This code demonstrates a usage of cuSOLVER sygvd function for using sygvd to compute spectrum of a pair of dense symmetric matrices (A,B) by
Ax = λBx
where A is a 3x3 dense symmetric matrix
A = | 3.5 | 0.5 | 0.0 |
| 0.5 | 3.5 | 0.0 |
| 0.0 | 0.0 | 2.0 |
where B is a 3x3 positive definite matrix
B = | 10.0 | 2.0 | 3.0 |
| 2.0 | 10.0 | 5.0 |
| 3.0 | 5.0 | 10.0 |
The following code uses sygvd to compute eigenvalues and eigenvectors, then compare to exact eigenvalues {0.158660256604, 0.370751508101882, 0.6}.
All GPUs supported by CUDA Toolkit (https://developer.nvidia.com/cuda-gpus)
Linux
Windows
x86_64
ppc64le
arm64-sbsa
- A Linux/Windows system with recent NVIDIA drivers.
- CMake version 3.18 minimum
$ mkdir build
$ cd build
$ cmake ..
$ make
Make sure that CMake finds expected CUDA Toolkit. If that is not the case you can add argument -DCMAKE_CUDA_COMPILER=/path/to/cuda/bin/nvcc
to cmake command.
$ mkdir build
$ cd build
$ cmake -DCMAKE_GENERATOR_PLATFORM=x64 ..
$ Open cusolver_examples.sln project in Visual Studio and build
$ ./cusolver_sygvd_example
Sample example output:
A = (matlab base-1)
3.50 0.50 0.00
0.50 3.50 0.00
0.00 0.00 2.00
=====
B = (matlab base-1)
10.00 2.00 3.00
2.00 10.00 5.00
3.00 5.00 10.00
=====
after sygvd: info = 0
eigenvalue = (matlab base-1), ascending order
W[1] = 1.586603E-01
W[2] = 3.707515E-01
W[3] = 6.000000E-01
V = (matlab base-1)
0.05 0.31 -0.12
0.09 -0.16 -0.31
0.24 -0.02 0.29
=====
|lambda - W| = 2.498002E-16