forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample_cublasLt_LtDgemmPresetAlgo.cu
109 lines (100 loc) · 5.62 KB
/
sample_cublasLt_LtDgemmPresetAlgo.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/*
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cublasLt.h>
#include "sample_cublasLt_LtDgemmPresetAlgo.h"
#include "helpers.h"
/// Sample wrapper executing double precision gemm with a predefined algorithm using cublasLtMatmul, nearly a drop-in
/// replacement for cublasDgemm, with addition of the workspace to support split-K algorithms
///
/// pointer mode is always host, to change it configure the appropriate matmul descriptor attribute
/// matmul is not using cublas handle's configuration of math mode, here tensor ops are implicitly allowed; to change
/// this configure appropriate attribute in the preference handle
///
/// NOTE: this sample may not work on all architectures or all problem sizes
void LtDgemmPresetAlgo(cublasLtHandle_t ltHandle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const double *alpha, /* host pointer */
const double *A,
int lda,
const double *B,
int ldb,
const double *beta, /* host pointer */
double *C,
int ldc,
void *workspace,
size_t workspaceSize,
cudaStream_t stream) {
cublasLtMatmulDescOpaque_t operationDesc = {};
cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
cublasLtMatmulAlgo_t algo = {};
const int32_t algoId = 10;
const cublasLtMatmulTile_t tileId = CUBLASLT_MATMUL_TILE_16x16; // 5
const cublasLtReductionScheme_t reductionMode = CUBLASLT_REDUCTION_SCHEME_INPLACE; // 1
const int32_t splitKFactor = 256;
// create operation desciriptor; see cublasLtMatmulDescAttributes_t for details about defaults; here we just need to
// set the transforms for A and B
checkCublasStatus(cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_64F, CUDA_R_64F));
checkCublasStatus(cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa)));
checkCublasStatus(cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transb)));
// create matrix descriptors, we are good with the details here so no need to set any extra attributes
checkCublasStatus(cublasLtMatrixLayoutInit(&Adesc, CUDA_R_64F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda));
checkCublasStatus(cublasLtMatrixLayoutInit(&Bdesc, CUDA_R_64F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb));
checkCublasStatus(cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_64F, m, n, ldc));
checkCublasStatus(cublasLtMatmulAlgoInit(ltHandle, //
CUBLAS_COMPUTE_64F, // compute
CUDA_R_64F, // scale
CUDA_R_64F, // A
CUDA_R_64F, // B
CUDA_R_64F, // C
CUDA_R_64F, // D
algoId,
&algo));
checkCublasStatus(cublasLtMatmulAlgoConfigSetAttribute(&algo, CUBLASLT_ALGO_CONFIG_TILE_ID, &tileId, sizeof(tileId)));
checkCublasStatus(cublasLtMatmulAlgoConfigSetAttribute(&algo, CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME, &reductionMode, sizeof(reductionMode)));
checkCublasStatus(cublasLtMatmulAlgoConfigSetAttribute(&algo, CUBLASLT_ALGO_CONFIG_SPLITK_NUM, &splitKFactor, sizeof(splitKFactor)));
checkCublasStatus(cublasLtMatmul(ltHandle,
&operationDesc,
alpha,
A,
&Adesc,
B,
&Bdesc,
beta,
C,
&Cdesc,
C,
&Cdesc,
&algo,
workspace,
workspaceSize,
stream));
}