-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsearch_gccn_simplicial.sh
340 lines (324 loc) · 18.6 KB
/
search_gccn_simplicial.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
python -m topobenchmark \
dataset=graph/NCI109 \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[0\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/ZINC \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
transforms.one_hot_node_degree_features.degrees_fields=x \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[3\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/cocitation_cora \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[1\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/PROTEINS \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[2\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/MUTAG \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[3\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/cocitation_citeseer \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[4\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/amazon_ratings \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[5\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/NCI1 \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[6\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/cocitation_pubmed \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-down_laplacian-1,1-up_laplacian-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-up_incidence-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_incidence-2,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_incidence-1,1-up_laplacian-1,1-down_incidence-2\],\[1-up_laplacian-0,1-up_incidence-0,1-up_laplacian-1,1-up_incidence-1\],\[1-up_laplacian-0,1-down_incidence-1,1-down_laplacian-1,1-up_laplacian-1,1-down_incidence-2,1-down_laplacian-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[7\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/NCI109 \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-up_incidence-0,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1,1-down_laplacian-1\],\[1-up_laplacian-0,1-down_incidence-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[0\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/cocitation_cora \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-up_incidence-0,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1,1-down_laplacian-1\],\[1-up_laplacian-0,1-down_incidence-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[1\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/PROTEINS \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-up_incidence-0,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1,1-down_laplacian-1\],\[1-up_laplacian-0,1-down_incidence-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[2\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/MUTAG \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-up_incidence-0,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1,1-down_laplacian-1\],\[1-up_laplacian-0,1-down_incidence-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[3\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/cocitation_citeseer \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-up_incidence-0,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1,1-down_laplacian-1\],\[1-up_laplacian-0,1-down_incidence-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[4\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/amazon_ratings \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-up_incidence-0,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1,1-down_laplacian-1\],\[1-up_laplacian-0,1-down_incidence-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[5\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/NCI1 \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-up_incidence-0,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1,1-down_laplacian-1\],\[1-up_laplacian-0,1-down_incidence-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[6\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun &
python -m topobenchmark \
dataset=graph/cocitation_pubmed \
model=simplicial/topotune,simplicial/topotune_onehasse \
model.feature_encoder.out_channels=32 \
model.tune_gnn=GCN,GIN,GAT,GraphSAGE \
model.backbone.GNN.num_layers=1,2 \
model.backbone.neighborhoods=\[1-up_laplacian-0,1-up_incidence-0,1-down_laplacian-1,1-up_laplacian-1,1-up_incidence-1,1-down_laplacian-2\],\[1-up_laplacian-0,1-down_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1\],\[1-up_laplacian-0,1-up_laplacian-1,1-down_laplacian-1\],\[1-up_laplacian-0,1-down_incidence-2\] \
model.backbone.layers=2,4,8 \
model.feature_encoder.proj_dropout=0.3 \
dataset.split_params.data_seed=1,3,5,7,9 \
model.readout.readout_name=PropagateSignalDown \
logger.wandb.project=TopoTune_Simplicial \
trainer.max_epochs=1000 \
trainer.min_epochs=50 \
trainer.devices=\[7\] \
trainer.check_val_every_n_epoch=1 \
callbacks.early_stopping.patience=50 \
tags="[FirstExperiments]" \
--multirun