-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcar_plate_detector.py
88 lines (69 loc) · 2.52 KB
/
car_plate_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import pandas as pd
import torch
from PIL.Image import Image
from eva.models.catalog.frame_info import FrameInfo
from eva.models.catalog.properties import ColorSpace
from eva.udfs.abstract.pytorch_abstract_udf import PytorchAbstractClassifierUDF
from typing import List
try:
from torch import Tensor
except ImportError as e:
raise ImportError(
f"Failed to import with error {e}, \
please try `pip install torch`"
)
try:
import torchvision
except ImportError as e:
raise ImportError(
f"Failed to import with error {e}, \
please try `pip install torch`"
)
class CarPlateDetector(PytorchAbstractClassifierUDF):
@property
def name(self) -> str:
return "car_plate"
def setup(self, threshold=0.1):
self.threshold = threshold
self.model = torchvision.models.segmentation.deeplabv3_resnet101(
pretrained=True, progress=True)
for p in self.model.parameters():
p.requires_grad = False
outputchannels = 1
self.model.classifier = torchvision.models.segmentation.deeplabv3.DeepLabHead(
2048, outputchannels)
model_path = './model.pth'
checkpoint = torch.load(model_path, map_location='cpu')
self.model.load_state_dict(checkpoint['model'])
self.model.eval()
if torch.cuda.is_available():
self.model.to('cuda')
@property
def input_format(self) -> FrameInfo:
return FrameInfo(-1, -1, 3, ColorSpace.RGB)
@property
def labels(self) -> List[str]:
return ["car plate"]
def pred(self, image, model):
preprocess = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0)
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)['out'][0]
return output
def forward(self, frames: Tensor):
outcome = pd.DataFrame()
for frame in frames:
image = torchvision.transforms.ToPILImage()(frame)
output = self.pred(image, self.model)
mask = output.cpu().numpy()[0] > 0.1
mask = mask.astype(np.uint8)
outcome = outcome.append({"results": mask}, ignore_index=True)
return outcome