From b52021fb7131f6e8df1a1dca2c93cd0f59bf14a7 Mon Sep 17 00:00:00 2001 From: Brad Hindman Date: Tue, 18 Jun 2024 10:41:35 -0600 Subject: [PATCH] Typo correction. --- doc/source/User_Guide/under_development.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/source/User_Guide/under_development.rst b/doc/source/User_Guide/under_development.rst index 32ff523d..fc87c843 100644 --- a/doc/source/User_Guide/under_development.rst +++ b/doc/source/User_Guide/under_development.rst @@ -44,7 +44,7 @@ Rayleigh can solve the fluid equations under the pseudo-incompressible approxima \begin{aligned} \hat{\rho}_*(r) \left[\frac{\partial\boldsymbol{v}}{\partial t} + \boldsymbol{v \cdot \nabla v} % Advection + 2\Omega_0\hat{\boldsymbol{z}}\times\boldsymbol{v} \right] =\; % Coriolis - & \frac{\hat{\rho}_*(r) g(r)}{c_P} \Theta\, \hat{\boldsymbol{r}} + \frac{\hat{\rho}_*(r)}{c_P\,\hat{\rho}} \frac{d\hat{S}}{dr} P\, \hat{\boldsymbol{r}} % Buoyancy + & \frac{\hat{\rho}_*(r) g(r)}{c_P} \Theta\, \hat{\boldsymbol{r}} + \frac{\hat{\rho}_*(r)}{c_P\,\hat{\rho}(r)} \frac{d\hat{S}}{dr} P\, \hat{\boldsymbol{r}} % Buoyancy - \hat{\rho}_*(r)\boldsymbol{\nabla}\left(\frac{P}{\hat{\rho}(r)}\right) \\ % Pressure Forces &+ \frac{\hat{\rho}_*(r)}{4\pi\hat{\rho}(r)}\left(\boldsymbol{\nabla}\times\boldsymbol{B}\right)\times\boldsymbol{B} % Lorentz Force + \frac{\hat{\rho}_*(r)}{\hat{\rho}(r)}\boldsymbol{\nabla}\cdot\boldsymbol{\mathcal{D}}\\ % Viscous Forces