forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
cusolver_Xgesvdp_example.cu
244 lines (205 loc) · 9.88 KB
/
cusolver_Xgesvdp_example.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <stdexcept>
#include <vector>
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>
#include "cusolver_utils.h"
int main(int argc, char *argv[]) {
cusolverDnHandle_t cusolverH = NULL;
cublasHandle_t cublasH = NULL;
cudaStream_t stream = NULL;
cusolverDnParams_t params = NULL;
using data_type = double;
const int64_t m = 3;
const int64_t n = 2;
const int64_t lda = m;
const int64_t ldu = m;
const int64_t ldv = n;
const int64_t minmn = (m < n) ? m : n;
/*
* | 1 2 |
* A = | 4 5 |
* | 2 1 |
*/
const std::vector<data_type> A = {1.0, 4.0, 2.0, 2.0, 5.0, 1.0};
std::vector<data_type> U(ldu * m, 0);
std::vector<data_type> V(ldv * n, 0);
std::vector<data_type> S(n, 0);
std::vector<data_type> S_exact = {7.065283497082729, 1.040081297712078};
data_type *d_A = nullptr;
data_type *d_S = nullptr;
data_type *d_U = nullptr;
data_type *d_V = nullptr;
int *d_info = nullptr;
data_type *d_W = nullptr; // W = S*VT
int info = 0;
const double h_one = 1;
const double h_minus_one = -1;
size_t workspaceInBytesOnDevice = 0; /* size of workspace */
void *d_work = nullptr; /* device workspace for getrf */
size_t workspaceInBytesOnHost = 0; /* size of workspace */
void *h_work = nullptr; /* host workspace for getrf */
std::printf("A = (matlab base-1)\n");
print_matrix(m, n, A.data(), lda);
std::printf("=====\n");
/* step 1: create cusolver handle, bind a stream */
CUSOLVER_CHECK(cusolverDnCreate(&cusolverH));
CUBLAS_CHECK(cublasCreate(&cublasH));
CUDA_CHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
CUSOLVER_CHECK(cusolverDnSetStream(cusolverH, stream));
CUBLAS_CHECK(cublasSetStream(cublasH, stream));
CUSOLVER_CHECK(cusolverDnCreateParams(¶ms));
/* step 2: copy A to device */
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_A), sizeof(data_type) * A.size()));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_S), sizeof(data_type) * S.size()));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_U), sizeof(data_type) * U.size()));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_V), sizeof(data_type) * V.size()));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_info), sizeof(int)));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_W), sizeof(data_type) * lda * n));
CUDA_CHECK(cudaMemcpyAsync(d_A, A.data(), sizeof(data_type) * A.size(), cudaMemcpyHostToDevice,
stream));
cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR;
// const int econ = 0; /* compute 3-by-3 U */
const int econ = 1; /* compute 3-by-2 U */
double h_err_sigma;
/* step 3: query working space of SVD */
CUSOLVER_CHECK(cusolverDnXgesvdp_bufferSize(
cusolverH, params, /* params */
jobz, econ, m, n, traits<data_type>::cuda_data_type, /* dataTypeA */
d_A, lda, traits<data_type>::cuda_data_type, /* dataTypeS */
d_S, traits<data_type>::cuda_data_type, /* dataTypeU */
d_U, ldu,
traits<data_type>::cuda_data_type, /* dataTypeV */
d_V, ldv,
traits<data_type>::cuda_data_type, /* computeType */
&workspaceInBytesOnDevice, &workspaceInBytesOnHost));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_work), workspaceInBytesOnDevice));
if (0 < workspaceInBytesOnHost) {
h_work = reinterpret_cast<void *>(malloc(workspaceInBytesOnHost));
if (h_work == nullptr) {
throw std::runtime_error("Error: h_work not allocated.");
}
}
/* step 4: compute SVD */
CUSOLVER_CHECK(cusolverDnXgesvdp(cusolverH, params, /* params */
jobz, econ, m, n,
traits<data_type>::cuda_data_type, /* dataTypeA */
d_A, lda, traits<data_type>::cuda_data_type, /* dataTypeS */
d_S, traits<data_type>::cuda_data_type, /* dataTypeU */
d_U, ldu,
traits<data_type>::cuda_data_type, /* dataTypeV */
d_V, ldv,
traits<data_type>::cuda_data_type, /* computeType */
d_work, workspaceInBytesOnDevice, h_work, workspaceInBytesOnHost,
d_info, &h_err_sigma));
CUDA_CHECK(cudaMemcpyAsync(U.data(), d_U, sizeof(data_type) * U.size(), cudaMemcpyDeviceToHost,
stream));
CUDA_CHECK(cudaMemcpyAsync(V.data(), d_V, sizeof(data_type) * V.size(), cudaMemcpyDeviceToHost,
stream));
CUDA_CHECK(cudaMemcpyAsync(S.data(), d_S, sizeof(data_type) * S.size(), cudaMemcpyDeviceToHost,
stream));
CUDA_CHECK(cudaMemcpyAsync(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
std::printf("after Xgesvdp: info = %d\n", info);
if (0 > info) {
std::printf("%d-th parameter is wrong \n", -info);
exit(1);
}
std::printf("=====\n");
std::printf("S = (matlab base-1)\n");
print_matrix(minmn, 1, S.data(), n);
std::printf("=====\n");
std::printf("U = (matlab base-1)\n");
print_matrix(m, (econ) ? minmn : m, U.data(), ldu);
std::printf("=====\n");
std::printf("V = (matlab base-1)\n");
print_matrix((econ) ? minmn : n, n, V.data(), ldv);
std::printf("=====\n");
// step 5: measure error of singular value
double ds_sup = 0;
for (int j = 0; j < minmn; j++) {
double err = fabs(S[j] - S_exact[j]);
ds_sup = (ds_sup > err) ? ds_sup : err;
}
std::printf("|S - S_exact| = %E \n", ds_sup);
/* step 6: |A - U*S*V**T| */
/* W = V*S */
CUBLAS_CHECK(cublasDdgmm(cublasH, CUBLAS_SIDE_RIGHT, n, n, d_V, ldv, d_S, 1, d_W, lda));
/* A := -U*W**T + A */
CUDA_CHECK(cudaMemcpyAsync(d_A, A.data(), sizeof(data_type) * A.size(), cudaMemcpyHostToDevice,
stream));
CUBLAS_CHECK(cublasDgemm(cublasH, CUBLAS_OP_N, CUBLAS_OP_T, m, /* number of rows of A */
n, /* number of columns of A */
n, /* number of columns of U */
&h_minus_one, d_U, ldu, d_W, lda, &h_one, d_A, lda));
double dR_fro = 0.0;
CUBLAS_CHECK(cublasDnrm2(cublasH, A.size(), d_A, 1, &dR_fro));
CUDA_CHECK(cudaStreamSynchronize(stream));
std::printf("|A - U*S*V**T| = %E \n", dR_fro);
std::printf("h_err_sigma = %E \n", h_err_sigma);
std::printf("h_err_sigma is 0 if the singular value of A is not close to zero\n");
/* free resources */
CUDA_CHECK(cudaFree(d_A));
CUDA_CHECK(cudaFree(d_S));
CUDA_CHECK(cudaFree(d_U));
CUDA_CHECK(cudaFree(d_V));
CUDA_CHECK(cudaFree(d_info));
CUDA_CHECK(cudaFree(d_W));
CUDA_CHECK(cudaFree(d_work));
free(h_work);
CUSOLVER_CHECK(cusolverDnDestroy(cusolverH));
CUBLAS_CHECK(cublasDestroy(cublasH));
CUDA_CHECK(cudaStreamDestroy(stream));
CUDA_CHECK(cudaDeviceReset());
return EXIT_SUCCESS;
}