forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
simple_fft_thread_fp16.cu
93 lines (76 loc) · 3.75 KB
/
simple_fft_thread_fp16.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <iostream>
#include <vector>
#include <cuda_runtime_api.h>
#include <cufftdx.hpp>
#include "common.hpp"
#include "fp16_common.hpp"
template<class FFT>
__global__ void thread_fft_kernel(typename FFT::value_type* data) {
using complex_type = typename FFT::value_type;
// Local array for thread
complex_type thread_data[FFT::storage_size];
// Load data from global memory to registers.
// thread_data should have all input data in order.
unsigned int index = threadIdx.x * FFT::elements_per_thread;
for (size_t i = 0; i < FFT::elements_per_thread; i++) {
// complex<half2> values are processed with assumtion that they are in RRII layout,
// but data has them in RIRI layout. example::to_rrii converts RIRI to RRII.
thread_data[i] = example::to_rrii(data[index + i]);
}
// Execute FFT
FFT().execute(thread_data);
// Save results
for (size_t i = 0; i < FFT::elements_per_thread; i++) {
// converting back form RRII to RIRI layout
data[index + i] = example::to_riri(thread_data[i]);
}
}
// In this example a one-dimensional half-precision complex-to-complex transform is perform by each CUDA thread.
//
// Three (threads_count) threads are run, and each thread calculates two 8-point (fft_size) C2C half precision FFTs.
// Data is generated on host, copied to device buffer, and then results are copied back to host.
//
// Note: In half precision cuFFTDx uses complex<half2> type and processes values in implicit batches of two FFTs, ie.
// each thread processes two FFTs.
int main(int, char**) {
using namespace cufftdx;
// Number of threads to execute
// In case of half precision each thread caluclates two FFTs
static constexpr unsigned int threads_count = 3;
// FFT is defined, its: size, type, direction, precision.
// Thread() operator informs that FFT will be executed on a thread level.
using FFT = decltype(Thread() + Size<8>() + Type<fft_type::c2c>() + Direction<fft_direction::forward>() +
Precision<__half>());
using complex_type = typename FFT::value_type;
// Host data
std::vector<complex_type> input(cufftdx::size_of<FFT>::value * threads_count);
for (size_t i = 0; i < input.size(); i++) {
float v1 = static_cast<float>(i);
float v2 = static_cast<float>(i + input.size());
// Populate input with complex<half2> values in ((Real, Imag), (Real, Imag)) layout
input[i] = complex_type {__half2 {v1, -v1}, __half2 {v2, -v2}};
}
std::cout << "input [1st FFT]:\n";
for (size_t i = 0; i < cufftdx::size_of<FFT>::value; i++) {
std::cout << __half2float(input[i].x.x) << " " << __half2float(input[i].x.y) << std::endl;
}
// Device data
complex_type* device_buffer;
auto size_bytes = input.size() * sizeof(complex_type);
CUDA_CHECK_AND_EXIT(cudaMalloc(&device_buffer, size_bytes));
// Copy host to device
CUDA_CHECK_AND_EXIT(cudaMemcpy(device_buffer, input.data(), size_bytes, cudaMemcpyHostToDevice));
// Invokes kernel with 'threads_count' threads in block, each thread calculates two FFTs of size 8
thread_fft_kernel<FFT><<<1, threads_count>>>(device_buffer);
CUDA_CHECK_AND_EXIT(cudaPeekAtLastError());
CUDA_CHECK_AND_EXIT(cudaDeviceSynchronize());
// Copy device to host
std::vector<complex_type> output(input.size());
CUDA_CHECK_AND_EXIT(cudaMemcpy(output.data(), device_buffer, size_bytes, cudaMemcpyDeviceToHost));
CUDA_CHECK_AND_EXIT(cudaFree(device_buffer));
std::cout << "output [1st FFT]:\n";
for (size_t i = 0; i < cufftdx::size_of<FFT>::value; i++) {
std::cout << __half2float(output[i].x.x) << " " << __half2float(output[i].x.y) << std::endl;
}
std::cout << "Success" << std::endl;
}