNs4+GSPezfBEMBG43L6OCJ0v3rPs/sHXezSYSQzUsEEWHLGwt7+EXPGUojVo5bm9BJ00/wMS3OqUArv+g+zZeaPkK+QdwAFzMQHOf7nW9iCSk8ZmyiSOfAp4a4Fezn191niWtxDhU0ZbuZwirkykZ3IoBsfmKyqrDlXZnsgHCchyzNMyEEQCcpPGxpRg3HNm0BqFR5e+Q6hqDE09Y9VOgLMEg6ChQbD1ma2aYV8fbQNcLxaLabKayQCCFCJokgImx5nd4hquWCpAWgdJJClVxA1yYsAJUqnmiATvcAu40Vc4Jcwm5TFYFQkFZvXxZaJ6xWLoSQxI65IELIViCGZgQBDVi8tLoEaFryTd4E8MdCqKpK/iKTeq2yEYOm4I+FMtwyYa2yHUJABJCtRPSICFtepa2IvvgkqqYtOKZqKn3qJFW27HZR5zKrzoQsy0zG/UmP+9UwESmOVew/IyxDhJCtSQQRYUPyRoO0+wa45xtc99yDA/nbiBnhfLB9ThhRNY2zwXbiBokDYtXHohx6C3V55dyM9M8poJVwI9SLxWQWK4+ERYmhmK1NDM0IG0ogFub14cvcmugiGo2CBGaDiQOubZwo2rOmmhUlJifPVB7hpd736Pe/T41SiAZ0x8eJGeCjVQ9s2i3TU+WR4j18z/cGL/uvsc9YQ/EHq2ZuhvvokiZ4uvQIRkWf7WYKOUwEkK1LBBFhwwjHo/yw+y1Gp8Zp0VdSbXYR11Q6IsOc6bvOZMTHc5XHkaTF53ssZl9+A6WmfC5NttPlG0ZCYpetkYMFjZSY8tPw3Wwu5eZCPlf3GK8OXuSktxU1cr+OyEdLHmB/fmO2mygIQo4SQUTYMK67Oxlwj/AxcwtO5f7EyP3mWgqiNk6N36Urv5E6W+mazl9qLuAj5iOpau6WU2Up4vfqn2YwNIE76heVVQVBWBERRIQN4+rEPSpxzgkhCdW6QuzhHq67u9YcRIT1kySJcnMh5ebCbDdFEIQNQkxWFTYMTzRAgWJLekySJPIlC55I8pUbgiAsL1fKuQtbiwgiwoZh05uYigcWPe7Wgtj05gy2aOXC8SiDwQlGQlOoWaxJomkaETWGlmSpsrC15UIhM2FrEkMzwoaxJ7+ON9wX8caD2JW5gWMgOolbDvFMXu26ruGPhQirUayKKSWrPELxCG+NXOP6xD3C0QggUWBx8EDRDvY7G9Y0sXYt3FE/7423cm2ik3AsjFlvoqWgniOFzdh0uRnehMwQAUTINhFEhA1jn7OBq457vOy5zgFDDTX6D1bNREe4Eu2hwVVB/Rrnh/T4Rzg9dpNO9yCapmHQ6dmVX8fDRbuxr7GXJRyP8oOukwxNjbFDV0aVvpCIFuOub4gX/efwVAR4tHjvms4921Bwgr7gGBpQaXZRZi6Yc3w87OF7nW8S9AdoVIpxKhYmwn7e67vJbXcPv1P3OHn65FVRc0WiBydTwW2rECFEyAUiiAgbhkkx8Fu1j/HiwPucd3dx2t8OEhj0BlrKmniy9ABykv1iltPm7eenXaewRnQcMdRglU2MxNxcH7xLl2+I3617HLvesurzXppsZ2BqlI+Y95I/a4Jtmd7J9VAvZ4ZusDuvFpfRsepzA3ijAX7Zf44u9yBSbPqNWtNJVDtK+UTlgzg+aPOLA+8T94X5hPUAJnm6l6cB2KlW8LLnGq8MXuSz1SfW1IZ0GwiO8954K21TfcS1OKWWQg4UNrInr3ZNv2thoVwo5y5sPmqJccWfK4KIsKHY9Raer3mE8bCHwdAEEhLVluI191rE1Dgv9r1HUdTCY9adyB88cZfpnTSqpfzae5W3R6/zsfKjqz73lYl2auSCOSEkYaexgtv+Aa67O3msuGXV557ubXkLt8fNQ8ZGqozTq1T6YhO8N97BD2In+UL9U0xF/fR4hnjI2DgTQhKsspG9hiren+pmstRHviH5ROBsueXp4RfdpzGFZbbrizFIOvrck7zgOUN38QgfKz8iwsgGJiqpbl5qmQk8kRV/vggiwoZUaHRQuMaehNnafP14gz4eM+2bCSEJVtnIDl0Ztya6eKJkPybFsOLzqprKVNhHg1I15+NRLU5nZAS3GsQfDTEQGF9Tu295uhnxjvOseR95yv3emmp9IU7Zwi88l7nu7sKk6InH4lRYkxdlq9QXcC54j7GwO6eCiD8W4lc956iIOnjI1jzzu9luLKcrMsq7I+3UWItpcdZnuaXCWogQsnmpZdN7SkmmlccL8TghbGmTES8mTTfnzXy2Ul0ekVgMd3Tx1TrJyJKMQTHgVe/vOHsvMsIPJs/wtucWbb5+xsMe3hu5w68GzhNT46s6/82pbko1R9J2OxQzFVIet9zd6CQFSZKIaLGk5wlrMZAkdFJuFR277u4kEg5z1NywICDWGooo1RxcGr+bpdYJ6yFCyOaklplQy0xIJt2qQgiIHhFhizPIeiLEiWnxpG/GATWCJEkY5dWvoNlTUMeV/jvs0aoYjXk46b1JhZpHi247kga9TKDTGbk6eBcJiY+Wr7yqazAWwSEvvputXTYxHg1RYy3GZDTSFhlin2lhjYi2yCBWo5lKi2vV3186DYemKMK26M+9SpfPpUAfqqaK4Zk1yPYkVRFCNpe19ILMJv6ChS1tm60CWa9wNzK04JimadyJDFBpLyJvDZNVDxc0obeYeMV/nVP+O+THzTygqyeuxhmMT5FvsrPPUsMhfQ1Xx9qZjHhXfG6n0caY6lv0+GjcR77RjlkxcsDVxI14P23hoZndheOayu1wP63qMEeLt6OXc+uZRJZkIizeSxTRpveykRCraFYr2yFE2FzWG0JABBFhi3MarLS4GrkY7aY1PEBMm37z86thTgfbGNcHOV60a2bZaElLzcx/y8k32PjN2keRbHpuRwYxazruxUYYxYfTbKfOWookSTQYSiCq0urtW3G7W/LrmZSD9EYXzjHpj04wIQdoyZ+eP/Fo8V72lTbxvtbNj/3v85LvKj/xv89l+jhStpMHC3es+LqZ0mArY0oKMhlfWClX1TQ6YiM05VWK5byrJEKIkCrrGYqZL7cegwQhC54qPQBoXBxr56K/GxN6AlIEs8nMsxXHaLSXA3Nv4r7WYUpaahi+2r3kuUvNBTxf8yiDvnFqpBKKFAcOvWVOsTSdpGBETziefB5HMo22Mna4anlntI1tsWLq9EVISHRGR2mND9FcVEuTvQIARZL5WPlRDhc0cdPdjT8exqYzsSevFpcxb5U/rcxoslVQZM/npPs2H7LsmNlfKKLFeC/YQVAf53Bhc5ZbubGUtNSIACKkRCp6QWYTQUTY8nSywkfKj/Cgawet3j5C8ShOvZUdjuqZwDD/SXJ2GAGWDCQOvQWnyUY0plJkWvjG742HCEiRVa1akSWZT1Q8SJHJycWxNtrCIwBYjRYeLtzHcdfOBXMnSkz5lJiSr57JNTpZ4fmaR/jb7nd4wXuVfM2CHplx/ChGPR+vOpZz81oEYStIdQgBEUQEYCLi5cpkB92+YTSg2lbMfmdDSpbHbiT5BjsPzBumWKorO/Gx5XpHjMp0ldbrg3dpVEuxyvcL/WiaxqVQJ1aThe2OqqRfvxidrHCiaDfHCncwGnajoVFkzMu5+R5rlW+w8/cbPkyrt497/iHiWpw9Rid78urWXDdGEIS1SUcASdgcdyxhze54evlFzxm0cIxKOR8JiYtTt7kw2sqzVQ+yK2/r7sa50vH0lQzVnCjeTbdvmF95r7BdV0qpzolfDXMnMoBbH+ETlccxLBEgZs9JmX8NnawsKOu+WehkhV15NVv6dSgI2ZbOEAIiiGxpExEvv+g5Q2nEynFr08zy1bimcibQxgs9ZylpcubsPIJMWOmY+nJDNTadmd+tf5x3Rm5wc7KTG9FBJFmiuqCEZ4p2UbfEHjmLBaLl5qcIgiCs11pCSHfgLL7AwonmixFBZAu7PNkB4TgPWZtRZs0nUCSZ45Ymfux/n0uTHR9M5hSWs9xQjU1n5iPlh3m8ZB/eWBCjrF9yiGGxALKaybKCIAhrsdZekO7A2emvW8WKNrF8dwvr9g1TKefPCSEJsiRTJRfQ7V1YX0NYWiI4LLbE16jocRkdawohK73GSqznawVB2LzWG0JkSeKt9u+v+OtEj8gWlthafcnPYfnP2YzW+ya9nmGU1cxNWe81VrLqRxCErWOtQzEJsiTxetu3V3VNEUS2sBpbCRfdt4lr6oJeEVXT6FUnabE3Zal12ZPKok+rGUZZ63XXe42lvlbTNPqD49z19RNT47iMDnY6aubUQRGElRB7zOS2VPSCADMhxKis/Pcshma2sH35DWgGmbPBu6iaOvNxVdM4G7xL3AD7nQ1ZbGHmpaPy5EqGUdZ73fVcY7GvDcbD/LD7Lb7V9goXem9xq7+DX907y39q/cWqqsAKggghuS0VIeT1tm+vKYSA6BHZ0lxGB89WP8gLPWf5sf8CVXI+MhI98QliRvho1QMUm5zZbmZGzH4TTkf1yZWcc73XXc815n986EoXP+09Te/4II8Yt1FpKkCSJPxqmPeCHfys611+p+EJUVRMWJYIIbltPUMx6+kFmU0EkS1uV14NxU1OLk220+0dQgN22xo5mL9ty4WQTJS/zvVrJIZ5egOjdE4N8KixmUr9/RolVtnII5YdvOC/xOmxm2x3VDEcmkKRZOptpdRaSsT+L8IMx65KEUBy1EoCyOy5H/OlKoSACCICUGTM4+nSg7B4KYtNS2wCllybrx9zXEdFkpLwsiRRKeXz674L3DF248RMjDhnlRtUOkr4jaqHROVTQchhqwkh8iIPFrMnpK4nhECag8g777zDn/3Zn3Hx4kUGBwf52c9+xic/+cl0XlIQViTdQzHJJLqoATw3VzfHYvbXrsdKrxtVY5jQJ+3dCMbCjAXd6OISH3XsxaW3o2kaQzE370608bfa23yh/qmky8IFQciu5ULIcgEEVtYL8ur5d1fcprQGEb/fT0tLC7/3e7/Hc889l85LCcKKZaMXZPY4eXTMi2NX5YpDQarG2Fdz3UKDg4sECKlRTPLcFTKjYTeTMR81xkIKddMb9UmSRJneyWPSDl7y3KDdN0CzPTXhSRCE9VtLL8hSy3CXCiEvnnl7VW1LaxB55plneOaZZ9J5CUFYk2yFkMT/JkIBLN1LkcqJfolzrOS6jz30MG8NXuVC6B7HzU1zeka6Q6OMSD4eMu3Ap4bwa2HMkoE8xYJLZ8cZMtLm7RdBJIeI4nVb22pDyFqHXRIBxGWpJiJFgZsr+rqcmiMSDocJh8Mz//Z4PFlsjSCsnKqqdAz3MOFzYzaaaC6ro2hfPZA8RCQ+tlgvRTpXGizXK2NrLsEG/PbYx/nRhZf59dhVmvSlmGQ9/dEJTsc7cOjM9EcnuBS4h6ZpSJJEkT6Pw+Z6jOiJqbGUt1tYGzEPamtb7VDMWiefzg4hq5VTQeQb3/gGf/Inf5LtZgjCopLN1bjV2cYPXvgJvV09xEIRFL1CfomLZyPP8PQyPYLze0fmH0uXlQwRnXjsBHaDhbfvXeJC6y1QwWa2YMeO2+fFpYY4KteRL1vwaEHuhIZ4MXqFuE5ju7ExbW0XViYb86CE3LGeoZjFQshSQy5rCSAJORVEvva1r/HVr3515t8ej4eqqqostkgQps0OCrMDQltnB3/5vf+ObTTOx0oPU2ItwBsJcHm4je/+5EdgM/DhE08see5sLW9cyVDN/uOH2OaqIrj/wwxc68SiGPmz2z9G8kR4SN+AXZleHZOHmQrZya8j12iXJtjtEEMB2SR6Qba2dAzFrKfHYzk5FUSMRiNGozHbzRA2qbWOky81TPKzl3+JYSTCxxoeQZGnV4k4jFYeqd6P0neVX7zwS04cPobFbFl7w9NspUM1Zr2RYd8E0asR9pqrGYp68MfCWGUTKiqeeJAy2cmkEsUd81NgzE7AGgt7uOPpJRgP49Bb2emoxqYzMRSaZCQ8XfOk1lqCTbc5lxiLELI1JMLGYlI5FJPOEAI5FkQEIV3WenNeKoSMToxx+/pNjrkaZ0LIbPtLmrnde5Irt69z7MDRNbQ6c1YyVGNrLqH1dDd6q5EWQx2BaJCxkBtffHoul81oZr+xnt6oF3fED9ZMfgcQ11ReGbzIlbG7yFENC0a8hHhZ9x46nQ4tGkeNqyCBQW+gxdXAkyUH0MlKZhuaJmIoZuvI1L4ws4di0hVCIM1BxOfz0d7ePvPvzs5Orly5QkFBAdXV6fumBGG2tYSQxYZiZvP6fcQjMQpsjqTHrXoTek3G4/OuorXZs5KhGldTJfI7MnGHQq2xiuJxJzFNRQYUWcEbDyLFJMy6zPdsvjl8hUtDdzisq6XRWooiyfjjIV6ZvMrteD8P23bwkLWZqBbjbmSYiwN3CMTCPFd5fMNXgxW9IFtHqvaFgez2gsyW1iBy4cIFHnvssZl/J+Z/fP7zn+db3/pWOi8tCKu+OXuDfi7eu8mwe5y8wRIOHT1KU+3im/457XkoRj0jgUkKzXkLjnvCfmKKRkHewuqkuWyp3pFqVxmVjTXc7B6kVHNiKbQTnPDNHL8R7sNqslBvzWyZXn8sxKXRu+xVKmk2ls98fCrsp14rwCTrGIhOAmCU9ew2VWKLGHl3vIO+wmaqLEUZbW8qiRCyNcweikn3vjCZDCGQ5iDy6KOPomlaOi8hCEmt9uZ8/u5VfvT2rwlN+nBKFqKXJV5+4zX2HtrPH/7u72O1LBxnKHDms+/APq68/j6Nzkr0yv0/J03TeG/wFgUVxbTs2J2abyqDEmFkPkmS+Njhx/jrkR9xKnyXFqWSvAIbY2Pj3Aj30SGN8XTpEfRyZkd9O3yDRCIRmi1lcz4+EfbgkMw4ZAtvxFoZj3sp0k33YNXoXVwMd3HL07OhgwiIELJRLTfPY77NMhQzn5gjImw6qw0ht/s7+O5rP6MmnMcDJfsxKnp0Tit9kQlOvv0+35Rlvvr7X0naff/cM5+gra2Nn3a8zcGiZsqshbgjfq4MtzFiC/Gl576E0bC5JmDvq93B7z79G/z8zKv8cuwauKPEZQ1biY0nDYc5lL8t422KqDEkwCDNDYMxLY5BMiNLMjD97wRJkrBLJgKxUMbbKwhrHWJZqaWGYtK1DHetRBARNo21dlG/fvUseX49J8p2z4QNSZKoySvlhLaXt9+/ROeHu6mvql3wtdXllfyL/+Wf8aNf/oR3r94g5r6BbNBRuauGL3/k4xxpObju7ysXHWncw77a7dzqa2cq4MVmslAbdGBaZG7I8NXutLbHZXSAIjEa91L8QY+HJEnoZR2hWBSPGkKWZBzK/dVLqqYxRZB6fe6uaBI2n7UOsazUcr0gmR52WQkRRIRNYa0hxB8KcLe7gyO2mpkQos+3zRyvyyvj3bEbXLt9I2kQAaitqOZf/qN/ysDIEOOT41jMFuoqa5CTrKTZTAw6Pftqdyz7eb7W4bS3pcZSTJE1nwueezxl3YNOml4JU2h00B0ZppVhqi0urPL9oHQ3MkhUp7Enry7t7duKUrVR42aSyV4QmBtCsjXsshIiiAgb3nom60XjcTRVw6Q3zAkgsml6ozdJkjBIOiLR6KLnSNxcSstqKaX2/scT5xpcvOt/tWPEy50vlfQu+4r2pckFkiTx0Yqj/DBykl/6LtNsKMUhmxnW3LwndePWguxWavDGQ0SZXjXTpg5zuGwHJSZntpu/6aRzi4KNYKm/62wOxeRaAEkQQUTYsGYHkHA0wtm2K1zsuIE/EKAov5CjTS3srGhYMLdj9pOaNR7H9VY5g4M+GrkfQBK8YT9eOUx5SfJVIMs94WihGGqZKWl4WMvT0VLnS4e17BacLZUWF7/b8CRnx25xfaoHVVUxGPQ8WnyQQCzEXc8Qt8KDSEjYTBY+VHSQBwu3Z7vZm8pKlr1vZukedklmIw7FzCeCiLAhzQ4hU34v33z5+3R3dVOqObDrzNy9d4sL169weO9+fvfEx9F9sKJlwU64wONPPsGPv/0DdsR9FHN/qW1cVTnVf5WCqhIO7z2woA0rCRKSSTcTHuB+b8Zau2gTnz//fOm0kcJIicnJJyuPESk/QjgexawYZgqWeaNBxsJuFEmm3Fy4aQqZ5QrRC5LeYZdkVjIUk8sBJEEEEWFDcEf9DAYnkCSJA0emQ0FiKOa77/yCoY4+nis6gtNwf3il0zfEW5cuUpZfxGd/+zdnPj7/RvnhR57gVtsdXjh7njpdEZX2IgLRMLfd3ajFJv7x735xzsqX1d5wEp83O5Cs92Y1O+BkKowAGyKMABhkHYZ5S4jtejN2/eYs655tIoQs/3ft8Xg4deoU7555F4/PS2V5JY+eeIQjR46gKKsPxYkQ8ubd78x8bCP1gswmgoiQ0/yxEK8MXqR1sgfJNP3H+tq52zy4+wCfjD3BiHucOx13OZHXPCeEANTZShkITnCu9yafikWxlBYkvYbRYOSrX/oKr+98m5On3uLcSBeKSeHgQw/x9CNPzJmkup4gkeonpfm9LfNlavhG2Lo261BMqut7DA4O8m/+7N/Q1tuKrdSM2Wri3N0uzlx8l8ePP8GX//DL6PX6Jc+RsFQAgY0XQkAEESEHJYZdwrEIPzj7EwZ9QxxzNFFrLkZxmGj19vH26XeZ8LppLq9DC8WocSafqLqjspEXRy8zGvdTQ/IgAtNh5KOPPcVHHn2SYCiIQW9Ap7v/55GNsd+VWKotmRy+EbaezdoLkuohFk3T+Kv/+lfcHb7DgWf2YDTf710dH5zg1Xdfobamlk9+8pPLnmt+CHnj/KUFn7ORAkhC7txRhQ1J1VR6A2P4YkGsOhPVlqIPiketzey5Hxdvvc+Ae5RPVT84p7djf34DroCD12/dxGz84KaR5Fz6fBty3Itk0KGxsgq/kiQt2Ck3G2O/qZDp4Rth6xAhZOXa2tq43nqNpiMNc0IIQGFZASNVY7z65qt89KMfXbRXJBFA3rj7HSTuB5CNGDqS2Vh3ViGntHr7eGPwMhMBN2pcRZZl8i0OHivbx07H6v5Aki3Bfa/1KhU4Fwy5AFRZinBM6ZnwupFMOnoCo9RYixd83t3JXvJLC6koLltwbL5sLLlLNxFGhK0s3SXUV6Kzs5OwGiK/xJn0eGlNMT3nBxkaGqKqqmrB8dm9IJsxhIAIIsIatXn7+WnnKYqiFp427aLAZGMqHuCqv4efd70LtQ+tOIwsVgdkyuuhKkkISchXrMjAttoGTt+6Q77BhmNWlcwe7zCtkQE+/chvLjn+upZhl+HhYbq6ulAUhW3btpGXt3DTu1yRjZU2wuaWmLCcyz0judKTKUnS9J5rGkm7blV1+kCyCauLDcVsphACIogIa6BpGieHruCKWnjcumumTkehzsZjyg5OBm5zcvAK2+2Vc4ZpEoEjmWTFyJx2B+Ojk4t+zWTczw5bA88eeoz/EvweP+4+R6XkxK4zMxLx4HaqPPjEI3zsQx9e9ByrvVlNTk7yrW9/i3MXz+IJeJAliXx7IU8++iSf+9znMBpzd18Z0TsipJrnZh+OXZVEx7w5FUZyJYQANDdvx6q3Mdo/RnHVws0VB+8NUlNeS2np/VpFm30oZr7s/5aEDac/OM6of5InTTsXFAuTJIm9xipeDtygOzBCnbV0zZVPjzS38KN7P2cq4lswPNMbGMWjj3K4cQ8Ftjy++onf40LHDS623yBkkthWso1j+w5z5PixRUutr/Zm5ff7+bd/9m+5eu8SNXsq2V5dTzyu0t8xyA9/9X0mJif4J//LP8np0u4ijGw+kXiUC/duMDQ5hl6nY1fVNioLMrcbby6FkVwKIAm1tTUc2XeUNy+8jtlmwp4//TPSNI32tptMDkzw8S88Rm/o/Jyv28xDMfPlzm9L2DD88RCqquKUk28Wlq9YUVWVQCy8rvLrR7ft5XzrFV64e4EDtjoabGXENJW73n6uBHto2beX7eXT+4RYDCY+9ulP8jE+CUx3FSduSupiF2B1N6xTp05x7e4VWp7ajcU2XY9C0SnU7azG7rTy9tmTPPnEk+zevXvV32smJcLIWm2Usu9bQYdvkNfffA1vJIBV1RPRYrxgfo2W5l389iMfx2JY/RYCa5EII5mgaRo96jjj4+PYbFbq6+rnhP9cCiEJf/ClP8Dr83L55EVkOxgtRibGRzCqBj76kcc58fjhOQ91icJkWyGEgAgiwhrYFBOyLDMR91MmOxccn4j7kBWZmt0N05+/hhACYNIb+cNnfpsfO1/hcut1zo12TK9qsVv50KETfPzQh2ZuQImboLJnuuszET5SeVN6+9TbWEvMMyFkNld5IR2GLs6dO5fzQWQ9Ek+8G6XS6kppmkZcU1EkeUEvX64aDE7w4653KNM7earyCHkGK6qm0ekf4t0rV4mrcf7BU5/bMN/PSnT0dPLdkz/l6p2rhONh9Do9DdWNfPY3PsuRI0ey3bxFOZ1Ovv6/f50LFy7w6pm/w+cLcGT3Lo4eb6G2oZI3ZtUEga0TQBJEEBFWrdxcSLG1gGueHkp0eTPlhWH6hn5bN0JlWSV7ju5b9zCFzWThC499io8f/hB940NIkkRdcSU20/3emPkhJF1PROOT41jzF98y3mQzMjk1lZZr55qNVPZ9KaF4hPcn2rgy3oE3GsAg69hVUMvRwu0UGHJnzkMy58ZvYwjBE8V7MRmswHSp7wZbGYok81bbbTr39VFfsnAlxkbUER7kX3/n/8dobJjag9XkFToI+oLcu9XKn/2Hf8cf/eE/5fjx49lu5qL0ej3lLfCFls/MKcnecXf6eK7vkJtOIogIqyZJEo+X7edvQ2/xmv86e43VFChWptQA10K9eAo1Pr/ziZTOlSiw5VFgW7gyJVMhBKDYVczt0etJj2maRsgbprBg8aJpi4nH43R0dBAIBCguLqa8vHzNbZyamuLUqVO8f/EC4UiI+pp6HnnkEZqbmxc8Ga93nshqwkhJSw3DV7vXfK10CMTCfL/rTUbc49TJLnboXHijIW70t3N7soffrHuMMvPqf5+ZEFPj3JnsZa9hOnTMV2MpxuBu5VpP26YJIj/+2U8YiQxx6Kl9KLrpFSZGs4GWE3u4cfoW3/3Bdzly5MiKK5RmWrLdcWFrB5AEEUSENWmwlfHZukd5Y/Ayb/hvo0am64gUOfJ5tnAfu0rq8bUOr3lYZiXmLB0cDK26ZsBqPfLwo1z6bxfwuf3Y8qxzjo30jmGImzh27Niqznnq1Lv85Oc/pqu/k1g8itlg4cDeQ/z2b/4W1dWruyHdu9fJn/37f0fX0D2sxWYMJj033rnKq2+/yvOf/Byf+cynZ8LIcuXhk0kWWhJhZCnzXwO5EkjeGrnKuHuSj5pbyFPu93Tt0ip51X+dF/rO8aXGZ3JyaCOmxdE0FatkJKbGCQR8AFhNZnSygiRJmCU9kVgkyy1NjdGJMS5cv0j1nsqZEJIgSRINLfXceK2Vq1evcujQoSy1MrlEAIG5IWSj7guTDiKICGvWYCujvrGUgeA4vlgIq85EhbkQSZIYvtpNSUtN2sLIYvULtFAsbb0iDz/8EKdOv8P7b56jfEcpJdXFqB+smhnrmORjH/o4zc3NKz7fa6+9zl/9j/+MXKDR8FA1JouJqdEp3r1+kq7ue3z9f/v/UFFRsaJzRSIR/uIv/z193m4OfbQFvXH6qVDTNHpa+/j+T79LTU01R48enfma1fycUrHSxtZcgq91eEHviKZp9AfHafP2EVFjFBod7HLUYNGlbyl0MB7mxkQnO3Rlc0IIgEHScdhUz2v+W3QHRqi1Zm4FykoZZT0WvYkbnl58/UHiqEiATq+npMBFSUERU1qQIkdu9uis1pTHTTgaxp6fvK6QxW5GleJMTk5ltmHLWGp3XBAhJEEEEWFdJEmiwuJKemx2GIG1T1qdb7EQIn/QK5KuMGIymfjn/+yf84Mf/IC3z7zNtVu3kSWJovwSfu/55/jUpz614qdnv9/PD/7uexjLdOw43DTz8ZLqYgrLCrjw8hV+/otf8OU//MMVne/ChQvc62tn95PbZ0IITP9+arZXMd4/wWuvvzYniKxGqoqizQ8joXiEn/edoX2yH1NcxoieCwQ5abzChysPs9dZt6brLGcy4iMSi1JpSP5GXaw4kEMwEprKySAS11T8apje0CA15FP3QRs9UT99gwOcm2jFWG3jUP3mmDjtsNkx6Az43YEFvZEAQX8IWZPJy3NkoXXJrWQoZqsHkAQRRIS0Sjz5LlXMbKVWUsUx3WHEbrfzB3/wB3zmM5+ht7cXWZapr6/HYll8EmsyFy9eYmhyiP0PLHyjCEnj5DcYee3ML3j0N5qx2eeeu8by4IKv6ei4h2SZfjJMprimiFttNwmHw+squpaKOiSJMALwi76zdI72c8K0jSpTAZIkEVKjXAx18ques9h0Jupty5fnX63peRUSES35MuY4KioaOnn127NnQqu3j2goQpWxkEtaL95IlHK9k7AcpT06yq3AIH+/+Texmxe+aee6ZMOFRWXV7NvRwtlbZyiudCHJcwP/vRtdlBdV0tLSkqlmLkoMxayeCCLChrCaUtKJN8h0FjfKz88nPz9/zV/vdk8h6yWMZsOcj/ti02/Q9nwLk21e/N4ADsfcN5PEjW5BIFlqXz8NQErJfIdUFUUbDE7QPtXHcWMD1frCmY+bZD3HzNtw+69ydux2WoJIkTGPfIudNt8QpTrnguMdkWEUvY56a+qvnQrXJu9RhoPHnDu5qQzRGhmkLToCSJQVFLJd1RMMb6yCdcv9vX76+c9y+9+0cunNq9TvrcXpysPvDdB1s5vYGDz/+9mvbCyGYtZGBBEh5611P4vZvSPJZLPwkd3uQI2qRMJRDEb9TABJxISugVY8oRAXhn+O2X8/rDzR9HlkSULVNLoDZ2fCyLZtjWi/BL8ngNWxsHdmuGeUI9uPYTAYFhxbi/lF0dayjPeurx99TKLaunBoT5IkmgylvOfpJhALp3y+iCzJPFi0kxf957gW6mGnsQKdpEzPqYmNczHazZ6SRpyG3OxRcEf8FCpWDJKOY87tHHfsxR8LocgKNp2Jd0dvMuGZynYzV2wlDw3Nzc38q3/+r/j2//w2bedaCUXa0St6Kkur+ew/eJ5HHjmRqeYmJYZi1k4EEWFZMTVOq7ePm+5u/NEgDoOVvc7pSqdykqWDqZKKDbUWe2JP5/DNShw8eICivGK6bnZTvnf6+0uEkJ6JO4x1+Ni9qxZn3v2egnDcO3ODe6Lp8zNhBMC1I0ZJmYNLp95n1yMNFNimf3aaptF1qwfZr+PpJ59K6fcgmXSoZSb0sOzKmWSiahwDujl1aGYzSQY0dXqFSDrsdzbgrQhyeug6t/yDODHjJ0xQidNUVM3T5bm1+mI2q96MO+6b+bdOVsibFZqmon5KrAv3Nck1q91wcufOnfyb//vfcPfuXcbHx7FarezYsSOrS3ZFL8j6iSAiLCkUj/C3Pe/QPTmIS7PikM0MqkPcHuuiqbCa5yqPr3gcfTUraNK9q6ecgeW+S7Hb7Xz2U8/zH7/17/CFJ6jaXsJ4rBvfWIiRO34ceisHHm2Y8zWJG1sikDzR9Pn7xwx6vvTlz/FX//F7XHvpLmZXN3qjjsiEghU7f++zn+fgwYNp+V7UMhOsorhZYn6Iy+jAK4Xxq2Gs8sIej4HYJFajCYuSnu52SZJ4pHgPe5y1XJ/qwh31Y1IM7HBUUWl25eSy3YTdzhp+PXmWqbgfM3NXkoyFPYwofj7auCdLrVuZtQ6dSpJEU1PT8p+YASKEpIYIIsKSXh68wMDEME+bdlOsuz8jvS86wVujd3jLaOeJkv3Lnmc1K2hyeWvxVOkOnGXXo/l8XvsNXvrVW5z91XnUuIrBYKS8qoCHP7YTV3nyFQBGxZ40jFRUl/Ivv/4PuXjuOtcu3yEciVC5s4znnvwijY2Nafk+EkM0Ky1ulvj9D1/tZru9ijdMFs4H23nUsnNOz8hE3Ed7fIRjhXvTPmG0wGDnkeLcftOeb1deLZfy2nll6gbHAnGaHbUAtPsGeN/bQUNzA/vrdmS3kUvIxc3pVksMxaTOxn0VCGnnjvq5PdHNAX3NnBACUKkvYFesnCtj7Tzk2oVJWX7uwewVNMl6R7ZCAIH7NzBFlnn48SP4Sm6wrXM/RI3YC8wUV+Yt+zQ+O4wsUAs7ayWeaPoDVE0DRoH0BJGE2UM0ycLI7ACSYFT0fKzqAX7adYoX/Jdo0pdilgwMxqboVMcozy/hwcLcfTPNJoOs43M1j/Ki/n3eU7s5O9QFEhgsJvYf2sdnj30EvZJ7t/fVDsXkItELknob85UgZERvYJRoNEq9tTjp8XpDMTfCgwwGJ6izla74vMmKnW3kEDJ7ud5KzX6KspmdNO50rvociRtfMvN7TBZdaZMCsyeuLtUzkqyiapO9gt9teIKzY3e44u5D01RsZgsPFe7jaEEzRiU3y3XnAqvOxGeqH0ZpzKNrahBLdSH1xZW4HGtfzZVOW6UXBEQIWa2N+4oQ0i6xGnSxZ3MZGdDQllw3mlwijMy2kUPIYhMuFzP/KSrV5g/fJFtpky6LlX1fbL+ZCouLT1c/RFSNEVXjmBR9WidBbzbxdjeHWnZAHGxZCiGJBwlIXgckIV0hZGRkhDt3WlFVlZqaGmpra1I+xyfxt/7mrJ1y19ML4psM0n9njPE+D6qqUVBqp2K7i7yS3FyplU4iiAiLqjAXotPr6I6O0WBYOKejKzqKUW+g1JSbT2DplqshJCFx/mQrbdIdRuZbyX4zelmHXs7sLSkcjwLTQx25PDl1OeneUmEl9C57xns9AoEA3/mf3+Gtd0/iDkyBBBaDjQO7D/Cl3/8SxcXJe3NXY34Amd/7kbCaEDLSOcX1tzqJajGsJUYkGXq7Rui/O8b2B6qo2r3+dm8kIogIiyow2Gl0VnJxpBuXYp+zJ8dYzMuNWD8tRU1YdNlbfZINi1VOXKl0B5Bk18vkUM1SFttvJpM0TeOWp4f3x9sY8I0CUGIt4HBhM3vyajdsIJn/88xWIMlUCFFVlb/8T/+Jt95/g6o95TTX1SHLMqMD45y+8g7j/26M//Prf4LDsfay7/NDyBvnL80cW+vwS8gX4cbbnShOqNhTNFMl1tWkMX7Xy+1zvdhdFpylyffV2YxEEBGW9JHyw3w/7OMF7xUqcJInW5hQfQzioaagjMdL9qXsWtExb8aGZ9a6dHe5iWq5KhtDNYutoJld4j0b3h69zrsD1yhRbRzR1yAh0Tk1yi89pxksneCp0gMbNoxA5ntHEsMymV4Of/36dc5cfJfmYw0UlN7vlS2udJFXaOfSS9d5++23efbZZ9d0/u7AWd64+x0k4PVzF5AkOSVzPwZax4nEotTsLppTql6SJAq32fGPjNF/Z2xLBRExEJtmqqbSHxjjnm+Qicjqiz5lm01n5vP1T/Lh2gcgz8CAyYch38rH64/zWzWPpWwyoedmH56bfUTHvGsqjrUaa+0+3qghJMGo2DEqdl5v+zavt3175vtYy2Tb5SQC5ey5A7mgLzDG6cHr7JeqeNK6h0ZDKQ2GEp6w7eaIUsv7w7fp9A9lu5nrlugdyVTgS/y+MzkR9b333iNujM4JIQlGsxF7mZW33104hLKc7sBZugNnefODEPLG+UspCyEAUyN+jAV6ZGXh268kSVhLjEwMbrz3ivUQPSJpdNPdzTvD1xkPTKFpGrKsUJdXxhOl+yk2ObPdvBUzKnoOFWzjUMG2tF/Lc7MPx67KtPWOrCWELLeJ1UaTqaGaldYWyaTLkx2YYzp2WisWHNtmKOWOf5DLkx1p2d8m09I9VDN7pVs2igN6PG4MlsUfhKwOC1NjU6s652JDMalcBSNJLLkvlKZqSPLW6iPYWt9tBl2ebOfnXe9i8mk8qd/Jc6aDPCjXMTI2ynfvvcFY2J3tJuasxJtWKntG1DITapkJyaRbUwiRJWlThJCE+RNZ09U7onfZ0bvsOHZV5kTvyGhokjI5eZ0WSZIoV5yMBKcy37A0SkfvSLLl9plelltUVELIE0bTkr+re8Y9lJWUr/h8iaGYN+9+h9fPXeCN85dwWapTvhS3oMxOaDJKPKouOKZpGv7hMIWLFDPcrEQQSYNwPMqbg1eoVQt41LKDEl0eVtlIvaGYj9haIBDj7ZHr2W5mTkvlE/R6Z/LPXxWz0UNIwvzvY7Wrf1Yq3UNtq6GX9YS06KLHQ1oUQ5oruWZDKicG50rNn2PHHsSMlYF7gwuOeSa8hMaiPHri0WXPk+6hmPlKtxVgNhoZvDpJPHY/jKiqxvDNKRRVoXLnwo0gNzMxNJMGrd4+gqEg+8w7Fzx5GSQduwzlXJrqxV8WwrrFVpxk2mYoohT0R7h7ZYCeu2PEY3FKKvNpPlhOflHuT2ZLhJBcGZppclTy2sR7BNUIZnluNeCwGqVHneDhvH3ZaVwOWar3KtsBJKGhoYGPPfksP3np73CPe6loKEPRKQz3jDByd5xjLQ/x0EPHlzxHJoZi5jNa9LQ8Xs/VN+7R/fYopkI9kiwRGo+ikxR2n6jFXrhwB+3NbOPenXOYNxbAqOmSbuQFUKjYiUfj+GJBEUTSZDMEEICRPjcvffci4xNejAV6FJ1ER8cQl0938Ogn9rDjUPaHOxaTayEEYE9eLeett3nVd4NHLM04leniUe54gHeDbZgtFvY5G5Y5S+qpmkpUjaOXlawXc8uVHo/lSJLE5z//eYqLi/n1K7/m3ru9qJpKvqOA3/7E7/Lcc89hNC6+YWK6VsWsRH65nQd/YyeDbeOM93vQNKjcY6O8uQBL3tZ7T9jYd+kcZVGMhKUYITWKSV44mcqtBpBlOW27im4ma5m0ullCSDgU5aXvXcQTCbDtiTL0xukhA1XV6L8+zps/u4bTZaWsNvcKyuViCAGw6Ix8rvZR/q7nFC/4ruLQTEiAWwrhtDp4vuYh7HpzxtrjjQY4P9HK1fF7hGNhjDoDewrqOVrYTJ4+8xU2N0oISZBlmY9+9KM89dRT9PT0oqpxysvLsVoX/9nN7gXJxFDMYowWPbX7Sqndt/LtMTarjX2nzlHN9kpeNRi4Fe7ngLl2zrG4pnIz0k+dqwy7fmt1vyWzVK2D9ayg2eghBODe9SHGx7w0Pl46E0IAZFmicm8hrScHuHm+J6tBJLHHjDwYWnAs10JIQrHJyT9o/Ah3ff30BEbRNKiyuGi2V6Z9p9/ZJiM+vtf5Bn6fnwalmALFylQkwOX+O9yZ6uG36z5EoTHzkxY3SggBiMVihMNhTCYTDQ31y35+NoZihOVt/Lt1DrLoTBwr2cVbfVeIB+PsNFZikQyMxr1cDnURNKo8XLSxth1Ph5UsL0z3ct5cNtA5ic6hYDAv/DOVJAlnuYXutpEstGzaUiEk1+lkhR2OanY4svcG9MrgBcLeIB+37p8zX2WnWsFLvqu8NPA+v1P3eNbal8tGRkZ4+eWXOXnqJMFQELvNzhOPPsHTTz+N0+lM+jXZHIoRliaCSJo85NqFTlI4M3KTO8GL03VEFBmXw8nz5ceotGytWdFLWa4SZOLJeqN1G6+XpmksNV1AkiVUdeESwEzYyCEkF0xEvNxzD3DEWLtg0qxJ1rPfWMNpTwcjoakNVXMoE/r6+vjTf/undI10UFzvosBhwzPh4Vs//R+cf/8c/+qP/zdcrvv311wZihEWJ4JImkiSxIOuHRzIb6TTP0QoHsFpsFFjKd7Q5aPTZSVlqTPdOzK/psZq95RZr+LKPK5d7CIWjqMzLhwycA8G2NawsDDXWqmL1GOYTwvFsh5ARsNuhkKTyEjUWks23KTv0bCbeCxOpbkg6fFKfQHxQBujYXfGgsha67yku5jZ7L9DTdP4j//tW9wdv8nep7ahM0y/hdkq7RQ2Grny5jn+y3e+wef/4afnnEMMxeQ2EUTSzKjo2e6oynYzNoREGFnK7DAC6esdyYVy7tv2lfP+yXa6L45Sd7R4piS0pmmM3HWjBVSaDhYSjq+/TkcihGR6E7zVmoz4eGngPTrdQ8RjMZDAqDeyz9XA4yX7MzrHYz30kgKSRFiLYmLhhPawFkNCytj3s9bexnRODJ9f0Rigt2eI1tZ2aveXoTfMvabJYqBiezGXLt7gExNPUVCYN/N3K4ZicpsIIsKGM3uoJh29I7NDyOxekEwXMjNbDTz1/D5e/v4l7rw2gL3UhKyT8Y4EkSMaR59o4Asf+6frvs5GCSG+WJDvd75JyBfguKGeKmshUS3O3cgQFwbu4IuFeK7y+Ibocay0FGExmmmLDHLYvHC5cGt4ELPRRI0l/dvBryWEpHtl2vwHgYThgTEC4SAFZXlJvy5kG6VvcpQXzv8NFY3Tk7jFUEzuE0FE2LBSPVSTC70g81Vtc/HZLx/n9oV+Om8PEQ+qVO5w0HyonN99+p+s69yzh2JyPYQAXJi4i8fn5ROW/Vg+qNGjSDK7jZUE1QhvD15FL+s4VLCNMlNBTgcSg6zjaNF2TvZewhY20WQoQ5FkVE3lbmSYW+oADxW1YFIMy59sjXKxFwQW/zsE6BoaxRMepWv0DnrTwt6iWFhFkXWYjfaZYRgQQzG5TgQRIWcsNyyTTCKMJKx3vDoXy7nnuaw88OEm9j85vRFbYqO6lc7pWEo2A0ji973S8uPXJ+5RL7tmQgjAVNzPG76bTES9EIvxbs9Vro92UJ1Xyicrj2W0JshqHXPtwB8LcXG0lWv+PuyY8BEiqoMDpds5UbQ77W3IpRCyks0la7eZcNjamewKUrZj4bL1yc4pfBEvF3uvUmxf/f1EyA4RRISsS7whrXd30M1SyCyZxDyQ+SFkI/RkJJP4XftahylpqVk2jGiahi8aYptSOPOxoBrh154rKDH4kNJMRI5i0Jsw6AycG+/gh/G3+EL9k+jl3Hw9yJLM02UHOVjQyE13D75YEIvOyC5HTc6tlMlWL8j8BwGjWU/Lg7Wcfv02OqNCYa0dWZZQ4yoj7R5674xQd6RAhJANJjf/QoVNaakej1RtUb7ZQ0guDqdEo1Gu3rnBwMgQBr2elu27cckrqwpqay6ZCSPJJAKKJEk4jBbG/b6ZY7fDA4RjET6m24tJ0tEpjWJX9FTqC7HLJl7wXOW2p5e9zrr1f5Np5DLm8Uhx7tYVypUQknDo8UbCoRjXzncy1uZBMSmMDk8gI7HzcAP1B8rS0k4hfTbfXVvISanq9ZjPsasSvcue9iWE2bARekFutt3mr7//bYY7+zDGFaJanB/mmTi67yCfqD+GUb/8HIfFXhPze0ta8ht4x3uZvfEgdsXMvcgwVeRjlvS41QBxWSPfML0RoFOxUqzZuO3uWTSI+GMhLk22c3Oyi2A8Qr7RTkt+PXvyajfM6pt0y/ZQTDKyIvPwx3ey+8Fq7l0f4vzV69SUONm2qwmzXWybsRGJICKkVboCSKrNvilmul5IMhshhHT2dfMfvvmfsI3E+Y2K4+Sb7MTVOK0Tvbz7+tv4dozxex/69PInWkSityThYEEjt6a6ecl9nRZDJX41TLFkZTTmYYoAhWbnnP2brLKRcDyS9NzjYQ/f7zyJ1++lRi6kXM5nJODhV1NnuFXQzWeqT2DI0SGdtVisx2klE73TGULWMzE8v8jGsKmf2qMFYjLqBrd5/tKEnJPuEJLoDYHpCp9r6RXJxZUyuT4Uk/DyW6/BoJ+PND6G8kEPgiIr7HTVIsdU3rl1nadaHqKyMDWbepkVI79V9xivDV7i0lQPveokkVgEp9FCmclFqSl/ZqWMpmmMql4ajQvfgDVN45d9Z4n7w3zKcnBOZdORmIfXx29yynyDx0v2paTd2TQ7gMz/O8xWxeLVLo9/8czbi55LBJDNQQQRIS3SGUIWqwCZCCMrfYJLRwgJBSL0tI4SCcWwOc1UbXOh6Fa2rXsu9IJoodiKfn7hSJgL719gj7N2JoTM1phXwen+a1ztvpOyIAJg05n5VNVxvKX7OTN+i7f7rpJvzKPMMLdCaXtkGL8So8W5cCO03uAY/d5RPmTcvqC8erHOQbNSypXxdh4u2r1hekXWM/8qUxWL1zIUkwghInBsbhvjr0zYUEpaatLaCwKLP72tNIwkeypbTwDRNI1Lb93j5mvdxEfj6DWZqC6OucrEA89tp3bH0oWpshlCbty4wZsn3+T69WsoisyhvYf40GOPUb992+LtjUSIR2PYDcmXx8qSjEUyEIomHxpZL7vewhMlB3BHArwz1kpjrJhaQxGqptIRHaGTcQ6WbKfKUrTgaweDE8hxKFtkZUqN3sXtyBDjYQ9li5RgzyWpCP2pDCPzt0aYbTWhX4SQrUMEEWHDWc+NMl1DMZfeuse1H91jp76UpqoSjDo9nlCQa919vPXX13jiH+6nsrFwyXMkQkhCJkLIL3/5S779w28R1gUpLHeiBWL87PW/443Tb/Llv/+HPPTYiZnPnb3RndVswZGfx8DQOPXOhfvdhGIR3IQotDvT1nZFknmu8jhnzAVcGrvL3fBtJMBptfN04REOFzQlLWomSxIaoKEhsfB4HBWQFtSUyTVLDbusxfyaPGuxWEXUhNUMxYgAsnWIICJsGekKIUF/hJuvdrNTX8qesvs3cofJzPGaRt68d4fLb3RQ0ZBb1T5v3brFd370bRz1Fup27YC4ihSI07hL4+aFNv7qb77JtsZtFBfd71VIbHanKAqPPHyCX3z3x+wO1eE03f8ZaprG+eFbmJxWDtWntyiXTlY4UbSbY4U7mIh4kSWJAoMdeYlti2utJaCT6YqOUW9Y2FPVHhkmz2yj0OBIZ9PXJdcmgS8XQED0ggiLy0gQ+c//+T/zZ3/2ZwwNDdHS0sJf/uVfcuTIkUxcWhCA1A/FzNbTOkp8LE5T1cK5EJIk0VxYyuk7HXgmguQVWlJyzVQ4+dZbhJQAe3Y2z/m4JEnsONDI+ZeucvpXb/KpLz4PsGDH3Q+feIKrN67zs0un2WmtospRQjAa5uZEJ2OGAJ954MPYTJn5fnWysuIiYEXGPBqdFbw32oldNlGkmw4cmqZxNzLMPW2MJ4sO5cQS3kzU3lmvpUqyzydCiJBM2oPIj370I7761a/yzW9+k6NHj/IXf/EXPP3007S2tlJcnP4NnYTNZyXj2LMnXa7kaW09wsEoek3GqEv+52QzGiEw/XlLeb3t23OGZ7oDZ9M6PHO77Rb5Zc6kvTSKomApNHG3u2NBAEmwWqz8i3/0R/zyjZc4deoUt9xXkRWZxsNN/NahE9THnClp50oqr67WsxVH+dv4KV6eukFByIJNMjKm+QkpMQ6WbudIQfPyJ0mzdM61SmYtwzKp2iDyxTNviwCyhaU9iPz5n/85X/rSl/jiF78IwDe/+U1+/etf8z/+x//gj//4j9N9eWGTmT2pDpLPF0lMWE2EkRrLg3QHzqJqGrIk8UTT53m97duE496U9IrYnWaiShxvKITdtHAJ8bjfh2SSsOUtvrzYqNgJx70zYUSWJFRNS2sY0SkK8Vh80eNqXEXJNy+5LNo2CL/18c/w3NPPMuGewqDXU+gsIDbum1keuh7zK6+mKpBYdCZ+p/ZD3PX1c9vTSzAWZruhmL3OOirNrpwaQsuE1S7hzcVl78LGldYgEolEuHjxIl/72tdmPibLMk888QRnzy6cWR0OhwmHwzP/9ng86WyesEHNrn+wWO9I4ik+8SaarjAyOeJjqGeS8YiPUzdaebixCVuemcT7WCQW487UEJVPFmFZpupjoh2Jm3qijkjipp/qQHJo/2G+/+v/iaqqyPLcORWRcISwP87e3XsWXYGkhWKoZSbkwRAmo4ny4tQt051ttfvSrJROVtjhqGaHY2s8iS/X4yFCiJAtKytwsEZjY2PE43FKSuZ2L5aUlDA0NLTg87/xjW+Ql5c3819VVVU6m5dR/liIc+O3+WX/OV4cfJ82bz+qpma7WRtaIpAkekeSSQQSLRSjxvIgNZYHUTUNVdNmhkHCce/M8tmV0jSNC2+08/3/8A7n3mklXqhxNdTLLy9e5uLVe0z4/HSMj/Ba5y2idXDoycYVn3t2IJGl+6s3lloWuRaPPvooBaYirr97i1g0NvPxcCjClQut1BTX8eCJ44t+vWTSIZl0qGWmjJTYTwSStezSvNXN7vFY7L+VmD8UI0KIkAo5tWrma1/7Gl/96ldn/u3xeDZFGLnu7uLF3vPEwlEKsRImxkW5lTJ7IZ+teQSHPncmMK5Xpt8kVjJUM9/s3pFEGFlt70jbpQFOv3abvHoLdduKkWWJqYN+us6O8FrbbRx3uiiqz6PySReHntqG07WyTeASlhqqWex7Wq3Kykr+6Vf+Kf/pm3/JhReuYshTUFWNmDtObXk9/+yP/jl2+/I/D8mkm1nam27zy75vVqn8O1pr5dTZ4TKdvSBLVU7NFk3T8I4FiQSjGMw67C7Llhuuy6S0BhGXy4WiKAwPz71xDA8PU1q6sBvXaDRiNG6uTYt6/CO80H2W6ngehy31GGU9AGMxL29N3ebvpHf4Yv1TSy43TIWYGiesRjHK+rSsBsjmcsKlhmoW27RrdhgBVjVUo2kaV969h6FAR2mzc+bjznIrLc/VMtw6xfgdH0/+o/1UNCxdO2QpyYZqklnP8M3Bgwf583/37zl9+jTtHe24Y70cb/kIDz74AFbr6sJTptiaS1I+eTWXrOVvKVXDLrDwbyZVIWSjlGqf6Pdy970+3GN+4pqKLMnkFVppPFyBqyp3l3RvZGkNIgaDgYMHD/LGG2/wyU9+EgBVVXnjjTf4yle+ks5L54zz463YojqOW+cWV3Lp7Dxi3s4rnpvc8w3RaC9Py/W90SBnx29zfeIe4VgEWZbZmV/LMdcOXMa8lFwjV2oaLFYdcrE5Dok37dm9I4kwAovfaN3jAUaHPRTvW3hTkiSJkiYnE/f8jA951xVEEmb3jiQzuxrrWia3eox3aHzAylhU5c7pYf7rjX/Pj37t4IHjB/js0/9gRb0im4mqqXiiQTQ08vSWtD8kJKz17yiVe8UsFULWuipmIy3Lnej3cPnVDjSziqvFjtGhJ+KLMdHh5cqr7ex7sgFXdWrum8J9aR+a+epXv8rnP/95Dh06xJEjR/iLv/gL/H7/zCqazSyuqbS7+2nRlyft1ivSObCFDLT7BtISRNxRP9+99wZer48mXQkunR1PPEjrYBd33X38Zt1jlJvX90aZKyEkYXZ1yJXOW1jtUI0a19A0DXmRPWQkWUJWJFRVS3p8LRa78a9npU3iTcbn8fPNv/gep6+dwlJiwJxnYNgTpeMHXbx39gr/6J/+DvsqP5yy7yUV0rGkV9M0Lk7e5f2xNiaCHkDDabZzqLCZwwXb0hpIci2EpLoXZCOEEE3TaDvfDxaVykOFM/dsXYGCOd/AwKUJ2s73UVjpQJLFME0qpT2IPP/884yOjvL1r3+doaEh9u3bx8svv7xgAutmpGoqmqZikBb/MRtQiKd40qo/FiIQD/P60GWCXj8ft+7DIn8w5KWHZmMZr/iv86u+83yp8Zl1j33mSghZj9UM1TgKzNhsJtwDfmyFC8OOfyKEpEq4ytLfk5DoLUlIhJHlzH6j+Xf/+f/ixs0+6k8UYbFPz1eKa1EigRjtF+/x0++/RP5Xpp8Clwo4iRU0CY5dlSlZwruYVIYRTdN4afACF4dbqdHy2WOY3menyz/Ka773GA5N8mz50bTME1jvUMxahl2Smd9zOL/uzlrng2yEEALgHQvgHvdTvM+x4PcsSRIFDXaGL04xNewnv8yWpVZuThmZrPqVr3xlywzFzKaTFFzmPPq9EzQaFt5kQmqUCQIcXmFFyOUMhyZ5e+Q6He5+QtEI3YERHtE3IanMWR+llxQOGmt5w3+b3uAY1Uk2BtuoHLsqZ27M8+uJLGelQzU6vcKuIzW8+/otnBUhrAX3b+7xqEr/tQlKy5yU169/WCbV5j/p/uL9/0b79WGKm/JnQgiAIukxWMBQ4+Py5VuMDU/gKilYtLcl8fNNvNHpmV7NlHjDTHUgmV1fJBVhpMs/zKWRVh7U1dFouD9/rVJfQGVklHdH29nuqKLJvnBfnbXKdC/IYvOlhGnhQAxVVTE69EmPGx164qpGJLB0YUJh9cQrMo0kSeJA4TZe9p6nPzpJhT5/5piqaZwPtmM0mdidt/4Z8v2BMX7QeRIlpHJQX0VYieHRvFgiCne9/TTaK7Do7k8ELtXloYU1xsPuTRFEFrs5J8LIaqxkqGb/iTqGeyZpPzeEyaXHWmgk4o/hGQiSb7fx+GdakHOs+zZZd/vEsI9IRMNZvnDlliLpcZZbaL12j5+f/h/8wW/882WHfhIraNQyE4nbeSKQpCOMLGelIeXq1D3scSMNpoXnrDUUcdPXz5XJjpQFkUyGkNmvfxFCFqc3KciyTMQXxZy/cNFExBdFliT0836GmqoxOehlrNeDFtewFpgpqc9Hb8z+FgEbhXhVptk+ZwOdrmFOjt2mIuKkQldAWIvSERshZFD5RNUxzMr6VgppmsYrgxcwBSU+bNuPTlIYjrmxyAZcsoNgLExfYJQmx/3u3LAWQ5M0dPLaXwK5Vs9hsZtzIoys5ia8XAE0vVHHM3/vIK0X+7l1oZfJHh8ms55jj+xg59EqHPnmVH1bK5KsPHwy8ycdmvR2JAniMY2kz4FxHbKkQ1bkOddYqqZJjeXBOcXO9C572sIILP5mvpoek/GQm2LZvujQS7HiYCyUmgKL6xmKEb0g6ZNXbMWRb2G8w0fFQcOc14KmaUx0+LDlmecMy4QDUa69fo+JYQ8YJGS9ROxmnPb3jew6UUNRrTML38nGI16daaaTFZ6rOs4VWymXJtq5EOxBkWWaC6s4XNBEhcW17msMhiYY8I7zmKkZnTSdwosUOzadmXvRUXYr5QxG3QRjYcwf9Iq0RgYwGYw0WNdWDTPXJqkudoNeT6GtRBhJSISRBJ1eYdcD1ex6IDtj4JFQjPZrg3TdHiYQDHC6pI0v/MYfUlO3+FP7/EmHxZUx7HYL411eKnYXLPj88W4vNquJ6voKIDxnYmwy83tMMjVUk8xqhm8MioGA5l/0eEANY1KSd9mv1EYZipn9mt9KBcskSaLxcAVXXm9n4PIEhQ12jHY9YV+MiXteopMqOz9UMTNRVVM1rr1+j/FxN6UHnJic0+ElFo4zctvNtTfvcfjZZhxFubkMPpeIIJIBiiRzsGAbBwu2EVPjKJKc0klvkxEfqhqnRHd/OaksybSYazgdu4MprseATFiNYdD0tEeGuB7v54GS3Vh0q3ujnt0LkishZDGb+WnQPebn1//zIkMDkxgLdOiMCj0Xxvlf3/tXHHqsnn/xD7++4DWW7E3FYNLR8kAtp169idmhJ7/KhiRJaJqGezDARLuPBx5pxmw1AIY5y4iT1TWZv3JnqaGaZNI9fLNYINmRV8XLk+fxxkPYlbl/E0E1Qq82yRPOQ2tux0pCyFK1QDIxFCNKt0NRTR77Hm+g7b1+Bt+fmukRtTnM7HysgpL6+8Pr4/1exoc8lB7Kx+w0zHxcZ1Qoa8mn+/QovTdG2fWYCCLL2Xx36ByXjmJiRkWPJEn41TB5yv2x/h2GckLWKOf9d/HEgvSEvMQjGqoeDpRu57GSllVdJ9d6QZaymUOIqmq8+oMrjExM0fChEoyW6bd4TdMYaffw3hsd/Lei/4eGvQt3t072prL/0Xq87iA3LnQz3OpBb1WIBeLIMZk9+2s48vS2BV+/kroms4uszR+qSSbdwzezN8+b7/FYKTekQd4ausvD1u2UGpwAjETdnPK0UVZTweMPPYLNsHDIbbneluX+btJZB2SlRAi5r6jWias6j8khH5HAdGVVZ5l9wZyv8R43slmaE0ISJEnCUWFmuGuSnWqNWO67jM13l96Cai0l2ExWboX6edBy/01DkiQOmGuZjPtoV8bZXdyIVW9mp6Mal3FtFQJzMYTMfpJMx8S8xFNRQqp27V2rvvYxBvomqHqgcCaEwAfF1Lbl4RsNcfvcCDv21a+o503RyTz63G52Hq6i/dogfk8Is81I495SSmvyk55jtXVNYDqQJBsqSyz5zdZcEgAb8E+qfp+/eeMnvNl7F31IQgLCeo3q3dV88YnfoCRv4TDqUkM/q+kFybUQshUDyGySLFFQvvTPIB5XkfWL/30pehlVm645NP1qEhYjgsgmoJMVjhfv4tWe99EHdew2VmKS9QTVCDfCfQwqXj5Tc4ID+SvfeG22geA4V6fuEQ1fJm/Axb7aHeytbkKn5ObLJ5W9IOnatXc9hromwaDNWTY8W36VleE7k4QC0Q+GVJYnSRIl1U5Kqp3rattiZenn75OTmEOS6ClJSMwlyQaXI5//9ZN/n/ahbtqHe0HTqCuupLm8btFAt9jQT7pCyHJzntb62l9szo+wOKvTRLQ1TjyqougXFrvzj4WxOc3ISmYq825kuflOIqza4YImolqc00PXaQ0OYkRPiCgGg5Enyg6y39mw6nNqmsbrw5d5b/g2pqhCmcfF+NAo71++RH1dHf/gw5/DYc6dwj6rXRmzUuvZlyYdNA0We8DqHR7EPxlmciIAqSvsumrJNu1LWGxvnNkb56W7GNpiJEliW1kt28pqV/V1yYZ+Uj0Us5mHGzei0sYCOi4NMNrqpmSXc05YDYyHCY1F2fbQ0nsACdPEK3qTkCSJ466d7HfWc8fbhy8Wwq4zsd1RteblwZcm2zk3eItDSg3bbWVYCuzonWbGwh5evnuZbxt/xlee+Z2s7kq52nLua5Ws2BlkZyy9uDIPLQRBdwRz3v0ej97hQQDCoxKWPD1vXj2DJEl85NgjGWvbbCvZI2d2L0m1fHhmUmu2ekXWIxFG0jEUI0JI7jFa9Ow4XsONdzrpPTeGo8KCrJfwj4YJjUQory2kvDn3ihrmIvGq3mQsOtOah2BmUzWV98amy103G8qYivrpH59C9cqY9Qb2m2p4v6Od3vFBql3p2bBvpfQuOyqZuUkvt6Q3E6qbiyguzaPn0hgNx0oYnBqZORYZkQmPxdhzooEiq4uxQA8vnnk7q2EkmUS12kRPiappc1bYyEUGFpvFlI2ekpVK51CMCCG5p2xbASarnp6bI4zec6NpYHWYaDhWTsUOlxiWWSHxyhaSmor6mQi62aVr5K63H38kgFlnwqDT49XcxBSNCf0YdwY6VxxEltuqfLaVvNlkqjck1yg6mac+t59ff+cC5392B3OxAbPZQmAigurXqNlRMvMk5rJUZz2MrMbMm20ohrJnbsXfxKTWlb6OshFYUrUEF0QvyEaRX24nv9xOPKaixjV0htSWZ9gKxCtcSErVVNCmi6UZozJVSiE2owXZqKBp07VLvF4v17vbeGrv8WXPt5qnwZWsnJh9vkz1huQSV7mDvEMa1U4noQEdUXec4iInFQ+5KKyau2nX7DAC5HwgSVa1NTFsA6B88L+zN9hLJpPF02ZfL5srYITsUXQyOTp/P+eJH5uQlFNvQ9EpdHpHOKHbhkmevUwU4oqGKkH3cB9xNY6ySH2UtdycE5+b7I1k/vm2Wm9Iwotn3sZg0dHywJ4VfX5iB9Rc6h1Zqiz9m3e/M/P/P7Tt79Gjvj/z79l1SWDxQJLu5cCziRAiCGsnBrCEpHSyQpEln051HD+RmY+r4ThhNcr74XuU2QuJBSIMTY0tea613pznB5LFbvbZuGGrmjazigbuz3nIpLVsr574mkTvSLbMX+YrSxKyJPHm3e/MhJDE5ySOzV55I5l0K/q9z38NpZpjV+XMjs+pCCEJIoQIW4l4tQuL2uGo4rzuFm/F2yiLOyiK2Qnp4nSHJjAYDTxa0sK5WCealr51orOfahP/zrZcWkGzFvOHajIhWQ/M/CW+6fr5pTuM5MJrUhA2MhFEhEVVWoqotLho1FyMxb20xUcxoGOHqYIDpU3cmurFVm6nyLFws7RUytUbfS4WO1uptfSmrNVSw0Hze0bS+XPL1dfRRjI26KGndZRYVMXpslC3swS9cWO/jcSi00XJ9EZFrHLJko39ChLSqsrsosJRxPCUhw/b9mCW79esGB4f545uiA8VPIhRv3T1zuiYd9O+CczuHdloYSRTVrJyZz0/q8QeNptBrs55ioZjnPzpDdqu9xPVYsh6mXhIJd9p40PP7aFm+8J9jXKdZ9RP17URRron0VQNg1lPZbOL6j3FGz5cbTTipy0sSpIkPlF5jB9ET/Iz/0Vq5ELssomRuJdB3DRYK3mi8fCS5/Dc7MOxqzLlYSSXJ/Rlo7ZIrkuEkVSbXXskmVwIKMtNqp3/eZl6Tc9fnbRYr5SmaZz8yXVuXO2hbK8TZ7kVSZaIBGL0XRvnpe9f4lO//8C6twfIpPFeD1df7yCmi+OoM6M3KwQnIty90sdYr5sDz2xDn+F7SzQcZ+TeJBMDXjRNw+GyULatAOMKt2nYyHLvLi7kFJfRwRcbn+LyZAc3J7sYiU9SYLTzbP4udufVYlD0y54jsWIhVfM8cjmEpFosFiceUzEYdaI2wSIWex3M3vE3G2a/TpdqSzZez6vZbXdswEPrjQHK9jrJr7y/pYPBoqPuSDFtbw1y9d1Onvqt/Rlo+frFYyo3T3Wj2TSq97tmdsa1FZvJq7LS9944nZeHaHowc+XZPWMBrr7Wgc8bxJCnIMkS/Z1j3LsyyO5H6iiuc2asLdmw+e/kwrrZdGYeLtrNw0W713WeVPSObJUQMtg1yfUzXdy7PYyqaRS4bOw6Us3OI1UoOjGOvRKJ18hKeyRSaf7rdLG25HoIAei+M0qMOM5y64JjkixRUGuj4/YQ0XBs0SGNcCBKLBLHaNWj0ydf6p8pYz1uAr4gFQ8UzISQBINVh6PSTP/dMRoOlaGkoa2apqHGNWRFQpIkouE4V1/rIKRFqHrIhd40fc14TGXk5hTX3+rkiGM79kJzytuSKzb33VzIOesJI+na1C7V1jss035tkNf+9goRJUp+nQ2dQWFq2M/rv7hK371x4jUeZGVj9o6stoaJUbEnrTcye7O85SzXI5FqS4WLZENJ2Q4hy83PiUbiKAZpwZt2gt6koKoa0Wh8QRBxD4bou92OryuAFAPJKlG4M5/a/SUYLcv3pqZDwB1GMkgYbMmvb3UZ8fd6CPmjWJ2pCyLRcIy+W2P03RklHIii6GXKGwrRGRV83iDVD7nQme5fT9HJlO7Np/vUKH23R9nxUOYmmGeaeLQSMs5zsw/PzT6iY94NubnZSqx18mXQH+Hkz64j5Us0PVZOcUMeBVU2ag8VodTFOfPuDcI9loyuekmVtdYwSYSR19u+PfMG2h04m7QC62Lm90ikg1pmmgnLS4WL2b0k2QjW8iqH+PIKLcQDKtFQPOlx72gQm92EyTz3jb3z5jDdv57EekPmqFTLCfM2dvnLCLzj5eovOwgHomv+HtZD0cloMQ1VTV52IBZWkZBS2vMYCcW4+Ou7tF7sQbOpOJrMGEoUOluHuPr6PRSrNCeEJEiShLXUxFivO2VtyUW5/3gpbFqze0eS2YgrbWb3hqylTsfQbS/dQxNUHnfSNzI055i5QI+9xEbv7VEqd7pSPmckHlOnu63dYRSdjKvagSUvtW/ca937Zn7NEZguKrea3pF0DtWsdohlI/TsJTTsKcX+ioX+GxPUHJz7ugu6I3j7Q5x4qmHO0tdoJM6ZH9+mPuDicHnjzNcUWmxURvN5p7ONrsvDNB/P3DyMhMIqB8p5Be9AgLzKucNNmqbh7g3gLLFhtKaux6bj/QGmJr1UHC3EYL3/u8+vs3HzJz0EfRE0INlftKxIRNXkIXCz2Dh/DcKmtFjp7XSstMkUo2LnxTNvr6nXYizYg8URwmpJvvesxRXA0xZEjakpHb8e7/Nw61Q3fm8QSS+hxTWU8wrl21xsP1aZ0mvN7xlZaSCZH0ZkSVp1GIHUDtVomsZtbzdXT18nqsUpLy/ngQeOYrUunE+xURnNeh79+G5e/bsr3H1niMJaG3qTgmc4iKc/SF19CXuO18z5mq5bw0QGIuwsKFkQmM16A/XmIm7eGiR2pCzjc0asThNljYX0to4gKRL2UjOSJBGPqIzd9RD3atQ9WJqyoB8NxRhsHyev1jonhMB070xBg42Ru25C3ghm+8IVMv7RMMVF+SlpS64SQURYk5KWmuU/aR0SvSUbQWKIIBVLdmVFRo2qaJqW9EaoRlUkWUJKYeElz6ifq691gE2j4oECDDY9qqrhHQjQ2zaMpmrsfqw2ZddLWMuS3vlDXokwslrLLftdCY/Hw3/5q7/i9vvXMPrBKOuYkoL8uPKHfPEPf58jR46s+dy5prGlDJPVwLXTnXS1jaJqKjabmYef2Mneh2oxmub2HngmAljiBsym5L0KhRYrWkAj7I+iS+E8jJXacbwKTdUYvD3OeKsPxSARC6oYDXp2P1yLqzovZdfyu0NEojFcRckfqop25DF0fYrhW1PUHCma83c/2e1D82tUPOxKWXtykQgiwqolQoituSTLLcmu2XMUEuPu6+kNgelu43vXBwlNRTDnG+cc0zQNT3+QsppC5EUmDq5F19VhYrr4zFJG7YNr2cstSLLEwJ0xaltKsBVsrln76xke0TSNv/rv/43Wk5d4svIglTXFSJJEIBLi3a7L/Nf/5z+R/6f/B9u2bUthi7OrsrGQysZCgv4I8Wgcs8246DwKvVFHmBhxVU16PBiNoimgM2RnBY2iV9jzoTpqW0oY7XITi8axOIwU1+djSPGwmazISJKEGk3+s9AbFSxOE5GRON3vjmIrMyHLEv6RMHG/RkNLGYWVG69neDVEEBFWRYSQaWtZfbASBeV2CksdDF2bomSPE3O+AUmSiIXjjN5xI0dlqnelroplLBpnpGeKvHoLSBK+iSC+qRCxyPSYtMGsIxKNMto1temCyHq0trZy68xlnqw8SJXz/t+CxWDiiW1H+fGtN3n5pZc3VRBJMC9TYEtVNfIKLAQNUQbcbrYVzR1m1DSNLu8Ytt2WrK2cSbAXWrAXWtJ7jQIzNocJd19gwcMFgLs/gN1ppuXxeka73Yz2utE0FVexk8qHXBRWOTZ9DSERRIQVK2mp2XIBZKmVGbIkpbyCqiRL7H2inmtv3GPkshsMErJeIuaLYzIa2PtYHXklqZt/EI+qaKqGYlSYGPAQ8IRRzDLGfB2aqhEJxAj4wwx3TlF3oCxl112v9S7pXa+rV69i8GtU1iwMhbIks72ghitnLhD5hxEMhtRWxlzNaqFM0jSN1ov9XD51j7ERD+NeL8N9E0S80FRVhl6vIxiNcGdskBG7nx37a7Pd5IyQZImavaXcONXJuNVLfo0NWZHQNA3fcIipDj81zaUU1TopqnVmu7lZIYKIsCFkeg+OZMMu86VrozajRc+hjzUxOeBjrNeNFtew5psoachP+R4YeqOCwaTHPeBDM2mYC/XoZnVNK3oZLa4x0j1F0BPG7Fj4RJcOYwMe7lzsY6TfjU6nUN1cRPP+Csy2+2/q6520uh6RSBSTpF/0SdWsN6LGVWKxWEqDyPyeuLVKxxYEl0528O4rtzEU6Sg96KTscD6XX2nn1L12btwZoCDfRkCJorkkGh+tpKBicw83zFaxvZBIIErHlQE83QF0VoV4SEWKSpTXFWW0imsuEkFEyBmjngnuDfeioVFbVImD6T/ObO3BsdTNPt27xUqSREGFPe03a1mRqWhycfmtu+TtNM8JIZqm4e4KYrToUYwSg3cnqD+Y/l6Ra6e7ePfFW4SJYik0Eo+ptL8wyJXTnXzkdw5SXJk3ZwUNTO/vk8kwUl5ezpQcJBAJYTEsDMndU0MU7yjFbE7NcFaqAgik57XrHvNz/s028urNlG6/v8Kj9vFCovsVek6NYq63Uru3guLavLRULM1lkiRRf7CM0sYChtonCPkj6I06iuucOIosm37oZTkiiAhZ5w8F+OHpF7nSepOoP4QGWEryaOlu4Yv/8g9xkrmKqrNv+Ms9NW6W3XVr9hZz6aU23G0BiEmY8vXEIyq+wRCxqThlewoIjIXxT6W/Kmlf+xjv/PomlkoDdTuKZ6p5xsJx7p0b4eXvXeI3/+hh9EbdzM9/9pLeRBgB0hpIHnjgKD+u/CHvdl3myW0PzHkjGfSM0R0f47ef/lRK3mAWK8m+Hql+7d69Okg4HqV228KhKnuxmcJmO7FgnLJtBSm97kZjyTNmJMxvNCKICFkVjcf45qs/pPvOPY7aG2koLUOSJHpkN+fPXubP//zP+d/+v1/HlIGXarKnzs0SNpaiN+lw1TgJRIIEByL4ekJISJjzDJQdKsBeasY7GErrHjeapjHUPcUr37uMJxSgtNI5p6S4zqhQe7iIjpNDdFwfYvuh+13ZqSh2tlpWq5Vnfu8BfvAffsr/vP4zmvIrMOuN9LlH6YpP8MAzT/H4448v+vWrnecxPxjn2uvSNxVCZ1XmbD3QOzw48//NTgOesRBqXJ1T+EwQQAQRYRWGr3bP/P9UTVq90nWb9vYOnnUdoMh4f+1+k7OKIpOTn54+z9m3T/PY04vf1FOlxvIg3YGzqJqGLEk80fT5NXdjJ+pjbJRS7OXbCum+O0Tdw4XEIyqyIqEzK0iSRMgTJe6Lp7S2QoLLUs3PXn2D9lNjGKIWetpGsdeb6WodxmI1UdFQMFOjwmDRodhkhrqn5gQRIKNDNYkQsf/wTpz/p513XjvPtXOtaDGNgu35PPvEMxx79BB6/cIVIWsdYkn3UOB6Gc064qH79W8SIcSkm96tNxqMo9Mri+5XI2xtIogIqzJ8tZuSlhp8rcMpCSMX229QrFrnhBCA6KSP/Hw7FVIeZ06f4dFHHsnI8MxiYSQc9674TSBRKfTFM28zFujZEGGkalcRg+3jDF2fomRnHnqLDk3TCE6GGbrmJr/Ijqs6ebXX9YhF4/S8E8LniVCwXYfdbcZWbMRaZMI3HqKnbYz6HSUo+g+eopd4A082VAOkdKhmfpCoa6yirrGK6O/HiEVjmMzGmeGY+dfdjCEkUR3XGwkzMTZF680Y1qLpybmJEBKPqXj7Q9TtSF21UmFzEUFEWLVUhhFvwI9DWXwdv9Nox9M/DoAWimUsjMD9N47ZYQRW/obwkWOPbJgwYnWaaHmygRsnO+k7M45imV4to0WgsMTBng/VpaVLfbhjkqkJH9UPlqEaQ0xaggRGIuRVW3GUmvH0B5ka91NYaicaihHzxCmuWrpnJlWl4Odbzfyh+ddNWOuS71wLIYkAknhdF9ZoeOplBm+Po8SMOMotaJpGaCrCaKsXs8GQ0vo3wuYigoiwJqkKIwUOJx2xwUWPj4XcVBTvRB4MoZaZMhZG4H7vCDDzdL3aN5GNFEYKyu0c/+wuRjqn8I4HkZXplTv55fa0PcmOdk1hyNd9sAeHjeIGha73hhhq0yjZlo/OLOOZCOB0Wel+f5T8fBsNe0uXPe9SQzVrNX+y6GLhINl1V/q1G8ns17MkSex6rBbdGR0D7WNMtPmQZJBUibxCGztP1GRs6bew8YggIqxaKqurHtm2l4vXr9DjH6HaOveJadA/zoji47OHHwCYE0Zg4+xgmggjG4GiVyhrKiRT8/ojkTg64/2eFluJidKmAobuThAYGsZkM+KNhgh2RXDabXz4t/Yv2NdkMYsN1azHSoLEYtfdTCEkGZ1eYdcjNdTvL2W834sWV7Hmm8kvt4khGWFJG+NOLuSMVJd431XZyP7de3njylV2hibZZi9HRqLdN8hteYT9Txzj8J4DM5+f2C11diCZb6MEFAFseSbGO6aYHPQSDceRJAlTkYHa/FLGeyYZv+ulvLiQEx/bTfPBCuzO1dflmN87sh6rCRHJrrtZQ8hsZoeRyjT2fqjxDzZ+FOFm0xB3bGHF0rHPjCzLfOGx5yhxunj3+vvccl8EwGK38eGnP8pnP/NZdLqFL9PFtm/P9PCNsE4STHb7iRni2CtMaKpGcCSMTqeQV+JAc+soP2FmxNzPIWfjmi+TrQCQy8Ej6IvQ0zZKNBzDUWChsrEwZ5fWxmMqA63j9N0exe8JISsypbX5VO0uxl4o9kDa6MTdWlhWuje60ys6Pn7oQzzVcpze8SEAdhw/gMVkRm9Y3ZPV7B4TSE3vyOwxfmBVK2jmT+oT7pvo99LbOoK93ER0PEZAiWApNqI3SUzeCzA85GbHAzVsa6pjPNTLi2fenlmRJKydqmq891obV8904g+EkRSQNJmiYgePfGI3lY2F2W7iHPGYyrXX7zHcO4HJpcfRaCIWUentGmGoc4J9TzZQUJH6FV1C5uRm/BVyRiZ32zXpjWwrreHg48enQ4hr7U+TiUCy2PDNStVYHqTG8iCqpqFq2sx4fzjunVlFsxgRQpbWd2sU2SLR+HgZZbsL0QIwedPH5E0/SkzGYNRRWG5HkqWZn+FGmWuTy86/3MrZN+5gLNfR9FQZO56ppPpYIZMhHy9+9wLDvVPZbuIcvTdGGeqdoPSAk7KWAvIqrRTW26k+XgRWjRtvdRGPxrPdTGEdRBARFpXJEALg2FWJY9d0oar1hJCE1YQRTdPo7++no+MeHo9nwfHEss9EGJkdSOZ78czbIoQsQ9M0xgbc2ErNyLJMQZ2NhkdLaXysnMZHy2h6shxHtQX3iH/ma1yWalyW6jk/X2F1vFNBrpztpGCbjdLt+egM03u+WJxG6o+VENTCXHm7M8utvE9TNfrujGAtNWLOn9s7KssSxTvyCPhDjHS5s9RCIRXE0IywQKYDCJDSADLbSoZqLly4wM9+8XNa790mFo9hM9t4+IETfPrTn6aw8H439WqKnYkAsgLa3H9KkvTBMt5Zn6LN+ySmf7ZjgR4xVLMGXbdGCEYiVNe7FhyTZYnCOjsdd4YI+iJzdjrOlkgoRtAXoaDWmvS43qJDNsv4JoIZbpmQSqJHRJgjGyEkIdUhZLbFekfefvsd/u2//zfcHLpC2f4itp2oxVit8POTP+H/+r//NRMTE3M+f35BrMWWhCZKvAvJSZJEQZkd/3DyScexcJyoJ05eiS3p8dlDNaJ3ZOXCwSiyXlp03yCjTY+qqkRC0aTHEz/vTAVtWZFAkohHFwZSmA6qWkybs8eNsPGIHhFhRjZDSCbML4oWCAT49ve+hVyosv+BvTPLAe35Nkprirn0ynVeeOEFPv/51dWfmF3iHUTvyGIqdxYz8vIU4/e8FNTdrzWhxlSGrk9hsRgpbcxf9OsTP1fRO5JcsoA22udjbHSKzh7m1G9JmOoMEPBGeOfme/fL6s+Tydez3qijoNTOZL8HR7l5wZLdwHgYYhKFlWKy6kYmgoiw6QPIbLOHat4/fZ6hyUH2P7NrwQ3OaDZS0uDi5KmTPP/885hMplVfayNVVc0GV5WDbYcquXuxD99AEIvLSDymEhiNYNIb2PtEPXrj8rcoMVQz1+wAMv91l7c9ztDV6/g645TsmlsxNxaOExzwU9tURUle7rxea/aWMP6Km9E7Hlzb7Mg6eaZ8/MgNN0Xl+eSVJB+6ETYGEUS2uK0UQmaTB0OMTYwjGySM5uRLhPOK8ujvHsbtdi8IIitd0ivCyNLq9peSX2ajv3Uc94gfnSJR2VJMebMLs33lcxRmhxFABBKS91zojQrNR6u4caqTgfAEzmorOrNCYDzMVFcAm9lC3f7lS+hnkqvKwa7jtdw510v34Ch6u0I8rKGGNFxlTvZ8qFYUN9vgRBDZwrZqCEmwWiyoUZV4LI6iUxYcD3qD6BUDFsvcTflWu0PvRirxng3OUhvO0uRzQVZDDNVMWy78ljcXojMqdF4eZOy6F03TUBSFqroi6g+VY8qBSarzVexw4ap2MHh3koA7hKKTcdXkUfDB8m5hYxNBZAva6gEk4cD+/eT9OJ/eu/3U7ph7w1ZVlf67gzx56MPY7QvDxewwAiwbRoTMmd87shKbLbQsF0aKa50U1eQRcIeJReKY7QYM5pXt4ZMtRquB2n1b+561WYkgssWIEHJfkauIZ59+lu/97LuoMZWqpgr0Rj2eCS/tl+9RqC/m2Y99fNGvT6ygSQSS2WEEcru892a3mmGwzTqks9ykaUmSsDpXP/dJEFJNBJEtRISQhZ5//nkURccLL/+SC23XkBTQaXoaq7fx97/4+zQ01C97jkTvCLBgp1Uh9232IR0xNJge8WickS437mE/SOAssVJU61x0abSwOBFEtgARQBanKArPP/9ZPvzhp7l27TqhUJDi4mJ2796NoiycNyJsXmL1jbBS7hE/1964h98bRLFOB4/Omyp2h4WWJ+uxF1qWOYMwmwgim5wIISuTl5fHww8/lO1mbHqesQADd8aYGvWjKDKuqjzKmwowWnNjgqRYfSMsJ+yPcOXVdqJKjMpjhegt02+jEX+MoWuTXH6lgwee24FB7AC+YqIPaZMqaakRIUTIKT03Rjj/89t0tw8T0UXwq0HuXOzh7E9vMznoy3bzZiT2tAGxyZ6w0EDbBIFQmPIDBTMhBMBg1VF+oAC/P8jQ3YklziDMJ4LIJjQ7gGyEEJLYZ2ajS+zQm7Dc7rxbyUS/lzvnerBUGah5uIiSXU7K9uZTc6KIuCHGtTc6iIbXt1Nyqom6L0IyI12TWIoMSSvP6owKpkI9o91TmW/YBib6jjaZjdYLkq7N7jJtqRU0YvUM9N0eRTJBYePcap6KTqZ0bz49744x1D5J1a6iLLYyc5bqaRHDQbktHtNm5oUko+hl4nE1gy3a+ESPyCax0YZiHLsqceyqRO+yb/gQMlsikCTCCNzvGdnKG+GND3iwlZqSVsDUGRUMDoWp4dwZnkmn2ctp5/83+7iQmxwuC4HxSNKdoTVNIzgRwV4gJquuRtqCyJ/+6Z9y7NgxLBYLTqczXZcR2LhDMbkQQObvxpsKycLIln/K1YDlCmAm32B105i9c+1iwz7zw0gkFOPWe728+J2L/Pz/f553X7jFaL971dcVUqe8uRDCMNXjX3BsstOHFJWnP0dYsbQNzUQiET7zmc/w4IMP8td//dfpusyWtxF6QTRNwxcKoKFhN01vTpULIWT+brypNLu2SK7QVI2Jfi++ySCyLFFQ6chYQavCcgfDQxPk19oW9IrEwnEinjjO3esv855qLkt1SlbQrGYn5sTn/OSl12l9cxQTFgwFOnQGma6uYa6e6+SBx5s58FjDsnusiB2gUy+/zEbd3jLuXR3APxrGXmpC08A3FCTm0Wg6VElesdiEbzXSFkT+5E/+BIBvfetb6brElpYIIJC7IUTTNM63X+Wta+fpHx4CoLy4hA9HPsrjTz6ZExtVpTOM5BLPaICbb3XhnvQj6UCNayiSQlldAdsfqkZvTG/NlMqdLoa6Jxjv8FLYcH+eiBpTGbo+hdlkpLQxP61tWKv11hdZSxhQVY2+02HC0Tj5B0Bn0oA4lkoJd3eAX/ztGW4N3aWwdvkhABFCUkuSJBoPl+NwWei9OcpU+/SQYn6Jg6qjRRTXOrPbwA0op+684XCYcDg882+Px5PF1uSujdIL8tP3XuONs+9QEXfwkG26QmlH9xB/851vM+Af53c/+bmcCSMAatl078BmCyQBd5jLr9wlKscoPeTE7DSgqhq+oSD9d0aJRePse3r5p+v1KKhw0Hykitb3+vANjmJxGVFjKsHRCCajkZbH69EbU/Nz900E6b89xsTQ9NycglI7FTtc2ArMaz7nWsLIenojJvo8uCf8VB4pXrAJnbnRTmxqHE+7RNOOqpz4G9pqJEmipD6fkvp84rHpiamioura5dQd9xvf+MZMT4qQ3EYIIQDtQ928+d67HDXUszPv/o243lZGhzbO6y++wsFd+9jVtCOLrZxrs/aO9N4cIRiJUP2Qa+ZmKcsSjnILikFm5OoUk4M+CsrTO1xWs7cEZ6mNgdZx3CM+JEWman8J5c2FKdvxdfDuBDdPdRGTYliLjAB0tg3S2zrKrodrKdtWsOZzz5+/sVQgWe+QyOSgD9kkYXIk/7nYy8xMtfmJRdS092YJSxMBZP1W9RP84z/+YyRJWvK/O3furLkxX/va13C73TP/9fb2rvlcm81GWxVztu0K1qDCDkfVgmPN+dVY/TJvn383Cy1bWqJ3JNWTWLO1ckbTNIbuTWAvNyW9YVoKjUhGjdHOqYy0J6/Yyo6Hq3ngN3Zy9JPbqT9YlrIQ4psMcvNUF3qXTO2JYop3Oine6aT2RDF6l8zNU134JoPrvs5yq1tSMS9D0zSW6uiQZJie3bvJZ/gKW8KqHvv+2T/7Z3zhC19Y8nPq65ffJGwxRqMRo9G45q/frDZSAEkYGBum1OBM2m0sSRLl5kL6+vqz0LLlpXqoJlFTZLmt2dNCg2gkjmmRLd4lSUIxysSiG7/uwUDrODHiVO4smPO6kySJkp1Out4ZZeDOOE0Prr+A3vxS8POPJYT9EQbaJhjtmSIeU3EUWihvdpFftvTE3LwiK/FrKhFfFINt4e/ONxTCnm9BZ9gavSGxaBzf+HSItBWa0em3xve9VazqDltUVERR0dYoOJQrNmIIATAZjPjjiy8zDETDWMyuDLZo9VI9VBOOezMeRiRZwmI3EpqKQNXCmfyqqhH1xTE35sZeL+sxOejDUmRAkpOEX1nCUmSYmTeSCsv9/twjfq682k4gFMZSZEA2yfT1jNLfPkbj/grqDpQuOr/DVZOHzWFh6OYUFQcK51Tx9AwECE/EaHq4aNPPD4nHVDovDdLbOkY4GAHAaDZQ1eyi7kCZGBbZJNI2EN7T08PExAQ9PT3E43GuXLkCQGNjIzZb7i3TyzUbYVXMUvbV7+RvW9vwxULYdPeXiOrzbQRiIXrj4/z2/mez2MKVmR1GYO29I4leEbg/tyBRUyLdKppd3DrfTcgTxeSY+3Q92elDQaG0ce1zJ3JJsiJTs2XqbTsejXPt9XtElRg1DxfNBAlN05js8nP3Uj+2QvOiKywUnczex+u4/EoHPadGsZQYUQwywfEIcb9GzY6STV+rQlM1brzZyUD3OI5qM4Vl06uqvINB7l7txzcZYu+T9chJgqewsaQtiHz961/n29/+9sy/9+/fD8DJkyd59NFH03XZTWGj9oLMdqRxDycrzvFi7wUeK9xDkSkPfb6N0eAUb41do7ipiocOPZjtZq7I7KGajTiRtXKHi9HuKQYuTOCoMmMtMqHGVNx9ASLjMZoOVWHJ2/hDooUVdtqvewm6I3gHgkQDMWS9jKPMjKnAQGAkQtnuzPTCDXdO4fMFqTo+tzdDkiQK6mwExkL03hxdcqmno8jK0U9uZ6B1nOGuSeIBlSKXk4qHXBRWOTZ9b8hot5vBrglK9zuxFN5/fRq36bEUGBm6PEF5dyHFdc7sNVJIibTdUb/1rW+JGiJrkO0Q0j8xzKXOW/jDQfIsdg7X78blWH19B4vRzD965rf469f/jl/1XcYetoIbQhao2lPHl7/4D7BbN1bP2EZdVaPoFfY93Ujn5SH628YY7nEjSWB3Wmh+pHpdK0lySVlTATff6eb2r3sx5evR2xTiEY2Jbi9aVMPhtFKxvZBYNI57yI+qatjyTZgdqQ9h7mE/epuC3pz8dWIrMTN5z4uqaks+0ZtsBuoPllF/sCzlbcx1g3fH0TnkOSEkwVJoROeQGbw7LoLIJrBx7qabXLYDSCwe40dnXuLs1QvoghpWyYhHC/KS7U2eOvIIHz3wyKqfwEqdLr7xf/xrbnTcoXNqEE3TaKypp2XHHmR5Y47tbtQwojMobDs6PS8h5I1Mz5nIM26qp2r3cADZIGFzmTC5dOgsOjRNIzQWwdMRwuowMdQ+Sc+tEULB6b1CdIpCcY2T5gerUrZ6B0CSxHqW9Qr6whjtySdZAxjtegLe8KLHhY1j49xJN7FshxCAFy6e5PR75zhm2ca2sgpkSSKmxrnu7uLX77yOzWzh0Z1HVnXOxJ4yBx88ysF0NDpLEmFkMfNLuyfmhiTbhTejK2gAnV5ZV2GvXKWpGl3Xh7FXmSjakUfAHSYUiIAEtloL+cVxBt+fZHzEQ36jjYrKAhSdjG80xFDHBL4XQxx+tgnDIquLViuv2ErXrSGigRh6y8LbrHc4SEGpQ8xvWILBpCfgDy16PBqIYbVuvtfyVrQxH0s3kVwIId6gn3euvkeLsYpmRyXyB0/JOllhf34D9RTyxuXTxOIrr62RSxvbZVIihMiShCxJS4aQxKTVsUDPlt6ZNxUCnjC+qQCOiuklrY4iC8U1ToprnOQVWbAWmQhHIphdeoqaHBgsOhSDTF6FhYojhXg9fvpujaWsPcV1Tqx2C0PXpohH7i+N1jSNiXte4h6Nql3FKbveZlTaWEB4MkbYF11wLOyLEp6MbZpJ1lud6BHJklwIIAmtg50E3T52Fu9PenyXo5pfj12hZ2yQ+pKFBcpm26oBBOaGEFi6JyRh9gqaTPeObCZqXEPTmDMxdLagNwwymPMXzjfQmxSsZSb6W8dSNhdD0Su0PFHPlVfb6T41itmlR9bJBCciSFGZpkOVFNXkpeRaa6HGVcZ6PEwNTe+T4iiyUFTrzKnlsCV1TgpvORi4MEFhkx1b6XTvh28oyHibj4IiByVifsimIIJIFuRSCIHp+SGaBkY5ebe0UdGjqirRZXpERAiZG0KWCiDzZaXY2SZidhgwmvT4RkKY8hbO9QhORdHiJD0GYLTr8AyHlp08uhqOIgsPPLeDwbYJRnvcxGMqRXVOyre7sro7q28yyLXX7+GZ9KOYZTQJ4tdUbA4LLU/U4SjKjZ1jpydZN3D73R5G7kwxetODJEnoZIWymgJ2PFSNIgqbbQoiiGRYroUQgFJnETqTnr7gGFWWhQXregOjGMxGSvKWX/q4FUNIgrzOiZ+JMCKsnk6vUNHkov16P7YS85x6KfGYircngKRKWFzJg0jYF8Ng0qd8zobBrKempYSaltz4e4+GY1x5pYNANET50YKZyaARf4zhG1NcfqWDBz61HaM1NwrcGcx6Wp5swD8Vwj3iB6bn31idi8/REjYeEUQyJBcDSEKNq5y6qhrO322j2OjEqNy/ifuiQa74umg5tA+ndeuGDCH31e0vxT3iY+D9CcxFBsxOA9FQHN9AELPOhFwo4x0MkVdhmfN1sXAc32CIppb1l37PdUPtk3i9AaqOu9Cb7vcmGKw6yg8U0H1qlIHWceoO5NZyYavTJMLHJiaCSAbkcgiB6SJLv3niY/xnz3f58dAZms3l5OmtjIXd3I0MU1xbxnNHn8p2MwVhSTqDwv4PN9J/Z5y+1jG890LoDTrqd5ZTucNF19Vhum8PEw3EyKu0ouglfKMhJu76cNgsVO7c/NtXjPa4Mebr5oSQBEUvYyk2MNw1lXNBRNjcRBDJkFwNIQkVBSV89ZO/x5s3z/He7atEwiNY8608ufNDPLbrKHbz0uPGifkhW5mqaXOGZ8Jx76rmiSSIeSJrp+gVqvcUU72n+IMdbO//PrYfr8Jg0tF7e5S+7rHpya2KQnFlPtuPV2G0LL90V1O16XkkirQha7DEonEUw+ITUhWDQiwYz2CLBEEEEWEWlyOfzz74DJ8++jShWASTzrCiwmNbeZJqQo3lQboDZ2fCSGJvmdWGETFp9f9t795io7rvPIB/z5n7eC72XHwZezzYmFtM6hACLLBJoEsTlCorthLPUEUoqkikKHmhfeGpykORWolGafJC+1K1T2mkKNttQhPobsJmGwIBggFjjO3xbXyZ+3hu5+yDGcfG9/GMz8w5349kCXvG9g8Oc853fv/LKZ3Hg4KoE9GxtxmBrkaER+KQ8hJsLsuqWv7RUBIDN8cw2jcFSZJhdZrh3+6Bb7unolaarMTusmCqJ7ogpBWkJtJoaOCSWNpY1fMKog0jiiKsRjNDyBoFrPsRsO6HJMuQZBlHtp4AMNMZWYu5+4tQ6RlMOngDTjS0160qhIz3R/B/H91BcGAcllYjHFstyOgzuPVlH25c7EU+J634MypF8zY3hJyIqb74gscigwlIyZmbJBJtJHZEqChzh2IYQuab2x0phJHV7Cky19zOCLDyLeepPHKZPG5e6oPoAJqf8sx2EZzNViQn0xj5ZhJ139kR+EFlD70WOLw12PK0D3e/DiI5kYG9yQJBAGIj08hM5tDW2QhXC1/PtLHYESmjhq4AGroCFT8/ZK3mdkG0GEKW2969IGCdubOw9Oi29MV0R1468Pxsd4SUMdo7hVQqDe8O54KhDKvLBEu9EYO3Q5Dl6rmzzKZdjdh1pANOiw3RuymE76Rg01vQdagdWw+0VOXcF6pu7IiUSaWvlCmW1odiCiFkNTe8K4SRwmZnxc4bIeUkpqahr9EtusoEAGq8ZkzdTiCXzsNQJTdBFAQB9W21qG+rRS6bBx7tSMsAQkqpjldOlVFjCNH6UMxaAsjjSjFUQ8oQdQKkrLTk5M58VoIAAYKuOi/ieu5MShWAQzMlNHcoRo0hROtDMcWEkIJSDNXQxnO3OICsgNRkZsFjsiwjGkzB0+LgBZ1oHRhESkSNXRCAQzGlCCEFhTBSUAgjVLlqm2zwNDkweiOC1FR6di5IPith9FYYSAKtO9X1mifaaByaKQE1hhAOxZQugFD1EgQBT/5bG779tBcjX0cgmgWIRgHZWB4mgwE7n9sEV7P2Xh9EpcSz7DqoMYAA7IIwhNBcRosBu3+8FZNDMYz3RyHlJFhrTWjscK1qN9bVkCUZ+bwEnZ6TRkl7eKYtEkOIOjGE0GIEUYC7xTEzZ6SEUtE0+m+MYahnAvmcBKNZj+ZtHvg7vTBaShNyKlk+m8dYXwSJqRREnQi33wGH18owpjE82xZBrSGkQIshhAGENlp8MoWr/3kPyXQa9mYzjDUmTEezuHdtEGMPwnj6x1tK1nGpRBMDUdy83IdUYhqiRYSUkyFeFeD112LnoU1Vsxya1o9Heg3UHkC0iiGENposy/juHw8xLWXQetADnWFm3YDDB2QDNRj8agI9/xtE5+FNyhZaJtHxJK5/eh+wAy1dbhisesiyjEQojdFbU5Auynj6pQ52RjSCZ95VYghRJ4aQheKTKQx8F0LoYRiSJMPprUHzdg+8gYW7i1JxoqEkwmNxeLrssyGkwGDRo67NhuHeSXTsa1ZlV2TgxhiyuhwCT3khiDP/pwRBgK3eDEEEQtcjCA/HUefTXndWi7h8dw3UHkLmrpRRO6nJDKnJDMGsZwiZY7w/gq8+7Eb/vVHo3AJMTTpMhCP45pN7uPvFYFVtZV7J4pMp5GUJVrdp0cdrPCbkcnkkw9MbXFn5SZKMkb4pOJqtsyFkLqvbBBhlhPojClRHSuAZmABoa5IquyCLy0zncOOzBxAcQKDr+3eqrnY7IsEkHtwaQW2jDQ2b6xSutPrp9CIgA1JOhs6wxI6tQvXu2LocOS9BlmToTYu/DxYEATqjCKmK7mpM68MzMTGEEABgtGcS05kMAp3eBe9Unc1WxIZTGOweXzaI5HMShu9NInhnHMnoNIxmA5o2u9C8w6PKIYZiuZrtMBoNiAwm4Gpb+LoLDyRQYzfB4bEqUF15iXoRFrsJyYk0HL6Ff798VkI2nofFsXi3iNSHQzOrUJgfojaOzhY4Ols0sXU7h2JWFh1PweDQQ2dc/LRQ4zUhPBZfcngml83j2l97cOMfvUjmUzA3G5C35HD3mwF89WE3EiocZiiW0WKAf7sX4d4kIsHk7L+plJcx+SCG1EgWgScbIerUd4oWBAEt2z1IjmWQCs/fOl+WZYzfjcKoN6Cxw6VQhbTReEZegVonqbILQo8TRECWlm6Hy5KM5eaqPrg6gtBIGL49dTA7jbNfz3XkEfznJG5d6sOef9/GCa+PdOz1IZvJI3gnhMl7ceitIrKJPPTQYcvTzWh5wqN0iWXT8oQX4wNRjHw9BWuTCTUeM/JZCdFgElIc6PzXgOY6aLIsIzKaQDSUBASgttEGu9uiidcLz8zLYAipfgwhq1fXZEd/9ygyiRyMNfP/vWRZRmx4Gk2t7kVPjLlsHoN3x2H3W+aFEADQm3TwbLMjdD2GyGgCtY22sv49qoWoE9H5fACtO70Y7Q0jO52DucaAhs0uWJ3qHpbQ6UU89UI7+m+GMNgdwsRIHIIAuJscCBxsgNtf2o3jKl0yksatz/swORaDLEiQAeggwuNzovPQJtWHMp6dFzF3KEZNIYQBhJZT31YL+zdWDF+bgm9XHQzWmX87KS8j1B2BkBbgf8K76Pcmw2lkprNwNTgXfdzqNkEWIohNpBhEHmN3W2F3q28uyEp0Bh3adjUi0NWAbCoLUSdqchOzzHQO3/z1HuLpFOqfcsLimgnyidA0xm5PIftfeTzz8taZCc4qpb2jvgJ2QaqfmkLIx19c2rDfpdOL6PrRZlz/230MfDEBg1MHUScgE85BL+rR+eymJUOE8OgcKecXnz8iyzMfiy3XJG0TRQGmGuPKT1Sp4bsTiEaT8B/0wGDWzX7dVm+BwarH0JVJjD0Io2mLeufMVP+ZuoTUGkIK1B5CCgEEUFcI8VhbN+x32uos2PeTHRh7EMbEQBRSXoa9zYKmrS5Y7EsPF9TUWVBjNyESTMJSt/B58ZEU9IIOdU3shhDNNdI7BYvXOC+EFJhsBhhq9RjtnWIQUTu1DsVoiZq6IIAyIaRAb9DBt9UN31b3qr9HFAUEdjbg1hcPEXYk4PR/f+Oy1FQa490xNG/yoKbWvMJPIrWQZRnZdB6yJMNo0Wti0mUxsukcDLULQ0iB3iwim8ltYEUbTx1n7XVQexdEC9QUQpQMIOvV0ulFMprGw+9GEe5LwGjXIzedRz4ho765Djuerb6/Uylk03lExhKALMPmssBsU/cwhCzLGL0/hf5bY4iMJwAZsNVa4H/Ci+btHg7PPabGacZkePFdZGVZRjqSg7dV3QG++s/c68AQUt3UNhRTUI0hBJjZH2Lr/hY0bXFh+N4UUrFpGNx6NLTXwd3i0NwFSMpLuP/PYQx2h5BOZyADMOj0aGirw7b9LTBa1LkS4sHVEdy7GoShVkTt9plt3OMjKdz87z5EQ0nseK6V3ZE5fFvcGL04hcT4NGo88wNHbDgFeRqqHpYBNBpEtDQUo9ZJqmrqgqiJIAhweGvg8NYoXYqiZFnGrUsPMXg/BEfAAq/PDUEnID42jeD9EBLhaez+8VYYTEu35KtRNJRAzzdDcLRb4Gr7fj6QvcGC2EgK/TfH4Ak4Ub+pVrkiK4y3rRa+NjeC18dh86Vhb7RAlmVEh5JIjWQQ2NGIWpXPrdLcWVxLXRCGECJlhIfjGLo/AW+nA/ZGy+zXa/01sLpMGLwygeG7E2h9sl7BKktv6O4kZL2Euk0Lg6i90YLwwwSG7owziMwhigJ2/nAT7N9aMXB7DGNDM8M0VrsZT+z3wd/pVX0HSVNncoaQ6qbWoRhSn5H7UxBMgK1h4di+sUYPi9eIIRUGkUQ4BXOdYckLp8VlRGwytcFVVT5RJ6JtVyNan6xHKpoGAFhrzRA1MpypubO52kOIGgMIoI4uyMPkl/M+//TuHxSqhMotnczAYNMteUE22Q2YHsos+lg10+l1yCWWvk1APiPBYFDn3JhS0OlF2FyWlZ+oMtV7VqcFGEIqVyGEiIIwL4CYdOo6VtUgFUsjeHsCYw+nkMtKcLitaN7ugafVUbIWuNFiQHYsD1mWF/2ZmXgWJov6Vs94A04MX55AJpmD0Tr/9ZrPSkiOprF1l7q6QLR+1Xtmp3nUGELUMBQzN4AA33dBGECUER6J49on9zGdyaCmwQidU8T4RBijf5tC4IkGbDvQUpIw0rjZhYE7ISRCadjq5w/PZJI5JMcy2LSvad2/p9xSsQyG704gNBCBLMlw1tegebsHDs/iW9I3bK6D80YNhr6eRMOTtbDUzoStdDyLsZsRWCxm+Latfn8a0obqPLsXYe5KGTVRYwAB1NcFARhClJbP5vHtxV7kjTkE9nkgFu7d0QFEgkn0fTcCp9eKpjVs5LaUOp8NTW0uBG+MI9OWhaPZOrNqZnQakz0x1LpsFX9BngzGcP3T+0hnM7DUGyHqBfT3xDHYHcL2f/HDv3NhZ0Nv0GHXix24/mkvRv4ZhmCaWUklTUuwO6148oftqt9Hhdaues/ya6DWSapqDSEF1RxCCsTH3l0zhChn7EEYicQ0/Afd34eQR5zNVsRHpzFwO4TGLa51d0UEQZi5a2qNAcE74wjfHwcA6PU6+Fo92HbQD4Opcv9/Z1JZfPv3XsgWCYH93tl/L1mWMX4vhttXBmBzWxfdst/iMGHfse2YDMYwNRIHZBkObw08rQ6IOvXeuI2KV7mvhBJhCCEiAIiGktDXiDBYFj/t2RrMiN5NIp+ToDesf38PnV7Etv1+tO1qQngkDlmS4fBYYXEsfc+eSjHSM4XUdBqBPd55oU0QBHi22NEfGsfg7dCS9w4SRAFuvwNuv2OjSqYqptogwgBCRPMIAuTFbw4MAJAlGRBQ8j0bjGZ91e2bER6Jw+jUQ2dc2MEQBAG2RjMmh6IKVEZqpMo+GUMIET2urskGKSkhHcsu+nhsOAVXox06vSpPi2ujje0rqEKo7hWn1hBSoPYQIjWZ562W0aLxZL/SJaiSp9UBR50NI9+GkU3lZ78+M+8hCikmo3WRCZhaVNtgQyaSQz6zcE8QWZYRH5mGy8dhFyoN1QzNqD2AaIEaVsqs10sHngdQ3XfhrVSiTkTXj9px7b96MPA/4zDWzgw9TE9moZNFbNvrh6fVqXSZFaFxiwu914Yx/O0UfE/VzZ+sejcKpAW07PAqXCWphSrO+Awh1Y8hZL6XDjyPj7+4hPFkP8NICdXUmrHvP3ZgtHcKoYcR5HN5+HZY4dvm1uSOlksxmvX4wQ/bcf3ifTy8HILFa4QgCkiNZyBKInbsb11yoirRWlX9WV8rIaQwP0RtGECWxjBSHnqjDs3bPWje7lG6lIrmarZj/0+ewNCdCYwPRiDlZNRvqYNvmQ3NiIpRtWd/rQQQQL2TVBlCVlYII0RKMNuMaN/dhPbdlb8LLFWvqpysyhBS/RhCiIgIqMKOiFZCyNyhGDWFEAYQIiKaq2quBloJIIB6uyAFWgohkizP2+Y9nY+tept3DskQkRZUxdBM/U4/AIYQqi4B634ErPshyTIkWcaRrScAzISRlcxdvsuJqkSkZlXz1lTtIUStQzE0E0geJr+cF0aWuxMv9xAhIi2pio5IzRZ173Y4twvCEKJOAet+ADNDNQCW7I58/MUldkGISFPKFkT6+vrwyiuvoK2tDRaLBZs3b8bZs2eRyWTK9SurmhYCiNa3bi+EkYJCGCEi0rKyDc10d3dDkiS899576OjowM2bN3Hq1CkkEgmcO3euXL+WKhBXyhAR0VLKdmU4evQojh49Ovt5e3s77ty5g3fffZdBREMYQoiIaDkbenWIRCJwuVxLPp5Op5FOp2c/j0ajG1EWlQlDCBERrWTDJqv29PTg/PnzePXVV5d8zttvvw2n0zn74ff7N6o8RTg6W1R7D5kChhAiIlrOmoPImTNnIAjCsh/d3d3zvicYDOLo0aM4fvw4Tp06teTP/vnPf45IJDL7MTAwsPa/UZXgShkiIqIihmbeeustnDx5ctnntLe3z/55aGgIhw8fxoEDB/D+++8v+30mkwkmk2mtJVUdblpGREQ0Y81BxOv1wuv1ruq5wWAQhw8fxu7du3HhwgWIYlVsW1I2Wtq0TOtLdYmIaHXKNoAfDAZx6NAhBAIBnDt3DqFQaPaxxsbGcv3aiqWlLggnqRIR0WqV7UrxySefoKenBz09PWhpmT8hU360u6RWMIQQ0Wpkp3MYuT+F2EQSoijC1WyHp9UBUaftbjKpW9muFidPnlxxLonaMYAQ0WqFHkZw8/MHmM5kYLDpIOdl9H03DKfLhqde2AyLQ/3z50ibeNUoEy2FkAKGEKLixCaS+PbvvRAdQGunB3qjDgCQjmUxfG0K1/52H3uPbYdOz84IqQ//V5eBFkMIERVv4FYIOTGHpq662RACACa7AU276hCZjGP8YUTBConKh29hS4gBhIiKMfYwDHuTGYIoLHjMZDNAZxcxMRhFw+Y6BaojKi92REqEIYTW6+MvLildAilEyksQDUufjkWdiHxO2sCKiDYOg0gJaTWEcM+Q4nx69w+zfy6EEI+1ValySEEOdw2SofSij0k5CZloDjaXZYOrItoYDCJUNKnJDKnJDMGs50TVIpl0doYQQssODzKRPGIjqXlfl2UZoTtRGHUGNG1Z+oahRNWMVw8qCpfrrk+hG8IQQgDQ0F6H1mA9+m+NITqUgq3eBCknIzqUgpAWsPPZTTDbjEqXSVQWvIrQmswdhmEIWR+TbmYojyGEBFHAjmdbUdtkw+DtEKI9SQiCgEa/C/7OetQ12ZQukahseCVZJy1NUmUXhKh8BFGAb6sbvq1uSHlp5m7mi6yiIVIbXlHWgSGEiMqBW7qTlvCqUiSthBAOxRARUTnxyrJGWgkgczGAlMbD5JcA5i/bJSLSOvb/1kCLIYRKoxBCRGFmzH/usl0iIi3jW91VYgihYjweQB7vhnDFDBFpHYPIChhAqFhLhZDCsl0iIuLQzLK0HkK4dfv6FUJIAUMIEdF87IgsQcshhCtliIhoo/Aq8xgtBxCA+4UQEdHG4tDMHAwhDCFERLSxGEQe0XoIKWAIISKijaT5qw4DCBERkXI03RFhCCEiIlKWJjsihQACMIQUcKluaRX2ECngtu5ERIvTXBBhF2QhTlItLW5kRkS0epq68jCELMQQUlpzQ8jcLghDCBHR4jRx9eFQzEIMIKXFLggRUXFUfxViF2RpDCGlxe3ciYjWTtWrZhhCiIiIKpsq3xJzKIaIiKg6qC6IsAtCRERUPVQVRBhCVod7hpTW3D1DOEmViGhtVBFEOBSzOlwpU1pcKUNEtH5Vf0ViF2R1GEJKiyGEiKg0qvqqxBCyOgwhpbVYCGEAISIqTlVemTgUs3YMIaX1+J4hRERUnKq7OrELQkREpB4VHURkWQYAxKcTAAD7Dh+iiRgMbjtS8ZiSpVUVKZqBkKnoQ11V4skEhDkdkVQ8A0mXWfPPyabyyAjZUpZGRFQRMqkcgO+v48sR5NU8SyGDg4Pw+/1Kl0FERERFGBgYQEtLy7LPqeggIkkShoaGYLfb570DVYtoNAq/34+BgQE4HA6ly9E8Ho/KwuNRWXg8Kk8lHxNZlhGLxeDz+SCKy99NpqL79aIorpik1MDhcFTcfyIt4/GoLDwelYXHo/JU6jFxOp2rep6qb3pHRERElY1BhIiIiBTDIKIgk8mEs2fPwmQyKV0Kgcej0vB4VBYej8qjlmNS0ZNViYiISN3YESEiIiLFMIgQERGRYhhEiIiISDEMIkRERKQYBpEK0NfXh1deeQVtbW2wWCzYvHkzzp49i0xm7fcvodL45S9/iQMHDsBqtaK2tlbpcjTpnXfewaZNm2A2m7Fv3z589dVXSpekSZcvX8bLL78Mn88HQRDwl7/8RemSNO3tt9/Gnj17YLfbUV9fj2PHjuHOnTtKl7UuDCIVoLu7G5Ik4b333sOtW7fw61//Gr/73e/wi1/8QunSNCuTyeD48eP42c9+pnQpmvTnP/8Zb775Js6ePYurV6+iq6sLL774IsbGxpQuTXMSiQS6urrwzjvvKF0KAbh06RJOnz6NK1eu4JNPPkE2m8ULL7yARCKhdGlF4/LdCvWrX/0K7777Lnp7e5UuRdN+//vf44033kA4HFa6FE3Zt28f9uzZg9/+9rcAZu475ff78frrr+PMmTMKV6ddgiDggw8+wLFjx5QuhR4JhUKor6/HpUuX8NxzzyldTlHYEalQkUgELpdL6TKINlwmk8HXX3+NI0eOzH5NFEUcOXIEX375pYKVEVWeSCQCAFV9vWAQqUA9PT04f/48Xn31VaVLIdpw4+PjyOfzaGhomPf1hoYGjIyMKFQVUeWRJAlvvPEGDh48iJ07dypdTtEYRMrozJkzEARh2Y/u7u553xMMBnH06FEcP34cp06dUqhydSrmeBARVarTp0/j5s2b+NOf/qR0KeuiV7oANXvrrbdw8uTJZZ/T3t4+++ehoSEcPnwYBw4cwPvvv1/m6rRnrceDlOHxeKDT6TA6Ojrv66Ojo2hsbFSoKqLK8tprr+Gjjz7C5cuX0dLSonQ568IgUkZerxder3dVzw0Ggzh8+DB2796NCxcuQBTZrCq1tRwPUo7RaMTu3btx8eLF2UmRkiTh4sWLeO2115Qtjkhhsizj9ddfxwcffIDPP/8cbW1tSpe0bgwiFSAYDOLQoUMIBAI4d+4cQqHQ7GN8B6iM/v5+TE5Oor+/H/l8HteuXQMAdHR0wGazKVucBrz55ps4ceIEnnnmGezduxe/+c1vkEgk8NOf/lTp0jQnHo+jp6dn9vMHDx7g2rVrcLlcaG1tVbAybTp9+jT++Mc/4sMPP4Tdbp+dN+V0OmGxWBSurkgyKe7ChQsygEU/SBknTpxY9Hh89tlnSpemGefPn5dbW1tlo9Eo7927V75y5YrSJWnSZ599tuhr4cSJE0qXpklLXSsuXLigdGlF4z4iREREpBhORCAiIiLFMIgQERGRYhhEiIiISDEMIkRERKQYBhEiIiJSDIMIERERKYZBhIiIiBTDIEJERESKYRAhIiIixTCIEBERkWIYRIiIiEgxDCJERESkmP8HQLBLnyhqkFoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# define ML\n", "K = 5\n", @@ -236,31 +168,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "df9ebb0c", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChXUlEQVR4nOz9d3wl553f+X6q6uSEA+Ag59BAZ3RusptskmISJVGBI4maZEnj0dgeyeuxvLZH3l3dneudle3ZOx57bI/s6/FIsuKMMiVmskk2O5GdM9BAI+d4cq7aP8CDRjjIJwF43q8XX1KjgKoHwEGdbz3h90iapmkIgiAIgiBkgZztBgiCIAiCsHWJICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtaIICIIgiAIQtbost2ApaiqysDAAHa7HUmSst0cQRAEQRBWQNM0vF4v5eXlyPLSfR45HUQGBgaoqqrKdjMEQRAEQViD3t5eKisrl/ycnA4idrsdgJ8c+9+x6kxZbo0gCIKQLsW7q7BuK852MzLKvqMcAH2hPcstST2vz0v9Yy0z7+NLyekgkhiOsepMIogIgiBsYjajBZvZmu1mZIxj13Qvgd61+ULIbCuZViEmqwqCIAhCBm2VELJSIogIgiAIQoaJEHKfCCKCIAiCIGSNCCKCIAiCIGSNCCKCIAhCVpW01GS7CRmTmB8i3CeCiCAIgpA1iRBiay7JckvST0xSTS6nl+8KgiAIm9dWCSGze0FECFlIBBFBEAQho7ZKAAHRC7ISYmhGEARByDgRQoQE0SMiCIIgCCkkAsjqiB4RQRAEQUgREUJWTwQRQRAEQUgBEULWRgQRQRAEQUgREUJWTwQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEQRCyRgQRQRAEIWMS+8xsNrM3thNWRwQRQRAEISM262Z3opDZ+oi9ZgRBEIS0mt0LsplCiAggqSGCiCAIgpA2ohdEWI4YmhEEQRDSarOFkAQRQlJDBBFBEARBELJGDM0IgrDpaZpGRI0BYFT0WW6NIAiziSAiCMKmpWka19ydXBhvY9g/AUC5rYjDhU3sdFQjSVKWWygIgggigiBsSpqm8erQRd4bukO55uABfR0qGp1TI/zMc4rR8r08Wrw3280UNhgxSTX1RBARBGFT6vAP8v7wHY4qdTQZS2c+3mgo4Uaoj9ODN9hmK6fC4spiK4WNRISQ9BCTVQVB2JSuTHSQFzfOCSEJu4wVmGIKl6c6stAyYSMSISR9RI+IIAib0khoijIlP+kxSZIokx2MBqcy2yhhQ3LsqhQBJI1Ej4ggCJuSQdYR1qKLHg9pUfSyeBYThGwTQUQQhE2pKa+KbnWcsLowjATUMAOamyaH2KhMELJNBBFBEDal/c56zBYLrwdu4o4HZj4+Gffzmv8meVYHe5y12WugIAiAmCMiCMImZddbeL72EX7S/S6/DFwhTzOhoeGRwxQ6nHy6+mHMijHbzRRyXGKSqpA+IogIgrBplZsL+UdNH6PV20dvYAxJghpLMY22cnSyku3mCTlsdgARE1XTSwQRQRA2NZ2ssCuvhl15Nct/siAglupmmpgjIgiCIAgfECEk80QQEQRBEIRZRAjJLBFEBEEQBEHIGhFEBEEQBEHIGhFEBEEQBAGxVDdbRBARBEEQtjwxSTV7RBARBEEQtjQRQrJL1BERBEEQtiRRtCw3pLVH5Bvf+AaHDx/GbrdTXFzMJz/5SVpbW9N5SUEQBCFHlLTkfhE5vcsuQkiWpTWIvP3223z5y1/m3LlzvPbaa0SjUZ566in8fn86LysIgiBkWSKE2JpLstwSIdeldWjm5ZdfnvPvb33rWxQXF3Px4kVOnDiRzksLgiBkTUyN0+EfZDzswSDraLRV4DRYs92sjBEhRFiNjM4RcbvdABQUFGTysoIgCBnT5R/mV33nmAx4MKo6IsRQ9Dr2uOr5cOmhTb3ZngggwlpkLIioqsof/dEfcfz4cXbv3p30c8LhMOFweObfHo8nU80TBEFYt8HgBH/b+RbOsJGPmVvIV6zEtDjtkWEuDt4lpsb5ZOWxbDczrUQIEVYrY8t3v/zlL3Pjxg1++MMfLvo53/jGN8jLy5v5r6qqKlPNEwRBWLczY7fQhyUet+4iX5keitFJCtuN5Rw11HFzvIuR0FR2GykIOSYjQeQrX/kKv/rVrzh58iSVlYtXrvva176G2+2e+a+3tzcTzRMEQVi3iBqjbaqX7fpSFGnhrbVeX4wuBne84r4mCLOldWhG0zT+8T/+x/zsZz/jrbfeoq6ubsnPNxqNGI3GdDZJEAQhLcLxKJqmYZVNSY/LkowZPaF4NMMtE4TcltYg8uUvf5nvf//7/OIXv8ButzM0NARAXl4eZrM5nZcWBEHIKLNiwKgzMhLxUK0vXHA8pEbxEsap35yrZzZCzRAhN6U1iPzVX/0VAI8++uicj//N3/wNX/jCF9J5aUEQ1ikQC+GOBjDIOgoMdiRJynaTcppOVmgprOdC3y2a46XYlfsPW5qmcTXUjc6oZ1fe5nrDFitlhPVK+9CMIAgbiyca4K2Ra9ya6CIWjyFJMmW2Qo4X76LZLnYnXcqxwh10eAZ40XONHboyynX5BLUId8KDjOh8PF1+BKsu+dDNRiRCiJAKYq8ZQRBmeKMB/ue91wl4/ewxlFOqdxLQwtyeGuDHvnd4tuZB9jqXnuu1lVl0Jn6n7nHeGrnGzYlOrkX7kSSJkrwCnit+mB2O6mw3MWU2egiZvc+MkF0iiAiCMOOd0Rv4vX4+Zm3BIk9PHC/ERqWugDPBu7zaf4FmeyVGRZ/lluYuq87ER8uP8HjJPqYiPvSbeGhro4cQscdMbshYHRFBEHJbOB7l5kQX2/WlMyEkQZIk9plqCIZD3Pb0ZKmFG4tJMVBqLqDQ6NiUIWSjEiEk94geEUEQAPDFgkTjUYp1jqTHrbIRq2bAHQ1kuGWCsH4igOQu0SMiCAIw/QQvSRI+NZT0eEyLEyKKURHPL8LGJEJIbhJBRBAEYHpuQ11eObcjg6hJVrzdjQyBXqHZLrZeEAQhdUQQEQRhxvGiXfgNMd7032Qq7gcgosW4EerjYqyb/UWN5BtsWW6lIAibiehjFYQscEf9DIemkCWJKnNRzqxCqbYU8em6E7zY9x4vBK5i0BSixFEMOg4X7+Txkn3ZbqIgCJuMCCKCkEHeaJBXhy7SNtlLLBYDCcxGMwdd2zhRtCfpZmmZ1mgr5w+bnqXDN8hExItR0bPNVo5db8l204QcIcq5C6kkgoggZEgwHub7XW/icXs4aKiiylxITItzNzLE6b5reKNBni0/mhNLPXWyQrNj8YJP4XiUq1P3uD7ZiTcawK63sCe/jhZnfc707gipNzuAbNQaIkLuEUFEEDLk4kQ7455JnrXsm7MPyQFzHXkRC+dGOziY30iFxZXFVi4vEAvx/a6TDHvGqCCfOsXJZDDAa573uDZ5j9+qfQzLJipjLkzb6JVUhdwlgoggZMjVyQ5q5MI5ISShXl/MlXAP193dOR9EXh68yLh7ko+Z95Gn3B+ucccDvOy+zsuDF3mu6ngWWyikmgghQjplf0BaELYIbyRAgZJ8xYkkSeRJZnyx3C4W5o76aZ3sYZ++ek4IAchTLOzTV9E62YM76s9SC4V02aghxLGrEseuSlFDJIeJHhFByBCb3sJUIPkbtKZpeAhRkeNDGoPBCaKxKDXm5L02Nfoizgc7GQxOkKe3Zrh1wmxjYTeXJzvo9g0DUGMrYX9+Ay5jXpZbljmimurGIHpEBCFD9hbU06mO4VfDC451R8cIKFF25dVmvmGrIEkSEhIqatLjcVQkJOQcWP2zld10d/Pf217iUv8drF4Jq1fiUv8d/nvbS9x0d2e7eRkhQsjGIXpEBCFDDuU3cmOyk5c919hvrKFKf3/VzLVYHzuL66lapKchV1SZXRgNBjoiI+wxLaywei8ygtFgoNJcmIXWCTDdE/JCz1kqYw6OWbfNhMKjmsqZ4F1e6DlLSZNz0/aMiACy8YjHFkHIEIvOxG/XfYiKolLOaZ38IHCOHwcvcEcZ4XD5Tj5e8UBOLN1dikVnYm9hA9djffRHJ+cc649Oci3Wx97CBrFqJosuT3YgRVQeNG+b0zMlSzLHzNuQIiqXJzuy2ML0ESFkYxI9IoKQQXl6K5+reZSxsIfh0CSKJFNtKcaiM2a7aSv2eMk+3BE/JyfukBc24pQsTGkB3HKYba4qUX01y3p8w1TJ+UmL48mSTJWcPzNvZDMRIWTjEkFEELLAZXTgMjqy3Yw10cs6PlP9MPcKh7gx1YU3GqRKn88zzlrqraVifoiQUSKAbHwiiAiCsGqyJNNoK6fRVp7tpgjz1NhKuei+TVxTF/SKxDWVXnWSg7YdWWpdaokQsjmIRxdBEIRNZF9+A5pB5kygjbh2f3VTXFM5G7yLZpDZl9+QxRamhgghm4foEREEQdhEXEYHz1Y/yAs9Z/mx/32q5HwAetVJNIPMs9UPbthhQRABZDMSQUQQPjAZ8XFlqoMe3wgSEtW2YvY5G3AaRGGuldI0jaHQJFNRHybZQJWlCJ2sZLtZW86uvBpKmvK5MtlBt28IgAO27ezPbxQhRMg5IogIAnDH08sves6ghWNUSE404Ozkdd4bucMnao7RbF98J1phWn9gjFcGLzDgHUdV48iSjMNs4+GSPezfBEMBG43L6OCJ0v3rPs/sHXezSYSQzUsEEWHLGwt7+EXPGUojVo5bm9BJ00/wMS3OqUArv+g+zZeaPkK+QdwAFzMQHOf7nW9iCSk8ZmyiSOfAp4a4Fezn191niWtxDhU0ZbuZwirkykZ3IoBsfmKyqrDlXZnsgHCchyzNMyEEQCcpPGxpRg3HNm0BqFR5e+Q6hqDE09Y9VOgLMEg6ChQbD1ma2aYV8fbQNcLxaLabKayQCCFCJokgImx5nd4hquWCpAWgdJJClVxA1yYsAJUqnmiATvcAu40Vc4Jcwm5TFYFQkFZvXxZaJ6xWLoSQxI65IELIViCGZgQBDVi8tLoEaFryTd4E8MdCqKpK/iKTeq2yEYOm4I+FMtwyYa2yHUJABJCtRPSICFtepa2IvvgkqqYtOKZqKn3qJFW27HZR5zKrzoQsy0zG/UmP+9UwESmOVew/IyxDhJCtSQQRYUPyRoO0+wa45xtc99yDA/nbiBnhfLB9ThhRNY2zwXbiBokDYtXHohx6C3V55dyM9M8poJVwI9SLxWQWK4+ERYmhmK1NDM0IG0ogFub14cvcmugiGo2CBGaDiQOubZwo2rOmmhUlJifPVB7hpd736Pe/T41SiAZ0x8eJGeCjVQ9s2i3TU+WR4j18z/cGL/uvsc9YQ/EHq2ZuhvvokiZ4uvQIRkWf7WYKOUwEkK1LBBFhwwjHo/yw+y1Gp8Zp0VdSbXYR11Q6IsOc6bvOZMTHc5XHkaTF53ssZl9+A6WmfC5NttPlG0ZCYpetkYMFjZSY8tPw3Wwu5eZCPlf3GK8OXuSktxU1cr+OyEdLHmB/fmO2mygIQo4SQUTYMK67Oxlwj/AxcwtO5f7EyP3mWgqiNk6N36Urv5E6W+mazl9qLuAj5iOpau6WU2Up4vfqn2YwNIE76heVVQVBWBERRIQN4+rEPSpxzgkhCdW6QuzhHq67u9YcRIT1kySJcnMh5ebCbDdFEIQNQkxWFTYMTzRAgWJLekySJPIlC55I8pUbgiAsL1fKuQtbiwgiwoZh05uYigcWPe7Wgtj05gy2aOXC8SiDwQlGQlOoWaxJomkaETWGlmSpsrC15UIhM2FrEkMzwoaxJ7+ON9wX8caD2JW5gWMgOolbDvFMXu26ruGPhQirUayKKSWrPELxCG+NXOP6xD3C0QggUWBx8EDRDvY7G9Y0sXYt3FE/7423cm2ik3AsjFlvoqWgniOFzdh0uRnehMwQAUTINhFEhA1jn7OBq457vOy5zgFDDTX6D1bNREe4Eu2hwVVB/Rrnh/T4Rzg9dpNO9yCapmHQ6dmVX8fDRbuxr7GXJRyP8oOukwxNjbFDV0aVvpCIFuOub4gX/efwVAR4tHjvms4921Bwgr7gGBpQaXZRZi6Yc3w87OF7nW8S9AdoVIpxKhYmwn7e67vJbXcPv1P3OHn65FVRc0WiBydTwW2rECFEyAUiiAgbhkkx8Fu1j/HiwPucd3dx2t8OEhj0BlrKmniy9ABykv1iltPm7eenXaewRnQcMdRglU2MxNxcH7xLl2+I3617HLvesurzXppsZ2BqlI+Y95I/a4Jtmd7J9VAvZ4ZusDuvFpfRsepzA3ijAX7Zf44u9yBSbPqNWtNJVDtK+UTlgzg+aPOLA+8T94X5hPUAJnm6l6cB2KlW8LLnGq8MXuSz1SfW1IZ0GwiO8954K21TfcS1OKWWQg4UNrInr3ZNv2thoVwo5y5sPmqJccWfK4KIsKHY9Raer3mE8bCHwdAEEhLVluI191rE1Dgv9r1HUdTCY9adyB88cZfpnTSqpfzae5W3R6/zsfKjqz73lYl2auSCOSEkYaexgtv+Aa67O3msuGXV557ubXkLt8fNQ8ZGqozTq1T6YhO8N97BD2In+UL9U0xF/fR4hnjI2DgTQhKsspG9hiren+pmstRHviH5ROBsueXp4RfdpzGFZbbrizFIOvrck7zgOUN38QgfKz8iwsgGJiqpbl5qmQk8kRV/vggiwoZUaHRQuMaehNnafP14gz4eM+2bCSEJVtnIDl0Ztya6eKJkPybFsOLzqprKVNhHg1I15+NRLU5nZAS3GsQfDTEQGF9Tu295uhnxjvOseR95yv3emmp9IU7Zwi88l7nu7sKk6InH4lRYkxdlq9QXcC54j7GwO6eCiD8W4lc956iIOnjI1jzzu9luLKcrMsq7I+3UWItpcdZnuaXCWogQsnmpZdN7SkmmlccL8TghbGmTES8mTTfnzXy2Ul0ekVgMd3Tx1TrJyJKMQTHgVe/vOHsvMsIPJs/wtucWbb5+xsMe3hu5w68GzhNT46s6/82pbko1R9J2OxQzFVIet9zd6CQFSZKIaLGk5wlrMZAkdFJuFR277u4kEg5z1NywICDWGooo1RxcGr+bpdYJ6yFCyOaklplQy0xIJt2qQgiIHhFhizPIeiLEiWnxpG/GATWCJEkY5dWvoNlTUMeV/jvs0aoYjXk46b1JhZpHi247kga9TKDTGbk6eBcJiY+Wr7yqazAWwSEvvputXTYxHg1RYy3GZDTSFhlin2lhjYi2yCBWo5lKi2vV3186DYemKMK26M+9SpfPpUAfqqaK4Zk1yPYkVRFCNpe19ILMJv6ChS1tm60CWa9wNzK04JimadyJDFBpLyJvDZNVDxc0obeYeMV/nVP+O+THzTygqyeuxhmMT5FvsrPPUsMhfQ1Xx9qZjHhXfG6n0caY6lv0+GjcR77RjlkxcsDVxI14P23hoZndheOayu1wP63qMEeLt6OXc+uZRJZkIizeSxTRpveykRCraFYr2yFE2FzWG0JABBFhi3MarLS4GrkY7aY1PEBMm37z86thTgfbGNcHOV60a2bZaElLzcx/y8k32PjN2keRbHpuRwYxazruxUYYxYfTbKfOWookSTQYSiCq0urtW3G7W/LrmZSD9EYXzjHpj04wIQdoyZ+eP/Fo8V72lTbxvtbNj/3v85LvKj/xv89l+jhStpMHC3es+LqZ0mArY0oKMhlfWClX1TQ6YiM05VWK5byrJEKIkCrrGYqZL7cegwQhC54qPQBoXBxr56K/GxN6AlIEs8nMsxXHaLSXA3Nv4r7WYUpaahi+2r3kuUvNBTxf8yiDvnFqpBKKFAcOvWVOsTSdpGBETziefB5HMo22Mna4anlntI1tsWLq9EVISHRGR2mND9FcVEuTvQIARZL5WPlRDhc0cdPdjT8exqYzsSevFpcxb5U/rcxoslVQZM/npPs2H7LsmNlfKKLFeC/YQVAf53Bhc5ZbubGUtNSIACKkRCp6QWYTQUTY8nSywkfKj/Cgawet3j5C8ShOvZUdjuqZwDD/SXJ2GAGWDCQOvQWnyUY0plJkWvjG742HCEiRVa1akSWZT1Q8SJHJycWxNtrCIwBYjRYeLtzHcdfOBXMnSkz5lJiSr57JNTpZ4fmaR/jb7nd4wXuVfM2CHplx/ChGPR+vOpZz81oEYStIdQgBEUQEYCLi5cpkB92+YTSg2lbMfmdDSpbHbiT5BjsPzBumWKorO/Gx5XpHjMp0ldbrg3dpVEuxyvcL/WiaxqVQJ1aThe2OqqRfvxidrHCiaDfHCncwGnajoVFkzMu5+R5rlW+w8/cbPkyrt497/iHiWpw9Rid78urWXDdGEIS1SUcASdgcdyxhze54evlFzxm0cIxKOR8JiYtTt7kw2sqzVQ+yK2/r7sa50vH0lQzVnCjeTbdvmF95r7BdV0qpzolfDXMnMoBbH+ETlccxLBEgZs9JmX8NnawsKOu+WehkhV15NVv6dSgI2ZbOEAIiiGxpExEvv+g5Q2nEynFr08zy1bimcibQxgs9ZylpcubsPIJMWOmY+nJDNTadmd+tf5x3Rm5wc7KTG9FBJFmiuqCEZ4p2UbfEHjmLBaLl5qcIgiCs11pCSHfgLL7AwonmixFBZAu7PNkB4TgPWZtRZs0nUCSZ45Ymfux/n0uTHR9M5hSWs9xQjU1n5iPlh3m8ZB/eWBCjrF9yiGGxALKaybKCIAhrsdZekO7A2emvW8WKNrF8dwvr9g1TKefPCSEJsiRTJRfQ7V1YX0NYWiI4LLbE16jocRkdawohK73GSqznawVB2LzWG0JkSeKt9u+v+OtEj8gWlthafcnPYfnP2YzW+ya9nmGU1cxNWe81VrLqRxCErWOtQzEJsiTxetu3V3VNEUS2sBpbCRfdt4lr6oJeEVXT6FUnabE3Zal12ZPKok+rGUZZ63XXe42lvlbTNPqD49z19RNT47iMDnY6aubUQRGElRB7zOS2VPSCADMhxKis/Pcshma2sH35DWgGmbPBu6iaOvNxVdM4G7xL3AD7nQ1ZbGHmpaPy5EqGUdZ73fVcY7GvDcbD/LD7Lb7V9goXem9xq7+DX907y39q/cWqqsAKggghuS0VIeT1tm+vKYSA6BHZ0lxGB89WP8gLPWf5sf8CVXI+MhI98QliRvho1QMUm5zZbmZGzH4TTkf1yZWcc73XXc815n986EoXP+09Te/4II8Yt1FpKkCSJPxqmPeCHfys611+p+EJUVRMWJYIIbltPUMx6+kFmU0EkS1uV14NxU1OLk220+0dQgN22xo5mL9ty4WQTJS/zvVrJIZ5egOjdE4N8KixmUr9/RolVtnII5YdvOC/xOmxm2x3VDEcmkKRZOptpdRaSsT+L8IMx65KEUBy1EoCyOy5H/OlKoSACCICUGTM4+nSg7B4KYtNS2wCllybrx9zXEdFkpLwsiRRKeXz674L3DF248RMjDhnlRtUOkr4jaqHROVTQchhqwkh8iIPFrMnpK4nhECag8g777zDn/3Zn3Hx4kUGBwf52c9+xic/+cl0XlIQViTdQzHJJLqoATw3VzfHYvbXrsdKrxtVY5jQJ+3dCMbCjAXd6OISH3XsxaW3o2kaQzE370608bfa23yh/qmky8IFQciu5ULIcgEEVtYL8ur5d1fcprQGEb/fT0tLC7/3e7/Hc889l85LCcKKZaMXZPY4eXTMi2NX5YpDQarG2Fdz3UKDg4sECKlRTPLcFTKjYTeTMR81xkIKddMb9UmSRJneyWPSDl7y3KDdN0CzPTXhSRCE9VtLL8hSy3CXCiEvnnl7VW1LaxB55plneOaZZ9J5CUFYk2yFkMT/JkIBLN1LkcqJfolzrOS6jz30MG8NXuVC6B7HzU1zeka6Q6OMSD4eMu3Ap4bwa2HMkoE8xYJLZ8cZMtLm7RdBJIeI4nVb22pDyFqHXRIBxGWpJiJFgZsr+rqcmiMSDocJh8Mz//Z4PFlsjSCsnKqqdAz3MOFzYzaaaC6ro2hfPZA8RCQ+tlgvRTpXGizXK2NrLsEG/PbYx/nRhZf59dhVmvSlmGQ9/dEJTsc7cOjM9EcnuBS4h6ZpSJJEkT6Pw+Z6jOiJqbGUt1tYGzEPamtb7VDMWiefzg4hq5VTQeQb3/gGf/Inf5LtZgjCopLN1bjV2cYPXvgJvV09xEIRFL1CfomLZyPP8PQyPYLze0fmH0uXlQwRnXjsBHaDhbfvXeJC6y1QwWa2YMeO2+fFpYY4KteRL1vwaEHuhIZ4MXqFuE5ju7ExbW0XViYb86CE3LGeoZjFQshSQy5rCSAJORVEvva1r/HVr3515t8ej4eqqqostkgQps0OCrMDQltnB3/5vf+ObTTOx0oPU2ItwBsJcHm4je/+5EdgM/DhE08see5sLW9cyVDN/uOH2OaqIrj/wwxc68SiGPmz2z9G8kR4SN+AXZleHZOHmQrZya8j12iXJtjtEEMB2SR6Qba2dAzFrKfHYzk5FUSMRiNGozHbzRA2qbWOky81TPKzl3+JYSTCxxoeQZGnV4k4jFYeqd6P0neVX7zwS04cPobFbFl7w9NspUM1Zr2RYd8E0asR9pqrGYp68MfCWGUTKiqeeJAy2cmkEsUd81NgzE7AGgt7uOPpJRgP49Bb2emoxqYzMRSaZCQ8XfOk1lqCTbc5lxiLELI1JMLGYlI5FJPOEAI5FkQEIV3WenNeKoSMToxx+/pNjrkaZ0LIbPtLmrnde5Irt69z7MDRNbQ6c1YyVGNrLqH1dDd6q5EWQx2BaJCxkBtffHoul81oZr+xnt6oF3fED9ZMfgcQ11ReGbzIlbG7yFENC0a8hHhZ9x46nQ4tGkeNqyCBQW+gxdXAkyUH0MlKZhuaJmIoZuvI1L4ws4di0hVCIM1BxOfz0d7ePvPvzs5Orly5QkFBAdXV6fumBGG2tYSQxYZiZvP6fcQjMQpsjqTHrXoTek3G4/OuorXZs5KhGldTJfI7MnGHQq2xiuJxJzFNRQYUWcEbDyLFJMy6zPdsvjl8hUtDdzisq6XRWooiyfjjIV6ZvMrteD8P23bwkLWZqBbjbmSYiwN3CMTCPFd5fMNXgxW9IFtHqvaFgez2gsyW1iBy4cIFHnvssZl/J+Z/fP7zn+db3/pWOi8tCKu+OXuDfi7eu8mwe5y8wRIOHT1KU+3im/457XkoRj0jgUkKzXkLjnvCfmKKRkHewuqkuWyp3pFqVxmVjTXc7B6kVHNiKbQTnPDNHL8R7sNqslBvzWyZXn8sxKXRu+xVKmk2ls98fCrsp14rwCTrGIhOAmCU9ew2VWKLGHl3vIO+wmaqLEUZbW8qiRCyNcweikn3vjCZDCGQ5iDy6KOPomlaOi8hCEmt9uZ8/u5VfvT2rwlN+nBKFqKXJV5+4zX2HtrPH/7u72O1LBxnKHDms+/APq68/j6Nzkr0yv0/J03TeG/wFgUVxbTs2J2abyqDEmFkPkmS+Njhx/jrkR9xKnyXFqWSvAIbY2Pj3Aj30SGN8XTpEfRyZkd9O3yDRCIRmi1lcz4+EfbgkMw4ZAtvxFoZj3sp0k33YNXoXVwMd3HL07OhgwiIELJRLTfPY77NMhQzn5gjImw6qw0ht/s7+O5rP6MmnMcDJfsxKnp0Tit9kQlOvv0+35Rlvvr7X0naff/cM5+gra2Nn3a8zcGiZsqshbgjfq4MtzFiC/Gl576E0bC5JmDvq93B7z79G/z8zKv8cuwauKPEZQ1biY0nDYc5lL8t422KqDEkwCDNDYMxLY5BMiNLMjD97wRJkrBLJgKxUMbbKwhrHWJZqaWGYtK1DHetRBARNo21dlG/fvUseX49J8p2z4QNSZKoySvlhLaXt9+/ROeHu6mvql3wtdXllfyL/+Wf8aNf/oR3r94g5r6BbNBRuauGL3/k4xxpObju7ysXHWncw77a7dzqa2cq4MVmslAbdGBaZG7I8NXutLbHZXSAIjEa91L8QY+HJEnoZR2hWBSPGkKWZBzK/dVLqqYxRZB6fe6uaBI2n7UOsazUcr0gmR52WQkRRIRNYa0hxB8KcLe7gyO2mpkQos+3zRyvyyvj3bEbXLt9I2kQAaitqOZf/qN/ysDIEOOT41jMFuoqa5CTrKTZTAw6Pftqdyz7eb7W4bS3pcZSTJE1nwueezxl3YNOml4JU2h00B0ZppVhqi0urPL9oHQ3MkhUp7Enry7t7duKUrVR42aSyV4QmBtCsjXsshIiiAgb3nom60XjcTRVw6Q3zAkgsml6ozdJkjBIOiLR6KLnSNxcSstqKaX2/scT5xpcvOt/tWPEy50vlfQu+4r2pckFkiTx0Yqj/DBykl/6LtNsKMUhmxnW3LwndePWguxWavDGQ0SZXjXTpg5zuGwHJSZntpu/6aRzi4KNYKm/62wOxeRaAEkQQUTYsGYHkHA0wtm2K1zsuIE/EKAov5CjTS3srGhYMLdj9pOaNR7H9VY5g4M+GrkfQBK8YT9eOUx5SfJVIMs94WihGGqZKWl4WMvT0VLnS4e17BacLZUWF7/b8CRnx25xfaoHVVUxGPQ8WnyQQCzEXc8Qt8KDSEjYTBY+VHSQBwu3Z7vZm8pKlr1vZukedklmIw7FzCeCiLAhzQ4hU34v33z5+3R3dVOqObDrzNy9d4sL169weO9+fvfEx9F9sKJlwU64wONPPsGPv/0DdsR9FHN/qW1cVTnVf5WCqhIO7z2woA0rCRKSSTcTHuB+b8Zau2gTnz//fOm0kcJIicnJJyuPESk/QjgexawYZgqWeaNBxsJuFEmm3Fy4aQqZ5QrRC5LeYZdkVjIUk8sBJEEEEWFDcEf9DAYnkCSJA0emQ0FiKOa77/yCoY4+nis6gtNwf3il0zfEW5cuUpZfxGd/+zdnPj7/RvnhR57gVtsdXjh7njpdEZX2IgLRMLfd3ajFJv7x735xzsqX1d5wEp83O5Cs92Y1O+BkKowAGyKMABhkHYZ5S4jtejN2/eYs655tIoQs/3ft8Xg4deoU7555F4/PS2V5JY+eeIQjR46gKKsPxYkQ8ubd78x8bCP1gswmgoiQ0/yxEK8MXqR1sgfJNP3H+tq52zy4+wCfjD3BiHucOx13OZHXPCeEANTZShkITnCu9yafikWxlBYkvYbRYOSrX/oKr+98m5On3uLcSBeKSeHgQw/x9CNPzJmkup4gkeonpfm9LfNlavhG2Lo261BMqut7DA4O8m/+7N/Q1tuKrdSM2Wri3N0uzlx8l8ePP8GX//DL6PX6Jc+RsFQAgY0XQkAEESEHJYZdwrEIPzj7EwZ9QxxzNFFrLkZxmGj19vH26XeZ8LppLq9DC8WocSafqLqjspEXRy8zGvdTQ/IgAtNh5KOPPcVHHn2SYCiIQW9Ap7v/55GNsd+VWKotmRy+EbaezdoLkuohFk3T+Kv/+lfcHb7DgWf2YDTf710dH5zg1Xdfobamlk9+8pPLnmt+CHnj/KUFn7ORAkhC7txRhQ1J1VR6A2P4YkGsOhPVlqIPiketzey5Hxdvvc+Ae5RPVT84p7djf34DroCD12/dxGz84KaR5Fz6fBty3Itk0KGxsgq/kiQt2Ck3G2O/qZDp4Rth6xAhZOXa2tq43nqNpiMNc0IIQGFZASNVY7z65qt89KMfXbRXJBFA3rj7HSTuB5CNGDqS2Vh3ViGntHr7eGPwMhMBN2pcRZZl8i0OHivbx07H6v5Aki3Bfa/1KhU4Fwy5AFRZinBM6ZnwupFMOnoCo9RYixd83t3JXvJLC6koLltwbL5sLLlLNxFGhK0s3SXUV6Kzs5OwGiK/xJn0eGlNMT3nBxkaGqKqqmrB8dm9IJsxhIAIIsIatXn7+WnnKYqiFp427aLAZGMqHuCqv4efd70LtQ+tOIwsVgdkyuuhKkkISchXrMjAttoGTt+6Q77BhmNWlcwe7zCtkQE+/chvLjn+upZhl+HhYbq6ulAUhW3btpGXt3DTu1yRjZU2wuaWmLCcyz0judKTKUnS9J5rGkm7blV1+kCyCauLDcVsphACIogIa6BpGieHruCKWnjcumumTkehzsZjyg5OBm5zcvAK2+2Vc4ZpEoEjmWTFyJx2B+Ojk4t+zWTczw5bA88eeoz/EvweP+4+R6XkxK4zMxLx4HaqPPjEI3zsQx9e9ByrvVlNTk7yrW9/i3MXz+IJeJAliXx7IU8++iSf+9znMBpzd18Z0TsipJrnZh+OXZVEx7w5FUZyJYQANDdvx6q3Mdo/RnHVws0VB+8NUlNeS2np/VpFm30oZr7s/5aEDac/OM6of5InTTsXFAuTJIm9xipeDtygOzBCnbV0zZVPjzS38KN7P2cq4lswPNMbGMWjj3K4cQ8Ftjy++onf40LHDS623yBkkthWso1j+w5z5PixRUutr/Zm5ff7+bd/9m+5eu8SNXsq2V5dTzyu0t8xyA9/9X0mJif4J//LP8np0u4ijGw+kXiUC/duMDQ5hl6nY1fVNioLMrcbby6FkVwKIAm1tTUc2XeUNy+8jtlmwp4//TPSNI32tptMDkzw8S88Rm/o/Jyv28xDMfPlzm9L2DD88RCqquKUk28Wlq9YUVWVQCy8rvLrR7ft5XzrFV64e4EDtjoabGXENJW73n6uBHto2beX7eXT+4RYDCY+9ulP8jE+CUx3FSduSupiF2B1N6xTp05x7e4VWp7ajcU2XY9C0SnU7azG7rTy9tmTPPnEk+zevXvV32smJcLIWm2Usu9bQYdvkNfffA1vJIBV1RPRYrxgfo2W5l389iMfx2JY/RYCa5EII5mgaRo96jjj4+PYbFbq6+rnhP9cCiEJf/ClP8Dr83L55EVkOxgtRibGRzCqBj76kcc58fjhOQ91icJkWyGEgAgiwhrYFBOyLDMR91MmOxccn4j7kBWZmt0N05+/hhACYNIb+cNnfpsfO1/hcut1zo12TK9qsVv50KETfPzQh2ZuQImboLJnuuszET5SeVN6+9TbWEvMMyFkNld5IR2GLs6dO5fzQWQ9Ek+8G6XS6kppmkZcU1EkeUEvX64aDE7w4653KNM7earyCHkGK6qm0ekf4t0rV4mrcf7BU5/bMN/PSnT0dPLdkz/l6p2rhONh9Do9DdWNfPY3PsuRI0ey3bxFOZ1Ovv6/f50LFy7w6pm/w+cLcGT3Lo4eb6G2oZI3ZtUEga0TQBJEEBFWrdxcSLG1gGueHkp0eTPlhWH6hn5bN0JlWSV7ju5b9zCFzWThC499io8f/hB940NIkkRdcSU20/3emPkhJF1PROOT41jzF98y3mQzMjk1lZZr55qNVPZ9KaF4hPcn2rgy3oE3GsAg69hVUMvRwu0UGHJnzkMy58ZvYwjBE8V7MRmswHSp7wZbGYok81bbbTr39VFfsnAlxkbUER7kX3/n/8dobJjag9XkFToI+oLcu9XKn/2Hf8cf/eE/5fjx49lu5qL0ej3lLfCFls/MKcnecXf6eK7vkJtOIogIqyZJEo+X7edvQ2/xmv86e43VFChWptQA10K9eAo1Pr/ziZTOlSiw5VFgW7gyJVMhBKDYVczt0etJj2maRsgbprBg8aJpi4nH43R0dBAIBCguLqa8vHzNbZyamuLUqVO8f/EC4UiI+pp6HnnkEZqbmxc8Ga93nshqwkhJSw3DV7vXfK10CMTCfL/rTUbc49TJLnboXHijIW70t3N7soffrHuMMvPqf5+ZEFPj3JnsZa9hOnTMV2MpxuBu5VpP26YJIj/+2U8YiQxx6Kl9KLrpFSZGs4GWE3u4cfoW3/3Bdzly5MiKK5RmWrLdcWFrB5AEEUSENWmwlfHZukd5Y/Ayb/hvo0am64gUOfJ5tnAfu0rq8bUOr3lYZiXmLB0cDK26ZsBqPfLwo1z6bxfwuf3Y8qxzjo30jmGImzh27Niqznnq1Lv85Oc/pqu/k1g8itlg4cDeQ/z2b/4W1dWruyHdu9fJn/37f0fX0D2sxWYMJj033rnKq2+/yvOf/Byf+cynZ8LIcuXhk0kWWhJhZCnzXwO5EkjeGrnKuHuSj5pbyFPu93Tt0ip51X+dF/rO8aXGZ3JyaCOmxdE0FatkJKbGCQR8AFhNZnSygiRJmCU9kVgkyy1NjdGJMS5cv0j1nsqZEJIgSRINLfXceK2Vq1evcujQoSy1MrlEAIG5IWSj7guTDiKICGvWYCujvrGUgeA4vlgIq85EhbkQSZIYvtpNSUtN2sLIYvULtFAsbb0iDz/8EKdOv8P7b56jfEcpJdXFqB+smhnrmORjH/o4zc3NKz7fa6+9zl/9j/+MXKDR8FA1JouJqdEp3r1+kq7ue3z9f/v/UFFRsaJzRSIR/uIv/z193m4OfbQFvXH6qVDTNHpa+/j+T79LTU01R48enfma1fycUrHSxtZcgq91eEHviKZp9AfHafP2EVFjFBod7HLUYNGlbyl0MB7mxkQnO3Rlc0IIgEHScdhUz2v+W3QHRqi1Zm4FykoZZT0WvYkbnl58/UHiqEiATq+npMBFSUERU1qQIkdu9uis1pTHTTgaxp6fvK6QxW5GleJMTk5ltmHLWGp3XBAhJEEEEWFdJEmiwuJKemx2GIG1T1qdb7EQIn/QK5KuMGIymfjn/+yf84Mf/IC3z7zNtVu3kSWJovwSfu/55/jUpz614qdnv9/PD/7uexjLdOw43DTz8ZLqYgrLCrjw8hV+/otf8OU//MMVne/ChQvc62tn95PbZ0IITP9+arZXMd4/wWuvvzYniKxGqoqizQ8joXiEn/edoX2yH1NcxoieCwQ5abzChysPs9dZt6brLGcy4iMSi1JpSP5GXaw4kEMwEprKySAS11T8apje0CA15FP3QRs9UT99gwOcm2jFWG3jUP3mmDjtsNkx6Az43YEFvZEAQX8IWZPJy3NkoXXJrWQoZqsHkAQRRIS0Sjz5LlXMbKVWUsUx3WHEbrfzB3/wB3zmM5+ht7cXWZapr6/HYll8EmsyFy9eYmhyiP0PLHyjCEnj5DcYee3ML3j0N5qx2eeeu8by4IKv6ei4h2SZfjJMprimiFttNwmHw+squpaKOiSJMALwi76zdI72c8K0jSpTAZIkEVKjXAx18ques9h0Jupty5fnX63peRUSES35MuY4KioaOnn127NnQqu3j2goQpWxkEtaL95IlHK9k7AcpT06yq3AIH+/+Texmxe+aee6ZMOFRWXV7NvRwtlbZyiudCHJcwP/vRtdlBdV0tLSkqlmLkoMxayeCCLChrCaUtKJN8h0FjfKz88nPz9/zV/vdk8h6yWMZsOcj/ti02/Q9nwLk21e/N4ADsfcN5PEjW5BIFlqXz8NQErJfIdUFUUbDE7QPtXHcWMD1frCmY+bZD3HzNtw+69ydux2WoJIkTGPfIudNt8QpTrnguMdkWEUvY56a+qvnQrXJu9RhoPHnDu5qQzRGhmkLToCSJQVFLJd1RMMb6yCdcv9vX76+c9y+9+0cunNq9TvrcXpysPvDdB1s5vYGDz/+9mvbCyGYtZGBBEh5611P4vZvSPJZLPwkd3uQI2qRMJRDEb9TABJxISugVY8oRAXhn+O2X8/rDzR9HlkSULVNLoDZ2fCyLZtjWi/BL8ngNWxsHdmuGeUI9uPYTAYFhxbi/lF0dayjPeurx99TKLaunBoT5IkmgylvOfpJhALp3y+iCzJPFi0kxf957gW6mGnsQKdpEzPqYmNczHazZ6SRpyG3OxRcEf8FCpWDJKOY87tHHfsxR8LocgKNp2Jd0dvMuGZynYzV2wlDw3Nzc38q3/+r/j2//w2bedaCUXa0St6Kkur+ew/eJ5HHjmRqeYmJYZi1k4EEWFZMTVOq7ePm+5u/NEgDoOVvc7pSqdykqWDqZKKDbUWe2JP5/DNShw8eICivGK6bnZTvnf6+0uEkJ6JO4x1+Ni9qxZn3v2egnDcO3ODe6Lp8zNhBMC1I0ZJmYNLp95n1yMNFNimf3aaptF1qwfZr+PpJ59K6fcgmXSoZSb0sOzKmWSiahwDujl1aGYzSQY0dXqFSDrsdzbgrQhyeug6t/yDODHjJ0xQidNUVM3T5bm1+mI2q96MO+6b+bdOVsibFZqmon5KrAv3Nck1q91wcufOnfyb//vfcPfuXcbHx7FarezYsSOrS3ZFL8j6iSAiLCkUj/C3Pe/QPTmIS7PikM0MqkPcHuuiqbCa5yqPr3gcfTUraNK9q6ecgeW+S7Hb7Xz2U8/zH7/17/CFJ6jaXsJ4rBvfWIiRO34ceisHHm2Y8zWJG1sikDzR9Pn7xwx6vvTlz/FX//F7XHvpLmZXN3qjjsiEghU7f++zn+fgwYNp+V7UMhOsorhZYn6Iy+jAK4Xxq2Gs8sIej4HYJFajCYuSnu52SZJ4pHgPe5y1XJ/qwh31Y1IM7HBUUWl25eSy3YTdzhp+PXmWqbgfM3NXkoyFPYwofj7auCdLrVuZtQ6dSpJEU1PT8p+YASKEpIYIIsKSXh68wMDEME+bdlOsuz8jvS86wVujd3jLaOeJkv3Lnmc1K2hyeWvxVOkOnGXXo/l8XvsNXvrVW5z91XnUuIrBYKS8qoCHP7YTV3nyFQBGxZ40jFRUl/Ivv/4PuXjuOtcu3yEciVC5s4znnvwijY2Nafk+EkM0Ky1ulvj9D1/tZru9ijdMFs4H23nUsnNOz8hE3Ed7fIRjhXvTPmG0wGDnkeLcftOeb1deLZfy2nll6gbHAnGaHbUAtPsGeN/bQUNzA/vrdmS3kUvIxc3pVksMxaTOxn0VCGnnjvq5PdHNAX3NnBACUKkvYFesnCtj7Tzk2oVJWX7uwewVNMl6R7ZCAIH7NzBFlnn48SP4Sm6wrXM/RI3YC8wUV+Yt+zQ+O4wsUAs7ayWeaPoDVE0DRoH0BJGE2UM0ycLI7ACSYFT0fKzqAX7adYoX/Jdo0pdilgwMxqboVMcozy/hwcLcfTPNJoOs43M1j/Ki/n3eU7s5O9QFEhgsJvYf2sdnj30EvZJ7t/fVDsXkItELknob85UgZERvYJRoNEq9tTjp8XpDMTfCgwwGJ6izla74vMmKnW3kEDJ7ud5KzX6KspmdNO50rvociRtfMvN7TBZdaZMCsyeuLtUzkqyiapO9gt9teIKzY3e44u5D01RsZgsPFe7jaEEzRiU3y3XnAqvOxGeqH0ZpzKNrahBLdSH1xZW4HGtfzZVOW6UXBEQIWa2N+4oQ0i6xGnSxZ3MZGdDQllw3mlwijMy2kUPIYhMuFzP/KSrV5g/fJFtpky6LlX1fbL+ZCouLT1c/RFSNEVXjmBR9WidBbzbxdjeHWnZAHGxZCiGJBwlIXgckIV0hZGRkhDt3WlFVlZqaGmpra1I+xyfxt/7mrJ1y19ML4psM0n9njPE+D6qqUVBqp2K7i7yS3FyplU4iiAiLqjAXotPr6I6O0WBYOKejKzqKUW+g1JSbT2DplqshJCFx/mQrbdIdRuZbyX4zelmHXs7sLSkcjwLTQx25PDl1OeneUmEl9C57xns9AoEA3/mf3+Gtd0/iDkyBBBaDjQO7D/Cl3/8SxcXJe3NXY34Amd/7kbCaEDLSOcX1tzqJajGsJUYkGXq7Rui/O8b2B6qo2r3+dm8kIogIiyow2Gl0VnJxpBuXYp+zJ8dYzMuNWD8tRU1YdNlbfZINi1VOXKl0B5Bk18vkUM1SFttvJpM0TeOWp4f3x9sY8I0CUGIt4HBhM3vyajdsIJn/88xWIMlUCFFVlb/8T/+Jt95/g6o95TTX1SHLMqMD45y+8g7j/26M//Prf4LDsfay7/NDyBvnL80cW+vwS8gX4cbbnShOqNhTNFMl1tWkMX7Xy+1zvdhdFpylyffV2YxEEBGW9JHyw3w/7OMF7xUqcJInW5hQfQzioaagjMdL9qXsWtExb8aGZ9a6dHe5iWq5KhtDNYutoJld4j0b3h69zrsD1yhRbRzR1yAh0Tk1yi89pxksneCp0gMbNoxA5ntHEsMymV4Of/36dc5cfJfmYw0UlN7vlS2udJFXaOfSS9d5++23efbZZ9d0/u7AWd64+x0k4PVzF5AkOSVzPwZax4nEotTsLppTql6SJAq32fGPjNF/Z2xLBRExEJtmqqbSHxjjnm+Qicjqiz5lm01n5vP1T/Lh2gcgz8CAyYch38rH64/zWzWPpWwyoedmH56bfUTHvGsqjrUaa+0+3qghJMGo2DEqdl5v+zavt3175vtYy2Tb5SQC5ey5A7mgLzDG6cHr7JeqeNK6h0ZDKQ2GEp6w7eaIUsv7w7fp9A9lu5nrlugdyVTgS/y+MzkR9b333iNujM4JIQlGsxF7mZW33104hLKc7sBZugNnefODEPLG+UspCyEAUyN+jAV6ZGXh268kSVhLjEwMbrz3ivUQPSJpdNPdzTvD1xkPTKFpGrKsUJdXxhOl+yk2ObPdvBUzKnoOFWzjUMG2tF/Lc7MPx67KtPWOrCWELLeJ1UaTqaGaldYWyaTLkx2YYzp2WisWHNtmKOWOf5DLkx1p2d8m09I9VDN7pVs2igN6PG4MlsUfhKwOC1NjU6s652JDMalcBSNJLLkvlKZqSPLW6iPYWt9tBl2ebOfnXe9i8mk8qd/Jc6aDPCjXMTI2ynfvvcFY2J3tJuasxJtWKntG1DITapkJyaRbUwiRJWlThJCE+RNZ09U7onfZ0bvsOHZV5kTvyGhokjI5eZ0WSZIoV5yMBKcy37A0SkfvSLLl9plelltUVELIE0bTkr+re8Y9lJWUr/h8iaGYN+9+h9fPXeCN85dwWapTvhS3oMxOaDJKPKouOKZpGv7hMIWLFDPcrEQQSYNwPMqbg1eoVQt41LKDEl0eVtlIvaGYj9haIBDj7ZHr2W5mTkvlE/R6Z/LPXxWz0UNIwvzvY7Wrf1Yq3UNtq6GX9YS06KLHQ1oUQ5oruWZDKicG50rNn2PHHsSMlYF7gwuOeSa8hMaiPHri0WXPk+6hmPlKtxVgNhoZvDpJPHY/jKiqxvDNKRRVoXLnwo0gNzMxNJMGrd4+gqEg+8w7Fzx5GSQduwzlXJrqxV8WwrrFVpxk2mYoohT0R7h7ZYCeu2PEY3FKKvNpPlhOflHuT2ZLhJBcGZppclTy2sR7BNUIZnluNeCwGqVHneDhvH3ZaVwOWar3KtsBJKGhoYGPPfksP3np73CPe6loKEPRKQz3jDByd5xjLQ/x0EPHlzxHJoZi5jNa9LQ8Xs/VN+7R/fYopkI9kiwRGo+ikxR2n6jFXrhwB+3NbOPenXOYNxbAqOmSbuQFUKjYiUfj+GJBEUTSZDMEEICRPjcvffci4xNejAV6FJ1ER8cQl0938Ogn9rDjUPaHOxaTayEEYE9eLeett3nVd4NHLM04leniUe54gHeDbZgtFvY5G5Y5S+qpmkpUjaOXlawXc8uVHo/lSJLE5z//eYqLi/n1K7/m3ru9qJpKvqOA3/7E7/Lcc89hNC6+YWK6VsWsRH65nQd/YyeDbeOM93vQNKjcY6O8uQBL3tZ7T9jYd+kcZVGMhKUYITWKSV44mcqtBpBlOW27im4ma5m0ullCSDgU5aXvXcQTCbDtiTL0xukhA1XV6L8+zps/u4bTZaWsNvcKyuViCAGw6Ix8rvZR/q7nFC/4ruLQTEiAWwrhtDp4vuYh7HpzxtrjjQY4P9HK1fF7hGNhjDoDewrqOVrYTJ4+8xU2N0oISZBlmY9+9KM89dRT9PT0oqpxysvLsVoX/9nN7gXJxFDMYowWPbX7Sqndt/LtMTarjX2nzlHN9kpeNRi4Fe7ngLl2zrG4pnIz0k+dqwy7fmt1vyWzVK2D9ayg2eghBODe9SHGx7w0Pl46E0IAZFmicm8hrScHuHm+J6tBJLHHjDwYWnAs10JIQrHJyT9o/Ah3ff30BEbRNKiyuGi2V6Z9p9/ZJiM+vtf5Bn6fnwalmALFylQkwOX+O9yZ6uG36z5EoTHzkxY3SggBiMVihMNhTCYTDQ31y35+NoZihOVt/Lt1DrLoTBwr2cVbfVeIB+PsNFZikQyMxr1cDnURNKo8XLSxth1Ph5UsL0z3ct5cNtA5ic6hYDAv/DOVJAlnuYXutpEstGzaUiEk1+lkhR2OanY4svcG9MrgBcLeIB+37p8zX2WnWsFLvqu8NPA+v1P3eNbal8tGRkZ4+eWXOXnqJMFQELvNzhOPPsHTTz+N0+lM+jXZHIoRliaCSJo85NqFTlI4M3KTO8GL03VEFBmXw8nz5ceotGytWdFLWa4SZOLJeqN1G6+XpmksNV1AkiVUdeESwEzYyCEkF0xEvNxzD3DEWLtg0qxJ1rPfWMNpTwcjoakNVXMoE/r6+vjTf/undI10UFzvosBhwzPh4Vs//R+cf/8c/+qP/zdcrvv311wZihEWJ4JImkiSxIOuHRzIb6TTP0QoHsFpsFFjKd7Q5aPTZSVlqTPdOzK/psZq95RZr+LKPK5d7CIWjqMzLhwycA8G2NawsDDXWqmL1GOYTwvFsh5ARsNuhkKTyEjUWks23KTv0bCbeCxOpbkg6fFKfQHxQBujYXfGgsha67yku5jZ7L9DTdP4j//tW9wdv8nep7ahM0y/hdkq7RQ2Grny5jn+y3e+wef/4afnnEMMxeQ2EUTSzKjo2e6oynYzNoREGFnK7DAC6esdyYVy7tv2lfP+yXa6L45Sd7R4piS0pmmM3HWjBVSaDhYSjq+/TkcihGR6E7zVmoz4eGngPTrdQ8RjMZDAqDeyz9XA4yX7MzrHYz30kgKSRFiLYmLhhPawFkNCytj3s9bexnRODJ9f0Rigt2eI1tZ2aveXoTfMvabJYqBiezGXLt7gExNPUVCYN/N3K4ZicpsIIsKGM3uoJh29I7NDyOxekEwXMjNbDTz1/D5e/v4l7rw2gL3UhKyT8Y4EkSMaR59o4Asf+6frvs5GCSG+WJDvd75JyBfguKGeKmshUS3O3cgQFwbu4IuFeK7y+Ibocay0FGExmmmLDHLYvHC5cGt4ELPRRI0l/dvBryWEpHtl2vwHgYThgTEC4SAFZXlJvy5kG6VvcpQXzv8NFY3Tk7jFUEzuE0FE2LBSPVSTC70g81Vtc/HZLx/n9oV+Om8PEQ+qVO5w0HyonN99+p+s69yzh2JyPYQAXJi4i8fn5ROW/Vg+qNGjSDK7jZUE1QhvD15FL+s4VLCNMlNBTgcSg6zjaNF2TvZewhY20WQoQ5FkVE3lbmSYW+oADxW1YFIMy59sjXKxFwQW/zsE6BoaxRMepWv0DnrTwt6iWFhFkXWYjfaZYRgQQzG5TgQRIWcsNyyTTCKMJKx3vDoXy7nnuaw88OEm9j85vRFbYqO6lc7pWEo2A0ji973S8uPXJ+5RL7tmQgjAVNzPG76bTES9EIvxbs9Vro92UJ1Xyicrj2W0JshqHXPtwB8LcXG0lWv+PuyY8BEiqoMDpds5UbQ77W3IpRCyks0la7eZcNjamewKUrZj4bL1yc4pfBEvF3uvUmxf/f1EyA4RRISsS7whrXd30M1SyCyZxDyQ+SFkI/RkJJP4XftahylpqVk2jGiahi8aYptSOPOxoBrh154rKDH4kNJMRI5i0Jsw6AycG+/gh/G3+EL9k+jl3Hw9yJLM02UHOVjQyE13D75YEIvOyC5HTc6tlMlWL8j8BwGjWU/Lg7Wcfv02OqNCYa0dWZZQ4yoj7R5674xQd6RAhJANJjf/QoVNaakej1RtUb7ZQ0guDqdEo1Gu3rnBwMgQBr2elu27cckrqwpqay6ZCSPJJAKKJEk4jBbG/b6ZY7fDA4RjET6m24tJ0tEpjWJX9FTqC7HLJl7wXOW2p5e9zrr1f5Np5DLm8Uhx7tYVypUQknDo8UbCoRjXzncy1uZBMSmMDk8gI7HzcAP1B8rS0k4hfTbfXVvISanq9ZjPsasSvcue9iWE2bARekFutt3mr7//bYY7+zDGFaJanB/mmTi67yCfqD+GUb/8HIfFXhPze0ta8ht4x3uZvfEgdsXMvcgwVeRjlvS41QBxWSPfML0RoFOxUqzZuO3uWTSI+GMhLk22c3Oyi2A8Qr7RTkt+PXvyajfM6pt0y/ZQTDKyIvPwx3ey+8Fq7l0f4vzV69SUONm2qwmzXWybsRGJICKkVboCSKrNvilmul5IMhshhHT2dfMfvvmfsI3E+Y2K4+Sb7MTVOK0Tvbz7+tv4dozxex/69PInWkSityThYEEjt6a6ecl9nRZDJX41TLFkZTTmYYoAhWbnnP2brLKRcDyS9NzjYQ/f7zyJ1++lRi6kXM5nJODhV1NnuFXQzWeqT2DI0SGdtVisx2klE73TGULWMzE8v8jGsKmf2qMFYjLqBrd5/tKEnJPuEJLoDYHpCp9r6RXJxZUyuT4Uk/DyW6/BoJ+PND6G8kEPgiIr7HTVIsdU3rl1nadaHqKyMDWbepkVI79V9xivDV7i0lQPveokkVgEp9FCmclFqSl/ZqWMpmmMql4ajQvfgDVN45d9Z4n7w3zKcnBOZdORmIfXx29yynyDx0v2paTd2TQ7gMz/O8xWxeLVLo9/8czbi55LBJDNQQQRIS3SGUIWqwCZCCMrfYJLRwgJBSL0tI4SCcWwOc1UbXOh6Fa2rXsu9IJoodiKfn7hSJgL719gj7N2JoTM1phXwen+a1ztvpOyIAJg05n5VNVxvKX7OTN+i7f7rpJvzKPMMLdCaXtkGL8So8W5cCO03uAY/d5RPmTcvqC8erHOQbNSypXxdh4u2r1hekXWM/8qUxWL1zIUkwghInBsbhvjr0zYUEpaatLaCwKLP72tNIwkeypbTwDRNI1Lb93j5mvdxEfj6DWZqC6OucrEA89tp3bH0oWpshlCbty4wZsn3+T69WsoisyhvYf40GOPUb992+LtjUSIR2PYDcmXx8qSjEUyEIomHxpZL7vewhMlB3BHArwz1kpjrJhaQxGqptIRHaGTcQ6WbKfKUrTgaweDE8hxKFtkZUqN3sXtyBDjYQ9li5RgzyWpCP2pDCPzt0aYbTWhX4SQrUMEEWHDWc+NMl1DMZfeuse1H91jp76UpqoSjDo9nlCQa919vPXX13jiH+6nsrFwyXMkQkhCJkLIL3/5S779w28R1gUpLHeiBWL87PW/443Tb/Llv/+HPPTYiZnPnb3RndVswZGfx8DQOPXOhfvdhGIR3IQotDvT1nZFknmu8jhnzAVcGrvL3fBtJMBptfN04REOFzQlLWomSxIaoKEhsfB4HBWQFtSUyTVLDbusxfyaPGuxWEXUhNUMxYgAsnWIICJsGekKIUF/hJuvdrNTX8qesvs3cofJzPGaRt68d4fLb3RQ0ZBb1T5v3brFd370bRz1Fup27YC4ihSI07hL4+aFNv7qb77JtsZtFBfd71VIbHanKAqPPHyCX3z3x+wO1eE03f8ZaprG+eFbmJxWDtWntyiXTlY4UbSbY4U7mIh4kSWJAoMdeYlti2utJaCT6YqOUW9Y2FPVHhkmz2yj0OBIZ9PXJdcmgS8XQED0ggiLy0gQ+c//+T/zZ3/2ZwwNDdHS0sJf/uVfcuTIkUxcWhCA1A/FzNbTOkp8LE5T1cK5EJIk0VxYyuk7HXgmguQVWlJyzVQ4+dZbhJQAe3Y2z/m4JEnsONDI+ZeucvpXb/KpLz4PsGDH3Q+feIKrN67zs0un2WmtospRQjAa5uZEJ2OGAJ954MPYTJn5fnWysuIiYEXGPBqdFbw32oldNlGkmw4cmqZxNzLMPW2MJ4sO5cQS3kzU3lmvpUqyzydCiJBM2oPIj370I7761a/yzW9+k6NHj/IXf/EXPP3007S2tlJcnP4NnYTNZyXj2LMnXa7kaW09wsEoek3GqEv+52QzGiEw/XlLeb3t23OGZ7oDZ9M6PHO77Rb5Zc6kvTSKomApNHG3u2NBAEmwWqz8i3/0R/zyjZc4deoUt9xXkRWZxsNN/NahE9THnClp50oqr67WsxVH+dv4KV6eukFByIJNMjKm+QkpMQ6WbudIQfPyJ0mzdM61SmYtwzKp2iDyxTNviwCyhaU9iPz5n/85X/rSl/jiF78IwDe/+U1+/etf8z/+x//gj//4j9N9eWGTmT2pDpLPF0lMWE2EkRrLg3QHzqJqGrIk8UTT53m97duE496U9IrYnWaiShxvKITdtHAJ8bjfh2SSsOUtvrzYqNgJx70zYUSWJFRNS2sY0SkK8Vh80eNqXEXJNy+5LNo2CL/18c/w3NPPMuGewqDXU+gsIDbum1keuh7zK6+mKpBYdCZ+p/ZD3PX1c9vTSzAWZruhmL3OOirNrpwaQsuE1S7hzcVl78LGldYgEolEuHjxIl/72tdmPibLMk888QRnzy6cWR0OhwmHwzP/9ng86WyesEHNrn+wWO9I4ik+8SaarjAyOeJjqGeS8YiPUzdaebixCVuemcT7WCQW487UEJVPFmFZpupjoh2Jm3qijkjipp/qQHJo/2G+/+v/iaqqyPLcORWRcISwP87e3XsWXYGkhWKoZSbkwRAmo4ny4tQt051ttfvSrJROVtjhqGaHY2s8iS/X4yFCiJAtKytwsEZjY2PE43FKSuZ2L5aUlDA0NLTg87/xjW+Ql5c3819VVVU6m5dR/liIc+O3+WX/OV4cfJ82bz+qpma7WRtaIpAkekeSSQQSLRSjxvIgNZYHUTUNVdNmhkHCce/M8tmV0jSNC2+08/3/8A7n3mklXqhxNdTLLy9e5uLVe0z4/HSMj/Ba5y2idXDoycYVn3t2IJGl+6s3lloWuRaPPvooBaYirr97i1g0NvPxcCjClQut1BTX8eCJ44t+vWTSIZl0qGWmjJTYTwSStezSvNXN7vFY7L+VmD8UI0KIkAo5tWrma1/7Gl/96ldn/u3xeDZFGLnu7uLF3vPEwlEKsRImxkW5lTJ7IZ+teQSHPncmMK5Xpt8kVjJUM9/s3pFEGFlt70jbpQFOv3abvHoLdduKkWWJqYN+us6O8FrbbRx3uiiqz6PySReHntqG07WyTeASlhqqWex7Wq3Kykr+6Vf+Kf/pm3/JhReuYshTUFWNmDtObXk9/+yP/jl2+/I/D8mkm1nam27zy75vVqn8O1pr5dTZ4TKdvSBLVU7NFk3T8I4FiQSjGMw67C7Llhuuy6S0BhGXy4WiKAwPz71xDA8PU1q6sBvXaDRiNG6uTYt6/CO80H2W6ngehy31GGU9AGMxL29N3ebvpHf4Yv1TSy43TIWYGiesRjHK+rSsBsjmcsKlhmoW27RrdhgBVjVUo2kaV969h6FAR2mzc+bjznIrLc/VMtw6xfgdH0/+o/1UNCxdO2QpyYZqklnP8M3Bgwf583/37zl9+jTtHe24Y70cb/kIDz74AFbr6sJTptiaS1I+eTWXrOVvKVXDLrDwbyZVIWSjlGqf6Pdy970+3GN+4pqKLMnkFVppPFyBqyp3l3RvZGkNIgaDgYMHD/LGG2/wyU9+EgBVVXnjjTf4yle+ks5L54zz463YojqOW+cWV3Lp7Dxi3s4rnpvc8w3RaC9Py/W90SBnx29zfeIe4VgEWZbZmV/LMdcOXMa8lFwjV2oaLFYdcrE5Dok37dm9I4kwAovfaN3jAUaHPRTvW3hTkiSJkiYnE/f8jA951xVEEmb3jiQzuxrrWia3eox3aHzAylhU5c7pYf7rjX/Pj37t4IHjB/js0/9gRb0im4mqqXiiQTQ08vSWtD8kJKz17yiVe8UsFULWuipmIy3Lnej3cPnVDjSziqvFjtGhJ+KLMdHh5cqr7ex7sgFXdWrum8J9aR+a+epXv8rnP/95Dh06xJEjR/iLv/gL/H7/zCqazSyuqbS7+2nRlyft1ivSObCFDLT7BtISRNxRP9+99wZer48mXQkunR1PPEjrYBd33X38Zt1jlJvX90aZKyEkYXZ1yJXOW1jtUI0a19A0DXmRPWQkWUJWJFRVS3p8LRa78a9npU3iTcbn8fPNv/gep6+dwlJiwJxnYNgTpeMHXbx39gr/6J/+DvsqP5yy7yUV0rGkV9M0Lk7e5f2xNiaCHkDDabZzqLCZwwXb0hpIci2EpLoXZCOEEE3TaDvfDxaVykOFM/dsXYGCOd/AwKUJ2s73UVjpQJLFME0qpT2IPP/884yOjvL1r3+doaEh9u3bx8svv7xgAutmpGoqmqZikBb/MRtQiKd40qo/FiIQD/P60GWCXj8ft+7DIn8w5KWHZmMZr/iv86u+83yp8Zl1j33mSghZj9UM1TgKzNhsJtwDfmyFC8OOfyKEpEq4ytLfk5DoLUlIhJHlzH6j+Xf/+f/ixs0+6k8UYbFPz1eKa1EigRjtF+/x0++/RP5Xpp8Clwo4iRU0CY5dlSlZwruYVIYRTdN4afACF4dbqdHy2WOY3menyz/Ka773GA5N8mz50bTME1jvUMxahl2Smd9zOL/uzlrng2yEEALgHQvgHvdTvM+x4PcsSRIFDXaGL04xNewnv8yWpVZuThmZrPqVr3xlywzFzKaTFFzmPPq9EzQaFt5kQmqUCQIcXmFFyOUMhyZ5e+Q6He5+QtEI3YERHtE3IanMWR+llxQOGmt5w3+b3uAY1Uk2BtuoHLsqZ27M8+uJLGelQzU6vcKuIzW8+/otnBUhrAX3b+7xqEr/tQlKy5yU169/WCbV5j/p/uL9/0b79WGKm/JnQgiAIukxWMBQ4+Py5VuMDU/gKilYtLcl8fNNvNHpmV7NlHjDTHUgmV1fJBVhpMs/zKWRVh7U1dFouD9/rVJfQGVklHdH29nuqKLJvnBfnbXKdC/IYvOlhGnhQAxVVTE69EmPGx164qpGJLB0YUJh9cQrMo0kSeJA4TZe9p6nPzpJhT5/5piqaZwPtmM0mdidt/4Z8v2BMX7QeRIlpHJQX0VYieHRvFgiCne9/TTaK7Do7k8ELtXloYU1xsPuTRFEFrs5J8LIaqxkqGb/iTqGeyZpPzeEyaXHWmgk4o/hGQiSb7fx+GdakHOs+zZZd/vEsI9IRMNZvnDlliLpcZZbaL12j5+f/h/8wW/882WHfhIraNQyE4nbeSKQpCOMLGelIeXq1D3scSMNpoXnrDUUcdPXz5XJjpQFkUyGkNmvfxFCFqc3KciyTMQXxZy/cNFExBdFliT0836GmqoxOehlrNeDFtewFpgpqc9Hb8z+FgEbhXhVptk+ZwOdrmFOjt2mIuKkQldAWIvSERshZFD5RNUxzMr6VgppmsYrgxcwBSU+bNuPTlIYjrmxyAZcsoNgLExfYJQmx/3u3LAWQ5M0dPLaXwK5Vs9hsZtzIoys5ia8XAE0vVHHM3/vIK0X+7l1oZfJHh8ms55jj+xg59EqHPnmVH1bK5KsPHwy8ycdmvR2JAniMY2kz4FxHbKkQ1bkOddYqqZJjeXBOcXO9C572sIILP5mvpoek/GQm2LZvujQS7HiYCyUmgKL6xmKEb0g6ZNXbMWRb2G8w0fFQcOc14KmaUx0+LDlmecMy4QDUa69fo+JYQ8YJGS9ROxmnPb3jew6UUNRrTML38nGI16daaaTFZ6rOs4VWymXJtq5EOxBkWWaC6s4XNBEhcW17msMhiYY8I7zmKkZnTSdwosUOzadmXvRUXYr5QxG3QRjYcwf9Iq0RgYwGYw0WNdWDTPXJqkudoNeT6GtRBhJSISRBJ1eYdcD1ex6IDtj4JFQjPZrg3TdHiYQDHC6pI0v/MYfUlO3+FP7/EmHxZUx7HYL411eKnYXLPj88W4vNquJ6voKIDxnYmwy83tMMjVUk8xqhm8MioGA5l/0eEANY1KSd9mv1EYZipn9mt9KBcskSaLxcAVXXm9n4PIEhQ12jHY9YV+MiXteopMqOz9UMTNRVVM1rr1+j/FxN6UHnJic0+ElFo4zctvNtTfvcfjZZhxFubkMPpeIIJIBiiRzsGAbBwu2EVPjKJKc0klvkxEfqhqnRHd/OaksybSYazgdu4MprseATFiNYdD0tEeGuB7v54GS3Vh0q3ujnt0LkishZDGb+WnQPebn1//zIkMDkxgLdOiMCj0Xxvlf3/tXHHqsnn/xD7++4DWW7E3FYNLR8kAtp169idmhJ7/KhiRJaJqGezDARLuPBx5pxmw1AIY5y4iT1TWZv3JnqaGaZNI9fLNYINmRV8XLk+fxxkPYlbl/E0E1Qq82yRPOQ2tux0pCyFK1QDIxFCNKt0NRTR77Hm+g7b1+Bt+fmukRtTnM7HysgpL6+8Pr4/1exoc8lB7Kx+w0zHxcZ1Qoa8mn+/QovTdG2fWYCCLL2Xx36ByXjmJiRkWPJEn41TB5yv2x/h2GckLWKOf9d/HEgvSEvMQjGqoeDpRu57GSllVdJ9d6QZaymUOIqmq8+oMrjExM0fChEoyW6bd4TdMYaffw3hsd/Lei/4eGvQt3t072prL/0Xq87iA3LnQz3OpBb1WIBeLIMZk9+2s48vS2BV+/kroms4uszR+qSSbdwzezN8+b7/FYKTekQd4ausvD1u2UGpwAjETdnPK0UVZTweMPPYLNsHDIbbneluX+btJZB2SlRAi5r6jWias6j8khH5HAdGVVZ5l9wZyv8R43slmaE0ISJEnCUWFmuGuSnWqNWO67jM13l96Cai0l2ExWboX6edBy/01DkiQOmGuZjPtoV8bZXdyIVW9mp6Mal3FtFQJzMYTMfpJMx8S8xFNRQqp27V2rvvYxBvomqHqgcCaEwAfF1Lbl4RsNcfvcCDv21a+o503RyTz63G52Hq6i/dogfk8Is81I495SSmvyk55jtXVNYDqQJBsqSyz5zdZcEgAb8E+qfp+/eeMnvNl7F31IQgLCeo3q3dV88YnfoCRv4TDqUkM/q+kFybUQshUDyGySLFFQvvTPIB5XkfWL/30pehlVm645NP1qEhYjgsgmoJMVjhfv4tWe99EHdew2VmKS9QTVCDfCfQwqXj5Tc4ID+SvfeG22geA4V6fuEQ1fJm/Axb7aHeytbkKn5ObLJ5W9IOnatXc9hromwaDNWTY8W36VleE7k4QC0Q+GVJYnSRIl1U5Kqp3rattiZenn75OTmEOS6ClJSMwlyQaXI5//9ZN/n/ahbtqHe0HTqCuupLm8btFAt9jQT7pCyHJzntb62l9szo+wOKvTRLQ1TjyqougXFrvzj4WxOc3ISmYq825kuflOIqza4YImolqc00PXaQ0OYkRPiCgGg5Enyg6y39mw6nNqmsbrw5d5b/g2pqhCmcfF+NAo71++RH1dHf/gw5/DYc6dwj6rXRmzUuvZlyYdNA0We8DqHR7EPxlmciIAqSvsumrJNu1LWGxvnNkb56W7GNpiJEliW1kt28pqV/V1yYZ+Uj0Us5mHGzei0sYCOi4NMNrqpmSXc05YDYyHCY1F2fbQ0nsACdPEK3qTkCSJ466d7HfWc8fbhy8Wwq4zsd1RteblwZcm2zk3eItDSg3bbWVYCuzonWbGwh5evnuZbxt/xlee+Z2s7kq52nLua5Ws2BlkZyy9uDIPLQRBdwRz3v0ej97hQQDCoxKWPD1vXj2DJEl85NgjGWvbbCvZI2d2L0m1fHhmUmu2ekXWIxFG0jEUI0JI7jFa9Ow4XsONdzrpPTeGo8KCrJfwj4YJjUQory2kvDn3ihrmIvGq3mQsOtOah2BmUzWV98amy103G8qYivrpH59C9cqY9Qb2m2p4v6Od3vFBql3p2bBvpfQuOyqZuUkvt6Q3E6qbiyguzaPn0hgNx0oYnBqZORYZkQmPxdhzooEiq4uxQA8vnnk7q2EkmUS12kRPiappc1bYyEUGFpvFlI2ekpVK51CMCCG5p2xbASarnp6bI4zec6NpYHWYaDhWTsUOlxiWWSHxyhaSmor6mQi62aVr5K63H38kgFlnwqDT49XcxBSNCf0YdwY6VxxEltuqfLaVvNlkqjck1yg6mac+t59ff+cC5392B3OxAbPZQmAigurXqNlRMvMk5rJUZz2MrMbMm20ohrJnbsXfxKTWlb6OshFYUrUEF0QvyEaRX24nv9xOPKaixjV0htSWZ9gKxCtcSErVVNCmi6UZozJVSiE2owXZqKBp07VLvF4v17vbeGrv8WXPt5qnwZWsnJh9vkz1huQSV7mDvEMa1U4noQEdUXec4iInFQ+5KKyau2nX7DAC5HwgSVa1NTFsA6B88L+zN9hLJpPF02ZfL5srYITsUXQyOTp/P+eJH5uQlFNvQ9EpdHpHOKHbhkmevUwU4oqGKkH3cB9xNY6ySH2UtdycE5+b7I1k/vm2Wm9Iwotn3sZg0dHywJ4VfX5iB9Rc6h1Zqiz9m3e/M/P/P7Tt79Gjvj/z79l1SWDxQJLu5cCziRAiCGsnBrCEpHSyQpEln051HD+RmY+r4ThhNcr74XuU2QuJBSIMTY0tea613pznB5LFbvbZuGGrmjazigbuz3nIpLVsr574mkTvSLbMX+YrSxKyJPHm3e/MhJDE5ySOzV55I5l0K/q9z38NpZpjV+XMjs+pCCEJIoQIW4l4tQuL2uGo4rzuFm/F2yiLOyiK2Qnp4nSHJjAYDTxa0sK5WCealr51orOfahP/zrZcWkGzFvOHajIhWQ/M/CW+6fr5pTuM5MJrUhA2MhFEhEVVWoqotLho1FyMxb20xUcxoGOHqYIDpU3cmurFVm6nyLFws7RUytUbfS4WO1uptfSmrNVSw0Hze0bS+XPL1dfRRjI26KGndZRYVMXpslC3swS9cWO/jcSi00XJ9EZFrHLJko39ChLSqsrsosJRxPCUhw/b9mCW79esGB4f545uiA8VPIhRv3T1zuiYd9O+CczuHdloYSRTVrJyZz0/q8QeNptBrs55ioZjnPzpDdqu9xPVYsh6mXhIJd9p40PP7aFm+8J9jXKdZ9RP17URRron0VQNg1lPZbOL6j3FGz5cbTTipy0sSpIkPlF5jB9ET/Iz/0Vq5ELssomRuJdB3DRYK3mi8fCS5/Dc7MOxqzLlYSSXJ/Rlo7ZIrkuEkVSbXXskmVwIKMtNqp3/eZl6Tc9fnbRYr5SmaZz8yXVuXO2hbK8TZ7kVSZaIBGL0XRvnpe9f4lO//8C6twfIpPFeD1df7yCmi+OoM6M3KwQnIty90sdYr5sDz2xDn+F7SzQcZ+TeJBMDXjRNw+GyULatAOMKt2nYyHLvLi7kFJfRwRcbn+LyZAc3J7sYiU9SYLTzbP4udufVYlD0y54jsWIhVfM8cjmEpFosFiceUzEYdaI2wSIWex3M3vE3G2a/TpdqSzZez6vZbXdswEPrjQHK9jrJr7y/pYPBoqPuSDFtbw1y9d1Onvqt/Rlo+frFYyo3T3Wj2TSq97tmdsa1FZvJq7LS9944nZeHaHowc+XZPWMBrr7Wgc8bxJCnIMkS/Z1j3LsyyO5H6iiuc2asLdmw+e/kwrrZdGYeLtrNw0W713WeVPSObJUQMtg1yfUzXdy7PYyqaRS4bOw6Us3OI1UoOjGOvRKJ18hKeyRSaf7rdLG25HoIAei+M0qMOM5y64JjkixRUGuj4/YQ0XBs0SGNcCBKLBLHaNWj0ydf6p8pYz1uAr4gFQ8UzISQBINVh6PSTP/dMRoOlaGkoa2apqHGNWRFQpIkouE4V1/rIKRFqHrIhd40fc14TGXk5hTX3+rkiGM79kJzytuSKzb33VzIOesJI+na1C7V1jss035tkNf+9goRJUp+nQ2dQWFq2M/rv7hK371x4jUeZGVj9o6stoaJUbEnrTcye7O85SzXI5FqS4WLZENJ2Q4hy83PiUbiKAZpwZt2gt6koKoa0Wh8QRBxD4bou92OryuAFAPJKlG4M5/a/SUYLcv3pqZDwB1GMkgYbMmvb3UZ8fd6CPmjWJ2pCyLRcIy+W2P03RklHIii6GXKGwrRGRV83iDVD7nQme5fT9HJlO7Np/vUKH23R9nxUOYmmGeaeLQSMs5zsw/PzT6iY94NubnZSqx18mXQH+Hkz64j5Us0PVZOcUMeBVU2ag8VodTFOfPuDcI9loyuekmVtdYwSYSR19u+PfMG2h04m7QC62Lm90ikg1pmmgnLS4WL2b0k2QjW8iqH+PIKLcQDKtFQPOlx72gQm92EyTz3jb3z5jDdv57EekPmqFTLCfM2dvnLCLzj5eovOwgHomv+HtZD0cloMQ1VTV52IBZWkZBS2vMYCcW4+Ou7tF7sQbOpOJrMGEoUOluHuPr6PRSrNCeEJEiShLXUxFivO2VtyUW5/3gpbFqze0eS2YgrbWb3hqylTsfQbS/dQxNUHnfSNzI055i5QI+9xEbv7VEqd7pSPmckHlOnu63dYRSdjKvagSUvtW/ca937Zn7NEZguKrea3pF0DtWsdohlI/TsJTTsKcX+ioX+GxPUHJz7ugu6I3j7Q5x4qmHO0tdoJM6ZH9+mPuDicHnjzNcUWmxURvN5p7ONrsvDNB/P3DyMhMIqB8p5Be9AgLzKucNNmqbh7g3gLLFhtKaux6bj/QGmJr1UHC3EYL3/u8+vs3HzJz0EfRE0INlftKxIRNXkIXCz2Dh/DcKmtFjp7XSstMkUo2LnxTNvr6nXYizYg8URwmpJvvesxRXA0xZEjakpHb8e7/Nw61Q3fm8QSS+hxTWU8wrl21xsP1aZ0mvN7xlZaSCZH0ZkSVp1GIHUDtVomsZtbzdXT18nqsUpLy/ngQeOYrUunE+xURnNeh79+G5e/bsr3H1niMJaG3qTgmc4iKc/SF19CXuO18z5mq5bw0QGIuwsKFkQmM16A/XmIm7eGiR2pCzjc0asThNljYX0to4gKRL2UjOSJBGPqIzd9RD3atQ9WJqyoB8NxRhsHyev1jonhMB070xBg42Ru25C3ghm+8IVMv7RMMVF+SlpS64SQURYk5KWmuU/aR0SvSUbQWKIIBVLdmVFRo2qaJqW9EaoRlUkWUJKYeElz6ifq691gE2j4oECDDY9qqrhHQjQ2zaMpmrsfqw2ZddLWMuS3vlDXokwslrLLftdCY/Hw3/5q7/i9vvXMPrBKOuYkoL8uPKHfPEPf58jR46s+dy5prGlDJPVwLXTnXS1jaJqKjabmYef2Mneh2oxmub2HngmAljiBsym5L0KhRYrWkAj7I+iS+E8jJXacbwKTdUYvD3OeKsPxSARC6oYDXp2P1yLqzovZdfyu0NEojFcRckfqop25DF0fYrhW1PUHCma83c/2e1D82tUPOxKWXtykQgiwqolQoituSTLLcmu2XMUEuPu6+kNgelu43vXBwlNRTDnG+cc0zQNT3+QsppC5EUmDq5F19VhYrr4zFJG7YNr2cstSLLEwJ0xaltKsBVsrln76xke0TSNv/rv/43Wk5d4svIglTXFSJJEIBLi3a7L/Nf/5z+R/6f/B9u2bUthi7OrsrGQysZCgv4I8Wgcs8246DwKvVFHmBhxVU16PBiNoimgM2RnBY2iV9jzoTpqW0oY7XITi8axOIwU1+djSPGwmazISJKEGk3+s9AbFSxOE5GRON3vjmIrMyHLEv6RMHG/RkNLGYWVG69neDVEEBFWRYSQaWtZfbASBeV2CksdDF2bomSPE3O+AUmSiIXjjN5xI0dlqnelroplLBpnpGeKvHoLSBK+iSC+qRCxyPSYtMGsIxKNMto1temCyHq0trZy68xlnqw8SJXz/t+CxWDiiW1H+fGtN3n5pZc3VRBJMC9TYEtVNfIKLAQNUQbcbrYVzR1m1DSNLu8Ytt2WrK2cSbAXWrAXWtJ7jQIzNocJd19gwcMFgLs/gN1ppuXxeka73Yz2utE0FVexk8qHXBRWOTZ9DSERRIQVK2mp2XIBZKmVGbIkpbyCqiRL7H2inmtv3GPkshsMErJeIuaLYzIa2PtYHXklqZt/EI+qaKqGYlSYGPAQ8IRRzDLGfB2aqhEJxAj4wwx3TlF3oCxl112v9S7pXa+rV69i8GtU1iwMhbIks72ghitnLhD5hxEMhtRWxlzNaqFM0jSN1ov9XD51j7ERD+NeL8N9E0S80FRVhl6vIxiNcGdskBG7nx37a7Pd5IyQZImavaXcONXJuNVLfo0NWZHQNA3fcIipDj81zaUU1TopqnVmu7lZIYKIsCFkeg+OZMMu86VrozajRc+hjzUxOeBjrNeNFtew5psoachP+R4YeqOCwaTHPeBDM2mYC/XoZnVNK3oZLa4x0j1F0BPG7Fj4RJcOYwMe7lzsY6TfjU6nUN1cRPP+Csy2+2/q6520uh6RSBSTpF/0SdWsN6LGVWKxWEqDyPyeuLVKxxYEl0528O4rtzEU6Sg96KTscD6XX2nn1L12btwZoCDfRkCJorkkGh+tpKBicw83zFaxvZBIIErHlQE83QF0VoV4SEWKSpTXFWW0imsuEkFEyBmjngnuDfeioVFbVImD6T/ObO3BsdTNPt27xUqSREGFPe03a1mRqWhycfmtu+TtNM8JIZqm4e4KYrToUYwSg3cnqD+Y/l6Ra6e7ePfFW4SJYik0Eo+ptL8wyJXTnXzkdw5SXJk3ZwUNTO/vk8kwUl5ezpQcJBAJYTEsDMndU0MU7yjFbE7NcFaqAgik57XrHvNz/s028urNlG6/v8Kj9vFCovsVek6NYq63Uru3guLavLRULM1lkiRRf7CM0sYChtonCPkj6I06iuucOIosm37oZTkiiAhZ5w8F+OHpF7nSepOoP4QGWEryaOlu4Yv/8g9xkrmKqrNv+Ms9NW6W3XVr9hZz6aU23G0BiEmY8vXEIyq+wRCxqThlewoIjIXxT6W/Kmlf+xjv/PomlkoDdTuKZ6p5xsJx7p0b4eXvXeI3/+hh9EbdzM9/9pLeRBgB0hpIHnjgKD+u/CHvdl3myW0PzHkjGfSM0R0f47ef/lRK3mAWK8m+Hql+7d69Okg4HqV228KhKnuxmcJmO7FgnLJtBSm97kZjyTNmJMxvNCKICFkVjcf45qs/pPvOPY7aG2koLUOSJHpkN+fPXubP//zP+d/+v1/HlIGXarKnzs0SNpaiN+lw1TgJRIIEByL4ekJISJjzDJQdKsBeasY7GErrHjeapjHUPcUr37uMJxSgtNI5p6S4zqhQe7iIjpNDdFwfYvuh+13ZqSh2tlpWq5Vnfu8BfvAffsr/vP4zmvIrMOuN9LlH6YpP8MAzT/H4448v+vWrnecxPxjn2uvSNxVCZ1XmbD3QOzw48//NTgOesRBqXJ1T+EwQQAQRYRWGr3bP/P9UTVq90nWb9vYOnnUdoMh4f+1+k7OKIpOTn54+z9m3T/PY04vf1FOlxvIg3YGzqJqGLEk80fT5NXdjJ+pjbJRS7OXbCum+O0Tdw4XEIyqyIqEzK0iSRMgTJe6Lp7S2QoLLUs3PXn2D9lNjGKIWetpGsdeb6WodxmI1UdFQMFOjwmDRodhkhrqn5gQRIKNDNYkQsf/wTpz/p513XjvPtXOtaDGNgu35PPvEMxx79BB6/cIVIWsdYkn3UOB6Gc064qH79W8SIcSkm96tNxqMo9Mri+5XI2xtIogIqzJ8tZuSlhp8rcMpCSMX229QrFrnhBCA6KSP/Hw7FVIeZ06f4dFHHsnI8MxiYSQc9674TSBRKfTFM28zFujZEGGkalcRg+3jDF2fomRnHnqLDk3TCE6GGbrmJr/Ijqs6ebXX9YhF4/S8E8LniVCwXYfdbcZWbMRaZMI3HqKnbYz6HSUo+g+eopd4A082VAOkdKhmfpCoa6yirrGK6O/HiEVjmMzGmeGY+dfdjCEkUR3XGwkzMTZF680Y1qLpybmJEBKPqXj7Q9TtSF21UmFzEUFEWLVUhhFvwI9DWXwdv9Nox9M/DoAWimUsjMD9N47ZYQRW/obwkWOPbJgwYnWaaHmygRsnO+k7M45imV4to0WgsMTBng/VpaVLfbhjkqkJH9UPlqEaQ0xaggRGIuRVW3GUmvH0B5ka91NYaicaihHzxCmuWrpnJlWl4Odbzfyh+ddNWOuS71wLIYkAknhdF9ZoeOplBm+Po8SMOMotaJpGaCrCaKsXs8GQ0vo3wuYigoiwJqkKIwUOJx2xwUWPj4XcVBTvRB4MoZaZMhZG4H7vCDDzdL3aN5GNFEYKyu0c/+wuRjqn8I4HkZXplTv55fa0PcmOdk1hyNd9sAeHjeIGha73hhhq0yjZlo/OLOOZCOB0Wel+f5T8fBsNe0uXPe9SQzVrNX+y6GLhINl1V/q1G8ns17MkSex6rBbdGR0D7WNMtPmQZJBUibxCGztP1GRs6bew8YggIqxaKqurHtm2l4vXr9DjH6HaOveJadA/zoji47OHHwCYE0Zg4+xgmggjG4GiVyhrKiRT8/ojkTg64/2eFluJidKmAobuThAYGsZkM+KNhgh2RXDabXz4t/Yv2NdkMYsN1azHSoLEYtfdTCEkGZ1eYdcjNdTvL2W834sWV7Hmm8kvt4khGWFJG+NOLuSMVJd431XZyP7de3njylV2hibZZi9HRqLdN8hteYT9Txzj8J4DM5+f2C11diCZb6MEFAFseSbGO6aYHPQSDceRJAlTkYHa/FLGeyYZv+ulvLiQEx/bTfPBCuzO1dflmN87sh6rCRHJrrtZQ8hsZoeRyjT2fqjxDzZ+FOFm0xB3bGHF0rHPjCzLfOGx5yhxunj3+vvccl8EwGK38eGnP8pnP/NZdLqFL9PFtm/P9PCNsE4STHb7iRni2CtMaKpGcCSMTqeQV+JAc+soP2FmxNzPIWfjmi+TrQCQy8Ej6IvQ0zZKNBzDUWChsrEwZ5fWxmMqA63j9N0exe8JISsypbX5VO0uxl4o9kDa6MTdWlhWuje60ys6Pn7oQzzVcpze8SEAdhw/gMVkRm9Y3ZPV7B4TSE3vyOwxfmBVK2jmT+oT7pvo99LbOoK93ER0PEZAiWApNqI3SUzeCzA85GbHAzVsa6pjPNTLi2fenlmRJKydqmq891obV8904g+EkRSQNJmiYgePfGI3lY2F2W7iHPGYyrXX7zHcO4HJpcfRaCIWUentGmGoc4J9TzZQUJH6FV1C5uRm/BVyRiZ32zXpjWwrreHg48enQ4hr7U+TiUCy2PDNStVYHqTG8iCqpqFq2sx4fzjunVlFsxgRQpbWd2sU2SLR+HgZZbsL0QIwedPH5E0/SkzGYNRRWG5HkqWZn+FGmWuTy86/3MrZN+5gLNfR9FQZO56ppPpYIZMhHy9+9wLDvVPZbuIcvTdGGeqdoPSAk7KWAvIqrRTW26k+XgRWjRtvdRGPxrPdTGEdRBARFpXJEALg2FWJY9d0oar1hJCE1YQRTdPo7++no+MeHo9nwfHEss9EGJkdSOZ78czbIoQsQ9M0xgbc2ErNyLJMQZ2NhkdLaXysnMZHy2h6shxHtQX3iH/ma1yWalyW6jk/X2F1vFNBrpztpGCbjdLt+egM03u+WJxG6o+VENTCXHm7M8utvE9TNfrujGAtNWLOn9s7KssSxTvyCPhDjHS5s9RCIRXE0IywQKYDCJDSADLbSoZqLly4wM9+8XNa790mFo9hM9t4+IETfPrTn6aw8H439WqKnYkAsgLa3H9KkvTBMt5Zn6LN+ySmf7ZjgR4xVLMGXbdGCEYiVNe7FhyTZYnCOjsdd4YI+iJzdjrOlkgoRtAXoaDWmvS43qJDNsv4JoIZbpmQSqJHRJgjGyEkIdUhZLbFekfefvsd/u2//zfcHLpC2f4itp2oxVit8POTP+H/+r//NRMTE3M+f35BrMWWhCZKvAvJSZJEQZkd/3DyScexcJyoJ05eiS3p8dlDNaJ3ZOXCwSiyXlp03yCjTY+qqkRC0aTHEz/vTAVtWZFAkohHFwZSmA6qWkybs8eNsPGIHhFhRjZDSCbML4oWCAT49ve+hVyosv+BvTPLAe35Nkprirn0ynVeeOEFPv/51dWfmF3iHUTvyGIqdxYz8vIU4/e8FNTdrzWhxlSGrk9hsRgpbcxf9OsTP1fRO5JcsoA22udjbHSKzh7m1G9JmOoMEPBGeOfme/fL6s+Tydez3qijoNTOZL8HR7l5wZLdwHgYYhKFlWKy6kYmgoiw6QPIbLOHat4/fZ6hyUH2P7NrwQ3OaDZS0uDi5KmTPP/885hMplVfayNVVc0GV5WDbYcquXuxD99AEIvLSDymEhiNYNIb2PtEPXrj8rcoMVQz1+wAMv91l7c9ztDV6/g645TsmlsxNxaOExzwU9tURUle7rxea/aWMP6Km9E7Hlzb7Mg6eaZ8/MgNN0Xl+eSVJB+6ETYGEUS2uK0UQmaTB0OMTYwjGySM5uRLhPOK8ujvHsbtdi8IIitd0ivCyNLq9peSX2ajv3Uc94gfnSJR2VJMebMLs33lcxRmhxFABBKS91zojQrNR6u4caqTgfAEzmorOrNCYDzMVFcAm9lC3f7lS+hnkqvKwa7jtdw510v34Ch6u0I8rKGGNFxlTvZ8qFYUN9vgRBDZwrZqCEmwWiyoUZV4LI6iUxYcD3qD6BUDFsvcTflWu0PvRirxng3OUhvO0uRzQVZDDNVMWy78ljcXojMqdF4eZOy6F03TUBSFqroi6g+VY8qBSarzVexw4ap2MHh3koA7hKKTcdXkUfDB8m5hYxNBZAva6gEk4cD+/eT9OJ/eu/3U7ph7w1ZVlf67gzx56MPY7QvDxewwAiwbRoTMmd87shKbLbQsF0aKa50U1eQRcIeJReKY7QYM5pXt4ZMtRquB2n1b+561WYkgssWIEHJfkauIZ59+lu/97LuoMZWqpgr0Rj2eCS/tl+9RqC/m2Y99fNGvT6ygSQSS2WEEcru892a3mmGwzTqks9ykaUmSsDpXP/dJEFJNBJEtRISQhZ5//nkURccLL/+SC23XkBTQaXoaq7fx97/4+zQ01C97jkTvCLBgp1Uh9232IR0xNJge8WickS437mE/SOAssVJU61x0abSwOBFEtgARQBanKArPP/9ZPvzhp7l27TqhUJDi4mJ2796NoiycNyJsXmL1jbBS7hE/1964h98bRLFOB4/Omyp2h4WWJ+uxF1qWOYMwmwgim5wIISuTl5fHww8/lO1mbHqesQADd8aYGvWjKDKuqjzKmwowWnNjgqRYfSMsJ+yPcOXVdqJKjMpjhegt02+jEX+MoWuTXH6lgwee24FB7AC+YqIPaZMqaakRIUTIKT03Rjj/89t0tw8T0UXwq0HuXOzh7E9vMznoy3bzZiT2tAGxyZ6w0EDbBIFQmPIDBTMhBMBg1VF+oAC/P8jQ3YklziDMJ4LIJjQ7gGyEEJLYZ2ajS+zQm7Dc7rxbyUS/lzvnerBUGah5uIiSXU7K9uZTc6KIuCHGtTc6iIbXt1Nyqom6L0IyI12TWIoMSSvP6owKpkI9o91TmW/YBib6jjaZjdYLkq7N7jJtqRU0YvUM9N0eRTJBYePcap6KTqZ0bz49744x1D5J1a6iLLYyc5bqaRHDQbktHtNm5oUko+hl4nE1gy3a+ESPyCax0YZiHLsqceyqRO+yb/gQMlsikCTCCNzvGdnKG+GND3iwlZqSVsDUGRUMDoWp4dwZnkmn2ctp5/83+7iQmxwuC4HxSNKdoTVNIzgRwV4gJquuRtqCyJ/+6Z9y7NgxLBYLTqczXZcR2LhDMbkQQObvxpsKycLIln/K1YDlCmAm32B105i9c+1iwz7zw0gkFOPWe728+J2L/Pz/f553X7jFaL971dcVUqe8uRDCMNXjX3BsstOHFJWnP0dYsbQNzUQiET7zmc/w4IMP8td//dfpusyWtxF6QTRNwxcKoKFhN01vTpULIWT+brypNLu2SK7QVI2Jfi++ySCyLFFQ6chYQavCcgfDQxPk19oW9IrEwnEinjjO3esv855qLkt1SlbQrGYn5sTn/OSl12l9cxQTFgwFOnQGma6uYa6e6+SBx5s58FjDsnusiB2gUy+/zEbd3jLuXR3APxrGXmpC08A3FCTm0Wg6VElesdiEbzXSFkT+5E/+BIBvfetb6brElpYIIJC7IUTTNM63X+Wta+fpHx4CoLy4hA9HPsrjTz6ZExtVpTOM5BLPaICbb3XhnvQj6UCNayiSQlldAdsfqkZvTG/NlMqdLoa6Jxjv8FLYcH+eiBpTGbo+hdlkpLQxP61tWKv11hdZSxhQVY2+02HC0Tj5B0Bn0oA4lkoJd3eAX/ztGW4N3aWwdvkhABFCUkuSJBoPl+NwWei9OcpU+/SQYn6Jg6qjRRTXOrPbwA0op+684XCYcDg882+Px5PF1uSujdIL8tP3XuONs+9QEXfwkG26QmlH9xB/851vM+Af53c/+bmcCSMAatl078BmCyQBd5jLr9wlKscoPeTE7DSgqhq+oSD9d0aJRePse3r5p+v1KKhw0Hykitb3+vANjmJxGVFjKsHRCCajkZbH69EbU/Nz900E6b89xsTQ9NycglI7FTtc2ArMaz7nWsLIenojJvo8uCf8VB4pXrAJnbnRTmxqHE+7RNOOqpz4G9pqJEmipD6fkvp84rHpiamioura5dQd9xvf+MZMT4qQ3EYIIQDtQ928+d67HDXUszPv/o243lZGhzbO6y++wsFd+9jVtCOLrZxrs/aO9N4cIRiJUP2Qa+ZmKcsSjnILikFm5OoUk4M+CsrTO1xWs7cEZ6mNgdZx3CM+JEWman8J5c2FKdvxdfDuBDdPdRGTYliLjAB0tg3S2zrKrodrKdtWsOZzz5+/sVQgWe+QyOSgD9kkYXIk/7nYy8xMtfmJRdS092YJSxMBZP1W9RP84z/+YyRJWvK/O3furLkxX/va13C73TP/9fb2rvlcm81GWxVztu0K1qDCDkfVgmPN+dVY/TJvn383Cy1bWqJ3JNWTWLO1ckbTNIbuTWAvNyW9YVoKjUhGjdHOqYy0J6/Yyo6Hq3ngN3Zy9JPbqT9YlrIQ4psMcvNUF3qXTO2JYop3Oine6aT2RDF6l8zNU134JoPrvs5yq1tSMS9D0zSW6uiQZJie3bvJZ/gKW8KqHvv+2T/7Z3zhC19Y8nPq65ffJGwxRqMRo9G45q/frDZSAEkYGBum1OBM2m0sSRLl5kL6+vqz0LLlpXqoJlFTZLmt2dNCg2gkjmmRLd4lSUIxysSiG7/uwUDrODHiVO4smPO6kySJkp1Out4ZZeDOOE0Prr+A3vxS8POPJYT9EQbaJhjtmSIeU3EUWihvdpFftvTE3LwiK/FrKhFfFINt4e/ONxTCnm9BZ9gavSGxaBzf+HSItBWa0em3xve9VazqDltUVERR0dYoOJQrNmIIATAZjPjjiy8zDETDWMyuDLZo9VI9VBOOezMeRiRZwmI3EpqKQNXCmfyqqhH1xTE35sZeL+sxOejDUmRAkpOEX1nCUmSYmTeSCsv9/twjfq682k4gFMZSZEA2yfT1jNLfPkbj/grqDpQuOr/DVZOHzWFh6OYUFQcK51Tx9AwECE/EaHq4aNPPD4nHVDovDdLbOkY4GAHAaDZQ1eyi7kCZGBbZJNI2EN7T08PExAQ9PT3E43GuXLkCQGNjIzZb7i3TyzUbYVXMUvbV7+RvW9vwxULYdPeXiOrzbQRiIXrj4/z2/mez2MKVmR1GYO29I4leEbg/tyBRUyLdKppd3DrfTcgTxeSY+3Q92elDQaG0ce1zJ3JJsiJTs2XqbTsejXPt9XtElRg1DxfNBAlN05js8nP3Uj+2QvOiKywUnczex+u4/EoHPadGsZQYUQwywfEIcb9GzY6STV+rQlM1brzZyUD3OI5qM4Vl06uqvINB7l7txzcZYu+T9chJgqewsaQtiHz961/n29/+9sy/9+/fD8DJkyd59NFH03XZTWGj9oLMdqRxDycrzvFi7wUeK9xDkSkPfb6N0eAUb41do7ipiocOPZjtZq7I7KGajTiRtXKHi9HuKQYuTOCoMmMtMqHGVNx9ASLjMZoOVWHJ2/hDooUVdtqvewm6I3gHgkQDMWS9jKPMjKnAQGAkQtnuzPTCDXdO4fMFqTo+tzdDkiQK6mwExkL03hxdcqmno8jK0U9uZ6B1nOGuSeIBlSKXk4qHXBRWOTZ9b8hot5vBrglK9zuxFN5/fRq36bEUGBm6PEF5dyHFdc7sNVJIibTdUb/1rW+JGiJrkO0Q0j8xzKXOW/jDQfIsdg7X78blWH19B4vRzD965rf469f/jl/1XcYetoIbQhao2lPHl7/4D7BbN1bP2EZdVaPoFfY93Ujn5SH628YY7nEjSWB3Wmh+pHpdK0lySVlTATff6eb2r3sx5evR2xTiEY2Jbi9aVMPhtFKxvZBYNI57yI+qatjyTZgdqQ9h7mE/epuC3pz8dWIrMTN5z4uqaks+0ZtsBuoPllF/sCzlbcx1g3fH0TnkOSEkwVJoROeQGbw7LoLIJrBx7qabXLYDSCwe40dnXuLs1QvoghpWyYhHC/KS7U2eOvIIHz3wyKqfwEqdLr7xf/xrbnTcoXNqEE3TaKypp2XHHmR5Y47tbtQwojMobDs6PS8h5I1Mz5nIM26qp2r3cADZIGFzmTC5dOgsOjRNIzQWwdMRwuowMdQ+Sc+tEULB6b1CdIpCcY2T5gerUrZ6B0CSxHqW9Qr6whjtySdZAxjtegLe8KLHhY1j49xJN7FshxCAFy6e5PR75zhm2ca2sgpkSSKmxrnu7uLX77yOzWzh0Z1HVnXOxJ4yBx88ysF0NDpLEmFkMfNLuyfmhiTbhTejK2gAnV5ZV2GvXKWpGl3Xh7FXmSjakUfAHSYUiIAEtloL+cVxBt+fZHzEQ36jjYrKAhSdjG80xFDHBL4XQxx+tgnDIquLViuv2ErXrSGigRh6y8LbrHc4SEGpQ8xvWILBpCfgDy16PBqIYbVuvtfyVrQxH0s3kVwIId6gn3euvkeLsYpmRyXyB0/JOllhf34D9RTyxuXTxOIrr62RSxvbZVIihMiShCxJS4aQxKTVsUDPlt6ZNxUCnjC+qQCOiuklrY4iC8U1ToprnOQVWbAWmQhHIphdeoqaHBgsOhSDTF6FhYojhXg9fvpujaWsPcV1Tqx2C0PXpohH7i+N1jSNiXte4h6Nql3FKbveZlTaWEB4MkbYF11wLOyLEp6MbZpJ1lud6BHJklwIIAmtg50E3T52Fu9PenyXo5pfj12hZ2yQ+pKFBcpm26oBBOaGEFi6JyRh9gqaTPeObCZqXEPTmDMxdLagNwwymPMXzjfQmxSsZSb6W8dSNhdD0Su0PFHPlVfb6T41itmlR9bJBCciSFGZpkOVFNXkpeRaa6HGVcZ6PEwNTe+T4iiyUFTrzKnlsCV1TgpvORi4MEFhkx1b6XTvh28oyHibj4IiByVifsimIIJIFuRSCIHp+SGaBkY5ebe0UdGjqirRZXpERAiZG0KWCiDzZaXY2SZidhgwmvT4RkKY8hbO9QhORdHiJD0GYLTr8AyHlp08uhqOIgsPPLeDwbYJRnvcxGMqRXVOyre7sro7q28yyLXX7+GZ9KOYZTQJ4tdUbA4LLU/U4SjKjZ1jpydZN3D73R5G7kwxetODJEnoZIWymgJ2PFSNIgqbbQoiiGRYroUQgFJnETqTnr7gGFWWhQXregOjGMxGSvKWX/q4FUNIgrzOiZ+JMCKsnk6vUNHkov16P7YS85x6KfGYircngKRKWFzJg0jYF8Ng0qd8zobBrKempYSaltz4e4+GY1x5pYNANET50YKZyaARf4zhG1NcfqWDBz61HaM1NwrcGcx6Wp5swD8Vwj3iB6bn31idi8/REjYeEUQyJBcDSEKNq5y6qhrO322j2OjEqNy/ifuiQa74umg5tA+ndeuGDCH31e0vxT3iY+D9CcxFBsxOA9FQHN9AELPOhFwo4x0MkVdhmfN1sXAc32CIppb1l37PdUPtk3i9AaqOu9Cb7vcmGKw6yg8U0H1qlIHWceoO5NZyYavTJMLHJiaCSAbkcgiB6SJLv3niY/xnz3f58dAZms3l5OmtjIXd3I0MU1xbxnNHn8p2MwVhSTqDwv4PN9J/Z5y+1jG890LoDTrqd5ZTucNF19Vhum8PEw3EyKu0ouglfKMhJu76cNgsVO7c/NtXjPa4Mebr5oSQBEUvYyk2MNw1lXNBRNjcRBDJkFwNIQkVBSV89ZO/x5s3z/He7atEwiNY8608ufNDPLbrKHbz0uPGifkhW5mqaXOGZ8Jx76rmiSSIeSJrp+gVqvcUU72n+IMdbO//PrYfr8Jg0tF7e5S+7rHpya2KQnFlPtuPV2G0LL90V1O16XkkirQha7DEonEUw+ITUhWDQiwYz2CLBEEEEWEWlyOfzz74DJ8++jShWASTzrCiwmNbeZJqQo3lQboDZ2fCSGJvmdWGETFp9f9t795io7rvPIB/z5n7eC72XHwZezzYmFtM6hACLLBJoEsTlCorthLPUEUoqkikKHmhfeGpykORWolGafJC+1K1T2mkKNttQhPobsJmGwIBggFjjO3xbXyZ+3hu5+yDGcfG9/GMz8w5349kCXvG9g8Oc853fv/LKZ3Hg4KoE9GxtxmBrkaER+KQ8hJsLsuqWv7RUBIDN8cw2jcFSZJhdZrh3+6Bb7unolaarMTusmCqJ7ogpBWkJtJoaOCSWNpY1fMKog0jiiKsRjNDyBoFrPsRsO6HJMuQZBlHtp4AMNMZWYu5+4tQ6RlMOngDTjS0160qhIz3R/B/H91BcGAcllYjHFstyOgzuPVlH25c7EU+J634MypF8zY3hJyIqb74gscigwlIyZmbJBJtJHZEqChzh2IYQuab2x0phJHV7Cky19zOCLDyLeepPHKZPG5e6oPoAJqf8sx2EZzNViQn0xj5ZhJ139kR+EFlD70WOLw12PK0D3e/DiI5kYG9yQJBAGIj08hM5tDW2QhXC1/PtLHYESmjhq4AGroCFT8/ZK3mdkG0GEKW2969IGCdubOw9Oi29MV0R1468Pxsd4SUMdo7hVQqDe8O54KhDKvLBEu9EYO3Q5Dl6rmzzKZdjdh1pANOiw3RuymE76Rg01vQdagdWw+0VOXcF6pu7IiUSaWvlCmW1odiCiFkNTe8K4SRwmZnxc4bIeUkpqahr9EtusoEAGq8ZkzdTiCXzsNQJTdBFAQB9W21qG+rRS6bBx7tSMsAQkqpjldOlVFjCNH6UMxaAsjjSjFUQ8oQdQKkrLTk5M58VoIAAYKuOi/ieu5MShWAQzMlNHcoRo0hROtDMcWEkIJSDNXQxnO3OICsgNRkZsFjsiwjGkzB0+LgBZ1oHRhESkSNXRCAQzGlCCEFhTBSUAgjVLlqm2zwNDkweiOC1FR6di5IPith9FYYSAKtO9X1mifaaByaKQE1hhAOxZQugFD1EgQBT/5bG779tBcjX0cgmgWIRgHZWB4mgwE7n9sEV7P2Xh9EpcSz7DqoMYAA7IIwhNBcRosBu3+8FZNDMYz3RyHlJFhrTWjscK1qN9bVkCUZ+bwEnZ6TRkl7eKYtEkOIOjGE0GIEUYC7xTEzZ6SEUtE0+m+MYahnAvmcBKNZj+ZtHvg7vTBaShNyKlk+m8dYXwSJqRREnQi33wGH18owpjE82xZBrSGkQIshhAGENlp8MoWr/3kPyXQa9mYzjDUmTEezuHdtEGMPwnj6x1tK1nGpRBMDUdy83IdUYhqiRYSUkyFeFeD112LnoU1Vsxya1o9Heg3UHkC0iiGENposy/juHw8xLWXQetADnWFm3YDDB2QDNRj8agI9/xtE5+FNyhZaJtHxJK5/eh+wAy1dbhisesiyjEQojdFbU5Auynj6pQ52RjSCZ95VYghRJ4aQheKTKQx8F0LoYRiSJMPprUHzdg+8gYW7i1JxoqEkwmNxeLrssyGkwGDRo67NhuHeSXTsa1ZlV2TgxhiyuhwCT3khiDP/pwRBgK3eDEEEQtcjCA/HUefTXndWi7h8dw3UHkLmrpRRO6nJDKnJDMGsZwiZY7w/gq8+7Eb/vVHo3AJMTTpMhCP45pN7uPvFYFVtZV7J4pMp5GUJVrdp0cdrPCbkcnkkw9MbXFn5SZKMkb4pOJqtsyFkLqvbBBhlhPojClRHSuAZmABoa5IquyCLy0zncOOzBxAcQKDr+3eqrnY7IsEkHtwaQW2jDQ2b6xSutPrp9CIgA1JOhs6wxI6tQvXu2LocOS9BlmToTYu/DxYEATqjCKmK7mpM68MzMTGEEABgtGcS05kMAp3eBe9Unc1WxIZTGOweXzaI5HMShu9NInhnHMnoNIxmA5o2u9C8w6PKIYZiuZrtMBoNiAwm4Gpb+LoLDyRQYzfB4bEqUF15iXoRFrsJyYk0HL6Ff798VkI2nofFsXi3iNSHQzOrUJgfojaOzhY4Ols0sXU7h2JWFh1PweDQQ2dc/LRQ4zUhPBZfcngml83j2l97cOMfvUjmUzA3G5C35HD3mwF89WE3EiocZiiW0WKAf7sX4d4kIsHk7L+plJcx+SCG1EgWgScbIerUd4oWBAEt2z1IjmWQCs/fOl+WZYzfjcKoN6Cxw6VQhbTReEZegVonqbILQo8TRECWlm6Hy5KM5eaqPrg6gtBIGL49dTA7jbNfz3XkEfznJG5d6sOef9/GCa+PdOz1IZvJI3gnhMl7ceitIrKJPPTQYcvTzWh5wqN0iWXT8oQX4wNRjHw9BWuTCTUeM/JZCdFgElIc6PzXgOY6aLIsIzKaQDSUBASgttEGu9uiidcLz8zLYAipfgwhq1fXZEd/9ygyiRyMNfP/vWRZRmx4Gk2t7kVPjLlsHoN3x2H3W+aFEADQm3TwbLMjdD2GyGgCtY22sv49qoWoE9H5fACtO70Y7Q0jO52DucaAhs0uWJ3qHpbQ6UU89UI7+m+GMNgdwsRIHIIAuJscCBxsgNtf2o3jKl0yksatz/swORaDLEiQAeggwuNzovPQJtWHMp6dFzF3KEZNIYQBhJZT31YL+zdWDF+bgm9XHQzWmX87KS8j1B2BkBbgf8K76Pcmw2lkprNwNTgXfdzqNkEWIohNpBhEHmN3W2F3q28uyEp0Bh3adjUi0NWAbCoLUSdqchOzzHQO3/z1HuLpFOqfcsLimgnyidA0xm5PIftfeTzz8taZCc4qpb2jvgJ2QaqfmkLIx19c2rDfpdOL6PrRZlz/230MfDEBg1MHUScgE85BL+rR+eymJUOE8OgcKecXnz8iyzMfiy3XJG0TRQGmGuPKT1Sp4bsTiEaT8B/0wGDWzX7dVm+BwarH0JVJjD0Io2mLeufMVP+ZuoTUGkIK1B5CCgEEUFcI8VhbN+x32uos2PeTHRh7EMbEQBRSXoa9zYKmrS5Y7EsPF9TUWVBjNyESTMJSt/B58ZEU9IIOdU3shhDNNdI7BYvXOC+EFJhsBhhq9RjtnWIQUTu1DsVoiZq6IIAyIaRAb9DBt9UN31b3qr9HFAUEdjbg1hcPEXYk4PR/f+Oy1FQa490xNG/yoKbWvMJPIrWQZRnZdB6yJMNo0Wti0mUxsukcDLULQ0iB3iwim8ltYEUbTx1n7XVQexdEC9QUQpQMIOvV0ulFMprGw+9GEe5LwGjXIzedRz4ho765Djuerb6/Uylk03lExhKALMPmssBsU/cwhCzLGL0/hf5bY4iMJwAZsNVa4H/Ci+btHg7PPabGacZkePFdZGVZRjqSg7dV3QG++s/c68AQUt3UNhRTUI0hBJjZH2Lr/hY0bXFh+N4UUrFpGNx6NLTXwd3i0NwFSMpLuP/PYQx2h5BOZyADMOj0aGirw7b9LTBa1LkS4sHVEdy7GoShVkTt9plt3OMjKdz87z5EQ0nseK6V3ZE5fFvcGL04hcT4NGo88wNHbDgFeRqqHpYBNBpEtDQUo9ZJqmrqgqiJIAhweGvg8NYoXYqiZFnGrUsPMXg/BEfAAq/PDUEnID42jeD9EBLhaez+8VYYTEu35KtRNJRAzzdDcLRb4Gr7fj6QvcGC2EgK/TfH4Ak4Ub+pVrkiK4y3rRa+NjeC18dh86Vhb7RAlmVEh5JIjWQQ2NGIWpXPrdLcWVxLXRCGECJlhIfjGLo/AW+nA/ZGy+zXa/01sLpMGLwygeG7E2h9sl7BKktv6O4kZL2Euk0Lg6i90YLwwwSG7owziMwhigJ2/nAT7N9aMXB7DGNDM8M0VrsZT+z3wd/pVX0HSVNncoaQ6qbWoRhSn5H7UxBMgK1h4di+sUYPi9eIIRUGkUQ4BXOdYckLp8VlRGwytcFVVT5RJ6JtVyNan6xHKpoGAFhrzRA1MpypubO52kOIGgMIoI4uyMPkl/M+//TuHxSqhMotnczAYNMteUE22Q2YHsos+lg10+l1yCWWvk1APiPBYFDn3JhS0OlF2FyWlZ+oMtV7VqcFGEIqVyGEiIIwL4CYdOo6VtUgFUsjeHsCYw+nkMtKcLitaN7ugafVUbIWuNFiQHYsD1mWF/2ZmXgWJov6Vs94A04MX55AJpmD0Tr/9ZrPSkiOprF1l7q6QLR+1Xtmp3nUGELUMBQzN4AA33dBGECUER6J49on9zGdyaCmwQidU8T4RBijf5tC4IkGbDvQUpIw0rjZhYE7ISRCadjq5w/PZJI5JMcy2LSvad2/p9xSsQyG704gNBCBLMlw1tegebsHDs/iW9I3bK6D80YNhr6eRMOTtbDUzoStdDyLsZsRWCxm+Latfn8a0obqPLsXYe5KGTVRYwAB1NcFARhClJbP5vHtxV7kjTkE9nkgFu7d0QFEgkn0fTcCp9eKpjVs5LaUOp8NTW0uBG+MI9OWhaPZOrNqZnQakz0x1LpsFX9BngzGcP3T+0hnM7DUGyHqBfT3xDHYHcL2f/HDv3NhZ0Nv0GHXix24/mkvRv4ZhmCaWUklTUuwO6148oftqt9Hhdaues/ya6DWSapqDSEF1RxCCsTH3l0zhChn7EEYicQ0/Afd34eQR5zNVsRHpzFwO4TGLa51d0UEQZi5a2qNAcE74wjfHwcA6PU6+Fo92HbQD4Opcv9/Z1JZfPv3XsgWCYH93tl/L1mWMX4vhttXBmBzWxfdst/iMGHfse2YDMYwNRIHZBkObw08rQ6IOvXeuI2KV7mvhBJhCCEiAIiGktDXiDBYFj/t2RrMiN5NIp+ToDesf38PnV7Etv1+tO1qQngkDlmS4fBYYXEsfc+eSjHSM4XUdBqBPd55oU0QBHi22NEfGsfg7dCS9w4SRAFuvwNuv2OjSqYqptogwgBCRPMIAuTFbw4MAJAlGRBQ8j0bjGZ91e2bER6Jw+jUQ2dc2MEQBAG2RjMmh6IKVEZqpMo+GUMIET2urskGKSkhHcsu+nhsOAVXox06vSpPi2ujje0rqEKo7hWn1hBSoPYQIjWZ562W0aLxZL/SJaiSp9UBR50NI9+GkU3lZ78+M+8hCikmo3WRCZhaVNtgQyaSQz6zcE8QWZYRH5mGy8dhFyoN1QzNqD2AaIEaVsqs10sHngdQ3XfhrVSiTkTXj9px7b96MPA/4zDWzgw9TE9moZNFbNvrh6fVqXSZFaFxiwu914Yx/O0UfE/VzZ+sejcKpAW07PAqXCWphSrO+Awh1Y8hZL6XDjyPj7+4hPFkP8NICdXUmrHvP3ZgtHcKoYcR5HN5+HZY4dvm1uSOlksxmvX4wQ/bcf3ifTy8HILFa4QgCkiNZyBKInbsb11yoirRWlX9WV8rIaQwP0RtGECWxjBSHnqjDs3bPWje7lG6lIrmarZj/0+ewNCdCYwPRiDlZNRvqYNvmQ3NiIpRtWd/rQQQQL2TVBlCVlYII0RKMNuMaN/dhPbdlb8LLFWvqpysyhBS/RhCiIgIqMKOiFZCyNyhGDWFEAYQIiKaq2quBloJIIB6uyAFWgohkizP2+Y9nY+tept3DskQkRZUxdBM/U4/AIYQqi4B634ErPshyTIkWcaRrScAzISRlcxdvsuJqkSkZlXz1lTtIUStQzE0E0geJr+cF0aWuxMv9xAhIi2pio5IzRZ173Y4twvCEKJOAet+ADNDNQCW7I58/MUldkGISFPKFkT6+vrwyiuvoK2tDRaLBZs3b8bZs2eRyWTK9SurmhYCiNa3bi+EkYJCGCEi0rKyDc10d3dDkiS899576OjowM2bN3Hq1CkkEgmcO3euXL+WKhBXyhAR0VLKdmU4evQojh49Ovt5e3s77ty5g3fffZdBREMYQoiIaDkbenWIRCJwuVxLPp5Op5FOp2c/j0ajG1EWlQlDCBERrWTDJqv29PTg/PnzePXVV5d8zttvvw2n0zn74ff7N6o8RTg6W1R7D5kChhAiIlrOmoPImTNnIAjCsh/d3d3zvicYDOLo0aM4fvw4Tp06teTP/vnPf45IJDL7MTAwsPa/UZXgShkiIqIihmbeeustnDx5ctnntLe3z/55aGgIhw8fxoEDB/D+++8v+30mkwkmk2mtJVUdblpGREQ0Y81BxOv1wuv1ruq5wWAQhw8fxu7du3HhwgWIYlVsW1I2Wtq0TOtLdYmIaHXKNoAfDAZx6NAhBAIBnDt3DqFQaPaxxsbGcv3aiqWlLggnqRIR0WqV7UrxySefoKenBz09PWhpmT8hU360u6RWMIQQ0Wpkp3MYuT+F2EQSoijC1WyHp9UBUaftbjKpW9muFidPnlxxLonaMYAQ0WqFHkZw8/MHmM5kYLDpIOdl9H03DKfLhqde2AyLQ/3z50ibeNUoEy2FkAKGEKLixCaS+PbvvRAdQGunB3qjDgCQjmUxfG0K1/52H3uPbYdOz84IqQ//V5eBFkMIERVv4FYIOTGHpq662RACACa7AU276hCZjGP8YUTBConKh29hS4gBhIiKMfYwDHuTGYIoLHjMZDNAZxcxMRhFw+Y6BaojKi92REqEIYTW6+MvLildAilEyksQDUufjkWdiHxO2sCKiDYOg0gJaTWEcM+Q4nx69w+zfy6EEI+1ValySEEOdw2SofSij0k5CZloDjaXZYOrItoYDCJUNKnJDKnJDMGs50TVIpl0doYQQssODzKRPGIjqXlfl2UZoTtRGHUGNG1Z+oahRNWMVw8qCpfrrk+hG8IQQgDQ0F6H1mA9+m+NITqUgq3eBCknIzqUgpAWsPPZTTDbjEqXSVQWvIrQmswdhmEIWR+TbmYojyGEBFHAjmdbUdtkw+DtEKI9SQiCgEa/C/7OetQ12ZQukahseCVZJy1NUmUXhKh8BFGAb6sbvq1uSHlp5m7mi6yiIVIbXlHWgSGEiMqBW7qTlvCqUiSthBAOxRARUTnxyrJGWgkgczGAlMbD5JcA5i/bJSLSOvb/1kCLIYRKoxBCRGFmzH/usl0iIi3jW91VYgihYjweQB7vhnDFDBFpHYPIChhAqFhLhZDCsl0iIuLQzLK0HkK4dfv6FUJIAUMIEdF87IgsQcshhCtliIhoo/Aq8xgtBxCA+4UQEdHG4tDMHAwhDCFERLSxGEQe0XoIKWAIISKijaT5qw4DCBERkXI03RFhCCEiIlKWJjsihQACMIQUcKluaRX2ECngtu5ERIvTXBBhF2QhTlItLW5kRkS0epq68jCELMQQUlpzQ8jcLghDCBHR4jRx9eFQzEIMIKXFLggRUXFUfxViF2RpDCGlxe3ciYjWTtWrZhhCiIiIKpsq3xJzKIaIiKg6qC6IsAtCRERUPVQVRBhCVod7hpTW3D1DOEmViGhtVBFEOBSzOlwpU1pcKUNEtH5Vf0ViF2R1GEJKiyGEiKg0qvqqxBCyOgwhpbVYCGEAISIqTlVemTgUs3YMIaX1+J4hRERUnKq7OrELQkREpB4VHURkWQYAxKcTAAD7Dh+iiRgMbjtS8ZiSpVUVKZqBkKnoQ11V4skEhDkdkVQ8A0mXWfPPyabyyAjZUpZGRFQRMqkcgO+v48sR5NU8SyGDg4Pw+/1Kl0FERERFGBgYQEtLy7LPqeggIkkShoaGYLfb570DVYtoNAq/34+BgQE4HA6ly9E8Ho/KwuNRWXg8Kk8lHxNZlhGLxeDz+SCKy99NpqL79aIorpik1MDhcFTcfyIt4/GoLDwelYXHo/JU6jFxOp2rep6qb3pHRERElY1BhIiIiBTDIKIgk8mEs2fPwmQyKV0Kgcej0vB4VBYej8qjlmNS0ZNViYiISN3YESEiIiLFMIgQERGRYhhEiIiISDEMIkRERKQYBpEK0NfXh1deeQVtbW2wWCzYvHkzzp49i0xm7fcvodL45S9/iQMHDsBqtaK2tlbpcjTpnXfewaZNm2A2m7Fv3z589dVXSpekSZcvX8bLL78Mn88HQRDwl7/8RemSNO3tt9/Gnj17YLfbUV9fj2PHjuHOnTtKl7UuDCIVoLu7G5Ik4b333sOtW7fw61//Gr/73e/wi1/8QunSNCuTyeD48eP42c9+pnQpmvTnP/8Zb775Js6ePYurV6+iq6sLL774IsbGxpQuTXMSiQS6urrwzjvvKF0KAbh06RJOnz6NK1eu4JNPPkE2m8ULL7yARCKhdGlF4/LdCvWrX/0K7777Lnp7e5UuRdN+//vf44033kA4HFa6FE3Zt28f9uzZg9/+9rcAZu475ff78frrr+PMmTMKV6ddgiDggw8+wLFjx5QuhR4JhUKor6/HpUuX8NxzzyldTlHYEalQkUgELpdL6TKINlwmk8HXX3+NI0eOzH5NFEUcOXIEX375pYKVEVWeSCQCAFV9vWAQqUA9PT04f/48Xn31VaVLIdpw4+PjyOfzaGhomPf1hoYGjIyMKFQVUeWRJAlvvPEGDh48iJ07dypdTtEYRMrozJkzEARh2Y/u7u553xMMBnH06FEcP34cp06dUqhydSrmeBARVarTp0/j5s2b+NOf/qR0KeuiV7oANXvrrbdw8uTJZZ/T3t4+++ehoSEcPnwYBw4cwPvvv1/m6rRnrceDlOHxeKDT6TA6Ojrv66Ojo2hsbFSoKqLK8tprr+Gjjz7C5cuX0dLSonQ568IgUkZerxder3dVzw0Ggzh8+DB2796NCxcuQBTZrCq1tRwPUo7RaMTu3btx8eLF2UmRkiTh4sWLeO2115Qtjkhhsizj9ddfxwcffIDPP/8cbW1tSpe0bgwiFSAYDOLQoUMIBAI4d+4cQqHQ7GN8B6iM/v5+TE5Oor+/H/l8HteuXQMAdHR0wGazKVucBrz55ps4ceIEnnnmGezduxe/+c1vkEgk8NOf/lTp0jQnHo+jp6dn9vMHDx7g2rVrcLlcaG1tVbAybTp9+jT++Mc/4sMPP4Tdbp+dN+V0OmGxWBSurkgyKe7ChQsygEU/SBknTpxY9Hh89tlnSpemGefPn5dbW1tlo9Eo7927V75y5YrSJWnSZ599tuhr4cSJE0qXpklLXSsuXLigdGlF4z4iREREpBhORCAiIiLFMIgQERGRYhhEiIiISDEMIkRERKQYBhEiIiJSDIMIERERKYZBhIiIiBTDIEJERESKYRAhIiIixTCIEBERkWIYRIiIiEgxDCJERESkmP8HQLBLnyhqkFoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# plot the decision boundary as a background\n", "ax = plt.subplot()\n", @@ -278,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "77348ef0", "metadata": {}, "outputs": [], @@ -290,38 +201,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "1152fc32", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mean accuracy on the given test and labels is 0.775000\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWs0lEQVR4nOzddVxd9/3H8de5il3cHUKAhIQoEHdP29RSWbvKuq1dZV3bbW23dt6lumZ1+63e1S3uJCFESIgSJ2hw98uV8/sjKx2DNAZc5PN8PPgj53vvuW8I3PO53/MVRVVVFSGEEEKIPkLj6ABCCCGEEBdCihchhBBC9ClSvAghhBCiT5HiRQghhBB9ihQvQgghhOhTpHgRQgghRJ8ixYsQQggh+hQpXoQQQgjRp+gcHaCr2e12ioqKMJlMKIri6DhCCCGEOA+qqlJfX09wcDAazQ/3rfS74qWoqIiwsDBHxxBCCCHERSgoKCA0NPQHH9PviheTyQSc+ebd3d0dnEYIIYQQ56Ouro6wsLC26/gP6XfFy3e3itzd3aV4EUIIIfqY8xnyIQN2hRBCCNGnSPEihBBCiD5FihchhBBC9ClSvAghhBCiT5HiRQghhBB9ihQvQgghhOhTpHgRQgghRJ8ixYsQQggh+pR+t0idEEJ0h4qKCrKzs9FoNAwePBhPT09HRxJiwJLiRQghfkB9fT3vvvMOOzduo6WqARRw8XVn4pxp/PjHP8bZ2dnREYUYcKR4EUKIszCbzTy95ClOpe4nyS+e2JhwbKqd4+V5bHz3W6rKK/jNIw+j1WodHVWIAUXGvAghxFmkp6dzbNs+rhg0iWGBgzDo9DjrjYwIjmVBeAp7N+4gMzPT0TGFGHCkeBFCiLNIS91CCB74uHh0aAt298PL7MS2tDQHJBNiYJPiRQghzqK6vBJv546Fy3e8DG7UVFb3YCIhBEjxIoQQZ+Ud4EdFU+1Z26ta6/Dx8+3BREIIkOJFCCHOavK0KRQrtZQ1VHVoK6gpocbJwsTJkxyQTIiBTWYbCSHEWYwfP54t05NZti6d0V4xDPYNx66qHCvPY3/9KcZePpWRI0c6OqYQA46iqqrq6BBdqa6uDg8PD2pra3F3d3d0HCFEH9fU1MRHH37I1jWpNFfWgaLg5u/J9IWzuf766zEYDI6OKES/cCHXbylehBDiPNTW1pKbm4uiKERHR+Pm5uboSEL0Kxdy/e7WMS9btmzh8ssvJzg4GEVR+Prrr3/w8ampqSiK0uGrpKSkO2MKIcQ5eXh4MGLECBITE6VwEcLBurV4aWxsZMSIEbz88ssX9Lxjx45RXFzc9uXv799NCYUQQgjR13TrgN358+czf/78C36ev7+/bHomhBBCiE71yqnSI0eOJCgoiNmzZ7Nt27YffKzZbKaurq7dlxBCCCH6r15VvAQFBfHaa6/xxRdf8MUXXxAWFsa0adN+cO+QJUuW4OHh0fYVFhbWg4mFEEII0dN6bLaRoih89dVXXHnllRf0vKlTpxIeHs7777/fabvZbMZsNrf9u66ujrCwMJltJIQQQvQhFzLbqNcvUpecnEzaD2x8ZjQaMRqNPZhICCGEEI7Uq24bdWbfvn0EBQU5OoYQQggheolu7XlpaGjg5MmTbf/Oyclh3759eHt7Ex4ezqOPPsrp06d57733AFi6dClRUVEkJCTQ0tLCW2+9xcaNG1m7dm13xhRCCCFEH9Ktxcvu3buZPn16278ffPBBAG699VbeeecdiouLyc/Pb2tvbW3loYce4vTp07i4uJCYmMj69evbnUMIIYQQA5tsDyCEEEIIh+s12wMIIYQQQnQ1KV6EEEII0af0+qnSQgghzigrK6O4uBij0UhMTAw6nbyFi4FJfvOFEKKXKy0t5f333mff1l201jej0Wnxiwrm8muvZPbs2SiK4uiIQvQoKV6EEKIXq6ys5Ik//pXaA4WMC4gnLDKAZouZA9kn+L+nX6ahoYGrr77a0TGF6FEy5kUIIXqx5cuXU3Uwn2vjpxHvH4mrwRlfV09mxCQxQh/G1x98RmVlpaNjCtGjpHgRQoheymKxsHXtJoa4h+Osd+rQPjIkjtbyBnbs2OGAdEI4jhQvQgjRSzU1NdFS34Sfq2en7QatHhNGqqurezaYEA4mxYsQQvRSLi4uGFyMVDXXddputdtoUM2yIKcYcKR4EUKIXkqv1zNh1lSyqnNptVo6tB8qOYnWx4Vx48Y5IJ0QjiPFixDiktTV1VFQUEBNTY2jo/RLl112GW7xgXx5dBO5VUXYVTsN5ibSc/eT0XCSeYsvx9/f39ExhehRsreREOKiFBYW8sXnn7Nny04sTWa0TnpGTkzi6muuJjo62tHx+pX8/HzefvP/OLbnUNs6Lx4hvsy/+nKuvPJKNBr5HCr6vgu5fkvxIoS4YPn5+Tzx+F9oPVHBCL8Y/Fy9qGyqZX/ZSdQINx7582PExsY6Oma/oqoqubm5FBUVYTQaSUhIwNnZ2dGxhOgyF3L9lkXqhBAX7IN338d6oorFQ2di0OoBCDD5EOcXwddHNvPOm//iiaeXyMqvXUhRFKKiooiKinJ0FCEcTvoahRAXpKioiKyd+0gKGtJWuHxHq9GSEjqMnIPHOXHihIMSCiH6OylehBAXpLy8HEtjC8Hufp22B7v7Ymlsoby8vIeTCSEGCilehBAXxNnZGY1BR525sdP2enMTGr0OFxeXHk4mhBgopHgRQlyQmJgYggeHs+/0sU7b950+hk9EAEOHDu3hZEKIgUKKFyHEBdFoNFx9w2KKXBtJzd5NY2szAM2WFrbl7uOEUs6i66/BaDQ6OKkQor+S2UZCiAs2adIkzA+Z+fjtD/jw1AaMdh1mxYpbsDc33XQHc+fOdXREIUQ/JsWLEL1AU1MTeXl5qKpKREQErq6ujo50TjNnzmT8+PHs2bOHmpoaTCYTY8aMwWQyOTqaEKKfk+JFCAdqbW3l888/Z+OKtdSXntkZ2M3fk2nzZ3Hdddf1+lsvLi4uTJ482dExhBADjBQvQjiI3W7npRdeZNc3mxjuFkFs8JkBrifK81nx+icUFRTy0G9/g07Xt/9MVVUlJyeHbdu2UVlRgcndnZSUFBISEmQROyHERenb74pC9GGZmZnsXL2FucFjCfcMbDueHD6M0LoAlq/fTsb0DMaPH+/AlJfGbrfz7jvvsO6LlehqLHhpXKm3t7Duk+WMnT2R+355X6/vXRJC9D5SvAjhIGlbt+LZYmhXuHwn2N0Pv0IXtqZu7tPFy4oVK1j9/ldMcI9naEI0iqKgqip51cWs/yaV9zw9+NnPfubomEKIPkamSgvhIBUl5fg5eZy13dfZg/KSvrtKrcViYdXXy4nVBZIQOKjtFpGiKER6B5PkFcvWVRupqqpycFIhRF8jxYsQDuLh5UGNueGs7bXmBjx9PHsuUBfLzc2lqqCUof7RnbYPCYiiuaKOw4cP93Ay0dUaGxspLCyUQlT0GLltJISDTJg8iYw1aZQ1VOHv5t2urbKpliKljiun9N2ZPFarFdWuotd2/jaj02jBrmK1Wns4megqFRUVfPnFF6Rv2EprfRMag45hySNZdPVVDBkyxNHxRD8mPS9COEhycjIJk8ewPHc7WSXZWO02rHYbR8py+DY7jdjxiX16vEtoaCgu3iZOVRZ22p5bVYTew4XIyMieDSa6REVFBX99/M9sfXcFQ5t8me85mvHaQeSszGTJ7/9CZmamoyOKfkyKFyEcRK/X89Bvf83462eToeTz1tEVvHVkBTttOSRdO4PfPvpwn56JYzKZmDRnGvtqTlHZVNuurbG1mfSiQwxNHiHFSx/1+WefUbU/j8VxMxgdEk+Quy9xfhFckzADn0oNb7/2FhaLxdExRT8lt42EcCA3Nzfu++Uvuf6GGzhx4gSqqhITE0NgYMcZSH3RDTfeSO6pXL5KSyNM602AmzfVTXWcMpcROCqKn931c0dHFBehvr6e7RvSGOEzCBeDU7s2jaJhQvgIPjuZxr59+0hKSnJQStGfSfEiRC/g7++Pv7+/o2N0OVdXV37/h8dITU0ldd1GjhSV4h7uweKZtzNz5kw8PM4+20r0XpWVlbQ2NBPs49dpu5eLO3qLQnl5350tJ3o3KV6EEN3KycmJefPmMW/ePEdHEV3ExcUFjV5Lvbmpw2BzALO1Fatiw9nZ2QHpxEAgY16EEEJcED8/P2JHDuVAyZlbnf/rYMlJnPw9GDVqlAPSiYFAihchhBAXRFEUrrz2amq9VdYc30Fdy5n1ilqtFjILj5DZmMO8ay7D09PTsUFFv6WonZXNfVhdXR0eHh7U1tbi7u7u6DhCCNFv7dixg3de/z+qckpwsmkxY8XoZ2LetZdzww03oNHI52Nx/i7k+i1jXoT4HxaLhcbGRpydnfv0VGUhutu4ceMYNWoUe/bsoaKiAhcXF8aMGYOXl5ejo4l+TooXIf6jsrKSZcuWkbYulZb6JgwuRsbPmMxll19OUFCQo+P1SyUlJezatYuGhga8vb0ZN26c3GroY4xGIxMmTHB0DDHAyG0jIYDS0lKe+ONfqTqQz1CPcPzcvKhqqiOrOheXWD8e/fPjREREODpmv2Gz2fjg/fdZ9+VK7FXNuGiMNKhmnALdWXzbj1iwYEHbRo5CiIFBbhsJcYHef+99ag8Ucn38DJz1ZxbdivIOYXhgDF8eTeXtN/+PP/71z3JB7SKfffYZK97+nHEecSQMiUar0dJqtbC78DDvv/AWrq6uTJs2zdExhRC9lIymEgNeWVkZ+7buIikgvq1w+Y5Bp2d8yDCOZ2aRk5PjoIT9S319PWu/XsFIl0gSgwaj1WiBMz/rCZEjCDW7s+yLr7Hb7Q5OKoToraR4EQNecXExrQ3NhHkGdNoe5hlAa30zxcXFPZysfzp48CD1RVUMDxrcafuIoBiKTuSTm5vbs8GEEH2GFC9iwDMajWh0WppaWzptb2ptQaPTysyjLmI2m8Gu4qQzdNruYnDGbrWdeZwQQnRCihcx4MXExOAfFcLBkhOdth8oPoFHsC9Dhw7t4WT9U1BQEDpXI0V1ne97U1BTgtHdud9sTimE6HpSvIgBT6fTcdk1i8hWKtmZf4hWmwUAq93GvqJjZLUWMv+ay3FxcXFw0v4hLi6OqMQ40gsOYLFZ27U1tjaTWX6C5GkTZa0QIcRZyWwj0SfYbDb279/Pzh07aKhvwC/An8mTJxMdHd0lM4Bmz55NU1MTX77/CYeOrcUVI42qGa2vC1f89AauvPLKS/8mBHBmafk77voZT5U8wSeH1zPUOxIvZxNlDVUcrs3Hf1QUN/zoRkfHFEL0YrLOi+j1GhsbWfrc8xzYkoF7sw6TzplKaz0WDx1zrrucW265pcuWIa+qqmLHjh1UV1fj7u5OSkoK/v7+XXJu0V5hYSErli9n+8Y0rC2tOLu7MmXuDC677DLpdRFiALqQ67cUL6LXe2HpP9n+2Trmh6cQ7O4HgKqqHC49xba6Y9z2m7tYsGCBg1OKi2U2m2lqasLNzQ29Xu/oOEIIB7mQ67eMeRG9WnFxMbs2bmOCf0Jb4QJnbj0kBA4iRuPH6m9XYLVaf+AsojczGo14eXlJ4SKEOG9SvIhe7ciRI7RWNxLrG95p+xD/KMpziyksLOzhZEIIIRxFihfRq9ntdjQoaJTOf1V1Gi2qqmKz2Xo4mRBCCEeR4kX0apGRkWjcDOTXlHTanl1ZiMnPk5CQkB5OJoQQwlFkqrTo1QYNGkTsmGFs23QAX1dPXA3ObW2l9ZUcasjj8h/fiJOT0w+cpfeoq6tj06ZNpG3cTE1lNf7BgUydNZ0pU6Y4/HsoLCxky5YtFObl4+TszKgxo0lOTpaVhYUQvU63zjbasmULzzzzDHv27KG4uJivvvrqnOtlpKam8uCDD5KVlUVYWBiPPfYYt91223m/psw26n9KSkpY8ucnKD2YQ7QxAA8nN0obKilUakmcnsyvH/5Nl1z4i4qK2Lx5M3mncjE4GRg1ejTjx4/vsqKivLycJX95gqJ92UQb/PB0MlHWWE2BWs2QyaP4zaMP4+rq2iWv9d+++xP/ofVwli1bxidvfQAVzQTqPGm2mSnXNRIxKp7f/u5h/Pz8zvpcIYToChdy/e7WnpfGxkZGjBjBT37yE66++upzPj4nJ4eFCxdy11138eGHH7JhwwZ++tOfEhQUxNy5c7szqujFAgMD+cuTf2PTpk1s27SFU9W1BIyI5K5ZM5g0aRIGQ+d75FyINWvW8MGrb2MvayRI70WLrZUd325iWWIMv370twQHB1/ya7z52htU7snhhtjpuBm/X623orGGbzal8XHkv7njpz+95NeBM2OF0tPT2bh2PaeOnkCn1zN2Ugpz5s4lOjq63WMzMjL46JW3GUYwSQlD28YXVTfXsWJnOkuf/Qd/XfJEl62l01PsdjtZWVkUFBSg0+lITEyULQeE6Cd6bJ0XRVHO2fPy8MMPs2LFCg4dOtR27IYbbqCmpobVq1ef1+tIz4u4UAcOHODJ3/2FOIsv48IT0f7nIl3X0sDyk+n4JEWx5Nmn0OkuvtbPz8/nkbsfZKpTPIN8Qju0ZxYe4YhrFS/83yuYTKaLfh04c9F+88032fTZSvxbXYn0DMJstXC8tgB7oDP3PvIASUlJbY//65/+QumGw1w5dFqHc5XUV7K8PIPfPfcXEhMTLylXTzp16hSvvvAyBVnZaFvs2LCj83Jhwtyp/OSOOxx+i04I0VGfXedl+/btzJo1q92xuXPnsn379rM+x2w2U1dX1+5LiAuxZuUqTDUKEyJGtBUuAO5ObsyNTiHvwAkyMzMv6TVyc3NprWkiyrvzHpxon1Caquq6ZMr3tm3b2PTpSqZ5DOOKIVNIDBpMUthQbkyYjV+lnteef6nt76SxsZHj+w8T5xvR6bkCTT44NyscPnz4knP1lJKSEp7689+p253HZX5J3D50AbfHzydZE8nWf6/ipRdfop+tzSnEgNOripeSkhICAgLaHQsICKCuro7m5uZOn7NkyRI8PDzavsLCwnoiqugnrFYrBzP2Ee8d3umYEB8XDzxa9Rw5cuSSXker1aJoFKz29lO6yxqq2Hgyg28PbSb7dB5Hjhy55GnfG9asI8DqRoxv+78FjaJh2qAxNBRUsm3bNuBML41qV9FptGfPrmj61FT01atX03iijEXxUwk0+QCg1WgZGhDNjKBR7NmQzvHjxx2cUghxKXpV8XIxHn30UWpra9u+CgoKHB1J9CGqqqKqKtofuHhrFO0lX7zj4+Nx9jVxtCy37XW3nsrk3bSvOZh1kPqcMjyq4N8vvc3f/vyXi+5BtNvtnDp6kkiPzsd2OOkM+Kqu5OfnA+Dm5kbwoHCyKzvv8alurqNO19phnExvpaoq6Ru2EO8ehkHbccXeSK9gjPV2MjIyHJBOCNFVelXxEhgYSGlpabtjpaWluLu74+zs3OlzjEYj7u7u7b6EOF96vZ7oobGcrOr84l1vbqRa03TJF28fHx8mzZ3Brspj5NeUcLDkJNuPZJJIMDOchhLnHMyNo+axKHAcx9dn8trLr1zU6yiKglanpdV29u0SWlVb2/gdRVGYs2AuBZoaTla0L/xbbRY2ndpNYFwEY8eOvag8Pc1ms9HS1Iy7U+ezthRFwVVjpKmpqYeTCSG6Uq8qXsaPH8+GDRvaHVu3bh3jx493UCIxEMyeN4cyQxNHynLaHbfabWzIzsA3JoRx48Zd8uvccustjLliCmuq9vLB7hW4NIDRrFBmryd0cAQREREEmnyYEjyCfWm7yc3NveDXUBSFsRNTOFZT0Om4jsqmWmqNrQwfPrzt2IwZM5i2eD6bag/x1eFUMgoOs/nUHj44shZbtIn7Hrq/z+w7pNPp8A3yp7iuotN2q91GtdqEr69vDycTQnSlbi1eGhoa2LdvH/v27QPOTIXet29fW5f1o48+yi233NL2+LvuuotTp07x29/+lqNHj/LKK6/w6aef8sADD3RnTDHATZw4kXk3LWJb43E+P7yRXfmH2HIqk/cPr6El3In7fv2rLpmd4uTkxEO/+TW/+P0DuPq6Mzh8EMFDohg7MZm4+CEonBlzE+UdDLXmdrPuLsTc+fOw+htYf3IXrVZL2/HKplpWZW8ncmQco0ePbjuu0Wi48847efCJ3xE+fwQFAS00xDqz6Jc387fnnmTw4MGX9o33sOlzZ5FjLaeyqbZD257CI2j9XJk0aZIDkgkhukq3rvOye/dupk+f3vbvBx98EIBbb72Vd955h+Li4rZCBiAqKooVK1bwwAMP8M9//pPQ0FDeeustWeNFdCtFUbj1ttsYnpjIxg0byT12EoPRicsm38iMGTM6DCK/FBqNhri4OMJCw0hwTyDUw7/jYxTNJQ2SjYmJ4Re/vZ83//kK7x1fg6/qSqtqo8ZoJnJcPA89/OsO0741Gg0pKSmkpKRc1Gv2JrNnz2bPzgy+Tk1jmCmcSK9gWqytZJWeosipgRtvuw1//44/dyFE39Fj67z0FFnnRfR2FouFB35xH955dqZEj+7QXlpfybLyDB599s+MGDHiol+npqaGtLQ08vPz0ev1JCYmMmbMmEtar6avaGpq4ssvv2Tz6g00VNSiaDWExUdx2ZVXMGnSpB9cbVgI4RgXcv2W4mUAUFWVwsJCGhsb8fX1lfv9vcCXX37Jp0vfZkFIMsHu3y+9b7a28u2xLbiPjeCpfzzT51a17W1aWlooLS1Fr9cTFBQkRYsQvViv2R5AON6ePXv44pPPyD10AlurFb2rE6MmJXHjTT/qkiXvxcW57LLLOHnsOCvWbiO4yJ1gkx8N5iZONBXjERfEPb+6TwqXLuDk5EREROcL8Akh+i7peenH0tPTeXnJ8/jU6BgZHIe70ZXi+goyS4/hFO/P43/7kxQwDmSxWEhLSyN1/UZO5xbganJjwvTJzJw5U3rHhBADjtw2kuIFs9nMr+66D1NuK7MHp7TrLm+1Wvjk8HrG3DCDX95/vwNTCiGEEGf02b2NRNfZu3cvlbnFjAsf1uE+v0GnZ5T/YHZv3k5tbcfppEIIIURvJsVLP1VVVYXepsHdya3T9gA3HyyNZqqrq3s4mRBCCHFppHjpp9zc3LBgo9li7rS9pqUerVGPm1vnxY0QQgjRW0nx0k+NGjUKt2Bv9hUd69BmV+3sKznO0KQRMjBUdBlVVcnOzmb//v0UFHS+PYEQQnQFmSrdT5lMJhbdeA3/fvFf2HPtjAyOw9XgTHlDNdsLDtASZOTqxdc4OqboJ/bs2cOnH31MflY2tlYrOmcDcWMS+NGPb+5z2wsIIXo/mW3Uj6mqyvLly/nm4y+oPV2BxqqCk46Q+Ehu/dlPLmn1ViG+s3PnTl584jm8q7WMCRmCp7OJsoYqdhcdwRLuwu/++gdiYmIcHVMI0cvJVGkpXtppamriwIEDNDY24ufnR0JCAlqt1tGxRD9gtVp58J770R2tY37chHYz22x2G59nbSRy3ih+/4fHHJhSCNEXyAq7oh0XFxfGjRvn6BiiHzp06BClJwu4Onxihyn5Wo2WMUHxbM3Yz6ZNm9i/bx9H9h4CRSFx7EhmzZlNXFycg5ILIfoyKV6EEBeturoatdWGj4tHp+3+bl6U7Cvi2T8uIcTuTrRHMKqqkvnxRrav28Lt99/JzJkzezi1EKKvk+JFCHHRTCYT6DTUtjTg0cmaQvllRRSXFHO59xRmD/m+929s6FDScvbyzktvEhsbS1hYWE/GFkL0cTJVWghx0RITE/GJDGJ3weEObXbVzpYTu3HWG5kZk9yuTVEUJkaNRC1tYvPmzT0VVwjRT0jxIoS4aAaDgetuuZE8Yw3rju+kuqkOVVUpqa9k+dGt5KiVJIcPQ6PRYLPbqDc30mq1AKBRNIQ6+XDyyHEHfxdCiL5GbhsJ0cVUVaWyspLW1lZ8fHwwGo2OjtStpk+fjqIofP7Bx3yek4bNbEXnYiB0ZDSjIo245NnYeHIXhwpOYDab0Wg1xARFkBKRiNVmQ6eXtyEhxIWRdw0hulBGRgbLvv6W7ANHUW12TL6eTJs/i0WLFuHi4uLoeN1m2rRpTJw4kcOHD1NfX4+3tzfx8fG88847/OOxJYTbPBhsCMRf70G9rZnj2fl8UJyHxsvIL8YsdnR8IUQfI8WLEF1k3bp1vP38a/g2GJjiH4eTzkBeaTHfvvwRx7KO8PDvH8XZ2dnRMbuNXq/vsPBhbW0tbhYdw7UhxLqGodOcuVMd7RTAlyXplBgamTBhgiPiCiH6MClehOgC1dXVfPjmuwy2+DApflTbmichHv7ENkbw9eZtrE1ay6JFixyctOc0NjZyYEcms4aMR1PSzInaQpzRowItioWhvlHovRopKCjAx8fH0XHbUVUVq9WKVqtFo5GhgUL0NlK8CNEF0tPTaSmuISU2pcNibb6ungwy+LNx9XquuOKKDu39VXl5OS01DQwNS8Izxo3SklJqamtQUPD09CQgMJDS42spLi5m5MiRjo4LnFkxeOPGjaxfvY6S3EK0eh1JU8czb948jEYjqampHD14GI1Gw7BRiUybNg0/Pz9HxxZiwJHiRYguUFpaiicuGHT6TtuDPfzZUZKD2WzGycmph9M5hsFgQNFraWptwd/Nm7CwsHbrubTaLFiw95oBzVarlaXPLyVjxWbC8GasZxgtDWYyPljLyk+/QdWAl9lImNEXu6ry5ea9rPpyGff99gFGjRrl6PhCDChSvAjRBZydnWlWW1FVtdOelQZzEzo3PXp958VNfxQUFETk0BgO7jhJhFdQh5/LkdIcnPzces0GoevWrWP3ii3MD0wi1MO/7fggj2D+b+2nlOub+Pm8O3E1nCk+rXYba45v56VnlvL0i//odbe+hOjP5GauEP9hsVhIT0/npZde4rlnnuXjjz+mqKjovJ47duxYWk0acqpOd2iz2W0cqc5j/IxJA2pDTEVRWHTNVZS7mdmSk0mzxQyAzW7ncOkpdtWeYMblc3vFRV9VVdavXEuExqdd4QJQUlTCEE0gnjhzoiKv7bhOo2X24BSa8itloT0hepj0vAgBVFRU8OySpziVeRQfizPOGgOZti2s+PhrfnTnrcyfP/8Hnx8TE8OYGRPY9E0qFpuVGN9wtBoNlU21bM3dizbSg/kLFvTQd9N7pKSkcMdDd/Phm+/wwcl1mHCiWW0FTyMzb76cm26+2dERgTM7r5cWFDHRa1CHtuqKKvwMHnjZailvqG7XZtDqCdF6c+RQFlx9dU/FFWLAk+JFDHh2u52lz/6D4u3HWTxoMl4uZ7Zit9lt7CrI4v0X3yIgIIDRo0ef9RyKonDvfffyptFA+rqtpB3JQq9oadHbCRoWwa9/efeA3b9n5syZJCUlsWPHDioqKnB1dSUpKYng4GBHR2uj0+nQaDW0/Kd36L+pqKhAq2pDq+mk50wB1a52f0ghRBspXsSAd+jQIU7uOcxlkclthQuAVqNlXPhwSo5Usmr5yh8sXgCcnJy475e/5OprrmH//v1YLBZCQkIYOXIkOt3A/lNzd3dnzpw5jo5xVkajkcRxYzj6zQ6GBca0G5/j5evNoZIsmpwsDPIJbfc8i83KaWs144cn9HRkIQa0gf2OKgSQlZWFU7NCoKnj2AtFUYjziSBj7yGamprOa5XckJAQQkJCuiOq6EYLFi7g72m72JidwcTIkTjpDABo3Z3Yq+bjYjC1Gw9js9tYf3IXzqGeTJ061VGxhRiQpHgRA57dbkennH0grV6rQ7Wp2O32HkwletrQoUO56ze/5F8vvc4Hx9fipbpgVi00uaokXDaepqo6Pji8lkhnf2yqndyWMoyhntz7m1/h6+vr6PhCDChSvIh+obS0tG08RURExAUtBBcZGUmd1kxdSwPuTm4d2rMrCwkeHY6rq2tXRha90KRJkxg+fDjbtm2jqKgIg8HAyJEjGTZsGIWFhWzatImjB7LQaLVcPmoW06dPJzAw0NGxhRhwpHgRfVpeXh4ff/gRB3fsxdJkRmvQEZkwmGtvvO6cY1S+k5SUhP/gUDYczeCyuMnotd//WZyqLKRAU8PPFtwyYFbGHeg8PDxY0MnMsPDwcG699VYHJBJC/C9FVdV+NUy+rq4ODw8PamtrcXd3P/cTRJ9VUFDA337/J6wnqxkTGEegyYfalgb2Fh2jysvGvb97kHHjxp3XuY4dO8Zzf3uKplMVDHINwkXvREFdKeXGZqZeNZe7fnGX7HEjhOjX7HY71dXVKIqCl5dXj39gu5DrtxQvoley2+0cPHiQ/Px8tFotw4cP7zDV+NlnnuXIV9u4ZugMDNrvV65VVZU1x7fTEuPC86++eN6r2paWlrJ+/Xp2bd1OS1MLEYMjmT5rJikpKVK4CCH6LbvdzoYNG1i5ZiW5BTkADIoYxML5lzFt2rQeK2Iu5Pott41Er3Pq1Cle/edL5GdlozeDTbWj8TQyZvoE7rzrTlxdXamsrGRfWgYpAbHtChc4M0MoJXwYn53ayv79+xk7dux5vW5AQAA33XQTN910U3d8W0II0euoqspbb73FFys/w8lfT+CIAFBVjuccJuvFQxQWFnLzzTf3utvmUryIXqW0tJSn//J31JM1LIpIwd/NG5vdTnZlAVu/3EhrSwsP/+5RqqqqsDab8Q/w7vQ8Xs7uaC1QVVXVw9+BEEL0Hfv27eObNV8TPjqIoKjvB58HhPtTcLyQz779hKSkJOLj4x2YsiPpCxfnxWKxUFRURElJSbdOGV63bh0NJ8pYFD8Vf7czhYlWoyHWL4K5oUns27yLrKwsTCYTWoOemub6Ts/T2NqMTaPi5tZx9pAQQogzUlNTsRnN7QqX74QODqFZaSQ1NbXng52D9LyIH9Ta2sqyZcvYsHItNcUVoCiEDI5gwaLuuReatj6VWLeQDreCAEI8/HEp1JCRkcFtt91G/Njh7F13kCjvYDRK+zo8s/AIHmF+jBw5skvzCSFEf5JbkIO7f+fjSxRFweTrRn5hXqftjiQ9L+KsrFYr/3x+KZ/98x388lXmeYxkpmsC6r5yXntiKZ988kmXvp6qqjQ1NGEydr6KraIouCgGmpubURSFa667lqZAHcuPbqWs4cztoXpzI5tP7eGYUsbVN113XiviCiHEQOXm6oa5qeOeXt9pbW7F1aX3rXElPS/irNLS0ti9Oo2FIckEu/u1HY/wCmJf0TGWffgF48aNIzIyskteT1EUAsNDKNpbxvCgwR3abXYb1TTh739mifahQ4fy0B8e4d03/8W3x3Zhz7OAXoNXeAC3/+gX3bqXjqqq7N69m7Xr1nLsxBEMRiPjkyYwe/ZswsPDu+11hRCiK00YN5Gdb27H3NyK0dnQrq25oRlzlZVxKeMdlO7spHgRZ7Vp/UaC7KZ2hct3EoMGsz/rFGlpaV1WvADMnDuLf+15ibKGqrYxL9/ZU3gExdeZSZMmtR0bMWIEz77wPFlZWVRWVuLq6srw4cNxcnLqskz/S1VV3nnnHT5b9imqqxWfYC8aLM18vOoD1qWu4bcPPHLeC+QJIYQjTZkyheWrl5O5fj9Dxsfi6euBqqpUl9VwbOdJhg5KZPx4KV5EH1KSf5pBbp3v2aJRNPhpTZQUl3Tpa06bNo2MHbtYtn478S4hRHmHYLa2crgsh2KnRm68/bYOy7FrNBqGDx/epTl+yI4dO/hs2ScEJfoSMii47bh9RBQHtmax9KXnefmfr2AymXoskxDdxWw2s3XrVrZsTKWiuAwPHy8mz5jK1KlTZcuMfsBkMvHYI4/xj6X/4MjWLKxaC6qqYlCNjI0fx69++ateeftdihdxVi4mV+qLms7a3mBrwdWta9+8jEYjv374N3wT/w2bVq3jWNk+FI1CeNIg7ll0WbteF0dZu24tmOztChc4U0QNHRfH7uUH2LZtG/PmzXNQQiG6RmNjI88seYrDW/cSpngS5uJFdW4p7+58hdT1m3jksUfx9u58uYL+rKWlhYyMDEpKSnBycmLMmDEEBwef+4m9VEhICM889QwHDx7k5MmTAMTFxZGQkNDr1nf5jhQv4qwmTJvMV/vfI8XaipOu/b3Q0vpKap1aSUpK6vLXdXJy4vrrr+eqq66ivLwcnU6Hv79/r/gjUlWVIycO4xfu02m7wWhAZ9KQm5vbs8FEr2CxWKirq8PJyalf9Er8+6OPOLYpk6ujJuHr6tl2vK6lga93buH/3nyL3zz8W8cFdICMjAxeffMVCkrz0RgVbBYbbh+4M3vqHH56x08xGo2OjnhRNBoNI0aMYMSIEY6Ocl6keBFnNXPmTDav3cjXhzczNXwUgSYfVFRyqorYUrSfobNGd+tUZIPBQEhISLed/2JptTpsVstZ2+1WO1qttgcTCUerr69n+fLlpK7eQENVLRq9llETk7j8iisYPLjj4PO+oK6ujrS1qYz2imlXuAC4O7mREpBAeloGRT8u6tO9DhfiyJEjPP38U5hdGhk5PwFnVyfsdjvFOSV8tfZzAO65+x4HpxwYpHgRZ+Xt7c3Df/gdr/zzJVYc2I2u0I5NVVE8jIy6YhJ33v0LdLqB9SukKAopY1JYnvY1UQkRHXqDGusaoVnDsGHDLul1LBYLxcXFKIpCUFBQl/ycVVXl4MGDbN6ymZLSYtxN7kwYP5Hk5OQ++2mxN6irq2PJX54gb8dh4l1DCfEYSr25iUNfprN/eyYPPPabPrneUH5+Ps1V9QwK7XzweYxPKJuO7icnJ2fAFC/fLvuGOqpJnjK67W9fo9G03UJet3ktVy66sld+6OpvBtaVR1ywsLAwnnh6CYcPHyYnJwetVktCQgIRERGOjuYw8+bOY0t6Koe2H2Fochxa3Zlelqb6Jg5sOcLQ6OHnvZ/S/7JarSxbtowVa1ZQWlEMKIQGhrJw3mUsWLDgojeItNlsvPb6a6zasAKL3oyrtwst+S1sSF/P2IQkHv7tI3h4eFzUuQe6r776irzth7kmZioeTt+v6Dw0IIqVx7bx1suv8/wrL5z3BqG9hUajAUXBZrehomKz2tBoNW0LQtrsdhRFGTCbltbX15OxdxchsUGd3sIOigokb/9pMjMzpXjpAVK8iHPSaM70JFxqb0J/ERsby/13P8DLb7zEzm8zMXrqsVls2OthSNQwHv71wxd1obLb7bz00kusSP0Wz3ATURNCUVWVolNFvPDmUgoLC7nzzjsvauzP8uXL+Xrtl0SNDSUwIqDteH1NAzs3bee111/l4d8+csHndbS6ujpyc3NRFIXo6OgeH2fS0tLC1rWbGOYe0a5wgTMz8iZGjOCzk1vJzMwkJSWlR7NdqujoaFz9PEg9tAO/FmdaW1rRaDUEBAcSFh5Gdm0Rzr7uvW7Pm+5iNpux2qw4uXTeS6nRaNAZdTQ3N/dwsoFJihchLsLkyZMZOnQoW7duJTcvF71OT2Ji4iXdgtm9ezdrNq8iZlwUfiHfDwj28vekOLeU5eu/ZeLEiRc8LdxisbBi9XI8wtzaFS4AJk83okdFsH13OgUFBYSFhV1U9p7W3NzMvz/6iK1rUmmsqEVRwM3fi+kLZ3PddddhMBjOfZIuUFVVRVN1PaGegzpt93J2x8mmo7i4uEfydCWr1UpNUz27T+1jqjGOGNcgLBYbpcfzOZJ3ktM+LSy863q8vLwcHbVHeHh44OXhTWVJNb7BHQfstzS2YG9WOyzlILqHFC9CXCQfHx+uvPLKLjtf6uZN4GpvV7h8JzDCn7ysAjZv2XzBxcvp06cpKi8iekJop+2B4f7k7Mnn2LFjfaJ4sVgsPPf0s2St28Uoj2gGh49EVVWOluWy/PWPKS0u4YGHHuyR2xlGoxGNTktTa0un7Va7DYtq7dZFE7vLF198gaG8laTYERwrKaSouQ4vjQu1NHO8thiP4GBuuukmR8fsMXq9njkz5vJ/n75BY0wjru7f9/KpqsrR3ScI8QslOTnZgSkHDilehOglThefxuTb+S7YiqLg5u1KcUnRBZ9XVVVAPeftpjOP6/127NjBgdRdLAofR4Dp+0IvOXwYgTW+rFmzlX0zZ/TIKsfe3t7EjR7GwQ1ZDPIJ7fAzPlqWi9bbmVGjRnV7lq7U3NzM1rWbSPSIIiksgfyaErJKsqlrbiDY6McY9zFkmnM5fvx4n/veLsUVV1zBvgN72bM+A58IT3yCvDE3myk8XowJT+66/xd9slDtiwbGSCsh+gAPkwctDZ1/ggcwN5pxN3W+++sPCQ4Oxt8rgOLczldDLjtdgYverc9M6d2auoVAm1u7wuU74Z6BeLbo2bplS49kURSFK65aRK2XyoaTGTS2nhnvYLPbOVx6ih1VR5myYBYBAQHnOFPvUl5eTmNlHRFeZwanRngFsWDIJG4YPY/LE6YyNmwohlaF06dPOzpqj3J1deXx3/+BO677Oc4N7hTtKaf2WBPTR8ziL4/9tc+Na+rLpOdFiF5i4oRJpL+yjebGFpxd2396a6hpoLXGxvhxEy74vEajkQVzF/LaB69QEVzZ7n59U30z2XtymDJqRp+ZQVZZWo6vs+dZ232MHlSVVfRYnhEjRnDnb+7jvdf/xYfZGzBhpEW1gKeRqTcu4Lbbb+uxLF3FYDCg0WlotnS+27DVbsOKvcfGFvUmbm5u3HjjjVx77bXU1NTg5OQkW4E4gBQvAjiz+NKGdevJ2nsABYVhSSOZNWsWsbGxjo42YEyaNIk161azb/0+YsZGnSkyVCgrLOfknlzGDk2+6E92ixYtIjcvl/Vpa8l1y8fNx43m+mZaKltJjBnFPb+4p1esYHw+vHy9qThw7KztNeZ6YryH9mCiMwO4R48eza5duygrK8PZ2ZmxY8f22fVPAgICiEwYzKHt2UR6d/wejpXlovN26ZPr13QVvV6Pn1/HTWtFz1DUHrjR/fLLL/PMM89QUlLCiBEjePHFF886qOmdd97h9ttvb3fMaDTS0nL27vT/VldXh4eHB7W1tbi7X3gX+0C0atUqPnj5XzjX2Ik2BaEC2XWnafXRc/v9dzJz5kxHRxwwysvLefnVl8k8uJtmaxOqquJqcCN5ZAp3/+KeS5rZYbPZ2L17N6mbN3G6+DSe7p5MmjiZSZMm9cqN185m06ZNvPqn57gmfDI+Lu3Xpimuq2BZ6S4eWvJ76cK/RDt27OCFPz9NrM2f5LAEDDo9qqpysrKAzaUHmHbTZdz1i7scHVP0Ixdy/e72npdPPvmEBx98kNdee42UlBSWLl3K3LlzOXbsGP7+/p0+x93dnWPHvv9k1Vc+EfZFp06d4sNX3ybe6se4ocPbftbJagJpOXt558U3iY2N7ROzUPoDPz8//vj4Hzl16hQnTpxAURTi4uKIjIy85HNrtVpSUlL6/EV9woQJbJy4gW9T00j2i2ewXziocKw8l12Vx0ick8KYMWMcHbPPGzduHLW/upN/v/UeR4+vwRMXGu1mbB46xl87i9t/cvu5TyJEN+n2npeUlBSSkpJ46aWXgDMLcYWFhXHffffxyCMdF8V65513+NWvfkVNTc1FvZ70vFyYt958k61vL+fmYfM6FIl21c77WauZfee13HLLLQ5KKERH9fX1vPP22+zcuI2WqgYUwNnXxITZ07jl1lv6VE9Sb1ddXU16ejrl5eW4uLiQlJREZGSkfKgUXa7X9Ly0trayZ88eHn300bZjGo2GWbNmsX379rM+r6GhgYiICOx2O6NHj+bvf/87CQkJ3Rl1wDpx+Bjhrp3v2KxRNIQ5+ZJ99LgDkglxdiaTift++Uuuv+EGTp06BcDgwYPx8el8t29x8by8vFi4cKGjYwjRTrcWLxUVFdhstg7TBAMCAjh69Ginz4mLi+Nf//oXiYmJ1NbW8uyzzzJhwgSysrIIDe24yJbZbMZs/n5EfF1dXdd+E/2cVqfDZredtd1is2HUyrhu0Tv5+/uf9fazEOLSlJeXc+DAAVpbWwkJCWHYsGG9Zi+rXndVGj9+POPHj2/794QJExgyZAivv/46f/3rXzs8fsmSJfz5z3/uyYj9ysik0Xyd/j5Wuw2dRtuurdVqocBayQ1jrnJQOiGE6P1UVWXXrl2s37COYyeOYjAYGZ88gdmzZxMeHu7oeBfMbDbzzrvvsG7TGmqaalA0oFcMxEcP4Rd33t0r1oTq1hLK19cXrVZLaWlpu+OlpaXnvf+DXq9n1KhRnDx5stP2Rx99lNra2ravgoKCS849kEybNg3nCG9WHUunxdradrzZYmbl8W14RAcwZcoUByYUovey2+0cOnSI9evXs3XrVmprax0dSfQwVVV5++23+fNTfyLtyGbs/q00uNbw8aoP+O3vf01mZqajI14QVVV5/fXX+WzlJ7gNciLlylGMv3osMZMjOFx8kCee+htFRRe+0ndX69aeF4PBwJgxY9iwYUPbHjB2u50NGzZw7733ntc5bDYbBw8eZMGCBZ22G43Gi94IT5zpdr//kYd48enn+eD4WgJwR0WlVKnHMzqQXz3yEN7e3o6OKUSvc+zYMd569Q0KsrKhxYpdUXH292Tu1Qu5/vrr0Wq15z6J6PN27NjB58s/JSjRl5BB36+JYx8RxYGtWSx96Xle/ucrfWYhu5ycHNZvXUfUmDCCIr8f8uHp68GYWSPYuXwPK1eu5Kc//akDU/bAbaMHH3yQW2+9lbFjx5KcnMzSpUtpbGxsW8vllltuISQkhCVLlgDwl7/8hXHjxhETE0NNTQ3PPPMMeXl5Dv9B9WeJiYk898o/2bp1K8ePHkNRFOYPiWfSpEl95g9OiJ6Ul5fH03/6O8aCZi4LTyLQ5EOLtZVDJSf55vV/02o2c9vtMpV4IFi7bi2YbO0KFzgzOWXouDh2Lz/Atm3bmDdvnoMSXpiMjAya7A0ERsR3aNPqtARE+5Gatonbb7/doQV6txcv119/PeXl5fzhD3+gpKSEkSNHsnr16rZBvPn5+e0GAFVXV/Ozn/2MkpISvLy8GDNmDOnp6Qwd2rMrZv6viooK8vLy0Gg0xMbG4urqeu4n9SHu7u4sXLhQZhUIcR6WffMtal4dixJmof3PWDEnnYGxoUPRF+lY//Vq5i9Y0Of2NBIXRlVVjpw4jF+4b6ftBqMBnUlDbm5uzwa7BE1NTeidtGedCu/s5kxNYQNms9mhSxL0yIDde++996y3iVJTU9v9+/nnn+f555/vgVTnp6amhvfefZeMTdsx1zSAomAK9Gbm5XNZvHgxer3e0RGFED2oubmZjC3bGeEb3Va4/LeEwEHsPnqSjIwMLrvsMgckFD1Jq9Vhs1rO2q7a1D51C9HX1xdLow2rxYpO37FEqKmoxccrAGdnZwek+17vmPPUSzU1NfHU35aw65MNjFXD+HH0bG6MmMagGhPfvPYRr7/6Gj2wu4IQohdpamrCarbg4eTWabtOo8UFPQ0NDT2cTPQ0RVFIGZNCWW5Fp9eChtpG1CaFYcOGOSDdxZkwYQLerr5kH8zt0NZY10hNQR1zZs51+CKFUrz8gNTUVE7tzOLKmMkkBA7CWW/EZHQlOXwYM/xHsm3lprOuVyOE6J9MJhPO7q6U1Fd22t5sMdOgtOLr2/mtBNG/zJs7D3eNJ1nbj2C1WNuON9U3cXDrYYZGJzB27FgHJrwwPj4+3HbT7TQWmNm76QAVRZXUVtaRfSCH/esPM2ZIUq8Yv9Pr1nnpTbZsSCVS74enc8dBq9HeIewsziI9PZ0hQ4Y4IJ0QUFhYyPHjZ1ZAjo2N7XQhR9G1DAYDk+dMZ+3rnzOsdRCuhvbd5xkFWbgGe/X5PaTE+YmNjeVX9zzIy6+/xK5v92Lw1GG32LE3KgyNGs5vf/1wnxtesGDBAjw8PPjq2684secYNrsNDzdPbrriFq699tpeMeZTipcfUFlazuD/2bX2O4qi4Kl1pbqyqodTCXFmLNbrb7zG9t3p1LfUA2ByMjF+7ATu/PldeHp6OjZgP3fFFVewPyOTL/ZuYoR3DGGeATS1trC/+ASlbs3c9pM7ZabeADJp0iTi4+NJS0sjNy8XvU5PYmIiycnJfXYpj4kTJzJhwgSKi4tpbW3F39+/V+0ZJsXLD/AJ8KOyqLzTNlVVqbE1kuAja6CIntXS0sKSp/7OnmMZRI0KZ3h43Jm1efLLWbdjDVXVVfzlT3/ts2+afYGXlxe///Mf+OSTT9ixYSsZpafQ6LSEJUVz7zVXMWHCBEdHRFVVTp48yfHjx1FVlZiYGOLi4hw+VqG/8vX1bVvPrL9QFIXg4OBzP9ABpHj5AVNmTuO9Xa9S29LQYXDeqarTNJuUXvEmJQaW7du3k3l4D4mzh+Lmcab7VkEhKDIAk5cbe9dlsn37dqZNm+bYoP2cj48Pd999NzfddBNlZWUYjUbCwsJ6RXFQWVnJKy++zJGd+6DegqIo2F11DB6TwL333yf7QYk+T4qXHzB16lS2btzM19u3MNY3jkG+YVhtVo6U5bCvPodJ184hPr7jQj5CdKdt6WkYvHRthct/c/NwRe+lZVt6mhQvPcTDwwMPj85vLztCS0sLz/z9SYp2HGdmyEjCw85sxVJYW8rmTft4qm4Jf3nyb71i3EJ/UFVVxenTp9HpdMTExPS58S19lRQvP8DV1ZWHH3uUd995h4zU7aRlH0FRFNwCvLjiphu57rrresWnLDGwVNfW4OLudNZ2Z5MT1bU1PRdI9Crbt2/n1O4jLB40BS9n97bjYZ6BLHKezL/3bSItLY25c+c6MGXfV11dzfsfvM/W7Vuob6pDo9EQ7B/KlZddycKFC+Xa0M2keDkHT09P7v/Vryi/6Sby8vLQarX9coVd0XcEBwZzOHP/WdsbqxsJju6d96lF99u1fQeBdlO7wuU7JqMrYVpvtqelS/FyCerr6/nrE39h/6m9hA0NJio0Hkurlfzjhbz41j+pqanh5ptvdnTMfk2Kl/Pk5+eHn5+fo2MIwdQpU1mftpby05X4hfi0ays/XYHSpGPqlKkOStf7mc1msrOzsVqthIaG9ruNR+tr6zEZzj4rxGRwobG2vgcT9T9r167lQPY+Rs8ZjrPbmanyTq6QkBJPrns+Xyz7nOnTpxMSEuLgpP2XFC9C9DGjR49mzuR5rNy8jMrIKoKjzoxpKMopoTq3lgVTL2fUqFEOTtn72O12li1bxuqvl1NVUIZqV3HydCFl+iRu+vHN/WZ6eVBYCJlpR1FVtdNbFyXNVQwOH+yAZP2Dqqqs27gWz1D3tsLlv4XHhbLz6B7S09NZvHixAxIODFK8CNHHaDQa7r33XsLCwli5ZgUntuShAP7eAVx3801ceeWV7TY7FWe89957rHr3C+J1QUwLmoBRqyen6jTb/72Wgtw8HvvzH3Fz63zJ/75k6rSppC3fwPGKfOL8Itq1naospMaplanTpGfuYtlsNqqqK3Ef3Pk6PhqNBp2rlqoqWQOsO0nxIkQfpNfrufbaa7n88sspLCwEIDQ0VNZ2OYu8vDzWfb6c8e5xDAuMaTs+PGgwEV5BfLozleXLl7No0SKHbzh3qRISEphx9TzW/3s5BTUlxPtFgqJwojyPk7Yyplwzl9GjRzs6Zp+l1WoxublTX1vdabtqV7E223F37zjmSHQdKV6E6MOMRiODBg1ydIxeLz09HU11K0MTotsdt9ptHCnLIS83jycf/TMrPv2a4UkjmX/ZQoYPH+6gtJdGURTu+OlPCQ0LY82yVazNPQCA7+BAbl74cxYsWCA9c5dAURRmTZ/NW5++TmtCKwYnQ7v24twSXDSujB8/3kEJBwYpXoQQ/V51dTUeigsa5fuLttVu48sDG8gryCO61RNn1YlhtjCOrsjkyfQ9/Oyhe/rsWjkajYb58+czZ84cSktLAfD390enk7f8rjB37ly2bNvMnnX7iR4RgX+oH5ZWCwXHT1N2opKr5y4mIiLi3CcSF01+k4UQ/Z67uzv1aku7Qaz7io6RW5DHLJcE7BorZncNwwIHkRAQTWr2bt555S1GjhzZpwfyarXaXru8e1/m7e3NH37/R9546w0y9+/m5I5cNIoWfy9/blt8B9dff72s89LNpHgRQvSYpqYm0tPT2b9vHzaLlchB0UydOpWAgIBufd2UlBRWfvQVJyryif3PINb9BccIxwtvnYls22miQmKBM7cFJkaO5L3ja0hLS+Oyyy47r9doamrCbDZjMpmkh2MACAoK4o+P/5G8vDwKCwvR6XQMHTpUNuTsIfIXJoToEXl5eTz796coPZJPoGpCr9Gxz7qNFZ9+ze33/rxbb9HExMQwccEMNn+6mjpzI/F+EVTV1xCIPzk1RTj7mAgJDW17vEGnx1t1oaio6JznPnLkCMu/XcaBnZmoVjue/t5Mnz+bBQsW9PnBv+LcIiIi5BaRA0jxIoTodi0tLTy35BnMh8q4KXYmroYzF3Wb3cbWnL289fwrBAcHExsb2y2vrygKP7/z53h4erDh2zXsPpVNbkMJXoqeMZEJxA+Jx2hoP/CyRbWcc/bWzp07efnJ53EqszLWNwoXoxMFeaV8vvQdDu07wG9/94gUMEJ0AylehBDdbteuXZQcyeWGmOlthQuAVqNlavQYirPWsW7N2m4rXuDM9PKbb76ZRYsWcfjwYb74/AsKNh0kccQItP8z+6aorpwmV/UHF/tramri/156Hf9qI3MTpraNcYjyDmFoYw3fpG5j1ahVXH311d32PQkxUMl8OSG6id1uJzc3lxMnTlBfP7CXYz98+DA+VhfcnTruCaYoCoM9Q9m7Y3ePZDGZTKSkpHDPvffgFO3LquPbqDc3AmdWT82vKWFtXgZDxo1g2LBhZz3Pzp07qckvZ3LUyA6DM31dPYlxCmTjyrXYbLZu/X6EGIik50WILqaqKqmpqSz/8huKTuaj2uw4e5qYMGsy199wQ59cvMpisbBnzx4OHTqE3W4nMjKSiRMnnvcGpTabDa1y9s9KOo0Wm9V21iXtu0NERAS/+v2veXXpS/w7JxV3m5FW1YLFTUvC3CTu+9Uvf3A9lOLiYtzthnY9Sf8t3DOQnLJj1NfX9+kZS0L0RlK8CNHFvvnmGz5+5R3CLZ7MDxyFUWcgr7qY1HeWcep4Nr//0+N9ahn6oqIinn72KY6cOoziYgetgnWFndBPwnjglw8yYsSIc54jOjqaLcoqWqytOOkMHdqzq08zZMLoHp9eOmLECJa++iK7du2ioKAAvV5PYmIicXFx58xiNBoxq9azFlyNrS0oOo2seixEN5DiRYguVF5ezhfvfkyiNpTkqO9vOfi4eDDIJ5TPd2xmzZo1XHPNNQ5Mef5aWlp48uknOVJ0kOGzhuLmcaanxdzcStaOozz9jyd56olnCP2vmTqdmThxIl9GfMqGkzuZFzsBrUbb1nag+AQ1rhZmzpndrd/L2Tg5OTFlypQLft6oUaP4wv0jsisLifENa9dmV+1kVZxi1FUTZMCuEN1AxrwI0YXS09OxljcyOnRIhzYPJzdinAPZtHo9qqo6IN2F27VrF0dyshgxLaGtcAEwOhsYOWUYZQ0lrF+//pzncXd3555f309tkIYPDq9ha85eduYf4tOs9WRYcrjituv63H47UVFRjJkxgc2lBzhZUYBdtQPQYG5i7fEdmP31LLhsoYNTCtE/Sc+LEF2osrISD8UZ3X/1LPy3QDcfcityMZvNODk59XC6C7d//3507gouJpcObRqtBu8wT9J3pXPbbbed81wjR47kr889yYYNG8hMz8BiaWVIwgRmzJxJYmJin1uRVFEU7r7nbl5VFLZsTGfr4YM4awzUKS14RQZy3733ER8f7+iYQvRLUrwI0YVcXV1ptLdgV+3t9tH5Tk1LA04+zhgMHcd99Eatra1odD8w0Nago7XBfN7nCwkJ4ZZbbuGWW27pingO5+zszAMPPkDeNVeTmZmJ2WwmKCiIlJQUuV0kRDeS4kWILpScnMw3Hp9yoqKAOL/2q262Wi0crc1nxnVX9ZldfSMjIzFvtWCz2tDqOvYmVRXVMHV437rd09UURSEyMpLIyEhHRxFiwOgb76BC9HL19fWsWbOG5cuXY3XV8O2JrWQWHKHVZkFVVU7XlvH10c24xvozf/58R8c9b5MnT8bb1Zeju090GKdzOrsYpUnHzBmzHJROCDFQSc/LBWppaWHXrl2Ulpbi7OzMmDFjCAoKcnQs4UBZWVk8u/RZCsry0LtrsBnsnNZW8t6R1USVheDq7ILioidyfCx33vsLAgMDHR35vPn7+3P3z+7hhdeWsmtlJv6Rvmh1WsoLKlDrNSy+/HrGjh3r6JhCiAFGipcLsGPHDt5+9S2q80pxtelpUS187O3M5AUz+ckdP0Gv1zs6ouhhZWVlPPXsEirtZYy9LBGD05mxLOapZjLW7cPW4sQNd/yUuLg44uPj+9ygVIBp06YRGBjI6tWr2ZW5k1ablbGx45k7ey7jx4/vk9+TEH2R1XpmXSG51kjxct4OHTrEy08uJbDWyPzI6bgZXbDZbRwty2Xjh8vaNn4TA0tqaiqnqwsZt2hMuzEhRmcjKXNHk7F8H1qtliFDOk6d7kvi4+OJj49HVVVUVe0zY3aE6A8OHjzIqtWr2L0vA1VViY2OZe6ceUyePHnAfniQ4uU8ffvVN7iW25iTMK7tl0Wr0ZIQOAgV2LJiPYuuXERAQECPZaqsrCQtLY2ioiKMRiOjRo1ixIgRcmHpQRl7duERbOp0MKveqMfF14nMfZlcfvnlDkjX9VRVZf/+/Zw6dQqNRsOQIUPOazVaIcTFWb9+PS+98QItukYCovzR6rQcKMgkc+kejh9fzB133DEg//6keDkPNTU1HN59gPEBMZ3+ksT7R7Lj6FH27NnDggULeiTThg0beO/V/6O1pB4fXGhRLaxx/ob4lEQe+M1DspdKD7FYLZ0WLt/R6rW0trb2YKLuk5+fz9IXnufoqSNYNK2gglFxYvSwsdx/3/34+Pg4OmKvUlpaSnp6OtXV1ZhMJsaNG0dYWNi5nyjEf5SUlPDGv15DH6hh+Njvt88IjQmmOKeEL1d+TmJiIsnJyQ5O2vOkeDkPLS0t2C1W3M6yboNOo8Wo6GlpaemRPPv37+dfz79KtNmL8fHjMWjP3P8sqa9kTepOXtS/wGN/fHxAVuM9LX7wEA5vPNjp/jaqXaW+rJHYcbEOStd1qqureeLJv5FbnU38lMF4+LijqipVJdWk79xK89PN/O0vf5N9fDjTO/XZZ5/x7UdfYK9owl1xpsHewtdenzJ90Rxuu/12dDp56xXntmXLFqqaKxk3ekyH95egqEBOnyhm/Yb1UryIznl5eeHiZaKwqowQD/8O7XUtDTRrLd06i6SgoIDs7GwURWHtqjW412iYMrT9RnaBJh9mho5hzfa9HD16tM+Ps+gLZsyYweqNq8g+mEtMYlTbcVVVOZZ5Ag+DFzNmzHBgwq6xadMmsotOMPayERiMZwYlK4qCT5A3idON7F+/l4yMDCZNmuTgpI63du1avnj9A8Y4RZE4JBadRotdtXOkNId1H3yLq5sbN954o6Njij4gNy8XJy8DGm3nQwG8gjw5cep4D6fqHaR4OQ9Go5Epc2ew+vXPGNISibvT9zsC21U7abn78B0UxJgxY7r8tauqqnjztdc5kL4HS00zFpuNo7nHmeM7CqvNil7XftR5iIc/htMqBw8elOKlB8TGxnLHj3/Km++9wa7Te/AN80FVVcrzKnHBxD0//UW/uFWwbXsapiDXtsLlv7l5uKI1wc6dOwd88WKxWFj++dcMwq/d/lYaRUNC4CAaW5tZ981KLr/88j61s7hwDCejEzaL7aztFrMFk2Fg9nZK8XKerrzySg7vP8jnOzYz1BROiIcf9eYmDpWfoiVAzy/v/nmXd5k3NTXx1N+WULzzGJMDhxM9NIQGcxPP5RZSX1TFgX0HGDVmVLtl6BVFQa9osVgsXZpFnN3ll19OZGQka9au4cChfaAoLJhwBXPnzO03BWRDYwNOrmffi8ngbKCppakHE/VOp06dojyvmAmBKZ22Dw+KYW/2erKyskhJ6fwxQnxn1KhRLN/wDU31TR32F7NZbVQV1HDF1dd2+lxVVTl8+DC7du2ivr4ePz8/Jk2a1C8+TIEUL+fN3d2d3/3xcZYtW8aWNRs5UnUIjV5H4hXJXL7oim7ZgG3r1q3k7j7CdTHT8PhPb4+b0YVg7wDUSpXqknLKy8sJ8P9+hlNdSwN1WjPh4eFdnkec3fDhwxk+fLijY3SbyPAotmTldNqmqiqNlc2Ejg/t4VS9j8ViwW6146TvfO8qo86AarP3m0HconslJyczZNAw9m86wLDJQzB5nbkOtDS2kLXjKIHuIcycObPD81paWvjnC/9k687NmLXN6J11tDZY+fTrT1i86DpuvPHGPj8mUoqXC+Du7s5NN93E4sWLqampwdnZGZPJ1G2vl74ljTCNd1vhAme6n0eGD2FL9Q7cWvWUlZa2FS82u43UnEx8B4cMyAFc4nvNzc3s2LGDkydPoigKcXFxJCcnX3Tv4IzpM9iyM5WywnL8Q/3ateUdLcBNa2Lq1KldEb1PCwoKwsnDhbzqEoYFDurQnl9dgsHdmdBQKfTEuRmNRh797aM889zTZG06hN1oRavVYG1QCQ+I4IFfPtjpCu//evtfrEtfzeBx0fgGe6MoCqpdJe9YAe9/9i6+vr7MmTPHAd9R15Hi5SIYDAb8/TsO3O1qtVU1+Dh1vC8+NnQIBdUl7Dh2gKLTTSh+LjS2tnC8rhBtmDsPPnCfzPoYwI4fP86zzz9DTtEptG4KqCq2ZRATHstvHvgN0dHRF3zOpKQkFsy8jGXrv6Ekr4zAiABUu52iUyXYquGW6267qPP2Nz4+PiRPn8jOj9cR6RWEm/H7rv4Wayvbiw4RN2O4bOIozltgYCBPLXmaffv2kZWVhc1mIyoqinHjxnW6c3lZWRkbNq8nbHgQfiHfL1+gaBQih4RTX93At8u/YebMmWi1Z1/mobeT4qUX8w8OoCQrq8NxrUbLlcOmkV9fQnOIK5n6IowmI1OuvZw5c+b0m3ua4sJVVlay5Om/U2IuZNT8hLZxKk31zRxMO8ySp//Oc0//A3d39ws6r0aj4e5f3M2g6EGsWruKgr35KIrCkKhELrv1MiZPntwd306f9KObbyLn5Ck+zdzEYJdg/N28qW6q42hdAR5Dg7njzp/1+S570bN0Oh1jx449r33EsrKyqG2uIT56VKftoTHB5G7PpaCgoE8X0VK89GJTpk/jhY27KK4rJ8j9f7rqa0pwD/Xj98/+hWHDhgHIG6IgNTWV/Io8Ui4fhc7w/Z+3i8mZUTOGs3v5AdLS0i5qMUWtVsuCBQuYN28eVVVVKIqCt7e3/N79D29vb/7w1z+xevVqUldv4FRNDk6+zsy+8RoWLFiAn5/fuU8ixEWy2WygqGedXq3T67CrdqxWaw8n61pSvPRi48aNY9vs8axYuY3hpghifMOx2+0cLc/lqLmIKdfOZdiwYV1y8VBVlfLyclRVxcfHRxbR6qN27dmFKdClXeHyHYPRgLOPgYw9GZe0ErRGo8HX1/dSYvZ7Hh4eXH/99SxevBiz2YzRaJRtO0SPCA8Px1nnQmVJNb5B3h3aSwvK8TJ5dzpWpi+RK1QvptPp+NVDD/JFZASbVq7jYMl2UMArxI/rL7+dK6644pILF1VV2bx5M6uWraDwWA6qCr6hAcxcMIeFCxdKEdPHmM0t6A1n33FWZ9DJTJcepNFoOh2XIER3GTx4MInxI9i1Zwfus93arc1UX91A2YkKfnzVbbi6ujow5aWTK1MvZzQa+dGPfsSVV15JYWEhiqIQHh7eZQNyP/nkE75669+EWNyZ5j8EnUZLdnYhH/3jLbJPnOT+B37Vpwd1DTSxg+LISj1w1u0KGsobiUmOcVA6IUR3UxSFu39xD5V/r2T3iv14hbnjYnKhtryOxrIWxo+YxOLFix0d85JJ8dJHuLi4EBvbtXvk5OTksOyDL0hyjmbkoLi242GegUTXlLBm5WbSU5JlMGYfMmPGDNakriL3SD5RQyPatZ08mINJ58H06dMdlE4I0RNCQkL4+1+XsH79ejZu2UhNfg2DAuOYddVspk+fjpPT2Rec7CukeBnAtmzZgrbaTGLCYBoaGyg6XURdbS2KosHHzwefFiObN2yS4qUPiY+P55brb+Ptf/+LysK9+IX7oqoqZXkVGFqd+fmtd/bpGQZCiPPj7e3Nddddx3XXXefoKN1CipcBrLSoGH+dJ8VFxRzLOgrNFty0zthVOyeLyqnV1lB7oONUbdG7XX311URERJzZruDwfhRFYfqI2cybO48RI0Y4Op4QQlwyKV4GMBc3VyoaqjiW14S7zUigdyAKZ8ZJ2Ox2TpYUc+roURobG/v84K6BRFGUtjUh7HY7gMx0EUL0K/KONoCNTUriRN1pGhsbCTT5tBUuAFZs1ButOKNj27ZtDkwpLoVGo5HCRQjR78i72gA2ZswYzEY4YC2gyFyJqqoAVFjqWFdzABcvE0PcIzh69KiDkwohhBDfk9tGA5her2fYsARKWk+R2nIcfaOCRlEwa214+3tz1fBpbM87iPqfWw9CCCFEbyDFywA3MmUMhwqamBw2kvyaEuyqnSCTL5HewZitFsqUehbExZ37REIIIUQP6ZHbRi+//DKRkZE4OTmRkpLCrl27fvDxn332GfHx8Tg5OTF8+HBWrlzZEzEHpNlz5tDkpaGwtpRx4cOZGDmSaJ9Q7KrKupM78IgKYNKkSY6OKYQYYOx2Ozt37mTJk0u48+6f89BvHuTLL7+kurra0dG6TWVlJenp6Wzbto3S0lJHx+nVFPW7gQ7d5JNPPuGWW27htddeIyUlhaVLl/LZZ59x7Ngx/P39Ozw+PT2dKVOmsGTJEi677DI++ugjnnrqKTIzM9s2IPwhdXV1eHh4UFtbe8E75w5UK1eu5MNX30ZfZSHCxR+L3UpOSxmukb786tFfn9fPXQghuorNZuPV115lxYZl4GrHM8CDlsYW6oobGBQ0mN8/8hgRERHnPlEf0dTUxDvvvsPGrRuoaagGVcXd1ZNJKZO54yd34OHh4eiIPeJCrt/dXrykpKSQlJTESy+9BJyppsPCwrjvvvt45JFHOjz++uuvp7GxkeXLl7cdGzduHCNHjuS111475+tJ8XJxsrOz2bhhAycOH0en1zEyaTTTpk3rtMAUQojutGrVKp5//TmikkIJCP/+PchitpC5fj9Dgofz3DP/6Bdbl1itVv6+5Am27EkldFgQwdGBKIpCSV4peQcKGROXzJ//+BeHr4qrqipHjhxh46aNnDx1AqPRiXFJ45g2bRpeXl5d8hoXcv3u1jEvra2t7Nmzh0cffbTtmEajYdasWWzfvr3T52zfvp0HH3yw3bG5c+fy9ddfd/p4s9mM2Wxu+3ddXd2lBx+ABg0axKBBgxwdQ5wnu92OoihdsqO4EL2J3W5n1dpVuAY6tStcAPRGPUPGx3Es9Sj79+9n9OjRDkrZdfbs2UP6nm0MnRKLp9/3PSwhg4Lx8PUgc90etm3bxsyZMx2WUVVVPvnkEz764kNaNI14BLhjabSw591dLF+1jN89/Psev35065iXiooKbDYbAQEB7Y4HBARQUlLS6XNKSkou6PFLlizBw8Oj7SssLKxrwgvRy5jNZlatWsUDv36AG358PT/52e28++67cm9c9CvV1dXkF+UREOHXabu7twm73kp2dvZ5na+bby5csvT09DO3xvw63hpy83DFyVfP5i2pPR/sv+zatYsPPnsPz8GupCwcw5CkWBInJpB0+UiKmvJ55vln2nUi9IQ+P9vo0UcfbddTU1dXJwWM6Heam5t56umnSN+7FZcAJ7yiPWhurOP9b98hNS2Vxx55THrORL+g0WjQKAp2W+dLNKiqit2m/uDii01NTWzcuJFNa9ZTXlyGycPE5NnTmT17Nj4+Pt0V/aJU1VTi7H72W0Iu7i5UVld2e466ujq2bNnCjl3baWhsJDoimmnTpjF8+HBWr1mN3dVC5JDwds/RG/QkTBjCgbVH2LVrV4/ug9etxYuvry9arbbDJ8PS0lICAwM7fU5gYOAFPd5oNGI0GrsmsBC91Ndff03a3s0Mmx6Pu7ep7Xj0MCuZ6/fz0isv8twz/5DVdEWf5+npSWx0HIdO7ScwIqBDe1VpDUbFiaFDh3b6/IaGBp58Ygkntx0gSufHaFMINQX1fPvih6Rt2Mwjf/w9oaGh3f1tnDc/X3+aTzSftb2huoFhg4O6NUNBQQFPPPk3Tp4+gau/EwYnA0fSD7J2yxoWzb2SQ0cPEjCo854wF5MzGhc4efJkjxYv3fpOZzAYGDNmDBs2bGg7Zrfb2bBhA+PHj+/0OePHj2/3eIB169ad9fFC9Hdms5k1G1bjE+XVrnAB0Ol1xCUN5ljOUQ4ePNhjmSwWCy0tLb2+S170PYqisHD+ZdhrFHIO57X7HWusa+TYzhOMShhDfHx8p8//9NNPObXlANdETGbm4GSGBQ5iUtRIboybRfPhUl5/5bVe9Xs7edJkNC16ygorOrTVVNRiqbEzbcq0bnt9m83GP5Y+R07lCcYsSGTE5GEMSYolZeEYAoZ58fmKT6moqOCHfmSO+Hl2+22jBx98kFtvvZWxY8eSnJzM0qVLaWxs5PbbbwfglltuISQkhCVLlgBw//33M3XqVJ577jkWLlzIxx9/zO7du3njjTe6O6oQvVJ5eTlVtZVEDAnutN3D1x2LYiE/P7/bd40+evQoK1euZMee7djtdiJCI5g7ex4zZsxAp+vzd6F7DbvdTktLC05OTgOyN23SpEncVnw7H33+IduP78bVxxlLiwVrncrI2LHcf9/9nQ5Wb2hoIG3tJkZ4RuPl0n62irPeyMTQRNbtPcDJkycZPHhwT307P2jEiBHMnjyXFanfUjOolpBBgSiKhuLcEkqOlzN1zHTGjRvXba+/f/9+jpw6zJBpcRidDe3aQgYFU15YSdOJZkrzygmP69hj1VjXhNqsENfDi5l2+7vN9ddfT3l5OX/4wx8oKSlh5MiRrF69um1Qbn5+frs/zgkTJvDRRx/x2GOP8bvf/Y7Bgwfz9ddfy1ojYsDS6/VoFA2WVmun7Xa7HdVmR6/Xd2uOtLQ0lr78D+qpJTDaH71Bx8nCoxx85QCHDx/mvvvu6xdTVx2pvLyclStXkrYulZaGZlw93Zg6dybz58/H09PT0fF6jKIoXHfddYwdO5YtW7ZQcLoAFycXkpOTSU5OPutQgeLiYpqq6okK6Px6EeYRgP20mfz8/F5TvGg0Gu69916CgoJYuXYFh9efREXFx92HH195GzfccEO3/m0fP34cu97WoVf3OwER/tTnt0C9luwDOUQPj2wrHM3NrRxKO0JseDxJSUndlrEzPfJR6d577+Xee+/ttC01NbXDscWLF7N48eJuTiVE3+Dv78/gqFiOnjyEf6hvh/aS3FJMRg8SExO7LUNNTQ2vvPEyds9WksePbnvzCo4Oovx0Jas2r2D48OEOnc7Z150+fZolf/obNVmniXcPw9slkPLiapa99BEZ6Tv53R8fw9e34/9/fxYdHU10dPR5P16r1aJoNLTaOi/0LXYrdoVe10uo1+u54YYbuOKKK8jNzUVVVcLDwzGZOi8oupKiKHCOuz7e3p5cu+g6Pvn6Y3bk7Mbk74bFbKG5opVBITH85qHfdvuHp//Vu/4HhRAdKIrCFZct4sjSw5zYf4rohAi0Oi2qqlJRVEXu3kIWTruC4ODObyt1hW3btlFeV8rYqSPaCpfmpmZaLa2YfFwxeGtZu36tFC8XSVVV/vXGWzQfLuWGIbNw0p3pvo/1i2Bkaxxf7Enlg/ff51cPPODgpL1beHg4/lEhZB3LJtDUcVbR0bJcnP1MvbYn38XF5awDkbtLXFwcOpue2so6PHw6LgxXnFPK8EEjueGGG0hOTiY1NZVTudkYDEaSr01m0qRJPVJk/S8pXoToAyZNmkRV1Z28//G77MzORO+mxWa2Y7A5MXPcbO78+Z3d+vqFhYVoTRr0Bj01NTVkn8qmsqoCm92GVqND12og68hBbDab3Dq6CHl5eRzJOMD04IS2wuU7rgZnxvjFkrF5BxU/rhhwvS/nq76+nsLCQkYkjWL1sa/xKTrG8MDBaDUaVFUlt7qIXVXHmPHjK3rddGlHSkxMZMigBA5sz2TU9OE4uZ6Ztq2qKgXHT2Ovgfm3LUBRlF61mKkUL0L0AYqisGjRIsaNG0daWhrl5eU4OzuTlJTEkCFDun2lXYPBgN1ip7qqisx9mZjVFty8XdEb9FjMrZzOKqG4sILc3Nxe8+bWl5w+fZrW+mYiQjufEhvpHcy2vGMUFRVJ8fI/Ghsb+eSTT1iXupbahhoAWhQzq0v3sK8qG0/FhQa1BbNJQ/KV07n1tlsdG7iX0Wg0PPTAQ/z9qb+TueoQTj56DM4GGioacbK7ctM1P+7RKdDnS4oXIfqQgIAArrnmmh5/3ZEjR/Lptx+zd88+WnXmdmNvdHotmlYtOlc9H370AX94/I89nu87ra2t7N69m4MHD2KxWAgPD2fSpEl4e3s7LNP5MBgMaLQami1mXA3OHdqbLWY0Wk2Pjyvo7VpaWnjy6SdJ37+VoDh/hoQPwma1U3iyiPLjlbhGBjEkMRGTyURKSgqxsbGypUYngoODeervT7Ft2zZ2ZuyksamRqMQopk6dSlxcXK/8mUnxIhzGbrdTVVWFoih4e3v3yj8QccaIESMID4xk+dZ9RIz/vnfAYrZScrgCg92JhKlDyTy4h9OnTxMSEtLjGUtKSnj62ac4dOIgipuKVqehdb2Vf3/+Effd9UsmTJjQ45nO19ChQzEF+XCoJJuU8I7jMQ6VnMQ3MpCYmBgHpOu9Nm/ezI7920icMRSTl1vb8aHJcRR6nab4SBG/nfdb6Q08D66ursyZM4c5c+Y4Osp5keJF9Di73c769etZu3w1xTkFAITERDD3svnMmDFDipheSKPRsOjyRazdtJrKQ/VUnaxDo1WwNNpxc3Jj7JzReAd4sj/7CBUVFT1evFgsFp5+9ikO5u1j+OyhuHm4AmBttXIk4zj/eOk5/Pz8es302P/l6urKnCsX8OUrH+Ba4swQ/yi0Gg1Wu40DRcc5oZZz2zV3Sc/L/1i/aT0ufk7tCpfvhMQEk3+4iG3btknx0g9J8SJ6lKqq/N9bb7Hu38uJxJtpvmdWyTy2N583DrxAQUEBt956qxQwvVBQUBCxcbEEJPhQV1WP3WbHw8edkJggDEYDVaXV6HR63Nw6Xki6k6qq7Ny5k0MnDjJ81pC2wgVAZ9AxbMIQdq7Yw+o1q3tt8QJw7bXX0tjQwIavV5Nx5BhuihP1ajMaXxeuvuVHzJs3z9ERe52S0mLcAzuf6aIoCkaTnvLy8h5OJXqCFC+iR+3fv58NX6ximlcCsX4RbcejvEM4XHqKNZ98S3Jyco9PFxTnlpCQQFhQBFU1pSROTGjXpqoquVn5xEUlEBUV1SN57HY7qamprF67mo2bNlBhK8U1X0cY4e0WdFMUBf9IX3bs3sG96r29tjDWarX85I47mDN3Ljt37qSurg4vLy/Gjx/ftqinaM/Tw4vTdbmdtqmqSmujBQ+Pjrs1i75PihfRozanpuLRqCM2MqJD2xD/KPZnnWTz5s1SvPRCBoOBG669gaWv/YOsnUcZNCwSJ1cnGuuayN6fg67JiesX39Ajy9nb7XZefuVlVmxYht5bg8FXi7ZOoaAsn5LyEhITEgn4r81cdXodzRYLqqr22uLlO6Ghob1q48DebMbUGbz87guYm80YnduvultRVIXB5tStS+sLx5HiRfSowpwCAl06n/mhKApBzt6czi3o4VTifM2cORO73c5Hn37IvtWHsWNDi47wwAhu++XtJCcn90iOrVu3snz9t0SlhOIf6sfJ/aco31aGT5AXtVX1HDpyCC8vLwz/WUa+vLCCMYPHDch9gvqzmTNnsmnzRjLXHiB6VAT+oX7YbDZOZxdzOquE2RPmyQehfkqKF9GjXEyuNLZ23D31O42WZvzcXM/aLhxLURTmzJnDlClT2LdvX9utjREjRmAwGM59gi6ydt0a9N5a/EP9AAiLDSFr9xGKDlcQPMyPivxKSkpKCI+IoDinBHudwtzZc3ssn+gZ7u7uPPa7x3n19VfJ3L+bEzty0SgKXm4+LF5wA7fecqsUrP2UFC+iR6VMGMe7mzNpbG3usJ5FXUsjp9VaFo5PcVA6cb6cnBzXHW+32zmZcxLfqO978IzORpKmj2Hn+gxy04uw662csudRdrwKGrRcs2Bxr54qLS6ev78/f3z8j+Tl5ZGbm4tWq2XIkCGyim4/J8WL6FGTJ09mzbJVfHNgK9PDR7ftP1JcX8HGvD2EjR0sFxnxgxRFwaA/s7LvfwuODmT6VVPIPpTL/rSDtDarpMydxOyZsxk/fnyvH+siLk1ERAQRER3H0on+SYoX0aNMJhMPP/4oL/7jn6w4sBtDwZkNTS2uCjFThnLfA/fj4uLi6JiiF1MUhQkpk/ho1fvYna1YLBYMBgOBAQF4+nkweEQ0tmqVv/3+74wdO9bRcYUQ3UCKF9HjgoODeeLpJWRlZXHixAngzM6mQ4cOlU/H4pysVitVVVXkHs4nvzwHn0HuKIqGUzkn8XX3p6XYypj4ZEaOHOnoqOI/7HY75eXlKIqCr69vnxyHoqoqWVlZbN26ldLyUjzdPRk/fjxjxoxBp5NLaU9TVFVVHR2iK9XV1eHh4UFtbS3u7h239xZC9G2ffPIJ//fvN3D2N5B7PJ8mcxM6Nw0tDWaay8xMGDWJN157UzYw7AVsNhtr1qxh5eoVFJacmUUYFT6IhfMWMnPmzD7zYcVqtfL6G6+zauMKWrUtuHg5Y24wozZoGD96Ir9+6Ne4uspEg0t1IddvKReFEH1GU1MTy1Z9i88gTwaPHMSQ5DgKTxRRW1mHRqOhuaEZk7Opx1f5FR3Z7XZee/01vln7Fa5BTgSPCUBVVXJOHefZl7MoLCzsM6tpL1u2jG/WfkXEmBACI/zbMtdU1LJlyyY83/Lk/vvvd3DKgUWKFyFEn3H06FHKa8oYMW4IAAajgehhkW3tTfVNHFp3nOPHj5OYmOiglAIgMzOTFeuXEZkUSmC4f9txvxBfCk8W8eWKz0lJSWHIkCEOTHluZrOZ5auX4RHuRlBk+5WOPX09iEgMZfP2VG644QZZCbkH9b0bj0J0g8bGRjZu3Minn37KihUrKCsrc3Qk0Qmr1YrdbkNn6Pxzl86gw263Y7VaeziZ+F+bUjehuljbFS7fCRkURLPSyJYtWxyQ7MLk5+dTUlFMyKCgTtuDIgOobazm6NGjPZxsYJOeFzHgbdq0if979y1Ka0rQGBXsrXbc3/fk8nlX8OMf/xitVuvoiOI/wsLCcHN2p7ywgqCowA7tZQUVmJxNsrx+L5BfkIe779k3TXTzcaXgdO9fTVtV1TPbSmg6v72l0WhAUbDb7T2cbGCT4kUMaDt37mTpq/9A6wejJwzH6GzAZrVRcOI0H379PgaDgR/96EeOjin+IygoiHFjxrFu12q8A73a7WfT0thC/qFC5k+8HH//jp/2Rc8ymUzkl5nP2t7a3IpbHxjkGhoaio+HLyV5ZZg8O46lKi0ow+RkIiYmxgHpBi65bSQGLFVV+eKrL7C5tpKQEo/R+czy9lqdlsgh4fjHevPNyq+pra11cFLx335y+x0MDR3OnpUHOLzrGAUnTnN41zEy1xwkIWIEt916m6MjCmDi+Ek0ljVjbu5YwDTVN9FabWNcyngHJLswLi4uzJ05j/KTlVSX17Rra6pv5tTefJJGphAWFuaYgAOU9LyIAauoqIij2UcIGxPa6YyH8LhQMo7uZ9++fUydOtUBCUVn/Pz8+Muf/sq6detYv2kd1dnV+HkFcePNtzB79mxZIqGXmDJlCitXryBzwwHikwfj6ecBQFVJNcd3ZZMYO6rP7Pi8ePFi8gvySN2yCb2nBpO3ieb6ZprKWxgxeBR33XmXoyMOOFK8iAGrpaUFm92Kk6ux03a9QY+iPfM40bt4enqyePFiFi9ejM1mk3FJvZDJZOKx3z3O0hee51D6ISzKSVQ7GDXOjEuYxP333Y+Tk5OjY54Xo9HIb379WybvmMLG1I0UlxYTHeDFlGumMnnyZFnjxQGkeBEDlp+fH27OJiqLqzq9l11bWYdeMRAY2HFgqOg9pHDpvYKCgnjy709x+PBhTp48CUB8fDyxsbF9Yn2X/6bX65k8eTKTJ092dBSBFC9iAHN3d2fqhGl8seFTAiMCcHL5vgfGbrNzIjObmIghDB8+3IEphejbFEUhISGBhIQER0cR/YgUL2JAu/766zl6/AiZa/bjH+2Lp58HTfXNnD5ejL9zEHf97K4+uQ+LEEL0Z7K3kRjwqqur+eabb9iweT31jXUY9EYmJE3kiiuuIDo62tHxhBBiQLiQ67cUL0L8h9lspq6uDhcXFxmAJ4Toc1RVJSMjg7Xr1nD42GH0ej0pY8Yxd+5cBg0a5Oh45yTFixQvQgghBhBVVXn//ff5+Ot/o7pa8Qv1wWq1UZ5bgYfemwfvfYgJEyY4OuYPkl2lhRD9gt1uZ8eOHazbsI4T2ccxGo1MTJnE7NmzZVEwIf7L7t27+eSbfxM4zJvQwSFtxwcNj+RQ+hFefPUF4uLi8PHxcWDKriMjEYUQvZLdbufNN9/kr8/8mZ0nt6EEWWl0reXfK9/n4d//hv379zs6ohC9xrr167A7W9sVLnBmtteQ5FjK60vZunWrg9J1PSlehBC90tatW/l69ZeEjg5k7KyRRA2NIHbUIFIuG0OdroalLz5PU1OTo2MK0SscPX4YnxCvTtt0eh0GDx25ebk9G6obSfEihOiV1qxbg85LISgyoN1xjVZDwrg4Csvz2b59u4PSCdG76PUGrBbbWdvtNjs6bf8ZKSLFixCi17FYLJw4dRy/0M7vzxudjWjdNOTm5vZsMCF6qZSx46jMr0K1d5yD01TfjK0eEhMTHZCse0jxIoTodTQaDVqtFqv1HJ8kdf3nk6SjFBcXk5GRwd69e+U2XB82Z84cvJ382L/1EBazpe14U30T+zdnMSRqKCkpKQ5M2LXkL18I0etotVrGjkxi3e5VRMSHddgHp66qHo1ZJ0vOX4Ly8nL+9fa/2LFnOw3N9Wg1Wvy9A7hiwSKuuuoq2TOqj4mMjOTX9/+GF15eSsbyfehNWux2FbVRYUjkMB7+zcMYjZ1vQtsXSfEiuozZbGbv3r1UV1fj5ubG6NGjZbG3PqSsrIyNGzeyc/cOzGYzcTHxzJgxg2HDhjlkE70F8xeQnpHG4V3HiB8zGK3uzMW0obaRrLSjjBw8hpEjR/Z4rv6gpqaGvz7xF44UHiJieBhDQqOxtFooOHGa199/lZqaGn760586Oqa4QElJSbz0z1dIS0sjJycHnU7HsGHDSEpK6leFC8gidaKLbNu2jQ/eepfK3GL0VgWLxo4pxIerfrSYhQsX9rkdZAearKwsnnp2CUU1p/EIMaE36KguqsVoc+bGq2/ihhtucMj/YWpqKq++9QqVjeUYPHTYLHbURoVhMcN55LeP4u/v322vbbFYaG5uxsXFpd/dnvrss894/cNXGLMgEaNz+4tawYnTVB+t55/PvEhERISDEoqBSBapEz0qIyODV55cSmijG7PDp+Lu5EZTawt7i47y/tI30Wg0LFiwwNExxVk0NTXxj38+R4W9lJQrRrf1cDAK8o4W8OEX7xMTE0NSUlKPZ5s2bRrDhg1j69atFBQUoNfrGTFiBElJSej1+m55zeLiYpYtW0bqtk20mFswuZqYPX0OCxcuxMur86mofYmqqqzbuBavcPcOhQtA6KBgCrJ2s337dileRK8lxYu4JKqq8sXHn+Jbq2dWfHLbp3MXgxMTI0diO2Xnm4+/YMaMGTg5OTk4rehMeno6+aW5jF44/PvC5T8i4sMoy69gzdrVDileAHx9fbnqqqt65LVyc3P5y9//TH5lDoEx/vi5e1BbWc/bX7zFjowd/OnxP+Hr69sjWbqLzWajprYa02BTp+2KRkHvoqW2traHkwlx/mS2kbgkeXl55B/OZlRQXKe3FUaFxFGdX8rBgwcdkE6cj+zsbLQmTaefwgH8w305dPQQdru9h5P1LFVVefOtNzhdl0fywtFED4skINyf2FGDGDt/BEcLD/HBBx84OuYl02q1eHp4UV9d32m7alexNtnx8PDo4WRCnD8pXsQlaWxsxNZqxd3JrdN2N4MLqtVOY2NjDycT50uj0UAna0N850zRovT7cUvZ2dkcOHqAQaOi0Onbd0obnY2EJYSQtnMLlZWVDkp4hqqqHDt2jLfffptnn32Wt956i6ysLM53+KKiKMyeMYfqgjpamswd2guzi3DVuvX6Tfx6mt1up6GhAYvFcu4Hi24nt43EJfH19UXv6kRxfQXuTh1nFpU1VKF1NvT5rvb+LD4+HvsKhab6JlxMLu3aVFWlPK+CWWPm9/vipaioiCZzAz5BQzpt9w32ofjgUUpKShy2uZ3VauXNN99k5YYVtCiNGE0GWhstfL3qS2ZOms0999yDwWA453nmzJnD1m1byVy3n4hhYfiH+p6ZbXT8NNU59Vx/xY2Eh4f3wHfU+9XV1bF69WrWblhDdW01TkYnpkyYymWXXUZISMi5TyC6hRQv4pIEBASQOH40mct2EuUdjEH7/SBKu2pnR8EhQkZGMXToUAemFD8kOTmZweFxHNxymJEzhrfdPrLb7Rzfm42T1ZX58+Y7OGX3MxqNaDVaWlssGJ07FgDmZjM6je68ioPu8tVXX/Hlms+JHB1CYOQQFEU5U2CermDF5mV4eXlx2223nfM8Hh4e/OGxP/DOu++QnrGNgr1FaBQtgb5BXH/rj7nyyiu7/XvpC76bUr7/xF68IzzwDvWguaGZz9d9zPaMdB5/9A8MGjTI0TEHJJkqLS5ZQUEBTzz+Z8zHKxjpNxh/N29qWurZV3Icc7CRh/7wCMOHD3d0TPED8vLyWPL03zlZeAKjtw6dXkdjRTOeRi9+fvtdzJkzx9ERu11jYyM/v+dn2H3MDBoeRUNtI6qq4ubhilan5cC2LIL1Ebzw/AsOmTrd3NzMXffdidm9gdhRMR3aTx3KxVqk8MbLb17Qe19paWnbTK64uDgZWP9f3njjDT5d/REjZw3HxeTcdtxmtbFn/X4SghN55qlnz9x6FZdMpkqLH2S321FVtctW0AwLC+Oxv/2Jzz/7jN2bd2KtOInWqGfovFFcc921xMXFdcnriO4TERHBc0//g23btpG5dw8trWYGTx3M1KlTCQ0NdXS8HuHq6srl867gqaVPsi/tAKpGBQVcnF1wdXPFVXHnmvuucdiaL9nZ2ZRWlpAwKrbT9tCYYDKPHuTYsWMXNDMsICCAgICAcz9wgKmvr2fj1vUExQa0K1wAtDotg0dHczT9CEeOHJGVnh1AipcB5OjRo6xZvZq96bux22xEDxnMzLmzmTRp0iWPZwgNDeVXDzxA9W3VVFdXYzKZ8PPz66Lkoie4uroyZ86cAdHL0hlVVamtrcWODYuxFaOXDq1OoaasirJj5cydtIBp06YBcPr0adLS0qisrMTV1ZXk5GTi4+O7dVyQzWY786FD1/mHDq1Oi11VsdnOvh+UOH+lpaXUN9UTGxLVabunnwdm2wmKioqkeHEAKV4GiC1btvDGcy/hVGElwSscvVZPztZsXt6xn2PXH+WOn/60S954vby8+sVCXmLgycrKYtm6b0iaPwqvQHdKy8qwWCwYRxvRWnUU7Stk9+7d5Obm8slX/6autRa9qxZri43Pln3C1HHTue/e+7rttkt4eDgeLh6U5pcRER/Wob00vwx3F3dZWK6LGAyGM2OgmlvBs2O7zWIDOw4dAzWQSfEyAFRUVPCvl94gvMHE9ISxbUXKsMBBHC/PY90nyxk2fDjjxo1zcFIhHGfLli20alsIigpAURQiIyPbtRedKOWt/3uLwvJ8fOM8GTpkDBqNpm3A7Jq0lbi6unL3L+7ulnxeXl5MmzSDL9Z9im+wN67u38/ua25sIfdAAXPHLyQoKKhbXn+gCQ0NJSZiMCePH8UnyLtDe8HJ03i7+5GYmOiAdEJGGQ0AaWlpmItqmBw1qkPvSqxfBH5mZzasXe+gdEL0DqeLT+Pm43rWHkiTrxsZmbsw+GuJSohoG6SpKAr+oX6EDQ9iw+b1lJeXd1vGm2++maQh4ziw7ggHtmaRk5XHgW1Z7F19iMSoUdzxkzu67bUHGo1Gw1WLrsZeo3As8yTWVitwZhG/09lFlBwpZ/7M+dLT7CDS8zIA5Ofn44cJvbbz/+5wj0COHT3Rw6mE6F3cTSbM+R0XbftOTWUNTc1NhA3ufG2P4OggCg7s5dChQ0yfPr17Mrq784fH/sDmzZvZkLqBstISorwHM+OOmUyfPh03t84Xi3SkpqYmMjIyKCsrw8XFhbFjx/aZAcKTJk2iru4e3v3oHXYt34feRYOl2YabzsQ1867j5ptvdnTEAUuKlwFAp9PRqlrP2t5qtWAwyn1bMbCNHzeB9dvW0VDbiJtH+wUXmxtbaCoz4+nlid7Q+YaQGq0GFLXbV2B1cXFh/vz5zJ/f+9fe2bZtG2/863WKKk6jMSrYLXZM73uwYNZCbrvttl6/W7eiKCxcuJAJEyaQnp5ORUUFbm5uJCcnExbWcdyR6DndetuoqqqKm266CXd3dzw9PbnjjjtoaGj4wedMmzYNRVHafd11113dGbPfGzFiBFWGFqqb6zq02ex2jtcXMnaSjHcRA1tKSgqjh45h/6YsSgvKUe3qf8azVLJv/UFGxI4kKiKKsoLObwtVlVTjpHORlWn/Y//+/Tz34jPU6ioZvXAYKZePJmXRaNxjnPl42Ue89957jo543ry8vFi4cCG33nor11xzjRQuvUC3Fi833XQTWVlZrFu3juXLl7NlyxZ+/vOfn/N5P/vZzyguLm77evrpp7szZr+XlJRExIhYVp5Mp7Lp+51imy0trDmejjbExOzZsx2YUAjHMxqNPPLbR5k+eibFeyvY/tVutn+1m8LdpYwfNpk/Pv4n5s9eQOmJcupr2n8Is5gtnMzMYXjccFnXiP/sNv/VFzTrGxg+cWjbqs0arYbwuFCCE/xZuX4FFRUVDk4q+qpu67M7cuQIq1evJiMjg7FjxwLw4osvsmDBAp599lmCg4PP+lwXFxcCAwO7K9qAYzAYeOiR3/DcU8/yxf5teLYa0KKhUmnCI8KPXz70S/m0KARnPmH//nePkZuby9GjRwGIiYkhJiYGRVFYvHgxJ0+dZMeGdNwCnfH09aCpoZmqvGqiAwdz91339Ps9oM5HZWUlB48cIGx4SKc/j7DBIew8nElmZuaAXVdIXJpuK162b9+Op6dnW+ECMGvWLDQaDTt37uSqq64663M//PBDPvjgAwIDA7n88st5/PHHcXFx6fSxZrMZs/n7QXZ1dR1vjQgIDAxkyTNPkpmZyaFDh7DZbERERDBhwoReOchPCEdRFIWoqCiiojouTubq6spjv3uMDRs2sH7jOopyinA3+XDVddcxe/Zs2YD0P1paWrDarDi5dL7mjVanRaPTtHvvFuJCdFvxUlJSgr+/f/sX0+nw9vampKTkrM/70Y9+REREBMHBwRw4cICHH36YY8eO8eWXX3b6+CVLlvDnP/+5S7P3VzqdjuTkZJKTkx0dRYg+y8nJiYULF7Jw4UJUVb2onhZVVSkoKKC8vBwXFxdiY2O7bLuO3sDb2xt3N3cqS6rw9PPo0N5Q24hi1fSZWUei97ng4uWRRx7hqaee+sHHHDly5KID/feYmOHDhxMUFMTMmTPJzs7udPfORx99lAcffLDt33V1dTKYSgjRIy6mcDl16hTvvv8u+7IyaTY3o9PqiQ6N5rprr2fKlCndkLLnubi4MHPKLD5c9h7B0UE4u37fA6PaVY7vOUlkcBSjRo1yYErRl11w8fLQQw+dc8v16OhoAgMDKSsra3fcarVSVVV1QeNZUlJSADh58mSnxYvRaMRoNJ73+YQQwlHy8vL409/+SEnzaaJHReDl50lTQzO5h3N49sWnsVgszJw509Exu8TVV1/NocMHyVyzF/9Bvnj5e9LS0Mzp48V46nz5xf13o9d3Pu1ciHO54OLFz8/vvDbcGz9+PDU1NezZs4cxY8YAsHHjRux2e1tBcj727dsHIEteCyH6vE8/+5TihkKS549u22DRw6hnxORhHNpxhPf//R4TJ07stv2RepKnpyd/fPxPfPPNN6xPXUdRfhk6rZ5ZY+ez6IpFxMZ2vju2EOdDUVVV7a6Tz58/n9LSUl577TUsFgu33347Y8eO5aOPPgLO7Mw6c+ZM3nvvPZKTk8nOzuajjz5iwYIF+Pj4cODAAR544AFCQ0PZvHnzeb1mXV0dHh4e1NbW4u7u3l3fmhBCXJDq6mp++os78IhzITSm42zLlsYW9q7K4s8P/5UJEyY4IGH3MZvN1NbW4uzsjMlkcnQc0UtdyPW7W5c3/PDDD7n33nuZOXMmGo2Ga665hhdeeKGt3WKxcOzYMZqamoAzU3rXr1/P0qVLaWxsJCwsjGuuuYbHHnusO2MKIUS3q62txWxtwd2780GqTq5OoIWampqeDdYDjEZjhwkcQlyKbi1evL2923pZOhMZGcl/d/yEhYWddw+LEEL0JSaTCaPOSH11A+7eHXsfzM1mFJsiPcZCnAfZVVoIIXqAj48PyaPHUXD0NHabvUN79sFcAr0DGT16tAPSCdG3SPEihBA9ZPG1i/FzCiJj3V4qiquwWW001DRwMP0wLcUWbrrhx2ddkFMI8b1uHbDrCDJgVwjRmx0/fpy33/0Xh44dorm1Cb1WT1hgONdfewMzZsyQ7QXEgHUh128pXoQQooepqsqpU6eoqKjA2dmZIUOGyJonYsDrNbONhBBCdKQoCoMGDep04c2uZLFYKC0tRaPREBgYiEYjIwVE/yDFixBC9DMWi4Vly5axcu1KyipLAIXI0CguX3A5s2bNkltTnFnx/b83qo2MjGTChAm4uro6Opo4D1K8CCFEP2K1Wln6z6WsTVuFZ7iJ8JQgVLtKfnY2z73yDMXFxfz4xz8e0AVMSUkJTz/7FIdPZqE621A0CtYGO6Efh/Gr+x5g5MiRjo4ozkGKFyGE6Ed27NjB+rS1xE4chE+gV9txnyBvCo4X8sXyzxg/fjyDBw92YErHMZvNPPXMkxwq2M+wmUMwebqdOd7cStaOozz9jyd56olnZIPfXk5ugAohLkp1dTXffvstzz77LP94/h+sXbuWxsZGR8ca8DZs2oDOQ2lXuHwndHAITfYGtm7d6oBkvUNGRgZZ2YdInDq0rXABMDobGDllGGWNpaxbt86BCcX5kJ4XIcQF2717N0tfep6SmiKMXnpUu8qqzcv57MtoHv71I8TExDg64oBVeLoAD7/OZ2ooioKLtzNFJUU9nKr32L9/P4qrHVf3jmNbNFoNvhFepO/axk9+8hMHpBPnS4oXIcQFKSws5Nl/PkOTsY7ky0ehM5x5GzE3t7J/8yGeevZJ/vHM87IBn4O4mzyoaCg5a7u5sRWT28D9v2m1tLb9znZGb9DTWm3uwUTiYshtIyHEBdmwYQMVjWUkTk5odxEwOhsYOW0YOSWn2LZt23mfz2azcejQIbZu3cq+ffuwWCzdEXvAmDxxMvXFjZibWzu01VXVozYqpCSnOCBZ7xARHkFLtQWb1dZpe8XpSmJj4no4lbhQ0vMihLggGXt24RXq0emaIQYnA0YvHfsP7GfevHnnPNeePXt45723yS44SYulBYPOQHhgBD/+0S1Mnjy5O+L3e9OnT2fNhjXs3XCAwWMH4R3gCSqUFpZzak8uKcMnMmbMGEfHdJjJkyfzyZcfc2T3cRJS4tvNuio6VYLSqGP2rDkOTCjOhxQvQogLYrXb0Bq0Z23XarVYrefuPdm7dy9/f+YJzC5NxE6NwuTlRmNdE9kHc3j2xadRVZUpU6Z0ZfQBwcPDg8cffZwXX36BgzsPcNyejWpXcTW4MTN5Lvfcfc+AXs3Xz8+Pu392D/98dSm7VmbiH+WLTqelvKASWx1cs2AxycnJjo4pzkGKl/9v7+6joqoTPoB/Z3gZZngZQJgZJuRdBVPxpUBNN0vkZa20XI+1ZdrpVEfJHnzZnmxLskejdGv3sacn9+zTqvvs5rads/bC01rIKr4BCoGKKSJBYLyjw/AibzO/54+O0xKooMxc7vD9nDPnwL2Xme+9MzBf7tz7u0Q0JBMnTETmsU8gpop+Y4VYei3oaLqK8Uk33u0uhMCHf/0QHe6tuGveVNv9eGk9ETtnEk4dKcGHH/0Fs2fPhqsr/0wNldFoxBtbMnD+/Hl8++23UCqViImJQVhYmNTRRoR7770Xer0e+/fvR15hHrqsPZgWFYekBUm45557RvUYODfS2NiIY8eOobGxERqNBnFxcYiKipJke/GvAhENScL8BGQfycK3JZWInBxumy6EwDcnSjHGS4d77733hvdRWVmJ8+XnEBEXOuAfvsjJYfjmnxdx9uxZxMbGDvs6jAYKhQIxMTGIiYmROsqIFB0djejoaFitVlitVpbkGxBCIDMzE3/auwdXrjbDzdMVvZ29+Ou+vZg3+z6krk6Fh4eHQzPx2SKiIZk4cSKe+uXT+ONfPkB+dSHGBPvDarGiufoytG7+eCH136DT6W54H62trejp7YaX78BDsXtqPdHd2w2z2WyPVSCyUSqVvObTTRw9ehS/3/M+vELUiJ88HS6uLhBCoKG6Ef84nAm1Wo3Vq1Y7NBPLCxEN2eLFixEVFYUDBw7g9Den4KJ0wX0JiViwYAEiIiJu+vN+fn5QuavQ0myGLjiw33xzcys83Dzg7+9vj/hENEhCCHz6+SdQaK0YP+3HC4kqFAroQ3To7upBdk4WljyyBHq93mG5WF6I6JZMmjQJkyZNuqWfDQ4OxpSYqThx5jgCgsZA6fLjf75CCFw8VYGo0An8yINIYrW1tSirvICxM+4YcL4x3IDqU1/j9OnTWLBggcNycV8ZETmcQqHA8seXY4yrDie/KkLDpUZ0tneiqfYyCg4UQ93thZXLV3J3PpHEenp6YLFa4eY+8BlqLq4uULooHD4+E/e8EJEkxo8fj9de2Yw/f/hnnCoqRmX393B3c0fsuOl4bNkveaAuDVl3dzcKCgpQWloKIQSioqIQHx8PlUoldTTZ0ul08PP2Q+P3TdAG9L/shKmxBa5wR3BwsENzsbwQkWTGjx+PzembcenSJVy5cgU+Pj4IDR34DCT6QW9vL4qKinDs+DGYzCboA/SYO3cu7rzzzlG93b777jtsf3sbyqouAGorFArA8ikQeUcU1q/dMGqvon271Go1EuYtwP/u2wVDqA5e/3Ixy96eXlwoLMfEiMm3/BHyrVIIIYRDH9HOzGYztFotWlpa4OMz8MXJiIjkqKOjA2+/8xscKzwKaKxQebmjs6ULbj0qJM5LxupVq0flKb+tra3Y8O/rUXmlHJPmRNsuutjRehUlx87B6DkWv3nzbR4Afova29vxRsZWnCjJg7fRE346LTraOtFY0YxgvxC8unETIiMjb35HNzGU9+/R9yonIpKpXbt3IafgIGLmjoOfzhcAbKesfp79CYxBRvziF7+QNqQEjh49ivLvL2LGwilQqd1t0zXeaky/fwpOZBYhJycHDz/8sIQp5cvT0xO/fvkVZGVl4csDX6LxQgPUHmo8/sCTSE5ORlBQkMMzsbwQEclAU1MTDh79J8ZODrIVF+DHU1ZNjS34vy8z8cADDzh8wDCpnSw8CXWAe5/ico2ruyu89BrkncxjebkNGo0GixYtwkMPPYTe3l64urpK+jElD+UnIpKB0tJSmFovwxgx8H+5xsgg1DfXobKy0rHBRoCurq4+Vzj/KXeVG7q6Oh2YyHkpFAq4ublJfnwVywsRkQxYrVYIBa77pqFUKiGEgNVqdXAy6UWGR6KtsR0DHcIphICpzozI8CgJkpG98GMjIqJbUFtbiyNHjqCisgIeHh6YPm064uLi7HZabmRkJLzVPqivakBQuKHf/LrKevj7jEFISIhdHn8kmzdvHj7/8jOUn6lE1JTwPvOqSi/Bw6rB/PvnS5SO7IHlhYhoiLKysvD7XTthunoZHn7usPRYkJn9GSZGTsLGFzfCYOhfLm6X0WjErBmz8FX+fmgDfKDx1tjmtTSZUX+xCU8sWgEvL68b3MvIJoRAWVkZSkpKYLFYEBoaiunTp9/0DKqIiAis/OVT+ODPf8DJ2iLowwKhUAD13zVC0e6G5Uuf5GjNToblhYhoCE6fPo33/vAu3AxKzJw+w3Zpg47WDpw6eBrb396GtzK22eWU5WefeQ5Nzc0o+rIQmkAVPLUatF5uQ/cVC342Yx6WLVs27I/pKCaTCTv+awdOFuejU1yF0kUBRbcLIkPGIW1N2k3HaVm0aBHGjh2Lf+z/B06dLQaEQHzMHCQnJiMuLk7yYzRoeHGcFyKiIXhr21s4WPwV7k6e3u8N0Xy5FecPlWPLr9/AXXfdZZfH7+jowJEjR5Bz5BAum65Ar9Nj/rz5mDVrFtzcBh7CfaSzWCxI35yOvJKjGBcXiQCjPxQKBdpMbfgm/wIMHnfgra3bBn3hv97eXgAYlWPeyBnHeSEisoPe3l4UniqAPlw34H/yPv7esKp6cfbsWbuVF41Gg6SkJCQlJdnl/qVQVFSEgjMnMPFnE+AboLVN9/L1so3TkpWVhSeeeGJQ98fS4vx4thER0SBZrVYIIeDi6nLdZZRK5ag84+d2FBUVwarq7VNcrnF1c4V/iC9yjuVIkIxGKpYXIqJBcnNzw7iI8Wiobhpwfmd7JyztAmFhYY4NJnNXr16Fq8f1C6GHRoWOjnYHJqKRjuWFiGiQFAoFkhOTYTEJ1Hxb12eepdeCs7nnEWIIw8yZMyVKKE8GgwHdLb2wWgbeY3W5zoSwkPAB59HoxPJCRDQEc+fOxZKfL0XNqQYUfFWE8jMVOHfyAvI//xr+Sh3WvbAOarVa6piyMnfuXPh6+OHi6Yp+85prL6PnigUJ9ydIkIxGKp5tREQ0REIIFBQU4ED2AZR9ewEqlQpzZs7F/fffL8lF6pxBZmYmfr97J6xe3TBGBsHF1QUN1Y1oq+nAgjnJWJu2lgfiOrmhvH+zvBAR0YiQn5+PzC8ycba0BFZhhVF3B1ISU5CSksLiMgrwVGkiIpKd+Ph4xMXFoaWlBRaLBb6+vnBxuf6BvDR6sbwQEdGIoVAo4OvrK3UMGuF4wC4RERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyQrLCxEREckKywsRERHJCssLERERyYrdysvWrVsxe/ZsaDSaQV/eXAiBTZs2ISgoCGq1GgkJCSgrK7NXRCIiIpIhu5WX7u5uLF26FKtWrRr0z2zbtg07duzAzp07kZ+fD09PTyQlJaGzs9NeMYmIiEhmFEIIYc8H2L17N9LS0mAymW64nBACRqMR69evx4YNGwAALS0t0Ov12L17Nx599NFBPZ7ZbIZWq0VLSwt8fHxuNz4RERE5wFDev0fMMS8VFRWoq6tDQkKCbZpWq0V8fDxyc3Ov+3NdXV0wm819bkRE1F9NTQ3y8vJQUFCA9vZ2qeMQ3TJXqQNcU1dXBwDQ6/V9puv1etu8gWRkZGDz5s12zUZEJGcNDQ34464PkPd1HtqutkKpVELnq8fCpAewdOlSuLqOmLcCokEZ0p6Xl156CQqF4oa38+fP2yvrgDZu3IiWlhbbrbq62qGPT0Q0kplMJvzH1tdx4OSXCJzki/iHp2Fqyp2wBHThjx/9Dz744APY+egBomE3pLq9fv16rFy58obLRERE3FIQg8EAAKivr0dQUJBten19PaZOnXrdn1OpVFCpVLf0mEREzi4rKwvnvjuLGT+PhUr9w99KF1cXjIuNgMarFl9kZyIxMRHh4eESJyUavCGVl8DAQAQGBtolSHh4OAwGA7Kzs21lxWw2Iz8/f0hnLBER0Y+y/vkV/EJ8bMXlXxnDDagq+R65ubksLyQrdjtgt6qqCsXFxaiqqoLFYkFxcTGKi4vR1tZmWyY6Ohr79u0DACgUCqSlpWHLli347LPPcObMGTz55JMwGo1YvHixvWISETktq9UKk9kEL1+vAecrlAq4qpU80YFkx25HaW3atAl79uyxfT9t2jQAwMGDBzFv3jwAQGlpKVpaWmzLvPjii2hvb8ezzz4Lk8mEOXPmYP/+/fDw8LBXTCIip6VUKjHGbwwaLtcMOF9YBXo6LIMeSJRopLD7OC+OxnFeiIh+9Pe//x3//ad3MS15MtSeff8RrL5wCVdK2/Cf299FaGioRAmJfiDLcV6IiGj4LViwAFOipqIo6wyqy75H19VutJvbcb7gAr4/04AHkxaxuJDscM8LEZGTu3LlCvbs2YMjeYfR2mmGUqFEUIARixYuxkMPPQSlkv/HkvSG8v7N8kJENEo0NTWhuroabm5uGDduHIeZoBFlKO/fHFaRiGiUCAgIQEBAgNQxiG4b9xUSERGRrLC8EBERkaywvBAREZGssLwQERGRrLC8EBERkaywvBAREZGssLwQERGRrLC8EBERkaywvBAREZGsON0Iu9eudmA2myVOQkRERIN17X17MFctcrry0traCgAYO3asxEmIiIhoqFpbW6HVam+4jNNdmNFqtaKmpgbe3t5QKBRSx3E4s9mMsWPHorq6elRemHK0rz/AbTDa1x/gNuD6y3P9hRBobW2F0Wi86ZXOnW7Pi1KpRHBwsNQxJOfj4yOrF+1wG+3rD3AbjPb1B7gNuP7yW/+b7XG5hgfsEhERkaywvBAREZGssLw4GZVKhfT0dKhUKqmjSGK0rz/AbTDa1x/gNuD6O//6O90Bu0REROTcuOeFiIiIZIXlhYiIiGSF5YWIiIhkheWFiIiIZIXlxYls3boVs2fPhkajga+v74DLVFVVYeHChdBoNNDpdPjVr36F3t5exwZ1oLCwMCgUij63N998U+pYdvPee+8hLCwMHh4eiI+Px4kTJ6SO5DCvvfZav+c6Ojpa6lh2c/jwYTz44IMwGo1QKBT45JNP+swXQmDTpk0ICgqCWq1GQkICysrKpAlrJzfbBitXruz3mkhOTpYmrB1kZGTg7rvvhre3N3Q6HRYvXozS0tI+y3R2diI1NRVjxoyBl5cXlixZgvr6eokSDx+WFyfS3d2NpUuXYtWqVQPOt1gsWLhwIbq7u3H8+HHs2bMHu3fvxqZNmxyc1LFef/111NbW2m5r1qyROpJdfPTRR1i3bh3S09Px9ddfIzY2FklJSWhoaJA6msPceeedfZ7ro0ePSh3Jbtrb2xEbG4v33ntvwPnbtm3Djh07sHPnTuTn58PT0xNJSUno7Ox0cFL7udk2AIDk5OQ+r4m9e/c6MKF95eTkIDU1FXl5ecjKykJPTw8SExPR3t5uW2bt2rX4/PPP8fHHHyMnJwc1NTV45JFHJEw9TAQ5nV27dgmtVttv+hdffCGUSqWoq6uzTXv//feFj4+P6OrqcmBCxwkNDRW//e1vpY7hEHFxcSI1NdX2vcViEUajUWRkZEiYynHS09NFbGys1DEkAUDs27fP9r3VahUGg0Fs377dNs1kMgmVSiX27t0rQUL7++k2EEKIFStWiEWLFkmSRwoNDQ0CgMjJyRFC/PCcu7m5iY8//ti2zLlz5wQAkZubK1XMYcE9L6NIbm4uJk+eDL1eb5uWlJQEs9mMs2fPSpjMvt58802MGTMG06ZNw/bt253yY7Lu7m4UFhYiISHBNk2pVCIhIQG5ubkSJnOssrIyGI1GRERE4PHHH0dVVZXUkSRRUVGBurq6Pq8HrVaL+Pj4UfV6AIBDhw5Bp9NhwoQJWLVqFZqbm6WOZDctLS0AAH9/fwBAYWEhenp6+rwOoqOjERISIvvXgdNdmJGur66urk9xAWD7vq6uTopIdvfCCy9g+vTp8Pf3x/Hjx7Fx40bU1tbinXfekTrasGpqaoLFYhnw+T1//rxEqRwrPj4eu3fvxoQJE1BbW4vNmzdj7ty5KCkpgbe3t9TxHOra7/NArwdn/V0fSHJyMh555BGEh4ejvLwcL7/8MlJSUpCbmwsXFxep4w0rq9WKtLQ03HPPPZg0aRKAH14H7u7u/Y6BdIbXAcvLCPfSSy/hrbfeuuEy586dc+oDE39qKNtk3bp1tmlTpkyBu7s7nnvuOWRkZDj10NmjUUpKiu3rKVOmID4+HqGhofjb3/6Gp59+WsJkJJVHH33U9vXkyZMxZcoUREZG4tChQ5g/f76EyYZfamoqSkpKnPo4r3/F8jLCrV+/HitXrrzhMhEREYO6L4PB0O/sk2tHnRsMhlvKJ4Xb2Sbx8fHo7e1FZWUlJkyYYId00ggICICLi0u/swjq6+tl9dwOJ19fX4wfPx4XL16UOorDXXvO6+vrERQUZJteX1+PqVOnSpRKehEREQgICMDFixedqrw8//zzyMzMxOHDhxEcHGybbjAY0N3dDZPJ1GfvizP8XWB5GeECAwMRGBg4LPc1a9YsbN26FQ0NDdDpdACArKws+Pj4YOLEicPyGI5wO9ukuLgYSqXStv7Owt3dHTNmzEB2djYWL14M4IfdyNnZ2Xj++eelDSeRtrY2lJeXY/ny5VJHcbjw8HAYDAZkZ2fbyorZbEZ+fv51z0YcDS5duoTm5uY+hU7OhBBYs2YN9u3bh0OHDiE8PLzP/BkzZsDNzQ3Z2dlYsmQJAKC0tBRVVVWYNWuWFJGHDcuLE6mqqsLly5dRVVUFi8WC4uJiAEBUVBS8vLyQmJiIiRMnYvny5di2bRvq6urwyiuvIDU11Sk/QsnNzUV+fj7uu+8+eHt7Izc3F2vXrsUTTzwBPz8/qeMNu3Xr1mHFihW46667EBcXh9/97ndob2/HU089JXU0h9iwYQMefPBBhIaGoqamBunp6XBxccFjjz0mdTS7aGtr67NXqaKiAsXFxfD390dISAjS0tKwZcsWjBs3DuHh4Xj11VdhNBpt5dYZ3Ggb+Pv7Y/PmzViyZAkMBgPKy8vx4osvIioqCklJSRKmHj6pqan48MMP8emnn8Lb29t2HItWq4VarYZWq8XTTz+NdevWwd/fHz4+PlizZg1mzZqFmTNnSpz+Nkl9uhMNnxUrVggA/W4HDx60LVNZWSlSUlKEWq0WAQEBYv369aKnp0e60HZUWFgo4uPjhVarFR4eHiImJka88cYborOzU+podvPuu++KkJAQ4e7uLuLi4kReXp7UkRxm2bJlIigoSLi7u4s77rhDLFu2TFy8eFHqWHZz8ODBAX/fV6xYIYT44XTpV199Vej1eqFSqcT8+fNFaWmptKGH2Y22QUdHh0hMTBSBgYHCzc1NhIaGimeeeabPUBFyN9C6AxC7du2yLXP16lWxevVq4efnJzQajXj44YdFbW2tdKGHiUIIIRzaloiIiIhuA8d5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWWF5ISIiIllheSEiIiJZYXkhIiIiWfl/lnY1PUvA8c8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\n", "# define ML\n", @@ -422,24 +305,10 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "6589a03a", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "confusion matrix\n", - "[[18 1]\n", - " [ 0 21]]\n", - "precison, recall\n", - "0.9545454545454546 1.0\n", - "F1 score\n", - "0.9767441860465117\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn.metrics import confusion_matrix,precision_score,recall_score,f1_score \n", "\n", @@ -464,28 +333,10 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "05d701bf", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Classification report for classifier KNeighborsClassifier():\n", - " precision recall f1-score support\n", - "\n", - " 0 1.00 0.95 0.97 19\n", - " 1 0.95 1.00 0.98 21\n", - "\n", - " accuracy 0.97 40\n", - " macro avg 0.98 0.97 0.97 40\n", - "weighted avg 0.98 0.97 0.97 40\n", - "\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn.metrics import classification_report\n", "print(f\"Classification report for classifier {clf}:\\n\"\n", @@ -519,31 +370,10 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "ad4820c7", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcJklEQVR4nO3dd1hT1x8G8Ddhb0VkKYp7KwJC3dWiuPVXBypVnK0Da6XWVRWpA1tbV4tad7VapdparTjQihW1LoYTLaLFASgupiQk9/eHNZWKlmCSS8L7eR6fhxxubt4c1tdzzzlXIgiCACIiIiIDIRU7ABEREZEmsbghIiIig8LihoiIiAwKixsiIiIyKCxuiIiIyKCwuCEiIiKDwuKGiIiIDIqx2AF0TalU4u7du7CxsYFEIhE7DhEREZWAIAjIzs6Gq6srpNLXj82Uu+Lm7t27cHNzEzsGERERlcKtW7dQtWrV1x5T7oobGxsbAM86x9bWVqPnlsvlOHjwIDp37gwTExONnpv+wX7WDfazbrCfdYd9rRva6uesrCy4ubmp/o6/Trkrbp5firK1tdVKcWNpaQlbW1v+4GgR+1k32M+6wX7WHfa1bmi7n0sypYQTiomIiMigsLghIiIig8LihoiIiAwKixsiIiIyKCxuiIiIyKCwuCEiIiKDwuKGiIiIDAqLGyIiIjIoLG6IiIjIoLC4ISIiIoMianHz+++/o2fPnnB1dYVEIsGuXbv+8zkxMTHw9PSEmZkZateujY0bN2o9JxEREekPUYub3NxcNGvWDBERESU6/saNG+jevTs6dOiAhIQEfPTRRxg1ahQOHDig5aRERESkL0S9cWbXrl3RtWvXEh+/atUq1KhRA1999RUAoEGDBoiNjcWSJUvg7++vrZgG6e7jfBy4lI6ncqXYUdSmUChw9Y4Et36/ASMjI7HjGCz2s26wn3WHfa0bz/u57VM57EW6Qale3RX85MmT8PPzK9Lm7++Pjz766JXPKSgoQEFBgepxVlYWgGd3LZXL5RrN9/x8mj6vph2+cg+Td15ETkGh2FHegBH2pP4pdohygP2sG+xn3WFf64YRPsx+ChtzzRU36vxt1aviJj09HU5OTkXanJyckJWVhfz8fFhYWLz0nPDwcISFhb3UfvDgQVhaWmolZ3R0tFbO+6aUAnDgthT7b3MeORERaY4i7wkgCDCyqqBqi409hstmmnuNvLy8Eh+rV8VNaUyfPh0hISGqx1lZWXBzc0Pnzp1ha2ur0deSy+WIjo5Gp06dYCLSUNyrZD+V4+MdF3DkdqaqrUsjJ/Rq6iJiqtIpVBQiMTERzZo1g7GRwX8Li4b9rBvsZ91hX2vHxXN/4ItpIahasw7mrtgCAQISExPRy78jbC3NNfY6z6+8lIRefXWdnZ2RkZFRpC0jIwO2trbFjtoAgJmZGczMXi4dTUxMtFaAaPPcpfFnRjbe33wONzJzAQBSCTClS3180K4mJBKJyOnUJ5fLIdxKQNcmrmWqnw0N+1k32M+6w77WLKVSifDwcMyePRtKpRKVK1WEt4sJHBwcINxKgK2luUb7WZ1z6VVx07JlS0RFRRVpi46ORsuWLUVKVPbtv5iGjyMTkStTAADsLEzw9aDmaFe3ssjJiIhIX2VkZGDIkCGqaRhDhw5FREQErK2ty8S8U1GLm5ycHCQnJ6se37hxAwkJCbC3t0e1atUwffp03LlzB5s2bQIAjBkzBt988w2mTJmCESNG4LfffkNkZCT27t0r1lsosxRKAYujryLiyHVVWwMXW3z7nheqVdLOXCMiIjJ8v/32GwIDA5Geng5LS0usWLECQUFBYscqQtTi5uzZs+jQoYPq8fO5MUFBQdi4cSPS0tKQmpqq+nyNGjWwd+9eTJo0CcuWLUPVqlWxdu1aLgP/lyd5cny4LR5Hr91XtfVq5orP+zaFhSmXPxIRUekUFhYiODgY6enpaNSoESIjI9GwYUOxY71E1OLm7bffhiAIr/x8cbsPv/3224iPj9diKv2WlJ6FDzafw18Pns0qN5JKML1rfYxsU0Mv59cQEVHZYWxsjB9++AGrVq3CV199pbVVx29Kr+bc0Ov9ev4uPvnxPPLlz+bX2FuZ4ptBzdGqtoPIyYiISF8dPHgQf/31F0aPHg0AaNasGVauXClyqtdjcWMAFEoBXxxIwrdHU1RtjavYYtV7XqhasWxW1UREVLYVFhYiNDQU4eHhMDY2hpeXFzw9PcWOVSIsbvTco1wZPtwWj2N//rN/zbueVbDgf01gbsL5NUREpL7bt29j0KBBiI2NBQCMHDmyTM6teRUWN3rsfnYB/rfiOG4/ygcAGEslmNm9AYJauXN+DRERlUpUVBSGDh2KBw8ewMbGBmvXrsWAAQPEjqUWFjd6bO2xFFVh42BtiojBnvCtWUnkVEREpK8+/fRTLFiwAADg6emJyMhI1KpVS+RU6uNNhvSUIAg4cCkdwLMdh38e15qFDRERvRF7e3sAwIQJE3DixAm9LGwAjtzorT/v5eDm38u9fWrYw82eE4eJiEh9ubm5sLKyAvBsvzlfX1+0adNG5FRvhiM3eurg36M2AODfyFnEJEREpI9kMhk++ugjeHt7IycnBwAgkUj0vrABWNzorQOX/rmBaKeGTiImISIifZOSkoLWrVtj2bJlSEpKwp49e8SOpFEsbvTQ3cf5uHDnCYBn+9lwLxsiIiqpnTt3onnz5jh79iwqVqyI3bt3Y9CgQWLH0igWN3oo+vI/ozadG/KSFBER/benT58iODgY/fr1Q1ZWFlq1aoWEhAT07NlT7Ggax+JGDx14Yb5N50a8JEVERP/tk08+QUREBABg6tSpiImJQbVq1UROpR0sbvTM4zwZTt14CACoXskS9ZxsRE5ERET64NNPP0Xjxo2xb98+LFy4ECYmJmJH0hoWN3rm8JV7UCif3Um9c0Mn7kRMRETFys/Px9atW1WPnZ2dkZiYiC5duoiYSje4z42eOXj5xUtSnG9DREQvS0pKwoABA3DhwgUYGxurbp8glZaPMY3y8S4NRL5MgaPX7gN4drsFz2oVRU5ERERlzaZNm+Dl5YULFy7A0dFRtetwecLiRo8c+/M+nsqVAAC/Bk4wkvKSFBERPZObm4sRI0YgKCgIeXl56NixIxISEuDn5yd2NJ1jcaNHDr64BJyrpIiI6G+XLl2Cj48PNmzYAKlUirCwMBw8eBAuLi5iRxMF59zoiUKFEoevPCturEyN0KqWg8iJiIiorLh+/TouX74MFxcXbN26FW+//bbYkUTF4kZPnLn5CI/y5ACAt+s5wtzESOREREQkJkEQVCtme/XqhbVr16Jnz55wdHQUOZn4eFlKTxRdJcVLUkRE5VliYiLatGmDW7duqdpGjhzJwuZvLG70gCAIOPj3jTJNjCToUJ/fvERE5ZEgCPj222/h6+uLEydO4OOPPxY7UpnEy1J64NLdLNx5nA8AeKtmJdiaG+6ukkREVLysrCy8//772L59OwCge/fuWLFihcipyiaO3OiBoqukuHEfEVF5ExcXBy8vL2zfvh3GxsZYtGgRdu/eDQcHLi4pDkdu9MDBF2+U2ZDzbYiIypMjR46gS5cukMlkqFatGrZv34633npL7FhlGoubMi71QR6S0rMBAB5uFeBkay5yIiIi0qW33noL9erVQ82aNbF+/fpyueOwuljclHFcJUVEVP5cunQJ9evXh5GRESwsLHDkyBHY29vzZsklxDk3ZdyBFy5J+XO+DRGRQRMEAUuWLEHz5s0RHh6uaq9UqRILGzVw5KYMy8wpwNm/HgEAalW2Qq3K1iInIiIibXn48CGGDRuGPXv2AAAuXrxYZKM+KjmO3JRhh69kQBCefcxRGyIiw3XixAl4eHhgz549MDU1RUREBH744QcWNqXE4qYMO3CJS8CJiAyZUqnEF198gXbt2uHWrVuoXbs2/vjjD4wbN46FzRtgcVNG5RQUIjY5EwDgZGuGplXsRE5ERESadv36dcyePRsKhQKDBg1CXFwcmjdvLnYsvcc5N2XU79fuQ1aoBAB0bugMqZQVPBGRoalTpw6++eYbCIKAUaNGcbRGQ1jclFEvrpLiEnAiIsOgVCqxcOFC+Pn5wcfHBwAwatQokVMZHl6WKoNkhUr8lnQPAGBjbgzfGpVETkRERG8qIyMDXbp0waeffoqAgADk5uaKHclgceSmDDp14wGynxYCAN6p7whTY9agRET67LfffkNgYCDS09NhYWGB0NBQWFlZiR3LYPGvZhlU9JIUV0kREekrhUKBOXPmwM/PD+np6WjUqBHOnj2LYcOGiR3NoHHkpoxRKgVE/30XcFNjKdrXrSxyIiIiKo2srCz07t0bMTExAIARI0bg66+/hqWlpbjBygEWN2XM+TtPkJFVAABoW9sBVmb8EhER6SNra2tYWVnBysoKq1atwnvvvSd2pHKDfznLGK6SIiLSX4WFhZDL5bCwsIBUKsV3332HzMxM1KtXT+xo5Qrn3JQxB/8ubqQS4J0GLG6IiPTF7du30bFjR4wZM0bVVqlSJRY2ImBxU4Yk38vB9fvPlgZ6V7eHg7WZyImIiKgkoqKi4OHhgWPHjuHnn3/GzZs3xY5UrrG4KUMOXuYlKSIifSKXyzFlyhR0794dDx48gKenJ+Li4uDu7i52tHKNc27KkIMv3iizIZeAExGVZampqRg4cCBOnjwJAJgwYQIWLVoEMzOOuouNxU0Zkf7kKRJuPQYA1He2QbVKXCpIRFRWKZVKdOnSBVeuXIGdnR3Wr1+Pd999V+xY9Ddeliojoq+8MGrDjfuIiMo0qVSKZcuW4a233kJ8fDwLmzKGxU0ZcfDFJeANOd+GiKisSUlJQXR0tOpxp06dcPz4cdSoUUPEVFQcFjdlwJN8OU5efwAAqFLBAo1cbUVOREREL9q5cyeaN2+Ofv364fr166p2qZR/RssiflXKgJir91CoFAA8WyUlkUhETkRERADw9OlTBAcHo1+/fsjKykKjRo1gYmIidiz6DyxuygCukiIiKnv+/PNPtGrVChEREQCAKVOm4OjRo6hWrZrIyei/cLWUyOQKJWKu3gMAVLQ0QQv3iiInIiKibdu24f3330d2djYqVaqETZs2oVu3bmLHohJicSOyq+nZyJUpAACtazvA2IiDaUREYjt16hSys7PRtm1bbN26FVWrVhU7EqmBxY3Izt9+ovrYw62CeEGIiMo5QRBUcx4///xz1K5dGx988AGMjfmnUt9wmEBkiX9v3AcAzVjcEBGJ4vvvv0f37t1RWFgIADA1NcX48eNZ2OgpFjciS7z9GABgJJVwCTgRkY7l5uZixIgRGDJkCPbt24cNGzaIHYk0gCWpiPJkhbiWkQ0AqONoDUtTfjmIiHTl0qVLGDBgAC5fvgyJRILQ0FCMGDFC7FikAfxrKqJLd7Pw9/Y2nG9DRKQjgiBgw4YNGD9+PPLz8+Hs7IytW7eiQ4cOYkcjDRH9slRERATc3d1hbm4OX19fnD59+rXHL126FPXq1YOFhQXc3NwwadIkPH36VEdpNYvzbYiIdG/u3LkYMWIE8vPz0alTJyQmJrKwMTCiFjfbt29HSEgIQkNDERcXh2bNmsHf3x/37t0r9vitW7di2rRpCA0NxZUrV7Bu3Tps374dM2bM0HFyzUh8YaVU06p2IiYhIio/+vfvD1tbW8yfPx/79++Ho6Oj2JFIw0S9LLV48WKMHj0aw4cPBwCsWrUKe/fuxfr16zFt2rSXjj9x4gRat26NwYMHAwDc3d0xaNAgnDp16pWvUVBQgIKCAtXjrKwsAIBcLodcLtfk21Gdr6TnTUh9BAAwN5Gihr25xvMYKnX7mUqH/awb7GftEwQBiYmJaNSoEQCgdu3auHbtGuzt7aFQKKBQKEROaFi09T2tzvlEK25kMhnOnTuH6dOnq9qkUin8/Pxw8uTJYp/TqlUrfP/99zh9+jR8fHyQkpKCqKgoDBky5JWvEx4ejrCwsJfaDx48CEtLyzd/I8V48a6xr5IjB249etb9LuYKRB/Yr5Ushqwk/Uxvjv2sG+xn7cjLy8PKlStx/PhxzJ07F40aNWJf64im+zkvL6/Ex4pW3GRmZkKhUMDJyalIu5OTE5KSkop9zuDBg5GZmYk2bdpAEAQUFhZizJgxr70sNX36dISEhKgeZ2Vlwc3NDZ07d4atrWaXXsvlckRHR6NTp07/eWO13//MBM7GAQDaN66Obt3qazSLIVOnn6n02M+6wX7Wnvj4eAQGBiI5ORlGRkaq3/nsa+3S1vf08ysvJaFXq6ViYmKwYMECrFixAr6+vkhOTsbEiRMxd+5czJo1q9jnmJmZwczM7KV2ExMTrX1zl+TcF+/mqD5uXt2eP2iloM2vIf2D/awb7GfNEQQBK1asQEhICGQyGapVq4Zt27bB29sbUVFR7Gsd0XQ/q3Mu0YobBwcHGBkZISMjo0h7RkYGnJ2LvzP2rFmzMGTIEIwaNQoA0KRJE+Tm5uL999/Hp59+CqlU9MVfJXb+7837AKBZ1Qqi5SAiMiSPHz/GqFGjsHPnTgBAr169sGHDBtjb23NeUzkiWjVgamoKLy8vHD58WNWmVCpx+PBhtGzZstjn5OXlvVTAGBkZAXhWqesLQRBUOxPbWZigeiXtzP0hIipvdu3ahZ07d8LExARLlizBrl27YG9vL3Ys0jFRL0uFhIQgKCgI3t7e8PHxwdKlS5Gbm6taPTV06FBUqVIF4eHhAICePXti8eLFaN68ueqy1KxZs9CzZ09VkaMP7j55iswcGYBnS8Cf36iNiIjeTFBQEM6fP49BgwahRYsWYschkYha3AQEBOD+/fuYPXs20tPT4eHhgf3796smGaemphYZqZk5cyYkEglmzpyJO3fuoHLlyujZsyfmz58v1lsolRc37+POxEREpffw4UPMnDkT4eHhsLN79p/FxYsXix2LRCb6hOLg4GAEBwcX+7mYmJgij42NjREaGorQ0FAdJNOexBfm2zTlfBsiolI5efIkBg4ciNTUVDx58gRbtmwROxKVEfozA9eAFLntAncmJiJSi1KpxKJFi9CuXTukpqaiVq1a+Pjjj8WORWWI6CM35Y1CKeDC37ddcLEzh6OtuciJiIj0R2ZmJoKCghAVFQXg2fSG1atXa3zfMtJvLG50LOV+DnJlz7b65hJwIqKSS0hIQI8ePXDnzh2YmZlh+fLlGD16NBdl0EtY3OhYAu8ETkRUKlWrVgUA1KtXD5GRkWjatKnIiaisYnGjY+dfuBM459sQEb1eVlaW6pKTg4MDDhw4gOrVq8Pa2lrkZFSWcUKxjj1fKSWRAI1Z3BARvdKRI0dQr149fPfdd6q2Ro0asbCh/8TiRocKChW4kvbsxl81Haxga857mxAR/ZtCoUBYWBj8/PyQnp6OiIgIKJVKsWORHmFxo0NX0rIhVzy7TQTn2xARvSwtLQ2dO3fGnDlzoFQqMXz4cBw5ckSv7h1I4uOcGx3izTKJiF4tOjoa7733Hu7duwcrKyusXLkSQ4YMETsW6SEWNzrElVJERMVLSUlB165doVAo0KRJE0RGRqJ+/fpixyI9xeJGh57vTGxiJEEDFxtxwxARlSE1a9bE1KlT8eDBAyxZsgQWFhZiRyI9xuJGR7KeypGSmQsAaOBiCzNj/bmLORGRNuzbtw/16tVDzZo1AQDz5s3jhnykEZyhpSMXbz+B8GwuMefbEFG5JpfLMWXKFHTr1g0DBw6ETCYDABY2pDEcudGRxBc272vK/W2IqJxKTU3FwIEDcfLkSQCAj48PhOf/8yPSEBY3OvLincA9OJmYiMqh3bt3Y9iwYXj06BHs7Oywbt069O3bV+xYZIB4WUpHni8DtzI1Qs3K3F2TiMoPmUyGkJAQ9O7dG48ePUKLFi0QFxfHwoa0hsWNDtzLfoq7T54CAJpUtYORlNeViaj8EAQBv//+OwDgo48+QmxsrGoSMZE28LKUDpy/9cLNMnlJiojKCUEQIJFIYGZmhsjISFy4cAG9e/cWOxaVAyxudCCROxMTUTlSUFCAyZMno0KFCpg7dy6AZ/vYcLSGdIXFjQ5wZ2IiKi+Sk5MREBCAuLg4SKVSBAUFoXbt2mLHonKGc260TBAEnP97GbiDtSlc7cxFTkREpB2RkZHw9PREXFwcKlWqhN27d7OwIVGwuNGyvx7k4Um+HMCzS1LcpIqIDE1+fj7GjBmDgIAAZGdno02bNkhISED37t3FjkblFC9LadmL822acr4NERkYQRDg5+eHEydOQCKRYPr06QgLC4OxMf+8kHj43adliUVWSnFnYiIyLBKJBKNHj8aff/6J77//Hp07dxY7EhEvS2nbea6UIiIDk5eXhytXrqgeDxs2DFevXmVhQ2UGixstKlQocfHus5GbavaWqGhlKnIiIqI3c/nyZfj4+KBz58548OCBqr1ixYoipiIqisWNFl3LyMFTuRIAl4ATkf7buHEjvL29cenSJRQWFuLmzZtiRyIqFosbLSq6eR/n2xCRfsrJyUFQUBCGDx+O/Px8+Pn5ISEhAV5eXmJHIyoWixstSuTmfUSk5y5cuIAWLVpg06ZNkEqlmDdvHg4cOAAnJyexoxG9EldLaVHi35v3SSVAI1dbkdMQEanv888/R1JSElxdXfHDDz+gXbt2Ykci+k8sbrQkX6bAtYxsAEBdJxtYmrKriUj/REREwMLCAgsWLEDlypXFjkNUIrwspSWX7j6BQikA4BJwItIf8fHx+OSTTyAIz35/2dnZYc2aNSxsSK9wOEFLeLNMItIngiBg5cqVmDRpEmQyGRo2bIjhw4eLHYuoVN6ouHn69CnMzXkjyOI8v1kmwJ2Jiahse/LkCUaNGoUdO3YAAHr27InevXuLnIqo9NS+LKVUKjF37lxUqVIF1tbWSElJAQDMmjUL69at03hAffV8GbiZsRR1nWzEDUNE9ApnzpxB8+bNsWPHDpiYmGDx4sX45ZdfYG9vL3Y0olJTu7iZN28eNm7ciC+++AKmpv/suNu4cWOsXbtWo+H01eM8Of56kAcAaFzFDiZGnNpERGXP+vXr0bp1a9y4cQPu7u6IjY3FpEmTIJFIxI5G9EbU/qu7adMmrF69GoGBgTAyMlK1N2vWDElJSRoNp68u3PnnklRTbt5HRGVU7dq1oVAo8O677yI+Ph4+Pj5iRyLSCLXn3Ny5cwe1a9d+qV2pVEIul2sklL5LfGG+jQcnExNRGfL48WNUqFABANCuXTucOnUKXl5eHK0hg6L2yE3Dhg1x7Nixl9p37NiB5s2baySUvrtwJ0v1cVMuAyeiMkCpVOLLL79EjRo1ioyye3t7s7Ahg6P2yM3s2bMRFBSEO3fuQKlU4qeffsLVq1exadMm/Prrr9rIqFcEATj/92UpW3NjuFeyFDkREZV3mZmZGDZsGPbu3QsA2Lx5M+bPny9yKiLtUXvkpnfv3tizZw8OHToEKysrzJ49G1euXMGePXvQqVMnbWTUK49lQGaODMCz/W34PyIiElNsbCyaN2+OvXv3wszMDKtWrcK8efPEjkWkVaXa56Zt27aIjo7WdBaD8FfOP8UMdyYmIrEolUp8/vnnmDVrFhQKBerWrYvIyEg0a9ZM7GhEWqf2yE3NmjXx4MGDl9ofP36MmjVraiSUPkt9sbjhZGIiEsnGjRsxY8YMKBQKvPfeezh37hwLGyo31C5ubt68CYVC8VJ7QUEB7ty5o5FQ+iw155+Pm3EZOBGJZOjQoejUqRPWrVuHTZs2wdraWuxIRDpT4stSu3fvVn184MAB2Nn984dboVDg8OHDcHd312g4faNUCkjNfTZy42JnDkdb3pqCiHRDoVBg3bp1GDZsGExNTWFsbIwDBw5w3h+VSyUubvr06QMAkEgkCAoKKvI5ExMTuLu746uvvtJoOH2TkpmLAsWzXyTcvI+IdCU9PR2BgYH47bffkJSUhMWLFwMACxsqt0pc3CiVSgBAjRo1cObMGTg4OGgtlL46f+fFm2VWEC8IEZUbhw4dwnvvvYeMjAxYWlpyvzEilGK11I0bN7SRwyC8uHmfB1dKEZEWFRYWIiwsDPPnz4cgCGjSpAkiIyNRv359saMRia5US8Fzc3Nx9OhRpKamQiaTFfnchx9+qJFg+uj8C7ddaMzLUkSkJXfu3MHgwYPx+++/AwBGjx6NZcuWwcLCQuRkRGWD2sVNfHw8unXrhry8POTm5sLe3h6ZmZmwtLSEo6NjuS1uCgoVuJKeDQCo6WAFW3MTkRMRkaHKz89HfHw8rK2tsXr1agwaNEjsSERlitpLwSdNmoSePXvi0aNHsLCwwB9//IG//voLXl5e+PLLL7WRUS8kpWVDrhAAAE2r2IqchogMjSAIqo9r166NyMhIxMXFsbAhKobaxU1CQgI+/vhjSKVSGBkZoaCgAG5ubvjiiy8wY8YMbWTUC+dvP1Z9zJVSRKRJt27dQvv27XHo0CFVW5cuXVCnTh0RUxGVXWoXNyYmJpBKnz3N0dERqampAAA7OzvcunVLs+n0yI3MPNXH9Z1tRExCRIZkz5498PDwwLFjxzB+/PhiN1EloqLUnnPTvHlznDlzBnXq1EH79u0xe/ZsZGZmYvPmzWjcuLE2MuoF5QtDxqbGateMRERFyGQyTJ8+XbVnjbe3N7Zv3w4jIyORkxGVfWr/FV6wYAFcXFwAAPPnz0fFihUxduxY3L9/H99++63GAxIRlTc3b95E27ZtVYXNxIkTERsby/v3EZWQ2iM33t7eqo8dHR2xf/9+jQYiIirPbt26hebNm+Px48eoUKECNmzYoNohnohKRmPXT+Li4tCjRw+1nxcREQF3d3eYm5vD19cXp0+ffu3xjx8/xvjx4+Hi4gIzMzPUrVsXUVFRpY1NRFSmVK1aFT179sRbb72FhIQEFjZEpaDWyM2BAwcQHR0NU1NTjBo1CjVr1kRSUhKmTZuGPXv2wN/fX60X3759O0JCQrBq1Sr4+vpi6dKl8Pf3x9WrV+Ho6PjS8TKZDJ06dYKjoyN27NiBKlWq4K+//kKFChXUel0iorIkLS0NDx48gLOzMyQSCVatWgUTExOYmHC/LKLSKHFxs27dOowePRr29vZ49OgR1q5di8WLF2PChAkICAjAxYsX0aBBA7VefPHixRg9ejSGDx8OAFi1ahX27t2L9evXY9q0aS8dv379ejx8+BAnTpxQ/dD/153ICwoKUFBQoHqclfXsFglyuRxyuVytvK/z/N5bwLNt0TV5birqed+yj7WL/awb27ZtQ0hICPbs2YOff/4ZEolE9fuNfa9Z/J7WDW31szrnkwgv7gz1Gk2bNsWQIUPwySefYOfOnejfvz/eeustREZGomrVqmqHlMlksLS0xI4dO4oMuwYFBeHx48f45ZdfXnpOt27dYG9vD0tLS/zyyy+oXLkyBg8ejKlTp75yBcGcOXMQFhb2UvvWrVthaWmpdu5X2XlDit/Tn13lC2lciOpcDU5EryGTybB+/XrVvMUGDRpg5syZsLKyEjkZUdmUl5eHwYMH48mTJ7C1ff1muSUeubl+/Tr69+8PAHj33XdhbGyMRYsWlaqwAYDMzEwoFAo4OTkVaXdyckJSUlKxz0lJScFvv/2GwMBAREVFITk5GePGjYNcLkdoaGixz5k+fTpCQkJUj7OysuDm5obOnTv/Z+eo49zeJPye/mzPHx9fX3i5V9LYuakouVyO6OhodOrUicP2WsR+1p5r165h8ODBOH/+PACgb9++WL9+Pe8NpWX8ntYNbfXz8ysvJVHi4iY/P1810iGRSGBmZqZaEq4rSqUSjo6OWL16NYyMjODl5YU7d+5g0aJFryxuzMzMYGZm9lK7pq9nP9/YEACMjY35g6MDnJOgG+xnzdqyZQs++OAD5ObmonLlytiwYQMKCwthYWHBftYRfk/rhqb7WZ1zqTWheO3atbC2tgbwbF7Jxo0b4eDgUOSYkt4408HBAUZGRsjIyCjSnpGRAWdn52Kf4+LiAhMTkyKXoBo0aID09HTIZDKYmpqq83aIiHQqLy8PM2fORG5uLt5++21s2bIFlStX5opPIg0rcXFTrVo1rFmzRvXY2dkZmzdvLnKMRCIpcXFjamoKLy8vHD58WDXnRqlU4vDhwwgODi72Oa1bt8bWrVuhVCpVIyXXrl2Di4sLCxsiKvMsLS2xfft2REVFYdasWTAyMuLkViItKHFxc/PmTY2/eEhICIKCguDt7Q0fHx8sXboUubm5qtVTQ4cORZUqVRAeHg4AGDt2LL755htMnDgREyZMwJ9//okFCxaUuKAiItK17777DgqFAiNGjAAA+Pj4wMfHR+RURIZN7R2KNSkgIAD379/H7NmzkZ6eDg8PD+zfv181yTg1NbXIXBY3NzccOHAAkyZNQtOmTVGlShVMnDgRU6dOFestEBEVKycnB+PHj8emTZtgZmaGNm3aoG7dumLHIioXRC1uACA4OPiVl6FiYmJeamvZsiX++OMPLaciIiq9CxcuYMCAAUhKSoJUKsXMmTNRq1YtsWMRlRuiFzdERIZCEASsW7cOEyZMwNOnT+Hq6oqtW7eiffv2YkcjKldY3BARaYAgCAgKClIttOjSpQs2bdqEypUri5yMqPzR2I0ziYjKM4lEgjp16sDIyAgLFy7E3r17WdgQiaRUxc3169cxc+ZMDBo0CPfu3QMA7Nu3D5cuXdJoOCKiskwQBDx69Ej1eMaMGTh37hymTp1aZDEEEemW2j99R48eRZMmTXDq1Cn89NNPyMnJAQAkJia+cpdgIiJD8+TJEwQEBODtt99Gfn4+AMDIyAjNmjUTORkRqV3cTJs2DfPmzUN0dHSRjfM6duzIVUxEVC6cPXsWnp6e+PHHH3H58mUcP35c7EhE9AK1i5sLFy7gf//730vtjo6OyMzM1EgoIqKySBAELF++HK1atUJKSgqqV6+O2NhY+Pn5iR2NiF6gdnFToUIFpKWlvdQeHx+PKlWqaCQUEVFZ8+jRI7z77ruYOHEi5HI5+vTpg/j4ePj6+oodjYj+Re3iZuDAgZg6dSrS09MhkUigVCpx/PhxTJ48GUOHDtVGRiIi0Y0bNw67du2Cqakpli9fjp9++gkVK1YUOxYRFUPt4mbBggWoX78+3NzckJOTg4YNG6Jdu3Zo1aoVZs6cqY2MRESi+/zzz9GiRQucOHECEyZMgEQiETsSEb2C2pv4mZqaYs2aNZg1axYuXryInJwcNG/eHHXq1NFGPiIiUTx48AB79uzBsGHDAADVqlXDqVOnWNQQ6QG1i5vY2Fi0adMG1apVQ7Vq1bSRiYhIVMePH8fAgQNx+/ZtVKpUCT179gQAFjZEekLty1IdO3ZEjRo1MGPGDFy+fFkbmYiIRKFUKrFw4UK0b98et2/fRp06deDm5iZ2LCJSk9rFzd27d/Hxxx/j6NGjaNy4MTw8PLBo0SLcvn1bG/mIiHTi3r176NatG6ZPnw6FQoHBgwfj3Llz8PDwEDsaEalJ7eLGwcEBwcHBOH78OK5fv47+/fvju+++g7u7Ozp27KiNjEREWnX06FF4eHjgwIEDMDc3x9q1a/H999/DxsZG7GhEVApvdFfwGjVqYNq0aWjWrBlmzZqFo0ePaioXEZHOpKWlIS0tDQ0aNEBkZCQaN24sdiQiegOlLm6OHz+OLVu2YMeOHXj69Cl69+6N8PBwTWYjItIaQRBUE4QHDhwImUyGvn37wsrKSuRkRPSm1L4sNX36dNSoUQMdO3ZEamoqli1bhvT0dGzevBldunTRRkYiIo06fPgwPD09kZ6ermobOnQoCxsiA6F2cfP777/jk08+wZ07d/Drr79i0KBBsLS01EY2IiKNUigUmD17Njp16oSEhASEhYWJHYmItEDty1K8+y0R6aO7d+9i8ODBqrmBo0aNwldffSVyKiLShhIVN7t370bXrl1hYmKC3bt3v/bYXr16aSQYEZGmHDhwAO+99x4yMzNhbW2Nb7/9FoMHDxY7FhFpSYmKmz59+iA9PR2Ojo7o06fPK4+TSCRQKBSaykZE9MZ+/PFHDBgwAADQrFkzREZGom7duiKnIiJtKlFxo1Qqi/2YiKis69KlC+rWrQs/Pz989dVXMDc3FzsSEWmZ2hOKN23ahIKCgpfaZTIZNm3apJFQRERv4o8//oAgCAAAGxsbnDlzBhERESxsiMoJtYub4cOH48mTJy+1Z2dnY/jw4RoJRURUGjKZDJMnT0bLli2xdOlSVbutra14oYhI59ReLfXixlcvun37Nuzs7DQSiohIXTdv3sTAgQNx6tQpAMCdO3dETkREYilxcdO8eXNIJBJIJBK88847MDb+56kKhQI3btzgJn5EJIpdu3Zh+PDhePz4MSpUqIANGza8dvEDERm2Ehc3z39RJCQkwN/fH9bW1qrPmZqawt3dHX379tV4QCKiVykoKMCUKVOwfPlyAICvry+2bdsGd3d3cYMRkahKXNyEhoYCANzd3REQEMCJeUQkusuXL2PFihUAgI8//hgLFiyAqampyKmISGxqz7kJCgrSRg4iIrU1b94cX3/9NapWrYoePXqIHYeIyogSFTf29va4du0aHBwcULFixWInFD/38OFDjYUjInrR06dPMXXqVIwcORJNmzYFAIwZM0bkVERU1pSouFmyZAlsbGxUH7+uuCEi0oZr165hwIABSExMxMGDB3HhwoUiCxuIiJ4r0W+GFy9FDRs2TFtZiIiKtXXrVnzwwQfIyclB5cqVsXTpUhY2RPRKam/iFxcXhwsXLqge//LLL+jTpw9mzJgBmUym0XBEVL7l5eVh9OjRCAwMRE5ODtq3b69asUlE9CpqFzcffPABrl27BgBISUlBQEAALC0t8eOPP2LKlCkaD0hE5VN6ejp8fX2xdu1aSCQSzJ49G4cOHYKrq6vY0YiojFO7uLl27Ro8PDwAPLvbbvv27bF161Zs3LgRO3fu1HQ+IiqnKleuDEdHRzg5OSE6OhphYWG8FEVEJVKq2y88vzP4oUOHVMsv3dzckJmZqdl0RFSu5ObmwsjICObm5jAyMsKWLVsAAM7OziInIyJ9ovbIjbe3N+bNm4fNmzfj6NGj6N69OwDgxo0bcHJy0nhAIiofLl68iBYtWmDSpEmqNmdnZxY2RKQ2tYubpUuXIi4uDsHBwfj0009Ru3ZtAMCOHTvQqlUrjQckIsMmCALWrVuHFi1a4MqVK9i9ezcePHggdiwi0mNqX5Zq2rRpkdVSzy1atAhGRkYaCUVE5UN2djbGjh2ruvzk7++PzZs3o1KlSiInIyJ9VurZeefOncOVK1cAAA0bNoSnp6fGQhGR4UtMTMSAAQNw7do1GBkZYd68eZgyZQqkUrUHlImIilC7uLl37x4CAgJw9OhRVKhQAQDw+PFjdOjQAdu2bUPlypU1nZGIDExBQQG6deuGu3fvomrVqti2bRtat24tdiwiMhBq/xdpwoQJyMnJwaVLl/Dw4UM8fPgQFy9eRFZWFj788ENtZCQiA2NmZoaVK1eiR48eSEhIYGFDRBql9sjN/v37cejQITRo0EDV1rBhQ0RERKBz584aDUdEhuPcuXN49OgR/Pz8AAC9evVCz549ea86ItI4tUdulEolTExMXmo3MTFR7X9DRPScIAj4+uuv0apVKwQEBODWrVuqz7GwISJtULu46dixIyZOnIi7d++q2u7cuYNJkybhnXfe0Wg4ItJvjx49Qt++ffHhhx9CJpOhXbt2sLa2FjsWERk4tYubb775BllZWXB3d0etWrVQq1Yt1KhRA1lZWfj666+1kZGI9NCpU6fg6emJn3/+Gaampli+fDl++uknVKxYUexoRGTg1J5z4+bmhri4OBw+fFi1FLxBgwaq6+hEVL4JgoAlS5Zg6tSpKCwsRM2aNREZGQkvLy+xoxFROaFWcbN9+3bs3r0bMpkM77zzDiZMmKCtXESkpyQSCZKSklBYWIj+/ftjzZo1sLOzEzsWEZUjJS5uVq5cifHjx6NOnTqwsLDATz/9hOvXr2PRokXazEdEekKpVKo24Fu2bBnat2+PwYMHc9IwEelciefcfPPNNwgNDcXVq1eRkJCA7777DitWrNBmNiLSA0qlEp9//jl69OihWjFpYWGBwMBAFjZEJIoSFzcpKSkICgpSPR48eDAKCwuRlpamlWBEVPbdv38f3bt3x7Rp07Bv3z788ssvYkciIip5cVNQUAArK6t/niiVwtTUFPn5+VoJRkRl2++//w4PDw/s378f5ubmWLt2Lfr06SN2LCIi9SYUz5o1C5aWlqrHMpkM8+fPLzJZcPHixZpLR0RljkKhQHh4OEJDQ6FUKtGgQQNERkaicePGYkcjIgKgRnHTrl07XL16tUhbq1atkJKSonrM6+tEhm/cuHFYvXo1AGDYsGH45ptviozqEhGJrcTFTUxMjBZjEJG+GDt2LHbs2IElS5Zg6NChYschInqJ2jsUa0NERATc3d1hbm4OX19fnD59ukTP27ZtGyQSCa/zE2mRQqHAyZMnVY89PDzw119/sbAhojJL9OJm+/btCAkJQWhoKOLi4tCsWTP4+/vj3r17r33ezZs3MXnyZLRt21ZHSYnKn4cPH8Lf3x/t27fHmTNnVO28PxQRlWWiFzeLFy/G6NGjMXz4cDRs2BCrVq2CpaUl1q9f/8rnKBQKBAYGIiwsDDVr1tRhWqLy4+DBg5g0aRJ+//13mJmZFblZLhFRWab2vaU0SSaT4dy5c5g+fbqqTSqVws/Pr8gw+L999tlncHR0xMiRI3Hs2LHXvkZBQQEKCgpUj7OysgAAcrkccrn8Dd/BP55vXgYAhYWFGj03FfW8b9nH2lFYWIjQ0FDV7uNNmjTBDz/8gLp167LPtYDfz7rDvtYNbfWzOucTtbjJzMyEQqGAk5NTkXYnJyckJSUV+5zY2FisW7cOCQkJJXqN8PBwhIWFvdR+8ODBIsva39TNm1I8Hwg7feoUMi5r7NT0CtHR0WJHMDj379/H4sWLVTfF7dq1K4YPH47k5GQkJyeLnM6w8ftZd9jXuqHpfs7LyyvxsaUqbo4dO4Zvv/0W169fx44dO1ClShVs3rwZNWrUQJs2bUpzyhLJzs7GkCFDsGbNGjg4OJToOdOnT0dISIjqcVZWFtzc3NC5c2fY2tpqLNu5vUn4PT0VAODj6wsv90oaOzcVJZfLER0djU6dOsHExETsOAbl66+/xpUrV2Bra4uIiAjY2Niwn7WM38+6w77WDW318/MrLyWhdnGzc+dODBkyBIGBgYiPj1dd8nny5AkWLFiAqKioEp/LwcEBRkZGyMjIKNKekZEBZ2fnl46/fv06bt68iZ49e6ranl8OMjY2xtWrV1GrVq0izzEzM4OZmdlL5zIxMdFopz+/YeDzLPzB0T5Nfw0J+Oijj5CRkYH3338f1apVQ1RUFPtZR9jPusO+1g1N97M651J7QvG8efOwatUqrFmzpsgLtW7dGnFxcWqdy9TUFF5eXjh8+LCqTalU4vDhw2jZsuVLx9evXx8XLlxAQkKC6l+vXr3QoUMHJCQkwM3NTd23Q1SuPV/SnZOTA+BZkf7555+/9J8EIiJ9ovbIzdWrV9GuXbuX2u3s7PD48WO1A4SEhCAoKAje3t7w8fHB0qVLkZubi+HDhwMAhg4diipVqiA8PBzm5uYvbfFeoUIFAODW70Rq+uWXXzBs2DA8fvwY1tbWWLFihdiRiIg0Qu3ixtnZGcnJyXB3dy/SHhsbW6pl2QEBAbh//z5mz56N9PR01Y34nk8yTk1NLXLJh4jejEwmw5QpU7Bs2TIAgI+PD6ZMmSJyKiIizVG7uBk9ejQmTpyI9evXQyKR4O7duzh58iQmT56MWbNmlSpEcHAwgoODi/3cf932YePGjaV6TaLyKCUlBQEBATh79iwA4OOPP8aCBQtgamoqcjIiIs1Ru7iZNm0alEol3nnnHeTl5aFdu3YwMzPD5MmTMWHCBG1kJCINiImJQe/evZGVlQV7e3t899136NGjh9ixiIg0Tu3iRiKR4NNPP8Unn3yC5ORk5OTkoGHDhtyOnaiMq1evHszNzVWb8nECPhEZqlJv4mdqaoqGDRtqMgsRaVhmZqZqTygXFxccPXoUtWrV4jJYIjJoahc3HTp0gEQieeXnf/vttzcKRESa8cMPP+CDDz7A+vXr0a9fPwDPtlMgIjJ0ahc3Hh4eRR7L5XIkJCTg4sWLCAoK0lQuIiql/Px8TJw4EWvWrAEAbNq0SVXcEBGVB2oXN0uWLCm2fc6cOaqNwIhIHElJSRgwYAAuXLgAiUSCmTNnYvbs2WLHIiLSKY1tIPPee+9h/fr1mjodEalp06ZN8PLywoULF+Dk5ISDBw/is88+g7GxqPfHJSLSOY391jt58iTMzc01dToiUkNcXJzqsnDHjh2xZcuWYu/PRkRUHqhd3Lz77rtFHguCgLS0NJw9e7bUm/gR0Zvx9PTExx9/DDs7O8yYMQNGRkZiRyIiEo3axY2dnV2Rx1KpFPXq1cNnn32Gzp07aywYEb2aIAjYtGkT3nnnHVStWhUA8OWXX4qcioiobFCruFEoFBg+fDiaNGmCihUraisTEb1GdnY2xo4diy1btqBNmzY4cuQI59UQEb1ArQnFRkZG6Ny5c6nu/k1Eby4xMRHe3t7YsmULjIyM0L17d95YlojoX9T+rdi4cWOkpKRoIwsRvYIgCPj222/h6+uLa9euoWrVqjh69CimTZvG4oaI6F/U/q04b948TJ48Gb/++ivS0tKQlZVV5B8RaVZ2djYGDhyIMWPGoKCgAD169EBCQgJat24tdjQiojKpxBfqP/vsM3z88cfo1q0bAKBXr15FbsMgCAIkEgkUCoXmUxKVY0ZGRrh8+TKMjY2xcOFChISEvPYWKERE5V2Ji5uwsDCMGTMGR44c0WYeIsKz/ywIggCpVApLS0tERkbiyZMneOutt8SORkRU5pW4uBEEAQDQvn17rYUhIuDx48cYOXIkvL29MX36dABAgwYNRE5FRKQ/1Jpzw6FwIu06ffo0mjdvjp9++glz585FRkaG2JGIiPSOWptj1K1b9z8LnIcPH75RIKLySBAELF26FFOnToVcLkfNmjWxfft2ODk5iR2NiEjvqFXchIWFvbRDMRG9mYcPH2LYsGHYs2cPAKBfv35Yu3Ytf9aIiEpJreJm4MCBcHR01FYWonJHJpPhrbfewp9//gkzMzMsWbIEY8aM4SVgIqI3UOI5N/xlS6R5pqam+Oijj1CnTh388ccfGDt2LH/WiIjeUImLm+erpYjozWRmZuLy5cuqx2PHjkVCQgI8PDzEC0VEZEBKXNwolUpekiJ6Q8eOHUOzZs3Qs2dPPHnyBMCzUVFLS0uRkxERGQ7elIZIB5RKJebPn4+3334bd+/ehampKe7fvy92LCIig6TWhGIiUl9GRgaGDBmC6OhoAEBQUBAiIiJgZWUlcjIiIsPE4oZIi3777TcEBgYiPT0dlpaWWLFiBYKCgsSORURk0FjcEGnRkiVLkJ6ejkaNGiEyMhINGzYUOxIRkcHjnBsiLdqwYQMmT56M06dPs7AhItIRFjdEGnTw4EFMnjxZ9djBwQGLFi3iaigiIh3iZSkiDSgsLERoaCjCw8MhCAJatWqFd999V+xYRETlEosbojd0+/ZtDB48GMeOHQMAjBkzBl27dhU5FRFR+cXihugNREVFYejQoXjw4AFsbGywdu1aDBgwQOxYRETlGufcEJXSggUL0L17dzx48ABeXl6Ij49nYUNEVAawuCEqJS8vL0gkEkyYMAHHjx9HrVq1xI5ERETgZSkitdy7d091jzV/f39cunQJDRo0EDkVERG9iCM3RCUgk8kwadIk1KtXDykpKap2FjZERGUPixui/3Djxg20adMGS5cuxePHj7Fv3z6xIxER0WuwuCF6jZ07d6J58+Y4c+YM7O3tsXv3bowfP17sWERE9BosboiK8fTpUwQHB6Nfv3548uQJWrVqhfj4ePTs2VPsaERE9B9Y3BAVY/ny5YiIiAAATJ06FTExMahWrZrIqYiIqCS4WoqoGBMnTsSRI0fw4YcfcrdhIiI9w5EbIgD5+fn48ssvUVhYCAAwMzPDvn37WNgQEekhjtxQuZeUlIQBAwbgwoULePz4MebNmyd2JCIiegMcuaFybfPmzfD29saFCxfg5OSEt99+W+xIRET0hljcULmUm5uLESNGYOjQocjNzUXHjh2RkJAAPz8/saMREdEbYnFD5c6VK1fg4+ODDRs2QCqVIiwsDAcPHoSzs7PY0YiISAM454bKHaVSiRs3bsDFxQVbt27lpSgiIgPD4obKBYVCASMjIwBAo0aN8PPPP6N58+aqm2ASEZHh4GUpMniJiYlo2rQpYmNjVW3+/v4sbIiIDBSLGzJYgiDg22+/ha+vLy5fvoxPPvkEgiCIHYuIiLSMxQ0ZpKysLAwaNAhjxoxBQUEBunXrhj179kAikYgdjYiItIzFDRmcuLg4eHl5Yfv27TA2NsaiRYuwZ88eODg4iB2NiIh0gBOKyaBcvHgRLVu2hEwmQ7Vq1bBt2za0bNlS7FhERKRDLG7IoDRq1Ag9evRAYWEhNmzYAHt7e7EjERGRjrG4Ib139uxZ1KlTB3Z2dpBIJPj+++9hbm7O+TVEROVUmZhzExERAXd3d5ibm8PX1xenT59+5bFr1qxB27ZtUbFiRVSsWBF+fn6vPZ4MlyAIWLJkCVq1aoX3339ftRLKwsKChQ0RUTkmenGzfft2hISEIDQ0FHFxcWjWrBn8/f1x7969Yo+PiYnBoEGDcOTIEZw8eRJubm7o3Lkz7ty5o+PkJKbs7Gz07dsXISEhkMvlUCqVkMlkYsciIqIyQPTiZvHixRg9ejSGDx+Ohg0bYtWqVbC0tMT69euLPX7Lli0YN24cPDw8UL9+faxduxZKpRKHDx/WcXISyx9//IFJkybh119/hampKSIiIhAZGQkzMzOxoxERURkg6pwbmUyGc+fOYfr06ao2qVQKPz8/nDx5skTnyMvLg1wuf+XE0YKCAhQUFKgeZ2VlAQDkcjnkcvkbpC9KqVSqPi4sLNTouekZpVKJxYsXY9asWVAoFKhVqxa2bt2K5s2bo7CwUOx4Buf59zC/l7WL/aw77Gvd0FY/q3M+UYubzMxMKBQKODk5FWl3cnJCUlJSic4xdepUuLq6ws/Pr9jPh4eHIyws7KX2gwcPwtLSUv3Qr3DzphTPB8JOnzqFjMsaOzX9LTs7G19++SUUCgXatm2LcePGIS0tDWlpaWJHM2jR0dFiRygX2M+6w77WDU33c15eXomP1evVUgsXLsS2bdsQExMDc3PzYo+ZPn06QkJCVI+zsrJU83RsbW01luXc3iT8np4KAPDx9YWXeyWNnZv+4erqiitXrqBKlSro3LkzTExMxI5ksORyOaKjo9GpUyf2sxaxn3WHfa0b2urn51deSkLU4sbBwQFGRkbIyMgo0p6RkQFnZ+fXPvfLL7/EwoULcejQITRt2vSVx5mZmRU7F8PExESjnS6V/jN9ydjYmD84GqBUKhEeHo7q1avjvffeAwB07NgRbdu2RVRUlMa/hlQ89rNusJ91h32tG5ruZ3XOJeqEYlNTU3h5eRWZDPx8cvDrdpX94osvMHfuXOzfvx/e3t66iEo6lpGRgS5dumDmzJn44IMPuBqOiIhKTPTLUiEhIQgKCoK3tzd8fHywdOlS5ObmYvjw4QCAoUOHokqVKggPDwcAfP7555g9eza2bt0Kd3d3pKenAwCsra1hbW0t2vsgzTly5AgGDx6M9PR0WFhY4JtvvoGrq6vYsYiISE+IXtwEBATg/v37mD17NtLT0+Hh4YH9+/erJhmnpqYWueSzcuVKyGQy9OvXr8h5QkNDMWfOHF1GJw1TKBSYN28ePvvsMyiVSjRq1AiRkZFo2LCh2NGIiEiPiF7cAEBwcDCCg4OL/VxMTEyRxzdv3tR+INK5wsJCdOnSRXWJcuTIkVi+fLlGV7QREVH5IPomfkTAs0nYLVq0gJWVFb7//nusXbuWhQ0REZUKixsSTWFhIe7fv696/NlnnyExMRGBgYEipiIiIn3H4oZEcfv2bXTo0AHdu3dX3RPKxMQEtWrVEjkZERHpOxY3pHNRUVHw8PBAbGwskpKScPHiRbEjERGRAWFxQzojl8sxZcoUdO/eHQ8ePICnpyfi4uLg6ekpdjQiIjIgZWK1FBm+v/76CwMHDsQff/wBAJgwYQIWLVrEO3kTEZHGsbghnRg1ahT++OMP2NnZYf369Xj33XfFjkRERAaKl6VIJ1auXAk/Pz/Ex8ezsCEiIq1icUNacePGDaxdu1b1uHbt2oiOjkaNGjVETEVEROUBL0uRxu3cuRMjR45EVlYW3N3d4efnJ3YkIiIqRzhyQxrz9OlTBAcHo1+/fnjy5Aneeust1KlTR+xYRERUzrC4IY1ITk5Gq1atEBERAQCYMmUKjh49iurVq4ucjIiIyhtelqI39uOPP2LkyJHIzs5GpUqVsGnTJnTr1k3sWEREVE6xuKE3lpOTg+zsbLRt2xZbt25F1apVxY5ERETlGIsbKpXCwkIYGz/79hk2bBisra3xv//9T9VGREQkFs65IbVt3rwZTZs2xYMHDwAAEokE/fv3Z2FDRERlAosbKrHc3FyMGDECQ4cOxZUrV7B8+XKxIxEREb2E/9WmErl06RIGDBiAy5cvQyKRIDQ0FDNnzhQ7FhER0UtY3NBrCYKAjRs3Yvz48cjPz4ezszO2bt2KDh06iB2NiIioWLwsRa+1YsUKjBgxAvn5+ejUqRMSEhJY2BARUZnG4oZeKzAwELVr18b8+fOxf/9+ODk5iR2JiIjotXhZiooQBAGHDh2Cn58fJBIJKlSogAsXLsDc3FzsaERERCXCkRtSycrKwuDBg9G5c2esWbNG1c7ChoiI9AlHbggAEB8fjwEDBiA5ORnGxsbIz88XOxIREVGpsLgp5wRBwIoVKxASEgKZTIZq1aph27ZtaNmypdjRiIiISoXFTTn2+PFjjBo1Cjt37gQA9OrVCxs2bIC9vb3IyYiIiEqPc27KsQsXLuDnn3+GiYkJlixZgl27drGwISIivceRm3Ksbdu2+Oabb+Dt7Y0WLVqIHYeIiEgjOHJTjjx8+BCDBw/G1atXVW1jx45lYUNERAaFIzflxMmTJzFw4ECkpqYiOTkZp06dgkQiETsWERGRxnHkxsAplUosWrQI7dq1Q2pqKmrVqoVVq1axsCEiIoPFkRsDlpmZiaCgIERFRQEAAgICsHr1atja2oqcjIiISHtY3Bio5ORkvP3227hz5w7Mzc2xbNkyjB49miM2RERk8FjcGKjq1aujevXqsLa2RmRkJJo2bSp2JCIiIp1gcWNA7t+/Dzs7O5iamsLExAQ7duyAjY0NrK2txY5GRESkM5xQbCCOHDmCpk2bYsaMGao2FxcXFjZERFTusLjRcwqFAmFhYfDz80N6ejr279+PvLw8sWMRERGJhsWNHktLS0Pnzp0xZ84cKJVKjBgxAqdPn4alpaXY0YiIiETDOTd6Kjo6Gu+99x7u3bsHKysrrFy5EkOGDBE7FhERkehY3Oihx48fo3///njy5AmaNGmCyMhI1K9fX+xYREREZQKLGz1UoUIFrFq1CkeOHMHSpUthYWEhdiQiIqIyg8WNnti3bx/Mzc3RoUMHAMDAgQMxcOBAkVMRERGVPZxQXMbJ5XJMnToV3bp1w6BBg5CRkSF2JCIiojKNIzdlWGpqKgYOHIiTJ08CAPr16wc7OzuRUxEREZVtLG7KqN27d2PYsGF49OgR7OzssG7dOvTt21fsWERERGUeL0uVMQqFAiEhIejduzcePXqEFi1aIC4ujoUNERFRCbG4KWOkUinu3bsHAPjoo48QGxuLmjVripyKiIhIf/CyVBlRWFgIY2NjSCQSrFy5EoGBgejatavYsYiIiPQOR25EVlBQgAkTJqBv374QBAEAYGNjw8KGiIiolDhyI6Lk5GQEBAQgLi4OABAbG4u2bduKnIqIiEi/ceRGJNu3b4enpyfi4uJQqVIl/PrrryxsiIiINIDFjY7l5+djzJgxGDhwILKzs9GmTRskJCSge/fuYkcjIiIyCCxudGzgwIH49ttvIZFIMGPGDBw5cgRVq1YVOxYREZHB4JwbHZsxYwbOnTuH9evXo3PnzmLHISIiMjgsbrQsLy8PZ86cQfv27QEAvr6+uH79OszMzERORkREZJh4WUqLLl++DB8fH3Tp0gXnz59XtbOwISIi0p4yUdxERETA3d0d5ubm8PX1xenTp197/I8//oj69evD3NwcTZo0QVRUlI6SlowgCNiwYQO8vb1x6dIlVKhQAVlZWWLHIiIiKhdEL262b9+OkJAQhIaGIi4uDs2aNYO/v7/qFgT/duLECQwaNAgjR45EfHw8+vTpgz59+uDixYs6Tl48pSwfcyYHY8SIEcjPz0enTp2QkJCANm3aiB2NiIioXBC9uFm8eDFGjx6N4cOHo2HDhli1ahUsLS2xfv36Yo9ftmwZunTpgk8++QQNGjTA3Llz4enpiW+++UbHyV8mu3cDad9NQtTPkZBKpZg3bx72798PJycnsaMRERGVG6JOKJbJZDh37hymT5+uapNKpfDz88PJkyeLfc7JkycREhJSpM3f3x+7du0q9viCggIUFBSoHj+/PCSXyyGXy9/wHfxDqVQi788/UPjwNhwcnbH9hy1o27YtFAoFFAqFxl6HoPq6afLrRy9jP+sG+1l32Ne6oa1+Vud8ohY3mZmZUCgUL41sODk5ISkpqdjnpKenF3t8enp6sceHh4cjLCzspfaDBw/C0tKylMlfdvOmFHYtBwCKQkx6rxuys7PL3FwgQxMdHS12hHKB/awb7GfdYV/rhqb7OS8vr8THGvxS8OnTpxcZ6cnKyoKbmxs6d+4MW1tbjb1OzfRs9LufjcQGwPBe7eFgq7nCiYqSy+WIjo5Gp06dYGJiInYcg8V+1g32s+6wr3VDW/2szsIcUYsbBwcHGBkZISMjo0h7RkYGnJ2di32Os7OzWsebmZkVu/TaxMREo53exM0e9Z1tINxKgIOtJX9wdEDTX0MqHvtZN9jPusO+1g1N97M65xJ1QrGpqSm8vLxw+PBhVZtSqcThw4fRsmXLYp/TsmXLIscDz4a+XnU8ERERlS+iX5YKCQlBUFAQvL294ePjg6VLlyI3NxfDhw8HAAwdOhRVqlRBeHg4AGDixIlo3749vvrqK3Tv3h3btm3D2bNnsXr1ajHfBhEREZURohc3AQEBuH//PmbPno309HR4eHgUWT6dmpoKqfSfAaZWrVph69atmDlzJmbMmIE6depg165daNy4sVhvgYiIiMoQ0YsbAAgODkZwcHCxn4uJiXmprX///ujfv7+WUxEREZE+En0TPyIiIiJNYnFDREREBoXFDRERERkUFjdERERkUFjcEBERkUFhcUNEREQGhcUNERERGRQWN0RERGRQWNwQERGRQSkTOxTrkiAIANS7dXpJyeVy5OXlISsri3ec1SL2s26wn3WD/aw77Gvd0FY/P/+7/fzv+OuUu+ImOzsbAODm5iZyEiIiIlJXdnY27OzsXnuMRChJCWRAlEol7t69CxsbG0gkEo2eOysrC25ubrh16xZsbW01em76B/tZN9jPusF+1h32tW5oq58FQUB2djZcXV2L3FC7OOVu5EYqlaJq1apafQ1bW1v+4OgA+1k32M+6wX7WHfa1bmijn/9rxOY5TigmIiIig8LihoiIiAwKixsNMjMzQ2hoKMzMzMSOYtDYz7rBftYN9rPusK91oyz0c7mbUExERESGjSM3REREZFBY3BAREZFBYXFDREREBoXFDRERERkUFjdqioiIgLu7O8zNzeHr64vTp0+/9vgff/wR9evXh7m5OZo0aYKoqCgdJdVv6vTzmjVr0LZtW1SsWBEVK1aEn5/ff35d6Bl1v5+f27ZtGyQSCfr06aPdgAZC3X5+/Pgxxo8fDxcXF5iZmaFu3br83VEC6vbz0qVLUa9ePVhYWMDNzQ2TJk3C06dPdZRWP/3+++/o2bMnXF1dIZFIsGvXrv98TkxMDDw9PWFmZobatWtj48aNWs8JgUps27ZtgqmpqbB+/Xrh0qVLwujRo4UKFSoIGRkZxR5//PhxwcjISPjiiy+Ey5cvCzNnzhRMTEyECxcu6Di5flG3nwcPHixEREQI8fHxwpUrV4Rhw4YJdnZ2wu3bt3WcXL+o28/P3bhxQ6hSpYrQtm1boXfv3roJq8fU7eeCggLB29tb6NatmxAbGyvcuHFDiImJERISEnScXL+o289btmwRzMzMhC1btgg3btwQDhw4ILi4uAiTJk3ScXL9EhUVJXz66afCTz/9JAAQfv7559cen5KSIlhaWgohISHC5cuXha+//lowMjIS9u/fr9WcLG7U4OPjI4wfP171WKFQCK6urkJ4eHixxw8YMEDo3r17kTZfX1/hgw8+0GpOfaduP/9bYWGhYGNjI3z33XfaimgQStPPhYWFQqtWrYS1a9cKQUFBLG5KQN1+XrlypVCzZk1BJpPpKqJBULefx48fL3Ts2LFIW0hIiNC6dWut5jQkJSlupkyZIjRq1KhIW0BAgODv76/FZILAy1IlJJPJcO7cOfj5+anapFIp/Pz8cPLkyWKfc/LkySLHA4C/v/8rj6fS9fO/5eXlQS6Xw97eXlsx9V5p+/mzzz6Do6MjRo4cqYuYeq80/bx79260bNkS48ePh5OTExo3bowFCxZAoVDoKrbeKU0/t2rVCufOnVNdukpJSUFUVBS6deumk8zlhVh/B8vdjTNLKzMzEwqFAk5OTkXanZyckJSUVOxz0tPTiz0+PT1dazn1XWn6+d+mTp0KV1fXl36g6B+l6efY2FisW7cOCQkJOkhoGErTzykpKfjtt98QGBiIqKgoJCcnY9y4cZDL5QgNDdVFbL1Tmn4ePHgwMjMz0aZNGwiCgMLCQowZMwYzZszQReRy41V/B7OyspCfnw8LCwutvC5HbsigLFy4ENu2bcPPP/8Mc3NzseMYjOzsbAwZMgRr1qyBg4OD2HEMmlKphKOjI1avXg0vLy8EBATg008/xapVq8SOZlBiYmKwYMECrFixAnFxcfjpp5+wd+9ezJ07V+xopAEcuSkhBwcHGBkZISMjo0h7RkYGnJ2di32Os7OzWsdT6fr5uS+//BILFy7EoUOH0LRpU23G1Hvq9vP169dx8+ZN9OzZU9WmVCoBAMbGxrh69Spq1aql3dB6qDTfzy4uLjAxMYGRkZGqrUGDBkhPT4dMJoOpqalWM+uj0vTzrFmzMGTIEIwaNQoA0KRJE+Tm5uL999/Hp59+CqmU//fXhFf9HbS1tdXaqA3AkZsSMzU1hZeXFw4fPqxqUyqVOHz4MFq2bFnsc1q2bFnkeACIjo5+5fFUun4GgC+++AJz587F/v374e3trYuoek3dfq5fvz4uXLiAhIQE1b9evXqhQ4cOSEhIgJubmy7j643SfD+3bt0aycnJquIRAK5duwYXFxcWNq9Qmn7Oy8t7qYB5XlAKvOWixoj2d1Cr05UNzLZt2wQzMzNh48aNwuXLl4X3339fqFChgpCeni4IgiAMGTJEmDZtmur448ePC8bGxsKXX34pXLlyRQgNDeVS8BJQt58XLlwomJqaCjt27BDS0tJU/7Kzs8V6C3pB3X7+N66WKhl1+zk1NVWwsbERgoODhatXrwq//vqr4OjoKMybN0+st6AX1O3n0NBQwcbGRvjhhx+ElJQU4eDBg0KtWrWEAQMGiPUW9EJ2drYQHx8vxMfHCwCExYsXC/Hx8cJff/0lCIIgTJs2TRgyZIjq+OdLwT/55BPhypUrQkREBJeCl0Vff/21UK1aNcHU1FTw8fER/vjjD9Xn2rdvLwQFBRU5PjIyUqhbt65gamoqNGrUSNi7d6+OE+sndfq5evXqAoCX/oWGhuo+uJ5R9/v5RSxuSk7dfj5x4oTg6+srmJmZCTVr1hTmz58vFBYW6ji1/lGnn+VyuTBnzhyhVq1agrm5ueDm5iaMGzdOePToke6D65EjR44U+/v2ed8GBQUJ7du3f+k5Hh4egqmpqVCzZk1hw4YNWs8pEQSOvxEREZHh4JwbIiIiMigsboiIiMigsLghIiIig8LihoiIiAwKixsiIiIyKCxuiIiIyKCwuCEiIiKDwuKGiIiIDAqLGyIqYuPGjahQoYLYMUpNIpFg165drz1m2LBh6NOnj07yEJHusbghMkDDhg2DRCJ56V9ycrLY0bBx40ZVHqlUiqpVq2L48OG4d++eRs6flpaGrl27AgBu3rwJiUSChISEIscsW7YMGzdu1MjrvcqcOXNU79PIyAhubm54//338fDhQ7XOw0KMSH3GYgcgIu3o0qULNmzYUKStcuXKIqUpytbWFlevXoVSqURiYiKGDx+Ou3fv4sCBA298bmdn5/88xs7O7o1fpyQaNWqEQ4cOQaFQ4MqVKxgxYgSePHmC7du36+T1icorjtwQGSgzMzM4OzsX+WdkZITFixejSZMmsLKygpubG8aNG4ecnJxXnicxMREdOnSAjY0NbG1t4eXlhbNnz6o+Hxsbi7Zt28LCwgJubm748MMPkZub+9psEokEzs7OcHV1RdeuXfHhhx/i0KFDyM/Ph1KpxGeffYaqVavCzMwMHh4e2L9/v+q5MpkMwcHBcHFxgbm5OapXr47w8PAi535+WapGjRoAgObNm0MikeDtt98GUHQ0ZPXq1XB1dYVSqSySsXfv3hgxYoTq8S+//AJPT0+Ym5ujZs2aCAsLQ2Fh4Wvfp7GxMZydnVGlShX4+fmhf//+iI6OVn1eoVBg5MiRqFGjBiwsLFCvXj0sW7ZM9fk5c+bgu+++wy+//KIaBYqJiQEA3Lp1CwMGDECFChVgb2+P3r174+bNm6/NQ1ResLghKmekUimWL1+OS5cu4bvvvsNvv/2GKVOmvPL4wMBAVK1aFWfOnMG5c+cwbdo0mJiYAACuX7+OLl26oG/fvjh//jy2b9+O2NhYBAcHq5XJwsICSqUShYWFWLZsGb766it8+eWXOH/+PPz9/dGrVy/8+eefAIDly5dj9+7diIyMxNWrV7Flyxa4u7sXe97Tp08DAA4dOoS0tDT89NNPLx3Tv39/PHjwAEeOHFG1PXz4EPv370dgYCAA4NixYxg6dCgmTpyIy5cv49tvv8XGjRsxf/78Er/Hmzdv4sCBAzA1NVW1KZVKVK1aFT/++CMuX76M2bNnY8aMGYiMjAQATJ48GQMGDECXLl2QlpaGtLQ0tGrVCnK5HP7+/rCxscGxY8dw/PhxWFtbo0uXLpDJZCXORGSwtH7fcSLSuaCgIMHIyEiwsrJS/evXr1+xx/74449CpUqVVI83bNgg2NnZqR7b2NgIGzduLPa5I0eOFN5///0ibceOHROkUqmQn59f7HP+ff5r164JdevWFby9vQVBEARXV1dh/vz5RZ7TokULYdy4cYIgCMKECROEjh07CkqlstjzAxB+/vlnQRAE4caNGwIAIT4+vsgxQUFBQu/evVWPe/fuLYwYMUL1+NtvvxVcXV0FhUIhCIIgvPPOO8KCBQuKnGPz5s2Ci4tLsRkEQRBCQ0MFqVQqWFlZCebm5gIAAYCwePHiVz5HEARh/PjxQt++fV+Z9flr16tXr0gfFBQUCBYWFsKBAwdee36i8oBzbogMVIcOHbBy5UrVYysrKwDPRjHCw8ORlJSErKwsFBYW4unTp8jLy4OlpeVL5wkJCcGoUaOwefNm1aWVWrVqAXh2yer8+fPYsmWL6nhBEKBUKnHjxg00aNCg2GxPnjyBtbU1lEolnj59ijZt2mDt2rXIysrC3bt30bp16yLHt27dGomJiQCeXVLq1KkT6tWrhy5duqBHjx7o3LnzG/VVYGAgRo8ejRUrVsDMzAxbtmzBwIEDIZVKVe/z+PHjRUZqFArFa/sNAOrVq4fdu3fj6dOn+P7775GQkIAJEyYUOSYiIgLr169Hamoq8vPzIZPJ4OHh8dq8iYmJSE5Oho2NTZH2p0+f4vr166XoASLDwuKGyEBZWVmhdu3aRdpu3ryJHj16YOzYsZg/fz7s7e0RGxuLkSNHQiaTFftHes6cORg8eDD27t2Lffv2ITQ0FNu2bcP//vc/5OTk4IMPPsCHH3740vOqVav2ymw2NjaIi4uDVCqFi4sLLCwsAABZWVn/+b48PT1x48YN7Nu3D4cOHcKAAQPg5+eHHTt2/OdzX6Vnz54QBAF79+5FixYtcOzYMSxZskT1+ZycHISFheHdd9996bnm5uavPK+pqanqa7Bw4UJ0794dYWFhmDt3LgBg27ZtmDx5Mr766iu0bNkSNjY2WLRoEU6dOvXavDk5OfDy8ipSVD5XViaNE4mJxQ1ROXLu3DkolUp89dVXqlGJ5/M7Xqdu3bqoW7cuJk2ahEGDBmHDhg343//+B09PT1y+fPmlIuq/SKXSYp9ja2sLV1dXHD9+HO3bt1e1Hz9+HD4+PkWOCwgIQEBAAPr164cuXbrg4cOHsLe3L3K+5/NbFArFa/OYm5vj3XffxZYtW5CcnIx69erB09NT9XlPT09cvXpV7ff5bzNnzkTHjh0xduxY1fts1aoVxo0bpzrm3yMvpqamL+X39PTE9u3b4ejoCFtb2zfKRGSIOKGYqBypXbs25HI5vv76a6SkpGDz5s1YtWrVK4/Pz89HcHAwYmJi8Ndff+H48eM4c+aM6nLT1KlTceLECQQHByMhIQF//vknfvnlF7UnFL/ok08+weeff47t27fj6tWrmDZtGhISEjBx4kQAwOLFi/HDDz8gKSkJ165dw48//ghnZ+diNx50dHSEhYUF9u/fj4yMDDx58uSVrxsYGIi9e/di/fr1qonEz82ePRubNm1CWFgYLl26hCtXrmDbtm2YOXOmWu+tZcuWaNq0KRYsWAAAqFOnDs6ePYsDBw7g2rVrmDVrFs6cOVPkOe7u7jh//jyuXr2KzMxMyOVyBAYGwsHBAb1798axY8dw48YNxMTE4MMPP8Tt27fVykRkkMSe9ENEmlfcJNTnFi9eLLi4uAgWFhaCv7+/sGnTJgGA8OjRI0EQik74LSgoEAYOHCi4ubkJpqamgqurqxAcHFxksvDp06eFTp06CdbW1oKVlZXQtGnTlyYEv+jfE4r/TaFQCHPmzBGqVKkimJiYCM2aNRP27dun+vzq1asFDw8PwcrKSrC1tRXeeecdIS4uTvV5vDChWBAEYc2aNYKbm5sglUqF9u3bv7J/FAqF4OLiIgAQrl+//lKu/fv3C61atRIsLCwEW1tbwcfHR1i9evUr30doaKjQrFmzl9p/+OEHwczMTEhNTRWePn0qDBs2TLCzsxMqVKggjB07Vpg2bVqR5927d0/VvwCEI0eOCIIgCGlpacLQoUMFBwcHwczMTKhZs6YwevRo4cmTJ6/MRFReSARBEMQtr4iIiIg0h5eliIiIyKCwuCEiIiKDwuKGiIiIDAqLGyIiIjIoLG6IiIjIoLC4ISIiIoPC4oaIiIgMCosbIiIiMigsboiIiMigsLghIiIig8LihoiIiAzK/wHpZS/UDU9TdgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from sklearn.metrics import roc_curve\n", "from sklearn.model_selection import cross_val_score\n", @@ -567,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "21d83bb1", "metadata": {}, "outputs": [], @@ -615,27 +445,10 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "id": "61e400ff", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " CLF name precision recall f1_score\n", - "0 Nearest Neighbors 0.954545 1.000000 0.976744\n", - "1 Linear SVM 0.900000 0.857143 0.878049\n", - "2 RBF SVM 0.954545 1.000000 0.976744\n", - "3 Gaussian Process 0.954545 1.000000 0.976744\n", - "4 Decision Tree 0.913043 1.000000 0.954545\n", - "5 Random Forest 0.952381 0.952381 0.952381\n", - "6 AdaBoost 0.950000 0.904762 0.926829\n", - "7 Naive Bayes 0.900000 0.857143 0.878049\n", - "8 QDA 0.857143 0.857143 0.857143\n" - ] - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)\n", diff --git a/searchindex.js b/searchindex.js index b9f8561..efef0e6 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["Chapter1-GettingStarted/1.1_open_reproducible_science","Chapter1-GettingStarted/1.2_jupyter_environment","Chapter1-GettingStarted/1.3_python_environment","Chapter1-GettingStarted/1.4_computational_environments","Chapter1-GettingStarted/1.5_version_control_git","Chapter1-GettingStarted/readme","Chapter2-DataManipulation/2.10_dimensionality_reduction","Chapter2-DataManipulation/2.11_MLready_data","Chapter2-DataManipulation/2.1_Data_Definitions","Chapter2-DataManipulation/2.2_data_formats_rendered","Chapter2-DataManipulation/2.3_pandas_rendered","Chapter2-DataManipulation/2.4_Arrays","Chapter2-DataManipulation/2.6_resampling","Chapter2-DataManipulation/2.7_data_spectral_transforms","Chapter2-DataManipulation/2.8_statistical_considerations","Chapter2-DataManipulation/2.9_feature_engineering","Chapter3-MachineLearning/3.1_clustering","Chapter3-MachineLearning/3.2_classification_regression","Chapter3-MachineLearning/3.3_binary_classification","Chapter3-MachineLearning/3.4_multiclass_classification","Chapter3-MachineLearning/3.5_logistic_regression","Chapter3-MachineLearning/3.6_randomForest_regression","Chapter3-MachineLearning/3.7_hyperparameter_tuning","Chapter3-MachineLearning/3.8_ensemble_learning","Chapter3-MachineLearning/3.9_autoML","Chapter4-DeepLearning/mlgeo_4.1_neural_networks","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron","Chapter4-DeepLearning/mlgeo_4.3_CNN","Chapter4-DeepLearning/mlgeo_4.4_RNN","Chapter4-DeepLearning/mlgeo_4.5_AutoEncoder","Chapter4-DeepLearning/mlgeo_4.6_NAS","Chapter6-ModelWorkflows/readme","about_this_book/0_mlgeo_project","about_this_book/about_this_book","about_this_book/acknowledgements","reference/bibliography","reference/glossary"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["Chapter1-GettingStarted/1.1_open_reproducible_science.md","Chapter1-GettingStarted/1.2_jupyter_environment.md","Chapter1-GettingStarted/1.3_python_environment.md","Chapter1-GettingStarted/1.4_computational_environments.md","Chapter1-GettingStarted/1.5_version_control_git.md","Chapter1-GettingStarted/readme.md","Chapter2-DataManipulation/2.10_dimensionality_reduction.ipynb","Chapter2-DataManipulation/2.11_MLready_data.ipynb","Chapter2-DataManipulation/2.1_Data_Definitions.md","Chapter2-DataManipulation/2.2_data_formats_rendered.ipynb","Chapter2-DataManipulation/2.3_pandas_rendered.ipynb","Chapter2-DataManipulation/2.4_Arrays.ipynb","Chapter2-DataManipulation/2.6_resampling.ipynb","Chapter2-DataManipulation/2.7_data_spectral_transforms.ipynb","Chapter2-DataManipulation/2.8_statistical_considerations.ipynb","Chapter2-DataManipulation/2.9_feature_engineering.ipynb","Chapter3-MachineLearning/3.1_clustering.ipynb","Chapter3-MachineLearning/3.2_classification_regression.ipynb","Chapter3-MachineLearning/3.3_binary_classification.ipynb","Chapter3-MachineLearning/3.4_multiclass_classification.ipynb","Chapter3-MachineLearning/3.5_logistic_regression.ipynb","Chapter3-MachineLearning/3.6_randomForest_regression.ipynb","Chapter3-MachineLearning/3.7_hyperparameter_tuning.ipynb","Chapter3-MachineLearning/3.8_ensemble_learning.ipynb","Chapter3-MachineLearning/3.9_autoML.ipynb","Chapter4-DeepLearning/mlgeo_4.1_neural_networks.ipynb","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron.ipynb","Chapter4-DeepLearning/mlgeo_4.3_CNN.ipynb","Chapter4-DeepLearning/mlgeo_4.4_RNN.ipynb","Chapter4-DeepLearning/mlgeo_4.5_AutoEncoder.ipynb","Chapter4-DeepLearning/mlgeo_4.6_NAS.ipynb","Chapter6-ModelWorkflows/readme.md","about_this_book/0_mlgeo_project.md","about_this_book/about_this_book.md","about_this_book/acknowledgements.md","reference/bibliography.md","reference/glossary.md"],objects:{},objnames:{},objtypes:{},terms:{"0":[2,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,32],"00":[10,13,14,18,19,23,29],"000":[3,6,10,26],"000000":[10,12,14,18,21],"0000004":12,"000000z":[13,14],"0000794":12,"0000ff":26,"0001":22,"00010279":22,"00015444":22,"00017369":22,"00017777":14,"00019417":22,"00019767":22,"00022147":22,"00022739":22,"00024025":22,"00025221":22,"00026867":22,"00028058":22,"00028074":22,"0003":16,"00030313":22,"00030671":22,"0003116":22,"00032911":22,"00033131":22,"00033565":22,"00036127":22,"00036523":22,"000368":22,"00037982":22,"00038028":22,"00038497":22,"00040847":22,"00046558":22,"0004974":22,"00051429":22,"0005219":22,"00055709":22,"00056481":22,"00056848":22,"00057124":22,"00057149":22,"00057284":22,"00060262":22,"00063497":22,"00075296":22,"0007645780792982153":22,"00078219":22,"00078404":22,"00081537":22,"00082129":22,"00084407":22,"00096243":22,"00097039":22,"00098027":22,"001":[19,20,22,25,26,27],"00114053":22,"00117745":20,"00138058":22,"001417":16,"00160452":22,"00202393":22,"00235309":22,"00235718":6,"00266993":22,"00275743":22,"003069":16,"003468":16,"003938":16,"004932182490752158":20,"005":[26,27],"005311":16,"00537195":22,"00540662":22,"00541439":22,"00548282":22,"00550599":22,"00570369":22,"00579743":22,"00597839":22,"0060364":12,"00676385":22,"0068304":12,"00781032":22,"00790743":22,"00800":10,"00814581":22,"00819788":22,"00828981":22,"00843649":22,"00847631":22,"00849648":22,"00891695":22,"008924":16,"008967":16,"00936933":22,"009565":16,"00970379":22,"009791921664626684":20,"01":[10,13,21,22,23,29],"010":10,"010000":[12,13,14],"0109":20,"01105633":22,"011097410604192354":20,"01134934":22,"01182476":14,"01184845":22,"01185122":22,"01186934":22,"011982":16,"012538":22,"01266155":22,"01291194":22,"01380216":16,"01396018":6,"0147789":22,"015568":16,"01588404":14,"01693117":20,"01706581":22,"01723228":22,"01726675":22,"01746058":22,"01750962":16,"01769457":22,"01823897":22,"0187614":22,"01880449":14,"01923843":20,"02":[10,21,26,29],"02001436":6,"02107299":22,"02163751":6,"02175317":22,"02184954":22,"021897810218978103":20,"022358":16,"02297249":22,"02310362":22,"02326522":22,"02352686":22,"02355824":22,"02380347":22,"02449503":22,"025":18,"025000":21,"02502255":22,"02507":22,"0253":24,"02575654":22,"02612495":22,"02696":10,"02756419":22,"02938002":14,"029486":16,"02956544":20,"02993002":6,"03":[10,21],"030637":16,"03100":10,"03103009":20,"0313548":14,"03244272":6,"033255":12,"03424752":16,"03440":10,"034483":21,"0347":24,"0348":24,"036229":16,"036617":10,"0370":24,"0382":24,"04":[10,12],"0400":24,"04008636":6,"04101425":20,"04128178":22,"0419":24,"0430":24,"04314":10,"0446":24,"0450":24,"04521918":22,"0454577":20,"04572756":20,"0475276":6,"047994":16,"04809985":22,"049902":16,"05":[10,11,12,13,14,16,19,21,27],"0510":24,"05154009":22,"05242661":6,"0529":24,"05366359":22,"053684":10,"0540":24,"05442019":22,"05511222":22,"05535727":22,"0560":24,"05716662":22,"0580":24,"0594":24,"0595":24,"06":[10,14,21],"060":10,"0601":24,"060298649528828":14,"0604":24,"0605":24,"06084275":22,"0612":24,"0622":24,"0625":19,"0629":24,"0631":24,"0635":10,"0638":24,"0641":24,"0646":24,"064938":10,"0650":24,"0651":24,"0661":24,"067100":12,"07":[10,11,13,14],"0711":24,"0721":24,"0737":24,"0740":24,"07508417348193797":14,"0754":24,"0758":24,"0761":24,"0763":24,"0768":24,"076831":12,"0776":24,"0777":24,"0777344413103096":13,"077800":10,"0779":24,"0780":24,"0783":24,"07841108":6,"0785":24,"0795":24,"08":[10,14,29],"0800":24,"0803":10,"0804":24,"0808":24,"0815":24,"0823":10,"08484803":20,"0891":24,"0897":24,"09":[10,29],"09091835":16,"0914":24,"09259738":16,"0935":16,"0950":24,"0977":24,"0992":24,"0_wavelet":15,"0f":19,"0ffh4r23mitn2dz":15,"0s":[19,22,29],"0x103f1b520":16,"0x1060f17f0":20,"0x126f0e7f0":20,"0x14cde05b0":22,"0x14cde2460":22,"0x14cde2cd0":22,"0x15225a3a0":18,"0x1bfa3c4f0":25,"0x1c135a7f0":25,"0x1c899e9a0":16,"0x1ca300220":12,"0x1cd5cc070":16,"0x1cd6c1a60":16,"0x1cd824850":16,"0x287e5fa30":14,"0x29996e5b0":14,"0x7f60ec163730":6,"0x7f60ecda71c0":6,"0x7f60f04a8fa0":6,"0x7f7118752b50":26,"0x7f7c5ab6c760":18,"0x7f7c5ace6590":18,"0x7f7c5ad06230":18,"0x7f7c5ef8fdf0":18,"0x7fd65cb311b0":19,"1":[15,20,24,28,29,33,35],"10":[2,3,9,10,11,12,13,14,16,18,19,21,22,23,24,25,26,27,28,29,32,33],"100":[1,9,10,11,12,13,14,15,16,21,22,23,24,25,26,27,29,33,36],"1000":[6,8,10,11,12,13,21,22,23,25,27],"10000":[6,10,11,12,13,28],"100000":[10,14,21],"10021":9,"101":10,"1029":27,"1030":19,"1031":19,"1032":19,"1033":19,"1034":19,"1035":19,"1036":19,"1037":19,"1038":19,"103932":14,"1040":19,"1041":19,"105":10,"105000":10,"106":24,"1078":10,"109":10,"109400":10,"10959":10,"10hz":13,"10k":28,"11":[6,10,12,13,14,21,22,24,25,29,33],"110":10,"1101":24,"1108":10,"111":[6,13,16,29],"1110":10,"1111":10,"1112":10,"1113":19,"1114":19,"1115":19,"1116":19,"1117":19,"113":10,"113026":14,"1137":24,"114":12,"1142":19,"1143":19,"1144":19,"1145":19,"1146":19,"1147":19,"1148":19,"1149":19,"114x80":27,"1150":19,"1151":19,"1152":19,"1159":19,"1160":19,"1162":19,"1164":19,"1166":19,"117":21,"117697":29,"118":10,"1181":19,"1182":19,"1183":19,"1184":19,"1185":19,"1193":24,"1198":20,"12":[10,11,12,13,14,16,21,24,29],"120":[26,27],"12000":10,"120542":21,"121":[9,10],"1225":20,"123":[10,24],"1233":19,"1234":[9,19],"1235":19,"123783465":16,"1240":19,"1241":19,"1242":19,"1244":19,"1245":19,"1246":19,"125":[6,10,11,14,19],"125816":10,"126":19,"1261":10,"126600":12,"127":[9,19],"128":[11,27,28],"129":27,"1299":24,"13":[10,13,14,24,29],"1301":26,"13245936":16,"1362":6,"136778":16,"1369":24,"1370":24,"1382":24,"1388":10,"13m":29,"14":[10,11,12,13,14,16,22,24,29],"140":22,"14158634":14,"14159005":14,"142":10,"145":10,"1457":24,"1459":20,"146":10,"146988":10,"147744826538707":12,"148":10,"14m":29,"15":[2,10,11,13,14,19,20,21,22,23,24,26,29,33],"150":13,"15166937":16,"154":10,"1545":10,"1546":24,"15688101":13,"157000":12,"158":16,"1590":10,"1591":24,"15924":14,"15m":29,"16":[10,12,14,24,25,26,27,29],"161700":10,"163":29,"164":10,"165398":21,"166":[10,13],"16601227":16,"1664":10,"1666":10,"167":29,"16813116":14,"16900":10,"1691094658":13,"16m":29,"16x16":27,"17":[10,12,14,21,24,26,29],"170000":14,"1719":29,"173":16,"1736":10,"1740":24,"1767563":13,"177475":10,"178":10,"1780":10,"17803249":22,"1781":10,"1782":10,"1783":10,"1784":10,"1785":10,"17860823":22,"179":10,"1790":19,"1791":19,"1792":19,"1793":19,"1794":19,"1797":[19,22,23,24],"18":[2,10,14,16,18,24,29],"1841126":22,"18470":16,"1852":24,"1861":19,"1862":19,"1863":19,"1864":10,"1865":19,"1866":19,"1867":19,"1868":19,"18685474":22,"1869":19,"187":9,"1870":19,"187675":10,"18767507003":10,"188":19,"18843017":22,"189":19,"1892":24,"19":[10,18,24,27,29],"190":19,"191":19,"192":19,"19251866":22,"193":[19,29],"194":19,"195":19,"196":19,"197":19,"1983":10,"1984":10,"1985":10,"1986":10,"1987":10,"1988":10,"199":19,"1990":9,"19918694":22,"1993":10,"1994":10,"1995":[10,32],"1997":10,"1998":27,"1999":10,"1d":[8,13,19,26,27],"1e":[11,13,22],"1e4":13,"1hz":[13,14],"1j":14,"1pko9ormcllaxipzoa3aoztgzfpad2iwj":[21,24],"1pvu8vbytx0g4w41tb537irm5v845e4upsirwqrfoqb0":8,"1s":[13,19,22],"1st":[6,16],"2":[1,2,3,4,20,24,29,33,35],"20":[10,14,19,21,22,24,28,29],"200":[1,13,16,20,22,33],"2000":[6,10,11,23,26],"200000":21,"2001":[10,26],"2002":10,"2006":[10,12],"2007":3,"201":19,"2010":[10,12],"2011":10,"2013":11,"2014":12,"2015":10,"2016":[10,21,24],"2017":[10,14],"2018":[27,29],"2019":[10,12,16,29],"2019gl085870":27,"202":19,"2020":[2,10,27,29],"2021":[10,13,14],"2022":[4,10,13,29,34],"2023":[4,12,14,33],"2025":10,"203":19,"204":26,"20454172":6,"2048":10,"207":33,"207073":16,"20726748":16,"208":33,"208269":16,"209":24,"21":[9,10,14,18,22,24],"2136":24,"21594585":16,"2171b5":6,"21966":10,"21m":29,"22":[10,14,22,24,29],"2201005948153714":13,"224":26,"2256":24,"228":[9,10],"23":[10,14,16,21,23,24,29],"2300000":13,"2301":26,"2310":24,"23233":29,"23296":29,"234":11,"236217054087575":13,"2370":24,"238506":21,"239":26,"24":[10,12,24],"240":[11,16,26],"24052539":6,"241":6,"24400":10,"245000":12,"2482":24,"25":[10,12,13,14,16,21,24,26,29,32],"250":3,"2519":29,"2520":29,"2521":29,"2522":29,"2523":29,"2524":29,"2525":29,"2526":29,"2527":29,"2531":29,"2533":29,"2539":29,"2540":29,"2541":29,"2543":29,"2548":29,"2549":29,"255":29,"2550":29,"2551":29,"2552":29,"2553":29,"2554":29,"2555":29,"2556":29,"2557":29,"2558":29,"256":25,"2564":29,"2565":29,"257":25,"25700":10,"25hrequir":23,"26":[10,11,13,14,24,29],"2600":24,"2600000":13,"261":21,"2626":24,"26268435":16,"2632":29,"2639":29,"2651":29,"2657":29,"2673":29,"2680":29,"2698":29,"27":[9,10,24,29],"27101466":16,"273":11,"2730":29,"2733":29,"2742":29,"27594":10,"277725":16,"2778":24,"2780":24,"2789":10,"27m":29,"28":[10,12,16,21,22,24,25,26,27,29],"2823":24,"2827":29,"2830":24,"2836":[24,29],"2845":24,"2856":29,"286":9,"2861":29,"2862":29,"2865":29,"2870":29,"2879":29,"2884356107":13,"289":26,"2890":29,"28913069":6,"2899":29,"28x28":27,"29":[10,12,13,14,21,24,26,29],"29046581":6,"2906":29,"2925":29,"2935":29,"294":9,"295":[9,24],"2952":29,"296":24,"297":[9,24],"2970118992746436":14,"298":24,"2986":29,"299":[9,24],"2992":29,"29t04":[13,14],"29t06":[13,14],"2bcurli":[13,19],"2d":[6,8,26,27],"2dt":13,"2f":[6,12,14,19,26],"2fa":4,"2m":29,"2nd":[9,16],"2p":14,"2s":22,"2x":26,"2x2":[18,27],"3":[3,4,15,25,28,29,33],"30":[6,10,12,14,16,24,29],"300":[9,16,24,26],"3000":10,"300000":10,"301":26,"30100":10,"3019":24,"302":9,"302031":10,"3023":29,"3056":29,"305700":10,"307":33,"3073":29,"30761722":16,"308":33,"31":[10,14,21,24],"3100":9,"3125":19,"3133":9,"314000":12,"31435567":16,"3159":10,"31840023":6,"31m":29,"32":[10,12,24,26,27,29],"3200000":13,"3201":[9,13],"321":10,"3246":9,"3249":24,"32x32":27,"33":[10,24,32],"333":26,"336":26,"3383":29,"34":[10,24],"34043406":6,"34069778":16,"3407":10,"3408":10,"3409":10,"3410":10,"3411":10,"34354394":16,"34400":10,"34415049":16,"3457":10,"34570272":6,"3458":10,"3459":10,"3460":10,"3461":10,"3462":10,"3463":10,"3475":24,"348":[21,24],"3480":10,"3481":10,"3482":10,"3483":10,"3484":10,"35":[10,21,24],"351":33,"35118033":16,"352":33,"35440":10,"35800":14,"35856":14,"35866":14,"35963":14,"35986":14,"36":[6,10,24,29],"360":[6,11],"3600":13,"36050":14,"36063":14,"36065":14,"36125048":16,"36174":14,"36177":14,"36608":27,"3666":10,"3667":10,"3668":10,"3669":10,"3670":10,"367623":16,"368":26,"3680":10,"37":[10,23,24,26],"370":10,"3733":24,"373563":21,"375":19,"37841317":6,"38":[10,24],"38116775":16,"382403":10,"38561943":6,"3890":24,"39":[10,11,12,14,24],"390000":14,"391800":10,"3931145617":16,"39322864":20,"3950175":16,"39591267":16,"39822533":14,"39912885":16,"3d":[10,13,15,16,19,27],"3f":[25,26,27],"3rbzxjb16kv66g_p4wkzq16h0000gn":16,"3s":22,"3x3":27,"4":[2,6,9,16,18,22,24,33],"40":[9,10,11,13,14,16,18,21,23,24],"400":[10,15],"400000":21,"400x300":16,"409300":12,"41":[10,21,24],"416857":16,"42":[18,19,21,24,26,27],"42476644":14,"42510872":16,"4284":10,"4285":10,"4286":10,"4287":10,"4288":10,"4289":10,"429012":10,"42922743":16,"42m":29,"43":[10,12,14,21,24],"43014":10,"434":10,"438107857588658":12,"438107857588663":12,"4381084":12,"43814041":16,"4382164":12,"43901058":6,"44":[10,12,21,24],"442660214306567":12,"446":10,"45":[10,12,21,24],"4513":10,"45919889":16,"45956413":16,"46":[21,24,29],"462018":16,"4649":10,"46779875":16,"469":33,"47":[9,13,21,24,26,27,29],"47128343":6,"47232592":6,"47256154":6,"477011":21,"478654":16,"478900":10,"48":[21,24],"48120537":16,"482000":12,"4841":24,"48489432":16,"487000":12,"4880":24,"49":[12,14,19,21,24],"4901":[9,13],"49118717":16,"495126":6,"4954325":6,"498380":21,"4_multiclass_classif":19,"4_pandas_rend":10,"4ducqnd7mfihnh7d":3,"4p":14,"4s":29,"5":[2,3,6,8,9,10,13,14,16,18,19,22,23,24,25,28,33],"50":[10,11,12,14,16,19,21,22,23,24,25,26,27,28],"500":[3,6,10,22],"5000":[28,29],"500000":21,"5007397612756534":13,"501":13,"5034":24,"50748428":16,"50777458":6,"508000":12,"50m":29,"51":[10,13,24,28],"51078471":16,"51251051":16,"514368":21,"516241":12,"517":26,"51873336":16,"52":[10,12,24],"520022":12,"5268":20,"527306":21,"529":29,"53":[21,24],"53044455":16,"531903386":10,"5325":24,"532844":16,"5333":24,"534263":12,"53469999":16,"5364":20,"53814789":16,"53847563":16,"54":[21,24,29],"540813":16,"54114405":16,"543103":21,"54392202":16,"544":10,"54400":10,"5452":20,"54534953":6,"548094":16,"549381":21,"54988292":16,"55":[10,24,29],"550":10,"55000":29,"5550078":6,"5565551":16,"558363":10,"5599":24,"56":[10,21,24],"560":10,"5613":24,"5625":19,"5655":24,"5664":24,"569":33,"56922127":16,"56931501":16,"57":[14,21,24],"570":10,"577122":16,"5792":10,"579308":10,"58":21,"58000":10,"580796":16,"58242":10,"59":[10,13,14,21,24,33],"590":1,"59186646":16,"59194299":16,"5958515":16,"598":19,"5991453":16,"5x5":[26,27],"6":[6,10,13,14,16,18,19,24,26,27,29,33],"60":[10,14,19,21],"600":10,"60000":26,"600000":10,"6001989060169071":20,"6005":24,"601":10,"60435859":16,"605746":21,"60613125":16,"60763889":22,"608":[10,22],"608510":10,"608674":10,"6098":10,"61":[19,21,24],"61062942":16,"61318842":16,"61326113":16,"613687":14,"6173489951795071":13,"618141":12,"62":[19,21],"620":19,"62015573":16,"6206749":16,"62082943":16,"62095626":16,"621":19,"62107074":16,"6216":24,"622":19,"6228":10,"62288846":16,"623":19,"62343935":16,"62438435":16,"625":19,"626179":21,"628":22,"62831579":14,"62831949":14,"6284":24,"62847222":22,"62883364":16,"62906711":16,"62923072":16,"63":[10,19,23,24],"63147309":16,"6341":[6,12],"63453326":16,"636efa":10,"63723971":16,"63727695":16,"63771876":16,"6394":24,"64":[19,24,26,27,29],"64019598":6,"64059":10,"64240716":16,"643588":16,"64383652":16,"6448":24,"64495474":16,"64524934":16,"64642601":16,"64671513":16,"646886":6,"64734418":16,"6480666066247558":13,"65":[6,12,19,24],"652299":21,"653386":16,"6541":10,"65486061":14,"65663369":16,"65885774":16,"65990":10,"66":[10,21,32],"66048458":16,"6611":10,"66184574":16,"6624":24,"663000":12,"66389788":16,"665":10,"66522149":16,"66568594":16,"66571243":16,"6660137226595724":16,"66647019":16,"6666666666666666":20,"667":26,"66987819":16,"66994118":16,"67":14,"670":10,"6701":24,"6704":24,"6708":24,"67139297":16,"67241576":16,"67367877":16,"67370015":16,"6738216":16,"6755599":16,"67605116":16,"6765":24,"67676623":16,"67690662":16,"68":[10,14],"6805":24,"68054136":16,"68069155":16,"68133003":16,"6814":24,"68146157":16,"68184766":16,"68286217":16,"68309587":16,"68371465":16,"6847":24,"685500":10,"68573384":16,"68593435":16,"686":22,"68631":10,"68638609":16,"68641115":22,"6881":10,"68881933":16,"68885895":16,"69":[10,21],"6902":24,"69020771":16,"69057845":16,"69236319":16,"692383":10,"6924458":22,"69255292":16,"69322019":16,"6933":24,"69390867":16,"69452008":16,"69473128":16,"6958":24,"6966":24,"6968454":16,"69686411":22,"697":22,"69717451":16,"69871087":16,"69908115":16,"69922373":16,"7":[2,3,6,9,10,11,12,14,16,18,19,23,24,26,29,33],"70":[10,14],"700":13,"7000":28,"70025565":16,"70038786":16,"701149":21,"70223754":16,"70263944":16,"70370182":16,"70406565":16,"70426829":22,"705256":21,"70585277":16,"7062434298834965":12,"70830125":16,"70868214":16,"70993839":16,"71":[14,21,24,26,29],"710000":14,"7102":24,"71080139":22,"711":22,"7117385":16,"7136":10,"7143":24,"71446902":16,"71493118":16,"7150":10,"7151":10,"7152":10,"7153":10,"7154":10,"7155":10,"7156":10,"71595929":16,"71613791":16,"71624672":6,"71647227":16,"7175909":16,"71777003":22,"718":22,"718311":16,"71868257":16,"71870468":16,"7190":24,"719359":29,"72":[10,12,14,21],"7200":[13,14],"720000":[12,13,14],"72011236":16,"7215":24,"72189751":16,"72209849":16,"72237984":16,"72351704":16,"72452975":16,"72473868":22,"72486287":16,"725":[10,22],"726200":12,"72656201":16,"72693285":16,"72900597":16,"72967489":16,"73":10,"73011104":16,"7307":20,"73126145":16,"73170732":22,"732":22,"7321":20,"73263889":22,"733":22,"73321253":16,"73392689":16,"73392859":16,"73399564":16,"73406938":16,"73432084":16,"73497355":16,"73523528":16,"73527765":16,"73553435":16,"735987":10,"73622929":16,"73629291":16,"7371437":16,"73721913":16,"73884634":16,"73942066":16,"74":[10,14,26],"74047807":16,"74070909":16,"740872":16,"74152142":16,"74152169":16,"74176784":6,"74271586":16,"74273719":16,"74471303":16,"74516531":16,"74652778":22,"74695266":16,"74698581":16,"747":22,"74782772":16,"7490650993380316":12,"74923268":16,"74988807":16,"75":[10,11,12,14,19,21,26],"750":10,"750000":[14,21],"75050886":16,"75066744":16,"75202614":16,"75215033":16,"75337184":16,"754":13,"75402734":16,"75439721":16,"75515268":16,"75546079":16,"75559453":16,"756":13,"75617037":16,"75665801":16,"75700651":16,"75760721":16,"758688":10,"7592036":16,"75922639":16,"75926756":16,"76":[14,21],"76035029":16,"760632":21,"76096889":16,"76123913":16,"76139725":16,"76146594":16,"76309549":16,"76383818":16,"76427688":16,"76451254":16,"7647wqr96rhr49q":[13,19],"765200":12,"76686261":16,"76717763":16,"767943601369907":13,"7682":10,"76836771":16,"77":21,"77016488":16,"77125499":16,"772434":12,"772982":21,"772989":21,"77305065":16,"775000":18,"7763568394002505e":14,"77811399":16,"77844951":16,"77998847":16,"78":[10,12],"780000":14,"782500":10,"7831169485096":6,"784":[25,26],"78479013":16,"78485929":16,"78570":10,"78593105":16,"78740418":16,"78769807":16,"7889":20,"78912008":16,"79":21,"7921602":16,"79219349":16,"79253012":16,"794146":21,"79434712":16,"7944444444444444":23,"79515639":16,"79625474":16,"79678104":16,"79739309":16,"79815047":16,"7_data_spectral_transform":13,"8":[2,3,6,9,10,11,12,13,16,18,19,21,22,24,25,26,27,28,29,33],"80":[6,12],"80008821":16,"80058568":16,"80152883":16,"802":20,"80209433":16,"80258282":16,"80274267":16,"80413431":16,"804426":16,"80775088":16,"80786877":16,"80877866":16,"81":14,"81072996":16,"81105258":16,"81211786":16,"813000":12,"81382108":6,"814":29,"8151241":16,"81530":29,"81558153":16,"81562877":16,"81571315":16,"81576455":16,"816":26,"81719692":16,"8181818181818182":20,"8184":24,"81884902":16,"8190425043357745":12,"81983109":16,"81m":29,"82":21,"82043467":16,"82113359":16,"82269232":16,"82284":29,"8238563":16,"8238774989356271":12,"82403372":16,"82484302":16,"82486446":16,"82561676":16,"8263632119514472":23,"82768761":16,"82773":10,"82784456":16,"82811465":16,"828840":10,"8309308755379773":13,"832200":10,"84":[14,19,26,27],"8406":10,"840700":10,"841000":12,"8439":24,"8453316591120342":13,"8457":24,"8490":24,"85":[11,12,16,19],"850":10,"855000":12,"857143":18,"86":[19,29],"8610":24,"86349029869899":13,"8679961043240163":13,"87":[10,12,19,21],"8707":24,"8738":24,"874184":10,"875000":18,"878049":18,"88":[12,19],"88070032":6,"88107038":6,"8833333333333333":23,"88495106":14,"88495477":14,"8866":24,"887200925547722":12,"8888":24,"89":19,"890000":14,"8978":24,"898166":16,"899":19,"899511":12,"9":[2,10,14,16,19,20,21,22,23,25,26,29,33],"90":[6,10,19],"9000":[24,28],"900000":18,"901":13,"90265774":6,"904":26,"904762":18,"905":10,"905100":10,"90832086":6,"90972222":22,"91":[19,24],"910":22,"911":10,"9114":24,"91149589":14,"913043":18,"918000":12,"91986063":22,"92":[19,21],"920":22,"925":[10,23],"925120":16,"926829":18,"927000":12,"92880978865406":19,"93":[14,19,21],"9339":20,"9362":24,"94":[9,19],"940000":12,"942135":14,"9434":24,"944":22,"94425087":22,"9447":24,"9450421":22,"94657351":6,"94791667":22,"948":22,"94915864":6,"95":[6,18,19,21,27],"950000":18,"9500949":6,"951":22,"95138889":22,"952381":18,"954545":18,"9545454545454546":18,"95486111":22,"955":22,"95547329":22,"9555061179087876":19,"957200":10,"958":22,"95818815":22,"95833333":22,"9583333333333334":22,"96":[3,19],"9609":10,"9610569483132156":23,"9621008403361344":23,"9632119514472456":23,"965":22,"96515679":22,"96521245":22,"96527778":22,"96660859":22,"96864111":22,"96869193":22,"96875":22,"9688542825361512":19,"969":22,"97":[6,18,19],"972":22,"9720":20,"97212544":22,"97356514":22,"975000":[18,21],"97560976":22,"976":22,"97600531":6,"976744":18,"9767441860465117":18,"97703494":22,"979":22,"97909408":22,"97916667":22,"9793790849673202":23,"98":[16,18,19,26],"9825784":22,"9826966":6,"983":22,"98533885":6,"986":22,"98606272":22,"98611111":22,"987665408758737":22,"99":[10,11,12,19],"990000z":[13,14],"9964524":12,"99746591":6,"9976":24,"998100":10,"99866939":6,"9s":22,"\u00b5s":13,"\u00e5":12,"boolean":[9,17],"break":[1,29],"case":[6,9,10,12,14,21,24,29,31,32],"class":[5,6,10,11,12,13,14,15,16,17,18,19,20,22,23,25,26,27],"default":[2,3,4,6,10,11,23,24,28],"do":[4,6,9,10,12,13,14,16,18,19,20,22,23,25,26,27,28,29,32,33],"export":[21,24],"final":[16,19,23,28,31,32,33],"float":[6,8,11,12,16,19,20,25,26,27],"function":[2,5,6,11,12,13,14,15,16,17,18,19,20,22,23,24,27,28,29,32],"ga\u00ebl":18,"import":[2,4,6,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29],"int":[6,11,12,13,14,15,16,19,21,25,26,27],"long":[12,13,25,26,27,28],"m\u00fcller":18,"new":[6,7,9,10,11,12,14,16,18,20,21,23,24,30,32,36],"null":[9,12],"public":[1,4,36],"return":[6,10,14,15,16,19,20,24,25,26,27,28],"short":[4,28,29,33],"super":[19,25,26,29],"switch":6,"transient":29,"true":[6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28],"try":[10,11,12,16,18,20,22,23,24,27,28,32],"var":[12,13,14,16,20],"while":[16,20],A:[1,2,4,6,7,8,10,12,14,16,17,18,19,20,22,23,25,26,27,28,29,30,36],AND:10,And:[12,15,29],As:[6,10,12,24],At:[3,4,11,12,32],Be:4,But:[12,14,16],By:[6,12,33],For:[1,3,6,8,10,11,12,14,16,20,23,24,25,26,27,30],If:[3,4,6,10,11,12,13,16,19,20,21,24,25,26,27,36],In:[3,4,9,10,11,12,13,14,15,16,18,20,21,23,24,25,26,27,28,29,30,31],Is:[1,11,16,32],It:[1,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,31,32,36],NEAR:10,No:[13,32],Not:[4,13],OF:10,OR:10,On:4,One:[1,3,6,8,13,14,20,22,23,24,26,27,29],Or:[1,28],TO:[17,21],That:[20,23],The:[1,3,4,5,6,9,10,11,12,13,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,36],Their:[3,8],Then:[4,16,25,27],There:[3,4,6,9,10,11,12,13,16,17,19,20,22,23,24,25,26,27,32],These:[2,3,6,14,16,24,26,29,32],To:[0,2,3,4,6,10,12,13,15,16,20,23,24,26,28,29,33],WITH:12,Will:[21,32],With:[14,23],_1:6,_2:[11,14],_:[6,12,19,25,26,27],_________________________________________________________________:29,__call__:19,__class__:[23,27],__getitem__:25,__init__:[25,26,29],__len__:25,__main__:25,__name__:[23,27],_asarray_with_ord:19,_assert_all_finit:19,_base:19,_c:26,_check_estimator_nam:19,_check_i:19,_distn_infrastructur:22,_ensure_no_complex_data:19,_fit_and_predict:19,_fit_context:19,_funcwrapp:19,_get_sequential_output:19,_i:20,_lib:10,_lock:19,_n:6,_valid:19,_validate_data:19,_validate_param:19,_validate_target:19,_with_config:19,a_:6,a_nparrai:11,aa:[10,11],aar:10,ab:[13,14,16,20,21,27],abil:[5,12,36],abj:10,abl:[4,16,19,20,24,32,33],about:[2,4,9,10,11,12,13,14,16,20,24,27,28,33],abov:[4,6,10,13,16,25,26,27],abr:10,absolut:[14,21],ac:10,academ:4,academia:24,acc:18,accept:[4,12],accept_large_spars:19,accept_spars:19,access:[3,4,9,10,11,21,25,32,33],accord:[6,26],account:[3,6,12],accur:[13,32],accuraci:[12,18,19,20,21,22,23,25,26,27],accuracy_scor:[19,22,23],accuracy_tim:[25,26,27],accurraci:20,achiev:24,acknowledg:4,acoust:3,across:[8,32,36],act:23,activ:[2,25,27,28,29],actual:[16,20,21,24,31],ad:[3,5,11,26,28,29],ada:24,ada_clf:23,adaboost:[18,24],adaboostclassifi:[18,23],adam:[26,27,28],adapt:34,add:[2,4,6,7,9,10,11,14,16,17,21,25,26,27,29],add_subplot:[6,16],add_to:9,addit:[4,9,10,14,16,19,26],address:[1,4,9,12,15,33],adityakadiw:20,adjac:12,adjust:12,admiralti:10,adopt:[11,33],advanc:[3,33],advantag:[3,6,12,22],adversari:27,adw:10,affect:[10,16],affin:26,afford:3,afo:10,after:[4,12,16,25,26,27],ag:9,again:[3,6,9,10,12],against:[12,16,18,26],agenc:36,agg:10,agglom:16,aggreg:[16,23],aggress:24,ago:21,ahead:[11,24],ai:[24,31],aid:34,aim:[1,10,28],air:[8,11],air_temperatur:[9,11],aka:[11,18],akmehra:33,akshai:33,al:[4,27,29],alana:4,alaska:13,algebra:11,algorithm:[6,16,20,22,23,26,27,28,29,31,32],alias:2,align:6,all:[1,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,29,32,33],allcorr:6,alldataload:26,allevi:12,alloc:[3,11,27],allow:[1,3,4,6,9,10,11,12,20,28,32,36],allow_nd:19,along:9,alow:13,alpha:[6,12,14,16,18,20,21,26,27],alreadi:[2,3,11,14,20,23,24,25,27,31],also:[3,4,6,8,9,10,11,12,13,14,15,16,18,23,24,26,27,28,29,31,36],alter:31,altern:10,although:20,alwai:[16,20],amath301:33,amath:33,amaz:24,amazon:3,ambient:15,among:[7,8,12,15,16,26],amount:[6,9,12],amplitud:[13,14,27,32],an:[1,3,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,32,33,36],anaconda:2,analog:17,analysi:[9,12,15,16,17,27,31,33],analyz:[4,13,14],anchor:6,andrea:18,android:4,angl:[13,24],ani:[4,5,9,12,13,14,23,24,26,28,31,36],annoi:24,annot:6,annotate_heatmap:6,anomal:21,anoth:[6,10,13,23,25,27,29,31],answer:[10,11,12,14,24,33],anthoni:33,anticorrel:12,anyon:11,api:4,app:36,appdata:10,appear:[6,10,11,13],append:[6,9,11,12,26],appli:[6,10,11,13,16,17,21,25,27,29,31,32,33],applic:[3,4,6,12,13,26,36],approach:[6,7,10,12,16,23,25,26,30],appropri:[4,24,29,32,33],approxim:[6,12,13,20,26],ar:[3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33],arang:[6,11,12,13,15,16,19,25,26,27,28],architectur:[3,5,26,27,29],archiv:[3,32],arcitectur:25,area:[3,11,12,18,19],arendt:33,arg:19,argmax:6,argmin:16,argu:27,argument:[6,12,23,26,29],arian:34,aris:13,arithmet:11,around:[3,6,14,26],arr:11,arra:11,arrai:[5,6,7,8,10,12,13,14,15,16,18,19,20,21,22,23,25,27],arrang:[7,27],array_of_diff:12,arriv:3,artefact:13,articl:13,artifici:21,artist:14,asarrai:[6,12,13,16,19,25,27],ask:[4,20],aspect:13,assembl:16,assess:[12,18],assign:[10,11,12,16,17,21,24,26,27],associ:[3,9,15,25],assum:[12,13,15,16,20],assumpt:12,ast:6,astyp:[16,28],asynchron:10,atan2:6,atlow:13,atmospher:3,attach:11,attach_respons:[13,14],attain:16,attempt:[29,33],attent:23,attr:11,attribut:[7,9,10,11,15,16,19,25,32],attriobut:15,auc:[18,19],author:[4,27],autmn22:[1,4],autmn:33,auto:[13,24,27,30],autofmt_xd:21,autokera:24,autom:[24,30],automat:[2,4,6,7,10,11,15,22,24,32,33],autumn22:4,avail:[2,3,9,10,12,23,32],avalanch:15,averag:[12,16,20,21,23,24,25,27,32],averagepooling2d:27,avg:[18,19],avgpool2d:27,avoid:[4,10,12,27,28,32],avx2:29,avx:29,awar:[4,13],awesom:24,ax11:11,ax12:11,ax13:11,ax14:11,ax1:[6,11,16,21,25,26,27],ax2:[6,11,16,21,25,26,27],ax3:[11,21],ax4:[11,21],ax:[6,11,12,13,14,16,18,19,26],axes3d:16,axesimag:6,axi:[5,6,10,12,13,15,16,18,21,25,26,27,29,32],axisgrid:16,axvlin:[12,16],azimuth:[6,10],b76e:24,b:[6,11,12,13,18,20,21,26,27,28],b_i:25,b_j:25,b_k:25,back:[6,24,26,29],backend:22,background:18,backprop:11,backpropag:[26,28],backward:[6,7,20,25,26,27],bad:[10,18,23,28,29],badg:4,bag:29,bag_clf:23,baggingclassif:23,baggingclassifi:23,balanc:[15,19],band:[13,14],bandpass:13,bar:[4,13,21],barcontain:14,base:[6,8,11,12,14,16,17,19,20,26,36],base_estim:23,baseestim:19,baselibsvm:19,baselin:32,baseline_error:21,baseline_pr:21,bash:3,basi:[13,16,17],basic:[3,4,14,18,22,26,30,32,33],batch:[10,25,26,27],batch_siz:[25,26,27,28],bay:[17,18],bayesian:24,bbox_to_anchor:12,beat:32,beauti:36,becaus:[10,11,12,16,20,25,26,27,28,29,31,32,33],becom:[3,4,13,20,28],been:[11,20,24,27,32],befor:[4,11,13,17,18,25,32,33],begin:[9,12,14,18],beginn:33,behav:[11,26],behavior:32,behind:[23,36],being:[17,25,27],belong:[16,18,20],below:[1,3,4,5,6,9,11,13,14,15,16,17,23,26,27,29,33],benefit:34,best:[4,16,18,20,26,27,30,32],best_params_:22,beta:29,better:[6,12,16,23,24,26,27,28],between:[3,4,5,11,12,13,14,15,16,18,19,20,23,26,32],beyond:34,bhe:10,bhn:10,bhz:10,bia:[12,23,25,26,27],bias:[25,26],bibtex:4,big:[3,9,20],bin:[10,11,14,24],binari:[2,8,9,14,17,20,23,25,26,29],binary_crossentropi:29,binder:[4,36],binderhub:36,biomed:29,bit:10,bitbucket:4,black:[6,11,12,14,16,26],blank:[1,16],blast:15,block:[27,28,29],blog:14,blue:[9,12,25,26,27],bn1:10,bn2:10,bn3:10,bne:10,bnn:10,bnz:10,bo:16,bokeh:10,bokehj:10,bold:[1,16],book:[3,10,11,13,19,32,33,34,36],boost:24,boot:29,bootstrap:[23,24],both:[12,14,16,17,18,20,24,27],bottleneck:29,bottom:[6,10],boulder:34,bound:[9,26,32],boundari:[9,18,26],bourn:3,box:[4,12,24],bp:13,br:[1,24],bracket:11,branch:[4,5,26,29,33],breadth:33,break_ti:22,brew:3,brief:10,briefli:4,bring:13,broader:27,broadli:12,browser:[1,4,36],brute:22,bsd:18,bti:10,bucket:15,bucketx:15,bug:4,build:[12,16,20,26,36],built:[9,11,22,26,29,32],bundl:26,burden:12,butter:13,butterworth:13,bv1:10,c1:13,c2:13,c:[6,10,11,12,14,16,18,19,22,26,27,29,32,36],c_:[6,26],cach:[13,24],cache_s:22,calcul:[6,8,10,11,12,13,14,15,16,18,19,20,21,24,25,26,27,32],california:[3,10],call:[3,6,9,10,11,13,14,16,18,19,20,23,24,25,26,28,29,32,36],callabl:26,callback:19,can:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,36],cancel:25,candid:22,cannot:[10,13,26,29],canon:[13,29,33],canva:33,capabl:3,captur:[12,26],carbon:16,cardin:24,carefulli:[12,13],carpentri:[3,4,5,11,34],carri:[10,27],carto:10,cascadia:12,casino:12,cast_to_ndarrai:19,catalog:[3,10,27],catboost:24,categor:[8,9,10,21,24,26],categori:[15,17],causal:13,caveat:16,cbar:6,cbar_kw:6,cbarlabel:6,cc:[16,18,29],cch1:10,ccp_alpha:24,cd:4,cdot:[6,20,25],cell:[1,10,13,19,24,26,28],celsiu:11,center:[3,4,6,11,12,16],central:[3,10,12,13,14],central_mo:14,centroid:16,certain:16,certifi:14,cfg:15,chain:26,challeng:[8,9],chang:[4,6,10,11,12,14,23,27,29,31],channel:[2,10,13,14,26,27,36],chapter2:[10,13],chapter3:19,chapter:[3,8,24,33],charact:[8,9],characterist:[13,18,19],charset:14,chart:21,chatgpt:34,cheat:4,chebyshev:13,check:[2,4,9,10,12,13,14,26],check_arrai:19,check_consistent_length:19,check_param:19,check_x_i:19,check_y_param:19,checkout:4,checkpoint:[26,27],chile:10,chine:33,choic:[12,22,27],choos:[3,4,6,10,13,14,16,17,25,26,27],choosealicens:4,chronolog:12,cienc:33,circ:[11,20],circl:[12,16],citat:4,cite:4,citi:9,class_nam:29,class_weight:22,classic:[13,24,27],classif:[14,20,23,25,26,27],classifi:[8,15,17,19,20,22,25,26,27,29],classificaiton:[17,23],classification_report:[18,19],claus:18,clean:[4,10,12,14,29,32],cleanest:4,clear:[16,24,33],clear_output:13,clearli:[12,16],clf2:22,clf:[18,19,22,23,26],cli:4,click:4,client:[13,14],climat:9,clipboard:4,clone:[4,5,19,33],close:[12,18,20,29],closer:[12,16],closest:16,cloud:[1,4,5,6,9,11,32,33,36],cloudstor:3,cluster:[3,24,27,32,33],cluster_centers_:16,cluster_label:16,clusterid:16,clusters_new:16,clusters_old:16,cm:[6,13,16,19,26],cm_bright:26,cmap:[6,13,15,18,19,26,29],cnn:28,co:[6,11,16],coarsen:11,coast:10,coat:29,cobli:11,code:[1,3,4,6,10,16,18,20,24,32,33,36],codespac:[13,19],coef0:22,coef:12,coef_:[12,20],coeff:6,coeffic:12,coeffici:[6,11,12,13,16],cohort:4,col:11,col_index:16,col_label:6,colab:4,collabor:36,colleagu:4,collect:[6,9,13,14,16,18,23,24,32],collinear:24,color:[6,9,10,11,12,14,16,18,25,26,27],color_threshold:16,colorbar:6,colorblind:11,colorinterp:9,colormap:6,column:[6,8,10,12,13,14,15,16,19,20,21,25],column_or_1d:19,column_stack:16,com:[1,4,8,9,13,15,16,20,21,24,27,33,36],combin:[6,7,12,14,16,22,24,25,27,28],come:[2,11,24],comic:4,comma:8,command:[3,4,10,20,21,26,36],comment:16,commit:4,common:[9,13,15,16,17,18,29],commun:[4,9,34,36],compact:[10,13],compar:[5,10,11,13,14,18,23,25,26,27,32],compare_model:24,comparison:[6,24],compil:[26,28,29],complet:[10,13,14,16,18,32],completeness_scor:16,complex:[6,9,11,12,13,16,17,26,27,32],complex_:14,complic:[20,28],compon:[12,15,24,27,29,31,33],components_:6,compos:[1,3,10,25,26,27],composit:14,compress:[8,10,13,29],comput:[1,2,4,5,6,9,12,13,16,17,19,20,25,26,27,32,33,36],computation:[6,12],compute_cent:16,compute_clust:16,compute_dist:16,compute_elbow:16,compute_object:16,cona:2,concat:[12,15],concaten:[12,14,16,27],conceit:12,concept:[12,16,29,33],concurr:[19,22],conda:[23,36],condit:[16,17,30,32],conduct:4,conern:3,confid:[12,18],config:[4,11,19],config_context:19,configur:[4,24],confirm:24,conflict:4,confus:[18,19],confusion_matrix:[18,19],confusionmatrixdisplai:19,congrat:4,conj:14,connect:[3,4,25,26,27,28,29],consid:[13,17,18,24],consist:[16,22,30],constant:24,constitut:23,constrain:[13,26],construct:14,consum:30,contact:4,contain:[1,2,4,6,9,11,12,16,21,25,29,33,36],contamin:14,content:[3,4,5,9,10,14],context:[11,14,25,26,27],continu:[4,6,9,12,13],contourf:[9,13,26],contourpi:14,contribut:[3,4,5,6,16,23,26,34],contributor:4,control:[33,36],conv1:26,conv1d:27,conv2:26,conv2d:[26,27,29],conv2dtranspos:29,conv_decod:29,conv_encod:29,converg:[12,16,29],convert:[6,10,11,12,13,19,20,21,22,23,25],convnet:27,convnetquak:27,convolut:26,cool:[3,24],coord:11,coordin:[9,11,12,13,17,26,32],copi:[2,4,11,16,19,22,23,32,33],core:[3,10,11,16,23,29,36],corner:[4,9,13],corr:[6,7,15],corr_coef_collector:12,corrcoef:[11,12],correct:[20,23,24,25,26,27],correctli:[18,20,24],correl:[6,7,11,12,15,32],correlated_data:12,correlation_matrix:12,correspond:[10,15,16,20,25,26,33],cosin:13,cost:[3,12,24,26],could:[3,4,8,10,19,27,29],count:[10,12,13,14,18,19,21],cours:[1,4,5,9,10,11,12,34],cov:11,covari:12,cover:[13,27,32,33],cox:24,cpu:[3,11,23,24,29],cpu_feature_guard:29,cr:9,crap:[6,12,14,15],creat:[2,5,6,9,11,12,13,14,16,17,19,20,21,24,25,26,28,32,33,36],creation:9,credit:4,cristea:[33,34],criterion:[24,25,26,27],critic:[4,12,13,14,29],cross:[11,19,20,25,26,32],cross_val_predict:[19,23],cross_val_scor:[18,23],crossentropi:27,crossentropyloss:[25,26,27],cruis:16,cryospher:33,cs160:33,cs163:33,cs230:27,csr:19,csv:[1,7,8,9,14,15,16,20,21,24],cu:34,cubic:14,cuda:[3,11],cumsum:6,cumul:6,cumulativevarianceexplain:6,current:[2,6,16,19,20,21,28,32],curriculum:10,curv:[18,19,23,26,27],curvatur:13,cutoff:13,cv:[12,19,22,23],cv_results_:22,cwt:[7,13,32],cwtm:13,cwtmatr:13,cyan:6,cycler:[2,14],cyto:16,cytomet:16,d1:11,d2:11,d2dl:28,d:[6,8,10,11,13,14,16,21,25,26,27],da:3,dai:[6,10,12,13,21,24],daili:[6,21],dask:11,data:[1,3,4,10,13,15,17,20,22,23,26,28,30,31,33,36],data_elevation_mean:10,data_faith:16,data_group:10,data_shrink:16,dataarrai:11,databas:[8,9,11],datafram:[6,8,11,12,14,16,18,21,28],dataload:[25,26,27],datamanipul:[10,13],datapoint:26,dataset:[6,9,10,11,12,13,15,16,18,19,20,21,22,23,25,26,27,29,32],date:[4,6,12,16,21],date_year:[6,12],datetim:[10,21],datetime64:10,dateutil:[2,14],db:20,de:6,deactiv:2,deal:[6,12,21,27],debug:32,decai:14,decid:[16,18,20,26],decis:[17,18,23,24,26],decision_funct:[19,26],decision_function_shap:22,decisionboundarydisplai:18,decisiontre:23,decisiontreeclassifi:[18,23],declar:[11,12],decod:10,decoder_cnn:29,decompos:[6,13,29],decomposit:[6,13,16],decor:[14,19],decreas:[6,7,16,18,20,27],dedic:26,deep:[3,11,27,29,31,33],deepdenois:29,def:[6,10,14,15,16,20,25,26,27,28,29],default_rng:12,defin:[2,8,10,11,12,14,16,18,20,22,36],definit:6,degc:11,degre:[6,13,21,22,24],delai:19,delayed_func:19,delet:2,delta:[13,14,20],dem:13,demarc:16,demographisc:3,demonstr:[5,6,11,12,15,24,33],dendrogram:16,denoise_ae_cnn:29,denoise_decod:29,denoise_encod:29,denol:[33,34],denot:16,dens:[26,27,28,29],densiti:[10,16],depend:[2,6,7,10,13,26,27,36],deploi:[3,10,33,36],deploy:[4,33],deprec:[10,12,22,29],depth:[10,16,23,27],deriv:[20,26,36],descent:[11,17,19,25,26],descr:[19,22],describ:[4,9,10,11,12,14,21,29,31,33],descript:[4,10,21,24],design:[8,9,11,12,16,19,22,23,27,33],detach:20,detail:[3,4,8,16,22,24,26,33],detect:[15,27,29],determin:[12,13,21,25],determini:12,detrend:[12,13,14],dev:[10,13],develop:[2,3,4,33,34,36],deviat:[11,12,13,14,32],devic:[3,11],devid:12,df:[6,10,12,14,15,16,18],df_test:25,df_train:25,diag:6,diagon:[6,18],diam:16,diam_lwr:16,diam_mid:16,diam_upr:16,diamet:16,dict:[6,19],dict_kei:[19,22],dictionari:[6,10,11,19,22,23],did:[10,12,24],diff:[4,12],diff_mean:12,differ:[2,4,5,8,9,10,11,12,13,14,15,16,18,23,27,31,32,36],differenti:[11,26],difficult:[13,16,31],diffus:29,digit:[9,13,19,22,23,25,33],dim:11,dimens:[6,7,8,9,10,11,12,13,26,27,28,29,32],dimension:[7,8,9,10,11,16,17,27,33],dip:10,direct:[6,11,15],directli:[3,10,19,24],directori:[4,9],disabl:[25,26,27],disadvantag:12,disciplin:[8,33],discov:16,discret:13,discrimin:[6,14,17],discriminant_analysi:18,discriminatori:13,discuss:[3,4,10,12,16],disp:19,displac:[6,8,12],displai:[10,11,13,14,21],display_styl:11,dissimilar:11,dist:16,distanc:[13,16],distancemetr:16,distinct:16,distinguish:11,distort:16,distribut:[3,6,10,11,12,13,14,15,16,22,32,36],dive:[11,27],divers:8,divid:[12,13,14,32,33],divis:16,djf:11,dl:[9,13,15,16,20,27],dmatrix:23,dmc:[13,14],dn:16,doc:[8,10,11,12,16,21,24,26],docker:[24,33,36],docmument:4,document:[4,5,9,10,13,16,18,32,36],doe:[9,10,12,14,16,20,23,27,32,36],doi:[4,9,27,32],domain:[14,26,29],domin:[9,13],don:[24,28],done:[3,4,9,11,12,13,19,22,24,25,26,27],dot:[6,20,27],dowload:9,down:[1,4,9,25],download:[2,4,6,9,12,13,14,15,16,20,23,24,25,26,27,36],downsampl:[11,26,27],dozen:36,dp1:10,dp2:10,dp3:10,draft:18,dramat:3,drastic:18,draw:[12,16],dress:29,drive:33,driven:36,drlat:13,drlon:13,drop:[4,14,15,20,21,26,32],dropbox:[4,9,10,13,15,16,27],dropna:[10,14,20],dropout:[26,27,29],ds2:11,ds:[1,4,11,33,36],dt:[11,13,24],dtype:[10,11,14,16,19,22,24,27],du:11,ducelli:34,due:[12,13,16,33],dummi:24,duo:4,duplic:[4,12],durat:13,dure:[24,25,26,28,33],dw:20,dwa82x6xhjkhyw8:16,dz:14,e2019gl085870:27,e:[1,2,3,4,6,8,9,10,11,12,15,16,20,23,24,25,26,27,29,31,32],e_b:12,e_train:12,e_val:12,each:[2,3,4,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,33,36],earli:[9,19,28,33],earlier:[26,29],early_stop:26,earth:[4,11,15,33,34],earthdatasci:[4,9,11,34],earthquak:[6,10,13,14,15,17,27,29],earthrocgranit:14,eas:12,easi:[11,20,24],easier:[6,11,20,26],easili:[12,29,32],east:[6,9,10,12],eastward:12,ecosystem:33,edg:[10,13,27],edgecolor:[16,18,26],edit:[3,8,24],editor:4,edu:[4,6,12,33],educ:33,effect:[12,13,18,25],effici:[3,12,24,29],effort:[24,30],eh1:10,eh:10,ehn:10,ehz:10,eigen:6,eigenvalu:6,eigenvector:6,either:[1,3,6,11,12,16,20,26,27,29,33],el:10,elaps:[19,22],elast:24,element:[9,10,11,12,18,27],elev:[9,10,13],ellips:16,eln:10,els:[4,6,11,12,15,16,19,25,26,27],elsewher:27,elz:10,email:[4,33],embed:[6,9,31],emerg:9,empir:16,emploi:12,empti:[12,16,19,28],en:24,enabl:[3,13,29],encod:[8,9,24,27],encoder_cnn:29,encount:13,end:[0,6,7,10,12,14,16,17,18,25,26,27,33],end_dim:[25,26],end_tim:10,enddat:10,endtim:[13,14],energi:13,enforc:13,engin:[12,33],enhanc:9,enivron:2,enough:[11,32],ensembl:[18,19,21,22],ensur:[12,21],ensure_2d:19,ensure_min_featur:19,ensure_min_sampl:19,enter:[10,13,14,24],entir:[4,10,12,23,25,27,31],entri:[6,9],entropi:[20,25,26],enumer:[6,16,18],env:[2,14,23,29],environ:[4,5,32,33,36],environment:12,ep1:10,ep2:10,ep3:10,ep:18,epoch:[23,25,26,27,28,29],epr:12,epred_train:12,epred_v:12,epsilon:20,eq1:27,eq2:27,equal:[6,12,13,14,27],equat:[26,36],equial:11,equival:[10,11,20,25,26],err:18,error:[6,7,10,12,16,18,20,21,25,26,27,32],error_scor:22,erupt:16,escienc:3,esourc:33,especi:[12,27,32],ess490:[1,10],ess:[1,4,33,36],essenti:12,est:16,estim:[6,12,16,19,21,22,23,25,32],estimator__break_ti:22,estimator__c:22,estimator__cache_s:22,estimator__class_weight:22,estimator__coef0:22,estimator__decision_function_shap:22,estimator__degre:22,estimator__gamma:22,estimator__kernel:22,estimator__max_it:22,estimator__prob:22,estimator__random_st:22,estimator__shrink:22,estimator__tol:22,estimator__verbos:22,estimator_nam:19,et:[4,24,27,29],eta:[23,29],etc:[1,4,24,25,32],euclidean:16,euclidian:[11,16],evalu:[12,16,23,25,26,27,33],evaluate_model:24,even:[13,14,16,27,31],evenli:11,event:[10,13,15,27,36],eventu:36,everi:[11,13,27,31,33],everyth:[2,31],everytim:4,evolut:25,exact:[2,12,20,31],exactli:12,exampl:[3,4,6,8,9,10,11,13,15,16,17,18,19,20,21,23,25,26,28,30,33],exce:25,except:[1,26],exclud:24,exclus:26,execut:[1,2],execute_request:25,exercis:[9,12,15,18],exhibit:12,exist:[12,13,16,20,36],exist_ok:[9,26,27],exp:[10,11,13,14,20,25,26],exp_reg101:24,expand:1,expans:3,expect:[5,24,32],expens:[3,27],experi:[3,24,30,36],expert:33,expertis:32,expir:4,explain:[6,7,16,20,25,26,27],explained_variance_:6,explained_variance_ratio_:6,explan:4,explanatori:10,explicitli:12,explor:[7,12,14,16,19,22,23,25,30,32],explos:15,expon:14,express:[10,16],extend:[18,25,27],extens:[2,5,36],extent:13,extern:[2,10],extra:24,extract:[7,13,14,15,21,24,25,29,33],extractal:9,extrem:[12,24],f0e1ywupdbuv3l3:15,f1:[18,19,20,28],f1_score:18,f2:28,f4:12,f:[11,13,14,15,18,19,20,21,22,23,25,26,27],f_1:18,f_:13,f_a:13,f_c:13,f_path:[26,27],f_x:20,facecolor:16,facet:11,facil:32,facilit:[9,11],fact:[12,16,27],factor:[4,13,14,26,27],fail:26,fair:32,faith:16,fallen:27,faller:4,fals:[6,10,12,14,16,18,19,20,22,23,24,26],famili:13,familiar:[10,11],far:12,fashion:27,fashion_mnist:29,fast:[3,10],faster:9,fastica:[6,7],favor:27,fc1:26,fc2:26,fc3:26,fc4e2a:6,fc:16,fdsn:[13,14],fdsn_client:[13,14],feather:16,featur:[7,10,11,13,16,20,22,24,26,27,29,32,33,36],feature_import:21,feature_importances_:21,feature_list:21,feature_nam:[6,19,22],fee:4,feed:29,fetch:[4,33],fetch_openml:[19,22,23,25,26,27],few:[12,16,27],fewer:6,ff0000:26,fft2:13,fft:[7,13,14],fftfreq:[13,14],fftpack:[13,14],fftshift:13,fidel:29,field:[6,8,10,11,24,27,29,30],fig1:11,fig2:11,fig:[6,10,11,12,13,14,16,21,25,26,27],figsiz:[6,11,12,13,14,16,19,21,26,28],figur:[6,9,10,16,19,24,25,26,27],figure_:19,figure_format:11,fiji:10,file1:[9,13],file2:[9,13],file:[1,3,4,7,8,9,11,14,15,16,18,19,25,27,32,33],file_url:[6,12],filenam:16,fill:[13,14,27,32],fill_betweenx:16,fill_color:10,fill_valu:22,filter:[10,27],find:[3,4,6,7,11,12,13,15,16,17,18,20,23,25,26,27,29,30,32,33],finder:24,finish:22,finit:[13,15,27],first:[1,3,4,6,7,10,11,12,13,14,15,16,18,19,20,23,25,26,27,28,29,32,33],firstnam:9,fisher:14,fit:[6,12,16,18,19,20,21,22,23,26,27,28,29,30],fit_method:19,fit_param:19,fit_predict:16,fit_transform:[6,16,18,19,22,23,29],fivethirtyeight:21,fix:[4,10,12,22,26,27,32],flag:[16,29],flat:14,flatten:[23,25,26,27,28,29],flavor:36,flexibl:11,flip:11,float32:[11,27,28],float64:[10,19],floor:13,flouresc:16,flow:16,fluor:16,fly:11,fma:29,fmi:16,fn:[16,18,20],fname:9,focu:[3,9,11,12,15,24,27],focus:33,fold:[19,22,24],fold_shuffl:24,folder:[9,13,16,27,32],folium:9,follow:[0,3,4,6,9,12,15,16,18,24,27,29,33],font:[11,16],fontsiz:[11,16],fonttool:14,fontweight:16,forc:[4,20,22,33],force_all_finit:19,forecast:[21,24],forecast_acc:[21,24],forecast_noaa:[21,24],forecast_und:[21,24],forest:[17,18,19,23,24,26,33],forg:2,fork:4,form:[9,12,14,16,17],format:[1,6,7,8,10,15,16,18,19,21,25,26,27,32,33],formatt:6,former:34,formul:20,formula:[19,20],forth:24,fortran:36,forward:[6,7,11,25,27],found:[4,9,11,20,22,25,27,33],foundat:33,four:15,fourier:[7,14,15,29,33],fourth:[1,11,14],fowlk:16,fp:[16,18,20],fpr:[18,19],frac:[6,11,13,14,16,18,20,25,26],fraction:[16,18,27],frame:[10,12,14,15,19,22],framework:[9,13,33],free:[3,4,29,32,36],freq:[10,13],frequenc:[11,13,14],frequent:6,freqvec1:13,freqvec:[13,14],fri:21,friend:[2,21,24],friendli:4,from:[1,2,4,6,7,8,9,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,32,33,36],from_estim:[18,19],from_numpi:20,fs:[13,14,15],ft:13,ftp:10,full:[24,27],full_matric:6,fulli:[25,26,27,28,29],func:19,fundament:[7,11,12,18],further:[4,7,26,29],futur:[4,10,25],futurewarn:10,g:[1,2,3,4,6,8,9,10,11,12,16,20,23,24,25,26,27,31,32],gain:36,game:3,gamma:[18,19,22],gan:10,gap:[13,32],gate:[16,28],gather:[3,17],gaussian:[11,18,27,32],gaussian_process:18,gaussiannb:[18,23],gaussiannois:29,gaussianprocessclassifi:18,gb:23,gbr:24,gca:[6,12,14],gcp:3,gdrive:4,ge:11,gel:10,gener:[4,6,9,10,11,12,14,16,24,26,27,28,30,31,32,33],generaliz:[12,32],generate_time_seri:28,genr:8,geo:33,geodesi:[6,12,33],geograph:9,geohackweek:[9,34],geolog:[9,13],geologi:[9,13,33],geometri:9,geophys:[8,27],georeferenc:9,geoscien:33,geoscienc:[3,13,31,32,34],geoscientif:[8,11,13],geosmart:[4,33],geospati:[8,12,13,26,31,32,33],geq:20,get:[3,4,6,9,10,11,12,14,16,19,20,21,23,25,26,27],get_arrai:6,get_config:19,get_dummi:[21,24],get_features_by_domain:15,get_param:22,get_waveform:[13,14],get_xticklabel:6,getattr:19,geyser:16,giant:31,git:[5,23,33,36],github:[1,3,5,24,27,29,32,34,36],gitignor:4,gitlab:4,give:[2,4,12,13,14,16,18,20,24],given:[1,6,10,12,16,18,27,32],gla:10,glass:1,glo:10,glob:[6,12],global:[3,4,10,27],global_quakes_iri:10,global_skip_valid:19,gn:10,go:[4,9,10,11,12,13,15,20,24,25],goal:16,goe:25,gone:24,good:[4,7,12,16,32],googl:[8,21,24,33],got:19,gouraud:13,gov:[9,21],gp:[6,8,12],gpd:9,gpl:10,gps_timeseri:[6,12],gpu:[3,11,24],grad:20,grad_a:11,grad_b:11,grad_c:11,grad_d:11,grad_fn:20,grad_y_pr:11,gradient:[11,17,19,24,25,26,27,28],gradient_desc:29,graduat:34,grai:27,granit:14,grant:4,grant_sudo:24,graph:[11,21,26],graphic:[3,27],gray_r:19,great:[3,4,24,26,27,29],greater:[13,21,27],green:[9,12,16],grei:25,grid:[6,9,10,11,12,13,14,16,18,19,26,27,28],gridsearchcv:22,grobler:18,ground:[13,14,15,16,32],group:[3,9,10,11,12,15,16,17,19,23,24,32],groupbi:[10,11],growth:3,gst:10,gudelin:4,gueron:23,guess:9,gui:4,guid:[4,10],guidelin:[4,32],gzip:[6,12],h2o:24,h5:[7,8,9,15,27],h5py:[9,15,22,27,29],h:[6,10,20,26],h_y:20,ha:[4,6,9,11,12,14,15,16,17,20,22,24,25,26,27,28,29,32],hackweek:36,had:[4,25],half:33,hand:[23,25,36],handl:[3,4,10,17,24,26],handwritten:19,happen:[6,10,11,12,13,16,18],happi:26,hard:[4,23,33],hardwar:[1,3,36],harmon:18,hasattr:26,hat:[12,13,20,25],have:[2,3,4,9,10,11,12,13,14,15,16,20,23,24,25,26,27,28,29,31,32,34],hdf5:15,hdf:9,hdo:10,head:[1,4,6,9,10,14,15,16,21,24],headach:4,header:[10,25],heatmap:6,heavi:3,height:[9,10,27],help:[4,5,11,12,32],henderson:[33,34],here:[3,4,6,9,10,11,12,13,14,15,16,17,19,20,22,24,25,26,27,28,29,33],heterogen:9,hh2:10,hh3:10,hhe:10,hhn:10,hhz:[10,13,14],hidden:[26,27,28],hidden_layer_s:26,hide:6,hierarch:27,hierarchi:[16,27],high:[3,8,12,13,14,16,18,24,29,33],higher:[10,18],highest:[6,13],highlight:27,highpass:13,hist:[10,11,12,13,14,15],histogram:[10,11,13,14,15],histor:[21,24,27],histori:[25,26,27,28,29],hj2:10,hj3:10,hjz:10,hle:10,hln:10,hlz:10,hn1:10,hn2:10,hn3:10,hne:10,hnn:10,hnz:10,hold:9,home:[3,4,9],homepag:4,homewgrown:32,homework:4,homgeneity_scor:16,homogen:16,homogeneity_completeness_v_measur:16,honshu:10,hood:24,hook:20,hopefulli:16,horizont:[3,6,12],horizontalalign:[6,26],host:[4,33,36],hot:24,hour:[3,10,13],hover_data:10,hover_nam:10,how:[3,4,6,8,9,10,11,12,14,15,16,18,19,20,25,26,31,32,33],howev:[3,6,9,12,20,26],hp:13,hpc:[5,11],href:[10,13,19,26],html:[1,6,10,11,16,26,29,32],htop:3,http:[1,3,4,6,8,9,10,11,12,13,15,16,18,20,21,24,26,27,29,30,32,33,36],hub:[3,5,9,33],huber:24,hue:16,hulbert:27,human:[9,32],hv1:10,hyak:3,hydrolog:6,hyp_50m_sr:9,hyper:[17,24,26],hyperbol:26,hyperparamet:[12,23,24,27,32],hyperplan:17,hypothesi:12,hz:[13,14],i2:13,i6tv3ug15oe6yh:13,i:[3,6,8,10,12,13,14,15,16,19,20,25,26,27,29,32],i_it:20,ic:27,ica:[6,7,32],iclass:18,icon:4,id:[15,19,21,24],idai:[6,12],idea:[16,23,24,29],ideal:[6,18],ident:[11,18],identifi:[6,19,21,32],idna:14,ifft2:13,ifft:[13,14],ifram:10,ignor:[4,13,16,24,27],ignore_index:15,igs14:[6,12],ii:[6,12,18],iid:22,iik:12,illustr:[4,12,13,16,29],iloc:[9,10,15,21,24,25],im:6,imag:[1,6,9,13,14,19,22,24,25,26,27,29,33],image_index:29,imageri:8,imagin:[12,29],imaginari:29,img:1,immedi:19,impact:31,implement:[3,10,16,23,26,27,29],impli:6,important_indic:21,importantli:14,importlib:14,improv:[29,32],imput:24,imputation_typ:24,imshow:[6,13,19,29],in_channel:27,in_circl:12,in_featur:[25,26],in_squar:12,inaccess:4,includ:[1,4,5,14,26,29,32,33],incomplet:4,incoropor:33,incorpor:36,increas:[11,12,16,18,20,27,28],increasingli:27,ind:13,inde:[12,18,29],independ:[4,9,12,19,20,23],index:[9,10,15,16,21,24,25],indic:[12,14,16,26],individu:[3,11,16,23,25],induc:[12,27],industri:24,inertia:16,inexact:20,infin:20,infinit:13,influenc:[12,24],info:[2,10],inform:[4,6,7,9,26,31,32,36],infrastructur:36,infti:[13,14],inherit:25,init:[4,12,16],init_cent:16,initi:[4,11,16,20,25,26,27,29,32],initiali:16,inlin:[6,11,12,21,26],inlinebackend:11,inplac:[10,20],input:[6,7,10,11,13,15,24,25,26,27,28,29,32],input_nam:19,input_shap:[26,27,28,29],inquir:10,inquiri:9,inscrib:12,insert:[1,16],insid:[2,6,12],inspect:18,inspir:4,instal:[2,3,4,5,10,13,14,15,23,24],instanc:[1,3,6,10,14,18,19,22,23,26,27,32,33],instanti:21,instead:[10,13,14,16,18,19,20,23,29,32],institut:[3,32],instruct:[4,29],instructor:[4,10,13,19,33],instrument:[13,16],int32:[16,22],int64:[10,19,22,23],int_:[13,14],integ:[8,11,19,27],integr:[7,11,24],intend:[33,36],intens:[6,12],interact:[1,3,7,10,24,26,36],intercept:12,intercept_:20,interest:[13,15,29,34],interfac:[1,2,4,36],intermedi:[4,13,25,26,27,32,33],intern:[10,28],internet:36,interpol:19,interpret:[2,9,17,26,33],interpret_model:24,interrupt:19,interv:[12,26],intro:[10,11,33],introduc:[11,12,24,26,28,29,31,33],introduct:[3,10],introductori:9,intuit:26,inv_test_indic:19,invari:27,invers:6,inverse_transform:6,investig:13,involv:[10,12],io:[4,6,9,10,12,27,29,30],ipykernel_2672:10,ipykernel_47043:13,ipykernel_7989:16,ipynb:[10,13,19],ipython:13,iq1:27,iq2:27,iq:27,iri:[6,13,14],irisdf:6,isal:9,isel:11,isfinit:27,isin:10,isinst:6,island:10,isol:[2,6,31,36],isomap:6,issu:[4,5,24,28,32],ital:1,item:[1,4,10,11,25,26,27],iter:[12,15,16,19,20,21,22,24,25,26,27],iterable_with_config:19,ith:25,ith_cluster_silhouette_valu:16,its:[2,7,10,11,12,14,15,16,23,24,26,27,28,32],itself:[9,16],j4:16,j5lxhd8uxrtsxko:9,j:[6,16,20,25],jaqu:18,java:36,javascript:[9,36],jja:11,job:[3,24],joblib:19,john:9,johnson:27,journal:35,js:[9,13],jsgb:10,json:[1,8,9],juli:13,julia:[32,36],jump:25,jupyt:[2,3,5,21,24,26,32,33,36],jupyterhub:[3,4,36],jupyterlab:[2,4,10,36],jupyternotebook:36,just:[4,10,12,14,15,16,20,25,26,27,28,31],k:[6,14,17,18,19,20,21,23,24,25,27],k_means_cyto_3:16,k_means_cyto_8:16,k_means_cyto_bad_init:16,kaggl:20,kcpb:10,keep:[4,11,12,13,20,26],kei:[4,9,10,11,15,19,21,22],kelvin:11,kept:12,kera:[23,25,26,27,28,29,30,33],keras_tun:30,kerasclassif:26,kerasregressor:26,kernel:[1,17,18,19,22,24,26,27],kernel_s:[27,29],kf:12,kfold:[12,24],khbb:10,khmb:10,kilomet:10,kind:9,kit:[16,23],kiwisolv:[2,14],klat:13,klon:13,km:[10,13],kmean:16,kmeans_model:16,kmeans_pp:16,kmpb:10,kneighborsclassifi:[18,19,22,23],knn:[17,18,23,24],knn_clf:19,knn_predict:19,know:[1,3,10,17,20],knowledg:[27,29,33],known:[12,19,24,27],ko:16,koehrsen:21,kurtosi:13,kurtosis_valu:14,kw:6,kwarg:[6,19,29],kxk:18,l2:[11,27],l:[20,25,26,27],l_1:11,l_2:11,l_old:20,lab:[4,20,34],label:[5,6,10,11,15,16,17,18,19,23,24,25,26,27,28,32],label_binar:19,labelbottom:6,labelcolor:[25,26,27],labels:11,labels_:16,labeltop:6,lamb:10,lambda:[10,21],lambda_meters2kilomet:10,land:[3,9],landsat:[3,8],landslid:15,languag:[1,3,4,9,32,36],laplac:14,laptop:[2,4],lar:24,larg:[3,4,11,13,14,20,23,26,27,32],larger:[3,6,9,16],largest:[6,13],lasso:24,last:[4,9,10,11,13,19,20,21,23,24,26,27,28],lastnam:9,lat:[10,11,13,16],later:[2,12,20,21,26,28],latex:1,latitud:[10,13,26],launch:1,law:11,layer1:25,layer:[4,9,25,28,29],layout:21,lba:10,lbfg:26,lce:10,lcl:10,lcq:10,lda:[17,18],ldata:15,ldo:10,lead:[6,12,13,30],leader:3,learn:[2,3,6,7,8,9,10,11,12,17,18,19,20,21,22,25,27,28,29,32,34,36],learn_rat:23,learner:23,learning_r:[11,23,25,26,27,29],learnt:24,leas:32,least:[13,24,33],least_frequ:24,leav:[1,10],leaveoneout:12,lectur:[8,11,12,13,15,27,33],lecun:27,leduc:27,left:[4,6,10,11,12,26,27],legend:[6,11,12,13,14,19,21,26,28],legend_el:6,len:[6,9,12,13,14,15,16,18,19,20,21,23,25,26,27,29],lenet_checkpoint:[26,27],length:[6,10,11,12,14,20,25,27],length_a:12,length_sub:12,leq:[16,20],less:[6,10,12,13,24,32],lesson:[3,5,34],let:[6,9,10,11,12,13,14,15,16,18,19,20,25,26,27,28],letter:27,level:[1,10,15,18,24,33],lh2:10,lh3:10,lh:[10,11],lhe:10,lhn:10,lhz:10,lib:[9,14,19,23,29],librari:[2,24,29,32],licens:[4,18],lie:[16,26],light:[16,24],lightgbm:24,like:[3,4,8,9,10,11,12,14,16,20,27],lil:29,lilianweng:29,limit:[9,12,13,17,22,23,26,29,32],linalg:[6,11],line2d:[14,16,18],line:[1,2,4,6,10,11,12,13,14,16,17,18,19,21,24,26,36],line_color:10,linear:[6,11,13,14,17,18,19,20,22,24,25,26,27,29],linear_model:[12,20],lineardiscriminantanalysi:18,linearli:[11,13],linearly_separ:26,linearregress:12,linestyl:[6,11,16],linewidth:[6,11,12,18],link:[1,4,10,15,33],linkag:16,linregress:12,linspac:[6,11,12,13,14,26,28],linux:[3,5,32],list:[1,2,3,4,5,6,9,10,11,12,15,16,19,21,24,26,27,32],listedcolormap:[18,26],literatur:[27,32],littl:[17,18],live:36,llar:24,ln:6,lne:10,lnn:10,lnz:10,load:[6,10,14,27],load_data:29,load_dataset:11,load_digit:[19,22,23,25,26,27],load_iri:6,loaded_test:[25,27],loaded_train:[25,26,27],loaded_v:26,loc:[10,12,16,19,22],local:[4,5,10,13,16,19,27,33],locat:[1,9,10,13,14,15,16,21,26,27],log10:[13,15,16],log:[10,11,13,14,16,20,24,25,26,29],log_:14,log_i:16,log_x:16,logarithm:32,logic:25,logist:[17,25,33],logistic_regress:20,logisticregress:20,logit:25,logspac:[11,13,26],loguniform:22,lon:[10,11,16],longer:[13,16,20,28,29],longitud:[10,11,13,26],loo:12,loocv:12,look:[4,6,9,10,11,14,15,16,18,23,24,25,27],loop:[5,6,10,12,13,16,25,26,27],loos:[3,36],lose:27,loss:[6,7,11,20,22,26,27,28,29],loss_funct:[26,27],loss_tim:[25,26,27],lot:[3,24,28,32],low:[3,12,13,14,16,18,23,24],lower:[6,12,13,19,23,29],lower_critical_valu:12,lowest:[16,29],lowpass:13,lp:13,lr:[24,25,26,27,29],ls:[10,11],lstrip:26,lt:[25,26,27],ltn:10,lua:36,lucki:3,lunch:32,lw:16,lwd:10,lwh:10,lxml:14,lzmy975n0l5bjbmr9db291m00000gn:13,m1:24,m2km2:10,m2km:10,m8:13,m:[4,6,9,10,11,13,21,23],m_3:14,m_4:14,ma:33,mach:25,machin:[3,7,8,9,12,17,19,22,23,24,32,34],machinelearn:19,maco:3,macosx:[3,4],macosx_10_15_x86_64:23,macosx_11_0_x86_64:23,macosx_12_0_x86_64:23,macro:[18,19],made:[4,6,10,25],mae:[21,24],mag:10,magic:21,magnesium:14,magnitud:[10,13,23],mai:[1,2,3,4,6,8,9,10,12,13,14,15,16,20,23,24,26,28,29,32],mail:4,main:[4,9,16,33],maintain:12,major:[6,23,24],make:[2,4,5,9,10,11,12,13,14,15,18,19,20,21,24,26,27,28,31,32,33],make_circl:[18,26],make_classif:[18,26],make_moon:[18,26],make_pipelin:26,makedir:[9,26,27],mallow:16,mam:11,manag:[2,25,26,27,36],mani:[2,3,6,9,10,12,13,15,16,17,19,20,24,25,27,31,32,34,36],manifold:29,manipul:[5,7,9,10,11,15,21,24,25,33],manual:[10,32],manual_se:[26,27],map:[6,9,26,27],mapbox_styl:10,mape:[21,24],margin:17,mariana:10,marin:[33,34],marinedenol:[10,14,23,29],mark:33,markdown:[4,36],markedli:36,marker:[9,10,11,12,16],marker_clust:9,marker_s:10,markerclust:9,markers:10,market:24,mask:[9,22,29],masked_arrai:22,mass:16,match:[12,24,29],materi:[9,11,27,33,34,36],math:[6,11,16,20,33],mathbf:[6,26],mathcal:[20,25],mathemat:20,matlab:[32,33],matmul:6,matplolib:33,matplotlib:[2,5,6,9,10,12,13,14,15,16,18,19,21,22,25,26,27,28,29],matrix:[7,12,13,18,19,20,26],matshow:15,max:[6,9,10,11,12,13,14,16,19,21,22,23,25,26,27,32],max_depth:[18,23,24],max_featur:[18,24],max_it:[20,22,26],max_leaf_nod:24,max_percentag:[13,14],max_pool2d:26,max_sampl:[23,24],maxim:[17,25],maximum:[16,20,21,24,25,26,27,32],maxlat:13,maxlon:13,maxpool2d:[27,29],maxpool:27,maxpooling2d:27,mayb:26,mb:23,mcbrearti:27,mch:10,mcn:10,mcw:10,md:[1,4,32],mdenol:33,mean:[3,4,9,10,11,12,13,18,20,21,23,24,25,26,27,32],mean_a:12,mean_b:12,mean_fit_tim:22,mean_score_tim:22,mean_squared_error:12,mean_test_scor:22,meant:36,measur:[6,8,12,14,16,18,21,24,26,32],median:[10,12,32],meet:[24,32],mehra:33,member:[12,16,36],memori:[3,9,10,11,20,26,27,28],mention:4,menu:[1,4],mere:26,merg:[1,4,13,14,16,33],mesh:26,meshgrid:26,messag:25,messi:4,meta:23,metadat:11,metadata:[7,9,10,11,32],meter:10,meters2kilomet:10,meters2kilometers2:10,method:[6,11,13,14,17,19,20,21,22,23,24,25,26,27,30,33],methodolog:33,metric:[12,13,16,19,20,21,22,23,26,27,28,30],mgo:14,mhe:10,mhn:10,mhz:10,microsoft:[3,24],microstoft:3,middl:[6,14,16,26],might:[6,9,12,13,14,24],mimic:9,min:[9,10,11,12,13,14,16,19,21,22,26,32],min_impurity_decreas:24,min_impurity_split:24,min_samples_leaf:24,min_samples_split:24,min_weight_fraction_leaf:24,mini:[25,26],miniconda3:[14,29],miniconda:2,minim:[16,20,25,32],minima:16,minimum:[6,16,25,32],minipnw_metadata:15,minipnw_waveform:15,minlat:13,minlon:13,minmax:32,minmaxscal:[19,22,23,32],minor:6,minu:[21,24],minut:[16,33],misclassifi:[18,23],misenterpret:13,misinterpret:13,miss:[24,32,35],mistak:20,mitig:[13,26],mix:6,mixing_:6,ml:[3,18,24,28,30,32,33],mlgeo2022:4,mlgeo2022_uwnetid:4,mlgeo2023:4,mlgeo2023_uwnetid:[4,33],mlgeo:[4,5,13,14,19,29,33],mlgeo_sk:23,mlhub:3,mllab:2,mlp:[27,28],mlpclassifi:26,mm:[6,12],mmw:10,mne:10,mnist:[19,25,26,27],mnn:10,mnz:10,mobil:4,mode:[11,17,23],model:[6,8,9,13,17,19,20,22,23,28,30,33],model_lenet:27,model_select:[12,18,19,21,22,23,25,26,27,29],moder:26,modif:4,modifi:[4,10,11,18,19,21,22,23,25,26,27,33],modul:[2,6,7,10,11,12,13,14,15,16,25,26,27,32,33],modulenotfounderror:13,moistur:8,moment:14,mon:21,monaco:12,mondai:[17,33],monitor:3,month:[3,13,21,24],monthli:11,more:[2,4,6,8,9,10,12,13,14,16,17,18,20,22,23,26,29,30,32,36],morlet2:13,morlet:13,morn:33,most:[2,3,4,5,6,7,8,10,13,14,15,16,17,19,21,23,24,26,27,28,32],mostli:[3,12,15,16],mother:13,motion:[6,13,14,15,32],motiv:32,mousavi:29,move:[3,9,11,25],mpl_toolkit:16,mplot3d:16,ms:[10,13],mse:[12,24,28,29],mse_train:12,mse_val:12,mu:14,much:[3,6,8,16,20,24,26,27],mulbackward0:20,multi:[10,11,13,17,18,23,25],multi_output:19,multiclass:[17,26],multiclassif:27,multicollinear:24,multidimension:[6,9,28],multilabel:29,multipl:[3,4,6,11,12,13,25,26,27,28,32,36],multipli:[6,14],multivariate_norm:12,must:27,my:[1,4,11],my_kmean:16,my_metadata:10,my_mlp:26,my_pd:10,mybind:36,mycod:4,myenv:2,myst:36,n1:16,n2:16,n:[6,9,11,12,13,14,15,16,18,19,20,24],n_cluster:16,n_clusters_per_class:26,n_completed_task:19,n_compon:[6,16],n_dispatched_batch:19,n_dispatched_task:19,n_epoch:[25,26,27],n_estim:[18,21,23,24],n_featur:26,n_imag:29,n_inform:26,n_init:16,n_iter:22,n_j:16,n_job:[19,22,23,24],n_redund:26,n_sampl:[6,12],n_select:24,n_split:12,n_step:28,naiv:[17,18,28],naive_bay:[18,23],name:[2,4,6,8,9,10,11,12,13,15,16,18,21,24,26,29,32,36],nameerror:[10,26],nan:[10,14,22],narr:36,narrai:15,nat:14,nation:[3,9],nativ:17,natur:[12,15],nb:[17,23],nb_clf:23,nbin:10,nbsp:24,nc:[9,10,11,13],ncedc:10,nclass:[19,23],ncluster:16,ncm_geologicframeworkgrid:[9,13],ncm_spatialgrid:[9,13],ncol:[19,21],ndarrai:[6,11,19,22,23],ndata:15,nearest:[11,16,17,18,19],necessari:[4,12,14,20],need:[4,6,10,12,13,15,16,17,20,23,24,25,26,27,28,29,32,33],neg:[14,16,18,20],negbackward:20,neighbor:[6,17,18,19,22,23,24],neither:24,nenad:4,neonscienc:9,neq1:27,nest:[9,26],net:[24,26],netcdf4:13,netcdf:11,network:[3,9,10,13,14,20,29,31],neural:[13,20,29,31],neural_network:26,neuron:[25,26,27,28],nevada:12,never:23,new_a:12,new_b:12,new_nois:14,new_pair:12,newaxi:28,newcrap:14,newdata:[19,22,23],newfil:4,newli:12,newnoisef:14,next:[10,12,16,19,24,25,26,27,28,36],next_fast_len:[13,14],nf:13,nfft1:13,nfft:[13,14],nhat:[13,14],nice:[4,9,20],nicoleta:[33,34],nipy_spectr:16,nlabel:27,nn1:25,nn:[14,25,26,27],no12:27,no1:27,no2:27,no_grad:[25,26,27],no_val_x:19,noaa:[21,24],node:[3,9],nois:[6,13,15,16,17,18,26,27,28,29,32],noise2:27,noisi:[6,14,29],noisy_sign:14,nomal:20,nomin:8,non:[1,9,13,29],none:[6,10,13,19,22,23,24,25,26,27,28,29],nonlinear:26,nor:24,norm:[6,16,22,27],normal:[6,11,12,14,16,18,19,22,23,24,25,26,27,32],north:[6,9,12],northern:10,northwest:[12,15],notat:9,note:[9,12,13,14,19,20,22,23,24,29,33],notebook:[2,3,4,5,10,11,13,19,21,24,32,33,36],noth:[11,14,20],notic:[11,12,13],notifi:4,noverlap:13,now:[4,6,9,10,11,12,13,14,15,16,18,20,25,26],np:[2,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29],nperseg:13,npmap:9,npoint:6,npt:[13,14],npts1:13,nrow:[19,21],ns:10,nsubset:12,nt:15,num_class:[23,25,26],number:[2,6,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32],number_run:12,numel:11,numer:[8,9,11,17,21,24],numeric_onli:10,numpi:[2,6,7,9,10,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29,33],numsv:6,nvidia:3,ny:9,nyq:13,o:[3,10,11,12,16,32],obj:16,object:[8,9,10,11,14,16,20,21,22,23,24,25,26],objective_new:16,objective_old:16,observ:[6,10,12,16,20,21],obspi:[13,14],obtain:[20,21],ocean:3,oceanographi:[3,33],ocf:10,off1:28,off2:28,off:[6,16,18,29],offer:[3,4,10,33],offic:11,offici:4,ofr20191081:9,often:[2,3,11,12,13,14,27],ok027:27,ok029:27,ok:14,okai:12,old:16,omega:20,omp:24,onc:[4,10,12,20,24,25],one:[1,3,4,7,9,10,11,12,13,14,15,16,17,18,20,21,23,24,25,26,27,29,30,31],oneapi:29,onednn:29,ones:[6,15,16,17,23,27],onevsrestclassifi:19,onli:[3,4,6,9,10,12,13,16,21,23,26,29,33],onlin:4,onto:[6,13],oob_scor:[23,24],open:[1,3,4,5,9,32,33,36],openeew:3,oper:[3,9,10,11,18,19,26,27,29],opt:[14,29],optim:[3,9,16,17,20,22,23,24,27,28,29,30,32],optimist:12,optimizer_v2:29,optimizi:17,option:[4,6,10,20],oracl:11,orang:[6,16],ord:11,order:[1,11,13,19,25,26,27,29,36],ordin:24,oregon:6,org:[6,9,10,11,16,18,20,26,27,32,36],organ:[4,6,7,8,9],orient:[6,21],origin:[4,6,7,9,10,12,13,14,15,16,18,24,27,29,33],origin_dist:12,orthogon:[6,24],orthograph:10,orthonorm:13,os:[3,4,6,9,12,13,15,16,22,26,27],other:[1,2,4,9,11,12,13,15,16,17,18,24,25,26,28,29,31,32,34],otherwis:25,otodo:10,ouput:27,our:[0,6,12,16,18,19,20,21,26],out:[2,3,4,9,10,13,14,19,21,22,24,26,27,28],out_channel:27,out_featur:[25,26],outcom:10,outlier:[24,32],outofboundsdatetim:10,output:[1,6,7,8,9,10,11,12,13,17,19,23,25,26,27,28,29,32,33],output_notebook:10,outsid:10,outstand:32,over:[1,4,6,12,13,25,26,27],overal:[5,12,16],overestim:12,overfit:[23,24,26,27],overlai:[6,13,15],overlap:13,overli:12,overview:29,overwrit:[4,10],overwritten:6,ovr:22,own:[3,4,11,20,32,33,36],owner:4,p395:[6,12],p:[10,11,12,14,16,18,20,24,25,27,29],p_valu:12,pacif:[12,15],packag:[2,6,9,10,11,12,13,14,15,16,18,19,20,23,24,29,30,33,36],pad:[21,27,29],padding_mod:27,page:[4,9,10,24],pai:23,pair:[6,9,16,21,25,32],pairgrid:16,pairplot:16,panda:[2,6,7,9,11,12,13,14,15,16,18,20,21,22,24,25,27,28,29,33],paper:[4,27,31,33],par:24,paragraph:1,parallel:[3,19,22],param:[11,22,23,29],param_c:22,param_distribut:22,param_gamma:22,param_grid:22,param_kernel:22,paramet:[11,12,16,17,20,22,23,24,25,26,27],parameter:[13,16],parametr:12,park:9,parks_wa:9,parquet:[8,9],pars:[8,24],part:[4,25,26,27,28,29,33],partial:20,particip:36,particl:16,particular:[9,11,15,32],particularli:[3,8,12,26],partit:[12,16],pass:[3,11,13,19,25,26],passiv:24,password:4,past:[12,13,28],path:4,pathcollect:[6,18],pathwai:33,pattern:[21,27],pby:10,pc:[6,16],pca:[7,17,24,29,32],pcolor:11,pcolormesh:13,pd:[6,9,10,12,13,14,15,16,18,20,21,22,24,25,27,28,29],pdf:[13,33],pdist:16,pdt:33,peak:[16,27],pearson:[11,12],peform:18,peopl:[4,24,31],per:[8,10,13,19,25,27],percentag:[20,21,25],perceptron:25,perfect:[12,16,24],perform:[3,4,10,11,12,13,16,22,23,25,26,27,29,30,32,33],period:13,permiss:[4,33],perol:27,person:4,perspect:16,pg1:10,pga:32,pgc:10,phase:[13,14],phd:4,phi:26,phone:4,physic:8,pi:[6,11,12,13,14,16],pi_est:12,pick:27,pickl:19,picoeuk:16,piec:4,pillow:14,pio:10,pip3:2,pip:[13,14,15,23,24],pipelin:[7,16,17,26],pitfal:13,pixel:[6,9,25,27,29],piyg:18,place:[10,12,19,27],plai:4,planetari:[3,33],plate:[6,14],plateau:16,platform:[3,4,29,32,36],pleas:[0,3,4,5,10,13,24],plenti:[3,11],plot:[5,6,7,9,10,11,12,13,14,15,16,18,19,21,24,25,26,27,28,32],plot_height:10,plot_imag:29,plot_test:11,plot_width:10,plotli:[7,16,33],plt:[6,9,10,11,12,13,14,15,16,18,19,21,22,25,26,27,28,29],plu:[21,24,28],plugin:9,pm:33,png:[1,10,11],point:[4,6,8,9,11,12,13,14,16,17,24,26,28],poisson:11,polynomi:[13,17,24],pooch:11,pool:26,pool_siz:29,pop:16,popul:[3,12,16],popular:[15,17,23,24,26,27,29,36],popup:[9,24],porotomo:3,port:3,portion:23,posit:[6,11,12,14,16,18,19,20,25,26,27,32],positron:10,possibl:[5,10,14,20,23,29,32,36],post:4,postalcod:9,potabl:20,potenti:[13,32],pow:11,power:[11,16,26],pq:10,pr:18,practic:[3,4,5,8,10,11,12,13,17,19,29],practition:30,pre:[6,7,13,14,16,18],pre_dispatch:[19,22],precipit:10,precis:[18,19,20],precision_recall_curv:19,precision_recall_fscore_support:20,precision_scor:18,precisionrecalldisplai:19,precison:18,precondit:32,precursor:13,pred:[12,23],predecessor:23,predict:[8,11,12,15,17,18,19,20,21,22,23,24,25,26,27,29],predict_proba:[18,23,26],predictions_data:21,predictor:23,prefer:[4,27],prefer_skip_nested_valid:19,preinstal:2,preliminari:32,prepar:[7,25,33],preprocess:[6,16,18,19,20,22,23,25,26,27,32],prescrib:16,presenc:29,present:[0,8,13,14],preserv:13,prevent:19,previou:[12,19,23,26,28,31],previous:[10,16,27],primarili:12,princip:33,principl:33,print:[6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29],print_progress:19,printer:11,prior:[14,21,24],privat:[4,33],pro:[4,16],proba:23,probabilist:12,probabl:[16,17,19,20,22,23,25,26,29],probe:27,problem:[13,14,16,17,20,22,24,25,26,27,32],proce:26,procedur:12,process:[1,3,6,7,12,13,14,15,16,18,27,31],prochloro:16,produc:[9,17,24,31],product:[10,13,17,24,27,31],profession:24,profit:1,program:[1,3,4,10,33,36],progress:[23,33],project:[1,4,6,7,9,11,13,16,33,36],projection_typ:10,promis:32,promot:0,propag:[12,25,26,27],proper:[2,13],properti:[11,13,14,20,23,29],proport:14,propos:[15,29,32],prove:10,proven:32,provid:[2,3,4,6,10,11,12,17,24,26,27,30,32,33,36],proxim:11,pseudo:13,pseuo:13,psi:13,pt:[26,27],pub:10,publish:[31,36],puget:13,pull:[4,5,24,33],pullov:29,puor:6,pure:14,purpos:[3,4],pursuit:24,push:[4,5],put:[20,26],px:[10,16],py3:[13,23,24],py:[2,4,10,13,16,19,29],pycr:9,pydata:16,pylab:11,pypars:[2,14],pyplot:[6,9,10,11,12,13,14,15,16,18,19,21,22,25,26,27,28,29],python3:[2,14,19,23,29],python:[3,4,5,7,9,11,13,14,15,16,20,26,32,33,36],pytorch:[2,25,27,30,33],pytz:2,qc:16,qc_lwr:16,qc_mid:16,qc_upr:16,qda:18,quad:10,quadraticdiscriminantanalysi:18,quak:[10,27],quakes2:27,quakes2plot:10,qualit:[8,17,20,33],qualiti:[16,24,36],quantifi:[16,18],quantil:12,quantit:[17,20],quarri:15,quarter:[12,33],queri:[13,14],question:[31,32,33],queue:3,quick:32,quota:16,r2:[12,24],r2_score:12,r:[6,11,12,15,21,23,26,27,28,32,33,36],r_valu:12,radial:17,radiant:3,radiu:[12,16],rain:33,rais:19,ran:3,rand:[11,14,20,27,28],randn:[6,11,14,16],random:[6,15,16,17,18,19,20,23,24,26,27,28,31,32,33],random_project:6,random_split:[25,26,27],random_st:[12,16,18,19,20,21,22,24,26],randomforestclassifi:[18,19,22,23],randomforestregressor:[21,24],randomizedsearchcv:[22,26],randomli:[11,12,13,16,24,26],randomsampl:26,randomst:[19,26],rang:[6,9,10,11,12,14,15,16,19,21,25,26,27,28,29,32],range_color:10,rank_test_scor:22,ransac:24,rare:[12,13,24],raster:8,rate:[8,10,13,14,18,19,23,25,26,27],rather:[3,29],ratio:[6,12,14,18,24],ratt:[13,14],ravel:26,raw:[7,13,14,15,19,22,23],raw_moment:14,rbf:[18,22],rcparam:[11,16],rdbu:26,rdylbu:13,re:[4,11,12],reach:[3,16,20],read:[6,11,12,13,15,16,21,24,25,31,32],read_csv:[10,14,15,16,20,21,24,25],read_data:15,read_feath:16,read_fil:9,readabl:[7,9,25,32],readi:33,readm:[1,4,32],real:[3,13,14,26,29,32],realli:4,reason:[24,26],reassign:32,rebuild:29,rec:18,recal:[18,19,20],recalcul:12,recall_scor:18,receiv:[6,18,19,27,28,31],recent:[10,13,19,26,27],recogn:[4,5,10,24],recommend:[2,3,4,6,16,33,36],reconstruct:[6,29],record:[6,12,14,15,21],recov:[6,10,29],recreat:13,rectifi:26,recurs:16,red:[6,9,12,14,16,25,26,27],redefin:12,reduc:[4,6,7,11,12,13,16,18,27,29,32],reduct:[7,17,23,27,29,33],refer:[3,8,11,12,17,21,26],refit:22,refresh:33,reg:24,regard:26,region:[3,9,10],register_hook:20,regr:12,regress:[11,23,24,25,26,28,33],regressor:[22,24],regrid:11,regular:[23,26,27,28],regularli:[11,13],reinstal:24,reject:12,rel:[14,28],relat:[2,8,9,12,13],relationship:12,relev:32,reli:36,reliabl:[24,32],relu:[25,26,27],remain:[4,7,12,16,22],remean_elev:10,remedi:28,rememb:20,remot:[3,4,5,33,36],remov:[2,4,6,7,10,11,13,14,21,24,29,32],removablehandl:20,remove_anyth:10,render:10,reno:12,repeat:[12,13,24,27],repeat_kmean:16,repeatedli:12,replac:[4,9,10,12,14,15,16,23,27,36],repli:25,replic:16,repo:[1,4],report:[9,12,14,15,18,19,26,33],reposistori:33,repositori:[3,5,24,33],repres:[6,12,13,17,29],represent:[13,16,26,27,29],reproduc:[2,7,12,16,27,32,33,36],request:[3,4,5,6,9,10,12,14],requir:[2,3,4,13,14,17,19,23,25,26,29,32],requires_grad:20,resampl:[11,23],rescal:10,research:[3,4,27,29,32,34],reset:[4,10,19,28,33],reset_index:[9,10,20],reshap:[6,11,12,13,15,16,19,25,26,27,29],residu:[11,12,23,29],resnet:29,resolut:[10,29],resolv:[4,13],resour:3,resourc:[3,5,9,14,32,34],respect:[6,11,12,15,16,20,26,27],respons:[13,17,33],rest:26,restart:[1,24],result:[10,11,12,16,17,18,20,24,25,26,27,31,32],retain:6,retain_grad:20,retina:11,return_gener:19,return_sequ:28,return_train_scor:22,reus:[4,32],revers:[11,20,21,26],revert:26,review:[0,5,26,32],rf:[17,21,23,24],rf_clf:[19,23],rf_most_import:21,rf_predict:19,rgb:27,rich:36,ricker:14,ridg:24,right:[2,4,6,10,11,19,26],risk:12,rlat:13,rlon:13,rmse:24,rmsle:24,rng:[12,26],ro:[16,21],robust:6,roc:[18,19],roc_auc:19,roc_auc_scor:19,roc_curv:[18,19],roccurvedisplai:19,role:27,roll:11,root:[9,14,25,26,27],rotat:[6,16,21],rotation_mod:6,rouet:27,round:[21,26],routin:11,row:[6,8,10,11,13,14,16,20,21,24,25],row_index:16,row_label:6,rs:12,rstudio:1,rubi:36,rule:[17,26],run:[1,3,4,10,11,12,13,16,19,20,31,32,33,36],runner:24,running_loss:[25,26,27],runtimewarn:13,rv_frozen:22,s1:6,s2:6,s3:[3,6],s6x10hzdyra:3,s:[6,9,10,11,12,13,14,15,16,18,19,21,23,24,25,26,27,28,29],s_:6,sa:14,safe:26,sagemak:3,sai:[15,27],sake:12,same:[2,4,6,8,10,11,12,14,16,19,23,24,27,29,31,32],samm:23,sampl:[6,8,11,12,13,14,16,17,18,19,22,23,25,26,27],sample_silhouette_valu:16,sample_weight:19,sampler:[25,26,27],sampling_r:13,sandal:29,sat:21,satisfi:[14,23,30],sattelit:8,save:[2,4,6,7,8,9,10,11,18,21,24,25,27,32],savefig:11,saw:6,sawtooth:6,sc:16,scala:36,scalar:[20,26,28],scale:[3,6,10,13,14,16,22,23,25,26,27,32],scaleogram:13,scaler:[16,19,20,22,23],scan:9,scatter:[6,12,14,16,18,26,29],scatter_3d:16,scatter_geo:10,scatter_mapbox:10,scatterplot:[7,11],schedul:3,schema:8,schemat:27,scheme:[16,22],scholarship:33,sci:[16,23],scienc:[1,9,11,33,36],scientif:[1,9,11,13,32,33],scikit:[2,6,7,12,18,22,32],scikitlearn:[18,20],scipi:[2,6,7,12,13,14,15,16,22,23],scitkit:7,score:[16,18,19,22,23,26,27],scott:[33,34],scratch:[1,3,10],screen:[25,26,27],script:[4,7,33],se:[6,12],seaborn:[2,7,16],search:[26,27],season:11,seasonal_mean:11,seattl:21,sec:24,second:[1,6,8,10,11,12,13,14,20,23,25,27,28,29,33],section:[11,13,33],see:[1,3,4,6,8,9,11,12,13,14,16,18,24,26,27,36],seed:[6,16,26,27,32],seek:16,seem:[12,24,27],segment:29,seismic:[3,10,13,14,15],seismogram:[8,27,29],seismolog:33,seismomet:[3,13],sel:11,select:[1,4,7,10,11,12,13,15,16,21,22,24,26,27,32],self:[9,10,19,25,26,27],selu:29,send:[3,26],sens:[3,8,10,16],sensit:[13,14,16,18,20,32],sensor:[8,10,13],sent:27,sep:[10,25],sepal:6,separ:[6,8,16,17,29,32,36],sequenc:[11,27,29],sequenti:[23,26,27,28,29],sequential_15:29,sequential_1:29,sequentialbackend:22,seri:[4,6,8,10,11,12,13,15,27,28,29,32,33],server:[3,4,13,14],servic:[3,36],session:4,session_id:24,set:[3,6,7,9,10,11,12,13,15,16,18,19,23,24,26,27,28,32,33],set_aspect:[6,12,14],set_axis_off:19,set_axisbelow:6,set_grad:20,set_opt:11,set_size_inch:16,set_them:16,set_titl:[6,11,13,14,16,19,21,26],set_vis:6,set_xlabel:[6,11,12,13,14,16,21,25,26,27],set_xlim:[13,14,16,26],set_xscal:[13,14],set_xtick:[6,16,26],set_ylabel:[6,11,12,13,14,16,21,25,26,27],set_ylim:[13,14,16,26],set_yscal:[11,13],set_ytick:[6,16,26],set_zlabel:6,setp:6,settingwithcopywarn:16,settl:24,setup:24,setuptool:14,sever:[4,9,10,11,12,13,14,16,17,19,23,27,29,30,32],sgd:[17,25,26,29],sh:11,shade:13,shap:24,shape:[6,9,11,13,14,15,16,19,21,22,23,25,26,27,28,29],share:[8,9,33,36],sharex:[12,13],she:10,sheet:4,shell:[3,33],shift:[13,14],shirt:29,shn:10,shorter:13,should:[0,4,6,11,12,19,24,26,27,32,33],show:[6,9,10,11,12,13,14,16,18,19,24,25,26,27],show_reconstruct:29,showcountri:10,shown:[27,29],shrink:22,shuffl:[12,19,22,23,24,26,28],shufflesplit:12,shz:10,si:3,side:[12,14],sidebar:4,sig:[6,14],sigm:26,sigma:[6,14,20,26],sigmoid:[25,26,27,29],sign:[6,16],signal:[6,13,27,29],signatur:13,significantli:31,silenc:10,silhouett:16,silhouette_avg:16,silhouette_sampl:16,silhouette_scor:16,silic:14,silica:14,sim:12,similar:[11,13,14,16,21,23],similarli:[11,13,20,25],simpl:[1,5,10,12,15,16,17,20,24,26,27,28,32,33],simpler:6,simplernn:28,simplest:[25,28],simpli:[11,14,26],simplifi:[11,16,27],simul:[8,11,12],sin:[6,11,16,28],sinc:[9,12,19,26,28],sine:[11,13],singl:[6,9,15,16,23,24,25,26,27,28],singular:6,sinusoid:6,sio2:14,sio:14,sit:[12,14],site:[2,14,19,23,29],six:[2,14],size:[6,9,10,11,12,13,14,16,20,23,25,26,27],size_cluster_i:16,size_img:[25,26],skew:13,skicit:21,skill:[5,10],skip:[27,29],skip_parameter_valid:19,skiprow:10,sklean:6,sklearn:[6,12,16,18,19,20,21,22,23,24,25,26,27,29,32,33],slack:36,sle:10,sleep:13,slice:[12,16],slick:4,slide:[8,14],slightli:[26,31],sln:10,slope:12,slow:27,slz:10,small:[6,16,20,23,27,28],smaller:[6,7,12,16,20,23,26,32],smallest:29,smi:3,smith:9,smooth:[11,13,14,26],sn:[6,12,16],sneaker:29,snr:14,so:[2,4,6,10,12,13,19,20,24,25,26,27,28,32],societ:32,soft:23,softmax:[23,25,26,27],softplu:26,softwar:[3,5,9,14,34,36],software_carpentries_intermedi:35,sofwar:11,soil:8,solid:24,solut:[24,25,32,33],solv:[9,16,20,28,32],solver:26,some:[2,3,4,6,9,10,11,12,13,14,16,17,20,24,26,27,33,34],somebodi:4,sometim:31,somewhat:28,somewher:4,son:11,sort:[10,13,15,16,21],sort_valu:10,sosfilt:13,sound:13,sourc:[1,4,5,6,9,14,15,18,32,33,36],source_typ:15,south:[9,10],southern:[3,10],sp1:10,sp2:10,sp3:10,space:[6,7,8,11,14,16,22,26,27,30,36],span:13,spars:26,spatial:[11,13,16,27],spatiotempor:16,speci:6,special:[9,11],specif:[1,2,3,4,8,9,10,11,13,14,15,18,19,20,22],specifi:[10,14,20,25,26,27],spectra:13,spectral:[7,14,15],spectrogram:[13,27],spectrum:[13,14],speed:[13,14],spend:33,spine:6,split0_test_scor:22,split1_test_scor:22,split2_test_scor:22,split3_test_scor:22,split4_test_scor:22,split:[6,12,15,16,18,22,23,25,26,27,28],splitlin:[6,12],spread:14,spreadsheet:8,spyder:2,sqlalchemi:14,sqrt:[1,6,11,13,14,16],squar:[6,11,12,14,16,26],src:1,sse4:29,ssh:4,st:[14,15],sta:[6,12],stabl:[6,11,13,16,26,32],stack:[27,28],stacked_a:29,stacked_ae_cnn:29,stacked_decod:29,stacked_encod:29,stacklevel:19,stage:[4,29],stai:29,stain:16,stamp:15,standalon:10,standard:[6,8,9,10,11,12,13,14,32,33,36],standardscal:[16,18,20,25,26,27,32],standardtransform:26,stanford:27,star:2,start:[3,4,6,7,10,11,12,16,18,20,24,26,29,32],start_dim:[25,26],start_tim:10,startdat:10,starttim:[13,14],stat:[12,13,14,15,22],state:[9,12,28,32],state_dict:[26,27],statement:5,station:[10,12,13,14,27],stationari:29,statist:[7,10,11,12,13,15,17,21,23],statu:4,std:[6,10,11,12,13,14,21,26],std_err:12,std_fit_tim:22,std_score_tim:22,std_test_scor:22,steelblu:6,stefan:[33,34],step:[4,7,11,14,16,20,24,25,26,27,29,32],step_ahead:28,stft:[13,32],still:[4,19,26,36],stochast:[6,17,19,25,32],stop:[11,16],stop_alg:16,storag:[3,4,11,15,32],store:[3,9,10,11,12,15,19,22,23,26,32],str:[6,9,10,12,16,21,24],strategi:[12,16,29,32,33],stratifi:24,street:9,streetaddress:9,stretch:18,strictli:[17,26,27],stride:[27,29],string:[6,9,10,11,15],stringio:10,strive:[0,36],strmethodformatt:6,strong:12,strongli:[12,23],strptime:21,structur:[7,8,9,10,11,12,14,16,29,32,36],student:[5,34],studi:32,studio:[3,4],style:[16,18,21],sub:4,subarrai:11,subclass:25,subdata:16,subduct:12,subgroup:16,submiss:[4,33],subplot:[5,6,11,12,13,14,16,18,19,21,25,26,27,29],subplots_adjust:26,subsequ:26,subset:[9,11,12,19,22,23,24,26,32],subsetrandomsampl:[25,26,27],success:[16,27],successfulli:[13,23,24],suffici:[3,17,27],suggest:[4,32],sum:[6,11,14,16,20,23,25,26,27,29],sum_:[12,16,20,25],sum_i:11,sumatra:10,summar:[16,17,33],summari:[10,16,27,28,29],sun:[21,33],sundai:21,superimpos:13,superseismo:4,supervis:[6,7,17,32],supplementari:27,suppli:6,support:[1,9,11,17,18,19,22,33],suppos:32,suptitl:[16,19],sure:[2,4,11,12,15,19,28,32],surfac:[3,6,8,9,13,15],sv:[6,12],svc:[18,19,22,23],svc_clf:23,svc_predict:[19,22],svg:18,svm:[17,18,19,22,23],symmetr:[6,29],synchron:4,synecho:16,syntax:[9,11,12,26],synthet:[11,16,28,32],synthetics_pca:16,synthetics_sc:16,system:[3,4,5,6,9,11,12,17,31,36],systemat:[18,26,30],t20:16,t:[6,11,12,13,14,16,20,24,26,27,28,33],t_b:12,t_train:12,t_val:12,tab10:29,tab:[25,26,27],tabl:[8,10,24],tabular:[8,9,10],tacc:3,tackl:16,tag:[6,9,33],tail:[13,14],take:[7,10,12,13,14,15,16,20,23,25,27,28,29],taken:[10,14,16],takewai:4,talk:20,tangent:26,tanh:[26,28],taper:[13,14],target:[6,12,19,22,23,24,32],target_nam:[6,19,22],task:[3,11,19,26,32],taught:33,team:[27,31,33,36],technic:36,techniqu:[24,33],technolog:32,tediou:24,tell:24,temp:[10,21,24],temp_1:[21,24],temp_2:[21,24],temperatur:[8,10,11,21,24],templat:[4,27,33],templates_027:27,templates_029:27,tempor:[7,8,13,15],temporari:3,tend:[13,20,23,25,32],tensor:[3,20,25],tensorflow:[23,25,26,27,28,29],tenv:[6,12],term:[6,12,14,18,27,28],termin:[1,3,4,24],terminolog:4,test1:16,test:[10,12,16,18,20,22,23,25,26,27,28,32],test_dat:21,test_data:25,test_df:24,test_featur:21,test_imag:25,test_import:21,test_index:12,test_indic:19,test_label:[21,25],test_siz:[12,18,19,21,22,23,26,27],testload:[25,26,27],texa:3,text:[1,4,6,9,11,12,13,14,16,24,26,36],textcolor:6,textkw:6,tf:[13,28,29],th:[16,20],than:[6,12,13,14,16,17,23,27,28,32],the_turing_way_community_2022_6909298:35,thei:[3,6,7,9,10,12,13,14,16,17,20,26,27,28,29,32],them:[4,6,7,8,10,14,15,16,18,24,25,27,29,33],themselv:15,thenarrai:15,theorem:32,theori:33,therefor:[12,13,16,26,29],theta:[6,16],thi:[1,3,4,5,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,36],thing:[8,32,36],think:[12,24],third:[1,14,20,23],those:[6,11,24,27],though:[3,5,31],three:[3,9,11,16,20,27,33],thresh:[13,16],threshold:[6,18,24,25,26],through:[3,6,12,25,26,31,33],throughout:[27,33],thu:[6,18,20,27],tick:[6,16,21],tick_param:[6,11,25,26,27],ticker:6,tier:3,tif:9,tiff:9,tight:16,tight_layout:[6,14,21,25,26,27],tightli:3,tile:6,time:[3,6,8,9,10,11,12,15,16,24,25,26,27,28,29,30,32,33],time_series_features_extractor:15,timedelta:10,timedistribut:28,timeit:[10,11,13],timestamp:10,tip:11,titl:[6,10,11,12,13,14,16,19,21,26],tlu:25,tn:[15,18,20],tnr:18,to_csv:10,to_datetim:10,to_netcdf:11,to_numpi:[16,20],to_parquet:10,to_zarr:11,todai:[21,24],todoran:[33,34],togeth:[2,25],toi:[6,32],token:4,tol:22,too:[12,18,20,27,28,32],tool:[2,9,10,11,16,18,22,32,33],toolbox:[13,16],toolkit:[22,33],tooth:6,top3:24,top:[1,3,4,6,10,27],topic:33,topographi:9,torch:[11,20,25,26,27],torchvis:[25,26,27],total:[4,11,18,22,23,25,26,27,29],totensor:[25,26,27],touch:4,toward:7,towardsdatasci:21,towfish_001:16,towfish_002:16,towfish_003:16,towfish_004:16,towfish_005:16,towfish_006:16,towfish_007:16,towfish_008:16,towfish_009:16,towfish_010:16,towfish_011:16,towfish_012:16,towfish_013:16,towfish_014:16,towfish_015:16,towfish_016:16,towfish_017:16,towfish_018:16,towfish_019:16,towfish_020:16,tp:[16,18,20],tpr:[18,19],tpu:3,trace:15,trace_nam:15,traceback:[10,13,19,26],track:[4,11,12],trade:18,train:[12,16,17,18,20,22,23,28,29,31,33],train_data:25,train_df:24,train_featur:21,train_imag:25,train_import:21,train_index:12,train_label:[21,25,27],train_set:[25,26,27],train_test_split:[18,19,21,22,23,25,26,27,29],trainabl:[27,29],trainload:[25,26,27],transform:[6,7,9,10,11,15,16,19,20,22,23,24,25,26,27,29,32,33],transit:11,translat:[13,27],transmit:31,transpos:6,treat:27,tree:[9,17,18,23,24,26],tremend:34,trend:12,trial:26,trignometri:24,trim:13,triplic:16,trouser:29,true_data:21,true_label:16,truth:[16,28],tsfel:[7,15],tsfresh:[7,15],tshirt:29,tslib:10,tsne:29,tstart:[13,14],tt:[12,24],tue:21,tunabl:16,tune:[12,14,24,29,32],tuner:27,tupl:21,ture:[4,34],turn:[6,13,26,28],tutori:[3,4,9,10,11,12,16,19,21,24,26,29,34],twin:14,twinx:[25,26,27],two:[4,9,10,11,12,13,14,16,17,18,21,27,29,30],txt:[2,4],type:[1,4,5,8,9,10,11,13,14,15,16,17,19,22,23,24,26,29,32,33],typic:[3,10,11,12,13,15,16,23,29],u:[1,6,16],u_:12,u_n:12,uc:[21,24],ue:[6,12],ug3_fcm_distribut:16,un:[6,12],uncertain:12,uncertainti:[12,16,28],unclear:27,uncom:11,under:[4,15,18,24],underestim:12,underfit:[23,24],underli:[11,12,36],underlin:1,understand:[6,33],undertak:6,underwai:16,underway_002:16,underway_003:16,underway_004:16,underway_005:16,underway_006:16,underway_007:16,underway_008:16,underway_009:16,underway_010:16,underway_011:16,underway_012:16,underway_013:16,underway_014:16,underway_015:16,underway_017:16,underway_018:16,underway_019:16,underway_020:16,underway_021:16,underway_022:16,underway_023:16,underway_024:16,underway_025:16,underway_026:16,underway_027:16,underway_028:16,underway_029:16,underway_030:16,underway_031:16,underway_032:16,underway_033:16,underway_034:16,underway_035:16,underway_036:16,underway_037:16,underway_038:16,underway_039:16,underway_040:16,underway_041:16,underway_042:16,underway_043:16,underway_044:16,underway_045:16,underway_046:16,underway_047:16,underway_048:16,underway_049:16,underway_050:16,underway_051:16,underway_052:16,underway_053:16,underway_054:16,underway_055:16,underway_056:16,underway_057:16,underway_058:16,underway_059:16,underway_060:16,underway_061:16,underway_062:16,underway_063:16,underway_064:16,underway_065:16,underway_066:16,underway_067:16,underway_068:16,underway_069:16,underway_070:16,underway_071:16,underway_072:16,underway_073:16,underway_074:16,underway_075:16,underway_076:16,underway_077:16,underway_078:16,underway_079:16,underway_080:16,underway_081:16,underway_082:16,underway_083:16,underway_084:16,underway_085:16,underway_086:16,underway_087:16,underway_088:16,underway_g3:16,unecessari:6,unifi:3,uniform:[11,12,14,16,22,26,32],uniqu:[6,10,15,16,19,23,27,29],unit:[3,6,11,13,25,26],univers:[12,26,33],unix:5,unknown:24,unlik:[12,13],unord:1,unr:[6,12],unread:11,unrealist:13,unseen:[12,24],unstag:4,unstructur:9,unsupervis:[6,7,16,32,33],unsur:11,until:[13,14,16,20,23,27],unzip:9,up:[6,10,12,13,14,17,18,23,24],updat:[6,11,16,20,24,25,26,27,28,29,33],update_geo:10,update_layout:10,upload:[4,33],upper:[4,12],upper_critical_valu:12,upsampl:11,upstream:31,url:[1,9,10],urllib3:14,us:[1,2,3,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,36],usabl:26,usag:[3,4],usecol:10,user:[1,2,4,9,10,11,14,23,29,36],user_guid:16,usernam:4,userwarn:29,usg:9,usi:24,usp:8,usual:[3,12,15,16,17,24,26,27],utcdatetim:[13,14],utf:[9,10],util:[12,19,20,25,26,27,36],uv:[6,12],uw:[1,3,4,5,13,14,33,34,36],v:[6,16],v_e:12,v_measure_scor:16,v_n:12,v_size:12,va:6,vae:29,val_index:12,val_loss:29,val_set:[25,26,27],valfmt:6,valid:[10,19,26,27,28,29,32,33],validate_separ:19,validation_data:[28,29],valu:[6,8,9,10,11,12,13,14,16,17,18,20,21,23,24,25,26,27,28,32],valuabl:12,value_count:10,valueerror:19,vanish:[26,28],vanuatu:10,varaibl:12,vari:[11,14,15],variabl:[5,6,7,9,10,11,12,13,16,19,20,21,24,26,29],varianc:[6,12,13,16,17,23,24],variance_1:15,variat:[11,16],varieti:9,variou:[3,4,12,13,15,16,18],varoquaux:18,vcl:10,vco:10,vdt:10,ve:12,vea:10,vec:10,vector:[6,11,12,13,17,19,20,22,26,27,33],vei:10,vel:12,veloc:[12,13],venv:2,vep:10,verbos:[19,22,24],veri:[2,10,11,13,14,16,17,20,23,24,26,28,32],verifi:12,version:[1,2,9,10,26,27,31,36],versu:16,vertic:[3,6,13,15,16,21],verticalalign:6,vfp:10,vi9gmjy8d4zd5jv:27,via:[2,16,26,33],vibrat:15,video:[3,36],view:[16,26,27,33],viewoutput:26,viridi:13,virtual:[3,4],visit:2,visual:[3,4,6,7,9,11,12,14,16,18,21,24,27,29,32,33,36],vki:10,vm1:10,vm2:10,vm3:10,vmax:[6,11,13,15],vmin:[6,11,13,15],volum:[16,27],voting_clf:23,votingclassifi:23,vpb:10,vrc:10,vs:[4,6,9,12,14,23],vscode:[3,10,13,19],vsp:10,vstack:[6,16],vt:6,vwb:10,w1sdnnjb2rllxjlbw90zq:13,w:[6,11,13,20,25,26,27],w_i:25,w_j:[20,25],w_k:25,wa:[9,10,12,14,17,18,19,21,22,23,27,29],wai:[2,4,6,9,10,11,12,16,20,22,24,27,29,32,34],wait:[13,16],want:[9,10,11,12,13,20,21,25,26,28],ward:16,warm_start:24,warn:[6,10,13,14,19,20],washington:[9,33],watch:[3,19,22,23],water:20,water_pot:20,wave:[28,29],wavedecompnet:29,wavefield:29,waveform:[13,14,15,29],wavelet:[7,14,15,33],wavenumb:13,wdb25puxh3u07dj:[9,13],we:[0,2,3,4,6,9,10,11,12,13,14,15,16,17,18,19,20,22,23,25,26,27,28,29,33,36],weak:23,web:[3,36],wednesdai:33,week:[21,24,33],week_fri:[21,24],week_mon:[21,24],week_sat:[21,24],week_sun:[21,24],week_thur:[21,24],week_tu:[21,24],week_w:[21,24],weight:[11,14,18,19,23,25,26,27,28],weka:24,welcom:[4,36],well:[11,12,16,18,19,20,26,27,32],went:31,were:[3,9,10,11,16,18,19,20,23,25,27,34],west:[9,11],westward:12,wget:[9,13,15,16,21,22,24,27],what:[3,4,6,10,11,12,13,14,15,16,18,20,22,23,24,27,32],when:[3,4,9,10,12,16,18,19,20,23,25,26,27,29,32,33],where:[1,3,6,9,10,12,13,14,15,16,20,24,25,26,27,31,32],whether:[12,18,26,27],which:[2,4,6,8,9,12,13,14,16,17,20,22,23,24,25,26,27,29,30,32,33,36],white:[6,11,14,16],whl:[13,23,24],who:[4,11],who_is_awesom:11,whole:[9,10,14,20],why:[3,12,24],wich:11,wide:[12,14,22,24,26,29,36],widget:24,width:[1,6,9,10,13,14,27],wiki:18,wikimedia:18,window:[3,4,11,13,14,26,27],winner:[13,19],wise:[11,24],within:[3,8,9,11,12,13,16,21,24,26],without:[4,6,7,14,23,26,27,32],wmp:10,won:28,word:27,work:[0,2,3,6,9,10,12,16,20,23,24,27,28,32],worker:[19,22],workflow:[3,4,7,12,13,15,24,33],workspac:[13,19],world:[3,24,32],worlpert:32,would:[3,4,6,11,13,15,20,21,23,26,27,29,31,32],wrap:11,wrapper:19,write:[4,7,9,10,11,20,27,32,33],written:1,wrong:24,wrote:3,wt:14,wwvb:10,www:[9,11,13,15,16,20,21,27],wx:[25,26],x1:[11,16,27],x1test:16,x25sdnnjb2rllxjlbw90zq:19,x2:[11,16],x2test:16,x3:[11,16],x4:11,x54szmlszq:10,x:[1,6,9,10,11,12,13,14,15,16,18,19,20,21,25,26,27,28,32],x_:[12,20],x_a:12,x_b:12,x_i:[11,12,16,20,25],x_int:11,x_label_list:13,x_lat:11,x_lon:11,x_max:26,x_min:26,x_new:[6,26],x_p:16,x_pca:6,x_scale:32,x_std:32,x_t:11,x_test:[18,19,22,23,26,27,28,29],x_tl:11,x_train:[18,19,22,23,26,27,28,29],x_train_ful:29,x_val:[28,29],x_val_2d:29,x_val_compress:29,x_valu:21,xarrai:[7,9],xarrrai:11,xavg:6,xc:6,xgb:23,xgboost:[23,24,26],xkcd:18,xlabel:[6,10,11,12,13,14,16,18,19,21,26,28],xlat:13,xlim:[6,13,14,16,19,26],xlon:13,xne:10,xnn:10,xnz:10,xp:19,xr:11,xscale:14,xtick:[6,11,12,13,21],xx:[15,26],xxx:14,y2:16,y3:16,y:[6,9,10,11,12,13,15,16,18,19,20,21,22,23,25,26,27,28],y_i:[11,16,20],y_k:25,y_lower:16,y_max:26,y_min:26,y_numer:19,y_pred:[11,19,22,23,28],y_proba:26,y_score:[18,19],y_test:[18,19,22,23,26,27,28,29],y_test_pr:18,y_train:[18,19,22,23,26,27,28,29],y_train_ful:29,y_train_pr:19,y_true:[19,22],y_upper:16,y_val:[28,29],yaxi:16,ye:[2,20,24],year:[4,6,10,12,13,21,24,26,32],yellowston:16,yesterdai:[21,24],yet:4,yhat:20,yield:[13,30],yin:29,ylabel:[6,11,12,13,16,18,19,21],ylim:[6,13,14,16,19],yml:[4,32,33],york:9,you:[1,3,4,6,8,9,10,11,12,13,14,15,16,18,20,23,24,26,27,29,31,32,36],your:[3,9,11,12,13,16,18,20,24,26,32,33,36],youtu:3,yscale:[13,14],ytick:[11,12,13],yy:26,z:[9,13,14,15,16,20,25,26],zarr:[7,11],zel:13,zenodo:4,zero:[6,10,12,13,14,15,16,18,20,25,26,27,32],zero_grad:[25,26,27],zf:13,zhat:[13,14],zhu:29,ziheng:33,zip:[6,9,19,21,25,26],zipdataset:25,zipfil:[6,9,12],zipp:14,zone:12,zoom_start:9,zorder:6,zp:14,zsort:13,zxx:13},titles:["1.1 Open Reproducible Science","1.3 Jupyter Environment","1.3 Python Ecosystem","1.4 Computing Environments","1.5 Version Control & GitHub","Getting Started","2.10 Dimensionality Reduction","2.10 ML-ready data","2.1 Data Definitions","2.2 Data Formats","2.4 Pandas","2.3 Data Arrays","2.6 Resampling Methods","2.7 Spectral Transforms","2.8 Statistical Considerations for geoscientific Data and Noise","2.9 Feature engineering","3.1 Clustering","3.2 Classification and Regression","3.3 Binary classification","3.4 Multiclass Classification","3.5 Logistic regression","3.6 Random Forests","3.7 Hyperparameter Tuning","3.8 Ensemble learning","3.9 AutoML","4.1 Neural Networks","4.2 Multi Layer Perceptrons","4.3 Convolutional Neural Networks","4.4 Recurrent Neural Networks: Processing sequences","4.5 Auto-encoders","4.6 NAS: Network Architecture Search","This chapter focuces on model workflow and ML reproducibility","The MLGeo Project","Machine Learning in the Geosciences","Acknowledgements from Contributors","Bibliography","Glossaries"],titleterms:{"1":[0,1,2,3,4,6,8,9,10,11,12,13,14,16,17,18,19,21,22,23,25,26,27,32],"10":[6,7],"1d":11,"2":[6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,26,27,28,32],"2d":[11,13],"3":[1,2,6,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,26,27,32],"3d":6,"4":[3,10,11,12,13,14,19,21,23,25,26,27,28,29,30,32],"5":[4,11,12,20,21,26,27,29,32],"6":[11,12,21,30,32],"7":[13,21,22,32],"8":[14,23],"9":[15,24],"do":2,"function":[10,25,26],"import":21,"new":4,"short":13,But:9,One:[12,21],The:[8,14,16,32],account:4,acknowledg:34,activ:26,adaboost:23,ahead:28,algorithm:17,an:[2,4],analysi:6,anatomi:27,app:4,appendix:20,ar:2,architectur:30,arrai:[9,11],assess:21,authent:4,auto:29,autoencod:29,automat:20,automl:24,aw:3,azur:3,b:25,bag:23,baselin:21,basic:[1,2,10,11,13],befor:16,best:24,bibliographi:35,binari:18,boost:23,bootstrap:12,build:33,c:25,can:28,carlo:12,chapt:32,chapter:[31,32],check:[21,24],choic:16,classif:[17,18,19],classifi:[18,23],cloud:3,cluster:16,cnn:27,code:2,colab:3,column:24,command:[1,2],compar:24,compon:6,comput:[3,11,21],conda:2,consider:14,contributor:34,control:4,conv:27,convolut:[27,29],cours:33,covari:6,creat:[4,10,27],cross:[12,22],csv:10,data:[6,7,8,9,11,12,14,16,18,19,21,24,25,27,29,32],datafram:10,deal:2,decis:21,decod:29,defin:[25,26,27],definit:[8,36],denois:29,descent:20,design:[25,32],desktop:4,determin:6,differenti:20,dimension:[6,29,32],displai:24,distanc:11,download:[21,32],ecosystem:2,elbow:16,encod:[21,29],engin:15,enhanc:4,ensembl:23,environ:[1,2,3],evalu:24,event:14,exampl:[2,12,27,29],exist:4,explor:[6,15,18,21],extract:[6,11],far:28,featur:[6,14,15,21],file:[2,10],filter:13,fine:26,first:[21,24],fo:11,focuc:31,fold:12,forecast:28,forest:21,format:9,forward:26,fourier:13,frame:[8,32],freez:2,from:[5,10,34],fundament:10,futur:28,gener:36,geodet:12,geojson:9,geolog:14,geopanda:9,geoscienc:33,geoscientif:14,geotiff:9,get:[5,24],git:4,github:[4,33],glossari:36,googl:3,gradient:[20,23],grid:22,handl:9,hassl:24,hdf5:9,hierarch:[9,16],high:11,homework:33,hot:21,how:[2,27,28],hpc:3,hub:1,hyperparamet:[22,26],i:9,implement:20,independ:6,index:11,infer:12,inform:14,initi:21,interpret:24,introduct:[11,20],jupyt:1,k:[12,16],kurtosi:14,lab:1,label:21,larg:9,latent:29,layer:[26,27],learn:[5,16,23,26,33],leav:12,lenet:27,level:[11,12,13,14],linear:12,load:25,local:3,logist:20,loss:25,low:29,lstm:28,machin:33,manupul:10,map:10,markdown:1,matplotlib:11,matrix:6,mean:[6,14,16],measur:11,metadata:15,method:[12,16],metric:[18,24],ml:[7,27,31],mlgeo:32,mlp:26,modal:8,model:[12,18,21,24,25,26,27,29,31,32],mont:12,more:24,motion:12,multi:[26,29],multiclass:19,na:30,need:2,net:29,netcdf4:9,netcdf:9,network:[25,26,27,28,30],neural:[25,26,27,28],nois:14,norm:11,note:[4,27],notebook:1,number:16,numpi:11,nyquist:13,o:9,object:[5,33],one:6,open:0,optim:[25,26],organ:32,other:[6,27],out:12,outcom:6,overview:33,panda:10,paramet:6,parquet:10,past:23,pca:[6,16],perceptron:26,perform:[18,21],physic:14,plate:12,plotli:10,pool:27,practic:[16,27],predict:28,prep:27,prepar:[19,21,27,32],prerequisit:33,princip:6,problem:28,process:28,project:32,publish:[4,27],pycaret:24,python:[2,10],pytorch:[11,20,26],qualiti:21,random:[11,12,14,21,22],randomli:21,raster:9,rasterio:9,re:19,read:[9,10,27,33],readi:[7,24],realist:14,recod:27,recurr:28,reduct:[6,32],regress:[12,17,20,21],repeat:16,repositori:4,reproduc:[0,31],resampl:12,respons:10,restor:26,rnn:28,robust:12,run:[2,24],save:26,scale:19,scienc:0,scikit:[16,26],search:[22,30],section:10,seismic:27,seismolog:29,select:6,separ:21,sequenc:28,seri:14,set:[4,14,21,25],sever:28,shape:24,signal:14,skew:14,skill:33,slice:11,slow:9,softwar:4,solut:28,space:[13,15,29],specif:33,spectral:13,split:[19,21,24],stack:23,start:5,statist:14,step:[6,28],strategi:25,structur:26,student:[10,33],subtract:6,svd:6,syllabu:33,synthet:[14,18],task:29,team:4,technic:33,techniqu:[6,12],technolog:36,tensor:11,test:[19,21,24],text:10,thi:[2,31],three:6,tier:33,time:[13,14],tip:16,tool:36,train:[19,21,24,25,26,27,32],transform:13,tree:21,troubleshoot:24,tune:[22,26,27],tutori:33,two:6,typic:26,u:29,uncertainti:13,up:[4,21],us:[4,10,12],valid:[12,22],varianc:14,version:[4,33],via:6,virtual:2,vote:23,vs:10,wavelet:13,we:[21,24],webinar:33,what:[1,2],work:4,workflow:31,xarrai:11,yml:2,you:[2,28],your:[2,4],zarr:9,zero:5}}) \ No newline at end of file +Search.setIndex({docnames:["Chapter1-GettingStarted/1.1_open_reproducible_science","Chapter1-GettingStarted/1.2_jupyter_environment","Chapter1-GettingStarted/1.3_python_environment","Chapter1-GettingStarted/1.4_computational_environments","Chapter1-GettingStarted/1.5_version_control_git","Chapter1-GettingStarted/readme","Chapter2-DataManipulation/2.10_dimensionality_reduction","Chapter2-DataManipulation/2.11_MLready_data","Chapter2-DataManipulation/2.1_Data_Definitions","Chapter2-DataManipulation/2.2_data_formats_rendered","Chapter2-DataManipulation/2.3_pandas_rendered","Chapter2-DataManipulation/2.4_Arrays","Chapter2-DataManipulation/2.6_resampling","Chapter2-DataManipulation/2.7_data_spectral_transforms","Chapter2-DataManipulation/2.8_statistical_considerations","Chapter2-DataManipulation/2.9_feature_engineering","Chapter3-MachineLearning/3.1_clustering","Chapter3-MachineLearning/3.2_classification_regression","Chapter3-MachineLearning/3.3_binary_classification","Chapter3-MachineLearning/3.4_multiclass_classification","Chapter3-MachineLearning/3.5_logistic_regression","Chapter3-MachineLearning/3.6_randomForest_regression","Chapter3-MachineLearning/3.7_hyperparameter_tuning","Chapter3-MachineLearning/3.8_ensemble_learning","Chapter3-MachineLearning/3.9_autoML","Chapter4-DeepLearning/mlgeo_4.1_neural_networks","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron","Chapter4-DeepLearning/mlgeo_4.3_CNN","Chapter4-DeepLearning/mlgeo_4.4_RNN","Chapter4-DeepLearning/mlgeo_4.5_AutoEncoder","Chapter4-DeepLearning/mlgeo_4.6_NAS","Chapter6-ModelWorkflows/readme","about_this_book/0_mlgeo_project","about_this_book/about_this_book","about_this_book/acknowledgements","reference/bibliography","reference/glossary"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["Chapter1-GettingStarted/1.1_open_reproducible_science.md","Chapter1-GettingStarted/1.2_jupyter_environment.md","Chapter1-GettingStarted/1.3_python_environment.md","Chapter1-GettingStarted/1.4_computational_environments.md","Chapter1-GettingStarted/1.5_version_control_git.md","Chapter1-GettingStarted/readme.md","Chapter2-DataManipulation/2.10_dimensionality_reduction.ipynb","Chapter2-DataManipulation/2.11_MLready_data.ipynb","Chapter2-DataManipulation/2.1_Data_Definitions.md","Chapter2-DataManipulation/2.2_data_formats_rendered.ipynb","Chapter2-DataManipulation/2.3_pandas_rendered.ipynb","Chapter2-DataManipulation/2.4_Arrays.ipynb","Chapter2-DataManipulation/2.6_resampling.ipynb","Chapter2-DataManipulation/2.7_data_spectral_transforms.ipynb","Chapter2-DataManipulation/2.8_statistical_considerations.ipynb","Chapter2-DataManipulation/2.9_feature_engineering.ipynb","Chapter3-MachineLearning/3.1_clustering.ipynb","Chapter3-MachineLearning/3.2_classification_regression.ipynb","Chapter3-MachineLearning/3.3_binary_classification.ipynb","Chapter3-MachineLearning/3.4_multiclass_classification.ipynb","Chapter3-MachineLearning/3.5_logistic_regression.ipynb","Chapter3-MachineLearning/3.6_randomForest_regression.ipynb","Chapter3-MachineLearning/3.7_hyperparameter_tuning.ipynb","Chapter3-MachineLearning/3.8_ensemble_learning.ipynb","Chapter3-MachineLearning/3.9_autoML.ipynb","Chapter4-DeepLearning/mlgeo_4.1_neural_networks.ipynb","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron.ipynb","Chapter4-DeepLearning/mlgeo_4.3_CNN.ipynb","Chapter4-DeepLearning/mlgeo_4.4_RNN.ipynb","Chapter4-DeepLearning/mlgeo_4.5_AutoEncoder.ipynb","Chapter4-DeepLearning/mlgeo_4.6_NAS.ipynb","Chapter6-ModelWorkflows/readme.md","about_this_book/0_mlgeo_project.md","about_this_book/about_this_book.md","about_this_book/acknowledgements.md","reference/bibliography.md","reference/glossary.md"],objects:{},objnames:{},objtypes:{},terms:{"0":[2,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,32],"00":[10,13,14,19,23,29],"000":[3,6,10,26],"000000":[10,12,14,21],"0000004":12,"000000z":[13,14],"0000794":12,"0000ff":26,"0001":22,"00010279":22,"00015444":22,"00017369":22,"00017777":14,"00019417":22,"00019767":22,"00022147":22,"00022739":22,"00024025":22,"00025221":22,"00026867":22,"00028058":22,"00028074":22,"0003":16,"00030313":22,"00030671":22,"0003116":22,"00032911":22,"00033131":22,"00033565":22,"00036127":22,"00036523":22,"000368":22,"00037982":22,"00038028":22,"00038497":22,"00040847":22,"00046558":22,"0004974":22,"00051429":22,"0005219":22,"00055709":22,"00056481":22,"00056848":22,"00057124":22,"00057149":22,"00057284":22,"00060262":22,"00063497":22,"00075296":22,"0007645780792982153":22,"00078219":22,"00078404":22,"00081537":22,"00082129":22,"00084407":22,"00096243":22,"00097039":22,"00098027":22,"001":[19,20,22,25,26,27],"00114053":22,"00117745":20,"00138058":22,"001417":16,"00160452":22,"00202393":22,"00235309":22,"00235718":6,"00266993":22,"00275743":22,"003069":16,"003468":16,"003938":16,"004932182490752158":20,"005":[26,27],"005311":16,"00537195":22,"00540662":22,"00541439":22,"00548282":22,"00550599":22,"00570369":22,"00579743":22,"00597839":22,"0060364":12,"00676385":22,"0068304":12,"00781032":22,"00790743":22,"00800":10,"00814581":22,"00819788":22,"00828981":22,"00843649":22,"00847631":22,"00849648":22,"00891695":22,"008924":16,"008967":16,"00936933":22,"009565":16,"00970379":22,"009791921664626684":20,"01":[10,13,21,22,23,29],"010":10,"010000":[12,13,14],"0109":20,"01105633":22,"011097410604192354":20,"01134934":22,"01182476":14,"01184845":22,"01185122":22,"01186934":22,"011982":16,"012538":22,"01266155":22,"01291194":22,"01380216":16,"01396018":6,"0147789":22,"015568":16,"01588404":14,"01693117":20,"01706581":22,"01723228":22,"01726675":22,"01746058":22,"01750962":16,"01769457":22,"01823897":22,"0187614":22,"01880449":14,"01923843":20,"02":[10,21,26,29],"02001436":6,"02107299":22,"02163751":6,"02175317":22,"02184954":22,"021897810218978103":20,"022358":16,"02297249":22,"02310362":22,"02326522":22,"02352686":22,"02355824":22,"02380347":22,"02449503":22,"025":18,"025000":21,"02502255":22,"02507":22,"0253":24,"02575654":22,"02612495":22,"02696":10,"02756419":22,"02938002":14,"029486":16,"02956544":20,"02993002":6,"03":[10,21],"030637":16,"03100":10,"03103009":20,"0313548":14,"03244272":6,"033255":12,"03424752":16,"03440":10,"034483":21,"0347":24,"0348":24,"036229":16,"036617":10,"0370":24,"0382":24,"04":[10,12],"0400":24,"04008636":6,"04101425":20,"04128178":22,"0419":24,"0430":24,"04314":10,"0446":24,"0450":24,"04521918":22,"0454577":20,"04572756":20,"0475276":6,"047994":16,"04809985":22,"049902":16,"05":[10,11,12,13,14,16,19,21,27],"0510":24,"05154009":22,"05242661":6,"0529":24,"05366359":22,"053684":10,"0540":24,"05442019":22,"05511222":22,"05535727":22,"0560":24,"05716662":22,"0580":24,"0594":24,"0595":24,"06":[10,14,21],"060":10,"0601":24,"060298649528828":14,"0604":24,"0605":24,"06084275":22,"0612":24,"0622":24,"0625":19,"0629":24,"0631":24,"0635":10,"0638":24,"0641":24,"0646":24,"064938":10,"0650":24,"0651":24,"0661":24,"067100":12,"07":[10,11,13,14],"0711":24,"0721":24,"0737":24,"0740":24,"07508417348193797":14,"0754":24,"0758":24,"0761":24,"0763":24,"0768":24,"076831":12,"0776":24,"0777":24,"0777344413103096":13,"077800":10,"0779":24,"0780":24,"0783":24,"07841108":6,"0785":24,"0795":24,"08":[10,14,29],"0800":24,"0803":10,"0804":24,"0808":24,"0815":24,"0823":10,"08484803":20,"0891":24,"0897":24,"09":[10,29],"09091835":16,"0914":24,"09259738":16,"0935":16,"0950":24,"0977":24,"0992":24,"0_wavelet":15,"0f":19,"0ffh4r23mitn2dz":15,"0s":[19,22,29],"0x103f1b520":16,"0x1060f17f0":20,"0x126f0e7f0":20,"0x14cde05b0":22,"0x14cde2460":22,"0x14cde2cd0":22,"0x1bfa3c4f0":25,"0x1c135a7f0":25,"0x1c899e9a0":16,"0x1ca300220":12,"0x1cd5cc070":16,"0x1cd6c1a60":16,"0x1cd824850":16,"0x287e5fa30":14,"0x29996e5b0":14,"0x7f60ec163730":6,"0x7f60ecda71c0":6,"0x7f60f04a8fa0":6,"0x7f7118752b50":26,"0x7fd65cb311b0":19,"1":[15,20,24,28,29,33,35],"10":[2,3,9,10,11,12,13,14,16,18,19,21,22,23,24,25,26,27,28,29,32,33],"100":[1,9,10,11,12,13,14,15,16,21,22,23,24,25,26,27,29,33,36],"1000":[6,8,10,11,12,13,21,22,23,25,27],"10000":[6,10,11,12,13,28],"100000":[10,14,21],"10021":9,"101":10,"1029":27,"1030":19,"1031":19,"1032":19,"1033":19,"1034":19,"1035":19,"1036":19,"1037":19,"1038":19,"103932":14,"1040":19,"1041":19,"105":10,"105000":10,"106":24,"1078":10,"109":10,"109400":10,"10959":10,"10hz":13,"10k":28,"11":[6,10,12,13,14,21,22,24,25,29,33],"110":10,"1101":24,"1108":10,"111":[6,13,16,29],"1110":10,"1111":10,"1112":10,"1113":19,"1114":19,"1115":19,"1116":19,"1117":19,"113":10,"113026":14,"1137":24,"114":12,"1142":19,"1143":19,"1144":19,"1145":19,"1146":19,"1147":19,"1148":19,"1149":19,"114x80":27,"1150":19,"1151":19,"1152":19,"1159":19,"1160":19,"1162":19,"1164":19,"1166":19,"117":21,"117697":29,"118":10,"1181":19,"1182":19,"1183":19,"1184":19,"1185":19,"1193":24,"1198":20,"12":[10,11,12,13,14,16,21,24,29],"120":[26,27],"12000":10,"120542":21,"121":[9,10],"1225":20,"123":[10,24],"1233":19,"1234":[9,19],"1235":19,"123783465":16,"1240":19,"1241":19,"1242":19,"1244":19,"1245":19,"1246":19,"125":[6,10,11,14,19],"125816":10,"126":19,"1261":10,"126600":12,"127":[9,19],"128":[11,27,28],"129":27,"1299":24,"13":[10,13,14,24,29],"1301":26,"13245936":16,"1362":6,"136778":16,"1369":24,"1370":24,"1382":24,"1388":10,"13m":29,"14":[10,11,12,13,14,16,22,24,29],"140":22,"14158634":14,"14159005":14,"142":10,"145":10,"1457":24,"1459":20,"146":10,"146988":10,"147744826538707":12,"148":10,"14m":29,"15":[2,10,11,13,14,19,20,21,22,23,24,26,29,33],"150":13,"15166937":16,"154":10,"1545":10,"1546":24,"15688101":13,"157000":12,"158":16,"1590":10,"1591":24,"15924":14,"15m":29,"16":[10,12,14,24,25,26,27,29],"161700":10,"163":29,"164":10,"165398":21,"166":[10,13],"16601227":16,"1664":10,"1666":10,"167":29,"16813116":14,"16900":10,"1691094658":13,"16m":29,"16x16":27,"17":[10,12,14,21,24,26,29],"170000":14,"1719":29,"173":16,"1736":10,"1740":24,"1767563":13,"177475":10,"178":10,"1780":10,"17803249":22,"1781":10,"1782":10,"1783":10,"1784":10,"1785":10,"17860823":22,"179":10,"1790":19,"1791":19,"1792":19,"1793":19,"1794":19,"1797":[19,22,23,24],"18":[2,10,14,16,24,29],"1841126":22,"18470":16,"1852":24,"1861":19,"1862":19,"1863":19,"1864":10,"1865":19,"1866":19,"1867":19,"1868":19,"18685474":22,"1869":19,"187":9,"1870":19,"187675":10,"18767507003":10,"188":19,"18843017":22,"189":19,"1892":24,"19":[10,24,27,29],"190":19,"191":19,"192":19,"19251866":22,"193":[19,29],"194":19,"195":19,"196":19,"197":19,"1983":10,"1984":10,"1985":10,"1986":10,"1987":10,"1988":10,"199":19,"1990":9,"19918694":22,"1993":10,"1994":10,"1995":[10,32],"1997":10,"1998":27,"1999":10,"1d":[8,13,19,26,27],"1e":[11,13,22],"1e4":13,"1hz":[13,14],"1j":14,"1pko9ormcllaxipzoa3aoztgzfpad2iwj":[21,24],"1pvu8vbytx0g4w41tb537irm5v845e4upsirwqrfoqb0":8,"1s":[13,19,22],"1st":[6,16],"2":[1,2,3,4,20,24,29,33,35],"20":[10,14,19,21,22,24,28,29],"200":[1,13,16,20,22,33],"2000":[6,10,11,23,26],"200000":21,"2001":[10,26],"2002":10,"2006":[10,12],"2007":3,"201":19,"2010":[10,12],"2011":10,"2013":11,"2014":12,"2015":10,"2016":[10,21,24],"2017":[10,14],"2018":[27,29],"2019":[10,12,16,29],"2019gl085870":27,"202":19,"2020":[2,10,27,29],"2021":[10,13,14],"2022":[4,10,13,29,34],"2023":[4,12,14,33],"2025":10,"203":19,"204":26,"20454172":6,"2048":10,"207":33,"207073":16,"20726748":16,"208":33,"208269":16,"209":24,"21":[9,10,14,22,24],"2136":24,"21594585":16,"2171b5":6,"21966":10,"21m":29,"22":[10,14,22,24,29],"2201005948153714":13,"224":26,"2256":24,"228":[9,10],"23":[10,14,16,21,23,24,29],"2300000":13,"2301":26,"2310":24,"23233":29,"23296":29,"234":11,"236217054087575":13,"2370":24,"238506":21,"239":26,"24":[10,12,24],"240":[11,16,26],"24052539":6,"241":6,"24400":10,"245000":12,"2482":24,"25":[10,12,13,14,16,21,24,26,29,32],"250":3,"2519":29,"2520":29,"2521":29,"2522":29,"2523":29,"2524":29,"2525":29,"2526":29,"2527":29,"2531":29,"2533":29,"2539":29,"2540":29,"2541":29,"2543":29,"2548":29,"2549":29,"255":29,"2550":29,"2551":29,"2552":29,"2553":29,"2554":29,"2555":29,"2556":29,"2557":29,"2558":29,"256":25,"2564":29,"2565":29,"257":25,"25700":10,"25hrequir":23,"26":[10,11,13,14,24,29],"2600":24,"2600000":13,"261":21,"2626":24,"26268435":16,"2632":29,"2639":29,"2651":29,"2657":29,"2673":29,"2680":29,"2698":29,"27":[9,10,24,29],"27101466":16,"273":11,"2730":29,"2733":29,"2742":29,"27594":10,"277725":16,"2778":24,"2780":24,"2789":10,"27m":29,"28":[10,12,16,21,22,24,25,26,27,29],"2823":24,"2827":29,"2830":24,"2836":[24,29],"2845":24,"2856":29,"286":9,"2861":29,"2862":29,"2865":29,"2870":29,"2879":29,"2884356107":13,"289":26,"2890":29,"28913069":6,"2899":29,"28x28":27,"29":[10,12,13,14,21,24,26,29],"29046581":6,"2906":29,"2925":29,"2935":29,"294":9,"295":[9,24],"2952":29,"296":24,"297":[9,24],"2970118992746436":14,"298":24,"2986":29,"299":[9,24],"2992":29,"29t04":[13,14],"29t06":[13,14],"2bcurli":[13,19],"2d":[6,8,26,27],"2dt":13,"2f":[6,12,14,19,26],"2fa":4,"2m":29,"2nd":[9,16],"2p":14,"2s":22,"2x":26,"2x2":[18,27],"3":[3,4,15,25,28,29,33],"30":[6,10,12,14,16,24,29],"300":[9,16,24,26],"3000":10,"300000":10,"301":26,"30100":10,"3019":24,"302":9,"302031":10,"3023":29,"3056":29,"305700":10,"307":33,"3073":29,"30761722":16,"308":33,"31":[10,14,21,24],"3100":9,"3125":19,"3133":9,"314000":12,"31435567":16,"3159":10,"31840023":6,"31m":29,"32":[10,12,24,26,27,29],"3200000":13,"3201":[9,13],"321":10,"3246":9,"3249":24,"32x32":27,"33":[10,24,32],"333":26,"336":26,"3383":29,"34":[10,24],"34043406":6,"34069778":16,"3407":10,"3408":10,"3409":10,"3410":10,"3411":10,"34354394":16,"34400":10,"34415049":16,"3457":10,"34570272":6,"3458":10,"3459":10,"3460":10,"3461":10,"3462":10,"3463":10,"3475":24,"348":[21,24],"3480":10,"3481":10,"3482":10,"3483":10,"3484":10,"35":[10,21,24],"351":33,"35118033":16,"352":33,"35440":10,"35800":14,"35856":14,"35866":14,"35963":14,"35986":14,"36":[6,10,24,29],"360":[6,11],"3600":13,"36050":14,"36063":14,"36065":14,"36125048":16,"36174":14,"36177":14,"36608":27,"3666":10,"3667":10,"3668":10,"3669":10,"3670":10,"367623":16,"368":26,"3680":10,"37":[10,23,24,26],"370":10,"3733":24,"373563":21,"375":19,"37841317":6,"38":[10,24],"38116775":16,"382403":10,"38561943":6,"3890":24,"39":[10,11,12,14,24],"390000":14,"391800":10,"3931145617":16,"39322864":20,"3950175":16,"39591267":16,"39822533":14,"39912885":16,"3d":[10,13,15,16,19,27],"3f":[25,26,27],"3rbzxjb16kv66g_p4wkzq16h0000gn":16,"3s":22,"3x3":27,"4":[2,6,9,16,18,22,24,33],"40":[9,10,11,13,14,16,21,23,24],"400":[10,15],"400000":21,"400x300":16,"409300":12,"41":[10,21,24],"416857":16,"42":[18,19,21,24,26,27],"42476644":14,"42510872":16,"4284":10,"4285":10,"4286":10,"4287":10,"4288":10,"4289":10,"429012":10,"42922743":16,"42m":29,"43":[10,12,14,21,24],"43014":10,"434":10,"438107857588658":12,"438107857588663":12,"4381084":12,"43814041":16,"4382164":12,"43901058":6,"44":[10,12,21,24],"442660214306567":12,"446":10,"45":[10,12,21,24],"4513":10,"45919889":16,"45956413":16,"46":[21,24,29],"462018":16,"4649":10,"46779875":16,"469":33,"47":[9,13,21,24,26,27,29],"47128343":6,"47232592":6,"47256154":6,"477011":21,"478654":16,"478900":10,"48":[21,24],"48120537":16,"482000":12,"4841":24,"48489432":16,"487000":12,"4880":24,"49":[12,14,19,21,24],"4901":[9,13],"49118717":16,"495126":6,"4954325":6,"498380":21,"4_multiclass_classif":19,"4_pandas_rend":10,"4ducqnd7mfihnh7d":3,"4p":14,"4s":29,"5":[2,3,6,8,9,10,13,14,16,18,19,22,23,24,25,28,33],"50":[10,11,12,14,16,19,21,22,23,24,25,26,27,28],"500":[3,6,10,22],"5000":[28,29],"500000":21,"5007397612756534":13,"501":13,"5034":24,"50748428":16,"50777458":6,"508000":12,"50m":29,"51":[10,13,24,28],"51078471":16,"51251051":16,"514368":21,"516241":12,"517":26,"51873336":16,"52":[10,12,24],"520022":12,"5268":20,"527306":21,"529":29,"53":[21,24],"53044455":16,"531903386":10,"5325":24,"532844":16,"5333":24,"534263":12,"53469999":16,"5364":20,"53814789":16,"53847563":16,"54":[21,24,29],"540813":16,"54114405":16,"543103":21,"54392202":16,"544":10,"54400":10,"5452":20,"54534953":6,"548094":16,"549381":21,"54988292":16,"55":[10,24,29],"550":10,"55000":29,"5550078":6,"5565551":16,"558363":10,"5599":24,"56":[10,21,24],"560":10,"5613":24,"5625":19,"5655":24,"5664":24,"569":33,"56922127":16,"56931501":16,"57":[14,21,24],"570":10,"577122":16,"5792":10,"579308":10,"58":21,"58000":10,"580796":16,"58242":10,"59":[10,13,14,21,24,33],"590":1,"59186646":16,"59194299":16,"5958515":16,"598":19,"5991453":16,"5x5":[26,27],"6":[6,10,13,14,16,18,19,24,26,27,29,33],"60":[10,14,19,21],"600":10,"60000":26,"600000":10,"6001989060169071":20,"6005":24,"601":10,"60435859":16,"605746":21,"60613125":16,"60763889":22,"608":[10,22],"608510":10,"608674":10,"6098":10,"61":[19,21,24],"61062942":16,"61318842":16,"61326113":16,"613687":14,"6173489951795071":13,"618141":12,"62":[19,21],"620":19,"62015573":16,"6206749":16,"62082943":16,"62095626":16,"621":19,"62107074":16,"6216":24,"622":19,"6228":10,"62288846":16,"623":19,"62343935":16,"62438435":16,"625":19,"626179":21,"628":22,"62831579":14,"62831949":14,"6284":24,"62847222":22,"62883364":16,"62906711":16,"62923072":16,"63":[10,19,23,24],"63147309":16,"6341":[6,12],"63453326":16,"636efa":10,"63723971":16,"63727695":16,"63771876":16,"6394":24,"64":[19,24,26,27,29],"64019598":6,"64059":10,"64240716":16,"643588":16,"64383652":16,"6448":24,"64495474":16,"64524934":16,"64642601":16,"64671513":16,"646886":6,"64734418":16,"6480666066247558":13,"65":[6,12,19,24],"652299":21,"653386":16,"6541":10,"65486061":14,"65663369":16,"65885774":16,"65990":10,"66":[10,21,32],"66048458":16,"6611":10,"66184574":16,"6624":24,"663000":12,"66389788":16,"665":10,"66522149":16,"66568594":16,"66571243":16,"6660137226595724":16,"66647019":16,"6666666666666666":20,"667":26,"66987819":16,"66994118":16,"67":14,"670":10,"6701":24,"6704":24,"6708":24,"67139297":16,"67241576":16,"67367877":16,"67370015":16,"6738216":16,"6755599":16,"67605116":16,"6765":24,"67676623":16,"67690662":16,"68":[10,14],"6805":24,"68054136":16,"68069155":16,"68133003":16,"6814":24,"68146157":16,"68184766":16,"68286217":16,"68309587":16,"68371465":16,"6847":24,"685500":10,"68573384":16,"68593435":16,"686":22,"68631":10,"68638609":16,"68641115":22,"6881":10,"68881933":16,"68885895":16,"69":[10,21],"6902":24,"69020771":16,"69057845":16,"69236319":16,"692383":10,"6924458":22,"69255292":16,"69322019":16,"6933":24,"69390867":16,"69452008":16,"69473128":16,"6958":24,"6966":24,"6968454":16,"69686411":22,"697":22,"69717451":16,"69871087":16,"69908115":16,"69922373":16,"7":[2,3,6,9,10,11,12,14,16,19,23,24,26,29,33],"70":[10,14],"700":13,"7000":28,"70025565":16,"70038786":16,"701149":21,"70223754":16,"70263944":16,"70370182":16,"70406565":16,"70426829":22,"705256":21,"70585277":16,"7062434298834965":12,"70830125":16,"70868214":16,"70993839":16,"71":[14,21,24,26,29],"710000":14,"7102":24,"71080139":22,"711":22,"7117385":16,"7136":10,"7143":24,"71446902":16,"71493118":16,"7150":10,"7151":10,"7152":10,"7153":10,"7154":10,"7155":10,"7156":10,"71595929":16,"71613791":16,"71624672":6,"71647227":16,"7175909":16,"71777003":22,"718":22,"718311":16,"71868257":16,"71870468":16,"7190":24,"719359":29,"72":[10,12,14,21],"7200":[13,14],"720000":[12,13,14],"72011236":16,"7215":24,"72189751":16,"72209849":16,"72237984":16,"72351704":16,"72452975":16,"72473868":22,"72486287":16,"725":[10,22],"726200":12,"72656201":16,"72693285":16,"72900597":16,"72967489":16,"73":10,"73011104":16,"7307":20,"73126145":16,"73170732":22,"732":22,"7321":20,"73263889":22,"733":22,"73321253":16,"73392689":16,"73392859":16,"73399564":16,"73406938":16,"73432084":16,"73497355":16,"73523528":16,"73527765":16,"73553435":16,"735987":10,"73622929":16,"73629291":16,"7371437":16,"73721913":16,"73884634":16,"73942066":16,"74":[10,14,26],"74047807":16,"74070909":16,"740872":16,"74152142":16,"74152169":16,"74176784":6,"74271586":16,"74273719":16,"74471303":16,"74516531":16,"74652778":22,"74695266":16,"74698581":16,"747":22,"74782772":16,"7490650993380316":12,"74923268":16,"74988807":16,"75":[10,11,12,14,19,21,26],"750":10,"750000":[14,21],"75050886":16,"75066744":16,"75202614":16,"75215033":16,"75337184":16,"754":13,"75402734":16,"75439721":16,"75515268":16,"75546079":16,"75559453":16,"756":13,"75617037":16,"75665801":16,"75700651":16,"75760721":16,"758688":10,"7592036":16,"75922639":16,"75926756":16,"76":[14,21],"76035029":16,"760632":21,"76096889":16,"76123913":16,"76139725":16,"76146594":16,"76309549":16,"76383818":16,"76427688":16,"76451254":16,"7647wqr96rhr49q":[13,19],"765200":12,"76686261":16,"76717763":16,"767943601369907":13,"7682":10,"76836771":16,"77":21,"77016488":16,"77125499":16,"772434":12,"772982":21,"772989":21,"77305065":16,"7763568394002505e":14,"77811399":16,"77844951":16,"77998847":16,"78":[10,12],"780000":14,"782500":10,"7831169485096":6,"784":[25,26],"78479013":16,"78485929":16,"78570":10,"78593105":16,"78740418":16,"78769807":16,"7889":20,"78912008":16,"79":21,"7921602":16,"79219349":16,"79253012":16,"794146":21,"79434712":16,"7944444444444444":23,"79515639":16,"79625474":16,"79678104":16,"79739309":16,"79815047":16,"7_data_spectral_transform":13,"8":[2,3,6,9,10,11,12,13,16,18,19,21,22,24,25,26,27,28,29,33],"80":[6,12],"80008821":16,"80058568":16,"80152883":16,"802":20,"80209433":16,"80258282":16,"80274267":16,"80413431":16,"804426":16,"80775088":16,"80786877":16,"80877866":16,"81":14,"81072996":16,"81105258":16,"81211786":16,"813000":12,"81382108":6,"814":29,"8151241":16,"81530":29,"81558153":16,"81562877":16,"81571315":16,"81576455":16,"816":26,"81719692":16,"8181818181818182":20,"8184":24,"81884902":16,"8190425043357745":12,"81983109":16,"81m":29,"82":21,"82043467":16,"82113359":16,"82269232":16,"82284":29,"8238563":16,"8238774989356271":12,"82403372":16,"82484302":16,"82486446":16,"82561676":16,"8263632119514472":23,"82768761":16,"82773":10,"82784456":16,"82811465":16,"828840":10,"8309308755379773":13,"832200":10,"84":[14,19,26,27],"8406":10,"840700":10,"841000":12,"8439":24,"8453316591120342":13,"8457":24,"8490":24,"85":[11,12,16,19],"850":10,"855000":12,"86":[19,29],"8610":24,"86349029869899":13,"8679961043240163":13,"87":[10,12,19,21],"8707":24,"8738":24,"874184":10,"88":[12,19],"88070032":6,"88107038":6,"8833333333333333":23,"88495106":14,"88495477":14,"8866":24,"887200925547722":12,"8888":24,"89":19,"890000":14,"8978":24,"898166":16,"899":19,"899511":12,"9":[2,10,14,16,19,20,21,22,23,25,26,29,33],"90":[6,10,19],"9000":[24,28],"901":13,"90265774":6,"904":26,"905":10,"905100":10,"90832086":6,"90972222":22,"91":[19,24],"910":22,"911":10,"9114":24,"91149589":14,"918000":12,"91986063":22,"92":[19,21],"920":22,"925":[10,23],"925120":16,"927000":12,"92880978865406":19,"93":[14,19,21],"9339":20,"9362":24,"94":[9,19],"940000":12,"942135":14,"9434":24,"944":22,"94425087":22,"9447":24,"9450421":22,"94657351":6,"94791667":22,"948":22,"94915864":6,"95":[6,19,21,27],"9500949":6,"951":22,"95138889":22,"95486111":22,"955":22,"95547329":22,"9555061179087876":19,"957200":10,"958":22,"95818815":22,"95833333":22,"9583333333333334":22,"96":[3,19],"9609":10,"9610569483132156":23,"9621008403361344":23,"9632119514472456":23,"965":22,"96515679":22,"96521245":22,"96527778":22,"96660859":22,"96864111":22,"96869193":22,"96875":22,"9688542825361512":19,"969":22,"97":[6,19],"972":22,"9720":20,"97212544":22,"97356514":22,"975000":21,"97560976":22,"976":22,"97600531":6,"97703494":22,"979":22,"97909408":22,"97916667":22,"9793790849673202":23,"98":[16,19,26],"9825784":22,"9826966":6,"983":22,"98533885":6,"986":22,"98606272":22,"98611111":22,"987665408758737":22,"99":[10,11,12,19],"990000z":[13,14],"9964524":12,"99746591":6,"9976":24,"998100":10,"99866939":6,"9s":22,"\u00b5s":13,"\u00e5":12,"boolean":[9,17],"break":[1,29],"case":[6,9,10,12,14,21,24,29,31,32],"class":[5,6,10,11,12,13,14,15,16,17,18,19,20,22,23,25,26,27],"default":[2,3,4,6,10,11,23,24,28],"do":[4,6,9,10,12,13,14,16,18,19,20,22,23,25,26,27,28,29,32,33],"export":[21,24],"final":[16,19,23,28,31,32,33],"float":[6,8,11,12,16,19,20,25,26,27],"function":[2,5,6,11,12,13,14,15,16,17,18,19,20,22,23,24,27,28,29,32],"ga\u00ebl":18,"import":[2,4,6,9,10,11,12,13,14,15,16,18,19,20,22,23,24,25,26,27,28,29],"int":[6,11,12,13,14,15,16,19,21,25,26,27],"long":[12,13,25,26,27,28],"m\u00fcller":18,"new":[6,7,9,10,11,12,14,16,18,20,21,23,24,30,32,36],"null":[9,12],"public":[1,4,36],"return":[6,10,14,15,16,19,20,24,25,26,27,28],"short":[4,28,29,33],"super":[19,25,26,29],"switch":6,"transient":29,"true":[6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28],"try":[10,11,12,16,18,20,22,23,24,27,28,32],"var":[12,13,14,16,20],"while":[16,20],A:[1,2,4,6,7,8,10,12,14,16,17,18,19,20,22,23,25,26,27,28,29,30,36],AND:10,And:[12,15,29],As:[6,10,12,24],At:[3,4,11,12,32],Be:4,But:[12,14,16],By:[6,12,33],For:[1,3,6,8,10,11,12,14,16,20,23,24,25,26,27,30],If:[3,4,6,10,11,12,13,16,19,20,21,24,25,26,27,36],In:[3,4,9,10,11,12,13,14,15,16,18,20,21,23,24,25,26,27,28,29,30,31],Is:[1,11,16,32],It:[1,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,31,32,36],NEAR:10,No:[13,32],Not:[4,13],OF:10,OR:10,On:4,One:[1,3,6,8,13,14,20,22,23,24,26,27,29],Or:[1,28],TO:[17,21],That:[20,23],The:[1,3,4,5,6,9,10,11,12,13,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,36],Their:[3,8],Then:[4,16,25,27],There:[3,4,6,9,10,11,12,13,16,17,19,20,22,23,24,25,26,27,32],These:[2,3,6,14,16,24,26,29,32],To:[0,2,3,4,6,10,12,13,15,16,20,23,24,26,28,29,33],WITH:12,Will:[21,32],With:[14,23],_1:6,_2:[11,14],_:[6,12,19,25,26,27],_________________________________________________________________:29,__call__:19,__class__:[23,27],__getitem__:25,__init__:[25,26,29],__len__:25,__main__:25,__name__:[23,27],_asarray_with_ord:19,_assert_all_finit:19,_base:19,_c:26,_check_estimator_nam:19,_check_i:19,_distn_infrastructur:22,_ensure_no_complex_data:19,_fit_and_predict:19,_fit_context:19,_funcwrapp:19,_get_sequential_output:19,_i:20,_lib:10,_lock:19,_n:6,_valid:19,_validate_data:19,_validate_param:19,_validate_target:19,_with_config:19,a_:6,a_nparrai:11,aa:[10,11],aar:10,ab:[13,14,16,20,21,27],abil:[5,12,36],abj:10,abl:[4,16,19,20,24,32,33],about:[2,4,9,10,11,12,13,14,16,20,24,27,28,33],abov:[4,6,10,13,16,25,26,27],abr:10,absolut:[14,21],ac:10,academ:4,academia:24,acc:18,accept:[4,12],accept_large_spars:19,accept_spars:19,access:[3,4,9,10,11,21,25,32,33],accord:[6,26],account:[3,6,12],accur:[13,32],accuraci:[12,18,19,20,21,22,23,25,26,27],accuracy_scor:[19,22,23],accuracy_tim:[25,26,27],accurraci:20,achiev:24,acknowledg:4,acoust:3,across:[8,32,36],act:23,activ:[2,25,27,28,29],actual:[16,20,21,24,31],ad:[3,5,11,26,28,29],ada:24,ada_clf:23,adaboost:[18,24],adaboostclassifi:[18,23],adam:[26,27,28],adapt:34,add:[2,4,6,7,9,10,11,14,16,17,21,25,26,27,29],add_subplot:[6,16],add_to:9,addit:[4,9,10,14,16,19,26],address:[1,4,9,12,15,33],adityakadiw:20,adjac:12,adjust:12,admiralti:10,adopt:[11,33],advanc:[3,33],advantag:[3,6,12,22],adversari:27,adw:10,affect:[10,16],affin:26,afford:3,afo:10,after:[4,12,16,25,26,27],ag:9,again:[3,6,9,10,12],against:[12,16,18,26],agenc:36,agg:10,agglom:16,aggreg:[16,23],aggress:24,ago:21,ahead:[11,24],ai:[24,31],aid:34,aim:[1,10,28],air:[8,11],air_temperatur:[9,11],aka:[11,18],akmehra:33,akshai:33,al:[4,27,29],alana:4,alaska:13,algebra:11,algorithm:[6,16,20,22,23,26,27,28,29,31,32],alias:2,align:6,all:[1,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,29,32,33],allcorr:6,alldataload:26,allevi:12,alloc:[3,11,27],allow:[1,3,4,6,9,10,11,12,20,28,32,36],allow_nd:19,along:9,alow:13,alpha:[6,12,14,16,18,20,21,26,27],alreadi:[2,3,11,14,20,23,24,25,27,31],also:[3,4,6,8,9,10,11,12,13,14,15,16,18,23,24,26,27,28,29,31,36],alter:31,altern:10,although:20,alwai:[16,20],amath301:33,amath:33,amaz:24,amazon:3,ambient:15,among:[7,8,12,15,16,26],amount:[6,9,12],amplitud:[13,14,27,32],an:[1,3,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,32,33,36],anaconda:2,analog:17,analysi:[9,12,15,16,17,27,31,33],analyz:[4,13,14],anchor:6,andrea:18,android:4,angl:[13,24],ani:[4,5,9,12,13,14,23,24,26,28,31,36],annoi:24,annot:6,annotate_heatmap:6,anomal:21,anoth:[6,10,13,23,25,27,29,31],answer:[10,11,12,14,24,33],anthoni:33,anticorrel:12,anyon:11,api:4,app:36,appdata:10,appear:[6,10,11,13],append:[6,9,11,12,26],appli:[6,10,11,13,16,17,21,25,27,29,31,32,33],applic:[3,4,6,12,13,26,36],approach:[6,7,10,12,16,23,25,26,30],appropri:[4,24,29,32,33],approxim:[6,12,13,20,26],ar:[3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33],arang:[6,11,12,13,15,16,19,25,26,27,28],architectur:[3,5,26,27,29],archiv:[3,32],arcitectur:25,area:[3,11,12,18,19],arendt:33,arg:19,argmax:6,argmin:16,argu:27,argument:[6,12,23,26,29],arian:34,aris:13,arithmet:11,around:[3,6,14,26],arr:11,arra:11,arrai:[5,6,7,8,10,12,13,14,15,16,18,19,20,21,22,23,25,27],arrang:[7,27],array_of_diff:12,arriv:3,artefact:13,articl:13,artifici:21,artist:14,asarrai:[6,12,13,16,19,25,27],ask:[4,20],aspect:13,assembl:16,assess:[12,18],assign:[10,11,12,16,17,21,24,26,27],associ:[3,9,15,25],assum:[12,13,15,16,20],assumpt:12,ast:6,astyp:[16,28],asynchron:10,atan2:6,atlow:13,atmospher:3,attach:11,attach_respons:[13,14],attain:16,attempt:[29,33],attent:23,attr:11,attribut:[7,9,10,11,15,16,19,25,32],attriobut:15,auc:[18,19],author:[4,27],autmn22:[1,4],autmn:33,auto:[13,24,27,30],autofmt_xd:21,autokera:24,autom:[24,30],automat:[2,4,6,7,10,11,15,22,24,32,33],autumn22:4,avail:[2,3,9,10,12,23,32],avalanch:15,averag:[12,16,20,21,23,24,25,27,32],averagepooling2d:27,avg:19,avgpool2d:27,avoid:[4,10,12,27,28,32],avx2:29,avx:29,awar:[4,13],awesom:24,ax11:11,ax12:11,ax13:11,ax14:11,ax1:[6,11,16,21,25,26,27],ax2:[6,11,16,21,25,26,27],ax3:[11,21],ax4:[11,21],ax:[6,11,12,13,14,16,18,19,26],axes3d:16,axesimag:6,axi:[5,6,10,12,13,15,16,18,21,25,26,27,29,32],axisgrid:16,axvlin:[12,16],azimuth:[6,10],b76e:24,b:[6,11,12,13,18,20,21,26,27,28],b_i:25,b_j:25,b_k:25,back:[6,24,26,29],backend:22,background:18,backprop:11,backpropag:[26,28],backward:[6,7,20,25,26,27],bad:[10,18,23,28,29],badg:4,bag:29,bag_clf:23,baggingclassif:23,baggingclassifi:23,balanc:[15,19],band:[13,14],bandpass:13,bar:[4,13,21],barcontain:14,base:[6,8,11,12,14,16,17,19,20,26,36],base_estim:23,baseestim:19,baselibsvm:19,baselin:32,baseline_error:21,baseline_pr:21,bash:3,basi:[13,16,17],basic:[3,4,14,18,22,26,30,32,33],batch:[10,25,26,27],batch_siz:[25,26,27,28],bay:[17,18],bayesian:24,bbox_to_anchor:12,beat:32,beauti:36,becaus:[10,11,12,16,20,25,26,27,28,29,31,32,33],becom:[3,4,13,20,28],been:[11,20,24,27,32],befor:[4,11,13,17,18,25,32,33],begin:[9,12,14,18],beginn:33,behav:[11,26],behavior:32,behind:[23,36],being:[17,25,27],belong:[16,18,20],below:[1,3,4,5,6,9,11,13,14,15,16,17,23,26,27,29,33],benefit:34,best:[4,16,18,20,26,27,30,32],best_params_:22,beta:29,better:[6,12,16,23,24,26,27,28],between:[3,4,5,11,12,13,14,15,16,18,19,20,23,26,32],beyond:34,bhe:10,bhn:10,bhz:10,bia:[12,23,25,26,27],bias:[25,26],bibtex:4,big:[3,9,20],bin:[10,11,14,24],binari:[2,8,9,14,17,20,23,25,26,29],binary_crossentropi:29,binder:[4,36],binderhub:36,biomed:29,bit:10,bitbucket:4,black:[6,11,12,14,16,26],blank:[1,16],blast:15,block:[27,28,29],blog:14,blue:[9,12,25,26,27],bn1:10,bn2:10,bn3:10,bne:10,bnn:10,bnz:10,bo:16,bokeh:10,bokehj:10,bold:[1,16],book:[3,10,11,13,19,32,33,34,36],boost:24,boot:29,bootstrap:[23,24],both:[12,14,16,17,18,20,24,27],bottleneck:29,bottom:[6,10],boulder:34,bound:[9,26,32],boundari:[9,18,26],bourn:3,box:[4,12,24],bp:13,br:[1,24],bracket:11,branch:[4,5,26,29,33],breadth:33,break_ti:22,brew:3,brief:10,briefli:4,bring:13,broader:27,broadli:12,browser:[1,4,36],brute:22,bsd:18,bti:10,bucket:15,bucketx:15,bug:4,build:[12,16,20,26,36],built:[9,11,22,26,29,32],bundl:26,burden:12,butter:13,butterworth:13,bv1:10,c1:13,c2:13,c:[6,10,11,12,14,16,18,19,22,26,27,29,32,36],c_:[6,26],cach:[13,24],cache_s:22,calcul:[6,8,10,11,12,13,14,15,16,18,19,20,21,24,25,26,27,32],california:[3,10],call:[3,6,9,10,11,13,14,16,18,19,20,23,24,25,26,28,29,32,36],callabl:26,callback:19,can:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,29,30,31,32,33,36],cancel:25,candid:22,cannot:[10,13,26,29],canon:[13,29,33],canva:33,capabl:3,captur:[12,26],carbon:16,cardin:24,carefulli:[12,13],carpentri:[3,4,5,11,34],carri:[10,27],carto:10,cascadia:12,casino:12,cast_to_ndarrai:19,catalog:[3,10,27],catboost:24,categor:[8,9,10,21,24,26],categori:[15,17],causal:13,caveat:16,cbar:6,cbar_kw:6,cbarlabel:6,cc:[16,18,29],cch1:10,ccp_alpha:24,cd:4,cdot:[6,20,25],cell:[1,10,13,19,24,26,28],celsiu:11,center:[3,4,6,11,12,16],central:[3,10,12,13,14],central_mo:14,centroid:16,certain:16,certifi:14,cfg:15,chain:26,challeng:[8,9],chang:[4,6,10,11,12,14,23,27,29,31],channel:[2,10,13,14,26,27,36],chapter2:[10,13],chapter3:19,chapter:[3,8,24,33],charact:[8,9],characterist:[13,18,19],charset:14,chart:21,chatgpt:34,cheat:4,chebyshev:13,check:[2,4,9,10,12,13,14,26],check_arrai:19,check_consistent_length:19,check_param:19,check_x_i:19,check_y_param:19,checkout:4,checkpoint:[26,27],chile:10,chine:33,choic:[12,22,27],choos:[3,4,6,10,13,14,16,17,25,26,27],choosealicens:4,chronolog:12,cienc:33,circ:[11,20],circl:[12,16],citat:4,cite:4,citi:9,class_nam:29,class_weight:22,classic:[13,24,27],classif:[14,20,23,25,26,27],classifi:[8,15,17,19,20,22,25,26,27,29],classificaiton:[17,23],classification_report:[18,19],claus:18,clean:[4,10,12,14,29,32],cleanest:4,clear:[16,24,33],clear_output:13,clearli:[12,16],clf2:22,clf:[18,19,22,23,26],cli:4,click:4,client:[13,14],climat:9,clipboard:4,clone:[4,5,19,33],close:[12,18,20,29],closer:[12,16],closest:16,cloud:[1,4,5,6,9,11,32,33,36],cloudstor:3,cluster:[3,24,27,32,33],cluster_centers_:16,cluster_label:16,clusterid:16,clusters_new:16,clusters_old:16,cm:[6,13,16,19,26],cm_bright:26,cmap:[6,13,15,18,19,26,29],cnn:28,co:[6,11,16],coarsen:11,coast:10,coat:29,cobli:11,code:[1,3,4,6,10,16,18,20,24,32,33,36],codespac:[13,19],coef0:22,coef:12,coef_:[12,20],coeff:6,coeffic:12,coeffici:[6,11,12,13,16],cohort:4,col:11,col_index:16,col_label:6,colab:4,collabor:36,colleagu:4,collect:[6,9,13,14,16,23,24,32],collinear:24,color:[6,9,10,11,12,14,16,18,25,26,27],color_threshold:16,colorbar:6,colorblind:11,colorinterp:9,colormap:6,column:[6,8,10,12,13,14,15,16,19,20,21,25],column_or_1d:19,column_stack:16,com:[1,4,8,9,13,15,16,20,21,24,27,33,36],combin:[6,7,12,14,16,22,24,25,27,28],come:[2,11,24],comic:4,comma:8,command:[3,4,10,20,21,26,36],comment:16,commit:4,common:[9,13,15,16,17,18,29],commun:[4,9,34,36],compact:[10,13],compar:[5,10,11,13,14,18,23,25,26,27,32],compare_model:24,comparison:[6,24],compil:[26,28,29],complet:[10,13,14,16,18,32],completeness_scor:16,complex:[6,9,11,12,13,16,17,26,27,32],complex_:14,complic:[20,28],compon:[12,15,24,27,29,31,33],components_:6,compos:[1,3,10,25,26,27],composit:14,compress:[8,10,13,29],comput:[1,2,4,5,6,9,12,13,16,17,19,20,25,26,27,32,33,36],computation:[6,12],compute_cent:16,compute_clust:16,compute_dist:16,compute_elbow:16,compute_object:16,cona:2,concat:[12,15],concaten:[12,14,16,27],conceit:12,concept:[12,16,29,33],concurr:[19,22],conda:[23,36],condit:[16,17,30,32],conduct:4,conern:3,confid:[12,18],config:[4,11,19],config_context:19,configur:[4,24],confirm:24,conflict:4,confus:[18,19],confusion_matrix:[18,19],confusionmatrixdisplai:19,congrat:4,conj:14,connect:[3,4,25,26,27,28,29],consid:[13,17,18,24],consist:[16,22,30],constant:24,constitut:23,constrain:[13,26],construct:14,consum:30,contact:4,contain:[1,2,4,6,9,11,12,16,21,25,29,33,36],contamin:14,content:[3,4,5,9,10,14],context:[11,14,25,26,27],continu:[4,6,9,12,13],contourf:[9,13,26],contourpi:14,contribut:[3,4,5,6,16,23,26,34],contributor:4,control:[33,36],conv1:26,conv1d:27,conv2:26,conv2d:[26,27,29],conv2dtranspos:29,conv_decod:29,conv_encod:29,converg:[12,16,29],convert:[6,10,11,12,13,19,20,21,22,23,25],convnet:27,convnetquak:27,convolut:26,cool:[3,24],coord:11,coordin:[9,11,12,13,17,26,32],copi:[2,4,11,16,19,22,23,32,33],core:[3,10,11,16,23,29,36],corner:[4,9,13],corr:[6,7,15],corr_coef_collector:12,corrcoef:[11,12],correct:[20,23,24,25,26,27],correctli:[18,20,24],correl:[6,7,11,12,15,32],correlated_data:12,correlation_matrix:12,correspond:[10,15,16,20,25,26,33],cosin:13,cost:[3,12,24,26],could:[3,4,8,10,19,27,29],count:[10,12,13,14,18,19,21],cours:[1,4,5,9,10,11,12,34],cov:11,covari:12,cover:[13,27,32,33],cox:24,cpu:[3,11,23,24,29],cpu_feature_guard:29,cr:9,crap:[6,12,14,15],creat:[2,5,6,9,11,12,13,14,16,17,19,20,21,24,25,26,28,32,33,36],creation:9,credit:4,cristea:[33,34],criterion:[24,25,26,27],critic:[4,12,13,14,29],cross:[11,19,20,25,26,32],cross_val_predict:[19,23],cross_val_scor:[18,23],crossentropi:27,crossentropyloss:[25,26,27],cruis:16,cryospher:33,cs160:33,cs163:33,cs230:27,csr:19,csv:[1,7,8,9,14,15,16,20,21,24],cu:34,cubic:14,cuda:[3,11],cumsum:6,cumul:6,cumulativevarianceexplain:6,current:[2,6,16,19,20,21,28,32],curriculum:10,curv:[18,19,23,26,27],curvatur:13,cutoff:13,cv:[12,19,22,23],cv_results_:22,cwt:[7,13,32],cwtm:13,cwtmatr:13,cyan:6,cycler:[2,14],cyto:16,cytomet:16,d1:11,d2:11,d2dl:28,d:[6,8,10,11,13,14,16,21,25,26,27],da:3,dai:[6,10,12,13,21,24],daili:[6,21],dask:11,data:[1,3,4,10,13,15,17,20,22,23,26,28,30,31,33,36],data_elevation_mean:10,data_faith:16,data_group:10,data_shrink:16,dataarrai:11,databas:[8,9,11],datafram:[6,8,11,12,14,16,18,21,28],dataload:[25,26,27],datamanipul:[10,13],datapoint:26,dataset:[6,9,10,11,12,13,15,16,18,19,20,21,22,23,25,26,27,29,32],date:[4,6,12,16,21],date_year:[6,12],datetim:[10,21],datetime64:10,dateutil:[2,14],db:20,de:6,deactiv:2,deal:[6,12,21,27],debug:32,decai:14,decid:[16,18,20,26],decis:[17,18,23,24,26],decision_funct:[19,26],decision_function_shap:22,decisionboundarydisplai:18,decisiontre:23,decisiontreeclassifi:[18,23],declar:[11,12],decod:10,decoder_cnn:29,decompos:[6,13,29],decomposit:[6,13,16],decor:[14,19],decreas:[6,7,16,18,20,27],dedic:26,deep:[3,11,27,29,31,33],deepdenois:29,def:[6,10,14,15,16,20,25,26,27,28,29],default_rng:12,defin:[2,8,10,11,12,14,16,18,20,22,36],definit:6,degc:11,degre:[6,13,21,22,24],delai:19,delayed_func:19,delet:2,delta:[13,14,20],dem:13,demarc:16,demographisc:3,demonstr:[5,6,11,12,15,24,33],dendrogram:16,denoise_ae_cnn:29,denoise_decod:29,denoise_encod:29,denol:[33,34],denot:16,dens:[26,27,28,29],densiti:[10,16],depend:[2,6,7,10,13,26,27,36],deploi:[3,10,33,36],deploy:[4,33],deprec:[10,12,22,29],depth:[10,16,23,27],deriv:[20,26,36],descent:[11,17,19,25,26],descr:[19,22],describ:[4,9,10,11,12,14,21,29,31,33],descript:[4,10,21,24],design:[8,9,11,12,16,19,22,23,27,33],detach:20,detail:[3,4,8,16,22,24,26,33],detect:[15,27,29],determin:[12,13,21,25],determini:12,detrend:[12,13,14],dev:[10,13],develop:[2,3,4,33,34,36],deviat:[11,12,13,14,32],devic:[3,11],devid:12,df:[6,10,12,14,15,16,18],df_test:25,df_train:25,diag:6,diagon:[6,18],diam:16,diam_lwr:16,diam_mid:16,diam_upr:16,diamet:16,dict:[6,19],dict_kei:[19,22],dictionari:[6,10,11,19,22,23],did:[10,12,24],diff:[4,12],diff_mean:12,differ:[2,4,5,8,9,10,11,12,13,14,15,16,18,23,27,31,32,36],differenti:[11,26],difficult:[13,16,31],diffus:29,digit:[9,13,19,22,23,25,33],dim:11,dimens:[6,7,8,9,10,11,12,13,26,27,28,29,32],dimension:[7,8,9,10,11,16,17,27,33],dip:10,direct:[6,11,15],directli:[3,10,19,24],directori:[4,9],disabl:[25,26,27],disadvantag:12,disciplin:[8,33],discov:16,discret:13,discrimin:[6,14,17],discriminant_analysi:18,discriminatori:13,discuss:[3,4,10,12,16],disp:19,displac:[6,8,12],displai:[10,11,13,14,21],display_styl:11,dissimilar:11,dist:16,distanc:[13,16],distancemetr:16,distinct:16,distinguish:11,distort:16,distribut:[3,6,10,11,12,13,14,15,16,22,32,36],dive:[11,27],divers:8,divid:[12,13,14,32,33],divis:16,djf:11,dl:[9,13,15,16,20,27],dmatrix:23,dmc:[13,14],dn:16,doc:[8,10,11,12,16,21,24,26],docker:[24,33,36],docmument:4,document:[4,5,9,10,13,16,18,32,36],doe:[9,10,12,14,16,20,23,27,32,36],doi:[4,9,27,32],domain:[14,26,29],domin:[9,13],don:[24,28],done:[3,4,9,11,12,13,19,22,24,25,26,27],dot:[6,20,27],dowload:9,down:[1,4,9,25],download:[2,4,6,9,12,13,14,15,16,20,23,24,25,26,27,36],downsampl:[11,26,27],dozen:36,dp1:10,dp2:10,dp3:10,draft:18,dramat:3,drastic:18,draw:[12,16],dress:29,drive:33,driven:36,drlat:13,drlon:13,drop:[4,14,15,20,21,26,32],dropbox:[4,9,10,13,15,16,27],dropna:[10,14,20],dropout:[26,27,29],ds2:11,ds:[1,4,11,33,36],dt:[11,13,24],dtype:[10,11,14,16,19,22,24,27],du:11,ducelli:34,due:[12,13,16,33],dummi:24,duo:4,duplic:[4,12],durat:13,dure:[24,25,26,28,33],dw:20,dwa82x6xhjkhyw8:16,dz:14,e2019gl085870:27,e:[1,2,3,4,6,8,9,10,11,12,15,16,20,23,24,25,26,27,29,31,32],e_b:12,e_train:12,e_val:12,each:[2,3,4,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,33,36],earli:[9,19,28,33],earlier:[26,29],early_stop:26,earth:[4,11,15,33,34],earthdatasci:[4,9,11,34],earthquak:[6,10,13,14,15,17,27,29],earthrocgranit:14,eas:12,easi:[11,20,24],easier:[6,11,20,26],easili:[12,29,32],east:[6,9,10,12],eastward:12,ecosystem:33,edg:[10,13,27],edgecolor:[16,18,26],edit:[3,8,24],editor:4,edu:[4,6,12,33],educ:33,effect:[12,13,18,25],effici:[3,12,24,29],effort:[24,30],eh1:10,eh:10,ehn:10,ehz:10,eigen:6,eigenvalu:6,eigenvector:6,either:[1,3,6,11,12,16,20,26,27,29,33],el:10,elaps:[19,22],elast:24,element:[9,10,11,12,18,27],elev:[9,10,13],ellips:16,eln:10,els:[4,6,11,12,15,16,19,25,26,27],elsewher:27,elz:10,email:[4,33],embed:[6,9,31],emerg:9,empir:16,emploi:12,empti:[12,16,19,28],en:24,enabl:[3,13,29],encod:[8,9,24,27],encoder_cnn:29,encount:13,end:[0,6,7,10,12,14,16,17,18,25,26,27,33],end_dim:[25,26],end_tim:10,enddat:10,endtim:[13,14],energi:13,enforc:13,engin:[12,33],enhanc:9,enivron:2,enough:[11,32],ensembl:[18,19,21,22],ensur:[12,21],ensure_2d:19,ensure_min_featur:19,ensure_min_sampl:19,enter:[10,13,14,24],entir:[4,10,12,23,25,27,31],entri:[6,9],entropi:[20,25,26],enumer:[6,16,18],env:[2,14,23,29],environ:[4,5,32,33,36],environment:12,ep1:10,ep2:10,ep3:10,ep:18,epoch:[23,25,26,27,28,29],epr:12,epred_train:12,epred_v:12,epsilon:20,eq1:27,eq2:27,equal:[6,12,13,14,27],equat:[26,36],equial:11,equival:[10,11,20,25,26],err:18,error:[6,7,10,12,16,18,20,21,25,26,27,32],error_scor:22,erupt:16,escienc:3,esourc:33,especi:[12,27,32],ess490:[1,10],ess:[1,4,33,36],essenti:12,est:16,estim:[6,12,16,19,21,22,23,25,32],estimator__break_ti:22,estimator__c:22,estimator__cache_s:22,estimator__class_weight:22,estimator__coef0:22,estimator__decision_function_shap:22,estimator__degre:22,estimator__gamma:22,estimator__kernel:22,estimator__max_it:22,estimator__prob:22,estimator__random_st:22,estimator__shrink:22,estimator__tol:22,estimator__verbos:22,estimator_nam:19,et:[4,24,27,29],eta:[23,29],etc:[1,4,24,25,32],euclidean:16,euclidian:[11,16],evalu:[12,16,23,25,26,27,33],evaluate_model:24,even:[13,14,16,27,31],evenli:11,event:[10,13,15,27,36],eventu:36,everi:[11,13,27,31,33],everyth:[2,31],everytim:4,evolut:25,exact:[2,12,20,31],exactli:12,exampl:[3,4,6,8,9,10,11,13,15,16,17,18,19,20,21,23,25,26,28,30,33],exce:25,except:[1,26],exclud:24,exclus:26,execut:[1,2],execute_request:25,exercis:[9,12,15,18],exhibit:12,exist:[12,13,16,20,36],exist_ok:[9,26,27],exp:[10,11,13,14,20,25,26],exp_reg101:24,expand:1,expans:3,expect:[5,24,32],expens:[3,27],experi:[3,24,30,36],expert:33,expertis:32,expir:4,explain:[6,7,16,20,25,26,27],explained_variance_:6,explained_variance_ratio_:6,explan:4,explanatori:10,explicitli:12,explor:[7,12,14,16,19,22,23,25,30,32],explos:15,expon:14,express:[10,16],extend:[18,25,27],extens:[2,5,36],extent:13,extern:[2,10],extra:24,extract:[7,13,14,15,21,24,25,29,33],extractal:9,extrem:[12,24],f0e1ywupdbuv3l3:15,f1:[18,19,20,28],f1_score:18,f2:28,f4:12,f:[11,13,14,15,18,19,20,21,22,23,25,26,27],f_1:18,f_:13,f_a:13,f_c:13,f_path:[26,27],f_x:20,facecolor:16,facet:11,facil:32,facilit:[9,11],fact:[12,16,27],factor:[4,13,14,26,27],fail:26,fair:32,faith:16,fallen:27,faller:4,fals:[6,10,12,14,16,18,19,20,22,23,24,26],famili:13,familiar:[10,11],far:12,fashion:27,fashion_mnist:29,fast:[3,10],faster:9,fastica:[6,7],favor:27,fc1:26,fc2:26,fc3:26,fc4e2a:6,fc:16,fdsn:[13,14],fdsn_client:[13,14],feather:16,featur:[7,10,11,13,16,20,22,24,26,27,29,32,33,36],feature_import:21,feature_importances_:21,feature_list:21,feature_nam:[6,19,22],fee:4,feed:29,fetch:[4,33],fetch_openml:[19,22,23,25,26,27],few:[12,16,27],fewer:6,ff0000:26,fft2:13,fft:[7,13,14],fftfreq:[13,14],fftpack:[13,14],fftshift:13,fidel:29,field:[6,8,10,11,24,27,29,30],fig1:11,fig2:11,fig:[6,10,11,12,13,14,16,21,25,26,27],figsiz:[6,11,12,13,14,16,19,21,26,28],figur:[6,9,10,16,19,24,25,26,27],figure_:19,figure_format:11,fiji:10,file1:[9,13],file2:[9,13],file:[1,3,4,7,8,9,11,14,15,16,18,19,25,27,32,33],file_url:[6,12],filenam:16,fill:[13,14,27,32],fill_betweenx:16,fill_color:10,fill_valu:22,filter:[10,27],find:[3,4,6,7,11,12,13,15,16,17,18,20,23,25,26,27,29,30,32,33],finder:24,finish:22,finit:[13,15,27],first:[1,3,4,6,7,10,11,12,13,14,15,16,18,19,20,23,25,26,27,28,29,32,33],firstnam:9,fisher:14,fit:[6,12,16,18,19,20,21,22,23,26,27,28,29,30],fit_method:19,fit_param:19,fit_predict:16,fit_transform:[6,16,18,19,22,23,29],fivethirtyeight:21,fix:[4,10,12,22,26,27,32],flag:[16,29],flat:14,flatten:[23,25,26,27,28,29],flavor:36,flexibl:11,flip:11,float32:[11,27,28],float64:[10,19],floor:13,flouresc:16,flow:16,fluor:16,fly:11,fma:29,fmi:16,fn:[16,18,20],fname:9,focu:[3,9,11,12,15,24,27],focus:33,fold:[19,22,24],fold_shuffl:24,folder:[9,13,16,27,32],folium:9,follow:[0,3,4,6,9,12,15,16,18,24,27,29,33],font:[11,16],fontsiz:[11,16],fonttool:14,fontweight:16,forc:[4,20,22,33],force_all_finit:19,forecast:[21,24],forecast_acc:[21,24],forecast_noaa:[21,24],forecast_und:[21,24],forest:[17,18,19,23,24,26,33],forg:2,fork:4,form:[9,12,14,16,17],format:[1,6,7,8,10,15,16,18,19,21,25,26,27,32,33],formatt:6,former:34,formul:20,formula:[19,20],forth:24,fortran:36,forward:[6,7,11,25,27],found:[4,9,11,20,22,25,27,33],foundat:33,four:15,fourier:[7,14,15,29,33],fourth:[1,11,14],fowlk:16,fp:[16,18,20],fpr:[18,19],frac:[6,11,13,14,16,18,20,25,26],fraction:[16,18,27],frame:[10,12,14,15,19,22],framework:[9,13,33],free:[3,4,29,32,36],freq:[10,13],frequenc:[11,13,14],frequent:6,freqvec1:13,freqvec:[13,14],fri:21,friend:[2,21,24],friendli:4,from:[1,2,4,6,7,8,9,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,32,33,36],from_estim:[18,19],from_numpi:20,fs:[13,14,15],ft:13,ftp:10,full:[24,27],full_matric:6,fulli:[25,26,27,28,29],func:19,fundament:[7,11,12,18],further:[4,7,26,29],futur:[4,10,25],futurewarn:10,g:[1,2,3,4,6,8,9,10,11,12,16,20,23,24,25,26,27,31,32],gain:36,game:3,gamma:[18,19,22],gan:10,gap:[13,32],gate:[16,28],gather:[3,17],gaussian:[11,18,27,32],gaussian_process:18,gaussiannb:[18,23],gaussiannois:29,gaussianprocessclassifi:18,gb:23,gbr:24,gca:[6,12,14],gcp:3,gdrive:4,ge:11,gel:10,gener:[4,6,9,10,11,12,14,16,24,26,27,28,30,31,32,33],generaliz:[12,32],generate_time_seri:28,genr:8,geo:33,geodesi:[6,12,33],geograph:9,geohackweek:[9,34],geolog:[9,13],geologi:[9,13,33],geometri:9,geophys:[8,27],georeferenc:9,geoscien:33,geoscienc:[3,13,31,32,34],geoscientif:[8,11,13],geosmart:[4,33],geospati:[8,12,13,26,31,32,33],geq:20,get:[3,4,6,9,10,11,12,14,16,19,20,21,23,25,26,27],get_arrai:6,get_config:19,get_dummi:[21,24],get_features_by_domain:15,get_param:22,get_waveform:[13,14],get_xticklabel:6,getattr:19,geyser:16,giant:31,git:[5,23,33,36],github:[1,3,5,24,27,29,32,34,36],gitignor:4,gitlab:4,give:[2,4,12,13,14,16,18,20,24],given:[1,6,10,12,16,18,27,32],gla:10,glass:1,glo:10,glob:[6,12],global:[3,4,10,27],global_quakes_iri:10,global_skip_valid:19,gn:10,go:[4,9,10,11,12,13,15,20,24,25],goal:16,goe:25,gone:24,good:[4,7,12,16,32],googl:[8,21,24,33],got:19,gouraud:13,gov:[9,21],gp:[6,8,12],gpd:9,gpl:10,gps_timeseri:[6,12],gpu:[3,11,24],grad:20,grad_a:11,grad_b:11,grad_c:11,grad_d:11,grad_fn:20,grad_y_pr:11,gradient:[11,17,19,24,25,26,27,28],gradient_desc:29,graduat:34,grai:27,granit:14,grant:4,grant_sudo:24,graph:[11,21,26],graphic:[3,27],gray_r:19,great:[3,4,24,26,27,29],greater:[13,21,27],green:[9,12,16],grei:25,grid:[6,9,10,11,12,13,14,16,18,19,26,27,28],gridsearchcv:22,grobler:18,ground:[13,14,15,16,32],group:[3,9,10,11,12,15,16,17,19,23,24,32],groupbi:[10,11],growth:3,gst:10,gudelin:4,gueron:23,guess:9,gui:4,guid:[4,10],guidelin:[4,32],gzip:[6,12],h2o:24,h5:[7,8,9,15,27],h5py:[9,15,22,27,29],h:[6,10,20,26],h_y:20,ha:[4,6,9,11,12,14,15,16,17,20,22,24,25,26,27,28,29,32],hackweek:36,had:[4,25],half:33,hand:[23,25,36],handl:[3,4,10,17,24,26],handwritten:19,happen:[6,10,11,12,13,16,18],happi:26,hard:[4,23,33],hardwar:[1,3,36],harmon:18,hasattr:26,hat:[12,13,20,25],have:[2,3,4,9,10,11,12,13,14,15,16,20,23,24,25,26,27,28,29,31,32,34],hdf5:15,hdf:9,hdo:10,head:[1,4,6,9,10,14,15,16,21,24],headach:4,header:[10,25],heatmap:6,heavi:3,height:[9,10,27],help:[4,5,11,12,32],henderson:[33,34],here:[3,4,6,9,10,11,12,13,14,15,16,17,19,20,22,24,25,26,27,28,29,33],heterogen:9,hh2:10,hh3:10,hhe:10,hhn:10,hhz:[10,13,14],hidden:[26,27,28],hidden_layer_s:26,hide:6,hierarch:27,hierarchi:[16,27],high:[3,8,12,13,14,16,18,24,29,33],higher:[10,18],highest:[6,13],highlight:27,highpass:13,hist:[10,11,12,13,14,15],histogram:[10,11,13,14,15],histor:[21,24,27],histori:[25,26,27,28,29],hj2:10,hj3:10,hjz:10,hle:10,hln:10,hlz:10,hn1:10,hn2:10,hn3:10,hne:10,hnn:10,hnz:10,hold:9,home:[3,4,9],homepag:4,homewgrown:32,homework:4,homgeneity_scor:16,homogen:16,homogeneity_completeness_v_measur:16,honshu:10,hood:24,hook:20,hopefulli:16,horizont:[3,6,12],horizontalalign:[6,26],host:[4,33,36],hot:24,hour:[3,10,13],hover_data:10,hover_nam:10,how:[3,4,6,8,9,10,11,12,14,15,16,18,19,20,25,26,31,32,33],howev:[3,6,9,12,20,26],hp:13,hpc:[5,11],href:[10,13,19,26],html:[1,6,10,11,16,26,29,32],htop:3,http:[1,3,4,6,8,9,10,11,12,13,15,16,18,20,21,24,26,27,29,30,32,33,36],hub:[3,5,9,33],huber:24,hue:16,hulbert:27,human:[9,32],hv1:10,hyak:3,hydrolog:6,hyp_50m_sr:9,hyper:[17,24,26],hyperbol:26,hyperparamet:[12,23,24,27,32],hyperplan:17,hypothesi:12,hz:[13,14],i2:13,i6tv3ug15oe6yh:13,i:[3,6,8,10,12,13,14,15,16,19,20,25,26,27,29,32],i_it:20,ic:27,ica:[6,7,32],iclass:18,icon:4,id:[15,19,21,24],idai:[6,12],idea:[16,23,24,29],ideal:[6,18],ident:[11,18],identifi:[6,19,21,32],idna:14,ifft2:13,ifft:[13,14],ifram:10,ignor:[4,13,16,24,27],ignore_index:15,igs14:[6,12],ii:[6,12,18],iid:22,iik:12,illustr:[4,12,13,16,29],iloc:[9,10,15,21,24,25],im:6,imag:[1,6,9,13,14,19,22,24,25,26,27,29,33],image_index:29,imageri:8,imagin:[12,29],imaginari:29,img:1,immedi:19,impact:31,implement:[3,10,16,23,26,27,29],impli:6,important_indic:21,importantli:14,importlib:14,improv:[29,32],imput:24,imputation_typ:24,imshow:[6,13,19,29],in_channel:27,in_circl:12,in_featur:[25,26],in_squar:12,inaccess:4,includ:[1,4,5,14,26,29,32,33],incomplet:4,incoropor:33,incorpor:36,increas:[11,12,16,18,20,27,28],increasingli:27,ind:13,inde:[12,18,29],independ:[4,9,12,19,20,23],index:[9,10,15,16,21,24,25],indic:[12,14,16,26],individu:[3,11,16,23,25],induc:[12,27],industri:24,inertia:16,inexact:20,infin:20,infinit:13,influenc:[12,24],info:[2,10],inform:[4,6,7,9,26,31,32,36],infrastructur:36,infti:[13,14],inherit:25,init:[4,12,16],init_cent:16,initi:[4,11,16,20,25,26,27,29,32],initiali:16,inlin:[6,11,12,21,26],inlinebackend:11,inplac:[10,20],input:[6,7,10,11,13,15,24,25,26,27,28,29,32],input_nam:19,input_shap:[26,27,28,29],inquir:10,inquiri:9,inscrib:12,insert:[1,16],insid:[2,6,12],inspect:18,inspir:4,instal:[2,3,4,5,10,13,14,15,23,24],instanc:[1,3,6,10,14,18,19,22,23,26,27,32,33],instanti:21,instead:[10,13,14,16,18,19,20,23,29,32],institut:[3,32],instruct:[4,29],instructor:[4,10,13,19,33],instrument:[13,16],int32:[16,22],int64:[10,19,22,23],int_:[13,14],integ:[8,11,19,27],integr:[7,11,24],intend:[33,36],intens:[6,12],interact:[1,3,7,10,24,26,36],intercept:12,intercept_:20,interest:[13,15,29,34],interfac:[1,2,4,36],intermedi:[4,13,25,26,27,32,33],intern:[10,28],internet:36,interpol:19,interpret:[2,9,17,26,33],interpret_model:24,interrupt:19,interv:[12,26],intro:[10,11,33],introduc:[11,12,24,26,28,29,31,33],introduct:[3,10],introductori:9,intuit:26,inv_test_indic:19,invari:27,invers:6,inverse_transform:6,investig:13,involv:[10,12],io:[4,6,9,10,12,27,29,30],ipykernel_2672:10,ipykernel_47043:13,ipykernel_7989:16,ipynb:[10,13,19],ipython:13,iq1:27,iq2:27,iq:27,iri:[6,13,14],irisdf:6,isal:9,isel:11,isfinit:27,isin:10,isinst:6,island:10,isol:[2,6,31,36],isomap:6,issu:[4,5,24,28,32],ital:1,item:[1,4,10,11,25,26,27],iter:[12,15,16,19,20,21,22,24,25,26,27],iterable_with_config:19,ith:25,ith_cluster_silhouette_valu:16,its:[2,7,10,11,12,14,15,16,23,24,26,27,28,32],itself:[9,16],j4:16,j5lxhd8uxrtsxko:9,j:[6,16,20,25],jaqu:18,java:36,javascript:[9,36],jja:11,job:[3,24],joblib:19,john:9,johnson:27,journal:35,js:[9,13],jsgb:10,json:[1,8,9],juli:13,julia:[32,36],jump:25,jupyt:[2,3,5,21,24,26,32,33,36],jupyterhub:[3,4,36],jupyterlab:[2,4,10,36],jupyternotebook:36,just:[4,10,12,14,15,16,20,25,26,27,28,31],k:[6,14,17,18,19,20,21,23,24,25,27],k_means_cyto_3:16,k_means_cyto_8:16,k_means_cyto_bad_init:16,kaggl:20,kcpb:10,keep:[4,11,12,13,20,26],kei:[4,9,10,11,15,19,21,22],kelvin:11,kept:12,kera:[23,25,26,27,28,29,30,33],keras_tun:30,kerasclassif:26,kerasregressor:26,kernel:[1,17,18,19,22,24,26,27],kernel_s:[27,29],kf:12,kfold:[12,24],khbb:10,khmb:10,kilomet:10,kind:9,kit:[16,23],kiwisolv:[2,14],klat:13,klon:13,km:[10,13],kmean:16,kmeans_model:16,kmeans_pp:16,kmpb:10,kneighborsclassifi:[18,19,22,23],knn:[17,18,23,24],knn_clf:19,knn_predict:19,know:[1,3,10,17,20],knowledg:[27,29,33],known:[12,19,24,27],ko:16,koehrsen:21,kurtosi:13,kurtosis_valu:14,kw:6,kwarg:[6,19,29],kxk:18,l2:[11,27],l:[20,25,26,27],l_1:11,l_2:11,l_old:20,lab:[4,20,34],label:[5,6,10,11,15,16,17,18,19,23,24,25,26,27,28,32],label_binar:19,labelbottom:6,labelcolor:[25,26,27],labels:11,labels_:16,labeltop:6,lamb:10,lambda:[10,21],lambda_meters2kilomet:10,land:[3,9],landsat:[3,8],landslid:15,languag:[1,3,4,9,32,36],laplac:14,laptop:[2,4],lar:24,larg:[3,4,11,13,14,20,23,26,27,32],larger:[3,6,9,16],largest:[6,13],lasso:24,last:[4,9,10,11,13,19,20,21,23,24,26,27,28],lastnam:9,lat:[10,11,13,16],later:[2,12,20,21,26,28],latex:1,latitud:[10,13,26],launch:1,law:11,layer1:25,layer:[4,9,25,28,29],layout:21,lba:10,lbfg:26,lce:10,lcl:10,lcq:10,lda:[17,18],ldata:15,ldo:10,lead:[6,12,13,30],leader:3,learn:[2,3,6,7,8,9,10,11,12,17,18,19,20,21,22,25,27,28,29,32,34,36],learn_rat:23,learner:23,learning_r:[11,23,25,26,27,29],learnt:24,leas:32,least:[13,24,33],least_frequ:24,leav:[1,10],leaveoneout:12,lectur:[8,11,12,13,15,27,33],lecun:27,leduc:27,left:[4,6,10,11,12,26,27],legend:[6,11,12,13,14,19,21,26,28],legend_el:6,len:[6,9,12,13,14,15,16,18,19,20,21,23,25,26,27,29],lenet_checkpoint:[26,27],length:[6,10,11,12,14,20,25,27],length_a:12,length_sub:12,leq:[16,20],less:[6,10,12,13,24,32],lesson:[3,5,34],let:[6,9,10,11,12,13,14,15,16,18,19,20,25,26,27,28],letter:27,level:[1,10,15,18,24,33],lh2:10,lh3:10,lh:[10,11],lhe:10,lhn:10,lhz:10,lib:[9,14,19,23,29],librari:[2,24,29,32],licens:[4,18],lie:[16,26],light:[16,24],lightgbm:24,like:[3,4,8,9,10,11,12,14,16,20,27],lil:29,lilianweng:29,limit:[9,12,13,17,22,23,26,29,32],linalg:[6,11],line2d:[14,16],line:[1,2,4,6,10,11,12,13,14,16,17,19,21,24,26,36],line_color:10,linear:[6,11,13,14,17,18,19,20,22,24,25,26,27,29],linear_model:[12,20],lineardiscriminantanalysi:18,linearli:[11,13],linearly_separ:26,linearregress:12,linestyl:[6,11,16],linewidth:[6,11,12,18],link:[1,4,10,15,33],linkag:16,linregress:12,linspac:[6,11,12,13,14,26,28],linux:[3,5,32],list:[1,2,3,4,5,6,9,10,11,12,15,16,19,21,24,26,27,32],listedcolormap:[18,26],literatur:[27,32],littl:[17,18],live:36,llar:24,ln:6,lne:10,lnn:10,lnz:10,load:[6,10,14,27],load_data:29,load_dataset:11,load_digit:[19,22,23,25,26,27],load_iri:6,loaded_test:[25,27],loaded_train:[25,26,27],loaded_v:26,loc:[10,12,16,19,22],local:[4,5,10,13,16,19,27,33],locat:[1,9,10,13,14,15,16,21,26,27],log10:[13,15,16],log:[10,11,13,14,16,20,24,25,26,29],log_:14,log_i:16,log_x:16,logarithm:32,logic:25,logist:[17,25,33],logistic_regress:20,logisticregress:20,logit:25,logspac:[11,13,26],loguniform:22,lon:[10,11,16],longer:[13,16,20,28,29],longitud:[10,11,13,26],loo:12,loocv:12,look:[4,6,9,10,11,14,15,16,18,23,24,25,27],loop:[5,6,10,12,13,16,25,26,27],loos:[3,36],lose:27,loss:[6,7,11,20,22,26,27,28,29],loss_funct:[26,27],loss_tim:[25,26,27],lot:[3,24,28,32],low:[3,12,13,14,16,18,23,24],lower:[6,12,13,19,23,29],lower_critical_valu:12,lowest:[16,29],lowpass:13,lp:13,lr:[24,25,26,27,29],ls:[10,11],lstrip:26,lt:[25,26,27],ltn:10,lua:36,lucki:3,lunch:32,lw:16,lwd:10,lwh:10,lxml:14,lzmy975n0l5bjbmr9db291m00000gn:13,m1:24,m2km2:10,m2km:10,m8:13,m:[4,6,9,10,11,13,21,23],m_3:14,m_4:14,ma:33,mach:25,machin:[3,7,8,9,12,17,19,22,23,24,32,34],machinelearn:19,maco:3,macosx:[3,4],macosx_10_15_x86_64:23,macosx_11_0_x86_64:23,macosx_12_0_x86_64:23,macro:19,made:[4,6,10,25],mae:[21,24],mag:10,magic:21,magnesium:14,magnitud:[10,13,23],mai:[1,2,3,4,6,8,9,10,12,13,14,15,16,20,23,24,26,28,29,32],mail:4,main:[4,9,16,33],maintain:12,major:[6,23,24],make:[2,4,5,9,10,11,12,13,14,15,18,19,20,21,24,26,27,28,31,32,33],make_circl:[18,26],make_classif:[18,26],make_moon:[18,26],make_pipelin:26,makedir:[9,26,27],mallow:16,mam:11,manag:[2,25,26,27,36],mani:[2,3,6,9,10,12,13,15,16,17,19,20,24,25,27,31,32,34,36],manifold:29,manipul:[5,7,9,10,11,15,21,24,25,33],manual:[10,32],manual_se:[26,27],map:[6,9,26,27],mapbox_styl:10,mape:[21,24],margin:17,mariana:10,marin:[33,34],marinedenol:[10,14,23,29],mark:33,markdown:[4,36],markedli:36,marker:[9,10,11,12,16],marker_clust:9,marker_s:10,markerclust:9,markers:10,market:24,mask:[9,22,29],masked_arrai:22,mass:16,match:[12,24,29],materi:[9,11,27,33,34,36],math:[6,11,16,20,33],mathbf:[6,26],mathcal:[20,25],mathemat:20,matlab:[32,33],matmul:6,matplolib:33,matplotlib:[2,5,6,9,10,12,13,14,15,16,18,19,21,22,25,26,27,28,29],matrix:[7,12,13,18,19,20,26],matshow:15,max:[6,9,10,11,12,13,14,16,19,21,22,23,25,26,27,32],max_depth:[18,23,24],max_featur:[18,24],max_it:[20,22,26],max_leaf_nod:24,max_percentag:[13,14],max_pool2d:26,max_sampl:[23,24],maxim:[17,25],maximum:[16,20,21,24,25,26,27,32],maxlat:13,maxlon:13,maxpool2d:[27,29],maxpool:27,maxpooling2d:27,mayb:26,mb:23,mcbrearti:27,mch:10,mcn:10,mcw:10,md:[1,4,32],mdenol:33,mean:[3,4,9,10,11,12,13,18,20,21,23,24,25,26,27,32],mean_a:12,mean_b:12,mean_fit_tim:22,mean_score_tim:22,mean_squared_error:12,mean_test_scor:22,meant:36,measur:[6,8,12,14,16,18,21,24,26,32],median:[10,12,32],meet:[24,32],mehra:33,member:[12,16,36],memori:[3,9,10,11,20,26,27,28],mention:4,menu:[1,4],mere:26,merg:[1,4,13,14,16,33],mesh:26,meshgrid:26,messag:25,messi:4,meta:23,metadat:11,metadata:[7,9,10,11,32],meter:10,meters2kilomet:10,meters2kilometers2:10,method:[6,11,13,14,17,19,20,21,22,23,24,25,26,27,30,33],methodolog:33,metric:[12,13,16,19,20,21,22,23,26,27,28,30],mgo:14,mhe:10,mhn:10,mhz:10,microsoft:[3,24],microstoft:3,middl:[6,14,16,26],might:[6,9,12,13,14,24],mimic:9,min:[9,10,11,12,13,14,16,19,21,22,26,32],min_impurity_decreas:24,min_impurity_split:24,min_samples_leaf:24,min_samples_split:24,min_weight_fraction_leaf:24,mini:[25,26],miniconda3:[14,29],miniconda:2,minim:[16,20,25,32],minima:16,minimum:[6,16,25,32],minipnw_metadata:15,minipnw_waveform:15,minlat:13,minlon:13,minmax:32,minmaxscal:[19,22,23,32],minor:6,minu:[21,24],minut:[16,33],misclassifi:[18,23],misenterpret:13,misinterpret:13,miss:[24,32,35],mistak:20,mitig:[13,26],mix:6,mixing_:6,ml:[3,18,24,28,30,32,33],mlgeo2022:4,mlgeo2022_uwnetid:4,mlgeo2023:4,mlgeo2023_uwnetid:[4,33],mlgeo:[4,5,13,14,19,29,33],mlgeo_sk:23,mlhub:3,mllab:2,mlp:[27,28],mlpclassifi:26,mm:[6,12],mmw:10,mne:10,mnist:[19,25,26,27],mnn:10,mnz:10,mobil:4,mode:[11,17,23],model:[6,8,9,13,17,19,20,22,23,28,30,33],model_lenet:27,model_select:[12,18,19,21,22,23,25,26,27,29],moder:26,modif:4,modifi:[4,10,11,18,19,21,22,23,25,26,27,33],modul:[2,6,7,10,11,12,13,14,15,16,25,26,27,32,33],modulenotfounderror:13,moistur:8,moment:14,mon:21,monaco:12,mondai:[17,33],monitor:3,month:[3,13,21,24],monthli:11,more:[2,4,6,8,9,10,12,13,14,16,17,18,20,22,23,26,29,30,32,36],morlet2:13,morlet:13,morn:33,most:[2,3,4,5,6,7,8,10,13,14,15,16,17,19,21,23,24,26,27,28,32],mostli:[3,12,15,16],mother:13,motion:[6,13,14,15,32],motiv:32,mousavi:29,move:[3,9,11,25],mpl_toolkit:16,mplot3d:16,ms:[10,13],mse:[12,24,28,29],mse_train:12,mse_val:12,mu:14,much:[3,6,8,16,20,24,26,27],mulbackward0:20,multi:[10,11,13,17,18,23,25],multi_output:19,multiclass:[17,26],multiclassif:27,multicollinear:24,multidimension:[6,9,28],multilabel:29,multipl:[3,4,6,11,12,13,25,26,27,28,32,36],multipli:[6,14],multivariate_norm:12,must:27,my:[1,4,11],my_kmean:16,my_metadata:10,my_mlp:26,my_pd:10,mybind:36,mycod:4,myenv:2,myst:36,n1:16,n2:16,n:[6,9,11,12,13,14,15,16,18,19,20,24],n_cluster:16,n_clusters_per_class:26,n_completed_task:19,n_compon:[6,16],n_dispatched_batch:19,n_dispatched_task:19,n_epoch:[25,26,27],n_estim:[18,21,23,24],n_featur:26,n_imag:29,n_inform:26,n_init:16,n_iter:22,n_j:16,n_job:[19,22,23,24],n_redund:26,n_sampl:[6,12],n_select:24,n_split:12,n_step:28,naiv:[17,18,28],naive_bay:[18,23],name:[2,4,6,8,9,10,11,12,13,15,16,18,21,24,26,29,32,36],nameerror:[10,26],nan:[10,14,22],narr:36,narrai:15,nat:14,nation:[3,9],nativ:17,natur:[12,15],nb:[17,23],nb_clf:23,nbin:10,nbsp:24,nc:[9,10,11,13],ncedc:10,nclass:[19,23],ncluster:16,ncm_geologicframeworkgrid:[9,13],ncm_spatialgrid:[9,13],ncol:[19,21],ndarrai:[6,11,19,22,23],ndata:15,nearest:[11,16,17,18,19],necessari:[4,12,14,20],need:[4,6,10,12,13,15,16,17,20,23,24,25,26,27,28,29,32,33],neg:[14,16,18,20],negbackward:20,neighbor:[6,17,18,19,22,23,24],neither:24,nenad:4,neonscienc:9,neq1:27,nest:[9,26],net:[24,26],netcdf4:13,netcdf:11,network:[3,9,10,13,14,20,29,31],neural:[13,20,29,31],neural_network:26,neuron:[25,26,27,28],nevada:12,never:23,new_a:12,new_b:12,new_nois:14,new_pair:12,newaxi:28,newcrap:14,newdata:[19,22,23],newfil:4,newli:12,newnoisef:14,next:[10,12,16,19,24,25,26,27,28,36],next_fast_len:[13,14],nf:13,nfft1:13,nfft:[13,14],nhat:[13,14],nice:[4,9,20],nicoleta:[33,34],nipy_spectr:16,nlabel:27,nn1:25,nn:[14,25,26,27],no12:27,no1:27,no2:27,no_grad:[25,26,27],no_val_x:19,noaa:[21,24],node:[3,9],nois:[6,13,15,16,17,18,26,27,28,29,32],noise2:27,noisi:[6,14,29],noisy_sign:14,nomal:20,nomin:8,non:[1,9,13,29],none:[6,10,13,19,22,23,24,25,26,27,28,29],nonlinear:26,nor:24,norm:[6,16,22,27],normal:[6,11,12,14,16,18,19,22,23,24,25,26,27,32],north:[6,9,12],northern:10,northwest:[12,15],notat:9,note:[9,12,13,14,19,20,22,23,24,29,33],notebook:[2,3,4,5,10,11,13,19,21,24,32,33,36],noth:[11,14,20],notic:[11,12,13],notifi:4,noverlap:13,now:[4,6,9,10,11,12,13,14,15,16,18,20,25,26],np:[2,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29],nperseg:13,npmap:9,npoint:6,npt:[13,14],npts1:13,nrow:[19,21],ns:10,nsubset:12,nt:15,num_class:[23,25,26],number:[2,6,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32],number_run:12,numel:11,numer:[8,9,11,17,21,24],numeric_onli:10,numpi:[2,6,7,9,10,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29,33],numsv:6,nvidia:3,ny:9,nyq:13,o:[3,10,11,12,16,32],obj:16,object:[8,9,10,11,14,16,20,21,22,23,24,25,26],objective_new:16,objective_old:16,observ:[6,10,12,16,20,21],obspi:[13,14],obtain:[20,21],ocean:3,oceanographi:[3,33],ocf:10,off1:28,off2:28,off:[6,16,18,29],offer:[3,4,10,33],offic:11,offici:4,ofr20191081:9,often:[2,3,11,12,13,14,27],ok027:27,ok029:27,ok:14,okai:12,old:16,omega:20,omp:24,onc:[4,10,12,20,24,25],one:[1,3,4,7,9,10,11,12,13,14,15,16,17,18,20,21,23,24,25,26,27,29,30,31],oneapi:29,onednn:29,ones:[6,15,16,17,23,27],onevsrestclassifi:19,onli:[3,4,6,9,10,12,13,16,21,23,26,29,33],onlin:4,onto:[6,13],oob_scor:[23,24],open:[1,3,4,5,9,32,33,36],openeew:3,oper:[3,9,10,11,18,19,26,27,29],opt:[14,29],optim:[3,9,16,17,20,22,23,24,27,28,29,30,32],optimist:12,optimizer_v2:29,optimizi:17,option:[4,6,10,20],oracl:11,orang:[6,16],ord:11,order:[1,11,13,19,25,26,27,29,36],ordin:24,oregon:6,org:[6,9,10,11,16,18,20,26,27,32,36],organ:[4,6,7,8,9],orient:[6,21],origin:[4,6,7,9,10,12,13,14,15,16,18,24,27,29,33],origin_dist:12,orthogon:[6,24],orthograph:10,orthonorm:13,os:[3,4,6,9,12,13,15,16,22,26,27],other:[1,2,4,9,11,12,13,15,16,17,18,24,25,26,28,29,31,32,34],otherwis:25,otodo:10,ouput:27,our:[0,6,12,16,18,19,20,21,26],out:[2,3,4,9,10,13,14,19,21,22,24,26,27,28],out_channel:27,out_featur:[25,26],outcom:10,outlier:[24,32],outofboundsdatetim:10,output:[1,6,7,8,9,10,11,12,13,17,19,23,25,26,27,28,29,32,33],output_notebook:10,outsid:10,outstand:32,over:[1,4,6,12,13,25,26,27],overal:[5,12,16],overestim:12,overfit:[23,24,26,27],overlai:[6,13,15],overlap:13,overli:12,overview:29,overwrit:[4,10],overwritten:6,ovr:22,own:[3,4,11,20,32,33,36],owner:4,p395:[6,12],p:[10,11,12,14,16,18,20,24,25,27,29],p_valu:12,pacif:[12,15],packag:[2,6,9,10,11,12,13,14,15,16,18,19,20,23,24,29,30,33,36],pad:[21,27,29],padding_mod:27,page:[4,9,10,24],pai:23,pair:[6,9,16,21,25,32],pairgrid:16,pairplot:16,panda:[2,6,7,9,11,12,13,14,15,16,18,20,21,22,24,25,27,28,29,33],paper:[4,27,31,33],par:24,paragraph:1,parallel:[3,19,22],param:[11,22,23,29],param_c:22,param_distribut:22,param_gamma:22,param_grid:22,param_kernel:22,paramet:[11,12,16,17,20,22,23,24,25,26,27],parameter:[13,16],parametr:12,park:9,parks_wa:9,parquet:[8,9],pars:[8,24],part:[4,25,26,27,28,29,33],partial:20,particip:36,particl:16,particular:[9,11,15,32],particularli:[3,8,12,26],partit:[12,16],pass:[3,11,13,19,25,26],passiv:24,password:4,past:[12,13,28],path:4,pathcollect:6,pathwai:33,pattern:[21,27],pby:10,pc:[6,16],pca:[7,17,24,29,32],pcolor:11,pcolormesh:13,pd:[6,9,10,12,13,14,15,16,18,20,21,22,24,25,27,28,29],pdf:[13,33],pdist:16,pdt:33,peak:[16,27],pearson:[11,12],peform:18,peopl:[4,24,31],per:[8,10,13,19,25,27],percentag:[20,21,25],perceptron:25,perfect:[12,16,24],perform:[3,4,10,11,12,13,16,22,23,25,26,27,29,30,32,33],period:13,permiss:[4,33],perol:27,person:4,perspect:16,pg1:10,pga:32,pgc:10,phase:[13,14],phd:4,phi:26,phone:4,physic:8,pi:[6,11,12,13,14,16],pi_est:12,pick:27,pickl:19,picoeuk:16,piec:4,pillow:14,pio:10,pip3:2,pip:[13,14,15,23,24],pipelin:[7,16,17,26],pitfal:13,pixel:[6,9,25,27,29],piyg:18,place:[10,12,19,27],plai:4,planetari:[3,33],plate:[6,14],plateau:16,platform:[3,4,29,32,36],pleas:[0,3,4,5,10,13,24],plenti:[3,11],plot:[5,6,7,9,10,11,12,13,14,15,16,18,19,21,24,25,26,27,28,32],plot_height:10,plot_imag:29,plot_test:11,plot_width:10,plotli:[7,16,33],plt:[6,9,10,11,12,13,14,15,16,18,19,21,22,25,26,27,28,29],plu:[21,24,28],plugin:9,pm:33,png:[1,10,11],point:[4,6,8,9,11,12,13,14,16,17,24,26,28],poisson:11,polynomi:[13,17,24],pooch:11,pool:26,pool_siz:29,pop:16,popul:[3,12,16],popular:[15,17,23,24,26,27,29,36],popup:[9,24],porotomo:3,port:3,portion:23,posit:[6,11,12,14,16,18,19,20,25,26,27,32],positron:10,possibl:[5,10,14,20,23,29,32,36],post:4,postalcod:9,potabl:20,potenti:[13,32],pow:11,power:[11,16,26],pq:10,pr:18,practic:[3,4,5,8,10,11,12,13,17,19,29],practition:30,pre:[6,7,13,14,16,18],pre_dispatch:[19,22],precipit:10,precis:[18,19,20],precision_recall_curv:19,precision_recall_fscore_support:20,precision_scor:18,precisionrecalldisplai:19,precison:18,precondit:32,precursor:13,pred:[12,23],predecessor:23,predict:[8,11,12,15,17,18,19,20,21,22,23,24,25,26,27,29],predict_proba:[18,23,26],predictions_data:21,predictor:23,prefer:[4,27],prefer_skip_nested_valid:19,preinstal:2,preliminari:32,prepar:[7,25,33],preprocess:[6,16,18,19,20,22,23,25,26,27,32],prescrib:16,presenc:29,present:[0,8,13,14],preserv:13,prevent:19,previou:[12,19,23,26,28,31],previous:[10,16,27],primarili:12,princip:33,principl:33,print:[6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29],print_progress:19,printer:11,prior:[14,21,24],privat:[4,33],pro:[4,16],proba:23,probabilist:12,probabl:[16,17,19,20,22,23,25,26,29],probe:27,problem:[13,14,16,17,20,22,24,25,26,27,32],proce:26,procedur:12,process:[1,3,6,7,12,13,14,15,16,18,27,31],prochloro:16,produc:[9,17,24,31],product:[10,13,17,24,27,31],profession:24,profit:1,program:[1,3,4,10,33,36],progress:[23,33],project:[1,4,6,7,9,11,13,16,33,36],projection_typ:10,promis:32,promot:0,propag:[12,25,26,27],proper:[2,13],properti:[11,13,14,20,23,29],proport:14,propos:[15,29,32],prove:10,proven:32,provid:[2,3,4,6,10,11,12,17,24,26,27,30,32,33,36],proxim:11,pseudo:13,pseuo:13,psi:13,pt:[26,27],pub:10,publish:[31,36],puget:13,pull:[4,5,24,33],pullov:29,puor:6,pure:14,purpos:[3,4],pursuit:24,push:[4,5],put:[20,26],px:[10,16],py3:[13,23,24],py:[2,4,10,13,16,19,29],pycr:9,pydata:16,pylab:11,pypars:[2,14],pyplot:[6,9,10,11,12,13,14,15,16,18,19,21,22,25,26,27,28,29],python3:[2,14,19,23,29],python:[3,4,5,7,9,11,13,14,15,16,20,26,32,33,36],pytorch:[2,25,27,30,33],pytz:2,qc:16,qc_lwr:16,qc_mid:16,qc_upr:16,qda:18,quad:10,quadraticdiscriminantanalysi:18,quak:[10,27],quakes2:27,quakes2plot:10,qualit:[8,17,20,33],qualiti:[16,24,36],quantifi:[16,18],quantil:12,quantit:[17,20],quarri:15,quarter:[12,33],queri:[13,14],question:[31,32,33],queue:3,quick:32,quota:16,r2:[12,24],r2_score:12,r:[6,11,12,15,21,23,26,27,28,32,33,36],r_valu:12,radial:17,radiant:3,radiu:[12,16],rain:33,rais:19,ran:3,rand:[11,14,20,27,28],randn:[6,11,14,16],random:[6,15,16,17,18,19,20,23,24,26,27,28,31,32,33],random_project:6,random_split:[25,26,27],random_st:[12,16,18,19,20,21,22,24,26],randomforestclassifi:[18,19,22,23],randomforestregressor:[21,24],randomizedsearchcv:[22,26],randomli:[11,12,13,16,24,26],randomsampl:26,randomst:[19,26],rang:[6,9,10,11,12,14,15,16,19,21,25,26,27,28,29,32],range_color:10,rank_test_scor:22,ransac:24,rare:[12,13,24],raster:8,rate:[8,10,13,14,18,19,23,25,26,27],rather:[3,29],ratio:[6,12,14,18,24],ratt:[13,14],ravel:26,raw:[7,13,14,15,19,22,23],raw_moment:14,rbf:[18,22],rcparam:[11,16],rdbu:26,rdylbu:13,re:[4,11,12],reach:[3,16,20],read:[6,11,12,13,15,16,21,24,25,31,32],read_csv:[10,14,15,16,20,21,24,25],read_data:15,read_feath:16,read_fil:9,readabl:[7,9,25,32],readi:33,readm:[1,4,32],real:[3,13,14,26,29,32],realli:4,reason:[24,26],reassign:32,rebuild:29,rec:18,recal:[18,19,20],recalcul:12,recall_scor:18,receiv:[6,18,19,27,28,31],recent:[10,13,19,26,27],recogn:[4,5,10,24],recommend:[2,3,4,6,16,33,36],reconstruct:[6,29],record:[6,12,14,15,21],recov:[6,10,29],recreat:13,rectifi:26,recurs:16,red:[6,9,12,14,16,25,26,27],redefin:12,reduc:[4,6,7,11,12,13,16,18,27,29,32],reduct:[7,17,23,27,29,33],refer:[3,8,11,12,17,21,26],refit:22,refresh:33,reg:24,regard:26,region:[3,9,10],register_hook:20,regr:12,regress:[11,23,24,25,26,28,33],regressor:[22,24],regrid:11,regular:[23,26,27,28],regularli:[11,13],reinstal:24,reject:12,rel:[14,28],relat:[2,8,9,12,13],relationship:12,relev:32,reli:36,reliabl:[24,32],relu:[25,26,27],remain:[4,7,12,16,22],remean_elev:10,remedi:28,rememb:20,remot:[3,4,5,33,36],remov:[2,4,6,7,10,11,13,14,21,24,29,32],removablehandl:20,remove_anyth:10,render:10,reno:12,repeat:[12,13,24,27],repeat_kmean:16,repeatedli:12,replac:[4,9,10,12,14,15,16,23,27,36],repli:25,replic:16,repo:[1,4],report:[9,12,14,15,18,19,26,33],reposistori:33,repositori:[3,5,24,33],repres:[6,12,13,17,29],represent:[13,16,26,27,29],reproduc:[2,7,12,16,27,32,33,36],request:[3,4,5,6,9,10,12,14],requir:[2,3,4,13,14,17,19,23,25,26,29,32],requires_grad:20,resampl:[11,23],rescal:10,research:[3,4,27,29,32,34],reset:[4,10,19,28,33],reset_index:[9,10,20],reshap:[6,11,12,13,15,16,19,25,26,27,29],residu:[11,12,23,29],resnet:29,resolut:[10,29],resolv:[4,13],resour:3,resourc:[3,5,9,14,32,34],respect:[6,11,12,15,16,20,26,27],respons:[13,17,33],rest:26,restart:[1,24],result:[10,11,12,16,17,18,20,24,25,26,27,31,32],retain:6,retain_grad:20,retina:11,return_gener:19,return_sequ:28,return_train_scor:22,reus:[4,32],revers:[11,20,21,26],revert:26,review:[0,5,26,32],rf:[17,21,23,24],rf_clf:[19,23],rf_most_import:21,rf_predict:19,rgb:27,rich:36,ricker:14,ridg:24,right:[2,4,6,10,11,19,26],risk:12,rlat:13,rlon:13,rmse:24,rmsle:24,rng:[12,26],ro:[16,21],robust:6,roc:[18,19],roc_auc:19,roc_auc_scor:19,roc_curv:[18,19],roccurvedisplai:19,role:27,roll:11,root:[9,14,25,26,27],rotat:[6,16,21],rotation_mod:6,rouet:27,round:[21,26],routin:11,row:[6,8,10,11,13,14,16,20,21,24,25],row_index:16,row_label:6,rs:12,rstudio:1,rubi:36,rule:[17,26],run:[1,3,4,10,11,12,13,16,19,20,31,32,33,36],runner:24,running_loss:[25,26,27],runtimewarn:13,rv_frozen:22,s1:6,s2:6,s3:[3,6],s6x10hzdyra:3,s:[6,9,10,11,12,13,14,15,16,18,19,21,23,24,25,26,27,28,29],s_:6,sa:14,safe:26,sagemak:3,sai:[15,27],sake:12,same:[2,4,6,8,10,11,12,14,16,19,23,24,27,29,31,32],samm:23,sampl:[6,8,11,12,13,14,16,17,18,19,22,23,25,26,27],sample_silhouette_valu:16,sample_weight:19,sampler:[25,26,27],sampling_r:13,sandal:29,sat:21,satisfi:[14,23,30],sattelit:8,save:[2,4,6,7,8,9,10,11,18,21,24,25,27,32],savefig:11,saw:6,sawtooth:6,sc:16,scala:36,scalar:[20,26,28],scale:[3,6,10,13,14,16,22,23,25,26,27,32],scaleogram:13,scaler:[16,19,20,22,23],scan:9,scatter:[6,12,14,16,18,26,29],scatter_3d:16,scatter_geo:10,scatter_mapbox:10,scatterplot:[7,11],schedul:3,schema:8,schemat:27,scheme:[16,22],scholarship:33,sci:[16,23],scienc:[1,9,11,33,36],scientif:[1,9,11,13,32,33],scikit:[2,6,7,12,18,22,32],scikitlearn:[18,20],scipi:[2,6,7,12,13,14,15,16,22,23],scitkit:7,score:[16,18,19,22,23,26,27],scott:[33,34],scratch:[1,3,10],screen:[25,26,27],script:[4,7,33],se:[6,12],seaborn:[2,7,16],search:[26,27],season:11,seasonal_mean:11,seattl:21,sec:24,second:[1,6,8,10,11,12,13,14,20,23,25,27,28,29,33],section:[11,13,33],see:[1,3,4,6,8,9,11,12,13,14,16,18,24,26,27,36],seed:[6,16,26,27,32],seek:16,seem:[12,24,27],segment:29,seismic:[3,10,13,14,15],seismogram:[8,27,29],seismolog:33,seismomet:[3,13],sel:11,select:[1,4,7,10,11,12,13,15,16,21,22,24,26,27,32],self:[9,10,19,25,26,27],selu:29,send:[3,26],sens:[3,8,10,16],sensit:[13,14,16,18,20,32],sensor:[8,10,13],sent:27,sep:[10,25],sepal:6,separ:[6,8,16,17,29,32,36],sequenc:[11,27,29],sequenti:[23,26,27,28,29],sequential_15:29,sequential_1:29,sequentialbackend:22,seri:[4,6,8,10,11,12,13,15,27,28,29,32,33],server:[3,4,13,14],servic:[3,36],session:4,session_id:24,set:[3,6,7,9,10,11,12,13,15,16,18,19,23,24,26,27,28,32,33],set_aspect:[6,12,14],set_axis_off:19,set_axisbelow:6,set_grad:20,set_opt:11,set_size_inch:16,set_them:16,set_titl:[6,11,13,14,16,19,21,26],set_vis:6,set_xlabel:[6,11,12,13,14,16,21,25,26,27],set_xlim:[13,14,16,26],set_xscal:[13,14],set_xtick:[6,16,26],set_ylabel:[6,11,12,13,14,16,21,25,26,27],set_ylim:[13,14,16,26],set_yscal:[11,13],set_ytick:[6,16,26],set_zlabel:6,setp:6,settingwithcopywarn:16,settl:24,setup:24,setuptool:14,sever:[4,9,10,11,12,13,14,16,17,19,23,27,29,30,32],sgd:[17,25,26,29],sh:11,shade:13,shap:24,shape:[6,9,11,13,14,15,16,19,21,22,23,25,26,27,28,29],share:[8,9,33,36],sharex:[12,13],she:10,sheet:4,shell:[3,33],shift:[13,14],shirt:29,shn:10,shorter:13,should:[0,4,6,11,12,19,24,26,27,32,33],show:[6,9,10,11,12,13,14,16,18,19,24,25,26,27],show_reconstruct:29,showcountri:10,shown:[27,29],shrink:22,shuffl:[12,19,22,23,24,26,28],shufflesplit:12,shz:10,si:3,side:[12,14],sidebar:4,sig:[6,14],sigm:26,sigma:[6,14,20,26],sigmoid:[25,26,27,29],sign:[6,16],signal:[6,13,27,29],signatur:13,significantli:31,silenc:10,silhouett:16,silhouette_avg:16,silhouette_sampl:16,silhouette_scor:16,silic:14,silica:14,sim:12,similar:[11,13,14,16,21,23],similarli:[11,13,20,25],simpl:[1,5,10,12,15,16,17,20,24,26,27,28,32,33],simpler:6,simplernn:28,simplest:[25,28],simpli:[11,14,26],simplifi:[11,16,27],simul:[8,11,12],sin:[6,11,16,28],sinc:[9,12,19,26,28],sine:[11,13],singl:[6,9,15,16,23,24,25,26,27,28],singular:6,sinusoid:6,sio2:14,sio:14,sit:[12,14],site:[2,14,19,23,29],six:[2,14],size:[6,9,10,11,12,13,14,16,20,23,25,26,27],size_cluster_i:16,size_img:[25,26],skew:13,skicit:21,skill:[5,10],skip:[27,29],skip_parameter_valid:19,skiprow:10,sklean:6,sklearn:[6,12,16,18,19,20,21,22,23,24,25,26,27,29,32,33],slack:36,sle:10,sleep:13,slice:[12,16],slick:4,slide:[8,14],slightli:[26,31],sln:10,slope:12,slow:27,slz:10,small:[6,16,20,23,27,28],smaller:[6,7,12,16,20,23,26,32],smallest:29,smi:3,smith:9,smooth:[11,13,14,26],sn:[6,12,16],sneaker:29,snr:14,so:[2,4,6,10,12,13,19,20,24,25,26,27,28,32],societ:32,soft:23,softmax:[23,25,26,27],softplu:26,softwar:[3,5,9,14,34,36],software_carpentries_intermedi:35,sofwar:11,soil:8,solid:24,solut:[24,25,32,33],solv:[9,16,20,28,32],solver:26,some:[2,3,4,6,9,10,11,12,13,14,16,17,20,24,26,27,33,34],somebodi:4,sometim:31,somewhat:28,somewher:4,son:11,sort:[10,13,15,16,21],sort_valu:10,sosfilt:13,sound:13,sourc:[1,4,5,6,9,14,15,18,32,33,36],source_typ:15,south:[9,10],southern:[3,10],sp1:10,sp2:10,sp3:10,space:[6,7,8,11,14,16,22,26,27,30,36],span:13,spars:26,spatial:[11,13,16,27],spatiotempor:16,speci:6,special:[9,11],specif:[1,2,3,4,8,9,10,11,13,14,15,18,19,20,22],specifi:[10,14,20,25,26,27],spectra:13,spectral:[7,14,15],spectrogram:[13,27],spectrum:[13,14],speed:[13,14],spend:33,spine:6,split0_test_scor:22,split1_test_scor:22,split2_test_scor:22,split3_test_scor:22,split4_test_scor:22,split:[6,12,15,16,18,22,23,25,26,27,28],splitlin:[6,12],spread:14,spreadsheet:8,spyder:2,sqlalchemi:14,sqrt:[1,6,11,13,14,16],squar:[6,11,12,14,16,26],src:1,sse4:29,ssh:4,st:[14,15],sta:[6,12],stabl:[6,11,13,16,26,32],stack:[27,28],stacked_a:29,stacked_ae_cnn:29,stacked_decod:29,stacked_encod:29,stacklevel:19,stage:[4,29],stai:29,stain:16,stamp:15,standalon:10,standard:[6,8,9,10,11,12,13,14,32,33,36],standardscal:[16,18,20,25,26,27,32],standardtransform:26,stanford:27,star:2,start:[3,4,6,7,10,11,12,16,18,20,24,26,29,32],start_dim:[25,26],start_tim:10,startdat:10,starttim:[13,14],stat:[12,13,14,15,22],state:[9,12,28,32],state_dict:[26,27],statement:5,station:[10,12,13,14,27],stationari:29,statist:[7,10,11,12,13,15,17,21,23],statu:4,std:[6,10,11,12,13,14,21,26],std_err:12,std_fit_tim:22,std_score_tim:22,std_test_scor:22,steelblu:6,stefan:[33,34],step:[4,7,11,14,16,20,24,25,26,27,29,32],step_ahead:28,stft:[13,32],still:[4,19,26,36],stochast:[6,17,19,25,32],stop:[11,16],stop_alg:16,storag:[3,4,11,15,32],store:[3,9,10,11,12,15,19,22,23,26,32],str:[6,9,10,12,16,21,24],strategi:[12,16,29,32,33],stratifi:24,street:9,streetaddress:9,stretch:18,strictli:[17,26,27],stride:[27,29],string:[6,9,10,11,15],stringio:10,strive:[0,36],strmethodformatt:6,strong:12,strongli:[12,23],strptime:21,structur:[7,8,9,10,11,12,14,16,29,32,36],student:[5,34],studi:32,studio:[3,4],style:[16,18,21],sub:4,subarrai:11,subclass:25,subdata:16,subduct:12,subgroup:16,submiss:[4,33],subplot:[5,6,11,12,13,14,16,18,19,21,25,26,27,29],subplots_adjust:26,subsequ:26,subset:[9,11,12,19,22,23,24,26,32],subsetrandomsampl:[25,26,27],success:[16,27],successfulli:[13,23,24],suffici:[3,17,27],suggest:[4,32],sum:[6,11,14,16,20,23,25,26,27,29],sum_:[12,16,20,25],sum_i:11,sumatra:10,summar:[16,17,33],summari:[10,16,27,28,29],sun:[21,33],sundai:21,superimpos:13,superseismo:4,supervis:[6,7,17,32],supplementari:27,suppli:6,support:[1,9,11,17,19,22,33],suppos:32,suptitl:[16,19],sure:[2,4,11,12,15,19,28,32],surfac:[3,6,8,9,13,15],sv:[6,12],svc:[18,19,22,23],svc_clf:23,svc_predict:[19,22],svg:18,svm:[17,18,19,22,23],symmetr:[6,29],synchron:4,synecho:16,syntax:[9,11,12,26],synthet:[11,16,28,32],synthetics_pca:16,synthetics_sc:16,system:[3,4,5,6,9,11,12,17,31,36],systemat:[18,26,30],t20:16,t:[6,11,12,13,14,16,20,24,26,27,28,33],t_b:12,t_train:12,t_val:12,tab10:29,tab:[25,26,27],tabl:[8,10,24],tabular:[8,9,10],tacc:3,tackl:16,tag:[6,9,33],tail:[13,14],take:[7,10,12,13,14,15,16,20,23,25,27,28,29],taken:[10,14,16],takewai:4,talk:20,tangent:26,tanh:[26,28],taper:[13,14],target:[6,12,19,22,23,24,32],target_nam:[6,19,22],task:[3,11,19,26,32],taught:33,team:[27,31,33,36],technic:36,techniqu:[24,33],technolog:32,tediou:24,tell:24,temp:[10,21,24],temp_1:[21,24],temp_2:[21,24],temperatur:[8,10,11,21,24],templat:[4,27,33],templates_027:27,templates_029:27,tempor:[7,8,13,15],temporari:3,tend:[13,20,23,25,32],tensor:[3,20,25],tensorflow:[23,25,26,27,28,29],tenv:[6,12],term:[6,12,14,18,27,28],termin:[1,3,4,24],terminolog:4,test1:16,test:[10,12,16,18,20,22,23,25,26,27,28,32],test_dat:21,test_data:25,test_df:24,test_featur:21,test_imag:25,test_import:21,test_index:12,test_indic:19,test_label:[21,25],test_siz:[12,18,19,21,22,23,26,27],testload:[25,26,27],texa:3,text:[1,4,6,9,11,12,13,14,16,24,26,36],textcolor:6,textkw:6,tf:[13,28,29],th:[16,20],than:[6,12,13,14,16,17,23,27,28,32],the_turing_way_community_2022_6909298:35,thei:[3,6,7,9,10,12,13,14,16,17,20,26,27,28,29,32],them:[4,6,7,8,10,14,15,16,18,24,25,27,29,33],themselv:15,thenarrai:15,theorem:32,theori:33,therefor:[12,13,16,26,29],theta:[6,16],thi:[1,3,4,5,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,36],thing:[8,32,36],think:[12,24],third:[1,14,20,23],those:[6,11,24,27],though:[3,5,31],three:[3,9,11,16,20,27,33],thresh:[13,16],threshold:[6,18,24,25,26],through:[3,6,12,25,26,31,33],throughout:[27,33],thu:[6,18,20,27],tick:[6,16,21],tick_param:[6,11,25,26,27],ticker:6,tier:3,tif:9,tiff:9,tight:16,tight_layout:[6,14,21,25,26,27],tightli:3,tile:6,time:[3,6,8,9,10,11,12,15,16,24,25,26,27,28,29,30,32,33],time_series_features_extractor:15,timedelta:10,timedistribut:28,timeit:[10,11,13],timestamp:10,tip:11,titl:[6,10,11,12,13,14,16,19,21,26],tlu:25,tn:[15,18,20],tnr:18,to_csv:10,to_datetim:10,to_netcdf:11,to_numpi:[16,20],to_parquet:10,to_zarr:11,todai:[21,24],todoran:[33,34],togeth:[2,25],toi:[6,32],token:4,tol:22,too:[12,18,20,27,28,32],tool:[2,9,10,11,16,18,22,32,33],toolbox:[13,16],toolkit:[22,33],tooth:6,top3:24,top:[1,3,4,6,10,27],topic:33,topographi:9,torch:[11,20,25,26,27],torchvis:[25,26,27],total:[4,11,18,22,23,25,26,27,29],totensor:[25,26,27],touch:4,toward:7,towardsdatasci:21,towfish_001:16,towfish_002:16,towfish_003:16,towfish_004:16,towfish_005:16,towfish_006:16,towfish_007:16,towfish_008:16,towfish_009:16,towfish_010:16,towfish_011:16,towfish_012:16,towfish_013:16,towfish_014:16,towfish_015:16,towfish_016:16,towfish_017:16,towfish_018:16,towfish_019:16,towfish_020:16,tp:[16,18,20],tpr:[18,19],tpu:3,trace:15,trace_nam:15,traceback:[10,13,19,26],track:[4,11,12],trade:18,train:[12,16,17,18,20,22,23,28,29,31,33],train_data:25,train_df:24,train_featur:21,train_imag:25,train_import:21,train_index:12,train_label:[21,25,27],train_set:[25,26,27],train_test_split:[18,19,21,22,23,25,26,27,29],trainabl:[27,29],trainload:[25,26,27],transform:[6,7,9,10,11,15,16,19,20,22,23,24,25,26,27,29,32,33],transit:11,translat:[13,27],transmit:31,transpos:6,treat:27,tree:[9,17,18,23,24,26],tremend:34,trend:12,trial:26,trignometri:24,trim:13,triplic:16,trouser:29,true_data:21,true_label:16,truth:[16,28],tsfel:[7,15],tsfresh:[7,15],tshirt:29,tslib:10,tsne:29,tstart:[13,14],tt:[12,24],tue:21,tunabl:16,tune:[12,14,24,29,32],tuner:27,tupl:21,ture:[4,34],turn:[6,13,26,28],tutori:[3,4,9,10,11,12,16,19,21,24,26,29,34],twin:14,twinx:[25,26,27],two:[4,9,10,11,12,13,14,16,17,18,21,27,29,30],txt:[2,4],type:[1,4,5,8,9,10,11,13,14,15,16,17,19,22,23,24,26,29,32,33],typic:[3,10,11,12,13,15,16,23,29],u:[1,6,16],u_:12,u_n:12,uc:[21,24],ue:[6,12],ug3_fcm_distribut:16,un:[6,12],uncertain:12,uncertainti:[12,16,28],unclear:27,uncom:11,under:[4,15,18,24],underestim:12,underfit:[23,24],underli:[11,12,36],underlin:1,understand:[6,33],undertak:6,underwai:16,underway_002:16,underway_003:16,underway_004:16,underway_005:16,underway_006:16,underway_007:16,underway_008:16,underway_009:16,underway_010:16,underway_011:16,underway_012:16,underway_013:16,underway_014:16,underway_015:16,underway_017:16,underway_018:16,underway_019:16,underway_020:16,underway_021:16,underway_022:16,underway_023:16,underway_024:16,underway_025:16,underway_026:16,underway_027:16,underway_028:16,underway_029:16,underway_030:16,underway_031:16,underway_032:16,underway_033:16,underway_034:16,underway_035:16,underway_036:16,underway_037:16,underway_038:16,underway_039:16,underway_040:16,underway_041:16,underway_042:16,underway_043:16,underway_044:16,underway_045:16,underway_046:16,underway_047:16,underway_048:16,underway_049:16,underway_050:16,underway_051:16,underway_052:16,underway_053:16,underway_054:16,underway_055:16,underway_056:16,underway_057:16,underway_058:16,underway_059:16,underway_060:16,underway_061:16,underway_062:16,underway_063:16,underway_064:16,underway_065:16,underway_066:16,underway_067:16,underway_068:16,underway_069:16,underway_070:16,underway_071:16,underway_072:16,underway_073:16,underway_074:16,underway_075:16,underway_076:16,underway_077:16,underway_078:16,underway_079:16,underway_080:16,underway_081:16,underway_082:16,underway_083:16,underway_084:16,underway_085:16,underway_086:16,underway_087:16,underway_088:16,underway_g3:16,unecessari:6,unifi:3,uniform:[11,12,14,16,22,26,32],uniqu:[6,10,15,16,19,23,27,29],unit:[3,6,11,13,25,26],univers:[12,26,33],unix:5,unknown:24,unlik:[12,13],unord:1,unr:[6,12],unread:11,unrealist:13,unseen:[12,24],unstag:4,unstructur:9,unsupervis:[6,7,16,32,33],unsur:11,until:[13,14,16,20,23,27],unzip:9,up:[6,10,12,13,14,17,18,23,24],updat:[6,11,16,20,24,25,26,27,28,29,33],update_geo:10,update_layout:10,upload:[4,33],upper:[4,12],upper_critical_valu:12,upsampl:11,upstream:31,url:[1,9,10],urllib3:14,us:[1,2,3,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,36],usabl:26,usag:[3,4],usecol:10,user:[1,2,4,9,10,11,14,23,29,36],user_guid:16,usernam:4,userwarn:29,usg:9,usi:24,usp:8,usual:[3,12,15,16,17,24,26,27],utcdatetim:[13,14],utf:[9,10],util:[12,19,20,25,26,27,36],uv:[6,12],uw:[1,3,4,5,13,14,33,34,36],v:[6,16],v_e:12,v_measure_scor:16,v_n:12,v_size:12,va:6,vae:29,val_index:12,val_loss:29,val_set:[25,26,27],valfmt:6,valid:[10,19,26,27,28,29,32,33],validate_separ:19,validation_data:[28,29],valu:[6,8,9,10,11,12,13,14,16,17,18,20,21,23,24,25,26,27,28,32],valuabl:12,value_count:10,valueerror:19,vanish:[26,28],vanuatu:10,varaibl:12,vari:[11,14,15],variabl:[5,6,7,9,10,11,12,13,16,19,20,21,24,26,29],varianc:[6,12,13,16,17,23,24],variance_1:15,variat:[11,16],varieti:9,variou:[3,4,12,13,15,16,18],varoquaux:18,vcl:10,vco:10,vdt:10,ve:12,vea:10,vec:10,vector:[6,11,12,13,17,19,20,22,26,27,33],vei:10,vel:12,veloc:[12,13],venv:2,vep:10,verbos:[19,22,24],veri:[2,10,11,13,14,16,17,20,23,24,26,28,32],verifi:12,version:[1,2,9,10,26,27,31,36],versu:16,vertic:[3,6,13,15,16,21],verticalalign:6,vfp:10,vi9gmjy8d4zd5jv:27,via:[2,16,26,33],vibrat:15,video:[3,36],view:[16,26,27,33],viewoutput:26,viridi:13,virtual:[3,4],visit:2,visual:[3,4,6,7,9,11,12,14,16,18,21,24,27,29,32,33,36],vki:10,vm1:10,vm2:10,vm3:10,vmax:[6,11,13,15],vmin:[6,11,13,15],volum:[16,27],voting_clf:23,votingclassifi:23,vpb:10,vrc:10,vs:[4,6,9,12,14,23],vscode:[3,10,13,19],vsp:10,vstack:[6,16],vt:6,vwb:10,w1sdnnjb2rllxjlbw90zq:13,w:[6,11,13,20,25,26,27],w_i:25,w_j:[20,25],w_k:25,wa:[9,10,12,14,17,18,19,21,22,23,27,29],wai:[2,4,6,9,10,11,12,16,20,22,24,27,29,32,34],wait:[13,16],want:[9,10,11,12,13,20,21,25,26,28],ward:16,warm_start:24,warn:[6,10,13,14,19,20],washington:[9,33],watch:[3,19,22,23],water:20,water_pot:20,wave:[28,29],wavedecompnet:29,wavefield:29,waveform:[13,14,15,29],wavelet:[7,14,15,33],wavenumb:13,wdb25puxh3u07dj:[9,13],we:[0,2,3,4,6,9,10,11,12,13,14,15,16,17,18,19,20,22,23,25,26,27,28,29,33,36],weak:23,web:[3,36],wednesdai:33,week:[21,24,33],week_fri:[21,24],week_mon:[21,24],week_sat:[21,24],week_sun:[21,24],week_thur:[21,24],week_tu:[21,24],week_w:[21,24],weight:[11,14,18,19,23,25,26,27,28],weka:24,welcom:[4,36],well:[11,12,16,18,19,20,26,27,32],went:31,were:[3,9,10,11,16,18,19,20,23,25,27,34],west:[9,11],westward:12,wget:[9,13,15,16,21,22,24,27],what:[3,4,6,10,11,12,13,14,15,16,18,20,22,23,24,27,32],when:[3,4,9,10,12,16,18,19,20,23,25,26,27,29,32,33],where:[1,3,6,9,10,12,13,14,15,16,20,24,25,26,27,31,32],whether:[12,18,26,27],which:[2,4,6,8,9,12,13,14,16,17,20,22,23,24,25,26,27,29,30,32,33,36],white:[6,11,14,16],whl:[13,23,24],who:[4,11],who_is_awesom:11,whole:[9,10,14,20],why:[3,12,24],wich:11,wide:[12,14,22,24,26,29,36],widget:24,width:[1,6,9,10,13,14,27],wiki:18,wikimedia:18,window:[3,4,11,13,14,26,27],winner:[13,19],wise:[11,24],within:[3,8,9,11,12,13,16,21,24,26],without:[4,6,7,14,23,26,27,32],wmp:10,won:28,word:27,work:[0,2,3,6,9,10,12,16,20,23,24,27,28,32],worker:[19,22],workflow:[3,4,7,12,13,15,24,33],workspac:[13,19],world:[3,24,32],worlpert:32,would:[3,4,6,11,13,15,20,21,23,26,27,29,31,32],wrap:11,wrapper:19,write:[4,7,9,10,11,20,27,32,33],written:1,wrong:24,wrote:3,wt:14,wwvb:10,www:[9,11,13,15,16,20,21,27],wx:[25,26],x1:[11,16,27],x1test:16,x25sdnnjb2rllxjlbw90zq:19,x2:[11,16],x2test:16,x3:[11,16],x4:11,x54szmlszq:10,x:[1,6,9,10,11,12,13,14,15,16,18,19,20,21,25,26,27,28,32],x_:[12,20],x_a:12,x_b:12,x_i:[11,12,16,20,25],x_int:11,x_label_list:13,x_lat:11,x_lon:11,x_max:26,x_min:26,x_new:[6,26],x_p:16,x_pca:6,x_scale:32,x_std:32,x_t:11,x_test:[18,19,22,23,26,27,28,29],x_tl:11,x_train:[18,19,22,23,26,27,28,29],x_train_ful:29,x_val:[28,29],x_val_2d:29,x_val_compress:29,x_valu:21,xarrai:[7,9],xarrrai:11,xavg:6,xc:6,xgb:23,xgboost:[23,24,26],xkcd:18,xlabel:[6,10,11,12,13,14,16,18,19,21,26,28],xlat:13,xlim:[6,13,14,16,19,26],xlon:13,xne:10,xnn:10,xnz:10,xp:19,xr:11,xscale:14,xtick:[6,11,12,13,21],xx:[15,26],xxx:14,y2:16,y3:16,y:[6,9,10,11,12,13,15,16,18,19,20,21,22,23,25,26,27,28],y_i:[11,16,20],y_k:25,y_lower:16,y_max:26,y_min:26,y_numer:19,y_pred:[11,19,22,23,28],y_proba:26,y_score:[18,19],y_test:[18,19,22,23,26,27,28,29],y_test_pr:18,y_train:[18,19,22,23,26,27,28,29],y_train_ful:29,y_train_pr:19,y_true:[19,22],y_upper:16,y_val:[28,29],yaxi:16,ye:[2,20,24],year:[4,6,10,12,13,21,24,26,32],yellowston:16,yesterdai:[21,24],yet:4,yhat:20,yield:[13,30],yin:29,ylabel:[6,11,12,13,16,18,19,21],ylim:[6,13,14,16,19],yml:[4,32,33],york:9,you:[1,3,4,6,8,9,10,11,12,13,14,15,16,18,20,23,24,26,27,29,31,32,36],your:[3,9,11,12,13,16,18,20,24,26,32,33,36],youtu:3,yscale:[13,14],ytick:[11,12,13],yy:26,z:[9,13,14,15,16,20,25,26],zarr:[7,11],zel:13,zenodo:4,zero:[6,10,12,13,14,15,16,18,20,25,26,27,32],zero_grad:[25,26,27],zf:13,zhat:[13,14],zhu:29,ziheng:33,zip:[6,9,19,21,25,26],zipdataset:25,zipfil:[6,9,12],zipp:14,zone:12,zoom_start:9,zorder:6,zp:14,zsort:13,zxx:13},titles:["1.1 Open Reproducible Science","1.3 Jupyter Environment","1.3 Python Ecosystem","1.4 Computing Environments","1.5 Version Control & GitHub","Getting Started","2.10 Dimensionality Reduction","2.10 ML-ready data","2.1 Data Definitions","2.2 Data Formats","2.4 Pandas","2.3 Data Arrays","2.6 Resampling Methods","2.7 Spectral Transforms","2.8 Statistical Considerations for geoscientific Data and Noise","2.9 Feature engineering","3.1 Clustering","3.2 Classification and Regression","3.3 Binary classification","3.4 Multiclass Classification","3.5 Logistic regression","3.6 Random Forests","3.7 Hyperparameter Tuning","3.8 Ensemble learning","3.9 AutoML","4.1 Neural Networks","4.2 Multi Layer Perceptrons","4.3 Convolutional Neural Networks","4.4 Recurrent Neural Networks: Processing sequences","4.5 Auto-encoders","4.6 NAS: Network Architecture Search","This chapter focuces on model workflow and ML reproducibility","The MLGeo Project","Machine Learning in the Geosciences","Acknowledgements from Contributors","Bibliography","Glossaries"],titleterms:{"1":[0,1,2,3,4,6,8,9,10,11,12,13,14,16,17,18,19,21,22,23,25,26,27,32],"10":[6,7],"1d":11,"2":[6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,26,27,28,32],"2d":[11,13],"3":[1,2,6,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,26,27,32],"3d":6,"4":[3,10,11,12,13,14,19,21,23,25,26,27,28,29,30,32],"5":[4,11,12,20,21,26,27,29,32],"6":[11,12,21,30,32],"7":[13,21,22,32],"8":[14,23],"9":[15,24],"do":2,"function":[10,25,26],"import":21,"new":4,"short":13,But:9,One:[12,21],The:[8,14,16,32],account:4,acknowledg:34,activ:26,adaboost:23,ahead:28,algorithm:17,an:[2,4],analysi:6,anatomi:27,app:4,appendix:20,ar:2,architectur:30,arrai:[9,11],assess:21,authent:4,auto:29,autoencod:29,automat:20,automl:24,aw:3,azur:3,b:25,bag:23,baselin:21,basic:[1,2,10,11,13],befor:16,best:24,bibliographi:35,binari:18,boost:23,bootstrap:12,build:33,c:25,can:28,carlo:12,chapt:32,chapter:[31,32],check:[21,24],choic:16,classif:[17,18,19],classifi:[18,23],cloud:3,cluster:16,cnn:27,code:2,colab:3,column:24,command:[1,2],compar:24,compon:6,comput:[3,11,21],conda:2,consider:14,contributor:34,control:4,conv:27,convolut:[27,29],cours:33,covari:6,creat:[4,10,27],cross:[12,22],csv:10,data:[6,7,8,9,11,12,14,16,18,19,21,24,25,27,29,32],datafram:10,deal:2,decis:21,decod:29,defin:[25,26,27],definit:[8,36],denois:29,descent:20,design:[25,32],desktop:4,determin:6,differenti:20,dimension:[6,29,32],displai:24,distanc:11,download:[21,32],ecosystem:2,elbow:16,encod:[21,29],engin:15,enhanc:4,ensembl:23,environ:[1,2,3],evalu:24,event:14,exampl:[2,12,27,29],exist:4,explor:[6,15,18,21],extract:[6,11],far:28,featur:[6,14,15,21],file:[2,10],filter:13,fine:26,first:[21,24],fo:11,focuc:31,fold:12,forecast:28,forest:21,format:9,forward:26,fourier:13,frame:[8,32],freez:2,from:[5,10,34],fundament:10,futur:28,gener:36,geodet:12,geojson:9,geolog:14,geopanda:9,geoscienc:33,geoscientif:14,geotiff:9,get:[5,24],git:4,github:[4,33],glossari:36,googl:3,gradient:[20,23],grid:22,handl:9,hassl:24,hdf5:9,hierarch:[9,16],high:11,homework:33,hot:21,how:[2,27,28],hpc:3,hub:1,hyperparamet:[22,26],i:9,implement:20,independ:6,index:11,infer:12,inform:14,initi:21,interpret:24,introduct:[11,20],jupyt:1,k:[12,16],kurtosi:14,lab:1,label:21,larg:9,latent:29,layer:[26,27],learn:[5,16,23,26,33],leav:12,lenet:27,level:[11,12,13,14],linear:12,load:25,local:3,logist:20,loss:25,low:29,lstm:28,machin:33,manupul:10,map:10,markdown:1,matplotlib:11,matrix:6,mean:[6,14,16],measur:11,metadata:15,method:[12,16],metric:[18,24],ml:[7,27,31],mlgeo:32,mlp:26,modal:8,model:[12,18,21,24,25,26,27,29,31,32],mont:12,more:24,motion:12,multi:[26,29],multiclass:19,na:30,need:2,net:29,netcdf4:9,netcdf:9,network:[25,26,27,28,30],neural:[25,26,27,28],nois:14,norm:11,note:[4,27],notebook:1,number:16,numpi:11,nyquist:13,o:9,object:[5,33],one:6,open:0,optim:[25,26],organ:32,other:[6,27],out:12,outcom:6,overview:33,panda:10,paramet:6,parquet:10,past:23,pca:[6,16],perceptron:26,perform:[18,21],physic:14,plate:12,plotli:10,pool:27,practic:[16,27],predict:28,prep:27,prepar:[19,21,27,32],prerequisit:33,princip:6,problem:28,process:28,project:32,publish:[4,27],pycaret:24,python:[2,10],pytorch:[11,20,26],qualiti:21,random:[11,12,14,21,22],randomli:21,raster:9,rasterio:9,re:19,read:[9,10,27,33],readi:[7,24],realist:14,recod:27,recurr:28,reduct:[6,32],regress:[12,17,20,21],repeat:16,repositori:4,reproduc:[0,31],resampl:12,respons:10,restor:26,rnn:28,robust:12,run:[2,24],save:26,scale:19,scienc:0,scikit:[16,26],search:[22,30],section:10,seismic:27,seismolog:29,select:6,separ:21,sequenc:28,seri:14,set:[4,14,21,25],sever:28,shape:24,signal:14,skew:14,skill:33,slice:11,slow:9,softwar:4,solut:28,space:[13,15,29],specif:33,spectral:13,split:[19,21,24],stack:23,start:5,statist:14,step:[6,28],strategi:25,structur:26,student:[10,33],subtract:6,svd:6,syllabu:33,synthet:[14,18],task:29,team:4,technic:33,techniqu:[6,12],technolog:36,tensor:11,test:[19,21,24],text:10,thi:[2,31],three:6,tier:33,time:[13,14],tip:16,tool:36,train:[19,21,24,25,26,27,32],transform:13,tree:21,troubleshoot:24,tune:[22,26,27],tutori:33,two:6,typic:26,u:29,uncertainti:13,up:[4,21],us:[4,10,12],valid:[12,22],varianc:14,version:[4,33],via:6,virtual:2,vote:23,vs:10,wavelet:13,we:[21,24],webinar:33,what:[1,2],work:4,workflow:31,xarrai:11,yml:2,you:[2,28],your:[2,4],zarr:9,zero:5}}) \ No newline at end of file