forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
simple_fft_block_c2r_fp16.cu
105 lines (88 loc) · 4.82 KB
/
simple_fft_block_c2r_fp16.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#include <iostream>
#include <vector>
#include <cuda_runtime_api.h>
#include <cufftdx.hpp>
#include "block_io.hpp"
#include "common.hpp"
template<class FFT, class ComplexType = typename FFT::value_type, class ScalarType = typename ComplexType::value_type>
__launch_bounds__(FFT::max_threads_per_block) __global__
void block_fft_kernel_c2r_fp16(ComplexType* input_data, ScalarType* output_data) {
using complex_type = ComplexType;
// Local array for thread
complex_type thread_data[FFT::storage_size];
// ID of FFT in CUDA block, in range [0; FFT::ffts_per_block)
const unsigned int local_fft_id = threadIdx.y;
// Load data from global memory to registers
example::io<FFT>::load_c2r<false /* Is input in RRII format */>(input_data, thread_data, local_fft_id);
// Execute FFT
extern __shared__ complex_type shared_mem[];
FFT().execute(thread_data, shared_mem);
// Save results
example::io<FFT>::store_c2r(thread_data, output_data, local_fft_id);
}
// In this example a one-dimensional complex-to-real transform is performed by a CUDA block.
//
// One block is run, and it calculates four 128-point C2R half precision FFTs.
// Data is generated on host, copied to device buffer, and then results are copied back to host.
template<unsigned int Arch>
void simple_block_fft_c2r_fp16() {
using namespace cufftdx;
// FFT is defined, its: size, type, direction, precision. Block() operator informs that FFT
// will be executed on block level. Shared memory is required for co-operation between threads.
// Additionally,
using FFT = decltype(Block() + Size<128>() + Type<fft_type::c2r>() + Direction<fft_direction::inverse>() +
Precision<__half>() + ElementsPerThread<8>() + FFTsPerBlock<4>() + SM<Arch>());
using complex_type = typename FFT::value_type; // complex<__half2>
using real_type = typename complex_type::value_type; // __half2
// Allocate managed memory for input/output
// For performance reasons half precision cuFFTDx FFTs has an implicit batching of 2 FFTs. This means that:
// * Used complex type is complex<__half2>, and real type is __half2.
// * Every thread processes values from two batches simultaneously using __half2 as the base type.
// * Number of FFTs per block must be a multiple of 2.
// * Complex data is processed in ((Real1, Real2), (Imag1, Imag2)) layout, where (Real1, Imag1) is a value from
// one batch, and (Real2, Imag2) is from a different batch.
// * Real data is process using __half2 in (Real1, Real2) layout, where Real1 is a value from one batch, and
// Real2 is from a different batch.
constexpr size_t implicit_batching = FFT::implicit_type_batching;
complex_type* input_data;
auto input_size = FFT::ffts_per_block / implicit_batching * (cufftdx::size_of<FFT>::value / 2 + 1);
auto input_size_bytes = input_size * sizeof(complex_type);
CUDA_CHECK_AND_EXIT(cudaMallocManaged(&input_data, input_size_bytes));
for (size_t i = 0; i < input_size; i++) {
float v1 = static_cast<float>(i);
float v2 = static_cast<float>(i + input_size);
// Populate input with complex<half2> values in ((Real, Imag), (Real, Imag)) layout
input_data[i] = complex_type {__half2 {v1, -v1}, __half2 {v2, -v2}};
}
real_type* output_data;
auto output_size = FFT::ffts_per_block / implicit_batching * cufftdx::size_of<FFT>::value;
auto output_size_bytes = output_size * sizeof(real_type);
CUDA_CHECK_AND_EXIT(cudaMallocManaged(&output_data, output_size_bytes));
std::cout << "input [1st FFT]:\n";
for (size_t i = 0; i < (cufftdx::size_of<FFT>::value / 2 + 1); i++) {
std::cout << __half2float(input_data[i].x.x) << " " << __half2float(input_data[i].x.y) << std::endl;
}
// Increase max shared memory if needed
CUDA_CHECK_AND_EXIT(cudaFuncSetAttribute(
block_fft_kernel_c2r_fp16<FFT>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
FFT::shared_memory_size));
// Invokes kernel with FFT::block_dim threads in CUDA block
block_fft_kernel_c2r_fp16<FFT><<<1, FFT::block_dim, FFT::shared_memory_size>>>(input_data, output_data);
CUDA_CHECK_AND_EXIT(cudaPeekAtLastError());
CUDA_CHECK_AND_EXIT(cudaDeviceSynchronize());
std::cout << "output [1st FFT]:\n";
for (size_t i = 0; i < cufftdx::size_of<FFT>::value; i++) {
std::cout << __half2float(output_data[i].x) << std::endl;
}
CUDA_CHECK_AND_EXIT(cudaFree(input_data));
CUDA_CHECK_AND_EXIT(cudaFree(output_data));
std::cout << "Success" << std::endl;
}
template<unsigned int Arch>
struct simple_block_fft_c2r_fp16_functor {
void operator()() { return simple_block_fft_c2r_fp16<Arch>(); }
};
int main(int, char**) {
return example::sm_runner<simple_block_fft_c2r_fp16_functor>();
}